Abstract:
|
This study is about the stability of random sums and extremes.The difficulty in finding exact sampling distributions resulted in considerable problems of computing probabilities concerning the sums that involve a large number of terms.Functions of sample observations that are natural interest other than the sum,are the extremes,that is , the minimum and the maximum of the observations.Extreme value distributions also arise in problems like the study of size effect on material strengths,the reliability of parallel and series systems made up of large number of components,record values and assessing the levels of air pollution.It may be noticed that the theories of sums and extremes are mutually connected.For instance,in the search for asymptotic normality of sums ,it is assumed that at least the variance of the population is finite.In such cases the contributions of the extremes to the sum of independent and identically distributed(i.i.d) r.vs is negligible. |