Now showing items 1-10 of 10
Abstract: | Ultra thin films based on CoFe were prepared from a composite target employing thermal evaporation. The microstructure of the films was modified by thermal annealing. The relationship between microstructure and magnetic properties of the films was investigated using techniques like glancing angle X-ray diffraction (GXRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The GXRD and TEM investigations showed an onset of crystallization of CoFe at around 373 K. The magnetic softness of the films improved with thermal annealing but at higher annealing temperature it is found to be deteriorating. Annealing inducedmodification of surface morphology of the alloy thin filmswas probed by atomic force microscopy (AFM). Surface smoothening was observed with thermal annealing and the observed magnetic properties correlate well with surface modifications induced by thermal annealing |
Description: | Surface & Coatings Technology 236 (2013) 246–251 |
URI: | http://dyuthi.cusat.ac.in/purl/4429 |
Files | Size |
---|---|
Evolution of st ... with thermal annealing.pdf | (1.310Mb) |
Abstract: | The magnetic properties of amorphous Fe–Ni–B based metallic glass nanostructures were investigated. The nanostructures underwent a spin-glass transition at temperatures below 100 K and revealed an irreversible temperature following the linear de Almeida–Thouless dependence. When the nanostructures were cooled below 25 K in a magnetic field, they exhibited an exchange bias effect with enhanced coercivity. The observed onset of exchange bias is associated with the coexistence of the spin-glass phase along with the appearance of another spin-glass phase formed by oxidation of the structurally disordered surface layer, displaying a distinct training effect and cooling field dependence. The latter showed a maximum in exchange bias field and coercivity, which is probably due to competing multiple equivalent spin configurations at the boundary between the two spin-glass phases |
Description: | J. Phys.: Condens. Matter 24 (2012) 256004 (8pp) |
URI: | http://dyuthi.cusat.ac.in/purl/4413 |
Files | Size |
---|---|
Exchange bias e ... B based metallic glass.pdf | (1.716Mb) |
Abstract: | Two-dimensional electronic systems play a crucial role in modern electronics and offer a multitude of opportunities to study the fundamental phenomena at low dimensional physics. A quantum well heterostructure based on polyaniline (P) and iodine doped polyaniline (I) thin films were fabricated using radio frequency plasma polymerization on indium tin oxide coated glass plate. Scanning probe microscopy and scanning electron microscopy studies were employed to study the morphology and roughness of the polymer thin films. Local electronic density of states (LDOS) of the P–I–P heterostructures is probed using scanning tunnelling spectroscopy (STS). A step like LDOS is observed in the P–I–P heterostructure and is attributed to the quantum well confinement of electrons in the polymer heterostructure. |
Description: | J. Phys. D: Appl. Phys. 42 (2009) 165309 (7pp) |
URI: | http://dyuthi.cusat.ac.in/purl/4416 |
Files | Size |
---|---|
Fabrication of ... erized aniline and its.pdf | (853.9Kb) |
Abstract: | We investigated the influence of substrate surface roughness on the structural and magnetic properties of obliquely deposited amorphous nanocolumns of Fe–Ni. Experiments showed that the surface roughness of the substrate greatly determines the morphology of the columnar structures and this in turn has a profound influence on the magnetic properties. Nucleation of Fe–Ni nanocolumns on a smooth silicon substrate was at random, while that on a rough glass substrate was defined by the irregularities on the substrate surface. It has been found that magnetic interaction between the nanocolumns prepared on a silicon substrate was due to their small inter-column separation. Well separated nanocolumns on a glass substrate resulted in exchange isolated magnetic domains. The size, shape and the distribution of nanocolumns can be tailored by appropriately choosing the surface roughness of the substrate. This will find potential applications in thin film magnetism. |
Description: | J. Phys. D: Appl. Phys. 42 (2009) 215005 (8pp) |
URI: | http://dyuthi.cusat.ac.in/purl/4405 |
Files | Size |
---|---|
Influence of su ... s nanocolumns of Fe–Ni.pdf | (1.327Mb) |
Abstract: | We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 1011 ions/ cm2, 1 1012 ions/cm2, 1 1013 ions/cm2, and 3 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated |
Description: | Nuclear Instruments and Methods in Physics Research B 310 (2013) 81–86 |
URI: | http://dyuthi.cusat.ac.in/purl/4423 |
Files | Size |
---|---|
Magnetic and to ... y Ag7+ ion irradiation.pdf | (1.990Mb) |
Abstract: | Metallic glass alloy Metglas 2826 MB based amorphous magnetic thin films were fabricated by the thermal evaporation technique. Transmission electron micrographs and electron diffraction pattern showed the amorphous nature of the films. Composition of the films was analyzed employing X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy techniques. The film was integrated to a long period fibre grating. It was observed that the resonance wavelength of the fibre grating decreased with an increase in the magnetic field. Change in the resonance wavelength was minimal at higher magnetic fields. Field dependent magnetostriction values revealed the potential application of these films in magnetostrictive sensor devices. |
URI: | http://dyuthi.cusat.ac.in/purl/2840 |
Files | Size |
---|---|
Dyuthi-P00393.pdf | (556.3Kb) |
Abstract: | Nanocrystalline Fe–Ni thin films were prepared by partial crystallization of vapour deposited amorphous precursors. The microstructure was controlled by annealing the films at different temperatures. X-ray diffraction, transmission electron microscopy and energy dispersive x-ray spectroscopy investigations showed that the nanocrystalline phase was that of Fe–Ni. Grain growth was observed with an increase in the annealing temperature. X-ray photoelectron spectroscopy observations showed the presence of a native oxide layer on the surface of the films. Scanning tunnelling microscopy investigations support the biphasic nature of the nanocrystalline microstructure that consists of a crystalline phase along with an amorphous phase. Magnetic studies using a vibrating sample magnetometer show that coercivity has a strong dependence on grain size. This is attributed to the random magnetic anisotropy characteristic of the system. The observed coercivity dependence on the grain size is explained using a modified random anisotropy model |
Description: | J. Phys. D: Appl. Phys. 41 (2008) 155009 (8pp) |
URI: | http://dyuthi.cusat.ac.in/purl/4368 |
Files | Size |
---|---|
Microstructure ... crystalline thin films.pdf | (1.237Mb) |
Abstract: | Silver silica nanocomposites were obtained by the sol–gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO3) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5–10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory |
Description: | Nanotechnology 19 (2008) 075710 (7pp) |
URI: | http://dyuthi.cusat.ac.in/purl/4352 |
Files | Size |
---|---|
Size-dependent ... silica nanocomposites.pdf | (858.7Kb) |
Abstract: | The growth of Fe–Ni based amorphous nanocolumns has been studied using atomic force microscopy. The root mean square roughness of the film surface increased with the deposition time but showed a little change at higher deposition time. It was found that the separation between the nanostructures increased sharply during the initial stages of growth and the change was less pronounced at higher deposition time. During the initial stages of the column growth, a roughening process due to self shadowing is dominant and, as the deposition time increases, a smoothening mechanism takes place due to the surface diffusion of adatoms |
Description: | APPLIED PHYSICS LETTERS 94, 063110 2009 |
URI: | http://dyuthi.cusat.ac.in/purl/4386 |
Files | Size |
---|---|
Surface evoluti ... lique angle deposition.pdf | (324.8Kb) |
Abstract: | Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously |
Description: | Al-Harthi et al. Nanoscale Research Letters 2012, 7:466 |
URI: | http://dyuthi.cusat.ac.in/purl/4412 |
Files | Size |
---|---|
Unusual surface ... ayer graphene surfaces.pdf | (838.7Kb) |
Now showing items 1-10 of 10
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.