Abstract:
|
This study is about the analysis of some queueing models related to N-policy.The optimal value the queue size has to attain in order to turn on a single server, assuming that the policy is to turn on a single server when the queue size reaches a certain number, N, and turn him off when the system is empty.The operating policy is the usual N-policy, but with random N and in model 2, a system similar to the one described here.This study analyses “ Tandem queue with two servers”.Here assume that the first server is a specialized one.In a queueing system,under N-policy ,the server will be on vacation until N units accumulate for the first time after becoming idle.A modified version of the N-policy for an M│M│1 queueing system is considered here.The novel feature of this model is that a busy service unit prevents the access of new customers to servers further down the line.It is deals with a queueing model consisting of two servers connected in series with a finite intermediate waiting room of capacity k.Here assume that server I is a specialized server.For this model ,the steady state probability vector and the stability condition are obtained using matrix – geometric method. |