dc.description.abstract |
The study deals with the distribution theory and applications of concomitants from the Morgenstern family of bivariate distributions.The Morgenstern system of distributions include all cumulative distributions of the form FX,Y(X,Y)=FX(X) FY(Y)[1+α(1-FX(X))(1-FY(Y))], -1≤α≤1.The system provides a very general expression of a bivariate distributions from which members can be derived by substituting expressions of any desired set of marginal distributions.It is a brief description of the basic distribution theory and a quick review of the existing literature.The Morgenstern family considered in the present study provides a very general expression of a bivariate distribution from which several members can be derived by substituting expressions of any desired set of marginal distributions.Order statistics play a very important role in statistical theory and practice and accordingly a remarkably large body of literature has been devoted to its study.It helps to develop special methods of statistical inference,which are valid with respect to a broad class of distributions.The present study deals with the general distribution theory of Mk, [r: m] and Mk, [r: m] from the Morgenstern family of distributions and discuss some applications in inference, estimation of the parameter of the marginal variable Y in the Morgestern type uniform distributions. |
en_US |