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Chapter 1
INTRODUCTION

1.1 Concomitants of Order Statistics

Order statistics play a very important role in statistical theory and practice
and accordingly a remarkably large body of literature has been devoted to its study.
It helps to develop special methods of statistical inference, which are valid with
respect to a broad class of distributions. Specific properties of order statistics are
used to identify probability distributions in the form of characterizations, see
Arnold, et al. (1992), Balakrishnan and Rao (1998). In spite of the established role
of order statistics in statistical theory, discussions are largely confined to the
univariate case and comparatively lesser volume of work is available in a
multivariate setup. This is due to the fact that there is no straightforward way of
extending the concept of order statistics from the univariate case to the multivariate
case. A survey of different attempts of introducing multivariate order statistics can
be found in Barnett (1976). Most of the theoretical development in this area of
research is on concomitants of order statistics. The concept of concomitants, when
bivariate data are ordered by one of its components, was first introduced by David
(1973) and almost simultaneously under the name of induced order statistics by
Bhattacharya (1974).

Let (X;,Yi),1=1,2...n be a random sample from a bivariate distribution
with cumulative distribution function (cdf) F(x,y) .If we order the values of X;'s in

the increasing order of magnitude , then the corresponding Y;'s need not have a
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similar order among themselves . Unless X and Y are independent, the ordering of
X’s will affect the distribution of the associated Y’s. The Y value associated with
or paired with X;., , the ™ X order statistic is called the concomitant of Xrn and
will be denoted by Yi.,j . The ordering of concomitants is similar to that of the
marginal variable X if p =1 and completely reversed if p =-1.

The most important use of concomitants is identified in selection problems
when k (<n) individuals are chosen on their X values. Then the corresponding Y
values represent performance of an associated characteristic. For example, if the k
out of n rams as judged by their genetic make up is selected for breeding, then

Y istmpsYnmy might represent the quality of the wool of one of their female

offspring. Or, X might be the score of a candidate on a screening test and Y the
score on a later test. Concomitants have found a wide variety of applications in
such applied fields as selection procedure (Yeo and David (1984)) ocean
engineering (Castillo (1988)) inference problems (Do and Hall (1992), Yang
(1981a,b)), prediction analysis (Gross (1973)) and double sampling plans (David
(1996), O’Connell and David (1976)). An excellent review of work on

concomitants of order statistics is available in David and Nagaraja (1998).

1.2 Basic Distribution Theory and a Brief Review

In a basic paper of concomitants, David (1973), considered the bivariate
normal model in which the variable Y is linked with X through the regression
model

X=Hiyiz (1.2.1)
g

X

where Z ~N (0, o;(1- p*)) and Z is independent of X . Under this model he

Y =u,+po,(

has derived the finite and asymptotic distribution of the concomitants. Thus for

r=1,2...n
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X -
Yien =, + po, () 4 7, (12.2)

where Zj) denotes the particular Z, associated with X, In view of the
independence of X, and the Z; we see that the set of X, is independent of Zj .
Moreover Zj;) are mutually independent and Z, ~ Z. A more general model of
(1.2.1) is discussed in Kim and David (1990). Let Yi= g ( X; &;) represent a general
model for the regression of Y on X, where neither the X; nor the g need be
identically distributed (but still be independent). Then
Yirn = 8( Xen,€) r=12...n (1.2.3)
from the mutual independence of the X; and the ¢; it follows that g has the same
distribution as the €; accompanying X, and that the g are mutually independent .
They have shown that concomitants are associated random variables. More over
concomitants satisfy a stronger form of dependence, multivariate total positivity of
order 2if each gy in the general linear model has a Polya frequency of order two
(Karlin and Rinott (1980)).
The general distribution of concomitants may be derived from the following

Theorem due to Bhattacharya (1974).

Theorem 1.1

Forl<n <n..<n<nthey  (i=1,2. n)are conditionally independent

k
given X, =x, (1=1, 2. k) with joint conditional density function l_lf(y, | x,).

i=1
It follows from the above Theorem that the joint density function of the

Y Y

[rn]> " [nn]>

concomitants Y,

[nn]>

o« X X9 k

f}'[,]:,,,. Hog) Wi = _[ _[_[fr,n r,n(x|r-~xk)l—[f()’h | x,)dx, (1.2.4)

—w— -0 h=1
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Yang (1977) has shown that

E[Y(rn ] = E[m(Xr.n)]

Var (Yien ) = VarmXen))E (02(X, )

Cov(Xrn,Yisn) ) = Cov (Xen ,m(Xsn) )

Cov (Yien) Yisny ) = Cov (m(Xen ),m(Xsn) ) T2 5
where

m(x) = E (Y|X =x)
and

o’(xX)=Var(Y | X =x). (1.2.5)
Jha and Hossein (1986) noted that (1.2.5) continues to hold when X is absolutely
continuous but Y is discrete. They have derived the following important recurrence

relations connecting the moments of concomitants for an arbitrary specified

function h (.) such that E[h(Y)] exists.

(0-r) E(W(Y e )+ T E(O(Y(s1my )) =0 E(h (Yiemy ), £=1,2...0-1 (1.2.6)

8

i k
E (h(Yem))) = U:J Z (k ~ J [m—_H—Sj E(h(Yy_imeivs)))

k—i
i<k, 1<k<m<n, (1.2.7)
g
m\d ok )
EGhYxm))= -1 EhE,, . ,
(( [k: ])) (k]g( ) k+s m—j+S ( ([k+s,m—;+.r]))
k+s
0<j<m-k (1.2.8)

=r

n(i-1 .
E(h(Y[r:n] ) = Z[;_lj[’;j(—l)'_rE(h(Yii:il)), 1=1,2..n (1.2.9)
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(r'l) E:(Y[r:n] Y[s:n] ) + (S-I') E:(Y[r-l:n] Y[s:n]) +(I'1-S+1) E(Y(r-l:n] Y[s-l:n])
= nE(Yir1n1) Yistmay, 17 <s<n (1.2.10)

A new recurrence relation emerges from the above results.

Theorem 1.2

For2<i<j<n,

(- l)ﬂ[i_]:n] +(J- l)ﬂ[,-u:n] +(n-j+ 1)18[,'—1,,'—1;"] =

(1.2.11)
”{ﬂp-l,,—l 1] +[:qu-l:n—l] - luIi—lin]][/LL[j—lzn—l] - lu{j:n]]}

where
ﬂ[’,]"'] = COV(Y'[’-:"]’ Y'[j:n])
and

Hiiny = E(Y[x‘;n]) :

Proof: We have from (1.2.10)

(=D m+ U =DBctjm + 1=+ DBy joam =
N oy = O Dbyt = G = DMy = = J 4 Dl oy +
IR R

(1.2.12)

Now consider,

(I - 1)lu[i:n]l"1[j:n} + (.] - l)luli—l:n]lulj:n] + (n - .] + 1)/JIi-1:n]luI j-lin) = lu{j:n]{(i - l)l'lll':nl +
(r’ - I + l):u]i—l:n] } + (n - / + l)luli—]:nl(y”—l:n] - lu‘[j:n])

=nluIJ n]/u'[l—l n-1] + n/[l[l—ln]{/[l[j—l:n—ll - /I‘L[J’nl} (1 2 13)
Since i/u[Hl:n] + (’7 _i)lu[x:n] = n:u]i:n—l] .

Now using (1.2.13) on the right hand side of (1.2.12) and simplifying we get

(1.2.11).
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Some specific cases of distribution of concomitants relating to Gumbel’s
bivariate exponential, bivariate Weibull, bivariate Burr and new generalized
Farlie-Gumbel-Morgenstern distributions, are discussed in, Balasubramanian and
Beg (1997, 1998), Beg and Balasubramanian (1996), Begum and Khan (1997,
1998, 2000) and Baimarov, Kotz and Bekci (2001).

The asymptotic distribution of concomitants in the simple linear model

(1.2.1) is discussed in David and Galambos (1974). They have shown that for

all 1, under the conditions n—> coand lim 8?, =0, the asymptotic distribution of

Z,=1Y,.,-ElY,.,] is normal, N(0,0,(1- p*)), if | p|<1. They have also proved

[r]
two theorems concerning the asymptotic independence and asymptotic distribution

of concomitants.

Theorem 1.3

For any fixed k> 1 and for any choice 1<7 <r, <...<r, <n of subscripts,

k
lim,  PLY] <%t <%]=[]®(x0) (1.2.14)
i=1

n->w [7:n] rnon]

where
o’ =al(1-p%)
and
¥ = Ym = ELY ]

(nn] =

¢ is the cdf of a standard normal distribution.

Theorem 1.4
Let X and Z be independent random variables and let Z has a continuous

distribution function F(x). Define Y= X+Z and let}| X..tZ,.

rn) =
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Then if the distribution of X is such that the variance B, of X, tends to zero
as n->o0, any fixed number of random variables Y[::,,] =1, -ElY,,] are

asymptotically independent, each with distribution function F(x). A corollary of

Theorem 1.3 is also stated here.

Corollary 1.1
Let yin ,1 =1,2.. k real numbers such that, as n->o0 lim y; , = x; exist. Then,

with the notations of Theorem1.3
» - k
llm n->w P[Y[r,-:n]< yl,n’ "'Yirk:n] < yk,n] = l—I (D(xi l O—) (1 2 l 5)
i=1

A more general case is discussed in Yang (1977). He has proved a powerful

theorem on the asymptotic distribution of concomitants.

Theorem 1.5

Let 1<r <r, <..<r,<n be sequences of integers such that, as n->co,

r./n— A with0<A <1 (1=1, 2.. k).
k
Then llm n->w P[Y[r,'n]<yl""}/}r"n] <yl(]: HP[YI < i |X1 = A’l]
1=1
The extended version of the theorem in Galmbos (1978) by David (1994) gives a
representation for the limit distribution of Y|.nj for an arbitrary absolutely bivariate

cdf F(x,y) .

Theorem 1.6
Let Fx(x) satisfy one of the Von Mises condition and assume that the
sequences of constants a,, b, >0, are such that as n->oo

{ Fx(antbsx)}"™-> G(x) for all x (1.2.16)
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Further, suppose there exist constants A, and B, >0 such that

{ Fy(AatBny| antb, x)}-> H (y|x) forall x and y .
Then P [Yinke1n) < AntBay ] = j H(y|x)dG,,(x) (1.2.17)

where Gy , the kth lower record value from the extreme value cdf G. If (1.2.16)
holds we say that Fx is in the domain of attraction of G it is well known that G must
be one of the three extreme value cdf’s which are of the following types, see

Galambos (1987).

Gix,a)=0 x<0
=exp (-x%) x>0: >0
Gax, ) =exp (- (-x%)) x <0: a>0
=1 x20
Gs(x) =exp{-exp(x)} ;-o<x<o0,
Suresh (1993) has shown that the central concomitants and extreme concomitants
are asymptotically independent .In selection problems, we use a very important
statistic called the rank of the concomitants denoted by R [r.nj . Here R (rq) 1s the
rank of Yj.n) among the n Y; ’s. David et al. (1977) have derived the pdf and

expected value R .y .
We have Rirn) = Z I, -1,
i=]

where
I(x)=11fx 20
=01ifx <0.
Denote by

Il P [R [rn] = S]

r.s
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and
T, =
njj 2 C 00 1"Rgle-t-iig (nor=srkel) £(x yYdxdy
k=u
where
u=max(0,r+s-n-1) t=min(r-1,s-1) (1.2.18)
0,(x,y)=PlX <x,¥ <y]=Fy,(x,y)
0,(x,y)=P[X <x,Y > y]
0,(x,y)=P[X >x,Y <]
0,(x,y)=PX >x,Y > y]
and

_ (n-1)!
LR -1-R)N(s-1-k)(n—r—-s+1+k)

They have discussed in detail the bivariate normal case .The expected value of
R rnj may be obtained directly by the characteristic order statistics argument.
They have shown that

ERpn]=1+n

(L] 6.Ca ) SOV, (x)dxdy + [ [6(x, 1) /(2] X)),y (x) ey}

- -0

(1.2.19)
In the bivariate normal case David et.al.(1977) have shown that
lim [ E[Rjmny/nt1 J=®(p @' (A)/(2- p*)"?),
lim P[Rirn) < na] = ®((@7'(a) - p.@7'(1)]/(1- p*)"?) (1.1.20)

where

f/ntl >4 (0<A<l).
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For the general bivariate distribution Yang (1977) has shown that
lim P[Riry < mu)= PIY < F'(u) | X = F;'(A)].
He has presented an interesting application of concomitants in a prediction

problem. Spruill and Gatsworth (1996) have applied the above results in connection

with employment problems of a professional couple.

Yeo and David (1984) consider the problem of choosing best k objects out
of n when, instead of measurements Y; of primary interest, only associated
measurements X; (i = 1, 2...n) are available. For example Y; could be very
expensive measurements but X;‘s are inexpensive measurements. It is assumed that
the n pairs (Xi, Y;) be a random sample from a continuous population. The actual
values of Xi’s are not required, only their ranks. A general expression is developed
for the probability IT that the s objects with the largest X values include the k

objects (k< s) with the largest Y values. They have applied the formula for IT in

the bivariate normal case. They have also developed the formula for selecting
the best object based on the actual values of X, instead of ranks by using a

computer program.

Nagaraja and David (1994) have developed an important statistic for
selection problem. In their approach the statistic Vi, = max (Yppk+1m) ..y Yinenp),
k=1,2, ..., nrepresenting the best individual in a screening proc.:edure with respect
to the characteristic under study. They consider E[V},] / E[Y,.»] as a measure of
effectiveness of the screening procedure . Both the finite and asymptotic theory of

Vin are discussed by them. They have shown that the cdf of V., is

Fl ) = PVin <31 = [[F 0] £, ()
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where
Fox ) =P[Y sy X>x]. (1.2.21)

They have also derived the limit distribution of V., in the extreme and quantile

case. When k is held fixed, under some regularity conditions as n increases

FiA #B 1.3) = [ [ Hy 010 G0 (1222)

-0

where

1

dGy1(x) = [-log G(x)]* -

gx) .

In the quantile case, where k = [np], 0<p<l, under mild conditions, the limit

distribution of V., coincides with the limit distribution of sample maximum from

the cdf FY'IX(y’F);'(l—p)).They have applied their results to some interesting

situations, including the bivariate normal population and the simple linear
regression model. Joshi and Nagaraja (1995) have derived the joint distribution of
Vin and th' = max (Y. ..., Yinkmp). They used their result to study the joint
distribution of Vin and Yan , since Yan = max ( Via ,Via ). It can be used to
choose k such that Vi, / Yaq is close to 1. LiXiande (1999) has established a
sufficient condition for the convergence of concomitants of selected order statistics
Let (X,Y) be the measurement of certain characteristic associated with the parent

and offspring populations respectively. Suppose k parents, ranked highest on X, are

' 1 : :
selected and the average Y k] = ;ZY[,,_MM of the y values associated with the
i=1

offspring group due to the selection is the induced selection

. . ! .
differential D, ,, = (¥, —4,)/o,, also known as response to selection. D,

measures the superiority of Y of the k individuals ranked highest on X. The

asymptotic distribution this statistic, suitably standardized, is derived in extreme
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and quantile cases by Nagaraja (1982). Asymptotic properties of D, have also

been investigated. Suresh and Kale (1994) discussed the induced selection
percentiles and their properties. Yang (1981a, 1981b) and Sandstrom (1987) have
studied the asymptotic properties of smooth linear functions of Y [i.n) . Yang (1981a)

has considered general linear functions of the form
L =lZH:J(i)Y
In nsn [i:n)
and
1 <&
Lan==—) (—)n(X,,,Yin)
2 n;(ﬂ)n( in> 4 (i ])

where J is a smooth function which may depend on n, and 7 is a real valued

function. He has established the asymptotic normality of these statistics. These
results are used to construct consistent estimators of quantiles associated with the
conditional distribution of Y given X = x.

Do and Hall (1992) used the Effron’s (1990) technique to estimate the
percentiles of the bootstrap distribution based on concomitants.

Let Y =X+¢ where Fx is completely known and Fy is to be estimated. The

observation is

X,

in] T Ain

(Xi:n , € [1.n])’1 <ig n, ¢ [i'n]: Y[

They have suggested the estimator

la) 1 Z — .
F, (= ;Z](Fxl(l/n)+8[,-:"] <),

i=]
where I(.) represents the indicator function and established that ife’s are
sufficiently small F,,(y) performs better than the classical estimator F,,(y),

the empirical cdf. Application of concomitants in double sampling is discussed in

O’Connell and David (1976).
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They suggested the simple linear estimator of u, is
_ O'y - -
Y[r:n]zluy +pJ—(Xr:n—ﬂX)+8r (1223)
where X, and £, are the means of X,,and g,,,i=1,2.. k.
If X has a symmetric distribution and the ranks are symmetrically chosen
1e Vs =h+1-r,i=12. [k+l]
then Y. is unbiased for u, .Also from (1.2.23)
Var (Yirm /oy, ) =pVar(X,)+(1-p*)/k . (1.2.24)

Thus the ranks r; minimizing Var(X,,)also minimize Var (Y- ) for all values
of p.

Waterson (1959) has considered the linear estimation of the parameters
of a bivariate normal population under various forms of censoring. Harrell and
Sen (1979) have used the method of likelihood in one of these situations, namely

when Xy ,... Xk and Y (im) ,...Yikn are available. They derive the test of

independence of X and Y.

An unbiased estimator of the regression coefficient is considered in Barton

and Casley (1958). The estimator

=, —
- Y[lc:n] - YEk:n]

where
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_ 1 k - 1 k
X|k:n =;ZXn—i+1:n’ Xk:n =;ZX,-:",

does not use the 1.1.d property and has efficiency of 75-80% when (X,Y) is bivariate

normal, provided k is chosen about 0.27n. Tuskibayashi (1962) has suggested an

estimator
Yn:n T
of p, the correlation coefficient. He points out that o can be calculated even if
only the ranks of Xi’s are available. Interesting results related to the distribution of
p are developed in Tuskibayashi (1998). Barnett et.al.(1976) have discussed the
estimation of p using concomitants.
Multivariate generalization of concomitants is first discussed in David (1973).

Suppose that associated with each X there are t variates Y; (j = 1, 2...t) the

t+1variates following a multivariate normal distribution with covariance matrix

where
X, =0;,Z, =(Cov(X, 1), =X
and
2y = (Cov(Yj,YJf ).
If Y[:,"] denotes the tx 1 column vector of the ¥ ;[m],
where

¥

Y

Jilrin) = Yj,[r:n] -

E [Yj,[r:n]]a
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the vectors Y[,‘ -0 =1,2..k are asymptotically independent, identically distributed

N(0,%,, ) variates,

and
222.1 = 222 _221 vZ'1_11 zlz

_y,-Zaln (1.2.25)
Ux

The general multivariate case and some applications are discussed in
Balakrishnan (1993). Suppose we have n sets of variates (Xi, Y. Yy ),‘ Setting
m; (x;) = E(Yji | xi ) and writing Yj.q) for that Y;; paired with X.., ,we have

E(Yjirn) ) = E(my (Xn )
and

COV(Yj[.—;n], Yk[r:n] ) =Cov ( m; (X.—;n) , My (X.—;n) ) + EO’J.',( (Xr:n) j;t k

(1.2.26)

where

i Y 1 %)

0, (x)=Cov(Y,

In the multivariate normal case o, (x;) does not depend on x; and may obtained

from standard theory

o,(x)=0,-0,0, /o?. (1.2.27)
Then Yiin= 4, +p,0,(X,,,—p )0, +¢&,, (1.2.28)
where
K= E[Yj],of =Var(Y))
and p;=Cov(X,Y)).

Also noting that ¢, ande,,, are independent unless r =s.
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They have shown that
Cov (Yitens » Xkien)) =0,0,00, By + 0 4 (X)
=0, — p;0,p0,(1-5,,) (1.2.29)
Cov (Yjieny , Yiisnl) = 0,0 0,9, B, (1.2.30)
where,
B.. = Cov(Xen, Xen) -
Balakrishnan (1993) has introduced the multivariate order statistics induced by
ordering linear combinations of the components observed in n independent
observations from a multivariate normal distribution. The concept of induced
bivariate order statistics is explained below.
Let (Xi, Y1), 1 = 1, 2...n be independents observations from the bivariate
normal distribution BVN (g, p,,0%,02,p0,0,). Let a and b be non zero

constants and

§j = aX; +bY; j=12...n (1.2.31)

Let Sin< San ... € San be the order statistics of Sy ,S,,...S, defined in (1.2.31).
Then the bivariate order statistics induced by the order statistics Sk, as follows
Xin=X; and Ypa =Y; whenever Sg, = S; .In other words ( X{kn) , Yikn) ) 18
that (X,Y) pair which corresponds to the smallest value among S;’s in (1.2.31). He
has derived explicit expression for the means, variances and co-variances of the
induced bivariate order statistics. He also extended the bivariate induced order
statistics to the multivariate case and derived explicit expressions for means
variances and co variances in the p-variate normal case.

Balasubramanian and Balakrishnan (1995) have provided a method of

constructing a general class of distributions which is closed under marginal,
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conditional and concomitance of order statistics. They have constructed the
bivariate member of the class defined by
ha [x1 X2 ;a1 ,32 ,a12 ] = f(x) f(x2) {1+ a1 g(x1) +az g(x2) +a12 g(x1) g(x2) }
(1.2.32)
where f(x) is a density function and g(x) is an orthogonal function such that

E [g(X)] = 0 and the parameters a;, a; and a,, satisfy the conditions

1+a; +a; ta;; 20 I+a; -az-a12 20
l-a; +az-a;2 20 l-a) -a; +a;2 2 0. (1.2.33)
They have shown that the concomitants belong to the univariate member of the
family
h(x,)=1(x) { 1+ag(x)},ae[-11], and have extended the method to

the multivariate case and discussed some interesting properties of this class.

1.3 Morgenstern Distributions

In modelling problems, one general approach is to first choose a family of
distributions and then select a member that is appropriate to describe the
observation. Of the desiderata for choice of the family, the most important one is
that the family should be flexible, in the sense that it should contain a wide
variety of models capable of representing any data situation. Another consideration
is the sort of prior information available in the choice of the model. In problems
mvolving several random variables, the analyst may make reasonable
assumptions about the marginal distributions. Then the question is to construct a
joint distribution function with a set of given marginals. The Morgenstern family of
distributions assumes importance in such contexts as a highly flexible system.
Accordingly in the present study we deal with the distribution theory and

applications of concomitants from the Morgenstern family of bivariate distributions.
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The Morgenstern system of bivariate distributions includes all cumulative

distribution functions of the form

Fyox,y) = Fx(x) Fy())[1+o(1- Fx(x))(1- Fr(y))], -1 <a<l. (1.3.1)
The system provides a very general expression of a bivariate distribution from
which members can be derived by substituting expressions of any desired set of
marginal distributions. The joint density is given by

Jerxy) = () O)1+a(1-2 Flx))(1-2 Fry))], -1<asl. (13.2)

Since both the bivariate distribution function and density are given in terms of
marginals, it is easy to generate a random sample from a Morgenstern distribution.
Thus members of this family can be used in simulation studies, especially when
weak dependence between variates is of interest. It follows that the conditional
density of X given Y=y is

Sarey) = FO+a(1-2 FO)(1-2 Fro)), -1<as<l.  (133)

When y = median (Y), the conditional density of X given Y =y is the same as the
marginal density of X. The regression curve of X given Y =y is

E [XIY=y] = E[X]*+ & (1-2 FAy)) [x (1-2 Filx) filix) dx (1.3.4)
which is linear in Fy(y).

A number of properties results from the simple analytic form of
Morgenstern distributions. If the marginal distributions of X and Y are symmetric,
the joint distribution is also symmetric. Random variables having a bivariate
Morgenstern distribution are exchangeable whenever the marginal distributions
are identical. The Morgenstern system is closed with respect to monotonic
increasing functions of random variables. Also the system is closed with respect
to mixtures of bivariate Morgenstern distributions having the same marginal

distributions.
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The Morgenstern family is characterized by its “closeness” to the
distribution of independent random variables. The following characterization is

discussed in Nelson (1994).

Theorem 1.5

If| p,| < 1/3, the one whose joint density is closet to the product density of

independent random variables (in the sense of minimizing ‘P*-divergence) is the
Morgenstern distribution with parametera =3 p,, where p, is the Spearman’s rank
correlation coefficient.

The Morgenstern distributions are specially suited to data situations
describing weak dependence between the random variables X and Y. Measures of
dependence vary over a smaller range than for some other general classes of
bivariate distributions. Schucany et al. showed that for this family the Pearson’s

correlation coefficient lies between -1/3 and 1/3 (see , Convey (1983)).

1.4  The Present Work

The present work is organized into five chapters. Chapter 1 contains a brief
description of the basic distribution theory and a quick review of the existing
literature. In this chapter we derive a new recurrence relation connecting the
product moments of concomitants. We also introduce the concept of bivariate
Morgenstern family of distributions and its basic properties.

Chapter 2 deals with the distribution theory of concomitants from the
Morgenstern family. It also contains some interesting recurrence relations
connecting the moments of concomitants. In this chapter we specialize the results
to some well known members of the family, viz, bivariate exponential, bivariate
uniform, bivariate logistic and bivariate gamma distributions. We also provide

quick estimators for the parameters of the exponential, uniform and logistic models.
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In Chapter 3 we deal with the distribution theory of the statistic Vi,
discussed in the previous section from the Morgenstern family and obtain certain
characteristics that could be useful in selection problems . We also derive the
limiting distribution of Vi, and provide illustrative tables of the values of ey, for
the bivariate uniform ,bivariate exponential and bivariate logistic models.

Let X;,Xz... be an infinite sequence of independent and identically
distributed random variables having the same absolutely continuous distribution
function F(x) . An observation X; will be called an upper record (or simply a
record) if its value exceeds that of all previous observations. Thus X is a record
if X;>X; for every i<j. An analogous definition deals with lower record values.
A comprehensive study on record values is presented in Arnold Balakrishnan and
Nagaraja (1998).

Let (X;Y;), i=1, 2... be a sequence of i.i.d random variable from an
absolutely continuous distribution with distribution function F(x,y) and density
function f(x,y). Let R, denote the n" record value in the sequence of the X’s. The
corresponding random variable Y, i.e. the Y-value paired with the X-value R, is
called the n™ record concomitant and will be denoted by Ryy;. The distribution theory
of record concomitants from the Morgenstern family of bivariate distributions is
discussed in Chapter 4. We also discuss the distribution theory of record
concomitants from some important members of the family bivariate exponential,

bivariate uniform and bivariate logistic distributions.

The procedure of ranked set sampling was suggested by Mclntyre (1952)

for improving the precision of Y as an estimator of the population mean. This

method is applicable for situations where the primary variable of interest, Y, is
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difficult or expensive to measure, but where ranking in small sets is easy. The
process involves selecting m samples, each of size m, and ordering each of the
samples by eye or some relatively inexpensive means, without actual measurement
of the individual, see David and Levine (1972) Stokes (1977). The smallest
observation from the first sample is chosen for measurement, as is the second
smallest observation from the second sample. The process continues in this way
until the largest observation from the nth sample is measured, producing a total of n

measured observations one from each order class.

Motivated from the ranked set sampling we use the following sampling
method for selection of primary variable. Suppose there are two correlated
variables Y and X, where Y is difficult to measure or to rank. Consider a bivariate
sample of size n = mk, where k is an integer. Randomly subdivide the sample in to
k sub samples (groups) each of size m .In each sub sample we measured only the
Y-value corresponding to the r'™ order statistic Xr.m. Then the Y- value measured in
the i sample is the " concomitant will be denoted by Yiem,i1=1,2,...k . The Y(em)i

are independent random variables having the same marginal distribution as Yrm.

Let  Mirm= max{Yiemp.1, Yirmp2, - Yrm)k)
and
M fr:m) = MIN[Y e 1, Yirm) 2, Y frmpi]
denote the largest and smallest among the selected concomitants. Thus My jr.m) and
Mg [-m) are the extremes of the selected expensive measurements in the samples . In

particular My m:m) is the largest observation of the concomitants of maximum of

E[Mk,[m:m]]

order statistics in the sub samples . Then the ratio which clearly

nn
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increases to 1 with k, is a measure of effectiveness of the selection procedure.
One may wish to choose the value of the number of subdivisions (populations), k,
to make this ratio sufficiently close to 1. In Chapter 5 we discuss the general
distribution theory of Myrm; and myj.m from the Morgenstern family of
distributions and discuss some applications in inference, estimation of the parameter of
the marginal variable Y in the Morgenstern type uniform distributions. We also apply
the results to the selection problem discussed earlier. The work concludes with the
distribution theory of the rank of the " concomitant Ry.,;. We also provide illustrative

tables for values of IT,, = P[R,,,,, = s] and E[Ryr.q)} -



Chapter 2
DISTRIBUTION OF CONCOMITANTS OF ORDER
STATISTICS FROM MORGENSTERN FAMILY

2.1  Introduction

In recent years modelling has become a convenient technique in many
scientific studies to understand the basic characteristics of the phenomenon under
consideration. Situations that exhibit uncertainty require the use of probability
models in which the prime consideration is often the distribution followed by the
observations. When more than one variable is involved in the data generating
process, multivariate distributions come in to play. Identification of the appropriate
distribution can be accomplished in more than one way. The only exact method is to
locate a characteristic property of the process and then derive the distributions
possessing such a property. All other methods lead to appropriate solutions and
depend largely on the prior information one has about the mechanism that generate
the observations. A generally accepted practice is to start with a family of
probability distributions that has different types of members capable of
accommodating a variety of patterns of uncertainty and then choose one member
that befits the data adequately. Therefore multivariate distribution theory is abundant
with methods of construction of such families. One method is to extend the defining
equation of the univariate family (differential, difference or functional) in a

multivariate set-up and solve it to obtain the corresponding law. Bivariate Pearson
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family, Ord family and Burr family belong to this category. Another way is to
generalize physical characteristic of univariate distribution in the multivariate form
and seek the distribution possessing the extended version. Several multivariate
exponential distributions have been derived in this fashion in literature. Thirdly there
are systems based on the form of the marginal and conditional distributions. The
Morgenstern family considered in the present study provides a very general
expression of a bivariate distribution from which several members can be derived by
substituting expressions of any desired set of marginal distributions. In modelling
bivariate data, when the prior information is in the form of marginal distributions, it
is advantage to consider families of bivariate distributions with specified marginals.
The Morgenstern system discussed in Johnson and Kotz (1972) provides a flexible
family that can be used in such contexts. It provides a general technique by which a
bivariate distribution can be constructed direct from the specified marginal

distributions and the correlation between the variables.

The system is capable of accommodating any functional form of the
marginals and is specified by the distribution function F(x,y) of a continuous two

dimensional random variable (X,Y) through the equation

Fyrxy) = Fx(x) Fr)[1+a(1- Fx())(1- FAy)], -1<a<] (2.1.1)
where Fix(x) and FW(y) denote respectively the distribution functions of the
component variables and o 1s the parameter.

The conditional distribution function of Y given X =x is
Frx(l) = Fr(y) [1+o(1-2 Fx(x))(1- Fry))]. (2.12)
In this chapter we discuss some aspects of the distribution of the

concomitants from family (2.1.1) and then specialise these results to some well-

known members of the family. We also point out some applications of our results in
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inference on the parameters of the important members of the family. The remaining
part of this chapter is organised as follows.

In Section 2.2 we derive the distribution function and probability density
function of the concomitant Y|,y of the Morgenstern family. The joint cumulative
distribution function and probability density function of Y., and Yis:n) ,(r#s) are
obtained in Section 2.4. In view of the importance of the results given in Section 2.2
we calculate the k™ moment of the r™ concomitant in Section 2.3 and use the
resulting expressions in arriving at useful recurrence relations connecting the
successive moments of the concomitants. The discussions on the properties of
family need an examination how it is shared and made use of by the various
members. Accordingly the rest of the Chapter concentrate on such aspects with
reference to some well known constituents of the Morgenstern system. In Section
2.5 we consider the Gumbel’s bivariate exponential distribution in some detail and
provide some quick estimates for the parameter of that model. Section 2.6 attempts
a similar treatment on Morgenstern type uniform distribution and explore the
application of the results in estimating the parameters of that model. Section 2.7 is
devoted to the Gumbel’s type II Logistic distribution. We present the distribution
theory of concomitants and derive a number of recurrence relations connecting the
moments of concomitants and see how a quick estimator of the location parameter of
the marginal variable Y can be developed as a bye product. Finally in Section 2.8 the

distribution of the concomitants from bivariate gamma distribution is discussed.

2.2 Distribution of the r'* Concomitant Y (r:n
From David (1981), the distribution function and density function of Y|,., are

given by

Fyn ) = [Fy O) £, (x)a @.2.1)
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and

Fioa )= [ Frx OO, () (22.2)
where 1 (x)is the density of X, .
Using

_ 1 r-1 n-r
S (x) = Bon—r+D (£ [1- Fx()]™ fxlx)

we get

Fy )= FOI+a{[(-F()/,, ) - [Fo ()1, (2)dc) (- F ()]

= F,0) +a{B(r,n—r+2)-B(r+1,n—r+1)}—(lZM]
B(r,n—-r+1)
n-2r+1
= Fr(y)[l + a [1-F (y)]} (2.2.3)
and
n-2r+l
Trem ) = (W1 + a [1-2F,(y)ll. (2.2.4)
In particular, forr=n
n-1
fY[n:n](y) = fY (y)[l - n_-—f-—_l—a [1 - 2FY(y)]] (225)
and for r =1
-1
£, () = £, {1+ ——a [1-2F, (y)]]- (22.6)
Two interesting relations that derive from the above equations are
FrirmO) *+ Frinrn ) = 2540 (2.2.7)

and

if}'[r_,,}()’) =njly) (2.2.8)
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in which, (2.2.8) is valid for all density functions. Writing 1-2F as 1-F-F in (2.2.4)

and using the formula for the density of order statistics, we find

fo ) = fy()+as 2r+1{(l—F(y))fy(y) E,(0)f, 1))
~ f, () +an2tH ! 2”l{za—F O, 0) - 2F, 0/, ()
= )+ 2 2= 2’+‘mz(y)fn(y)] 2.2.9)

where f;2(y) is the density functionof Yz, r=1, 2.

b

Since

S D) = Fry ) = 2 S 0) = 112 0]

w|t\)

=%[f12(}’)_f2-2()’)],

(2.2.9) can be rewritten as

3 n-2r+l

Sy )= fr(y)+ = ——— a0 2a0)]. (2.2.10)

Equation (2.2.9) reveals that the distribution of the ™ concomitant depends only

on the marginal distribution of Y and the distribution of the order statistics Y.

and Y222,
If we change n to 2n+1 and r to 2r, then n_—_2r_1+_1 has to be replaced by
n+
2n+l-drtl and hence, from (2.2.4),
2n+2

SO = Sy O

Which in turn implies

fY (y) frn,w,0’)=-~-=fm*r2*n+z*_u(J’)

fork=0,1,2,... (2.2.11)
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In general, if A is some rational number such that rA and (n+1)A are integers, then

Srviimyin P = S, ) (22.12)

23  Moments of Yry
From (2.2.4) we have the k™ moment of Y.,y can be derived as

P % = E [V ]

=[y* £y, ) dy
‘ n=-2r+la
=V )+ ———= (/. (0) ~ fo, O]
n+l 2
=py® +Eﬁ:—%r—t—l[/l(k)1:2 - u%22] (2.3.1)
2 n+l
where,
u® = EQrt)
and

p=E[rt]r=1,2

2

By direct substitution it can be seen from (2.3.1) that for all r = 1, 2, ..., n-2 the

recurrence relation

P[(I:zz;n] -2 P[(le;n] + p’ff:)n] =0 (2.3.2)

(k)

holds. A physical interpretation of this result is that w7, is the arithmetic mean

(k)

between p;),, and py)

[rin

, for all the above designated values of r. In other words the

sequence of the k™ moments of the concomitants are in arithmetic progression.
Using (2.3.1) and (2.3.2) we further find that
Wiy = pin+ (1) d (2.3.3)

where d is the common difference of the said arithmetic progression with value

— k) (k)
d - M'2:n -p'lzn
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— W, 2030w 0 w a@=-D *)

= +—— 2 - 2 - +— 2= :

2n+1[/¢ R e Ty R V7, P (72 = p™22]]
(94

= n—+f[,u(k)2:2 - ,u(k)m ] (234)

This gives
r-la
My = BT, +(n—+i [u®2: - u®12], n>2. (2.3.5)

Several observations on the utility of the above results seems to be in order at this

juncture

L.

The k™ moment of the '™ concomitant is a linear function in r. Hence the

graph (r, 44, ) should exhibit a straight line for r = 1,2,...n-2. If the sample
plots of the values of 4., is approximately on a line, it is indicative of the
fact that Morgenstern family is a likely candidate for modelling.

Theoretically, the second forward differences of the 4, values should be

zero by virtue of them being in arithmetic progression. Hence a check
alternative to using a graph as pointed out above is to see whether the second
differences of the values of moments are approximately zero or the first

differences are nearly the same.

The moments of the concomitants of various order statistics behave in a
systematic way. Once the k™ moment of the first concomitant and the
increment factor is estimated, it is straightforward to predict the value of the
™ concomitant. Estimates of the first and second of these factors are
measured in terms of the intercept and slope of the graph indicated at 1

above or by direct calculation from the differences pointed out at 2.

From (2.2.4) we further have

Fen )= fran) = =125, O)) £y ) 236
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and hence by iteration to lower values of r,

f[rnl(}’) f[ln](}’) 2(r 1)

(1-2F, (NS (3) -

Thus the densities are also in arithmetic progression, this to be decreasing with a
common difference of (2.3.5).

The moment generating function of Y|, 1s

Mieni(t) = E[exp(t Virn )] = [exp@) £y, (1)

= Jep@) LA+ & =T a0y
=My + 2 L (M, () - My () (237)
n+l

where, M;.»(t) is the moment generating function of Y, r=1,2.

The moment generating function also satisfies the recurrence relation
2a
M[r; n](t) = M[r-l ::n](t) - m(Ml;z (t) _Mz;z (t))

and from this relationship (2.3.4) can be obtained.

From (2.2.4) we have

n=2r+1 (n- 2r)}

Fioa OV = Fy ., 01 = all=2E, OV I

2r

=a [1-2F, W ) (2.3.8)
n(n+1)

and hence we obtain the following recurrence relation connecting the moments of

concomitants

2ra
(k) (k) (l() (k)
Rirm=Hn = 20 +1)[ — M2 ] (2.3.9)

Moreover from (2.3.9) by adding telescopic sum we get the following identity

Yy k) 2r(n-r) o (k) (k))

2.3.10
/u|”7] /u[”] (r+1)(’7+1) /'122 ( )

see Beg and Balasubramanian (1998).
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2.4  Joint Distribution of Yj,.,j and ¥|s.,

In order to understand the behaviour of one concomitant with respect to the
others we need the joint probability distribution of any two concomitants.
Accordingly in this section, we derive the joint distribution of r™ and s™

concomitants. From David (1981), the joint distribution function of (¥r.n}, Yis:n)) 18

@ Xg

Firsm@02) = [ [y Or[%) Frx 0a]¥2) frsn(er¥2) dxy dxa, 1<r<ss<n

~00—c0

(24.1)
where

JrenCer,x2) = [B(rs-r,n-st DI [Fx))]™ [ Fi(x2)- F(xi))™™!
[1- Fx(x2)]™" fix1) Rx). (2.4.2)

Using (2.1.2) in (2.4.1)

© Xy

Firsmy2) = [ [ Fry)Fry)[1+a(1-Fr(y2))(1-2Fx(x2))]

—0—0

[1+a(1-Fry))(1-2Fx(xi))] S, 5 (%: , X, ) d,

=F,(y)F, ()l I (I fr,s;n(xlaxz)dxl)dxz +

-0 =00

all-F, ()] [ (1= 2F (DI [ /0%, %, el ek, +

a1~ F, o) [ (1= 2, ()1 [ £, e, +

® Xy

@’ (1- Ky )= F ) [ [ A-2F, 8)(1-2F; (5,) £, 10 (%, %, b,

- =00

= Fr(y) Frn)[1+ o (1-Fr(y) {2 [ Q= Pt f, a3 %, )0, - 1}

-0

© Xy

+a [1-Fy0n)] {1 ~2[ [F00),.. <x,,x2)dx1dx2} + o [1-Fy(yn)] [1-F(ys)]

—a0—00

{ [ fa-2F.(ei20- Fe ) -1/, (), } ]

—a—
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= ) Fra)l1#oc (1-Fv0n) “=2 4o [1Fym)] T2+ o2
n-2s+1  2r(n-2s)
[1-Fr(yD)] [1-Fr(y2)] { — (n+l)(n+2)}]' (2.4.3)
The density function corresponding to (2.4.3) is
fronln2) =) o)1 +eu(1-2F ) == T+ al12F) n_nzf1+l+
2 n-2s+1  2r(n-2s)
o [1-2Fdy)] [1-2F¥(2)] { - (n+1)(n+2)}]- (2.4.4)

Using 1-2F = 1-F-F we write (2.4.4) as

n=-2r+l o

JrrsnOy2) = fln1)fr(n) + [.flz(yl) Sr2 O f,(02) +

n-2s+1 «
n+l

[flz()’2) FraO £,00) + {n—25+1_ 2r(n—25)}

n+l (n+D)(n+2)

Z 00 = SO0 1 (0) = £2a02)] (245)

With the joint density of Y(rn) and Yisny as given in (2.4.5), the product moments

E(Yll »1(sn), denoted by #[(l "',3], I, m> 0, are given by

n-2r+1
n+l

,u[(l "'3]_ Hy,yz [fY(Yl)fY(Y2) + [f12(y1) fzz(y1)] f (yz)

n- 2s+1a
.+.

flz(yz) fra ()] fy()’1)+{n_2s+1_ 2r(n_2s)}

n+l n+1 (n+1)(n+2)

aT.[flz W) = L2 () = 22()]] dyidyz.
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Performing the integration we find that

m)y _

m  M=2r+la w h—25+la
Higm = pOp ™+ ) — g +

(m) (m) O]
nel 20 ] 2[:”1.2 My 1

n=2s+1 2r(n-2s) | a’ . .
{ - ( ) }_[ 9 ¢ [:ul(:z) _:u.g.:z) : (2~4'6)

nel (meDmroy| 4 T

Changing r to (r+1) in (2.4.6) and from the resulting expression subtracting (2.4.6)

2
(Lm) _ m)y _— _ o m _ ) (m) _ (n - 25) a
“’[Hl,s:n] :u[r,.x':n] n+ 1[},11:2 Hya ]},l {(n————-}. 1)(n N 2) ——2

u) - w1 = w51, (2.4.7)

Now subtracting (2.4.7) from the expression obtained by increasing s to s+1
in (2.4.7),

(Lm) (Im) (I.m) (tmy _ 2 O] 0 (m) (m)
u[r+l,s:+l:n] - “’[H—l,s:n] - p’[r,sﬂ:n] T “’[r,s:n] = /(n+l) (n+2) [lu]:Z _lu2:2][lu1:2 _lu2:2 ]

(2.4.8)

We immediately see that right hand expression in (2.4.8) is independent of both

rand s. This leads to the recurrence relations

(I.m) (I,m) (1,m) (l,m) (Lm) (m)

{H|r+2,s:+ln] —H’[r+2,s:n] } -2 {“’[H—l,s:*-ln] - “’[HLs:n] } + {u[r,s:-vln]—}“l’[r,s:n] } =0

(Lm) (Lm) (Lm) (Lm) (Lm) (m) y —
{H[r+l.s.+2n] _“’[r.s+2:n] } _2 {“[r+l,s:+ln] - H[r,s+l:n] } + {“’[Hl,s:n]—“’[r,s:n] } =0

It may also be noted that all the observations made with regard to first order
moments hold good here also with the change that instead of first order forward
difference mentioned there, the second order differences have to be reckoned with.
Thus the property of arithmetic progressions in the extended sense, is shared by the

product moments of two concomitants in the Morgenstern family.
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34
Using (2.4.5), the joint moment generating function of Yir.nj and Yisq) 1s

M[r,s:n] (’1 )tz) = E{exp(ter:n] + t2Y[.s':n] )}

:II exp{ﬁ}ﬁ +t2y2}ﬁr,.f;n](y])yZ)dyldyZ

n-2r+la

= My (t)My (ty) + 5 Mia () = Mo ()M y (1) +

n+1

n-2s+1a

TIMpp (1) = Moy (8)IMy (1) +
n+1 2

{(n -2s+1) B 2r(n — 25s) }a2 ‘4

(n+1) (n +D(n+2)
M5 (1)) = Mo (DIIM 5 (t)) = My, (t5)]
(2.4.9)

Furthermore, using (2.3.10) and (2.4.6), the covariance between Ynjand Yisq can
be evaluated.

We have so far obtained some general expressions for moments of

concomitants as applied to the Morgenstern family. We now specialize these results
to some well-known members of the family.

2.5 Concomitants from Gumbel’s Bivariate Exponential Distribution.

An important member of the Morgenstern family is the Gumbel’s (1960)

type 11 bivariate exponential distribution specified by

o)

1

x,y > 0; 64, 0,>0. (2.5.1)

In this case the distribution function of Y|.n) follows from (2.2.3) and is given by

-2r+1
Frpy 00 = (1= exp(-y/ 6)J1+ === arexp(~y/6,)]

y>0,6,>0 (2.5.2)
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and the density function of Yj.q) is
o) = rexpd 2l pra = e d X1 1 50, 253)
Y[r:nl 92 p 92 n +1 p 92 ’ y ’ it
The k™ moment of Yi..q is directly calculated from (2.5.3) as
(rin] y
*) k n— 2r + | —k
M = Tk+1)6, [ + ————a(27" -1)]. (2.5.4)
The following recurrence relations follow directly from (2.5.4).
Relation 2.5.1
Hi = 1 = 227 =)=k +1)6} 2.5.5)
n+l
Relation 2.5.2
o — e =ab,T(k+1) 2 Q27" -1). (2.5.6)
' ' n(n+1)
Relation 2.5.3
4 -, TR eE 2 - 2a LD 2.5.7)
‘ ' n(n+1)
We have
_ n-2r+1 - Ckelq
1) kB d = Tk + 1o 2D gryoe_ goaeny
—Tk+ g, 22D gk
Hence we obtain the recurrence relation
1O, = 1Dk, + 2% Tk + 18 T E D g (25.8)
+
The mean and variance of ¥, are respectively
n-2r+1
=0, [l-————a 259
lLtlr.n] 2[ 2(n+ 1) ] ( )
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n-2r+13a n-2r+1
SIS 6, (1- T
n+l 4 2(n+1)

V(Y |,.,) =26;[1
2 1_n—2r+1a_a2(n~2r+1)2
2(n+1) 4n+1)°

. (2.5.10)

It is worthwhile to examine how the orderings on the Y values in the present scheme
contribute lower changes in the expectation when compared to the unordered Y
values. The mean of the unordered Y values in the population is E(Y) =6,, on the
other hand the expected values of the concomitants are in arithmetic progression

af,
n+1

with difference of -

. Since 6, is always positive, the difference depends on the

sigh of @. When a is negative (positive) there is negative (positive) correlation

. 6
between the (X,Y) values and the mean values increase (decrease) by a "1. The
n+

difference in the expected values of Y and Y, is ﬂﬂaez and will be zero

2(n+1)
only at r =nT+1 in which case we have the middle value in the ordered sequence

when n is an odd integer.

The difference between the variances of Y and Yir.q) is

n_2r+1a¢92+ (n=-2r+1* , ,

V(Y) = V(Yirap) = e 2+ 1)’ a’d,

—-2r+1 =-2r+1
S (1+n ! a)ab; .

2n+1) 2n+1)

For any value of r ranging from 1 to n, the term within the braces on the right side is
positive irrespective of the value of a. Hence when a is negative (positive)

V(Y i) >(<) V(Y).

The joint cumulative distribution function of (Y(r.a}, Ys:np) 1S
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o ~ -y, a(n-2r+1) N
R ey e B )
+M exp __yz +
n+1 0,
“2s+1)  2r(n-2 - -
P (n—2s+ )_ r(n—2s) (exp{i}Jiexp{ﬁ}J] (2.5.11)
n+l  (n+Dn+2) 6, 2
and the joint probability density function of (¥j), Yisn) is
=L Y=V, a(n—2r+1) N
fy[,,_,,,,(ylayz) 92 exP{ 92 }[l+l: n+l [2 p{ 92 } ljjl
+cwf_—2f+_l>(zexp{-_yz}_lj+a2 {(“‘25“)— i ]
) 6, n+l (n+1)(n+2)

ol el

yi,y2>0. (2.5.12)

The product moments are

forl, m>0
pim = 0;*"'[r(/+1)r(m+1)+(" —2r+l) a{r(lfl)—r(1+1)}r(m+1)+
n+l 2
(n=2s+D)  LOHD o+ 1)+
n+1 2"
2 (n=25+1)  2r(n-2s) [ T(+1) F(m+1)
a n+1 (n+l)(n+2)}[ 2! PO+ DI ~ T+ 1]
(2.5.13)

Whenl=1 m=1 (2.5.13) reduces to
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(n——r—s+1)+a_2{(n—2s+1)_ 2r(n-2s)

E[Y[r:n]Y[s:n] = 922[1 —-a
n+l 4 n+l (n+1)(n+2)

11 (2.5.14)

and

Cov (Y[r;n],Y[s:n])

B Hf[l—a(n_r_“-l)+a2/4{(n—2s+1)— 2r(n-2s) M -

n+l n+l (n+1)(n+2)
gz[l_gw][l_ﬁ(_n__zsfﬁ]
2 (n+)) 2 (n+))
_ iez[(n—2s+l)_ 2r(n-2s) _(n—2r+1)(n—2s+1)]
4 ? n+l (n+D)(n+2) (n+1)?
=r(n-—s+1)ozzt922 (2.5.15)

(n+)*(n+2)

It can be observed from (2.5.15) that the concomitants are positively correlated and

the covariance decreases as r and s pull apart.

2.5.1 Estimation of the Parameters 6, and «a

We point out a possible use of the theory of concomitants developed in the
previous sections to inference problems relating to the parameters 6, and o. It may
be noted that the parameter 6, is directly linked to the X-values and therefore is not
an object of estimation using concomitants which are based on the Y-values. It is
assumed that the ordering on X (not necessarily on the basis of the numerical values

of X’s) is known to ascertain the concomitants Yi.a).

The variance of Y., follows from (2.5.10) as

_a(m=2r+l) a'(n-2r+1)’

V(Yen) = 631 2+ 1) (n+1)?’4

] (2.5.16)
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so that E [T;] =6, (2.5.17)

_ 2 2 2.2
V(T) = 6 1 (n 2r+1)2a . rc21 e n+l
2 8(n+) 2n+1)*(n+2) 2

_ 2 2 _ 2,2
=92[l_(n 2r+)a N (n-r+)ya J’ n;—l

>t 2.5.18
2l2 8+’ ameZ(n+2) r 2519)

where 7, is the ™ quasi-midrange defined by

Tr= l/2 [(Y[rn]+ Y[n.r+];n])]. (25 19)
Thus all quasi-midranges are unbiased estimators of 0,.

However

V(T,) = V(T1) =

2.2 _ _
0,a {n 2r+2+ 2r 1}) (2.5.20)

(n+1)° 2 2(n+1)

forevery r =1, 2,... and hence V(7,) is an increasing function of r for r >nT+l . Thus

among the unbiased estimators 7, r =1, 2,..., minimum variance is attained by

1
Tl ZE(Y[l:n] +Y[n:n]) (2.5.21)
and the smallest variance is
122 2
V(i) = 62 1 -ha - . @522
2 8+’ 2n+1)*(n+2)

The information required to unbiasedly estimate 0, is thus only the Y-values
associated with the maximum and minimum of the X’s. By comparison, the sample

mean of ¥ is more efficient than 7, but the former utilises the entire sample values.

a(n-1)
2(n+1)

Using Yj1:m = Tl(l— ) and Y =T (1 + o(n - 1)) obtained by substituting

2(n+1)

the unbiased estimate 7} of 6,
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we get

n-1
Y[n:n]' Y[1:n| = a"mgz- (2523)

Hence we obtain a quick estimate of o as

1 T, 2 35k
G =4 2;":1) T, s <1 <3Eh
n T, <555
where,
T, - :[n 0]~ [1:n] _ (2.5.24)

[n:n]+Y[1:n]

Another result concerning concomitants, that is not directly related to the estimation
problem, but will be of interest is that the distribution of the ratio of concomitants
Urs = Yirm/ Yis:np . It is shown in the following Theorem that the distribution of U,

is independent of & ,.

Theorem 2.5.1

The density function of U, is

f)=C (+u)” 2, 2, (1+2u)” " 20, (2+u)” 240 (2.5.25)

where
Ci+C+C3=1,

C :1-2a(£ﬂ_+_1)+2a2 n-2s+1_ 2r(n-2s)
] (n+1) n+l (n+1)(n+2)
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c zan—2r+l_a2(n—2s+l_ 2r(n—2s)j

2 n+l n+l (n+1)(n+2)
and
c :an—2s+1_a2 n-2s+1  2r(n-2s) '
3 n+1 n+l  (n+1)(n+2)
Proof

Introducing the transformation,
U= Y[r:n]/Y (s:n]

and
V=Y(s.n in (2.5.12) we get

f(uv) =

e—vzexp{—(l +u)v/6,}{1+ a(2exp- (g)—1)+

2 n 2

(n=2r+1)
1

(n-2s+1) -V
—(n+l) a(2exp(92) 1)

2, (n=2s+1)  2r(n-2s) AN A
+a”{ — (n+1)(n+2)}{2eXP (92) 1}{2exp (92) 1}]

(2.5.26)

Integrating out v,

f(u)= Tf(u,v)dv

1 (n=2r+Ha 2 1
= 7t 7~ Tt
(1+u) n+l1 (A+2u)y (+u)
(n-2s+a 2 1
2 2}+
n+1 2+u) (+u)
(n=2s+1)  2r(n-2s) 1 1 1

120 { ~— ——
n+l (n+1)(n+2) A+u)” (A+2u)" (Q+u)

{ 7]

= C; (1+u) 2+2Cy(1+2u) +2C;3(2+u)%, u > 0. (2.5.27)
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2.6  Distribution of Concomitants from Morgenstern type Uniform distribution

Another member of the family discussed in (2.1.1) is the bivariate uniform

distribution (see Mardia (1970)) specified by the distribution function

Fey(x, y) = g—el[ua[l—eij(l—elﬂ;-l <a<1,0<x<8,
1 2

1 2

0<y<6. (2.6.1)

The distribution function and density function of Y., follows from (2.2.3) and

(2.2.4) respectively as

y (n-2r+1) Y
F == [l+————a(1-=)], 0<y<® 262
and
2 +1 2
froa =51+ 2D 0= 20 0 <y <0, (263)
2 2

The moments of Y| are obtained as

n-2r+1
= [t e 2D

2
y)]dy
n+1 2

0, +a(n—2r+1) g; 205

T+l il el k22

_ 6 |_an-2r+Dk
k+1 (n+ 1)k +2)

Lk=12,.. (2.6.4)

see, Scaria and Nair (2003).

The means and variances of the concomitants can be evaluated from (2.6.4). The

mean of Yir.n),

_a(n-2r+1)

D } (2.6.5)

6
E[Y[r;n]] =32- {1
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with variance
V[Y[r:nl] =E[Y[fzn] ] - E[Y[r:n] ]2

=9_22 (n=2r+Da. 6, (n-2r+la. .,

3 U (n+1)2 -5 3(n+1) )
_6; . al(n=2r+1)

S D ]. (2.6.6)

The joint cumulative distribution function of (Y(r.nj, Ys:nj) follows from (2.4.3) and is

a(n-2r+1
F[r,.;-:n1()’1>)’z)=Y1Y2/922{1+—(——)(]_&)+a
n+l 6,
.(n__zs—-kl).(l_y_2)+a2 (n_23+1)_ 2r(n—2s) (1-&)‘
n+l 6, n+l (n+D)(n+2) 6,
(1' %2—)} 0<Y1, Y2 <92. (267)
2

The joint probability density function corresponding to (2.6.7) is

f[r,s:n]()’lay2) = 1/922{1 +M(] - 2&)
n+l 0,

+a(n—2s+1)(1_22_2_)+ a2{(n—2s+l)~ 2r(n—-2s) }

n+1 n+l (n+1)(n+2)
(1-228(1-222)} . 0<y), y2< 6, (2.6.8)
0, 0,

The product moments E(Y,..,.Y,7, ), denoted by g7, 1, m > 0, are derived from

(2.6.8)

Um) =

/u[r_s:n]

(n-2r+1)
n

0 (6, /1+1-26,/1+2)07 [(m+1)+

;" I+ ) (m+1)+a

i

(n=2s+1) ,n npgm 0,
o {6, (m+1)-26, /(m+2)}(1+1)

+a2{(n—2s+l)_ 2r(n-2s) [ 6y 26y i 6, 26 ]
n+l (n+D)(n+2) (m+1) (m+2) (+1) (+2)
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__ e |_gn=2r+hl  (n-2s+l)m
(+D(m+1) (n+1D){{+2) (n+1)(m+2)
(2.6.9)

o Im n-2s+1  2r(n—2s) 1
((+2)(m+2)" n+l (n+1)(n+2)

In particular,
6, 2a(n-r-s+1) a® (n-2s+1 2r(n-2s
E[YinY(sm] =—[1- ( ) 2 (( ) 2 ) 1.
4 3 9" n+l  (n+D)(n+2)
(2.6.10)

Covariance between Yir.n and Y(s.n) follows from (2.6.5) and (2.6.10)

8  2an-r-s+1) a® (n-2s+1) 2r(n-2s
Cov(YirnYisn)) =72[1— ( )+___{( ) 2r( )}]_

3 9 n+1 (n+D)(n+2)
ﬁ[l— a(n—2r+1)][1_ a(n-2s+ 1)]
4 3(n+1) 3(n+1)

_a’fr(n-s+1)
on+1)°’(n+2)

(2.6.11)

It follows from (2.6.11) that the concomitants are positively correlated and the

covariance between the concomitants Y/.,jand Ysqdecreases as r and s pull apart.

From (2.6.5) we get E [T;] =6,

where
Tr=Y[rnj*Y(sn ,the rh quasirange, r=12 ..., [nTH] (2.6.12)
Thus all T, are unbiased for 6, and variance of T,
2 2. 2 2
V(T,) = 6?_2[1 _a(n-2r 42- D . 2(a612r)
6 3(n+1) 9(n+1)"(n+2)
2 2 2
N PN AN YD SRR B A (2.6.13)
6 3(n+1)° (n+2)

Among the unbiased estimators T, the minimum variance is attained by

T\= Y[]:n] + Y[n:n]. '
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The smallest variance,

—9_22 _a—zr_‘Z_ 4
vno—6n meyhnl) w+nn (2.6.14)

The information required to unbiasedly estirnating 0, is thus only the Y-values

paired with the maximum and minimum of the X-values. By comparison, the

) ) n+l . . .
efficient estimator —— Y, 1s more efficient than T,, but the former utilizes the
n

entire sample values.

. -1
Usmg Y[l:n] = T1 [1- -a(n )
3(n-+1)

] and

a(n-1)
3(n+1)

Y =T1 [1+ ] obtained by substituting the estimate of 9; we obtain a quick

estimate of o as

1 n—-1
1 = 3(n+l)
n 3(n+1 .
a:ﬁfq)& if g <R < (2.6.15)
-1 R, Sﬁ:ﬁ
where,
Y . -Y,
R Ul I (2.6.16)
2(),[n:n) +Y'[1:n])

The correlation coefficient of Morgenstern type uniform distributionis p =«/3.

An efficient estimator of p based on concomitants is suggested by

Tsukibayashi and is given in David and Nagaraja (1998). If X and Y have the same

marginal distribution form then

(2.6.17)
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where

Hence an efficient estimate of o is

N ]
1 -
p= 3
a = {3p ]<A<l (2.6.18)
P 3 P 3 0.
-1 "<l
P23

As in the exponential case all suggested estimators can be calculated even if only

ranks of X’s are available.

2.7  Concomitants from Morgenstern type Bivariate Logistic Distribution

Logistic distribution has many applications in life sciences and social
sciences (see Balakrishnan (1992)). Durling (1969) has developed a ‘Bivariate logit’
method of analysis of bivariate quantal response data based on the Gumbel’s (1961)

type 1l logistic distribution which is specified by the distribution function

1 1
Fxy(xy) =

=)

_ -,
exp—(x /Ulj exp—(y H, J
g, g,
1+ exp—- [MJ [1 +exp— [MD
ag, o,

—00 < X, ¥ <00; =00 < {1y, fp < ; Gy, 02> 0

l+a

2.7.1)
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The distribution function of Y| follows from (2.2.3) as

Y H
exp— (——=)
[1+exp- (—2)] [1+exp- (--73)]
2 2
-0<y<,; -0 < [, <0;0, >0. (2.7.2)
For the Logistic distribution
PP (Zi&)
Sr)=— _f/u
2 [1+ exp- (Z=E1)P
o,
and we note that
=FO)1-F
o, f ?y) X Q)] (2.73)
o, /' W) =fO-2£(0)]
Hence (2.7.2) takes the form
n-2r+1
F, W =FQ)+ao, %f()’)- (2.7.4)

It follows from (2.7.4) that the density function

fy[,:,,] W =0+

2D ok o)
n+l

exp— Y= 1—exp— e
02 l_an—2r+1 02

_ 2 n+l - U
[1 + exp [z_#ﬂ 1+ exp- (ya—)
o, 2

~0 <y <, —0<| <wo, OG>0 (2.7.5)

fyin) =1/ 0,
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For the logistic distribution, the moment generating function My (t) satisfies the

relation
to, My(t) = Ma.a(t)-Mpa(t).

Hence from (2.3.5) we get

n-2r+1
Miea(t) = My(O[1-aror, =2 1)y
n+1
(n=2r+1)
= F(l—t)F(1+t)[l-at02 —1] (276)
+
It follows directly from (2.7.6) that the k™ moment of Yrn) a8
= p® ke, D e oy g 0 @)
' n+1
It also from (2.3.1) that
an-2r+1
#[(f_i[ = /U(k) + _—[,U(k)l:Z - ,u(k)zz ]. (2.7.8)
2 n+l
Using the recurrence relation, Shaw (1970),
W —pss) = =2k o,
we get
—-2r+1
u) = p —kao, LD e, (27.9)
n+l
Thus (2.7.9) agrees with (2.7.7).
The mean of Y 15
E[Y ] = pz-ai; P2 D (2.7.10)
(n+1)
and
2 @ ay_ 2 n’ 2 (n-2r+1)
2 =y —ao, M=yt 4 g = 2au, —— 2.7.11
Hirm = H 2H H, 3 92 H, n+1) ( )
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Variance of Yr.qj,

2 2
-2r+1
T _az(n r+1)

V Yien) = aj[T D) 1. (2.7.12)

The following recurrence relations immediately follows from (2.7.9).

Relation 2.7.1

For the bivariate population with pdf as in (2.7.2) we have the relation

k
(k+1) _ , (k+1) (k-1) (k)
/u[rn =H - ﬂ ﬂ]lu[rn]

(k+1)
where
B, = ao, (k+1 =2 D 2.7.13)
- (n+1)
Proof
From (2.7.9)
(k+1) _  (k+1) (n-2r+1)
-alk +)o, ~—u-u--—oo=
/u[rn] =H ( ) 2 (n+1)
2r + -2
:/u(lu—l) ~a(k +1)o, (n-2r 1)[ [(rk:] o, (n-2r+1) (lc—l)]
(n+1) (n+1)
_, GerD) k 2 (k 1) (k)
=H —mﬂ ﬂ]lu[rn]
Relation 2.7.2
(D)) = mih )= 2k(r=Dao, " 1 <r<mk=12,.  (2.7.14)
Proof
From (2.7.9)

(k) (k) _—
l‘l[rn] /‘l[ln] —( k)ao-th

[ n+l  n+l

= 2kao, (r__‘!‘)ﬂ(k‘l)
n+l
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Hence (n+1)[ﬂ[(:')11 lu[(]kr?]] 2k(r_1)ao'2ﬂ(k_l)

Relation 2.7.3
n (n+D)[ 4o, — uiay 1+ 2rkac, p*™ =0, (2.7.15)

From (2.7.9)

Hirw = Hignry = kao, P L{(n=2r) I n} = {(n - 2r + 1) [(n + 1)}]

(k-1 (-2r)

=0,k
2 n(n+1)

Hence n(nt [ ) - w1+ 2rkao,p“ M = 0.

[r:n]

In general we replace E[Y*n] by E[h(Y(rn)] then the above recurrence

relations are all satisfied , provided E[h(Y.n))] exists .

The joint distribution function of Yi.q and Yisq (r < s) follows from (2.4.3)

and is
1 1
F[r,s:n]()’l,YZ) = W
{1 + exp—[—x nd j {1 +exp- [——y ! ﬂ
g, J] 0,
exp— N TH exp- e T
[1+an—2r+1 o, $+0{}1—25+1< o,
n+1 - n+1l _
1+ exp— [MJ 1+ exp— (Mj
o, ) o,

]

exp— Kok exp— Yo7l
a2{n—2s+1_ 2r(n-2s) } o, o,

<
+1 n+(n+2
" ( X ) 1+ exp— (yl #2] 1+ exp— (y2 #2]
9, L 0,

—0< Yy, Y2 <0, —0 < pp <0 ; 07 > 0. (2.7.16)
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Using o,f(y)=F)[1-F(y)] in(2.7.16) it reduces to
Firsn)(y1,y2) = Fy(y1)Fy(y2) +

ao, =D 3P+ ao, BB 10, F(,)
n+l n+1

N (aaz)z{(n -2s+1)  2r(n-2s)
(n+1) (n+D(n+2)

O B,)

(2.7.17)

The joint probability function follows from (2.4.5)

exp—[yl +)2 _2luzj
2

1 o

fyesn(yny2) = —

o 2 2
2 {1 oxp- [yl 1 H {1 +exp_[y2—#z ﬂ
o, g,

I-exp- hib 1-exp—| ==
n-2r+1 o, n-2s+1 o,

[l -«
1 - 1 -
" 1+exp—(uj nr 1+exp—(y2 ﬂzJ

N
!
R
~—

2{n—2s+1 2r(n—2s) }
+a -
n+1 (n+D(n+2)

- exp— [}’1 ,uz] l_exp_[}’z—ﬂzj
g, g,

1+exp- [yl #zj 1+exp—( 2—#2]
0-2 0-2

; ~o<<o ; 0> 0. (2.7.18)

]

N

—0 < Y1,¥2 <

Using p7 — p35 = ~2ko,

@D in the formula (2.4.6) for the product moments,
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(my _ 1), (m)
we get fy, iy = MM =

ao,
+1 n+l

(2.7.19)

(n—25+1)_ 2r(n-12s) }Iu(z_nlu(m—l)

Ha ) I T T et 2)

In particular for1 =1 and m =1

02{(n-2s+1) _2r(n-2s)
(n+1)

(n+1) (n+D(n+2)

E[Y e Yisn] =4, — 200,14, 3

(2.7.20)
Using (2.7.10) and (2.7.20)

Cov [Y[r:n]Ylsin]] =

i —2a,, BT =S HD | paga (25t | 2r(n=2)
(n+1) n+1)  (n+D(n+2)

[uz-aczw 1 [M2-002 (n-2s+1)

(n+1) (n+1)

2 a(n=2s+1) 2r(n-2s) (n-2r+1)}(n-2s+1)
“ENTR) T (et 2) (n+1)?

]

:azazz[(n—2s+1) ]_(n—2r+l) __2r(n-2s) 1

n+l (n+1) (n+1)(n+2)

_dr(n-s+1) , ,
_(n+1)2(n+2)

.

(2.7.21)

As in the bivariate exponential case, the quasi mid ranges,

Tr = Y[r:n]+Y[n--r+l]

2

are all unbiased for the location parameter u, .Among all the unbiased estimators

Tr, Ti={ Y10 + ¥,y }/2 has the least variance.
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The smallest variance is

gi[nr_z_az(n—l)2 4’

V(T]): +
2 3 (n+1)* (n+1)*(n+2)

1. (2.7.22)

Thus the information required to estimate the location parameter g, is only the

Y- values associated with the maximum and minimum of the X’s.

2.8  Concomitants from Morgenstern type Bivariate Gamma distribution
A Morgenstern type bivariate gamma distribution is constructed by

D’Este (1981) and is specified by the cumulative distribution function

Fyy(x,y)= P(a,x)P(B, )1+ A0 - P(a, x))(1 - P(B,y))]; 0 <x,y <0

(2.8.1)
where P(«, X) is the incomplete gamma function.
The joint probability density function of (X,Y) is
Fry (6, ) =[C@T(A) 2"y exp=(x +y)
[1+ A0 -2P(a, x))1-2P(8,y))]
0<x,y<cw. (2.8.2)

The distribution function and probability density function of Y. follows from

(22.3)and (2.2.4) as

By )= P02 30— i,y 05y <0 @83)
and
Ira )= r(l,e) exp)y Tl (n——,iflil—)ﬂ(l ~2P(B,y));0<y<w. (28.4)

The moments follows from (2.3.1)
Fork=1,2,...

An=-2r+l1
PO At HENCNY

2 n+l
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where |

u® =T+ p)IT(P). (2.8.9)
Since 1-2F = 2(1-F)-1, for any distribution
PR
2

) _

= w3 — ¥ (2.8.6)

Then (2.8.5) becomes

w _Tk+p) (n=2r+1) . o T(k+p)

4TIy e )

_ I"(k+,[3)[1_/1(n—2r+1) +(n—2r+1)/1#(,c)
I'(B) (n+1) (n+1) 2

)

(2.8.7)

Gupta ((1960), (1962)) has tabulated the values of u'¥for k =1, 2,3 and 4 for
sample sizes up to 15 when B = 1(1)S. Breiter and Krishnaiah (1968) have provided

the values of x4’ for k=1,2,3 and 4 for sample sizes up to 9 when B = 0.5(1) 10.5.

-1
If B is an integer p% = —Z—Zas (B,DI(k + f + 5)27*F+) (2.8.8)
I'(p) =
where,
a (B)= s =0,1,2,...B-1, see Balakrishnan and Cochen (1991).

I'(s+1)
Thus if B is an integer

w _Tk+B) (n=2r+) (n=-2r+1), 2 2 Tk+p+5)
Hirm = T r ) . n+1 A+ n+l AF(,B)Z(;F(sH)z"‘”“"'

(2.8.9)

Using (2.8.9) we can tabulate the values of the means and variances of Y

[r:n] >

r=1,2,...n for various values of n, A and B(integer).
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The joint cumulative distribution function of (Y(a), Yisim)) ( 1 <s) follows

from, (2.4.3) and is given by

[rxn](—yl’yz) P(,B y,)P(ﬂ yz)[l'*'/l(l—P(ﬂ, ]))()1_(_2%1)
A2 1Py +
(n+1)

(n-2s5+1)  2r(n-2s)

i) eyt 4 PB =P, y))]

0 <y, Y2<©. (2810)

The joint probability density function is

flr,.y;n](ypyz) = r(ﬂ)_z(ylyz)ﬂ_] exXp— (yl +y2)

(n- 2r+1)+/1(n—25+1)(1

[l+A(1-2P(5,y,) (n+1) (n+1)

=2P(B,5,))+

(n-2s+1) 2r(n-2s)
(n+1) (n+D(n+2)

(1= 2P(B, y )= 2P(B, )]

0<y1, y2<. (2.8.11)

(,m)

{r,s:n)

(I,m)

[r.8:n}

The product moments u are obtained directly from (2.8.11) as u

m n-2r+1 »
= u"y )+( o )/1#( T = O+
(n—2s+1) At ~ (,,,)]+l2{(n—25+1)_ 2r(n-2s)
(n+1) (n+1) (n+)(n+2)

[y = w2 - ™)

(2.8.12)
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In particular

E[er:n]Y[sIn]]
— ,52 +Mﬂﬂ[‘ul_z —ﬂ]+(n—_'wlﬂ[.ul’2 _ﬂ]+
(n+1) (n+1)
(2.8.13)
22 (n —-2s +1) - 2r(n _ 25) }[,Ul;z - IB ]2.

(n+1) (n+1)(n+2)

From (2.8.7) and (2.8.13),
Cov (Y[r:n]Y[s:n])

2, (n=2r+])

- +) _py =2 D) .
=BTy Ml = Bl = Al ~ )

(n-2s+1) B 2r(n-2s)

iD mahmeay H2 AL

+ A3

(n-2r+1) +(n—2r+1)

(B1-4 i) e A, ]
_,(n=2s+1) (n-2s5+1)
[BA-A n+1) )+ n+1) A, ]
Y B 2,(n=2s5+1)  (n=2r+1), 2r(n-2s)
= A=A T T ) T e e )
. a2 gy Hn-s+1) _
=AU B it )

(2.8.14)

Thus covariance between the r™ and s™ concomitants is positively correlated

and it decreases as r and s pull apart.



Chapter 3

DISTRIBUTION OF THE MAXIMUM OF CONCOMITANTS
OF SELECTED ORDER STATISTICS FROM THE
MORGENSTERN FAMILY OF DISTRIBUTIONS

3.1 Introduction

As described earlier, the concomitants have found a wide variety of
applications in many areas such as selection problems, prediction analysis,
double sampling plans, ocean engineering and inference problems. The most
important use of concomitants arise in selection problems as described in Yeo and
David (1984) when k (<n) individuals are chosen on the basis of their X-values
where the corresponding Y- values are of primary interest. For example X could be
the score in a screening test and Y the score obtained after a further training and a
second test. Then Vi, = max(¥Yjnk+1:n) .., Yimn))s £=1, 2, ..., nrepresents the score
of the best performer in the second test. The ratio ey, = E[Vi,)/E[Y.:n] which
clearly increases to 1 with k, is a measure of effectiveness of the screening
procedure. One may wish to choose & to make this ratio sufficiently close to 1.

Feinberg (1991) and Feinberg and Huber (1996) have investigated
some properties of v, in a study of cutoff rules under imperfect information.
Feinberg (1991) used simulation to examine the behavior of E (Vi ,) for selected

values of n assuming the sample is drawn from a bivariate normal distribution.
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Motivated by Feinberg’s work, Nagaraja and David (1994) investigated the finite
sample and asymptotic properties of Vi, for an arbitrary absolutely continuous
bivariate ¢.d.f F. They have established the following important results concerning
the finite and asymptotic distribution of Vi, .

The finite sample cumulative distribution function of Vi, is derived using
symmetry arguments . They have shown that

Fia(y) = P[Vin< y1 = PI¥, 41m) € V5o Yim) S V]

= [[Fw 10T fr,, (x)dx (3.1.1)

—o0

where
Fyx (v]%) = P[Y<y| X>x]

and
Sovn(x) is the pdf of X nycn.

The asymptotic distribution of Vi, in the extreme case can be given in the

following result.

Lemma 3.1.1

If Von Mises conditions are satisfied, there exists constants a,,b, > 0 such
that the p.d.f of (Xp-i+1:n-an)/bn converges to g;, the p.d.f of Wi the i lower record
value from the c.d.f G, for any fixed i. Further, the joint p.d.f of W, W,... W, and

the marginal p.d.f of Wy, are given respectively by

g(lm)(wl ,‘..Whl) = g(W/”] )1:1[ g?:/:)) W™ Wa... > Wi
and
~logG *
g, () = 8T () (3.12)

k!
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where

G =Gy, G; or G;, see page 10.
Result 3.1.1
Suppose the conditions of Lemma 3.1.1 hold and assume there exist
constants A, and B, > 0 such that
F;(A,+B,yla, +bx)—> H(y|x) asn— o forallxandy.

Thenasasn— o

Fon(4,+B,y) > [[HY| )] g, (¥)dx (3.13)

Now suppose the joint distribution of (X)Y) is such that as
x— & (1), F,(y | x) = H(y).Where & (p) the p* quantile of X.

Then (3.1.1) holds with H(y|x) = H(y) and A,= 0, B,= 1 then the lemma follows.

Lemma 3.1.2

If, for some y,
lim FOI0=H0)

then

lim)F’z(y|x)=H(y) (3.1.4)

x—-& (1
If (3.1.4) holds and the appropriate Von Mises condition hold for F;, then

asn—» o

PV, <y]=[HO)F (3.1.5)

Thus if His a c.d.f then Vi, — IV, where V behaves like the maximum of a
random sample of size k from the c.dfH .

The asymptotic distribution of Vi, in the quantile case is given in

the following result.
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Result 3.1.2
Assume that fj(x') > 0, where x' =£(q), with q = 1-p . For constants Ay and
By >0 free of x, and for fixed y define
Ha(ylx) = [F; (4, +B,yla, +b,0)]". (3.1.6)
Assume that, as n — oo, forallu
H, (y|x+u/n"?)— H(y|x') 3.1.7)

then F (A4, +By)>H(y|x).

Using these basic results the present chapter deals with the distribution
theory of Vi, for the Morgenstern family of bivariate distributions and obtain
certain characteristics that could be useful in selection problems. The importance
of this family discussed in Chapter 2 arises from the fact that it enables
construction of bivariate distributions with specified marginals. When prior
information is available in the form of marginal distributions, we get a class of
distributions indexed by the parameter, from which a suitable member that is

appropriate to the data could be found.

3.2 Distribution of V; ,

The cumulative distribution function (cdf) of V;, follows from (3.1.1) and is
o . k
Ferl)) =PLVin $21= [[Fi O] T, ()

where
Fy‘|x (}’|x) = P[rgy| X>x]
and

]

Laren O T H D

[F)]™ ! [1-F] filx).  (3.2.1)
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For the Morgenstern family we have

TFW (v [ %) (x)dx

Fra (VX)) = *—
[ £ (x)dx

= [TFY ({1 + a1 = F, ()1 = 2F (x)) }y (x)dx ] /(1 - Fx (x))

_ e (W0 - F(x)) - a(l = F, (y))(1 = E, (x))F (x)}
1- Fx (X)

= Fy(y) [1-a Fx(x)(1-F(Y))] (322)

and hence
Fin)= | [FA0){1-a FX)(-FADYF fy, . (x) dx

1
B(n-kk +1)

= [ FO)1-a Fr@-Fr) T [FQ)T™ [1-F()]* fx(x) ae

__[ROF 7 k o
"Bk J-aU-E ORI B R f ()

Using binomial expansion and simplifying we get

£, )" 52 Y

Bn—kk+1) 4 ( )B("'k“' FD-FO)T . (3.23)

Fea(y) =

It follows from (3.2.3) that the probability density function of Vi, is

_ . L (] Bk +tk+1)
firld) = IR S T 3 (-) () Bk b e ]

[1-Fr)]™ (k-(k+DFr(y)}]
k o BOi=k+tk+)

= fer¥)+ Bk k+1) Z] [I:H-lj

[fekserQ)Seerw)] (3.2.4)
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where f,.,(y) i1s the probability density function of Y,.,, The moments of V, are
derived from (3.2.4) as

Fors=1,2...

1
) =RV 1= (-f) +
Iult,n [ k,n] Iulc,lt B(n—k,k +1)

d , Bn-k+tk+1) ; .
Z(—a) ( ) (/ui:iwl—l _luirjl:kﬂ) (325)
t=1

()

pO=E[Y ] s=1,2,.., k=12,..,n

where

The distribution function (3.2.2) can be written as

(n-kYn-k+1)..(n-k+t-1)
(n+D(n+2)..(n+1)

Futn = 5 0) X0 () a' I

After using the reduction formula for gamma functions,

N Grae

Ao =7 0) e () EONT) &' 1-F)].

n n

As n -, keeping k fixed, we find that the asymptotic distribution of V, has
distribution function
k k
F0)= F ) Y () d n-mo
=0 4
= F} () [1- a {1-F)} T (3.2.6)
The density function corresponding to (3.2.6) becomes

Jly) =kF7 () £0) [1- @ {1-Fy))1 [1- @ {1-2Fy)]. (3.2.7)

(3.2.7) may be represented as
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f) =k F () H0) [1- a (-F) 1 +kF () £0) all- a {1-Frp)}.

(-a)* “ (o a(k )
= (k1)? [ 20! Seu(y) + [frdy)+ f“mm(y)]J

=0 (k= 1)!(k +1)! (k+1+1)
(3.2.8)
Moments of (3.2.8) are calculated as
) —R[V* 1= ) o (-a)'
o =EV]] (k!) l: (2k)! Hieu™® ;(k—f)!(k+t)'.
(s) ak-1)
[, + (k+t+l)ﬂ"”"””} (3.2.9)

where

wO=E[Y), s=1,2, ...

3.3 Particular Cases

In this section we specialise the results in the previous section for some

well-known members of the family.

3.3.1 Bivariate Exponential Distribution

For the bivariate exponential distribution specified by (2.5.1) it follows

from (3.2.3) that,

[l—exp{—HLH
Fen(y)= Bor—k kD) {;( a)()B(n—k+l,k+l)exp{—01H;

2

y>0, 6>0 (3.3.1.1)

_ T ol 2 et () Bkt ke +
fk.n(y)——éz—{l—exp{ QzH exp{ 92} [’”;( @) O B(n—k,k+1)

exp{— (1 ; l)y} (k —(k+ t)[l— exp{—el}n]. (33.1.2)
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Using trs= 6 Y S in (3.2.5) we get

S B(n—k+tk+1) B+l
E[Vin] = {Z, +1,le B(n—k,k+1) B(t+1,k—1+l)(a)}

o 1| (=), Gk +1-0),
Zz{ (n+1),(k +1), (e } 33.13)

where  (n), =n(ntl) ... (ntx-1).

It may be noted that E[V,] is an increasing function of a and depends only on 6.

Specializing for k=n
=1
E[Vn,n] = 02 Z't‘ .
t=1

Also

1 =k k+1-),
EW,,) Et[‘ G el )}

Cpn = — 2 = . (3.3.1.4)

ElY,,] Z_

{lt

The gain in effectiveness due to an additional observation is decreasing function
of k. ernis independent of the parameters 8, and 6,. More over it is an increasing
function of « and e;, = 1 when £ = n. Minimum and maximum values of e,
occurs when o= -1 and a =1 and these values for n =10,k =1 are .2017 and .4811

respectively.

The asymptotic distribution of ¥, for fixed k has distribution function

Fy) = {1 - exp{— —0}—)—}] [1 -a exp{— HLH (3.3.1.5)

and with density function
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Jdy) = 9k—2 {1 - exp{— gyz'H exp{— Eyz—} [1 - aexp{" —Gy—z}

[1 - a[z exp{—ei} - 1j . (33.16)

— (LI\? (-a) < S (ca)
E[Vi] = (K1) 6, I:(2k |,Z_1(2k [+1) tzo(k-—t)!(k+t)!

Also

k 1 a(k t) k+1

3.3.2 Bivariate Uniform Distribution
The distribution function of the bivariate uniform distribution is specified

by (2.6.1). The distribution function of Vi, follows from (3.2.3 ) as,

() v _ Al
Fin(y) (92] B(n- kk+l){,zo:( a)(JB(n k+t,k+l)(l 9]},O<y<92.

2

(3.3.2.1)

and

1 £ (A\Br-k+nk+)(, y) [, Y
ferl) 95)/‘[“;( a)U ERTTESy [1 02] {k (k+t)02H(3.3.2.2)

Using i, = 6 in (3.2.5), we get
s+ 1
E(Vi,] - kk Tk +DC(n+ 1)2( , I“(n—k‘+ DL+ 1) }
Lk +1 I(n-k) pr F(k+t+2)F(n+t+l)

_ —-Z( y —(n=k)t! }92_ (33.23)

t=1 (k + 1)t+1 (n + l)t
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Since E[Vyn] = E[Yon] = —— 6, we get
n+1
+1 - !
€rn = 2z Z( ) (n=k).! (3324
n k+1 o (k+1),+1(n+1),

ern 1S an increasing function of aand is independent of the other model

parameters. The asymptotic distribution of V., for fixed & is obtained from (3.2.6)

given by
Fk(y){%j {““(I_Eyjﬂ osrea
or
o] e
Also
ok Mw
_ a k+t+2
E[Vi] = (k)" 6, (2k +1)! ,Z;( (k+1+DIk -0
and
ok P Caad) (22))
_ 2 -a N k+t+2
(4 (k') (2k+1)!+§(.a) (k+t+1)!(k—t)!

3.3.3 Bivariate Logistic Distribution

(3.3.2.5)

(3.3.2.6)

(3.3.2.7)

(3.3.2.8)

For the Gumbel’s (1961) type II logistic distribution specified by (2. 7.1)

Vi.n has distribution function
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1

{1 + exp(—%ﬂ B(n-k k+1)

Fe(y) =

B . exp{—e—}
<Z(—a)'( jB(n—k+t,k+1) — 2 3.33.1)

1+ exp{— QL}
2

\

and probability density function

y]

expl ——

1 p( 8,

0 k+1

i |:1+exp(——&ﬂ
0,

_ s ol [
k+Z(—a)'( jB(n—k+t,k+1) X . k+1)

Jery) =

! Bln-kk+1) 1+exp{— %} 1+exp{— g—z}
L0 <y < o, (3.3.3.2)
k-1 9

Usmg Hek = 92 Z-t- and Hik+vr-l — Hie+lik+t = —k— (3.3.3.3)
we get

A [E1 T+ DOk +1) & ()’ T(n—k+1)
ElVir) =61 [th T(n-k) Zl ! F(n+t+l)F(k+t)I"(k—t+l):|

_e S Y y (n—k),(k—1+1), ) T(k)n—k),(-a)"

) th k), (n+1), k), (n+1), |

(3.3.3.4)
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As in the above cases E[V} ] is an increasing function of « and depends only on 6.

Specializing for k=n

EVanl= 6 Zfl
Hence
{H 1 (1 (cqy Bk, ] Tk —k)k(—a)"}
e = =1 k), (n ":?rl K)e(n+1), . (333.5)
2
The asymptotic distribution of Vy , for fixed £ is
| exp{_%}
Fi(y) = _l—g———2 (3.3.3.6)
{1 + exp(— ;—ZH 1+ exp{“ gyz“}
from which
1 & o [&1 G- (S0
-0 8 [ Serety {5 a2
(3.3.3.7)

3.4  Asymptotic Approximation

When asymptotic values are discussed, it is pertinent to ask the question:
How large n should be, in order that the asymptotic expressions could be
practically useful. To answer this question we undertake a comparison of e, and
ex, the asymptotic values give us a fair indication of the sample size for which the
asymptotic results hold good. Since the theoretical expressions are too complex for

an analytical solution, we have resorted to simulation for an approximate answer.
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The results in Table 3.3.1 indicates that the values are sufficiently close enough
with the results from the sample size for » = 80 onwards, with the value becoming
still nearer for increasing values of n. Thus when the test involves more than 80
contestants, the asymptotic distribution provides a reasonable approximation in the
case of the uniform distribution, for various values of & and k.

Some typical values of ey, for sample of size n = 10,20,30 and 40 for
various distributions are exhibited in Tables 3.3.2 to 3.3.4 for selected values of
k and selected values a from 0.2(0.2)1.0.

Another point of interest is the gain in efficiency due to an additional
observation. This is measured through the difference ex+1,, - exn for different values
of k. As an illustration Figure 3.3 provides a graphical representation of the gain
for the uniform, exponential and logistic models. From the graph it could be seen
that for values of k larger than 10 in a sample of size 30, the gain is not substantial
fora=0.38.

Table 3.3.5 illustrates that the selection procedure performs well in the
bivariate uniform case. The main advantage is that in this case top 17 concomitants
include the best individual with efficiency 0.95 for all values of @>0 and n > 80.
In the bivariate exponential case a substantial reduction of the value of k
(expensive measurements) is possible for @ > 0.8. For example if n=1000, k = 100
gives an efficiency ex, = 0.95 for a¢= 1. But in the bivariate logistic case the
selection procedure has no significant use. It needs almost 50% of the top
concomitants to get the best individual in the selection procedure. Thus we
conclude that the data is approximately closet to the bivariate independent case and
the marginals are uniform the selection procedure discussed in this chapter is very

effective and useful.
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Figure 3.3

Gain due to an additional information for n=30, o. =0.8
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Table 3.3.1
Values of ey and ey g for uniform distribution
Values of e for uniform dis. Values of e, g for uniform dis.
a a
k 0.2 04 0.6 0.8 1 0.2 04 0.6 0.8 1
1 5333 5667 6000 6333 6667 | 5392 5721 6050 6379 6708
IT | 9290 9384 9458 9517 9565 | 9292 9308 9312 9322 9331
21 | 9616 9669 9710 9742 9767 | 9668 9670 9673 9676 9677
31 | 9737 9774 9802 9824 9841 | 9810 9811 9812 9813 9814
41 | 9800 9828 9850 9866 .9880 | .9884 9885 9886  .9886  .9887
51 | .9839 9862 9879 9892 9903 [ 9931 .9931 9931 9931 .9932
61 | .9865 9884 9898 9910 9919 | 9962 9962 9962 9962  .9962
71 | 9884 9900 9913 9922 9930 | .9984 9984 9985 9985  .9985
Table 3.3.2
Values of e, , for Bivariate exponential distribution
o
n k 0.2 0.4 0.6 0.8
1 0.3694 0.3973 0.4252 0.4531 0.4811
2 0.5466 0.5759 0.6059 0.6346 0.6621
3 0.6577 0.6877 0.7162 0.7432 0.7688
4 0.7402 0.7676 0.7934 0.8178 0.8409
10 5 0.8047 0.8285 0.8510 0.8724 0.8927
6 0.8572 0.8769 0.8957 0.9136 0.9307
7 0.9012 0.9165 0.9311 0.9452 0.9587
8 0.9388 0.9493 0.9594 0.9692 0.9788
9 0.9714 0.9768 0.9820 0.9872 0.9922
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] 03031 | 0.3282 0.3534 03785 | 0.4037

2 0.4481 | 04777 0.5060 0.5330 | 0.5586

3 05422 | 0.5728 0.6014 0.6282 | 0.6532

4 0.6117 | 0.6419 0.6699 0.6960 | 0.7203

5 0.6644 | 0.6987 0.7228 07479 | 0.7713

6 0.7115 | 0.7395 0.7655 0.7895 | 0.8119

7 0.7496 | 0.7762 0.8008 0.8238 | 0.8451

8 0.7826 | 0.8076 0.8309 0.8525 | 0.8728

9 0.8115 | 0.8349 0.8567 0.8770 | 0.8961

10 | 08373 | 0.8589 0.8791 0.8980 | 0.9159

20 11 | 08605 | 0.8802 0.8987 09162 | 09327
12 | 08814 | 08993 0.9161 09320 | 0.9471

13 | 09006 | 0.9165 0.9315 0.9457 | 0.9543

14 | 09182 | 0.9320 0.9451 09576 | 0.9783

15 | 0.9344 | 0.9461 0.9572 0.9679 | 0.9853

16 | 09494 | 0.9589 0.9680 0.9768 | 0.9909

17 | 0.9634 | 0.9705 0.9775 0.9843 | 0.9952

18 | 09764 | 09813 0.9860 0.9907 | 0.9933

19 | 0988 | 0.9910 0.9935 0.9958 | 0.9982

1 02737 | 02971 0.3206 03440 | 0.3674

3 04928 | 0.5291 0.5679 0.6095 | 0.6538

5 0.6068 | 0.6456 0.6884 0.7357 | 0.7880

7 06832 | 0.7212 0.7637 0.8113 | 0.8649

9 0.7403 | 0.7760 0.8160 08612 | 0.9124

11 | 07855 | 0.8182 0.8548 0.8960 | 0.9426

13 | 08227 | 0.8521 0.8848 09212 | 0.9623

30 15 | 08543 | 0.8802 0.9086 09401 | 0.9752
17 | 08816 | 0.9038 0.9281 0.9546 | 0.9838
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19 0.9053 0.9242 0.9442 0.9659 0.9895
21 0.9267 0.9418 0.9579 0.9750 0.9933
23 0.9458 0.9574 0.9696 0.9824 0.9959
25 0.9631 0..9713 0.9797 0.9885 0.9977
27 | 0.9788 0.9836 0.9886 0.9936 0.9989
29 0.9932 0.9948 0.9964 0.9980 0.9997
1 0.2560 0.2782 0.3004 0..3227 0.3449
3 0.4613 0.4965 0.5343 0.5748 0.6182
5 0.5686 0.6073 0.6501 0.6978 0.7508
7 0.6408 0.6798 0.7238 0.7735 0.8303
9 0.6949 0.7328 0.7759 0.8251 0.8819
11 0.7379 0.7740 0.8150 0.8622 0.9168
13 0.7735 0.8074 0.8458 0.8899 0.9409
15 0.8037 0.8352 0.8707 09111 0.9578
17 0.8299 0.8588 0.8912 0.9278 0.9697
19 0.8530 0.8793 0.9085 0.9412 0.9782
* 21 0.8736 0.8972 0.9232 0.9520 0.9843
23 0.8921 0.9130 0.9359 0.9610 0.9887
25 0.9089 0.9272 0.9470 0.9685 0.9919
27 0.9243 0.9400 0.9568 0.9748 0.9943
29 0.9384 0.9515 0.9654 0.9802 0.9960
31 0.9514 0.9620 0.9732 0.9849 0.9972
33 0.9636 09717 0.9802 0.9890 0.9982
35 0.9748 0.9805 0.9865 0.9926 0.9989
37 0.9854 0.9888 0.9923 0.9958 0.9994
39 0.9953 0.9964 0.9975 0.9987 0.9998
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Table 3.3.3

Values of ey, for bivariate uniform distribution

o

n k 0.2 0.4 0.6 0.8 1
1 0.5860 0.6100 0.6400 0.6700 0.7000
2 0.7459 0.7568 0.7661 0.7739 0.7800
3 0.8317 0.8379 0.8477 0.8492 0.8545
4 0.8839 0.8875 0.8909 0.8942 0.8972

10 5 0.9189 0.9212 0.9233 0.9254 0.9273
6 0.9443 0.9456 0.9469 0.9482 0.9494
7 0.9633 0.9641 0.9644 0.9657 0.9664
8 0.9782 0.9787 0.9791 0.9795 0.9799
9 0.9908 0.9904 0.9905 0.9907 0.9909
1 0.5567 0.5883 0.6200 0.6157 0.6883
2 0.7140 0.7259 0.7357 0.7434 0.7491
3 0.7954 0.8020 0.8097 0.8162 0.8225
4 0.8451 0.8498 0.8542 0.8582 0.8619
5 0.8784 0.8870 0.8847 0.8875 0.8903
é 0.9024 0.9047 0.9069 0.9090 0.9109
7 0.9205 0.9222 0.9238 0.9253 0.9268
8 0.9346 0.9359 0.9371 0.9383 0.9399
9 0.9460 0.9469 0.9478 0.9487 0.9496

20 10 0.9553 0.9560 0.9567 0.9574 0.9581
11 0.9631 0.9636 0.9642 0.9647 0.9652
12 0.9697 0.9701 0.9705 0.9709 0.9713
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13 0.9753 0.9757 0.9760 0.9763 0.9766
14 0.9802 0.9805 0.9807 0.9810 0.9812
15 0.9846 0.9847 0.9849 0.9851 0.9853
16 0.9884 0.9884 0.9886 0.9887 0.9889
17 0.9918 0.9918 0.9918 0.9920 0.9921
18 0.9948 0.9948 0.9949 0.9949 0.9950
19 0.9975 0.9975 0.9976 0.9976 0.9976
1 0.5489 0.5411 0.6133 0.6456 O.‘6778
3 0.7835 0.7912 0.7983 0.8051 0.8118
5 0.8649 0.8685 0.8718 0.8749 0.8778
7 0.9062 0.9082 0.9100 0.9118 0.9135
9 0.9312 0.9324 0.9336 0.9347 0.99357
11 0.9480 0.9488 0.9495 0.9503 0.9504
13 0.9600 0.9606 0.9611: 0.9616 0.9620
30 15 0.9691 0.9695 0.9698 0.9702 0.9705
17 0.9762 0.9764 0.9767 0.9769 0.9771
19 0.9818 0.9820 0.9822 0.9823 0.9825
21 0.9865 0.9866 0.9867 0.9868 0.9869
23 0.9903 0.9904 0.9905 0.9905 0.9907
25 0.9936 0.9937 0.9937 0.9937 0.9938
27 0.9964 0.9965 0.9965 0.9965 0.9965
29 0.9989 0.9989 0.9989 0.9989 0.9989
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40

11
13
15
17
19
21
23
25
27
29
31
33
35
37

39

0.5450
0.7775
0.8582
0.8991
0.9239
0.9405
0.9524
0.9614
0.9684
0.9740
0.9785
0.9824
0.9857
0.9885
0.9909
0.9930
0.9949
0.9965
0.9980

0.9994

0.5775
0.7854
0.8619
0.9012
0.9253
0.9414
0.9530
0.9618
0.9687
0.9742
0.9788
0.9826
0.9858
0.9886
0.9909
0.9930
0.9949
0.9966
0.9980

0.9994

0.6100°
0.7926
0.8653
0.9032
0.9264
0.9422
0.9536
0.9623
0.9690
0.9745
0.9790
0.9827
0.9859
0.9886
0.9910
0.9931
0.9949
0.9966
0.9981

0.9994

0.6425
0.7996
0.8685
0.9050
0.9276
0.9430
0.9542
0.9627
0.9693
0.9747
0.9791
0.9828
0.9860
0.9887
0.9911
0.9931
0.9950
0.9966
0.9981

0.9994

0.6750
0.8065
0.8715
0.9068
0.9288
0.9438
0.9548
0.9631
0.9696
0.9749
0.9793
0.9830
0.9861
0.9888
0.9911
0.9932
0.9950
0.9966
0.9981

0.9994
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Table 3.3.4

Values of e, , for Bivariate logistic distribution

o

n k 0.2 0.4 0.6 0.8 1
1 0.0578 0.1157 0.1735 0.2314 0.2892
2 0.4036 0.4512 0.4962 0.5386 0.5784
3 0.5737 0.6144 0.6524 0.6880 0.7211
4 0.6853 0.7201 0.7526 0.7829 0.8114

10 5 0.7675 0.7967 0.8240 0.8498 0.8740
6 0.8321 0.8557 0.8779 0.8991 0.9191
7 0.8848 0.9028 0.9199 0.9362 0.9519
8 0.9291 0.9413 0.9530 0.9643 0.9752
9 0.9671 0.9732 0.9793 0.9852 0.9909
1 0.0510 0.1020 0.1530 0.2040 0.2550
2 0.3288 0.3729 0.4143 0.4529 0.4887
3 0.4666 0.5069 0.5440 0.5781 0.6094
4 0.5578 0.5952 0.6295 0.6608 0.6897
5 0.6256 0.6606 0.6925 0.7218 0.7487
6 0.6794 0.7121 0.7419 0.7694 0.7947
7 0.7239 0.7543 0.7822 0.8079 0.8317
8 0.7617 0.7899 0.8159 0.8399 0.8623
9 0.7944 0.8204 0.8445 0.8669 0.8878
10 0.8232 0.8471 0.8693 0.8899 0.9094

20 11 0.8489 0.8705 0.8908 0.9098 0.9277
12 0.8720 0.8914 0.9097 0.9269 0.9431
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13 0.8929 0.9101 0.9263 0.9417 0.9563
14 0.9121 0.9269 0.9411 0.9547 0.9674
15 0.9296 0.9422 0.9541 0.9656 0.9767
16 0.9458 0.9560 0.9657 0.9751 0.9842
17 0.9609 0.9685 0.9760 0.9832 0.9903
18 0.9748 0.9790 0.9851 0.9900 0.9948
19 0.9878 0.9904 0.9950 0.9956 0.9980
1 0.0472 0.0945 0.1417 0.1889 O..2361
3 0.4207 0.4592 0.4944 0.5266 0.5560
5 0.5645 0.5993 0.6307 0.6593 0.6853
7 0.6539 0.6858 0.7146 0.7409 0.7649
9 0.7184 0.7471 0.7743 0.7986 0.8209
11 0.7687 0.7954 0.8198 0.8423 0.8629
13 0.8097 0.8338 0.8561 0.8766 0.8957
15 0.8442 0.8657 0.8857 0.9043 0.9217
» 17 0.8737 0.8927 0.9104 0.9270 0.9426
19 0.8996 0.9158 0.9311 0.9456 0.9593
21 0.9224 0.9359 0.9487 0.9609 0.9726
23 0.9428 0.9534 0.9637 0.9735 0.9830
25 0.9611 0.9689 0.9764 0.9836 0.9907
27 0.9778 0.9825 0.9871 0.9916 0.9961
29 0.9929 0.9945 0.9961 0.9977 0.9992
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1 0.0447 0.0894 0.1342 0.1789 0.2236
3 0.3932 0.4302 0.4639 0.4946 0.5226
5 0.5277 0.5617 0.5923 0.6200 0.6451
7 0.6117 0.6435 0.6721 0.6980 0.7215
9 0.6725 0.7024 0.7293 0.7538 0.7761
11 0.7200 0.7481 0.7735 0.7967 0.8179
13 0.7589 0.7852 0.8092 0.8310 0.8511
15 0.7916 0.8163 0.8387 0.8593 0_.8784
17 0.8199 0.8428 0.8637 0.8830 0.9010
19 0.8447 0.8658 0.8852 0.9032 0.9200

0 21 0.8667 0.8860 0.9038 0.9205 0.9361
23 0.8864 0.9039 0.9202 0.9354 0.9498
25 0.9043 0.9199 0.9345 0.9483 0.9613
27 0.9206 0.9343 0.9472 0.9594 0.9702
29 0.9356 0.9472 0.9584 0.9690 0.9792
31 0.9493 0.9590 0.9683 0.9772 0.9858
33 0.9620 0.9697 0.9770 0.9842 0.9911
35 0.9738 0.9794 0.9847 0.9900 0.9951
37 0.9848 0.9882 0.9915 0.9947 0.9979
39 0.9951 0.9962 0.9974 0.9985 0.9996
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Table 3.3.5

Values of k (number of expensive measurements) for ey, = 0.95

n 0.2 0.4 0.6 0.8 1
uni 7 7 7 7 7
40 exp 30 28 25 20 14
log 31 29 25 23 21
uni 15 15 15 14 14
100 exp 73 67 59 43 25
log 73 71 64 56 51
uni 17 17 17 17 17
500 exp 325 290 240 170 65
log 325 300 275 250 225
uni 17 17 17 17 17
1000 exp 620 550 450 300 100
log 620 570 520 470 425
uni 17 17 17 17 17
2000 exp 1200 1050 850 550 150
log 1200 1100 1000 900 820




Chapter 4

CONCOMITANTS OF RECORDS FROM
MORGENSTERN FAMILY

4.1  Introduction
Let X, Xz... be an infinite sequence of independent and identically

distributed random variables having the same absolutely continuous distribution
function F(x). An observation X; will be called an upper record (or simply a record)
if its value exceeds that of all previous observations. Thus X; is a record if X;> X
for every i <j. An analogous definition deals with lower record values. The time at
which records appear are of interest. For convenience, let us assume that X is
observed at time j. Then the record time sequence {T,, n >0} is defined in the
following manner.

To= 1 with probability one
and forn >1

To=min {j: X;>Xtn1} .
The record value sequence {R,} is then defined by R,= X1,; n =0, 1, 2...

b

Here Ry is referred to as the reference value or the trivial record. An excellent
work on record value theory is available on Nevzorov and Balakrishnan (1998).
A comprehensive study on record values is presented in Amold Balakrishnan

and Nagaraja (1998).
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Even the definition of record times and record values for multivariate
observations are open to discussion. Several competing definitions are introduced.
Very limited progress is documented in the development of appropriate multivariate
record theory. In this chapter our discussion & focussegn the bivariate case.
A generalization of concomitants of order statistics in the record value theory was
initiated by Houchens (1984). Some applications of record concomitants we refer to
Nevzorov and Ahsanullah (2000).

Let (X;,Yi), i =1, 2... be a sequence of ii.d random variable from an
absolutely continuous distribution with distribution function F(x,y) and ‘density
function f(x,y). Let R, denote the n™ record value in the sequence of the X’s. The
corresponding random variable Y, ie the Y-value paired with the X-value R, is
called the n™ record concomitant and will be denoted by Ry;.

The present chapter deals with the distribution theory of record concomitants
from the Morgenstern family of bivariate distributions. We also discuss the
distribution theory of record concomitants some important members of the family

namely, bivariate exponential, bivariate uniform and bivariate logistic distributions.

42  Distribution of n"Record Concomitant, Ry

For the Morgenstern system we have

Fir(xy) = Fx(x) Fry) [1+a(1- Fdx)) (1- )], -l<a <l (4.2.1)

and

Fyx(x) = Fr(y) [1+a(1-2 Fx(x))(1- Fr(y))]. (42.2)

Since (X, Yi), 1= 1,2...are independent and identically distributed random variables,

it follows that

FR{.llR,.(y | %) = Fye (¥ | %) (4.2.3)
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see, Arnold Balakrishnan and Nagaraja (1998) p.272. We can immediately write

the distribution function of the n™ record concomitant in the form
FrnO) = [Frx (| 0)fr, (x)akx, (4.2.4)

where

o (0 =1 (x)%[—log(l _F,(x))]", see Amold et al. (1998). (4.2.5)

In the Morgenstern family
Fiu0)= | FO)1+a(1-2 Fx)(1- FHO)] fy () [-log(1— Fi ()T x
= F, )] i, 9+ aF, )1 - F, O] 1 - 2 ()]
Fr ()= [-logll - F (9T die

-2y _ e—u )un

~F,()+ aF, 01 - F, I "
0 nt
= F,(») {1 ~0-2a [I-F, (y)]] (4.26)
The corresponding density function is
Fro )= F: ) [1 ~(1--a [1-2F, (y)]] (42.7)

Writing 1-2F as 1-F-F in (4.2.7) and using the formula for the density of order

statistics, we find

Jra 0= fr () -a(l -51,,-){[1-1*} Oy ) = F 0, O}
= frO)-e/2(1- 51-;){2[1 - F A O) 25,00 O}

= £i0) - 2(1-5) ha0)a0)) (4.2.8)
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Equation (4.2.8) reveals that the density function of the n® record concomitant
depends only on the marginal distribution of Y and the distribution of the order

statistics Y2 and Ya.. Getting from (4.2.8) the k" moment of Ry s

a,l
,LI[(:]) =p+ 5(‘2—; -D[p®2 - p®22] 4.2.9)
where,
O = E(r)
and

p® =E[rh] r=1.2.

It follows from (4.2.8) that

Fan )= @), )+ £, Oz D). (4.2.10)

2n—1

Two interesting recurrence relations connecting the moments of record concomitants

immediately follows from (4.2.10) as

2Ly — 1+ ol - 13 1=0

and (4.2.11)
k
Ha =2 —zn-l)/«ﬂ?w( ’(zn-l 1)

4.3  Joint Distribution of Ry and Ry (m<n)

In this section, we derive the joint distribution of m™ and n"

record
concomitants. Since Rim) and Ry are conditionally independent given Ry, and R,

the conditional distribution function of
(Rimp,Rpn)) given (R = x1,Ry = x3) is

FR(m].R(~1lR.,R.. (yl V2 | xl’xZ) = FYLX (yl I X )an (yz | xz)
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Sex. CBhattacharya (1984), Lemma 3.1)-Hence the joint distribution function of
(Rim, Ryn) s

ooxz

FR[,,,]_R[,,] 0,Y2)= J. J.an 62 |x1) Fy[x O’zlxz) Jr &, (%1, X, ), dx,  (4.3.1)

—00—c0

where,
1 ~ FX (x2) n-m—1
{-log[——=°]}
_ [log(1=Fy (x))]” 1-Fy(x,) Sx (%)
fR,,,R,,(xlaxz)— ! (n-m-1) [I_Fx(xl)]fx(xz)

(43.2)
see, Arnold et al. (1998).

ooxz

Foony 0 = [ | FrodFry1+a(l-Friyn)(1-2Fx(x2))]

[1+a(1-Fry))(1-2Fx(x1))] fz_ &, (%, , X, )dx, dix,

= Fy(y1) Fm)[1+ a (1-Fr(2) {2] [1=FuGe ) e, (), 1}

—a0— 00

o [I‘FY(YI)] {1_2TTFx(xl)fR,,Rn (xl’xZ)dxldXZ}

—a0—0

—0 —0

+ o [1-Fy(y1)] [1-Fr(y)] {J. Jz.(1_2Fx(x]))[2(1_Fx(x2))_l]fR.,R,(xl’xZ)dx]de}]

= Fyon) Pyl ot (-Fr0n) G =D + o [1-Fym)] (=) +

o [1-Fry)][1-Fr(y2)] J.[l - 2F,(x, )]J.[l —=2Fy ()1 4, (%, x; )dbx,dix, .

(4323)
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We have
T[l ~ 2F, (6,)) g, (%1, %, ), = T[l —2F, (x,)]
1= Fy (%) ynemet
-1
[logl-F )" T E ) S
l Sy (x;)dx,
m! (n—m-1)! (1-Fy(x,)]
] F (xz) -m-1
- {~log[——=——=1}"
— [-log(1 - F, (x)]” _ 1-F, (x) S (%)
- j =25 Gl e ey %
(4.3.4)
. . - . 1-Fy (x;)
Using the transformation U = -log [———1 G )]
-u 1- FX (xz ) :
we have e™ = —_F—(x_) and hence the integral on the RHS of (4.3.4) reduces to
T[l —2F, () (. %, )b i, = T[ze'" (A= F -1 g
: m ! (n—-m-1!
=) ‘zf_xmff“ D 1y (43.5)

Using (4.3.5) in (4.3.3) we get
[01=2F, e[ 1= 2F (x)) fr_n, (%1, %, )by, =

j[l 2k )y

fx (x)%[— log(1 - F, (x))"d,.
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Using the transformation U = —log [1-Fx(x;)] we have

I[l ~2F, (x, )]IU 2 (x, )]fR,,,,R,, (x;, x, )dx,dx, =

S T S S (4.3.6)

Using (4.3.6) in (4.3.3) we have
P (y“yz)=FY(VI>Fr(yz>[1+a(1-Fy(yl))(2%-1) +o 1-Fr(y:)] (z—ln—l)

# 02 1)) [1-F0a)] {1+ =+ o ) @3.7)

The joint density function corresponding to (4.3.7) is

T O172) = SO0 A0 [ [1-2F¥00)] (=D

+ou [1-2FKy)] <—2‘7 -1)

+ o [1-2F¥(m)] [1-2Fry)] {1 - zlm— 2‘" +—21—3 3l

(4.3.8)

The asymptotic joint distribution of (Rim), Rynj ) is evident from (4.3.8). Without

any normalizing we have

limma—> o fr r, O1Y2) =/0) () [1-0(1-2F(1))

— & [1-2F(y2)] +o[1-2Fr(y)] [1-2Fr)]l. (4.3.9)

It follows from (4.3.9) that the record concomitants are asymptotically independent

for all values of m and n (m #n).
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The product moments can be directly follows from (4.3.8).

Fori<m<n;1=1,2.. . andk=1,2...

E [Rl[m]Rk[nI] = -Uy‘ly; fR{m,R(,,] (}’1,y2)dy1dyz
= [[9% O AOIN+01-2Ex00) (5 -1

+ o [1-2F(yy)] (%—1)

1 1
+ o [1-2Fr(y1)] [1-2F ()] {1-——2—"+W}]d}’1d}’2-

=uOu® + ( - [/1"’ O + (o -nE [/1“" Haa 11 +

2"
@ _ O ® — 7 (]- r 1, 1 43.10
[/1 =ty — o, 1 - = ot oy ) (4.3.10)
2" 2" 2"

44  Record Concomitants from Gumbel’s Bivariate Exponential distribution
The distribution theory of concomitants from Gumbel’s bivariate exponential
distribution is discussed in chapter 2. In this section we deal with the distribution
theory of record concomitants from this distribution.
The Gumbel’s bivariate typel 1 exponential distribution is specified by (2.5.1).

In this case the distribution function of Ry, follows from (4.2.6) as

Foy ) =l1-exp(-y16,)][1+ (- Darexp(-y/6,)]; ¥ > 0, 6, > 0.

(4.4.1)
The density function of Ry, follows from (4.2.7) as

Fa ()= 5Py B,)[1+ (o ~Da@exp(-y/6,)~D]; y> 0, 6, > 0.

(4.4.2)
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The joint probability density function of (Rimj, Riq)) follows from (4.3.8) as

st ool
Y2 1 1
ol g4

n-m-2m+l
2 3

}

(Zexp{ Gyl} ](Zexp{%}—lj], yi, y2 > 0. (4.43)

The moments of Ry is readily obtained from (4.4.2) as
uy —r(k+1)0 1+ a(— - 1)(— -D]k=1,2.
In particular
a,l
iy = 001 - 2 (- D)
The asymptotic mean of Ryq) is
a

Hr,, = 6,[1 +§'] .

The variance of Ry, follows from (4.4.4) and (4.4.5) as

V(Rpw) = 92[1-—(—-—1)——(——1) ].

4 2"
From (4.3.10) we get
1 2
for 1< m<n E[Ry Ryl = 6} [1—5(2—" o ).|.T
1 1 1
g e b
_ a’6; 1 1

Hence Cov (R[m] R[n]) ]

4 2n—m—23m+1 - 2n2m

20;[ 11 1.
2"— 3m+1 4m+l

(4.4.9)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)
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As in the case of concomitants record concomitants are also positively correlated

and Cov (Rym] Ryn)) decreases as m and n pull apart.

4.5 Record concomitants from Morgenstern type Bivariate Uniform Distribution

The Morgenstern family is the bivariate uniform distribution specified by

(2.6.1). The cumulative distribution function and density function of Ry, follow

from (4.2.6) and (4.2.7) respectively as

s 1 _pa-2
Fr 0) =5l ¥ats =10- )

and
_ ] 2y
S 0)=5 =
The moments of Ry follows from (4.5.2) as
9/{
W — %2
Moo = a1l (2 )(k 2
The mean of Ry
E[Ryq] ——2[1 +— (1 o 1.
Using (4.5.3) and (4.5.4) the variance of Ry,
VIRu1 =2 - % L1y
{n] 6 2" :

The asymptotic mean and variance of Ry, are respectively
6,
E[Ryj) = —2[1+(@/3)]

VR = 9—[— - a—]

(4.5.1)

(4.5.2)

(4.5.3)

4.5.4)

(4.5.5)

(4.5.6)

(4.5.7)
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The joint density function of (Rmj, Rynp) is
1 1
e, 0r32) = B [1+a(1-221) (= =1) +a (1-222) (== -1)
6, "2 6,” "2

2 1 1 1

B Y2
e 1-2=— 1-2=2)1. 458
27 2" 2"_""23'"”}( 02)( 02)] ( )

From (4.3.10) for 1< m<n
LAV B NN I
E[R(m}, Riny] = R (1 (6 )(2,,, ) ~( 6)((2" 1)

1 1 1

+ 0 /36{1-— - —+———1}]. 4.5.9
{ 2m 2n 2n~—m—23m+l }] ( )
CovRpm, Rpep) = @202 /36[ {1-—— -+ — Ly _a=Lya-2Ly
[m], [n] 2 om ok 2n—m—23m+l 2m 2n
22
-l 11, (4.5.10)
9(2" M) 3m 4m+

Thus the record concomitants are positively correlated and Cov(Rym}, Rynj) decreases

as m and n pull apart.

4.6  Record Concomitants from Gumbel’s type 11 Logistic Distribution
The joint cumulative distribution of Gumbel’s type 11 logistic distribution is
given in (2.7.1).

The distribution function of Ry follows from (4.2.6)

exp- (2 #2)
Fro, )= ) PR T2
[1+ exp-(*—52)] [1+ exp-(*—52)]

-0 <y<w; -0 < U, <00, >0. (4.6.1)
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For the logistic distribution we have
o, fO)=FOI-FQ)]
and (4.6.2)
o, /' W) =fON-2F()].

Hence (4.6.1) takes the form

1
2’1

Fo 0)=F, () + a0, (o=~ 1/, (). (4.63)

Thus the probability function of Ry, follows from (4.6.3) as

R VA10))

faa®) = £, )+ a0,
= 1,0 +al-Df0N-2R0)]

=fy(y)[1+a(%-1)(1—2Fy(y))]

: - l—a(F—l) 2
|:1+exp—(1—_—;—llJ:| 1+exp—(ya’u2)
0-2 L 2

-0 <y <w, —0< <o, o3>0 (4.6.4)

=1/o,

*) _ 0

Using the recurrence relation, Shaw (1970), u&% - ul) = -2k o,u®*"the moments

of Rq) are given by

1 .
B = u® - ack(z7 - Dut?. (4.6.5)
In particular
1
Hr,, = Ha —a0'2(2—n—1). (4.6.6)

Also fork=2

T 1
My, = M +70'2 —2a,uZO'2(2—n—1). 4.6.7)
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Hence
2 nt 2, 1
V(Rp) =0, [?—a (2—,,—1)]- (4.6.8)

The joint probability density function of (Rim}, Ry )

exp_(}ﬁ T, _2/‘2)

1
Sty D15 Y2) =

— \ A
l—exp—(y‘ ﬂzj l—exp—(yz Ha
o o
[--a(o - 2t - ar D) =
1+exp—(yl ,uz) 1+exp—(M
o, G2 )
. | L exp_[yl—_ﬂzj l_exp_[yz_-&J
o o
+a2(1_57—_2—n-_2n—m—2 m+l) : : ]
1+exp—[MJ 1+ exp— (M]
02 02
—®0 < Y1y <0 ; =0 <Uy<®© ; 02> 0. (4.6.9)

Using the relation u® -yl =-2k o,u

1 we get the product moment of

Rimj and Ry as

(1.k)

- ,, 0, k)
Hpry = HH +

ao,l(1- -217)#""’#“’ +ao k(1- 51;)#"‘")#‘”

+(ao, - - L 1

-1, ,k-1)
2m 2n 2n-m—23m+1 }/u /U *

(4.6.10)
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In particular =1, k=1

1,1
Hrna = ER B 1= 17 — 00 p [+ =2

2"
1 1 1
+ol o fle—m——— 4.6.11
2 { 2m 2" 2n—m—23m+l } ( )
Using (4.6.11) and (4.6.6) we have
R 2, 1 1
COV( [m]> R{n]) =a 02[2n—m—23m+l - 2n2m]
4 2pn2

_da0y 11, (4.6.12)

2n—m 3 m+1 4 m+l

As in the previous cases, the record concomitants Rim) and Ry are positively

correlated and the Cov(Rm,Rynj) decreases as m and n pull apart .



Chapter 5

DISTRIBUTION OF THE EXTREMES OF THE r*"
CONCOMITANT FROM THE MORGENSTERN FAMILY

5.1  Introduction

In many real life sampling situations the variable of interest from the
experimental units can be more easily ranked than quantified. In agricultural and
environmental studies, it is indeed possible to rank the experimental or sampling
units without actually measuring them. In such cases ranked set sampling is highly

beneficial for the estimation of the population mean. The procedure of ranked set

sampling was suggested by Mclntyre (1952) for improving the precision of Y asan
estimator of the population mean. This method is applicable for situations where the
primary variable of interest, Y, is difficult or expensive to measure, but where
ranking in small sets is easy. The process involves selecting m samples, each of size
m, and ordering each of the samples by eye or some relatively inexpensive means,
without actual measurement of the individual, see David and Levine (1972), Dell
and Clutter (1972), Stokes (1977). The smallest observation from the first sample is
chosen for measurement, as is the second smallest observation from the second
sample. The process continues in this way until the largest observation from the nth
sample is measured, producing a total of n measured observations one from each

order class. When the ranking is subject to error the ranked set sampling have
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been effectively extended by the use of concomitants to the estimation of mean,
Stokes (1977), variance Stokes (1980a), correlation coefficient Stokes (1980b) and
to the situation with size biased selection of X’s Muttlak and Mc Donald (1990).

Motivated from the ranked set sampling we use the following sampling
method for selection of primary variable. Suppose there are two correlated variables
Y and X, where Y is difficult to measure or to rank, see Kaiser (1983). For example
X may represent an inexpensive rough measurement and Y corresponding refined
more expensive measurement. By using the method of concomitants we may reduce
the number of expensive measurements on the basis of inexpensive measurements.
Consider a bivariate sample of size n = mk, where k is an integer. Randomly
subdivide the sample in to k sub samples (groups) each of size m. In each sub
sample we measured only the Y-value corresponding to the r'™ order statistic Xp.m.
Then the Y- value measured in the i sample is the r* concomitant will be denoted
bY Yirm),i i=1,2,...k. The Y{.m}i are independent random variables having the same
marginal distribution asY r.m].

Let My frm= max[Yemp1, Y em)25- - Y [rm) k]
and

My [r:m) = MIN[Y e 1, Yiem),2, - - Yfrmix]
denote the largest and smallest among the selected concomitants. Thus My r.m and
My (rm) are the extremes of the selected expensive measurements in the samples . In
particular My jm:m) is the largest observation of the concomitants of maximum of
order statistics in the sub samples. It is an extremely useful statistic for the inference
on the parameter of the expensive marginal variable Y in bivariate uniform model. It
is a very useful statistic in selection problems where the selection is based on the
marginal inexpensive variable. For example X be the score of a preliminary test and

Y the score in a final test. Suppose we divide the contestants in to k groups and
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: . . EM,,.. .
select the top performer in the screening test. Then the ratio M which

clearly increases to 1 with k, is a measure of effectiveness of the selection
procedure. One may wish to choose the value of the number of subdivisions
(populations), k, to make this ratio sufficiently close to 1. See also Nagaraja and
David (1994) Yeo and David (1984) for different approaches of selection.

The present chapter deals with the general distribution theory of My jr.m) and
My r.m from the Morgenstern family of distributions and discuss some applications
in inference, estimation of the parameter of the marginal variable Y- in the
Morgenstern type uniform distributions. We also apply the results to the selection
problem discussed earlier. Section 5.5 is fully devoted to the distribution of the rank

of the r'™ concomitant from the Morgenstern family.

5.2  Distribution of My [rm)

We have discussed the distribution theory of concomitants from the
Morgernstern family in Chapter 2.

The cdf of [X,Y] is specified in (1.2.1).
The cumulative distribution function of Yjem,; i=1,2,...k is given in (2.2.3) and is

m-2r+1

Eym )= FY(V)[l + a[l-F, (y)]} (5:2.1)

and the corresponding density function

m-—2r+1

Sy )= Ly ¢ (1-2FWI. (52.2)

The distribution function of M, |, , denoted by F,, ., is

m-=2r+1

Fortrm)=1Fy,, )= { Fr(y)[l + o [1-F, (y)]] o (523)
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The density function corresponding to (5.2.3) is

fk:k;[ rim) )=k
5o 1- 2D a- Rt £,0)0- 2 g 4 2a(EEDE ).
(m+1) (m+1) m+1
(5.2.4)
Using binomial expansion in (5.2.4) we have
fk:k;[/:m] W=
U, 001 £, - 22D g 4 20220y, ()
(m+1) m+
-1, (2r-m-1) ,
,Z( ) J(—a) [(T)(l -F, ()]
k-0, - (2r m— 1) _@r-m- 1) k(2r-m-1)
- pars (k)‘ L ] {fk.k+l (y)[l + ] fk+l.k+l+l (y) (k +1+ 1)(m + 1)
(5.2.5)

where (n)y= n(n+1) (n+2)...(n+x-1) and f.(y) is the probability density function
of Yes.

The moments of My (rm) are derived from (5.2.5).

Fors=1,2..
/llf'sk)[rm] E[M; 1re )
(k- t)t+lr 2r-m-1)., ®, (Zr-m-1) O\t 200 k(2r-m-1)
Zo k), e m+1 T a1~ m+1 o+ ke (k+t+D(m+1)
(5.2.6)
where
ne =E[Y:].
Particularly forr =m
L (k=1),, (m-1), _(m-1) k(m 1)
pard (k), -a m+ ] {fkk+t(y)[1 m+1 a]+j;c+l:k+l+l(y)2a (k+t+1)(m+1)} .

(5.2.7)
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and

(s)
/Jk.k,[m m]

k-1, m-=-10_. m-1 s k(m-1
( ) l{“a( )] {,U( )k:k+l[1 _( )a]"‘/‘( )k+l-k+t+12 ( )
o (k), m+1 m+1 (m+)(k+t+1)

1L

(5.2.8)
For large values of m (5.2.7) and (5.2.8) may be approximated as

SXCET W k
fuir®)= TEDLD o OO -@) + frann P G s) 6529)

t+1)

and

(s) <! ( t)t+1 (s) 1 ) L
Mg = (k) ( a) {y Iclc+t( —a) +,u k+1 k+t+l O }
t

> TS (5.2.10)

respectively.

5.3  Distribution of my[r:m
The distribution function of my [r.m),denoted by F.xjrm|(y), is given by

Fragem(3) = 101 F O 1= 220, ()

= (5.3.1)

The probability density function corresponds to (5.3.1) is
.flik;[r:m] (y) =

Z(k(k;)“‘[ a7 0+ E D o g 20 CDE D

m+1 (k+t+)(m+1) "

(5.3.2)

The moments of my r.mjis denoted by 4 1-m S = 1,2.. and is derived from (5.3.2) as

(s) =

Hiirm™
k-1),, 2r-m-—1 . 2r-m-1 s 1+1)(2r-m-1
Z( )' l[ ( )] { ( )t+1k+t (1+( )a)_lu( )r+2;k+t+1 2a( )( ) *
— (kK), m+1 m+1 (k+1+1D)(m+1)

(5.3.3)
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In particular r =1
My;(1:m) = MINCY (1)1 ... Y(imlk )

The probability density function of my [j.m) 1S

-fl'.k;[l:m] (y) =
(k-1) i (1 m) (1 m) t+DH(A-m)
+ 1+ )
s (k)r L ] {.f;#-l k+t (y)( a) .f;+2k+{+1 (y) (k +i+ 1)(m +1)
(53.4)
The moments of my [1.m) is obtained from (5.3.4) as
/11(?[1,"]—
QL k=0 (=m)y o a-m) . (¢ +1)(1-m)
= : l+—a) = 1 o2 :
“ (k){ L m+ ]{ r+1k+t( m+1 a) H t+2:k+t+1 a(k+t+1)(m+1)
(5.3.5)

If m is sufficiently large (5.3.4) and (5.3.5) may be approximated to

gy = S EDeararir  )=@)+ frompn 22 =D} (53.6)

2, Gerie)
and
s 1+ t s 5 1
1y =§( (k;? [@F {4, Y1) + 4 ’szh“,(y)zfz(—,f:j—jl)}. (5.3.7)

5.4 (i) Application to Inference

In this section we use the above sampling method to illustrate the application
of the above result to estimation problem. The bivariate Morgenstern type uniform
distribution is specified by the distribution function

Fxrx, y) = eiel{1+a(1—6i)(1——y-ﬂ;-13asl;0<x<01;0<y<02.
1

2 1 2

(5.4.1)
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From (5.2.7) the density function of M, ., under model (5.4.1) is
j;rk‘[m‘m](y)

= “Z[ ] O U=V 2a o2

(m+1)k+1+1) 6,
(54.2)
and
X 1-m k-1),, m-—1 m-1)(k+1
uk:k‘[m:m] =922{a( )} ( )tl[( _( )a)+2a ( )( )
’ i (+m)” (k+1),, (m+1) (m+1)(k+1+2)
=0,a,,,. (5.43)
Also
1-m),, (k-1) (m-1) (m—l)(k+ 2)
=0h(k+1) T (@ =
Hikgmay = 82K+ Z{ Grm) G, e ks 1+3)
=02b, . (5.4.4)
An unbiased estimator of &, follows from (5.4.3) and is
é2[k.m] = Mk—,[m:m] (5.4.5)
alt,m
and
v ( 2km)) = =0, ( i -1). (5.4.6)
k m
The UMVUE for 6, based on k independent observations is
éz = (kljl) Y, ,, see Rohatgi (1976). (5.4.7)
The relative efficiency of ém‘m] over éz is
2
L (5.4.8)

R = .
T k(k+2)[b,, - i)

The values of Rym for a = 0.2(0.2)1, m = 10,20 and1000 are tabulated in

Table 5.4.1.
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Table 5.4.1
Values of Ry m
m=10

k 0.2 04 0.6 0.8 1

1 1.1221 1.2756 1.4723 1.7320 2.0851
2 1.1653 1.3734 1.6364 1.9706 2.3956
3 1.1959 1.4407 1.7454 2.1217 2.5810
4 1.2182 1.4890 1.8214 2.2239 2.7036
5 1.2352 1.5250 1.8769 2.2972 2.7907
6 1.2484 1.5528 1.9192 2.3523 2.8538
7 1.2591 1.5748 1.9523 2.3952 2.9062
8 1.2751 1.5927 1.9723 2.4259 2.9465
9 1.2812 1.6075 2.0008 2.4576 2.9794
10 1.2852 1.6199 2.0191 2.4809 3.0067

m =20

1 1.1367 1.3132 1.5466 1.8668 2.3299
2 1.1852 1.4240 1.7339 2.1381 2.6645
3 1.2193 1.4999 1.8566 2.3054 2.8610
4 1.2442 1.5539 1.9412 2.4172 2.9906
S 1.2632 1.5941 2.0027 2.4970 3.0826
6 1.2779 1.6250 2.0492 2.5567 3.1513
7 1.2897 1.6494 2.0856 2.6031 3.2046
8 1.2994 1.6692 2.1149 2.6409 3.2472
9 1.3075 1.6855 2.1388 2.6704 3.2820
10 1.3143 1.6992 2.1588 2.6957 3.3110
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m = 1000
2 1.208 1.483 1.850 2343 3.000
3 1.246 1.568 1.988 2.526 3.200
4 1.274 1.629 2.081 2.646 3.330
5 1.295 1.673 2.149 2732 3.429
6 1311 1.708 2.200 2.796 3.500
7 1.324 1.735 2.24. 2.846 3.556
8 1335 1.757 2272 2.886 3.600
9 1344 1.775 2.298 2918 3.636
10 1351 1.790 2320 2.945 3.667

From the above table it can be observed that the relative efficiency of the

estimator0,;, . is an increasing function of a and k. Moreover for high values of

a, éuk‘m]is highly efficient than the UMVU estimator éz .

(ii) Application to the Selection Problem
It follows from (5.4.3) that the effectiveness of the selection problem

mentioned in the introduction is denoted by ey, and is given by

EM,, .
_El ,,,[m.m1]=n+1a“ (5.4.8)
ETY,.] no-

€kn
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It is noted that ey, is free of the parameter 0, and is equal to 1 when k = n. The

values of exqfor a = 0.2(0.2)1,7 =10,20,50,100 are tabulated in the following table.

Table 5.4.2

Values of ey,

n m k 0.2 0.4 0.6 0.8 1.0
10 10 1 .5800 .6100 .6400 6700 .7000
2 5 570 7796 .8008 .8207 .839
2 9251 .9330 .9404 9473 9538
20 20 1 5567 .5883 .6200 6517 .6833
10 2 1227 7535 T775 7996 .8198
5 4 .8576 .8733 .8873 .8997 9108
5 .8891 9017 9128 92217 9315
2 10 9596 .9642 9685 9724 9759
50 50 1 5427 5753 .6050 .6407 673
25 2 7107 7381 7687 1870 .8080
10 5 .8683 .8839 .8971 .9084 9181
5 10 9367 9446 9513 9569 9618
2 25 9831 .9851 9870 .9886 .9902
100 100 1 5380 5710 .6040 .6370 .6700
50 2 7015 7305 .7969 7807 .8020
25 4 .8310 8506 8672 8813 .8933
20 5 8616 8782 8921 .9038 9136
10 10 .9294 9385 .9459 9520 9570
20 9672 9714 9750 9779 .9805
25 9751 9783 9810 .9833 .9853

2 50 9914 9925 .9934 .9943 .9950
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Table 5.4.2 illustrates that ey, increases with k and o . It tends to 1 as k approaches
to n. This method of selection will substantially reduce the number of expensive
measurements. For example, if n = 100 twenty-five percent of the expensive

measurements give an efficiency greater than .975 for all o > 0.

5.5  Distribution and Expected values of the Rank of the r'® Concomitant

from the Morgenstern family

In this section we are concerned with the distribution and expected value of
the rank Rirn) of Yirn) among n Y; . Suppose we have independent measurements
(X.,Yi ), i = 1,2...n, with cumulative distribution function specified in (2.2.1), on
individuals Aj,A,,... A, and that A, rank ™ on the X measurements. Here we study
the following questions: (a) What is the probability that A; will rank s" on the
Y-measurement? (b) What is A;’s expected rank on the Y-measurement?.

Let Rrnidenote the rank of Y(.,). Then
R[r:n] = Z I(Y[r:n] - Yl )7
i=]

where
Ix)=1 ifx=0
=0 ifx<0 (5.5.1)

The small sample distribution of R, is given in O’Connell David and Yang (1977).

They have derived the general formula for the finite distribution of R, and is given
in (1.2.18).
If (X, Y) have the distribution specified by (2.1.1) and X and Y have

marginal distribution of the same form then it is quick to obtain the following three

relations.
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Relation 5.5.1
T, =T, for ,s=12..n. (5.5.2)
Since for the Morgenstern family F xr(Y)=F, (1, x)
P(r (X)) =r, ((Y) =) =P(r(Yi) = r,r (Xi) =5s)
T, =T forr,s=1.2,...n

sr

Relation 5.5.2

s = T psloronelos (5.5.3)

It follows directly from (1.2.18).

Relation 5.5.3

ﬂ.rs (a) = ﬂ.r,n+l—s (_a) * (554)
Since for the Morgenstern family o is the correlation parameter.

The values ofz, for the Morgenstern type uniform distribution is tabulated for

@ =0.25(25)1,n=5,10in Table 5.5.1.

Table 5.5.1

7, = P(R,., =s)as function of a forn=5Sand n=10

o
n=5;r s 0.25 0.5 0.75 1
5 2282 2573 2873 3184
4 2137 2268 2394 2512
5 3 1996 1983 1962 .1933
2 1859 A715 1568 1418
1 1726 1461 1203 .0952
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4 2071 2145 2226 2314

3 2002 .2008 2018 2014

* 2 1931 .1863 1795 1724
1 .1859 1715 1568 1418

3 2004 2017 2040 2073

3 2 .2002 .2008 2018 .2030
1 .1996 .1983 .1962 1933

n=10;r 10 .1189 .183 .1583 1789
10 9 1145 1292 1441 .1591
8 .1103 1204 1305 .1403

7 .1061 1118 1173 1225

6 1019 1034 .1046 .1055

5 .0975 .0952 .0923 .0891

4 .0937 .0871 .0803 .0734

3 .0886 .0792 .0687 .0582

2 .0876 .0714 .0574 0436

1 .0867 0638 .0464 0294

9 1113 1226 .1340 1457

8 .1080 1160 1240 1320

7 1048 .1095 1141 1187

6 1015 1030 .1043 1057

9 5 .0983 .0966 .0946 .0926
4 .0951 .0902 .0851 .0793

3 0919 .0839 .0757 .0696

2 .0886. 0776 0665 .0555

1 .0856 .0704 .0574 .0436
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8 .1058 A115 1174 1223
7 .1035 .1070 .1106 1143
6 1012 .1024 .1037 1051
5 .0989 0978 .0968 .0958
’ 4 .0966 .0932 .0898 .0864
3 .0943 .0885 .0828 .0763
2 0916 .0839 0757 .0676
1 .0896 .0792 .0687 .0582
7 1021 .1044 .1069 .1085
6 .1008 1017 .1029 .1042
5 .0994 .0989 .0987 .0986
7 4 .0984 .0961 .0943 .0926
3 0911 .0932 .0898 .0864
2 0951 .0902 .0851 .0799
1 .0937 0871 .0803 .0734
6 .1003 .1009 1017 .1028
5 .0999 .1000 1033 .1009
4 .0994 .0990 .0987 .0986
° 3 .0989 .0978 .0968 .0958
2 .0983 .0966 .0946 .0926
1 .0918 .0952 .0923 .0891
5 .1003 .1009 1017 .1028
4 .1008 1017 .1029 .1042
5 3 1012 1024 1037 1051
2 1015 1030 .1043 .1053
1 1019 .1034 .1046 .1055
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The, expected rank of Yirq), E[R(rny], r=1,2,...0 may be obtained from
the formula (1.2.19) see David and Nagaraja (1998).

We have

(6.0 1x)dy= [Fe(F, 0)1+a(- F, (DA~ F, ON ()1 +a(-2F, ()1~ F, ) Hy

1 1 1
= Fy ()| udu + (1~ F () [ u( - u)ddu + (1= 2, (2)) | u(1 - 2u)du + a*(1 - Fy (x))(1 - 2F (x))

Iu(l —u)(1-2u)dul, by the transformation u =Fy (y)

—

[1+2 Fy (0]
=F, (x)+. (5.5.5)

. -
B(r-1,n—r+1) I Fi ()

-

[H%&@ﬂ
2

[L]6, e ) f D1 )W, s ()l =

-® -

[F, (0] 1= F, ()" £y (x)de

B(r,n-r+1)+(a/3)B(r+1,n-r+1)
2B(r-1,n-r+1)

1 r—1+r(r—1)a

B 2[ n 3n(n+1)
_ (r-1 ar
» [1+ 3t 1)]. (5.5.6)

[0, f(y 10y = [[Fy () = Fry e U | ¥)dy

1+ 2 F, ()

= [F, 00/, )1+ a(1-2F, ()1~ F, () y - Fy (%) 5
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(1+ 2 Fy (x)
B O | 11Co) TR
2 6
&;(m{l—an(l—Fx(x))}. (5.5.7)
[1] 6,060 f Q1B . ()b = J g gsa- £y

B(n r) -,

—0  —0

[Fy GO [1= Fy ()17 f (x)alx

- 1 Cril)— _
= 2BG.-r) [B(r,n—r+1)—(a/3)B(r,n—r+2)]
_ (n- r)[l (@ /3)n r+l] (5.5.8)
Hence E[R[rn]] = 1+n{ (r - l) [l + ]+ (n r) [1 ( /3) i l }
2n ( 1)
= 1[1...,,{ (_"_M}] (5.5.9)
2 3(n+1) -

It follows from (5.5.9) that E[Ry.y] is a linear function of a and it
increases(decreases) with r for a> 0 (<0).

It readily follows that
E[R[r:n]] = n+l' E[R[n+1-r:n]] (55 10)
and for negative o, we can use

E[R[,;n](-a)] =n+l- E[R[,;n](a)]. (5.5.11)

The values of E[Ry.nj] are tabulated for specific values of o and n in the

following table .
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Table 5.5.2
E[R}r.n)] as a function of o for n=5, 10 and 20

a
n r 25 S 75 1
1 2.861 2.722 2.583 2.440
2 2.931 2.861 2.792 2.722
5 3 3 3 3 3
4 3.069 3.139 3.208 3.278
5 3.139 3.278 3.412 3.556
1 5.159 4818 4.477 4.136
2 5.235 4.970 4.705 4.439
3 5.311 5.121 4,932 4.742
4 5.386 5.273 5.159 5.045
5 5.462 5.424 5.386 5.348
10
6 5.538 5.576 5.614 5.652
7 5.614 5.727 5.814 5.955
8 5.689 5.879 6.018 6.258
9 5.765 6.030 6.295 6.561
10 5.841 6.182 6.523 6.864
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20

1 9.746 8.992 8.238 7.484
2 9.825 9.151 8.476 7.802
3 9.905 9.310 8.714 8.119
4 9.984 9.468 8.952 8.437
5 10.043 9.627 9.190 8.754
6 10.143 9.786 9.426 9.071
7 10.222 9.994 9.667 9.389
8 10.302 10.103 9.905 9.701
9 10.381 10.262 10.143 10.024
10 10.460 10.421 10.381 10.341
11 10.540 10.579 10.619 10.659
12 10.619 10.738 10.857 10.976
13 10.698 10.897 11.095 11.294
14 10.788 11.056 11.373 11.611
15 10.857 11.214 11.571 11.929
16 10.937 11.373 11.810 12.246
17 11.016 11.532 12.048 12.563
18 11.095 11.690 12.286 12.881
19 11.175 11.849 12.524 13.198
20 11.254 12.008 12.762 13.516




Table No.
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332
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