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Chapter 1 

INTRODUCTION 

1.1 Concomitants of Order Statistics 

Order statistics play a very important role in statistical theory and practice 

and accordingly a remarkably large body of literature has been devoted to its study. 

It helps to develop special methods of statistical inference, which are valid with 

respect to a broad class of distributions. Specific properties of order statistics are 

used to identify probability distributions in the form of characterizations, see 

Arnold, et al. (1992), Balakrishnan and Rao (1998). In spite of the established role 

of order statistics in statistical theory, discussions are largely confined to the 

univariate case and comparatively lesser volume of work is available in a 

muItivariate setup. This is due to the fact that there is no straightforward way of 

extending the concept of order statistics from the univariate case to the multivariate 

case. A survey of different attempts of introducing multivariate order statistics can 

be found in Barnett (1976). Most of the theoretical development in this area of 

research is on concomitants of order statistics. The concept of concomitants, when 

bivariate data are ordered by one of its components, was first introduced by David 

(1973) and almost simultaneously under the name of induced order statistics by 

Bhattacharya (1974) 

Let (Xi ,Yi) , i =1,2 ... n be a random sample from a bivariate distribution 

with cumulative distribution function (cdf) F(x,y) .If we order the values of Xi'S in 

the increasing order of magnitude , then the corresponding Yi 's need not have a 
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similar order among themselves. Unless X and Y are independent, the ordering of 

X's will affect the distribution of the associated Y's. The Y value associated with 

or paired with Xr:n , the rth X order statistic is called the concomitant of Xr:n and 

will be denoted by Y[r:nl . The ordering of concomitants is similar to that of the 

marginal variable X if p = 1 and completely reversed if p = -1. 

The most important use of concomitants is identified in selection problems 

when k «n) individuals are chosen on their X values. Then the corresponding Y 

values represent performance of an associated characteristic. For example, if the k 

out of n rams as judged by their genetic make up is selected for breeding, then 

~n-k+Lnl' .. ·J[n.nJ might represent the quality of the wool of one of their female 

offspring. Or, X might be the score of a candidate on a screening test and Y the 

score on a later test. Concomitants have found a wide variety of applications in 

such applied fields as selection procedure (Yeo and David (1984)) ocean 

engineering (Castillo (1988)) inference problems (Do and Hall (1992), Yang 

(1981 a,b )), prediction analysis (Gross (1973)) and double sampling plans (David 

(1996), O'Connell and David (1976)). An excellent review of work on 

concomitants of order statistics is available in David and Nagaraja (1998). 

1.2 Basic Distribution Theory and a Brief Review 

In a basic paper of concomitants, David (1973), considered the bivariate 

normal model in which the variable Y is linked with X through the regression 

model 

X -I-' Y = I-' + pO' ( x ) + Z ( 1. 2. 1 ) 
y y 0' 

x 

where Z -N (0, 0';' (1- p 2)) and Z is independent of X . Under this model he 

has derived the finite and asymptotic distribution of the concomitants. Thus for 

r=I,2 ... n 
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Y - + (Xr:n - f.1x ) Z 
[r:n] - f.1 y pu y + [r)' 

U x 
(1.2.2) 

where llr] denotes the particular lr associated with X r:n. In view of the 

independence of XI' and the lr we see that the set of Xr:n is independent of llr] . 

Moreover llr] are mutually independent and lr - l. A more general model of 

(1.2.1) is discussed in Kim and David (1990). Let Yi = g ( Xi ,Ei ) represent a general 

model for the regression of Y on X, where neither the Xi nor the Ei need be 

identically distributed (but still be independent). Then 

Y[r:n] = g( Xr:n,E[r]) r =1,2 ... n (1.2.3) 

from the mutual independence of the Xi and the Ej it follows that E[r) has the same 

distribution as the Ei accompanying Xr:n and that the E[r] are mutually independent. 

They have shown that concomitants are associated random variables. More over 

concomitants satisfy a stronger form of dependence, multivariate total positivity of 

order 2if each E[r] in the general linear model has a Polya frequency of order two 

(Karlin and Rinott (1980»). 

The general distribution of concomitants may be derived from the following 

Theorem due to Bhattacharya (1974). 

Theorem 1.1 

For 1 S'i < r2 ... < rk S n, the Yrr;:nl (i = 1,2 ... n) are conditionally independent 

k 

given X,; 11 = x, (i = 1, 2 .. k) with joint conditional density function n fey, I x,). 
;=) 

It follows from the above Theorem that the joint density function of the 

Cf.) X,t Xl k 

f}'I~")YI't)Y) '''Yk) = f f .. · f fr,:n"ln (x) , .. .xk ) n f(Yh I xh )dXh (1.2.4) 
-<b-OO -C() h=l 
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Yang (I 977) has shown that 

E[Y[r:nJ ] = E[m(Xr:n)] 

Var (Y[r:nJ ) = Var(m(Xr:n))+E «()2 (XrJ) 

Cov(Xr:n ,Y[s:nJ ) = COY (Xr:n ,m(Xs:n) ) 

COY (Y[r:nJ Y[s:nJ ) = COY (m(Xr:n ),m(Xs:n)) r:t: s 

where 

m(x) = E (YIX = x) 

and 

()2(X) = Var(Y I X = x) . (1.2.5) 

Jha and Hossein (1986) noted that (1.2.5) continues to hold when X is absolutely 

continuous but Y is discrete. They have derived the following important recurrence 

relations connecting the moments of concomitants for an arbitrary specified 

function h (.) such that E[h(Y)] exists. 

(n-r) E(h(Y[r:nJ ))+ r E(h(Y[r+l:nJ)) = n E(h (Y[r:n-IJ)), r = 1,2 ... n-1 (1.2.6) 

- (mJ i ( k J (: J E (h(Y[k:mJ )) - k ~ k - i (m -i ~ SJ E(h(J[k-Lm-i+sl)) 

k -/ 

isk, ISkSmsn, (1.2.7) 

- (mJ ' ,k (~J 
E(h(Y[k:mJ))- k L(-I) -k -( _'+ JE(h(J[kum-J+s1))' 

s=o +s m ) S 

k+s 

OSJsm-k (1.2.8) 

n (i-l:(nJ . E(h(Y[r:nJ))=L _ . (-I)'-rE(h(J[iil))' i=I,2 ... n 
I=r r 1 1 

(1.2.9) 
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(r-l) E(Yjr:nj Y js:nj ) + (s-r) E(Yjr-l:nj Y js:nj ) +(n-s+l) E(Yjr-l:nj Yls-l:nj) 

= n E(Y1r-1:n-lj Yjs-l:n-lj , 1 ~ r < s ~ n 

A new recurrence relation emerges from the above results. 

Theorem 1.2 

For 2 ~ i <j ~ 11, 

where 

and 

(i -1)/J,i.;nj + (j -1)/J,,-l.rnj + (n - j + l)/J,i-l,i-Lnj = 
n{/J,i-l.J-ln-lj +[f1i-Ln-lj- f1,-Lnj][f1J-Ln-lj- f1ln jD 

"'inj = E(J( .. nj)· 

Proof: We have from (l.2.10) 

(i -1)/J".rnj + (j -1)/J[i-l.jnj + (n - j + 1)/J,i-l.i-l:nj = 

(1.2.10) 

(1.2.11) 

n{J,i-l.i-Ln-lj - (i -1)f1;.njf1inj - (j -1)f1i-l:nlf1inl - (n - j + 1)f1i-Lnlf1i-l:nl + 

nf1i-ln-llf1J-Ln-lj} 

(l.2.12) 

Now consider, 

(i -1),uUnl,ulinj + (j -1)f1i-l:njf1inj + (n - j + 1)f1i-l:njf1i-Lnj = f1inj {(i -1)f1inj + 

(11- i + 1 ),uji-Lnj} + (n - j + 1 ),uli-Lnj (J1 J-lnj - J1 inj) 

(l.2.13) 

since i ,u,i+Lnj + (n - i)J1 .. nj = nJ1in-ll . 

Now using (1.2.13) on the right hand side of (l.2.12) and simplifying we get 

(1.2.11). 
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Some specific cases of distribution of concomitants relating to Gumbel' s 

bivariate exponential, bivariate Weibull, bivariate Burr and new generalized 

FarIie-Gumbel-Morgenstern distributions, are discussed in, Balasubramanian and 

Beg (1997, 1998), Beg and Balasubramanian (1996), Begum and Khan (1997, 

1998, 2000) and Baimarov, Kotz and Bekci (2001). 

The asymptotic distribution of concomitants in the simple linear model 

(1.2.1) is discussed in David and Galambos (1974). They have shown that for 

all r, under the conditions n ~ 00 and lim P;n = 0, the asymptotic distribution of 

Z [rl = Yrr.nl - E[Yrrnl] is normal, N(O, a; (I - p2)), if 1 p 1< 1. They have also proved 

two theorems concerning the asymptotic independence and asymptotic distribution 

of concomitants. 

Theorem 1.3 

For any fixed k ~ 1 and for any choice 1 :::; 1j < '2 < ... < 'le :::; n of subscripts, 

le 

lim n->CXl P[ Y~'i.nl< XI' ···Yi;t.nl < x,,] = n <l>(x; 1 eT) (1.2.14) 
;=1 

where 

and 

Cl> is the cdf of a standard normal distribution. 

Theorem 1.4 

Let X and Z be independent random variables and let Z has a continuous 

distribution function F(x). Define Y= X+Z and let Yirnl = X r.n + l[rl· 
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Then if the distribution of X is such that the variance f3;n of X rn tends to zero 

as n-> 00, any fixed number of random variables lI::n] = lIrnJ - E[lIrn]] are 

asymptotically independent, each with distribution function F(x), A corollary of 

Theorem 1.3 is also stated here. 

Corollary 1.1 

Let Yi,n,i =1,2 ... k real numbers such that, as n->oo lim Yi,n = Xi exist. Then, 

with the notations of Theorem 1.3 

k 

lim n->oo P[Y~,;:nJ< Yl,n, .. ·lI;k:n] < Yk,n1 = n Cl>(Xj I CT) (1.2.15) 
j=l 

A more general case is discussed in Yang (I 977), He has proved a powerful 

theorem on the asymptotic distribution of concomitants. 

Theorem 1.5 

Let 1::;; 1] < r2 < ... < rk ::;; n be sequences of integers such that, as n-> 00 , 

r,/n~A, withO<Aj <1 (i=1,2 ... k). 

k 

Then limn_>o'~P[YI,;nJ<YI, .. ·lIrlnJ <Yk]= np[Y, ::;;y,IXj =Aj]. 
,=1 

The extended version of the theorem in Galmbos (1978) by David (1994) gives a 

representation for the limit distribution of Y[r:nj for an arbitrary absolutely bivariate 

cdfF(x,y) . 

Theorem 1.6 

Let Fx(x) satisfy one of the Von Mises condition and assume that the 

sequences of constants an, bn >0, are such that as n-> 00 

(1.2.16) 
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Further, suppose there exist constants An and Bn >0 such that 

{Fy(An+BnYI an+bn x)}-> H (ylx) for all x and y. 

00 

Then P [Y[n-k+l:n] ~ An+BnY] ~ f H(y I x)dGCk)(x) (1.2.17) 

where G(k) , the kth lower record value from the extreme value cdf G. If (1.2.16) 

holds we say that Fx is in the domain of attraction of G it is well known that G must 

be one of the three extreme value cdf's which are of the following types, see 

Galambos (1987). 

= exp (- xa ) X >0: a >0 

G2(x,a) = exp (- (_x a )) X <0: a>O 

=1 x~O 

G3(x) = exp {- exp (-x)} ;- 00 < x < 00 . 

Suresh (1993) has shown that the central concomitants and extreme concomitants 

are asymptotically independent .In selection problems, we use a very important 

statistic called the rank of the concomitants denoted by R [r:n] . Here R [r:n] is the 

rank of Y[r:n] among the n Yj , s. David et al. (1977) have derived the pdf and 

expected value R [r:n] . 

n 

We have R[r:n] = LI(Yrrn) - Y;), 
;=1 

where 

I(x) = 1 if x ~O 

= 0 if x < O. 

Denote by 

TI r•s = P [R [r:n] = s] 
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and 

1C ,., = 

n f fie k () )k () i ' -) -k ) () i S - ) - k ) () 1 n - , - ., + k + ) f ( x , y ) d x d y 
k=u 

where 

u = max (0, r + s - n - 1) t = min (r - 1, s - 1) (1.2.18) 

Bl(X,y) = P[X::; x,Y ::;y]= FX,Y(x,y) 

82 (x,y) = P[X::; x,Y > y] 

83 (x,y) = P[X > x,Y::; y] 

84 (x,y) = P[X > x,Y > y] 

and 

c = k 

(n -1)! 

k!(r -1-k)!(s -1- k)!(n-r -s+ 1 +k)! 

They have discussed in detail the bivariate normal case . The expected value of 

R [r:nj may be obtained directly by the characteristic order statistics argument. 

They have shown that 

E[R[r:nj] = 1 + n 

~ 00 ~ 

{f [f Bl (x, y)f(y I x)]!,_I:n_1 (x)dxdy + f [8 3 (x, y)f(y I x)]!,n_l (x)dxdy} . 
-UJ -oc' -00 

(1.2.19) 

In the bivariate normal case David et.al.(1977) have shown that 

lim [E[R[r:nj/n+l ]=<I>(p.<I>-I(l)/(2- p2Y'2), 
n--->"" 

(1.1.20) 

where 

r/n+1->l (0<l<1). 
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For the general bivariate distribution Yang (I 977) has shown that 

lim P[R[r:nJ:S; nu] = P[Y:s; Fy-1(u) I X = F./(A)]. 

He has presented an interesting application of concomitants m a prediction 

problem. Spruill and Gatsworth (1996) have applied the above results in connection 

with employment problems of a professional couple. 

Yeo and David (I 984) consider the problem of choosing best k objects out 

of n when, instead of measurements Yi of primary interest, only associated 

measurements Xi (i = 1, 2 ... n) are available. For example Yi could be very 

expensive measurements but Xi'S are inexpensive measurements. It is assumed that 

the n pairs (Xi, Vi) be a random sample from a continuous population. The actual 

values of Xi's are not required, only their ranks. A general expression is developed 

for the probability TI that the s objects with the largest X values include the k 

objects (k:s; s) with the largest Y values. They have applied the formula for TI in 

the bivariate normal case. They have also developed the formula for selecting 

the best object based on the actual values of X, instead of ranks by using a 

computer program. 

Nagaraja and David (1994) have developed an important statistic for 

selection problem. In their approach the statistic Vk.n = max (Y[n-k+ I :nJ ... , Y[n:nl), 

k = 1, 2, ... , n representing the best individual in a screening procedure with respect 

to the characteristic under study. They consider E[Vk.n] / E[Yn:n] as a measure of 

effectiveness of the screening procedure . Both the finite and asymptotic theory of 

Vk.n are discussed by them. They have shown that the cdf of Vk•n is 

00 k 

Fk.n(y)=P[Vk,n:S;y] = f[FY~x(Ylx)] !xn_tn(x)d" 
-00 
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where 

Fyjx (Ylx) = pry ::;YI X>x] . (1.2.21) 

They have also derived the limit distribution of Vk,n in the extreme and quantile 

case. When k is held fixed, under some regularity conditions as n increases 

where 

-<.<; 

k I 
dGk+1(X) = [-log G(x)] - g(x) . 

k! 

(1.2.22) 

In the quantile case, where k = [np], O<p<l, under mild conditions, the limit 

distribution of Vk.n coincides with the limit distribution of sample maximum from 

thecdf Fy·!x(YIF;'(l-p».They have applied their results to some interesting 

situations, including the bivariate normal population and the simple linear 

regression model. Joshi and Nagaraja (1995) have derived the joint distribution of 

Vk,n and Vk,n* = max (Y(J:nJ ... , Y[n-k:nJ). They used their result to study the joint 

distribution of Vk,n and Yn:n , since Yn:n = max ( Vk,n ,Vk,n* ). It can be used to 

choose k such that V k,n / Y n:n is close to 1. LiXiande (I999) has established a 

sufficient condition for the convergence of concomitants of selected order statistics 

.Let (X,Y) be the measurement of certain characteristic associated with the parent 

and offspring populations respectively. Suppose k parents, ranked highest on X, are 

, I k 

selected and the average Y [k:n] = - L lIn-i+Ln I of the y values associated with the 
k i=' 

offspring group due to the selection 1S the induced selection 

differential D[knl = (lI:nl - f.Jy ) / (J" y' also known as response to selection. D[k.nl 

measures the superiority of Y of the k individuals ranked highest on X. The 

asymptotic distribution this statistic, suitably standardized, is derived in extreme 
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and quantile cases by Nagaraja (1982). Asymptotic properties of D[k.n) have also 

been investigated. Suresh and Kale (1994) discussed the induced selection 

percentiles and their properties. Yang (1981 a, 1981 b) and Sandstrom (1987) have 

studied the asymptotic properties of smooth linear functions of Y [i:n] . Yang (1981 a) 

has considered general linear functions of the form 

1 n i 
L'n =-LJ(-)J[;'n) 

n ;=1 n 

and 

where J is a smooth function which may depend on n, and 1] is a real valued 

function. He has established the asymptotic normality of these statistics. These 

results are used to construct consistent estimators of quantiles associated with the 

conditional distribution of Y given X = x. 

Do and Hall (1992) used the Effron's (1990) technique to estimate the 

percentiles of the bootstrap distribution based on concomitants. 

Let Y =X+6' where Fx is completely known and Fy is to be estimated. The 

observation is 

They have suggested the estimator 

where 1(.) represents the indicator function and established that if 6' ' S are 

sufficiently small F: y (y) performs better than the classical estimator Fn,r (y), 

the empirical cdf. Application of concomitants in double sampling is discussed in 

O'Connell and David (1976). 
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They suggested the simple linear estimator of f.ly is 

- a - -
Y[r:n) =f.ly +p-1'....(Xr:n-f.lx)+6r 

a x 

where Xr:n and ir are the means of Xr;:n and 6[1j1' i =1,2 ... k . 

If X has a symmetric distribution and the ranks are symmetrically chosen 

then Y[r:n) is unbiased for f.ly .Also from (1.2.23) 

13 

(1.2.23) 

(1.2.24) 

Thus the ranks rj minimizing Var(Xr:J also minimize Var (Y[r:n) for all values 

of p. 

Waterson (1959) has considered the linear estimation of the parameters 

of a bivariate normal population under various forms of censoring. Harrell and 

Sen (I979) have used the method of likelihood in one of these situations, namely 

when Xl :n , ... Xk;n and Y [l:n] , ... Y[k:n] are available. They derive the test of 

independence of X and Y. 

An unbiased estimator of the regression coefficient is considered in Barton 

and Casley (1958). The estimator 

Y,' - Y, B ,= [k:n) [k:n) 

X'k:n - X k:n 

where 
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1 le _ 1 le 

X'Ie:n = k LXn- i+1:n , XIe:n = - LXi:n , 
i=n k i=1 

does not use the i.i.d property and has efficiency of75-80% when (X,Y) is bivariate 

normal, provided k is chosen about 0.27n. Tuskibayashi (1962) has suggested an 

estimator 

p = ~n:nl - ~lnl 
Yn:n -~:n 

of p, the correlation coefficient. He points out that p can be calculated even if 

only the ranks of Xi'S are available. Interesting results related to the distribution of 

p are developed in Tuskibayashi (1998). Barnett et.al.(1976) have discussed the 

estimation of p using concomitants. 

Multivariate generalization of concomitants is first discussed in David (1973). 

Suppose that associated with each X there are t variates Yj G = 1, 2 ... t) the 

t+ 1 variates following a multivariate normal distribution with covariance matrix 

where 

and 

If ~;nl denotes the t x 1 column vector of the Y}~[r:nl' 

where 

Y}~[r:nj = Yj.[r:nj-E [Yj.[r:nj]' 
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the vectors ~~.nJ' i = 1,2 ... k are asymptotically independent, identically distributed 

N(O, L221 ) variates, 

and 

(1.2.25) 

The general multivariate case and some applications are discussed in 

Balakrishnan (1993). Suppose we have n sets of variates (Xi, Y li .... Yti ). Setting 

mj (Xi) = E(Yji I Xi ) and writing Yj[r:nJ for that Yji paired with Xr:n ,we have 

E(Yj[r:nJ ) = E(mj (Xr:n )) 

and 

(1.2.26) 

where 

In the muItivariate normal case G'jk(Xj ) does not depend on Xi and may obtained 

from standard theory 

(1.2.27) 

Then (1.2.28) 

where 

and 

Also noting that Gj(r)andGk(S) are independent unless r = s. 
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They have shown that 

(1.2.29) 

(1.2.30) 

where, 

f3rs.n = COy (Xr:n , Xs:n) . 

Balakrishnan (1993) has introduced the multivariate order statistics induced by 

ordering linear combinations of the components observed in n independent 

observations from a multivariate normal distribution. The concept of induced 

bivariate order statistics is explained below. 

Let (Xi, Vi), i = 1, 2 ... n be independents observations from the bivariate 

normal distribution BVN (!-'x,!-'y,a;,a;,paXay). Let a and b be non zero 

constants and 

S· = aX +bY. J J J, j = 1,2 ... n. (1.2.31) 

Let Sl:n::; S2:n ... ::; Sn:n be the order statistics of SI ,S2 , ... Sn defined in (1.2.31). 

Then the bivariate order statistics induced by the order statistics Sk:n as follows 

X[k:n[ = Xj and Y [k.:n) = Yj whenever Sk:n = Sj .In other words ( X[k:nJ , Y[k:nJ ) is 

that (X,Y) pair which corresponds to the smallest value among Si's in (1.2.31). He 

has derived explicit expression for the means, variances and co-variances of the 

induced bivariate order statistics. He also extended the bivariate induced order 

statistics to the multivariate case and derived explicit expressions for means 

variances and co variances in the p-variate normal case. 

Balasubramanian and Balakrishnan (1995) have provided a method of 

constructing a general class of distributions which is closed under marginal, 
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conditional and concomitance of order statistics. They have constructed the 

bivariate member of the class defined by 

h2 [Xl ,X2 ;al ,a2 ,a12 ] = f(Xl) f(x2) {I + al g(Xl) +a2 g(X2) +a12 g(Xl) g(X2) } 

( 1.2.32) 

where f(x) is a density function and g(x) is an orthogonal function such that 

E [g(X)] = 0 and the parameters ai, a2 and al2 satisfy the conditions 

1 +al +a2 +a12 ;::: 0 

I-al +a2 -al2 ;::: 0 

1 +al -a2 -al2 ;::: 0 

I-al-a2 +al2 ;:::0. (1.2.33) 

They have shown that the concomitants belong to the univariate member of the 

family 

h (x ,a ) = f(x) { 1 + a g (x) } , a E [-1,1], and have extended the method to 

the multivariate case and discussed some interesting properties of this class. 

1.3 Morgenstern Distributions 

In modelling problems, one general approach is to first choose a family of 

distributions and then select a member that is appropriate to describe the 

observation. Of the desiderata for choice of the family, the most important one is 

that the family should be flexible, in the sense that it should contain a wide 

variety of models capable of representing any data situation. Another consideration 

is the sort of prior information available in the choice of the model. In problems 

involving several random variables, the analyst may make reasonable 

assumptions about the marginal distributions. Then the question is to construct a 

joint distribution function with a set of given marginals. The Morgenstem family of 

distributions assumes importance in such contexts as a highly flexible system. 

Accordingly in the present study we deal with the distribution theory and 

applications of concomitants from the Morgenstem family of bivariate distributions. 
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The Morgenstern system of bivariate distributions includes all cumulative 

distribution functions of the form 

Fx.r{x,y) = Fx(x) Fy(y)[l+a(I- Fx(x»(I- Fy(y»], -1::; a::;1. (1.3.1) 

The system provides a very general expression of a bivariate distribution from 

which members can be derived by substituting expressions of any desired set of 

marginal distributions. The joint density is given by 

fx,r{x,y) = fx(x)fy(y)[l+a(1-2 Fx(x»(1-2 Fy(y»], -1::; a ::;1. (1.3.2) 

Since both the bivariate distribution function and density are given in terms of 

marginals, it is easy to generate a random sample from a Morgenstern distribution. 

Thus members of this family can be used in simulation studies, especially when 

weak dependence between variates is of interest. It follows that the conditional 

density of X given Y=y is 

.f).lr{X,y) = fy(y)[l+a(I-2 Fx(x»(1-2 Fy(y»], -1::; a ::;1. (I.3.3) 

When y = median (Y), the conditional density of X given Y = Y is the same as the 

marginal density of X. The regression curve of X given Y = Y is 

E [XIY=y] = E[X]+ a (1-2 Fy(y» f x (1-2 Fx(x)fx(x) dx 

which is linear in Fy(y). 

(1.3.4) 

A number of properties results from the simple analytic form of 

Morgenstern distributions. If the marginal distributions of X and Y are symmetric, 

the joint distribution is also symmetric. Random variables having a bivariate 

Morgenstern distribution are exchangeable whenever the marginal distributions 

are identical. The Morgenstern system is closed with respect to monotonic 

increasing functions of random variables. Also the system is closed with respect 

to mixtures of bivariate Morgenstern distributions having the same marginal 

distributions. 
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The Morgenstern family is characterized by its "closeness" to the 

distribution of independent random variables. The following characterization is 

discussed in Nelson (1994). 

Theorem 1.5 

If I Po I ~ 113, the one whose joint density is closet to the product density of 

independent random variables (in the sense of minimizing '1'2 -divergence) is the 

Morgenstern distribution with parameter a = 3po, where Po is the Spearman's rank 

correlation coefficient. 

The Morgenstern distributions are specially suited to data situations 

describing weak dependence between the random variables X and Y. Measures of 

dependence vary over a smaller range than for some other general classes of 

bivariate distributions. Schucany et al. showed that for this family the Pearson's 

correlation coefficient lies between -1/3 and 113 (see, Convey (1983)). 

1.4 The Present Work 

The present work is organized into five chapters. Chapter 1 contains a brief 

description of the basic distribution theory and a quick review of the existing 

literature. In this chapter we derive a new recurrence relation connecting the 

product moments of concomitants. We also introduce the concept of bivariate 

Morgenstern family of distributions and its basic properties. 

Chapter 2 deals with the distribution theory of concomitants from the 

Morgenstern family. It also contains some interesting recurrence relations 

connecting the moments of concomitants. In this chapter we specialize the results 

to some well known members of the family, viz, bivariate exponential, bivariate 

uniform, bivariate logistic and bivariate gamma distributions. We also provide 

quick estimators for the parameters of the exponential, uniform and logistic models. 
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In Chapter 3 we deal with the distribution theory of the statistic Vk,n 

discussed in the previous section from the Morgenstern family and obtain certain 

characteristics that could be useful in selection problems . We also derive the 

limiting distribution of Vk,n and provide illustrative tables of the values of ek,n for 

the bivariate uniform ,bivariate exponential and bivariate logistic models. 

Let X1,X2 ... be an infinite sequence of independent and identically 

distributed random variables having the same absolutely continuous distribution 

function F(x) . An observation Xj will be called an upper record (or simply a 

record) if its value exceeds that of all previous observations. Thus Xj is a record 

if Xj>Xi for every i<j. An analogous definition deals with lower record values. 

A comprehensive study on record values is presented in Arnold Balakrishnan and 

Nagaraja (1998). 

Let (Xi,Yi), i==l, 2 ... be a sequence of i.i.d random variable from an 

absolutely continuous distribution with distribution function F(x,y) and density 

function f(x,y). Let Rn denote the nth record value in the sequence of the X's. The 

corresponding random variable Y, i.e. the Y-value paired with the X-value Rn is 

called the nth record concomitant and will be denoted by R[n).The distribution theory 

of record concomitants from the Morgenstern family of bivariate distributions is 

discussed in Chapter 4. We also discuss the distribution theory of record 

concomitants from some important members of the family bivariate exponential, 

bivariate uniform and bivariate logistic distributions. 

The procedure of ranked set sampling was suggested by McIntyre (1952) 

for improving the precision of Y as an estimator of the population mean. This 

method is applicable for situations where the primary variable of interest, Y, is 
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difficult or expensive to measure, but where ranking in small sets is easy. The 

process involves selecting m samples, each of size m, and ordering each of the 

samples by eye or some relatively inexpensive means, without actual measurement 

of the individual, see David and Levine (1972) Stokes (1977). The smallest 

observation from the first sample is chosen for measurement, as is the second 

smallest observation from the second sample. The process continues in this way 

until the largest observation from the nth sample is measured, producing a total of n 

measured observations one from each order class. 

Motivated from the ranked set sampling we use the following sampling 

method for selection of primary variable. Suppose there are two correlated 

variables Y and X, where Y is difficult to measure or to rank. Consider a bivariate 

sample of size n = mk, where k is an integer. Randomly subdivide the sample in to 

k sub samples (groups) each of size m .In each sub sample we measured only the 

V-value corresponding to the rth order statistic Xr:m. Then the Y- value measured in 

the jth sample is the rth concomitant will be denoted by Y[r:mj,i i= 1 ,2, ... k . The Y[r:mj.i 

are independent random variables having the same marginal distribution as Y[r:mj. 

Let Mk.[rmj = max[Y[r:m],I,Y[r:m),2, ... Y[rmj,k] 

and 

mk.[r:mj = min[Y[r:mj,I,Y[r:mj,2, ... Y[r:mj,k] 

denote the largest and smallest among the selected concomitants. Thus Mk,[r:mJ and 

mk,[r:mj are the extremes of the selected expensive measurements in the samples . In 

particular Mk,[m:mJ is the largest observation of the concomitants of maximum of 

E[Mk,[mmJ] 
order statistics in the sub samples . Then the ratio which clearly 

E[Ynn ] 
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increases to 1 with k, is a measure of effectiveness of the selection procedure, 

One may wish to choose the value of the number of subdivisions (populations), k, 

to make this ratio sufficiently close to 1, In Chapter 5 we discuss the general 

distribution theory of Mk,[r:m] and mk,[r:m] from the Morgenstern family of 

distributions and discuss some applications in inference, estimation of the parameter of 

the marginal variable Y in the Morgenstern type uniform distributions, We also apply 

the results to the selection problem discussed earlier. The work concludes with the 

distribution theory of the rank of the rth concomitant ~r:n]' We also provide illustrative 

tablesforvaluesofTI r ", =P[~rnl =s] andE~r:n]]' 



Chapter 2 

DISTRIBUTION OF CONCOMITANTS OF ORDER 

STATISTICS FROM MORGENSTERN FAMILY 

2.1 Introduction 

In recent years modelling has become a convenient technique in many 

scientific studies to understand the basic characteristics of the phenomenon under 

consideration. Situations that exhibit uncertainty require the use of probability 

models in which the prime consideration is often the distribution followed by the 

observations. When more than one variable is involved in the data generating 

process, multivariate distributions come in to play. Identification of the appropriate 

distribution can be accomplished in more than one way. The only exact method is to 

locate a characteristic property of the process and then derive the distributions 

possessing such a property. All other methods lead to appropriate solutions and 

depend largely on the prior information one has about the mechanism that generate 

the observations. A generally accepted practice is to start with a family of 

probability distributions that has different types of members capable of 

accommodating a variety of patterns of uncertainty and then choose one member 

that befits the data adequately. Therefore multivariate distribution theory is abundant 

with methods of construction of such families. One method is to extend the defining 

equation of the univariate family (differential, difference or functional) in a 

multivariate set-up and solve it to obtain the corresponding law. Bivariate Pearson 
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family, Ord family and Burr family belong to this category. Another way is to 

generalize physical characteristic of univariate distribution in the multivariate form 

and seek the distribution possessing the extended version. Several multivariate 

exponential distributions have been derived in this fashion in literature. Thirdly there 

are systems based on the form of the marginal and conditional distributions. The 

Morgenstern family considered in the present study provides a very general 

expression of a bivariate distribution from which several members can be derived by 

substituting expressions of any desired set of marginal distributions. In modelling 

bivariate data, when the prior information is in the form of marginal distributions, it 

is advantage to consider families of bivariate distributions with specified marginals. 

The Morgenstern system discussed in 10hnson and Kotz (1972) provides a flexible 

family that can be used in such contexts. It provides a general technique by which a 

bivariate distribution can be constructed direct from the specified marginal 

distributions and the correlation between the variables. 

The system is capable of accommodating any functional form of the 

marginals and is specified by the distribution function F(x,y) of a continuous two 

dimensional random variable (X,Y) through the equation 

fr.y(xJl) = F:\{x) Fy(y)[I+a(l- Fx(x»(I- Fy(y»], -1 ~ a ~ 1 (2.l.1) 

where F x(x) and F y(y) denote respectively the distribution functions of the 

component variables and a is the parameter. 

The conditional distribution function of Y given X = x is 

FYlxCYlx) = Fy(y) [1 +a(1-2 Fx(x»(I- Fy(y»]. (2.1.2) 

In this chapter we discuss some aspects of the distribution of the 

concomitants from family (2.1.1) and then specialise these results to some welI­

known members of the family. We also point out some applications of our results in 
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inference on the parameters of the important members of the family. The remaining 

part of this chapter is organised as follows. 

In Section 2.2 we derive the distribution function and probability density 

function of the concomitant Y lrn] of the Morgenstern family. The joint cumulative 

distribution function and probability density function of Ylr:n) and Y ls:n) ,(r:;t:s) are 

obtained in Section 2.4. In view of the importance of the results given in Section 2.2 

we calculate the kth moment of the rth concomitant in Section 2.3 and use the 

resulting expressions in arriving at useful recurrence relations connecting the 

successive moments of the concomitants. The discussions on the properties of 

family need an examination how it is shared and made use of by the various 

members. Accordingly the rest of the Chapter concentrate on such aspects with 

reference to some well known constituents of the Morgenstern system. In Section 

2.5 we consider the Gumbel' s bivariate exponential distribution in some detail and 

provide some quick estimates for the parameter of that model. Section 2.6 attempts 

a similar treatment on Morgenstern type uniform distribution and explore the 

application of the results in estimating the parameters of that model. Section 2.7 is 

devoted to the Gumbel' s type 11 Logistic distribution. We present the distribution 

theory of concomitants and derive a number of recurrence relations connecting the 

moments of concomitants and see how a quick estimator of the location parameter of 

the marginal variable Y can be developed as a bye product. Finally in Section 2.8 the 

distribution of the concomitants from bivariate gamma distribution is discussed. 

2.2 Distribution of the rth Concomitant Vlr:nl 

From David (1981), the distribution function and density function of Y",nl are 

given by 

(2.2.1) 
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and 

fY"n, (y) = f f y1x (ylx)frn (x)dx 

where ir n (x) is the density of Xr:n . 

Using 

fn,(x) = 1 [Fx(x)]'" I [1- Fx(x)r-r fx(x) 
B(r,n - r + I) 

we get 

Fyr,)Y) = Fy (y)[1 + a{f (1- Fx (x»fr.n (x)dx - f Fx (x)fr.n (x)dx}(1- Fy (y)] 

= Fy(y)[I+a{B(r,n-r+2)-B(r+l,n-r+l)} (1-Fy(y» ] 
B(r,n-r+l) 

[ n - 2r + 1 ] = Fy(y) 1+ a [1-Fy(Y)] 
n + 1 

and 

n - 2r + 1 
fy! . )(y) = fy (y)[1 + a [1- 2Fy (y)]] . 

r.n n + 1 

In particular, for r = n 

n -I 
fY!n:n)(y) = fy(y)[l- -1 a [1- 2Fy(y)]] 

n+ 

and for r =1 

n -I 
fY[lnl(Y) = fy(y)[l + -a [1- 2Fy(Y)]]. 

n + 1 

Two interesting relations that derive from the above equations are 

and 
n 

:LfY(rn)(Y) = nfy(y) 
r=1 

26 

(2.2.2) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 
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in which, (2.2.8) is valid for all density functions. Writing 1-2F as 1-F-F in (2.2.4) 

and using the formula for the density of order statistics, we find 

a. n - 2r + 1 
= fy(y) + 2' n + 1 [/i:2(Y):!2:2(Y)], (2.2.9) 

where !r:2(Y) is the density function of Yr:2 , r = 1,2. 

Since 

(2.2.9) can be rewritten as 

(2.2.10) 

Equation (2.2.9) reveals that the distribution of the rth concomitant depends only 

on the marginal distribution of Y and the distribution of the order statistics Yl:2 

and Y2:2. 

n - 2r + 1 
If we change n to 2n+ 1 and r to 2r, then has to be replaced by 

n + 1 

2n + 1- 4r + 1 ----- and hence, from (2.2.4), 
2n+2 

Which in turn implies 

for k = 0, 1,2, ... (2.2.11 ) 
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In general, if A is some rational number such that rA and (n+ I)A are integers, then 

frl ,.:< •• lll-l1 (y) = fYl"'1 (y) . 

2.3 Moments ofY1r:nl 

From (2.2.4) we have the kth moment OfYlr:nl can be derived as 

~(k)lr:nl = E [Y!<-Ir:nl ] 

= J yk fYl"'1 (y) dy 

(2.2.12) 

f k n - 2, + 1 a 
= y [fy (y) + n + 1 2(/1:2 (y) - /2:2 (y»]c:ry 

_ (k) a n - 2, + 1 [(k) (k)] - p, + - p, 1:2 - p, 2:2 
2 n+l 

(2.3.1) 

where, 

and 

11~~) = E [Yr~2] r = 1, 2. 

By direct substitution it can be seen from (2.3.1) that for all , = 1, 2, ... , n-2 the 

recurrence relation 

(k) 2 (k) + (k) - 0 
ll[r+2:"1 - l1[r+I:"J ll[r:"J- (2.3.2) 

holds. A physical interpretation of this result is that Ilf~:I:"J is the arithmetic mean 

between I1f~l2nl and lli~~1 for all the above designated values of r. In other words the 

sequence of the kth moments of the concomitants are in arithmetic progression. 

Using (2.3.1) and (2.3.2) we further find that 

(k) - (k) + ( 1) d 
Illr:n] - Il[l:n] r- (2.3.3) 

where d is the common difference of the said arithmetic progression with value 
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_ a [(k) (k)] 
- n + 1 Ji 22 - Ji 12 . (2.3.4) 

This gives 

(k) _ (k) + Cr - I)a [ (k). (k)] > 2 
IllrnJ- 1l11"J Ji 2.2 - JI 1.2 ,n . 

n + I 
(2.3.5) 

Several observations on the utility of the above results seems to be in order at this 

juncture 

I. The kth moment of the rth concomitant is a linear function in r. Hence the 

graph Cr, Jil r.nJ) should exhibit a straight line for r = 1,2, ... n-2. If the sample 

plots of the values of Ji[rnl is approximately on a line, it is indicative of the 

fact that Morgenstem family is a likely candidate for modelling. 

2. Theoretically, the second forward differences of the Ji[rnl values should be 

zero by virtue of them being in arithmetic progression. Hence a check 

alternative to using a graph as pointed out above is to see whether the second 

differences of the values of moments are approximately zero or the first 

differences are nearly the same. 

3. The moments of the concomitants of various order statistics behave in a 

systematic way. Once the kth moment of the first concomitant and the 

increment factor is estimated, it is straightforward to predict the value of the 

rth concomitant. Estimates of the first and second of these factors are 

measured in terms of the intercept and slope of the graph indicated at 

above or by direct calculation from the differences pointed out at 2. 

From (2.2.4) we further have 

2a 
ftr.nl (y) - ftr-Inl (y) = --I (I - 2Fy (y»fy (y) 

n+ 
(2.3.6) 
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and hence by iteration to lower values of r, 

Thus the densities are also in arithmetic progression, this to be decreasing with a 

common difference of (2.3.5). 

The moment generating function of Y1rnl is 

M1r:nj(t) = E[exp(t Y1r:nj )] = f exp(ty)fYr,nJ (y)dy 

f an - 2r + 1 
= exp(ty) [fy(y) + - [fl:2(Y):!i:2(y)]]dy 

2 n+1 

where, Mr:2(t) is the moment generating function ofYr:2 r = 1,2. 

The moment generating function also satisfies the recurrence relation 

and from this relationship (2.3.4) can be obtained. 

From (2.2.4) we have 

1 () - I' () - a[l- 2F ( )]1 ( ){n - 2r + 1 _ (n - 2r)} 
l(,nJ y J Yr,n-l] y - Y Y Y Y n + 1 n 

2r 
= a [1- 2Fy (y)]fy (y) 

n(n + 1) 

(2.3.7) 

(2.3.8) 

and hence we obtain the following recurrence relation connecting the moments of 

concomitants 

(!-) (k) 2ra (k) (k) 

Il[rn]-,u[rn-l] = n(n+l)[,u -,u22]' (2.3.9) 

Moreover from (2.3.9) by adding telescopic sum we get the following identity 

(k) = (k) + 2r(n-r) a( (k) _ (k)) 

,u[rn] ,u[rr] (r+l)(n+l),u ,un (2.3.10) 

see Beg and Balasubramanian (1998). 



Distribution of concomitants from Morgenstern family 31 

2.4 Joint Distribution of Y1r:nl and Yls:nl 

In order to understand the behaviour of one concomitant with respect to the 

others we need the joint probability distribution of any two concomitants. 

Accordingly in this section, we derive the joint distribution of rth and 5th 

concomitants. From David (1981), the joint distribution function of (Y[r:n), Y[s:nl) is 

where 

00 X 2 

F1r.s:n)(Yl,y2) = f f FylX (y,lx,) FylX (Y2I x2)f,..s:n(XI,X2) dx1 dx2, 1 ~ r < 5 ~ n 

f,..sAX1,X2) = [B(r,s-r,n-s+I)r1 [Fx(Xl)r1 [Fx(X2)-Fx(Xl)y-r-l 

[1- F x(X2)r-S j(Xl)j(X2). 

(2.4.1) 

(2.4.2) 

Using (2.1.2) in (2.4.1) 

00 X2 

F[r.s:nl(Yl,y2) = f f FY(Yl)FY(Y2)[I+a(I-FY(Y2»(1-2Fx(X2»] 

00 x, 

= Fy (y,)FY (Y2)[ f (f fr.s:n(XP xJdxJdx2 + 
-cfJ -00 

00 00 

a[I-Fy(y,)]f[I-2Fx (x,)]{f fr.sn(x"x2 )dx2}dx, + 
-rsJ XI 

00 X2 

a[1- Fy(Yz)] f [1- 2FX(X2)] f fr.sn(X" x2)dx,dx2 + 

00 X2 

a 2 (1 - Fy (y, »(1- Fy (Y2» f f (1 - 2Fx(~ »(1 - 2Fx (x2)fr .. , n(x,.x2 )dx1dx2 

-00 -00 

~ F y(y,) F y(y,)[ 1+ a (I-F,(y,» {2 11 (1- F, (x, ))/",," (x" x, )dx, dx, - I} 

+ a [l-Fy(y,)] {I-2 J1F, (x, )/,,' " (X"X,)dx,dx,} + a 2 [I-Fy(y,)] [l-Fy(y,)] 

{n (1- 2F, (x, ))[2(1- F, (x,» -1]1"," (x" x, )dx, dx, } ] 
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[1-Fy(yJ)] [1-Fy(y2)] {n-2S+I_ 2r(n-2s) }l 
n+l (n+I)(n+2) 

(2.4.3) 

The density function corresponding to (2.4.3) is 

u2 [1-2F}{yI)] [1-2Fy(y2)] {n-2S+1_ 2r(n-2s) }l 
n + 1 (n + l)(n + 2) 

(2.4.4) 

Using 1-2F = I-F-F we write (2.4.4) as 

(2.4.5) 

With the joint density of Y[r:nJ and Y[s:nJ as given in (2.4.5), the product moments 

n-2s+1 a {n-2s+1 2r(n-2S)} 
+ n+l 2[J;Z(Y2)- 122 (Yz)] 1/YI) + n+l - (n+I)(n+2) 
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Performing the integration we find that 

(I,m) = (I) (m) n - 2r + 1 a [(I) (I)] (m) n - 2s + 1 a [(m) (m)] (/) 

Jl[r,snl f.1 f.1 + n + 1 2" f.112 - f.122 f.1 + n + 1 2 f.112 - f.122 f.1 + 

{ n-2S+1_ 2r(n-2s) }a 2 
[ (I) _ (1)][ (m) _ (m)] 

n + 1 (n + 1)(n + 2) 4 f.112 f.122 f.112 f.1n· 
(2.4,6) 

Changing r to (r+l) in (2.4.6) and from the resulting expression subtracting (2.4.6) 

(I,m) (I,m) _ a [(I) (I)] (m) { (n - 2s) }~ 
~[r+I,snl - f.1[r,snl - - n + 1 ~1:2 - ~22 ~ - (n + 1)(n + 2) 2 

[ (/) (/)][ (m) (m)] 
f.112 - f.12:2 f.112 - J.1.2:2 ' (2.4,7) 

Now subtracting (2.4.7) from the expression obtained by increasing s to s+ 1 

in (2.4,7), 

(I,m) (I,m) (I,m) + (I,m) _ 2/ [(I) (/)][ (m) (m)] 
~[r+I,s+lnl - ~[r+I,snl - ~[r,s+lnl ~[r,snl - a (n+l) (n+2) J.1.1:2 - f.12:2 f.11:2 - f.12:2 . 

(2.4.8) 

We immediately see that right hand expression in (2.4.8) is independent of both 

rand s. This leads to the recurrence relations 

{ (I,m) (I,m)} 
~[r+2,s+lnl -~[r+2,snl 

2 { (I,m) (I,m)} + {(I,m) (I,m) } - 0 
- ~[r+I,s+lnl - ~[r+l.snl ~[r,s:+lnl- ~[r,s:nl -

{ (I,m) (I,m)} 
~[r+l.s:+2nl - ~l[r,s+2:nl 

2 { (I,m) (I,m)} + {(I,m) (I,m) } - 0 
- ~[r+I,s:+lnl - ~[r,s+l:nJ ~[r+I,s:nJ - ~[r,s:nl -

It may also be noted that all the observations made with regard to first order 

moments hold good here also with the change that instead of first order forward 

difference mentioned there, the second order differences have to be reckoned with, 

Thus the property of arithmetic progressions in the extended sense, is shared by the 

product moments of two concomitants in the Morgenstern family, 
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Using (2.4.5), the joint moment generating function ofY[r:nj and Y[s:nj IS 

M[r .... nl(/1,lz) = E{exp(tJ[rnl +tzl'[snl)} 

=ff exp{t1Yl + tzYz}J[r.snl(yl 'Y2)dy1dyz 

n - 2r + 1 a. 
= M y Ctl)M y Ct2) + -2 [M 1:2 (t1) - M2:2(tl)]My(t2) + 

n + 1 

n - 2s + 1 a. 
-2 [M 1:2 (t 2 ) - M2:2(t2)]My(tl) + 

n + 1 

(n-2s+1) 2r(n-2s) 2 
{ - }a. /4 

(n + 1) (n + 1)( n + 2) 

(2.4.9) 

Furthermore, using (2.3.10) and (2.4.6), the covariance between Ylr:njand Yls:nl can 

be evaluated. 

We have so far obtained some general expressIOns for moments of 

concomitants as applied to the Morgenstern family. We now specialize these results 

to some well-known members of the family. 

2.5 Concomitants from Gumbel's Bivariate Exponential Distribution. 

An important member of the Morgenstern family is the Gumbel' s (1960) 

type II bivariate exponential distribution specified by 

X,Y> 0; 81, 82 > O. (2.5.1) 

In this case the distribution function OfYlr:nl follows from (2.2.3) and is given by 

n-2r + 1 
F~. (y) = [1 - exp( - Y / 8 z )] [1 + a exp( - Y /82 )] 

Ir.nl n + 1 

y > 0,82 > 0 (2.5.2) 
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and the density function of Y[r:nl is 

1 { - y} n - 2r + 1 ( { - y} J ff,. (y)= -exp - [l+a 2exp - -1 ],y>O. 
Jr·"i 0 0 n + 1 e 

2 2 2 

The kth moment ofY1r:nl is directly calculated from (2.5.3) as 

1l1~~J = r(k+l)O/[l + n - 2r + 1 a(2-k -1)]. 
n + 1 

The following recurrence relations follow directly from (2.5.4). 

Relation 2.5.1 

Relation 2.5.2 

Relation 2.5.3 

We have 

(k) (k) _ Okr(k 1) 2r (2-k 1) 
Jirr:nJ - Jirrn-lJ - a 2 + - . 

n(n+ 1) 

U(k) _ U(k). = r(k + l)Ok (2-k -1)2a (r - n -1) . 
rvnJ rV-l.n-1J 2 n(n+l) 

j.1.(k) -k 0 j.1.(k-i) = r(k + l)Bk en - 2r + 1) a[2- k _ 2-k +1] . 
[rn J 2 [rn J 2 n + 1 

=r(k + 1)0/ (n-2r+l)(_a)2ok . 

n+l 

Hence we obtain the recurrence relation 

(k) _ (k-l)kO + 20k r(k + 1)0 k (n - 2r + 1) = O. 
JirrnJ JirrnJ 2 2 a n + 1 

The mean and variance of ~rnJ are respectively 

n- 2r + 1 
JirrnJ = O2[1- a] 

2(n+ 1) 

35 

(2.5.3) 

(2.5.4) 

(2.5.5) 

(2.5.6) 

(2.5.7) 

(2.5.8) 

(2.5.9) 
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V(Y )=2B2[1_ n - 2r +13a]_ [B (1_ n - 2r +1 a )]2 
[rn) 2 n + 1 4 2 2(n + 1) 

=B;[l- n-2r+1 a- a 2(n-2r+1)2]. 
2(n+1) 4(n+1)2 

(2.5.10) 

It is worthwhile to examine how the orderings on the Y values in the present scheme 

contribute lower changes in the expectation when compared to the unordered Y 

values. The mean of the unordered Y values in the population is E(Y) =B2 , on the 

other hand the expected values of the concomitants are in arithmetic progression 

with difference of - aB2 . Since B2 is always positive, the difference depends on the 
n+ 1 

sign of a. When a is negative (positive) there is negative (positive) correlation 

between the (X,Y) values and the mean values increase (decrease) by aB2 . The 
n+1 

n - 2r + 1 aB difference in the expected values of Y and Y [rn) IS and will be zero 
2(n + 1) 2 

n+ 1 
only at r = -- in which case we have the middle value in the ordered sequence 

2 

when n is an odd integer. 

The difference between the variances ofY and Y[r:nl is 

V(Y) _ V(Y[r:n}) = n - 2r + 1 aB; + (n - 2r + 1)2 a2B2 
2(n+1) 4(n+1)2 2 

= n - 2r + 1 (1 n - 2r + 1 ) B 2 + a a 2. 
2(n + 1) 2(n + 1) 

For any value of r ranging from 1 to n, the term within the braces on the right side is 

positive irrespective of the value of a. Hence when a is negative (positive) 

V(Y[r:n}) >«) V(Y). 

The joint cumulative distribution function of (Y[r:n}, Y[s:n}) is 



Distribution of concomitants from Morgenstern family 37 

F~ . (YI'Y2) =[I-exp{-2i}] [1-exp{-Y2}][I+[a(n-2r+1)[exp{-YI}JJ 
1','"1 () () n + 1 () 

222 

a(n-2S+1)( {-Y2}J + exp - + 
n+l ()2 

2 [(n-2S+1) 2r(n-2S)]( {-y}J( {-y}J a - exp _1 exp _2 ] 

n+l (n+l)(n+2) ()2 ()2 
(2.5.11) 

and the joint probability density function of (Y[r:n], Y[s:n]) is 

+ a(n - 2s + 1) [2exp{--Y_2} -IJ +a2 [en - 2s + I) __ 2_r_(n_-_2_S)_] 
n+l ()2 n+1 (n+I)(n+2) 

[2exp{ -;,' }-IJ[ 2exp{ -;,' }-I J]; 
Yl,Y2 > 0, (2.5.12) 

The product moments are 

for 1, m> 0 

(n - 2r + 1) r(1 + 1) 
1I(1·~) = ()'+m [f(l + 1)r(m + 1) + a{ - r(1 + 1)}r(m + 1) + 
r[r .. l.nj 2 n + 1 2' 

(n - 2s + 1) a{r(m + 1) _ rem + 1)}f(l + 1)+ 
n+ 1 2 m 

a2{(n-2s+1) _ 2r(n-2s) }[r(l+I) _r(/+l)][r(m+l) -r(m+l)] 
n + 1 (n + 1)(n + 2) 2' 2m 

(2.5.13) 
When 1 = 1, m = 1 (2.5.13) reduces to 
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E[Y Y ] = ()22[1_a(n-r-s+1)+a2{(n-2s+1)_ 2r(n-2s) }] 
[r:nj [s:n 

n+l 4 n+l (n+l)(n+2) 
(2.5.14) 

and 

Cov (Y[r:nj,Y[s:nj) 

= ();[l_a(n-r-s+I)+a 2/4{(n-2s+1)_ 2r(n-2s) }]_ 
. n + I n + I (n + I)(n + 2) 

();[l- a (n-2r+I)][I_ a (n-2s+1)] 
2 (n + I) 2 (n + 1) 

= ~();[(n-2s+1) _ 2r(n-2s) _ (n-2r+l)(n-2s+1)] 
4 n + 1 (n + 1)(n + 2) (n + 1)2 

_ r(n - s + l)a 2(); 

(n+l)2(n+2) 
(2.5.15) 

It can be observed from (2.5.15) that the concomitants are positively correlated and 

the covariance decreases as rand s pull apart. 

2.5.1 Estimation of the Parameters (}2 and a 

We point out a possible use of the theory of concomitants developed in the 

previous sections to inference problems relating to the parameters 82 and a. It may 

be noted that the parameter 8 I is directly linked to the X-values and therefore is not 

an object of estimation using concomitants which are based on the Y-values. It is 

assumed that the ordering on X (not necessarily on the basis of the numerical values 

of X's) is known to ascertain the concomitants Y[r:nj. 

The variance of Y[r:nj follows from (2.5.10) as 

V(Y[r:nj) = (};[1- a(n-2r+l) _ a 2 (n-2r+l)2] 
2(n+l) (n+I)24 

(2.5.16) 
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so that E [Tr] =(h (2.5.17) 

V(T.)=e2[.!._(n-2r+1)2 a? r 2a? J r~n+1 
r 2 2 + 2 ' 

2 8(n+1) 2(n+l) (n+2) 2 

(2.5.18) 

where Tr is the rth quasi-midrange defined by 

Tr= Y:z [(Y[r:n)+ Y[n-r+1:n))). (2.5.19) 

Thus all quasi-midranges are unbiased estimators of82. 

However 

V(Tr) _ V(Tr_l ) = e~a2 {n - 2r + 2 + 2r -1 } > 0 
(n+ 1)2 2 2(n+ 1) 

(2.5.20) 

for every r = 1, 2, ... and hence V(Tr) is an increasing function of r for r > n + 1 . Thus 
2 

among the unbiased estimators Tr , r = 1, 2, ... , minimum variance is attained by 

1( ) T. =- Y. +y. 
1 2 [l:n] [n:n] 

(2.5.21) 

and the smallest variance is 

(2.5.22) 

The information required to unbiasedly estimate 82 is thus only the Y-values 

associated with the maximum and minimum of the X's. By comparison, the sample 

mean of Y is more efficient than TI , but the former utilises the entire sample values. 

U · v T (1 a(n -l)J d Y T ( a(n -l)J b . d b b' . smg 1 [1:n) = I - an [n:n) = I 1 + 0 tame y su stltutmg 
2(n+1) 2(n+1) 

the unbiased estimate TI of 82, 
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we get 
n -1 

Y1n:nl- Y iI :nl = a--8,. 
n+ 1 -

Hence we obtain a quick estimate of a. as 

A 

a= 

where, 

2(n + 1) T 
n-I 2 

-1 

T > n-\ 
2 - 2("+\) 

\-" < T "-I 
2("+\) 2 < 2("+\) 

T < \-" 
2 - 2(n+\) 

y -y 
T = [n: n] [1: n] 

2 Y +y 
[n : n] [1: n] 

40 

(2.5.23) 

(2.5.24) 

Another result concerning concomitants, that is not directly related to the estimation 

problem, but will be of interest is that the distribution of the ratio of concomitants 

Ur.s = Ylr:n]/ Yls:n] . It is shown in the following Theorem that the distribution of Ur.s 

is independent of 82. 

Theorem 2.5.1 

The density function of Ur.s is 

(2.5.25) 

where 

C =1_2a(n-r-S+I)+2a 2 (n-2S+I_ 2r(n-2s) J 
1 (n + I) n + 1 (n + l)(n + 2) 
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C =an-2r+l_a2(n-2S+I_ 2r(n-2s) J 
2 n+1 n+l (n+l)(n+2) 

and 

C =an-2s+1_a2(n-2s+1_ 2r(n-2s) J. 
3 n + 1 n + 1 (n + I)(n + 2) 

Proof 

Introducing the transformation, 

and 

V=Y[s:nJ in (2.5.12) we get 

f(u,v) = 

v (n - 2r + 1) uv 
-2 exp{-(1 +u)v/ 82 }[1 + a(2exp- (-) -I) + 
82 n+ 1 82 

(n- 2s + 1) a(2exp(v)-I) 
(n + 1) 82 

+a2 {(n - 2s + I) 2r(n - 2s) }{2exp-(uv)-1}{2exp- (~) -I}] 
n+l (n+I)(n+2) 82 82 

(2.5.26) 

Integrating out v, 
co 

f(u) = J f(u, v)dv 
o 

= 1 +(n-2r+l)a{ 2 l}+ 
(1 +U)2 n + 1 (1 + 2U)2 (1 +U)2 

(n - 2s + l)a {2 I} + 
n+1 (2+U)2 (1+U)2 

{(n-2s+I) 2r(n-2s) }2a2 { 1 1 1 
n+1 (n+l)(n+2) (1+U)2 (l+2U)2 - (2+U)2}] 

(2.5.27) 
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2.6 Distribution of Concomitants from Morgenstern type Uniform distribution 

Another member of the family discussed in (2.1.1) is the bivariate uniform 

distribution (see Mardia (1970)) specified by the distribution function 

o <y < ~. (2.6.1) 

The distribution function and density function of Y[r:n[ follows from (2.2.3) and 

(2.2.4) respectively as 

F ()=L[I+(n-2r+l)a(I_L)]. 0<y<82 
Y I rn] y 8 n + 1 8' 

2 2 

(2.6.2) 

and 

f () = _I [I + (n - 2r + 1) a(l- 2y )]. 0 < <82. 
ft'"1 y 8 n + 1 8' Y 

2 2 

(2.6.3) 

The moments ofY[r:nj are obtained as 

(k) = °I2 
k _I [1+ (n-2r+l) a(l- 2Y)]d 

,ulrn] y 8 1 8 Y 
o 2 n + 2 

k 

= ~ + a (n - 2r + I) (8; _ 28; ) 
k+l n+1 k+1 k+2 

= 8; [1- a(n-2r+l)k], k= 1,2, ... 
k+1 (n+I)(k+2) 

(2.6.4) 

see, Scaria and Nair (2003). 

The means and variances of the concomitants can be evaluated from (2.6.4). The 

mean ofY[r:nl, 

E[Y. ] =~{I_ a(n-2r+I)} 
[r.nj 2 3(n + I) (2.6.5) 
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with variance 

V[Y[r:nj] = E[II;.n)] - E[lIrn)]2 

= B~ [1- (n-2r+l)a]_[B2 (1- (n-2r+l)a)]2 
3 (n + 1)2 2 3(n + 1) 

= B ~ [1 _ a 2 (n - 2r + 1) 2 ]. 

12 3(n+l)2 
(2.6.6) 

The joint cumulative distribution function of (Y[r:n], Y[s:nj) follows from (2.4.3) and is 

2 a(n - 2r + I) YI 
Fjr . .tn)(YI>Y2)=YIY2 IB2{1+ n+l (l-e)+a 

2 

(n-2s+I)(1_Y2)+a2 [(n-2S+1) _ 2r(n-2s) ](1- 11) 
n + 1 B2 n + 1 (n + I)(n + 2) (}2 

(1- 2:2.)} 0 < YI, Y2 < 82 . (2.6.7) 
B2 

The joint probability density function corresponding to (2.6.7) is 

+a(n-2s+1)(1_2 Y2 )+ a 2[(n-2S+1) _ 2r(n-2s) ] 
n+l B2 n+l (n+l)(n+2) 

(2.6.8) 

The product moments E(II~.n)lI;n)' denoted by !'{;:';~)' 1, m > 0, are derived from 

(2.6.8) 

(I,m) _ 
!'[r,sn) -

B~+m 1(/ + 1)(m + 1) + a (n - 2r + I) {B~ 1/+ 1- 2B~ 1/+ 2}O; I(m + 1) + 
n+1 

a (n-2s+l) {Bm l(m+l)-20m l(m+2)}~ 
n+1 2 2 (/+1) 

+a2{(n-2s+l) _ 2r(n-2s) }[ 0; _ 2B; ][~_ 2B~ ] 
n+l (n+l)(n+2) (m+l) (m+2) (/+1) (/+2) 
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= e~+m [1_a(n-2r+l).l_a(n-2s+1).m+ 
(l+l)(m+l) (n+l)(/+2) (n+I)(m+2) 

(2.6.9) 

a 2 lm {n-2s+ 1_ 2r(n-2s) }] 
(l + 2)( m + 2) n + 1 (n + 1)( n + 2) 

In particular, 

E[Y. Y . ] =e~ [1- 2a(n-r-s+l) +~{(n-2s+1) _ 2r(n-2s) }]. 
jr.nj js.nj 4 3 9 n + 1 (n + 1)(n + 2) 

(2.6.10) 

Covariance between Yjr:nj and Yjs:nj follows from (2.6.5) and (2.6.10) 

=e~ [1- 2a(n-r-s+l) +~{(n-2s+1) _ 2r(n-2s) }]_ 
4 3 9 n + 1 (n + l)(n + 2) 

e~ [1- a(n-2r+l)][I_ a(n-2s+1)] 
4 3(n + 1) 3(n + 1) 

a 2e;r(n-s+l) - -
9(n+l)2(n+2) . 

(2.6.11) 

It follows from (2.6.11) that the concomitants are positively correlated and the 

covariance between the concomitants Yjr:nj and Yjs:njdecreases as rand s pull apart. 

From (2.6.5) we get E [Tr] = 82, 

where 

th . n+l 
Tr=Yjr:nj+Yjs:nj ,the r quasI range, r = 1,2, ... , [-2-] (2.6.12) 

Thus all Tr are unbiased for 82 and variance ofTr, 

e; a 2 4r2 
=--[1- ,{(n-2r+I)2- }]. (2.6.13) 

6 3(n+I)- (n+2) 

Among the unbiased estimators Tr, the minimum variance IS attained by 

T, = YJ1:nl + Yjn:nj.' 
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The smallest variance, 

e~ a 2 ,2 4 
V(TJ)=-[1- {(n-I) - }] 

6 3(n+l)2 (n+2) 
(2.6.14) 

The information required to unbiasedly estimating 82 is thus only the Y -values 

paired with the maximum and minimum of the X-values. By comparison, the 

efficient estimator n + I Y n:n is more efficient than T \, but the former utilizes the 
n 

entire sample values. 

a(n -1) 
Using Y[I:n]=T\[1-· ] and 

3(n + 1) 

, a(n -1) 
\ [11:111 ~ T I [1 +. ] obtained by substituting the estimate of 82 we obtain a quick 

3(n + 1) 

estimate of a as 

a= 

where, 

3(/1 + I) R 
n -I 1 

-1 

if 

R > n-I 
1 - 3(n+l) 

I-n R n-I 
3(n+l) < '1 < 3(n+l) 

R <-.!::.L 
1 - j(n+l) 

(2.6.15) 

(2.6.16) 

The correlation coefficient of Morgenstern type uniform distribution is p = a / 3 . 

An efficient estimator of p based on concomitants is suggested by 

Tsukibayashi and is given in David and Nagaraja (1998). If X and Y have the same 

marginal distribution form then 

(2.6,17) 
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where 

Hence an efficient estimate of a is 

a 

A 1 
p?-

3 
3pA 1 A 1 

--<p<-
3 3 

A 1 
-1 P ~-

3 

_ 1 k 

l[knJ = - L l[i.nJ 
k i=1 

_ 1 k 

Ykn = - LY,.n . 
k i=1 

46 

(2.6.18) 

As in the exponential case all suggested estimators can be calculated even if only 

ranks of X's are available. 

2.7 Concomitants from Morgenstern type Bivariate Logistic Distribution 

Logistic distribution has many applications in life sciences and social 

sciences (see Balakrishnan (1992)). Durling (1969) has developed a 'Bivariate log it' 

method of analysis of bivariate quantal response data based on the Gumbel' s (1961) 

type 11 logistic distribution which is specified by the distribution function 

Fx.Y(x,y) = 

[ [X-J1I:l [ [Y-J1oJl I + exp- --;~-- 1 + exp- 0' 2 -

(2.7.1) 

-00 < x, y <00; -00 < Ill, 1-12 < 00; crI, cr2 > 0 
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The distribution function ofY[r:nl follows from (2.2.3) as 

exp- (1- Ji.2 ) 

FY[r:n](Y)= 1 [1+a(n-2r+l) 0"2] 

[1 + exp- (Y - Ji.2 )] (n + 1) [1 + exp- U~ - Ji.~)] 
0"2 0"2 

- 00 <y< 00; - 00 < Ji.2 < 00; 0" 2 > 0 . 

For the Logistic distribution 

and we note that 

exp- (Y - Ji.2 ) 

h(y)= __ 1 _______ 0"~2 __ _ 

0" 2 [1 + exp- (Y - Ji.2 )]2 
0'2 

a 2f(Y) = F(y)[I- F(y)] 

a 2 f'(y) = f(y)[l- 2F(y)] 

Hence (2.7.2) takes the form 

(n- 2r + 1) 
Fy, (y) = Fy (y) + aa2 f(y). 

(".( n + 1 

It follows from (2.7.4) that the density function 

f () = .f (y)[1 + a (n - 2r + 1) (1- 2F (y))] 
l(,-] Y j y n + 1 y 

I n - 2r + 1 -a------
n + 1 

-00 < y < 00, -00 < 112 < 00, 0"2 > 0 
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(2.7.2) 

(2.7.3) 

(2.7.4) 

(2.7.5) 
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For the logistic distribution, the moment generating function My (t) satisfies the 

relation 

Hence from (2.3.5) we get 

(n - 2r + I) 
M\r:nl(t) = My (t)[I-ata 2 ] 

n + 1 

= r(1- t)r(1 + t)[l-a ta 2 (n - 2r + I)]. 
n+ 1 

It follows directly from (2.7.6) that the kth moment ofY[r:nj as 

(k) _ (k) _ k (n - 2r + I) (k-1) k = 1 2 
Ji[ rn [ - Ji aa 2 Ji , , ... 

n+1 

It also from (2.3.1) that 

(k) _ 
Ji[rn[ -

(k) a n - 2r + 1 [(k) (k)] Ji + - Ji 12 - Ji 22 . 
2 n+ 1 

Using the recurrence relation, Shaw (1970), 

I/(k) _ I/(k) = -2k ,.,. I/(k-l) 
r1:2 r2:2 v 2 r 

we get 

(k) _ (k) _ k (n - 2r + I) (k-1) 
Ji[rn[ - Ji aa 2 Ji. 

n+1 

Thus (2.7.9) agrees with (2.7.7). 

The mean of Y[r:nj is 

and 

E[Y[r:nj] = 1l2-CXcr2 ....:...(n_-_2r_+----'--I) 
(n + I) 

2 (2) (1) 2 Jr2 2 (n-2r+l) 
1/. = 1/ - aa 1/ = 1/ + - a - 2a 1/ 
r[r.n[ r 2r r2 3 2 r2 (n + I) 

(2.7.6) 

(2.7.7) 

(2.7.8) 

(2.7.9) 

(2.7.10) 

(2.7.11) 
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Variance ofY[r:n], 

V (Y ) = 2 [~_ 2 (n - 2r + 1)2 ) 
[r:n] a 2 a 2' 

3 (n + 1) 
(2.7.12) 

The following recurrence relations immediately follows from (2.7.9). 

Relation 2.7.1 

For the bivariate population with pdf as in (2.7.2) we have the relation 

(k+l) = (k+I) _ k f3 2 (k-I) _ f3 (k) 
,u[rn],u (k + 1) l,u l,u[rn] 

where 

f3 = (k 1)(n-2r+1) 
I aa, + . 

- (n + 1) 
(2.7.13) 

Proof 

From (2.7.9) 

(k+l) _ (k+l) _ (k 1) (n - 2r + 1) (k) 
~~] -,u a + ~ ,u 

. (n + 1) 

_ (k+l) (k 1) (n - 2r + 1) [(k) k (n - 2r + 1) (k-I)] 
- ,u - a + a 2 ,u[rn] + aa 2 ,u 

(n + 1)' (n + I) 

= 1/(k+I) _ k f32 I/(k-I) _ f3 I/(k) 
r (k + 1) I r Ir[rn] . 

Relation 2.7.2 

(2.7.14) 

Proof 

From (2.7.9) 
(k) _ (k) _ (-k) (k_I)[(n - 2r + 1) _ (n -1)] 

,u[r:n] ,u[ln] - aa 2,u 
n+l n+l 

_ 2k (r - 1) (k-I) - aa2 -- ,u 
n+1 
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Hence (n+l)[ lI(k) - lI(k)] = 2k(r -1)aa lI(k-I) 
r[r:nJ r[J:nJ 2r 

Relation 2.7.3 

From (2.7.9) 

Hence 

( + 1)[ (k) _ (k) ] 2 k (k-l) - 0 n n f-L[r:n] f-L[rn-l] + r aa 2f-L -. 

k (k-l) (-2r) = aa2 f-L 
n(n + 1) 

( 1 )[ (k) (k)] 2 k (k-l) - 0 n n+ f-L[rn] - f-L[r:n-l] + r aa 2f-L -. 

50 

(2.7.15) 

In general we replace E[Y\:n)] by E[h(Y[r:n)] then the above recurrence 

relations are all satisfied, provided E[h(Y[r:n)] exists. 

The joint distribution function of Y[r:n) and Y[s:nl (r < s) follows from (2.4.3) 

and is 

[1+ a n - 2r + 1 
n+ 1 

exp- (y, ~,,u, J 

1 + exp- (y, ~,,u, J 

a 2{n-2s+1_ 2r(n-2s) } 
n + 1 (n + l)(n + 2) 

n-2s+1 
+a---

n+l 

exp- (y, ~,,u, J 

1 + exp- (y, ;,,u, J 

(2.7.16) 
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Using a 2/(y) = F(y)[l- F(y)] in (2.7.16) it reduces to 

The joint probability function follows from (2.4.5) 

[l-a n- 2r + 1 
n+ 1 

n- 2s+ 1 
-a---

n+l 

+a 2 {n-2s+1_ 2r(n-2s) } 
n+l (n+l)(n+2) 

1- exp- [y, ::' J 

l+exp-[Y,::, J 

-00 < YI,Y2 < 00 ; -00 < Jl2 < 00 ; 02> o. 
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(2.7.17) 

(2.7.18) 

Using J11(~) - J1i~) = -2ka 2J1(k-l) in the formula (2.4.6) for the product moments, 
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we get 11 (I,m) = 11 (I) f-l (m) -
r[r, •. nj r 

I (n - 2r + 1) (I-I) (m) (n - 2s + 1) (m-I) (I) 
au 2 f-l f-l - au 2 m f-l f-l 

n+l n+l 
(2.7.19) 

( ) 2/ {(n-2s+1) 2r(n-2s)} (I-I) (m-I) 
+ au 2 m - f-l f-l 

(n + 1) (n + 1)(n + 2) 

In particular for I = 1 and m = 1 

2 (n-r-s+l) 2 2{(n-2s+1) 2r(n-2s)} 
E[Y[r:nlY[s:nl] = f-l2 - 2au 2f-l2 + a u 2 - . 

(n + 1) (n + 1) (n + 1)(n + 2) 

(2.7.20) 

Using (2.7.10) and (2.7.20) 

2 (n-r-s+l) 22{(n-2s+1) 2r(n-2s)} 
f-l - 2au f-l + a u - -

2 2 2 (n + 1) 2 (n + 1) (n + 1)(n + 2) 

[ (n - 2r + 1) ] [ (n - 2s + 1) ] 
!l2-CXcr2 !l2-CXcr2 -'-----"-

(n + 1) (n + 1) 

= a 2u 2[(n - 2s + 1) 2r(n - 2s) _ (n - 2r + 1)(n - 2s + 1)] 
2 (n+1) (n+l)(n+2) (n+l)2 

=a2u;[(n-2s+1) {1- (n-2r+l)}_ 2r(n-2s) }] 
"n+1 (n+l) (n+l)(n+2) 

4r(n-s+l) 2 2 - a u 
- (n+l)2(n+2) 2' 

(2.7.21) 

As in the bivariate exponential case, the quasi mid ranges, 

T = Yrr:n] + Yrn .. r+l] 

r 2 

are all unbiased for the location parameter f-l2 .Among all the unbiased estimators 

Tr, TJ={ YrLnJ + YrnnJ }/2 has the least variance. 
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The smallest variance is 

(2.7.22) 

Thus the information required to estimate the location parameter f.J 2 is only the 

y- values associated with the maximum and minimum of the X's. 

2.8 Concomitants from Morgenstern type Bivariate Gamma distribution 

A Morgenstern type bivariate gamma distribution is constructed by 

D'Este (1981) and is specified by the cumulative distribution function 

Fx r (x,y) = P(a,x)P(,B,y)[1 + A(1- P(a,x»(1- P(,B,y»]; 0 < x, y <00 

(2.8.1) 

where P( a, x) is the incomplete gamma function. 

The joint probability density function of (X, Y) is 

ix.r (x,y) = [f(a)f(,B)rl xa - 1y.8-1 exp- (x + y) 

[1 + A(1- 2P(a, x»(1- 2P(,B,y»] 

0< x, y <00. (2.8.2) 

The distribution function and probability density function of Y 1r:nl follows from 

(2.2.3) and (2.2.4) as 

(n - 2r + I) 
F~ (y) = P(,B,y)[1 + A(1- P(,B, y»]; O<y < 00 

I"·) n + 1 
(2.8.3) 

and 

if, (Y) = _1_exp( - y)y.8-1 [1 + (n - 2r + 1) A(1- 2P(,B,y»]; 0 < y < 00. (2.8.4) 
I'·) re,B) n + 1 

The moments follows from (2.3.1) 

For k = 1,2, ... 

(1:) _ (k) A n - 2r + 1 [ (k). _ (k).] 
f.J, rn I - f.J + f.J 12 f.J 2.2 

2 n+ 1 
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where, 

Jl (k) = r(k + fJ) / refJ) . (2.8.5) 

Since 1-2F = 2(l-F)-I, for any distribution 

(k) (k) 
Jl1:2 - Jl2:2 = lI(k) _ lI(k) 

2 r"l:2 r· (2.8.6) 

Then (2.8.5) becomes 

(k) = rek + fJ) + (n - 2r + 1) l( (k) _ r(k + fJ» 
Jl[rnJ refJ) n + 1 Jl1:2 refJ) 

= r(k+fJ)[I_l (n-2r+l)]+ (n-2r+l) 1 (k) 
r(fJ) (n + 1) (n + 1) Jlu. 

(2.8.7) 

Gupta «(1960), (1962» has tabulated the values of Jll(2for k =1, 2,3 and 4 for 

sample sizes up to 15 when ~ = 1 (1)5. Breiter and Krishnaiah (1968) have provided 

the values of Jll(~) for k=I,2,3 and 4 for sample sizes up to 9 when ~ = 0.5(1) 10.5. 

where, 

2 (J-l 

If~ is an integer Jll(~) = --La, (fJ,l)rek + fJ +S)2-(k+(J+s) 
r(fJ) $=0 

(2.8.8) 

1 
a. (fJ,l) = res + 1) s = 0,1,2, ... ~-1, see Balakrishnan and Cochen (1991). 

Thus if ~ is an integer 

(k) = rek + fJ) [1- (n - 2r + 1) 1] + (n - 2r + 1) 1_2_~ r(k + fJ + s) (289) 
,u[rnJ refJ) n + 1 n + 1 refJ) ~ res + 1)2(k+.8+s)· .. 

Using (2.8.9) we can tabulate the values of the means and variances of l[r.nJ' 

r = 1,2, ... n for various values of n, A. and ~(integer). 
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The joint cumulative distribution function of (Y[r:n),Y[s:n) ( r <s) follows 

from, (2.4.3) and is given by 

A (n - 2s + 1) (1- P(f3 » + 
(n + 1) 'Y2 

{ (n - 2s + 1) _ 2r(n - 2s) }A2 (1- P(f3 »(1- P(f3 »] 
(n+l) (n+l)(n+2) 'YJ 'Y2 

(2.8.10) 

The joint probability density function is 

[1 + ,.1,(1- 2P(f3 » (n - 2r + 1) + A (n - 2s + I) (1- 2P(f3 » + 
'YJ (n+l) (n+l) 'Y2 

{ (n-2s+1) _ 2r(n-2s) }A2 (1-2P(f3 »(1-2P(f3 »] 
(n+l) (n+I)(n+2) 'YJ 'Y2 

(2.8.11) 

The product moments ,u(;:;~l are obtained directly from (2.8.11) as ,u(;:;~} 

(n-2s+1) 1 (/)[ (m) (m)] ~2{(n-2s+l) 2r(n-2s)} 
/LJL ,u . - ,u + /L - ---'---~ 

(n + 1) 1.2 (n + 1) (n + l)(n + 2) 

(2.8.12) 
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In particular 

=fJ 2 +(n-2r+l)A,f3[ . _fJ]+(n-2s+1)A,f3[ . -fJ]+ 
(n+l) J.i12 (n+l) J.i12 

(2.8.13) 

A,2{(n-2s+1) _ 2r(n-2s) }[J.i12 -fJ ]2 
(n + 1) (n + 1)(n + 2) 

From (2.8.7) and (2.8.13), 

=13 2 + (n-2r+l) A,f3[ . -13]+ (n-2s+1) A,f3[ . -13] 
(n + 1) J.iL2 (n + 1) J.i1.2 

+ ,1,2 {en - 2s + 1) _ 2r(n - 2s) }[J.i _ 13 ]2 _ 
(n + 1) (n + 1)(n + 2) L2 

[13(1-,1, (n-2r+l»+ (n-2r+l) A .] 
(n + 1) (n + 1) f..lL2 

[13(1- A (n - 2s + 1» + (n - 2s + 1) A .] 
(n+l) (n+l) f..lL2 

=A2(f..l -13 )2{(n-2s+1)(1_ (n-2r+l»_ 2r(n-2s) } 
12 (n + 1) (n + 1) (n + 1)(n + 2) 

(2.8.14) 

Thus covariance between the rth and sth concomitants is positively correlated 

and it decreases as rand s pull apart. 



Chapter 3 

DISTRIBUTION OF THE MAXIMUM OF CONCOMITANTS 

OF SELECTED ORDER STATISTICS FROM THE 

MORGENSTERN FAMILY OF DISTRIBUTIONS 

3.1 Introduction 

As described earlier, the concomitants have found a wide variety of 

applications in many areas such as selection problems, prediction analysis, 

double sampling plans, ocean engineering and inference problems. The most 

important use of concomitants arise in selection problems as described in Yeo and 

David (I984) when k «n) individuals are chosen on the basis of their X-values 

where the corresponding Y - values are of primary interest. For example X could be 

the score in a screening test and Y the score obtained after a further training and a 

second test. Then Vk,n = max(Y[n-k+l:n) ... , Y[n:n), k = 1,2, ... , n represents the score 

of the best performer in the second test. The ratio ek,n = E[Vk,n]IE[Yn:n] which 

clearly increases to 1 with k, is a measure of effectiveness of the screening 

procedure. One may wish to choose k to make this ratio sufficiently close to 1. 

Feinberg (1991) and Feinberg and Huber (1996) have investigated 

some properties of Vk,n in a study of cutoff rules under imperfect information. 

Feinberg (1991) used simulation to examine the behavior of E (Vk,n) for selected 

values of n assuming the sample is drawn from a bivariate normal distribution. 
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Motivated by Feinberg's work, Nagaraja and David (1994) investigated the finite 

sample and asymptotic properties of Vk,n for an arbitrary absolutely continuous 

bivariate c.d.fF. They have established the following important results concerning 

the finite and asymptotic distribution OfVk,n . 

The finite sample cumulative distribution function of Vk,n is derived using 

symmetry arguments . They have shown that 

h,n(Y) = P[Vk,n:S; y] = P[l(n-k+lnl :s; y, .. J[nnl :s; y] 

00 

= f [Fy~x (y I x)t iXn-b (x)dx (3.1.1) 
-00 

where 

F~lx (Ylx) = P[Y:s;yl X>x] 

and 

in-kn (x) is the pdf of X n-k:n. 

The asymptotic distribution of V k,n in the extreme case can be given in the 

following result. 

Lemma 3.1.1 

If Von Mises conditions are satisfied, there exists constants ao,bn > 0 such 

that the p.d.f of (Xn-i+l:n-an)/bn converges to gi, the p.d.f of Wi,the ith lower record 

value from the c.d.fG, for any fixed i. Further, the joint p.d.fofWI,W2°o.Wk+1 and 

the marginal p.d.f OfWk+1 are given respectively by 

and 

() [-logG(w)t ( ) 
gk+! W = g w 

k! 
(3.1.2) 
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where 

G = G], G2 or G3 , see page 10. 

Result 3.1.1 

Suppose the conditions of Lemma 3.1.1 hold and assume there exist 

constants An and Bn > ° such that 

Then as as n ~ 00 

00 

Fk,n(An+BnY)~ j[H(Ylx)tgk+l(x)dx (3.1.3) 
-00 

Now suppose the joint distribution of (X, Y) IS such that as 

X~ ~1 (1), F2 (y I x) ~ H(y). Where ~l (p) the pth quantile of X. 

Then (3.1.1) holds with H(ylx) = H(y) and An= 0, Bn = 1 then the lemma follows. 

Lemma 3.1.2 

If, for some y, 

then 

(3.1.4) 

If (3.1.4) holds and the appropriate Von Mises condition hold for F], then 

as n~ 00 

(3.1.5) 

Thus ifH is a c.d.fthen Vk,n~ V. where V behaves like the maximum of a 

random sample of size k from the c.d.fH . 

The asymptotic distribution of Vk,n In the quantile case IS given In 

the following result. 
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Result 3.1.2 

Assume that fJ(xl) > 0, where Xl =~(q), with q = 1-p . For constants ~ and 

Bk >0 free of x, and for fixed y define 

(3.1.6) 

Assume that, as n ~ 00 , for all u 

(3.1.7) 

Using these basic results the present chapter deals with the distribution 

theory of Vk.n for the Morgenstern family of bivariate distributions and obtain 

certain characteristics that could be useful in selection problems. The importance 

of this family discussed in Chapter 2 arises from the fact that it enables 

construction of bivariate distributions with specified marginals. When prior 

information is available in the form of marginal distributions, we get a class of 

distributions indexed by the parameter, from which a suitable member that is 

appropriate to the data could be found. 

3.2 Distribution of Vk ,,, 

The cumulative distribution function (cdt) of Vk,n follows from (3.1.1) and is 

00 k 

Fk.n(Y) = P[Vk,n ~Y] = J[ Fyjx (ylx)] /xn - kn (x) dx 
-00 

where 

Fy~x (Ylx) = P[Y~YI X>x] 

and 

Ix (x) = 1 [!\y(x)r-k- I [l-Fx(x)t fx(x). 
n-<n B(n-k,k+1) 

(3.2.1) 
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For the Morgenstem family we have 

co 

fFy,x(Y I x)fx(x)dx 
F~lx (Ylx) = -,,-x --00 ---­

ffx(x)dx 
x 

00 
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= [fFy (y){l + a(1- Fy (y))(1- 2Fx(x))}fx (x)dx]/(l- Fx (x)) 

and hence 

Fy (y){(1- Fx(x)) - a(l- Fy(y))(I- Fx (x))Fx (x)} 

1- Fx(x) 

=Fy(y) [1-aFx(x)(I-Fr{Y))] 

00 

Fk,nCy) = f [Fy(y){I-aFx(x)(1-Fr{Y)}t fXn_tn (x) dx 
-00 

(3.2.2) 

= J [Fy(y){ I-a Fx(x)(1-Fr{Y))}]k 1 [Fx(x)r-k-1 [I-Fx(x)t fx(x) dx 
-00 B(n - k,k + 1) 

Using binomial expansion and simplifying we get 

Fk.n(Y) = [Fy (y)]'" ± (-a)1 (") B(n-k+t, k+ 1) [I-Fy(y)f . (3.2.3) 
B(n-k,k+l) 1=0 1 

It follows from (3.2.3) that the probability density function of Vk.n is 

/k,n(y) = [Fy{y)t l h(Y) [k+ ± (-a)1 C) B(n - k + I,k + 1) 
1=1 1 B(n-k,k+I) 

[I-Fy(y)tl {k-(k+t)Fy(y)}] 

1 ,.. 1 B(n - k + I,k + 1) 
~ f,Jy)+ B(n _ k, k + 1) ~ (-a) C>:-') [jkk .. -,(y)j"",,.,(r)] (3.2.4) 
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where /r:.ly) is the probability density function of Yr:s. The moments of Vk.n are 

derived from (3.2.4) as 

Fors= 1,2 ... 

where 

1 f.J(S) =E[ v," ] = f.J(S) + 
k,n k,n kk B(n _ k,k + 1) 

k B(n-k+t,k+l) ( (8) (8)) L (-a)1 (k+kl - 1) f.Jk:k+t-l - f.Jk+l:k+1 
1=1 

f.J~~J=E[Y/i]; s= 1,2, ... , k= 1,2, ... ,n. 

The distribution function (3.2.2) can be written as 

(3.2.5) 

Fk.n(Y) = F/(y) f(-I)1 C) (n-k)(n-k+l) ... (n-k+t-l) al[l-Fy{y)r 
1=0 1 (n + l)(n + 2) ... (n + t) 

After using the reduction formula for gamma functions, 

at [1-Fy{y)t 

As n ~OO, keeping k fixed, we find that the asymptotic distribution of Vk,n has 

distribution function 

Fk(Y) = F/ (y) f(-I)t C) d [1-Fy{y)t 
1=0 1 

= F/ (y)[I- a {l-Fy(y)}t. (3.2.6) 

The density function corresponding to (3.2.6) becomes 

i~) = kF;-I(y) iJy) [1- a {1-Fy(y)}tl [1- a {1-2Fy{y)}]. (3.2.7) 

(3.2.7) may be represented as 
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fly) =kFtl(Y)fjy) [1- a {l-Fy(y)}t +kF/(y)fjy) a[l- a {l-Fy(y)}tl. 

_ 2[(-a/ k-I (-ar a(k-t) J 
-(k!) (2k)! fi:2k(Y) + ~(k-t)!(k+t)! [fi:k+t{y)+ (k+t+l)fk+Lk+I+I(Y)] . 

(3.2.8) 

Moments of(3.2.8) are calculated as 

(s)=E[V:']= (kl)2 -a (s) +" -a [( )k k-I ()I 

f-Lk k . (2k)! f-LUk ~ (k - t)!(k + t)! 

[ (s) + a(k - t) (s) ]] 

f-L kk+1 (k + t + 1) f-Lk+Lk+l+1 (3.2.9) 

where 

(s) - E[ Y' ]. s - 1 2 J..Lr:j - r:j' - , , .... 

3.3 Particular Cases 

In this section we specialise the results in the previous section for some 

well-known members of the family. 

3.3.1 Bivariate Exponential Distribution 

For the bivariate exponential distribution specified by (2.5.1) it follows 

from (3.2.3) that, 

y> 0, ~ > ° (3.3.1.1 ) 

An(y) = _()l [1- exp{_L}]k-1 exp{-L} [k + ±(-arC) B(n - k + t,k + 1) 
2 ()2 ()2 1=1 1 B(n-k,k+l) 

(3.3.1.2) 
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Using 
r 1 

I'r:s = rh L in (3.2.5) we get 
'=1 s - t + 1 

E[Vk.n ] = rh [± ~ __ 1_± B(n - k + I,k + 1) B(k + 1,/) (-a)'] 
'=1' k+l'=1 B(n-k,k+l) B(t+l,k-t+l) 

= rh ±~[l- (n-k),(k+1-t), (-ay] 
,=1 1 (n + l),(k + I), 

(3.3.1.3) 

where (n)x = n(n+ 1) ... (n+x-1). 

It may be noted that E[Vk.n] is an increasing function of a and depends only on rh. 

Specializing for k = n 

n 1 
E[Vn•n] = rh L -. 

'=1 t 

Also 

± ~[1- (n - k),(k + 1- t), (_a)t] 
e = E[Vk.n] = t=1 t (k + l)t(n + l)t 

k.n E[Y] n 1 . 
n:n L-

t=1 t 

(3.3.1.4) 

The gain in effectiveness due to an additional observation is decreasing function 

of k. ek.n is independent of the parameters () I and rh. More over it is an increasing 

function of a and ek.n = 1 when k = n. Minimum and maximum values of ek.n 

occurs when a = -1 and a = 1 and these values for n = 1 O,k = 1 are .2017 and .4811 

respectively. 

The asymptotic distribution of Vk.n for fixed k has distribution function 

(3.3.1.5) 

and with density function 
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Also 

fJy)~ :, [1-eX+ :,}f ex+ :'}[l-aexp{- :,}f 
[1-+eX+ :'}-l)] (3.3.1.6) 

E[V;] = (kl)2 rh. [ (_a)k ± 1 + ± (-ay 
k . (2k + 1)! 1=1 (2k -/ + 1) 1=0 (k - t)!(k + t)! 

{ 
k 1 a(k - t) k+1 1 }] 
~ (k + t -/ + 1) + (k + t + 1) ~ (k + t -/ + 2) • 

(3.3.1. 7) 

3.3.2 Bival"iate Uniform Distribution 

The distribution function of the bivariate uniform distribution is specified 

by (2.6.1). The distribution function OfVk,n follows from (3.2.3) as, 

Ft,nCy) = (L.)k 1 [±(-ay (k)B(n-k+t,k+1)(1- L J
1

];o<y<rh.. 
8 0 B(n-k,k+l) 1=0 1 82 

(3.3.2.1) 

and 

Jk.nCY)=~/[k + ±(_ay(k)B(n -k +t,k + 1)(1-LJI-I{k - (k +t)L}] (3.3.2.2) 
82 1=1 1 B(n-k,k+1) 82 82 

r 
Using Jlr:s = rh. -- in (3.2.5), we get 

s + 1 

E[Vk ]=[_k __ f(k+l)f(n+l)±(_ar f(n-k+t)f(t+1) ] rh. 
.n k+1 f(n-k) 1=1 f(k+t+2)f(n+t+1) 

(3.3.2.3) 
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Since E[Vn.n ] = E[Yn:n] = _n_ rh, we get 
n+1 

66 

(3.3.2.4) 

ek.n IS an increasing function of a and is independent of the other model 

parameters. The asymptotic distribution of Vk.n for fixed k is obtained from (3.2.6) 

given by 

(3.3.2.5) 

or 

Also 

( ) k k k-J + a 
E ~ = kl 2 -a + -a t k + t + 2 l k (k - t)(k + 1) ] 

[k] (.) rh (2k+l)! ~( ) (k+t+l)!(k-t)! 
(3.3.2.7) 

and 

( )kk k-J +a 
e = kl 2 -a + -a t k + t + 2 r 

k (k - t)(k + I) l 
k (.) (2k+I)! ~(. ) (k+t+l)!(k-t)! . 

(3.3.2.8) 

3.3.3 Bivariate Logistic Distribution 

For the Gumbel' s (1961) type II logistic distribution specified by (2. 7.1) 

Vk.n has distribution function 
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and probability density function 

1 
/k.n(Y) = B 

2 

exp( - :,J 

k + ±(_a)l(k) B(n -k +t,k + I) 
1=1 I B(n - k,k + 1) { Y} 

1 + exp - ()2 

-00 <y < 00. 

k-I 1 -() 
Using Jik:k = Eh. L - and Jik:k+t-i - Jik+i'k+t = _2 

1=1 t . k 

we get 

67 

(3.3.3.1) 

I-I 

k _ (k + t) 

l+ex+ :,} 
(3.3.3.2) 

(3.3.3.3) 

E[V~n] =Eh. [~! _ f(n + l)f(k)f(k + 1) ± (-ar f(n - k + t) ] 
1=lt f(n-k) 1=1 t f(n+t+l)f(k+t)f(k-t+l) 

(3.3.3.4) 



Distribution of maximum of concomitants of selected order statistics 68 

As in the above cases E[Vk.n] is an increasing function of a and depends only on fh. 

Specializing for k = n 

k-l 1 
E[ Vn.n]= fh L -

1:\ t 

Hence 

The asymptotic distribution of Vk.n for fixed k is 

1 _ a _ex_p--=--{ ---:-f)_~-=--}-,-
l+ex+ :,} 

k 

(3.3.3.6) 

from which 

E[Vk] = (k!)2 ~ [(_a)k~l ~ + I: _ (-~r I' {I: ~ + a (k - t) (± ~J}l 
(2k). k I:o(k t).(k+t). j:t+1J (k+t+l) j:t+il 

(3.3.3.7) 

3.4 Asymptotic Approximation 

When asymptotic values are discussed, it is pertinent to ask the question: 

How large n should be, in order that the asymptotic expressions could be 

practically useful. To answer this question we undertake a comparison of ek.n and 

ek, the asymptotic values give us a fair indication of the sample size for which the 

asymptotic results hold good. Since the theoretical expressions are too complex for 

an analytical solution, we have resorted to simulation for an approximate answer. 
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The results in Table 3.3.1 indicates that the values are sufficiently close enough 

with the results from the sample size for n = 80 onwards, with the value becoming 

still nearer for increasing values of n. Thus when the test involves more than 80 

contestants, the asymptotic distribution provides a reasonable approximation in the 

case of the uniform distribution, for various values of a and k. 

Some typical values of ek,n for sample of size n = 10,20,30 and 40 for 

various distributions are exhibited in Tables 3.3.2 to 3.3.4 for selected values of 

k and selected values a from 0.2(0.2)l.0. 

Another point of interest is the gam in efficiency due to an additional 

observation. This is measured through the difference ek+\'n - ek,n for different values 

of k. As an illustration Figure 3.3 provides a graphical representation of the gain 

for the uniform, exponential and logistic models. From the graph it could be seen 

that for values of k larger than lOin a sample of size 30, the gain is not substantial 

for a= 0.8. 

Table 3.3.5 illustrates that the selection procedure performs well in the 

bivariate uniform case. The main advantage is that in this case top 17 concomitants 

include the best individual with efficiency 0.95 for all values of a >0 and n > 80. 

In the bivariate exponential case a substantial reduction of the value of k 

(expensive measurements) is possible for a > 0.8. For example if n=lOOO, k = 100 

gives an efficiency ek,n = 0.95 for a = 1. But in the bivariate logistic case the 

selection procedure has no significant use. It needs almost 50% of the top 

concomitants to get the best individual in the selection procedure. Thus we 

conclude that the data is approximately closet to the bivariate independent case and 

the marginals are uniform the selection procedure discussed in this chapter is very 

effective and useful. 
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Table 3.3.1 

Values of ek and ek,80 for uniform distribution 

Values of ~ for unifonn dis. Values of ~80 for unifonn dis. 

a. a. 

k 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 

1 .5333 .5667 .6000 .6333 .6667 .5392 .5721 .6050 .6379 .6708 

11 .9290 .9384 .9458 .9517 .9565 .9292 .9308 .9312 .9322 .9331 

21 .9616 .9669 .9710 .9742 .9767 .9668 .9670 .9673 .9676 .9677 

31 .9737 .9774 .9802 .9824 .9841 .9810 .9811 .9812 .9813 .9814 

41 .9800 .9828 .9850 .9866 .9880 .9884 .9885 .9886 .9886 .9887 

51 .9839 .9862 .9879 .9892 .9903 .9931 .9931 .9931 .9931 .9932 

61 .9865 .9884 .9898 .9910 .9919 .9962 .9962 .9962 .9962 .9962 

71 .9884 .9900 .9913 .9922 .9930 .9984 .9984 .9985 .9985 .9985 

Table 3.3.2 

Values of ek,n for Bivariate exponential distribution 

Cl 

n k 0.2 0.4 0.6 0.8 1 

1 0.3694 0.3973 0.4252 0.4531 0.4811 

2 0.5466 0.5759 0.6059 0.6346 0.6621 

3 0.6577 0.6877 0.7162 0.7432 0.7688 

4 0.7402 0.7676 0.7934 0.8178 0.8409 

10 5 0.8047 0.8285 0.8510 0.8724 0.8927 

6 0.8572 0.8769 0.8957 0.9136 0.9307 

7 0.9012 0.9165 0.9311 0.9452 0.9587 

8 0.9388 0.9493 0.9594 0.9692 0.9788 

9 0.9714 0.9768 0.9820 0.9872 0.9922 
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1 0.3031 0.3282 0.3534 0.3785 0.4037 

2 0.4481 0.4777 0.5060 0.5330 0.5586 

3 0.5422 0.5728 0.6014 0.6282 0.6532 

4 0.6117 0.6419 0.6699 0.6960 0.7203 

5 0.6644 0.6987 0.7228 0.7479 0.7713 

6 0.7115 0.7395 0.7655 0.7895 0.8119 

7 0.7496 0.7762 0.8008 0.8238 0.8451 

8 0.7826 0.8076 0.8309 0.8525 0.8728 

9 0.8115 0.8349 0.8567 0.8770 0.8961 

10 0.8373 0.8589 0.8791 0.8980 0.9159 

20 11 0.8605 0.8802 0.8987 0.9162 0.9327 

12 0.8814 0.8993 0.9161 0.9320 0.9471 

13 0.9006 0.9165 0.9315 0.9457 0.9543 

14 0.9182 0.9320 0.9451 0.9576 0.9783 

15 0.9344 0.9461 0.9572 0.9679 0.9853 

16 0.9494 0.9589 0.9680 0.9768 0.9909 

17 0.9634 0.9705 0.9775 0.9843 0.9952 

18 0.9764 0.9813 0.9860 0.9907 0.9933 

19 0.9886 0.9910 0.9935 0.9958 0.9982 

1 0.2737 0.2971 0.3206 0.3440 0.3674 

3 0.4928 0.5291 0.5679 0.6095 0.6538 

5 0.6068 0.6456 0.6884 0.7357 0.7880 

7 0.6832 0.7212 0.7637 0.8113 0.8649 

9 0.7403 0.7760 0.8160 0.8612 0.9124 

11 0.7855 0.8182 0.8548 0.8960 0.9426 

13 0.8227 0.8521 0.8848 0.9212 0.9623 

30 15 0.8543 0.8802 0.9086 0.9401 0.9752 

17 0.8816 0.9038 0.9281 0.9546 0.9838 
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19 0.9053 0.9242 0.9442 0.9659 0.9895 

21 0.9267 0.9418 0.9579 0.9750 0.9933 

23 0.9458 0.9574 0.9696 0.9824 0.9959 

25 0.9631 0 .. 9713 0.9797 0.9885 0.9977 

27 0.9788 0.9836 0.9886 0.9936 0.9989 

29 0.9932 0.9948 0.9964 0.9980 0.9997 

1 0.2560 0.2782 0.3004 0 .. 3227 0.3449 

3 0.4613 0.4965 0.5343 0.5748 0.6182 

5 0.5686 0.6073 0.6501 0.6978 0.7508 

7 0.6408 0.6798 0.7238 0.7735 0.8303 

9 0.6949 0.7328 0.7759 0.8251 0.8819 

11 0.7379 0.7740 0.8150 0.8622 0.9168 

13 0.7735 0.8074 0.8458 0.8899 0.9409 

15 0.8037 0.8352 0.8707 0.9111 0.9578 

17 0.8299 0.8588 0.8912 0.9278 0.9697 

19 0.8530 0.8793 0.9085 0.9412 0.9782 
40 

21 0.8736 0.8972 0.9232 0.9520 0.9843 

23 0.8921 0.9130 0.9359 0.9610 0.9887 

25 0.9089 0.9272 0.9470 0.9685 0.9919 

27 0.9243 0.9400 0.9568 0.9748 0.9943 

29 0.9384 0.9515 0.9654 0.9802 0.9960 

31 0.9514 0.9620 0.9732 0.9849 0.9972 

33 0.9636 0.9717 0.9802 0.9890 0.9982 

35 0.9748 0.9805 0.9865 0.9926 0.9989 

37 0.9854 0.9888 0.9923 0.9958 0.9994 

39 0.9953 0.9964 0.9975 0.9987 0.9998 



Distribution of maximum of concomitants of selected order statistics 74 

Table 3.3.3 

Values of ek,n for bivariate uniform distribution 

a 

n k 0.2 0.4 0.6 0.8 1 

1 0.5860 0.6100 0.6400 0.6700 0.7000 

2 0.7459 0.7568 0.7661 0.7739 0.7800 

3 0.8317 0.8379 0.8477 0.8492 0.8545 

4 0.8839 0.8875 0.8909 0.8942 0.8972 

10 5 0.9189 0.9212 0.9233 0.9254 0.9273 

6 0.9443 0.9456 0.9469 0.9482 0.9494 

7 0.9633 0.9641 0.9644 0.9657 0.9664 

8 0.9782 0.9787 0.9791 0.9795 0.9799 

9 0.9908 0.9904 0.9905 0.9907 0.9909 

1 0.5567 0.5883 0.6200 0.6157 0.6883 

2 0.7140 0.7259 0.7357 0.7434 0.7491 

3 0.7954 0.8020 0.8097 0.8162 0.8225 

4 0.8451 0.8498 0.8542 0.8582 0.8619 

5 0.8784 0.8870 0.8847 0.8875 0.8903 

6 0.9024 0.9047 0.9069 0.9090 0.9109 

7 0.9205 0.9222 0.9238 0.9253 0.9268 

8 0.9346 0.9359 0.9371 0.9383 0.9399 

9 0.9460 0.9469 0.9478 0.9487 0.9496 

10 0.9553 0.9560 0.9567 0.9574 0.9581 
20 

1 1 0.9631 0.9636 0.9642 0.9647 0.9652 

12 0.9697 0.9701 0.9705 0.9709 0.9713 
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13 0.9753 0.9757 0.9760 0.9763 0.9766 

14 0.9802 0.9805 0.9807 0.9810 0.9812 

15 0.9846 0.9847 0.9849 0.9851 0.9853 

16 0.9884 0.9884 0.9886 0.9887 0.9889 

17 0.9918 0.9918 0.9918 0.9920 0.9921 

18 0.9948 0.9948 0.9949 0.9949 0.9950 

19 0.9975 0.9975 0.9976 0.9976 0.9976 

1 0.5489 0.5411 0.6133 0.6456 0.6778 

3 0.7835 0.7912 0.7983 0.8051 0.8118 

5 0.8649 0.8685 0.8718 0.8749 0.8778 

7 0.9062 0.9082 0.9100 0.9118 0.9135 

9 0.9312 0.9324 0.9336 0.9347 0.99357 

11 0.9480 0.9488 0.9495 0.9503 0.9504 

13 0.9600 0.9606 0.9611 0.9616 0.9620 

30 
15 0.9691 0.9695 0.9698 0.9702 0.9705 

17 0.9762 0.9764 0.9767 0.9769 0.9771 

19 0.9818 0.9820 0.9822 0.9823 0.9825 

21 0.9865 0.9866 0.9867 0.9868 0.9869 

23 0.9903 0.9904 0.9905 0.9905 0.9907 

25 0.9936 0.9937 0.9937 0.9937 0.9938 

27 0.9964 0.9965 0.9965 0.9965 0.9965 

29 0.9989 0.9989 0.9989 0.9989 0.9989 
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1 0.5450 0.5775 0.6100' 0.6425 0.6750 

3 0.7775 0.7854 0.7926 0.7996 0.8065 

5 0.8582 0.8619 0.8653 0.8685 0.8715 

7 0.8991 0.9012 0.9032 0.9050 0.9068 

9 0.9239 0.9253 0.9264 0.9276 0.9288 

11 0.9405 0.9414 0.9422 0.9430 0.9438 

13 0.9524 0.9530 0.9536 0.9542 0.9548 

15 0.9614 0.9618 0.9623 0.9627 0.9631 

17 0.9684 0.9687 0.9690 0.9693 0.9696 

19 0.9740 0.9742 0.9745 0.9747 0.9749 
40 

21 0.9785 0.9788 0.9790 0.9791 0.9793 

23 0.9824 0.9826 0.9827 0.9828 0.9830 

25 0.9857 0.9858 0.9859 0.9860 0.9861 

27 0.9885 0.9886 0.9886 0.9887 0.9888 

29 0.9909 0.9909 0.9910 0.9911 0.9911 

31 0.9930 0.9930 0.9931 0.9931 0.9932 

33 0.9949 0.9949 0.9949 0.9950 0.9950 

35 0.9965 0.9966 0.9966 0.9966 0.9966 

37 0.9980 0.9980 0.9981 0.9981 0.9981 

39 0.9994 0.9994 0.9994 0.9994 0.9994 
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Table 3.3.4 

Values of ek,n for Bivariate logistic distribution 

a. 

n k 0.2 0.4 0.6 0.8 1 

1 0.0578 0.1157 0.1735 0.2314 0.2892 

2 0.4036 0.4512 0.4962 0.5386 0.5784 

3 0.5737 0.6144 0.6524 0.6880 0.7211 

4 0.6853 0.7201 0.7526 0.7829 0~8114 

10 5 0.7675 0.7967 0.8240 0.8498 0.8740 

6 0.8321 0.8557 0.8779 0.8991 0.9191 

7 0.8848 0.9028 0.9199 0.9362 0.9519 

8 0.9291 0.9413 0.9530 0.9643 0.9752 

9 0.9671 0.9732 0.9793 0.9852 0.9909 

1 0.0510 0.1020 0.1530 0.2040 0.2550 

2 0.3288 0.3729 0.4143 0.4529 0.4887 

3 0.4666 0.5069 0.5440 0.5781 0.6094 

4 0.5578 0.5952 0.6295 0.6608 0.6897 

5 0.6256 0.6606 0.6925 0.7218 0.7487 

6 0.6794 0.7121 0.7419 0.7694 0.7947 

7 0.7239 0.7543 0.7822 0.8079 0.8317 

8 0.7617 0.7899 0.8159 0.8399 0.8623 

9 0.7944 0.8204 0.8445 0.8669 0.8878 

10 0.8232 0.8471 0.8693 0.8899 0.9094 

20 11 0.8489 0.8705 0.8908 0.9098 0.9277 

12 0.8720 0.8914 0.9097 0.9269 0.9431 



Distribution of maximum of concomitants of selected order statistics 78 

13 0.8929 0.9101 0.9263 0.9417 0.9563 

14 0.9121 0.9269 0.9411 0.9547 0.9674 

15 0.9296 0.9422 0.9541 0.9656 0.9767 

16 0.9458 0.9560 0.9657 0.9751 0.9842 

17 0.9609 0.9685 0.9760 0.9832 0.9903 

18 0.9748 0.9790 0.9851 0.9900 0.9948 

19 0.9878 0.9904 0.9950 0.9956 0.9980 

1 0.0472 0.0945 0.1417 0.1889 0.2361 

3 0.4207 0.4592 0.4944 0.5266 0.5560 

5 0.5645 0.5993 0.6307 0.6593 0.6853 

7 0.6539 0.6858 0.7146 0.7409 0.7649 

9 0.7184 0.7477 0.7743 0.7986 0.8209 

11 0.7687 0.7954 0.8198 0.8423 0.8629 

13 0.8097 0.8338 0.8561 0.8766 0.8957 

15 0.8442 0.8657 0.8857 0.9043 0.9217 
30 

17 0.8737 0.8927 0.9104 0.9270 0.9426 

19 0.8996 0.9158 0.9311 0.9456 0.9593 

21 0.9224 0.9359 0.9487 0.9609 0.9726 

23 0.9428 0.9534 0.9637 0.9735 0.9830 

25 0.9611 0.9689 0.9764 0.9836 0.9907 

27 0.9778 0.9825 0.9871 0.9916 0.9961 

29 0.9929 0.9945 0.9961 0.9977 0.9992 
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1 0.0447 0.0894 0.1342 0.1789 0.2236 

3 0.3932 0.4302 0.4639 0.4946 0.5226 

5 0.5277 0.5617 0.5923 0.6200 0.6451 

7 0.6117 0.6435 0.6721 0.6980 0.7215 

9 0.6725 0.7024 0.7293 0.7538 0.7761 

11 0.7200 0.7481 0.7735 0.7967 0.8179 

13 0.7589 0.7852 0.8092 0.8310 0.8511 

15 0.7916 0.8163 0.8387 0.8593 0.8784 

17 0.8199 0.8428 0.8637 0.8830 0.9010 

19 0.8447 0.8658 0.8852 0.9032 0.9200 
40 

21 0.8667 0.8860 0.9038 0.9205 0.9361 

23 0.8864 0.9039 0.9202 0.9354 0.9498 

25 0.9043 0.9199 0.9345 0.9483 0.9613 

27 0.9206 0.9343 0.9472 0.9594 0.9702 

29 0.9356 0.9472 0.9584 0.9690 0.9792 

31 0.9493 0.9590 0.9683 0.9772 0.9858 

33 0.9620 0.9697 0.9770 0.9842 0.9911 

35 0.9738 0.9794 0.9847 0.9900 0.9951 

37 0.9848 0.9882 0.9915 0.9947 0.9979 

39 0.9951 0.9962 0.9974 0.9985 0.9996 
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Table 3.3.5 

Values of k (number of expensive measurements) for ek,n = 0.95 

n 0.2 0.4 0.6 0.8 1 

um 7 7 7 7 7 

40 exp 30 28 25 20 14 

log 31 29 25 23 21 

um 15 15 15 14 14 

100 exp 73 67 59 43 25 

log 73 71 64 56 51 

um 17 17 17 17 17 

500 exp 325 290 240 170 65 

log 325 300 275 250 225 

um 17 17 17 17 17 

1000 exp 620 550 450 300 100 

log 620 570 520 470 425 

um 17 17 17 17 17 

2000 exp 1200 1050 850 550 150 

log 1200 1100 1000 900 820 



Chapter 4 

CONCOMITANTS OF RECORDS FROM 

MORGENSTERN FAMILY 

4.1 Introduction 

Let Xl, X2 ... be an infinite sequence of independent and identically 

distributed random variables having the same absolutely continuous distribution 

function F(x). An observation Xj will be called an upper record (or simply a record) 

if its value exceeds that of all previous observations. Thus Xj is a record if Xj > Xi 

for every i < j. An analogous definition deals with lower record values. The time at 

which records appear are of interest. For convenience, let us assume that Xj is 

observed at time j. Then the record time sequence {Tn, n ~ o} is defined in the 

following manner. 

To = 1 with probability one 

and for n ~ 1 

T n = min {j: Xj > X Tn-\} . 

The record value sequence {Rn} is then defined by Rn= XTn; n = 0, 1,2 ... 

Here Ra is referred to as the reference value or the trivial record. An excellent 

work on record value theory is available on Nevzorov and Balakrishnan (1998). 

A comprehensive study on record values is presented in Amold Balakrishnan 

and Nagaraja (1998). 



Concomitants of Records from Morgenstem family 82 

Even the definition of record times and record values for multivariate 

observations are open to discussion. Several competing definitions are introduced. 

Very limited progress is documented in the development of appropriate multivariate 

record theory. In this chapter our discussion:iS focus.se8n the bivariate case. 

A generalization of concomitants of order statistics in the record value theory was 

initiated by Houchens (1984). Some applications of record concomitants we refer to 

Nevzorov and Ahsanullah (2000). 

Let (Xj,Yi), i = 1, 2 ... be a sequence of i.i.d random variable from an 

absolutely continuous distribution with distribution function F(x,y) and density 

function f(x,y). Let Rn denote the nth record value in the sequence of the X's. The 

corresponding random variable Y, ie the V-value paired with the X-value Rn is 

called the nth record concomitant and will be denoted by R[n). 

The present chapter deals with the distribution theory of record concomitants 

from the Morgenstern family of bivariate distributions. We also discuss the 

distribution theory of record concomitants some important members of the family 

namely, bivariate exponential, bivariate uniform and bivariate logistic distributions. 

4.2 Distribution of nthRecord Concomitant, R[n) 

For the Morgenstern system we have 

Fx.y{x,y) = Fx(x) Fy(y) [1+0.(1- Fx(x» (1- Fy(y»], -1:::; 0.:::;1 (4.2.1) 

and 

FY]xCYlx) = Fy(y) [1+0.(1-2 Fx(x»(l- Fy(y»]. (4.2.2) 

Since (Xi, Vi), i = 1,2 ... are independent and identically distributed random variables, 

it follows that 

FRt.)IR. (y I x) = FylX(Y I x) (4.2.3) 
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see, Arnold Balakrishnan and Nagaraja (1998) p.272. We can immediately write 

the distribution function of the nth record concomitant in the form 

FRt•1 (y) = f FylX (y I X)fR. (x)dx, (4.2.4) 

where 

1 
fR (x) = fx (x)-[-log(1-Fx (x»r ,see Arnold et al. (1998). (4.2.5) 

• n! 

In the Morgenstern family 

FR. (y) = f Fy(y)[1+u(I-2Fx(x»(1-Fy(y»] fx(x)~[-log(I-Fx(x»rdx -,.1 n! 

= Fy (y) f fR. (x)dx + aFy (y)[I- Fy (y)]f[l- 2Fx (x)] 

1 
fx (x)-[-log(l- Fx (x»r dx 

n! 

The corresponding density function is 

(4.2.6) 

fF. (y) = fy (y) [1- (1- _I )a [1- 2Fy (y)]] (4.2.7) 
-,~ 2n 

Writing 1-2F as I-F-F in (4.2.7) and using the formula for the density of order 

statistics, we find 

1 
f Rt' 1 (y) = fy (y) - a(1- 2n ){[I- Fy (y)]fy (y) - Fy (y)fy (y)} 

1 
= fy (y) - a / 2(1- 2n ){2[1- Fy (y)]fy (y) - 2Fy (y)fy (y)} 

(4.2.8) 
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Equation (4.2.8) reveals that the density function of the nth record concomitant 

depends only on the marginal distribution of Y and the distribution of the order 

statistics Y 1:2 and Y2:2. Getting from (4.2.8) the kthmoment ofR[nJ • 

(4.2.9) 

where, 

J.J(k) = E(yk) 

and 

J.1~~) = E[ yr~2 ] r = 1,2. 

It follows from (4.2.8) that 

(4.2.10) 

Two interesting recurrence relations connecting the moments of record concomitants 

immediately follows from (4.2.10) as 

i n+l ) [U(k) _ U(k) ] + a[ lI(k) _ lI(k)] = 0 
rOln) rOln-I) r12 r2:2 

and (4.2.11) 

(k) _ (2 __ 1_) (k) + (k) (_1 __ 1) 
/4n) - 2n-1 /41) J.J 2n-1 

4.3 Joint Distribution of R[m) and R[n) (m<n) 

In this section, we derive the joint distribution of mth and nth record 

concomitants. Since R[m) and R[n) are conditionally independent given Rm and Rn, 

the conditional distribution function of 

(R[m),R[n)) given (Rm = XI,Rn = X2) is 

F~,"l.~"llR ... R" (YI'Y21 x1'x2) = Fnx(yl I x\)FYIX (Y21 x2) 
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~e". (Bhattacharya (1984), Lemma 3.:i).Hence the joint distribution function of 

(R[m], R[n]) is 

et) X2 

FRtmJ.RtnJ(Yl'Y2)= f fFYlx(Yllxl ) Fy1x (Y2I x2) !Rm.Rn(Xl,X2)dxldx2 (4.3.1) 
-C()-et) 

where, 

. (4.3.2) 

see, Arnold et al. (1998). 

-C()-et) 

et) et) 

a 2 [1-FrCYl)][1-FrCY2)] f[l- 2Fx (Xl )]f[1- 2Fx (X2 )]!R •. R.(Xl, x2 )dx)dx2 ' 

-co xl 

(4.3.3) 
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We have 

00 00 

f[1- 2Fx (X2 )]fRm.R. (Xl' x2)dxldx2 = f[1- 2FX (X2)] 
xI xI 

(4.3.4) 

we have e -u = 1 - F x (x2 ) and hence the integral on the RHS of (4.3.4) reduces to 
1- Fx(XI) 

Using (4.3.5) in (4.3.3) we get 

00 00 

f[1- 2Fx (Xl )]f[1- 2Fx (xz )]fR,..R. (X]> xZ)dxldx2 = 
-CIJ xI 

J[l-2Fx(XI)][([1~~:_~Xl» -1] 
-00 

1 
Ix (x)-[ -Iog(l- Fx (x»r dxl · 

n! 

(4.3.5) 
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Using the transformation U = -log [1-Fx(Xl)] we have 

00 00 

S[1- 2F:r(x l )]Sr1 - ~J~¥(XJ]fRm.Rn(XI,X2)dxldx2= 
-00 

1 ""se-3u um 1 ""se-2u um 1 du--- du- --I 2n- m- 2 I 2n- m- 1 I (2 m ) o m. 0 m. 

(4.3.6) 

Using (4.3.6) in (4.3.3) we have 

(4.3.7) 

The joint density function corresponding to (4.3.7) is 

1 
+a [1-2FY(Y2)] (- -1) 

2 n 

(4.3.8) 

The asymptotic joint distribution of (R[m), R[n) ) is evident from (4.3.8). Without 

any normalizing we have 

(4.3.9) 

It follows from (4.3.9) that the record concomitants are asymptotically independent 

for all values ofm and n (m :t:. n). 
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The product moments can be directly follows from (4.3.8). 

For 1:::; m < n; 1= 1,2 ... and k = 1,2 ... 

1 
+ a [l-2Fy(y2)] (- -1) 

2" 

(4.3.10) 

4.4 Record Concomitants from Gumbel's Bivariate Exponential distribution 

The distribution theory of concomitants from Gumbel's bivariate exponential 

distribution is discussed in chapter 2. In this section we deal with the distribution 

theory of record concomitants from this distribution. 

The Gumbel' s bivariate type 11 exponential distribution is specified by (2.5.1). 

In this case the distribution function ofR[nJ follows from (4.2.6) as 

1 
F~_I (y) = [1- exp(-y/ 8J][1 + (2n- I )aexp(-y/ 82 )]; y> 0, 82 > 0. 

(4.4.1) 

The density function ofR[nJ follows from (4.2.7) as 

1 1 
fR. (y) = -exp(-y / 8,)[1 + (- -1)a(2exp(-y / 82 ) -1)]; y> 0, 82 > 0. 

'1-1 () - 2" 
2 

(4.4.2) 
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The joint probability density function of (R[m), R[n) follows from (4.3.8) as 

fR.,R. (YI'Y') ~ ;; exp{-Y~ y, }[I +a(2~ -I{ 2exP{ ;'1 }-I)] 

1 ( {-Y2 } ) 2 1 1 1 +a(--I) 2exp - -1 +a {l----+ } 
2n () 2m 2n 2n-m-23m+l 

2 

(4.4.3) 

The moments ofR[n) is readily obtained from (4.4.2) as 

(4.4.4) 

In particular 

a 1 
f.J. =() [1--(--1)]. 
~'l 2 2 2n 

(4.4.5) 

The asymptotic mean of R[n) is 

(4.4.6) 

The variance ofR[n) follows from (4.4.4) and (4.4.5) as 

(4.4.7) 

From (4.3.10) we get 

2 all a 2 

for Ism <n E[R[m) R[n)] = () [1--(-+--2)+-
2 2 2n 2m 4 

(4.4.8) 

Hence Cov (R[m) R[n) 

(4.4.9) 
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As in the case of concomitants record concomitants are also positively correlated 

and Cov (R[mJ R[nJ) decreases as m and n pull apart. 

4.5 Record concomitants from Morgenstem type Bivariate Uniform Distribution 

The Morgenstern family is the bivariate uniform distribution specified by 

(2.6.1). The cumulative distribution function and density function of R[nJ follow 

from (4.2.6) and (4.2.7) respectively as 

y 1 Y 
~ (y) = -[1 + a(- -1)(1- -)] 
~nl (J 2" (J 

2 2 

(4.5.1) 

and 

1 1 2y 
jP. (y) = -[1 + a(- -1)(1- -)]. 

',nl (J 2" (J 
2 2 

(4.5.2) 

The moments ofR[nJ follows from (4.5.2) as 

(k) _ (J~ [1- (_1 _ 1) ale ] 
f.J~nl - k + 1 2" (k + 2) 

k = 1, 2 .. , 

(4.5.3) 

1he mean of R[nJ 

E[R[ J] = (J2 [1 + a (1 __ 1 )], 
n 2 3 2" 

(4.5.4) 

Using (4.5.3) and (4.5.4) the variance ofR[nJ , 

(4.5.5) 

The asymptotic mean and variance ofR[nJ are respectively 

E[R[.Jl = (J; [1 + (a /3)] (4.5.6) 

(4.5.7) 
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The joint density function of (R[m], R[n)) is 

() 2 YI (1 (Y2 1 ) I" (y Y ) = [1+a(1-2-) - -1) + a 1-2-) (--1 
J ~mJRt'J I. 2 2 () 2111 () 2" 

2 2 

2 1 1 I} ( YI ( Y2 + a {l----+ 1-2-) 1-2-)]. 
2111 2" 2"-111-23111+1 () () 

2 2 

(4.5.8) 

From (4.3.10) for 1 ~ m < n 

1 a 1 a 1 
E[R[m), R[n)] = 8i [1-( 6' )( r -1) -( 6') « 2n -1) 

2 

2 1 1 1 
+ a /36{1----+ }]. 

2111 2" 2"-111-23111+1 
(4.5.9) 

22 11 1 1 1 
Cov(R[m) R[n)) = a () /36[ {1-- - - + } - (1- -)(1- -)] 

, 2 2111 2" 2"-111-23111+1 2111 2" 

a 2()2 1 1 = 2 [ ___ ] 

9(2"-111) 3111+1 4 111+1 ' 
(4.5.10) 

Thus the record concomitants are positively correlated and Cov(R[m), ~n)) decreases 

as m and n pull apart. 

4.6 Record Concomitants from Gumbel's type 11 Logistic Distribution 

The joint cumulative distribution of Gumbel' s type 11 logistic distribution is 

given in (2.7.1). 

The distribution function ofR[nJ follows from (4.2.6) 

F~. (y) = 
',nl 

- 00 <y< 00; -- 00 < f.J2 < 00; (J 2 > 0 . (4.6.1) 
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For the logistic distribution we have 

O'2f(Y) = F(y)[l-F(y)] 

and 

O'2f'(y) = f(y)[l- 2F(y)] . 

Hence (4.6.1) takes the form 

1 
FR. (y) = Fy (y) + aO' 2 (- -l)fy (y) . 

',n} 2 n 

Thus the probability function ofR[nJ follows from (4.6.3) as 

1 
f ilt _} (y) = fy (y) + aO' 2 (r _l)fly (y) 

1 
= f/y)+a(2 n -1)fy(y)[1-2Fy(y)] 

-00 < y < 00, -00 < 112 < 00, 0"2 > O. 

92 

(4.6.2) 

(4.6.3) 

(4.6.4) 

Using the recurrence relation, Shaw (1970), ,ul(~) - ,u~~ = -2k O'2,u(k-l)the moments 

ofR[nJ are given by 

(4.6.5) 

In particular 

(4.6.6) 

Also for k = 2 

(2) _ 2 7r 2 2.., 1 
,uR. -,u2 +-0'2 -~a,u2O'2(--I). 

'1~ 3 2n 
(4.6.7) 
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Hence 

The joint probability density function of (RIm], R ln) ) 

1- exp- (Yl -P2 ) 

[1-a (-I - I) __ ----:-_a-=..2--:--

2" I+exp-(Y'~:') 
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(4.6.8) 

\- exp-(Y, ~:' ) 

1 +exp-(Y, ~:' ) 

1- exp- (Y' ~,I" J 
I+exp-(Y,;,I', ) 

-00 < Yl,Y2 < 00 -00 < ~2 < 00 0"2> O. (4.6.9) 

Using the relation Pl(~) - pi~ = -2k a 2P(k-l) we get the product moment of 

RIm) and R ln) as 

aa 2/(1- 21m )p(I-l) p(k) + aa 2k(1- 21n )p(k-l) p(l) 

+ (aa )2/k{1 __ 1 ___ I _ 1 } (I-I) (k-I) 
2 2m 2n 2n-m-23m+1 pp. 

(4.6.10) 
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In particular I = 1, k = 1 

2 1 1 
11 - E[ R R ] = 11 - aa 11 [- + - - 2] 
r~ml'~'1 - ',!m]',!n] r2 2 r2 2m 2 n 

+ o? a 2
2 {1- _1_ - _1 + 12 I} . 

2m 2n 2n- m- 3m+ 
(4.6.11) 

Using (4.6.11) and (4.6.6) we have 

2 2 1 1 
Cov(R[ ) R[ )) =a a [ ---] m, n 2 2n-m-23m+l 2 n2 m 

4a 2e2 1 1 = 2 [ ___ ] 

2 n- m 3 m+1 4 m+1 ' 
(4.6.12) 

As in the previous cases, the record concomitants R[m) and R[n) are positively 

correlated and the Cov(R[m),R[n)) decreases as m and n pull apart . 



Chapter 5 

DISTRIBUTION OF THE EXTREMES OF THE rth 

CONCOMITANT FROM THE MORGENSTERN FAMILY 

5.1 Introduction 

In many real life sampling situations the variable of interest from the 

experimental units can be more easily ranked than quantified. In agricultural and 

environmental studies, it is indeed possible to rank the experimental or sampling 

units without actually measuring them. In such cases ranked set sampling is highly 

beneficial for the estimation of the population mean. The procedure of ranked set 

sampling was suggested by McIntyre (1952) for improving the precision of Y as an 

estimator of the population mean. This method is applicable for situations where the 

primary variable of interest, Y, is difficult or expensive to measure, but where 

ranking in small sets is easy. The process involves selecting m samples, each of size 

m, and ordering each of the samples by eye or some relatively inexpensive means, 

without actual measurement of the individual, see David and Levine (1972), Dell 

and Clutter (1972), Stokes (1977). The smallest observation from the first sample is 

chosen for measurement, as is the second smallest observation from the second 

sample. The process continues in this way until the largest observation from the nth 

sample is measured, producing a total of n measured observations one from each 

order class. When the ranking is subject to error the ranked set sampling have 
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been effectively extended by the use of concomitants to the estimation of mean, 

Stokes (1977), variance Stokes (1980a), correlation coefficient Stokes (1980b) and 

to the situation with size biased selection of X' s Muttlak and Mc Donald (1990). 

Motivated from the ranked set sampling we use the following sampling 

method for selection of primary variable. Suppose there are two correlated variables 

Y and X, where Y is difficult to measure or to rank, see Kaiser (1983). For example 

X may represent an inexpensive rough measurement and Y corresponding refined 

more expensive measurement. By using the method of concomitants we may reduce 

the number of expensive measurements on the basis of inexpensive measurements. 

Consider a bivariate sample of size n = mk, where k is an integer. Randomly 

subdivide the sample in to k sub samples (groups) each of size m. In each sub 

sample we measured only the Y -value corresponding to the rth order statistic Xr:m. 

Then the Y - value measured in the ith sample is the rth concomitant will be denoted 

by Y[r:mJ,i i=1,2, ... k. The Y[r:mJ,i are independent random variables having the same 

marginal distribution aSY[r:mJ. 

Let Mk,[r:mJ= max[Y [r:mJ,!, Y [r:mJ,2, ... Y [r:mJ,k] 

and 

mk,[r:mJ = min[Y[r:mJ,!, Y[r:m),2, ... Y[r:m),k] 

denote the largest and smallest among the selected concomitants. Thus Mk,[r:mJ and 

mk,[r:m) are the extremes of the selected expensive measurements in the samples . In 

particular Mk,[m:m) is the largest observation of the concomitants of maximum of 

order statistics in the sub samples. It is an extremely useful statistic for the inference 

on the parameter of the expensive marginal variable Y in bivariate uniform model. It 

is a very useful statistic in selection problems where the selection is based on the 

marginal inexpensive variable. For example X be the score of a preliminary test and 

Y the score in a final test. Suppose we divide the contestants in to k groups and 
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select the top performer in the screening test. Then the ratio E[Mk,[m:mj] which 
E[Yn:n ] 

clearly increases to 1 with k, is a measure of effectiveness of the selection 

procedure. One may wish to choose the value of the number of subdivisions 

(populations), k, to make this ratio sufficiently close to 1. See also Nagaraja and 

David (1994) Yeo and David (1984) for different approaches of selection. 

The present chapter deals with the general distribution theory of Mk,[r:mJ and 

ffik,[r:mJ from the Morgenstern family of distributions and discuss some applications 

in inference, estimation of the parameter of the marginal variable y. in the 

Morgenstern type uniform distributions. We also apply the results to the selection 

problem discussed earlier. Section 5.5 is fully devoted to the distribution of the rank 

of the rth concomitant from the Morgenstern family. 

5.2 Distribution of Mk,(r:mJ 

We have discussed the distribution theory of concomitants from the 

Morgernstern family in Chapter 2. 

The cdfof[X,Y] is specified in (1.2.1). 

The cumulative distribution function ofY[r:mJ,i i=I,2,oo.k is given in (2.2.3) and is 

[ m- 2r + 1 ] 
F~ (y) = Fy(y) 1 + a [1- Fy (y)] 

(r.m).' m + 1 (5.2.1) 

and the corresponding density function 

m - 2r + 1 
f~ (y) = Iy (y)[l + (l [1- 2Fy (y)]] . (5.2.2) 

)r",).' m+ 1 

The distribution function of M k,[r:mj' denoted by Fa,[r:mj, is 

k [m - 2r + 1 ] k 0ck[r:m)(Y)= [F~. (y)] = {Fy(y) 1+ a [1-Fy(y)] } . 
• (r.m).' m + 1 (5.2.3) 
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The density function corresponding to (5.2.3) is 

!lclc;[r:mj(Y) =k 

[F. (y)]"-I[I_ (2r-m-I) a(1-F. (y»tl}; (y){I- (2r-m-I) a+2a«2r-m-I»F. (y)}. 
y (m + 1) Y Y (m + 1) m + 1 Y 

(5.2.4) 

Using binomial expansion in (5.2.4) we have 

!u;[rmj (y) = 

~(k -IJ( _ar[«2r - m -1»(1_ Fy (y»r 
1=0 t m + 1 

= ~ (k -t)l+l [-a (2r -m-I)]t{ 1". (y)[I- (2r -m-I) a] + 1". (y)2a k(2r -m-I) } 
f:t (k)1 m + 1 J kk+t m + 1 J Ic+U+t+l (k + t + I)(m + 1) 

(5.2.5) 

where (n)x = n(n+ 1) (n+2) ... (n+x-I) and t:s(Y) is the probability density function 

ofYr:s. 

The moments of Mk,[r:mJ are derived from (5.2.5). 

For s = 1,2 ... 

(S) _ E[MS ] ,u1c:1c;[r:mj - Ic.[r:mj 

_ ~(k-t)t+l[ (2r-m-l)]t{ (s) [1 (2r-m-l)] (s) ,.,~ k(2r-m-l) } 
- L... -a J.1 k:k+t - Cl + J.1 k+l:k+t+l ~ 

t=O (k)t m+l m+l (k+t+l)(m+l) 
(5.2.6) 

where 

(s) _ E[Y' ] 
J.1r:j - r:j' 

Particularly for r = m 

~(k-t)t+l[ (m-I)]I{I" ()[I (m-I) ] I" ( )2 k(m-I) } 
L... (k) -a 1 Jlclc+t Y - 1 a + JIc+U+t+l Y a (k 1)( 1)' 1=0 t m + m + + t + m + 

(5.2.7) 
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and 

(s) _ 
fJldc~m:ml -

~ (k - 1)1+1 [-a (m -1)]I{ (s). [1- (m -I) a] + (s) 2a k(m -I) }. 
~ (k)t m+l fJ k.k+l m+1 fJ k+lk+l+1 (m+I)(k+t+l) 

(5.2.8) 

For large values ofm (5.2.7) and (5.2.8) may be approximated as 

and 

(s) _ 
fJH;[.cl -

~ (k - 1)1+1 ( )t{ (s) (I ) (s) 2 __ k __ } L.J --~ -a fJ k:k+l - a + fJ k+1:k+l+1 a 
t=O (k)t (k+I+I) 

(5.2.10) 

respectively. 

5.3 Distribution of mk,[r:m] 

The distribution function ofmk,[r:m),denoted by F):k;[r:m)(y), is given by 

k (2r -m -I) k 
FJ:k;[r:m)(y)=I-[I-Fy(y)] [1- 1 aFy(y)]. 

m+ 
(5.3.1) 

The probability density function corresponds to (5.3.1) is 

ft:k;[r:ml (y) = 

~ (k-/)t+' [-a (2r -m-I)]t{ 1'. (y)(I+ (2r -m-I) a)- 1'. (y)2a (/+ 1)(2r-m-I)}. 
f:t (k)1 m+1 Jt+1:k+l m+l JI+2:k+1+1 (k+t+I)(m+l) 

(5.3.2) 

The moments ofmk,[r:m)is denoted by fJl(1:[r:ml S = 1,2 .. and is derived from (5.3.2) as 

I/(s) -
'-I:k;[rm)-

~(k-t)t+1[_a(2r-m-I)]t{ (s) (1+(2r-m-l)a)_ (s) 2a(/+1)(2r-m-I)}. 
f:t (k)t m+l fJ t+1:k+t m+1 fJ 1+2:k+l+1 (k+t+I)(m+1) 

(5.3.3) 
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In particular r = I 

mk;[I:m) = min(Y[I:m),J ... Y[I:m),k ). 

The probability density function of mk,[ J :m) is 

h:k;[J:m] (Y) = 

~(k-t)t+l (I-m)]t{.f ()(I (I-m) ).f ()2 (t+I)(I-m)} tt (k)t [-a m+1 h+l:k+l Y + m+1 a - h+2:k+l+l Y a (k+t+I)(m+l) . 

(5.3.4) 

The moments of mk,[I:m) is obtained from (5.3.4) as 

11 (s) -
rJ:k;[1:m]-

~(k-t)t+l[_a(1-m)]t{ (s) (1+(1-m)a)_ (s). 2a (t+I)(I-m) }. 
tt (k)t m+1 JI. t+lk+t m+l JI. 1+2.k+t+l (k+t+l)(m+l) 

(5.3.5) 

Ifm is sufficiently large (5.3.4) and (5.3.5) may be approximated to 

~(k-t)t+l t{.f (y)( ).f (y) (t+I)} 
fi:k;[l:.] = tt (k)t [a] JI+i:k+l I-a + JI+2:k+t+l 2a (k +t + I) (5.3.6) 

and 

Cs) _~(k-/)t+l[]t{CS) ()( ) Cs) ()2 (/+l)} (537) JI. l:k;[L] - L.... a j..J t+l:k+t Y 1-a + j..J t+2:k+t+l Y a .. . 
t=O (k)t (k+l+l) 

5.4 (i) Application to Inference 

In this section we use the above sampling method to illustrate the application 

of the above result to estimation problem. The bivariate Morgenstern type uniform 

distribution is specified by the distribution function 

(5.4.1) 
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From (5.2.7) the density function of M k.[m:m) under model (5.4.1) is 

h:k;[m:m)(Y) 

101 

k k-I 
k-I"" =-Y £.... 

()~ 1=0 

( k-lJ{-a (m-I) (l_L)Y[(1- m-I a)+2a (m-l)k Y] 
t m+l (}2 m+l (m+l)(k+t+l) (}2 

(5.4.2) 

and 

~ =9 ~{a (I-m)}' (k-t)t+1 [(1- (m-I) a)+2a (m-l)(k+l) ] 
k:k;[m:m) 2 1=0 (I+m) (k+l)/+2 (m+l) (m+l)(k+t+2) 

=(}2ak.m' (5.4.3) 

Also 

~2 = 922(k + 1) ~ {a (I-m)}, (k -/)/+1 [(I (m -1) a)+ 2a (m -1)(k + 2) ] 
k:k;[m:m) 1=0 (l+m) (k + 1)/+2 (m+l) (m+l)(k+I+3) 

(5.4.4) 

An unbiased estimator of (}2 follows from (5.4.3) and is 

e = Mk,[m:m] 
2[k.m) 

(5.4.5) 

and 

(5.4.6) 

The UMVUE for () 2 based on k independent observations is 

A (k + 1) . 
92 = k Yk:k , see Rohatgt (1976). (5.4.7) 

A A 

The relative efficiency of 92[k.m) over 92 is 

(5.4.8) 

The values of R[k,mJ for Cl = 0.2(0.2)1, m = 10,20 andl000 are tabulated in 

Table 5.4.1. 
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k 0.2 

1 1.1221 

2 1.1653 

3 1.1959 

4 1.2182 

5 1.2352 

6 1.2484 

7 1.2591 

8 1.2751 

9 1.2812 

10 1.2852 

1 1.1367 

2 1.1852 

3 1.2193 

4 1.2442 

5 1.2632 

6 1.2779 

7 1.2897 

8 1.2994 

9 1.3075 

10 1.3143 

0.4 

1.2756 

1.3734 

1.4407 

1.4890 

1.5250 

1.5528 

1.5748 

1.5927 

1.6075 

1.6199 

1.3132 

1.4240 

1.4999 

1.5539 

1.5941 

1.6250 

1.6494 

1.6692 

1.6855 

1.6992 

Table 5.4.1 

Values of R[k,mJ 

m= 10 

0.6 

1.4723 

1.6364 

1.7454 

1.8214 

1.8769 

1.9192 

1.9523 

1.9723 

2.0008 

2.0191 

m=20 

1.5466 

1.7339 

1.8566 

1.9412 

2.0027 

2.0492 

2.0856 

2.1149 

2.1388 

2.1588 
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0.8 1 

1.7320 2.0851 

1.9706 2.3956 

2.1217 2.5810 

2.2239 2.7036 

2.2972 2.7907 

2.3523 2.8538 

2.3952 2.9062 

2.4259 2.9465 

2.4576 2.9794 

2.4809 3.0067 

1.8668 2.3299 

2.1381 2.6645 

2.3054 2.8610 

2.4172 2.9906 

2.4970 3.0826 

2.5567 3.1513 

2.6031 3.2046 

2.6409 3.2472 

2.6704 3.2820 

2.6957 3.3110 
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m = 1000 

2 1.208 1.483 1.850 2.343 3.000 

3 1.246 1.568 1.988 2.526 3.200 

4 l.274 l.629 2.081 2.646 3.330 

5 1.295 1.673 2.149 2.732 3.429 

6 l.311 1.708 2.200 2.796 3.500 

7 1.324 1.735 2.24. 2.846 3.556 

8 l.335 l.757 2.272 2.886 3.600 

9 1.344 l.775 2.298 2.918 3.636 

10 l.351 1.790 2.320 2.945 3.667 

From the above table it can be observed that the relative efficiency of the 

A 

estimator 82 [k,ml is an increasing function of a and k. Moreover for high values of 

A A 

a, 82 [k.m[ is highly efficient than the UMVU estimator 82 . 

(ii) Application to the Selection Problem 

It follows from (5.4.3) that the effectiveness of the selection problem 

mentioned in the introduction is denoted by ~n and is given by 

_ E[Mk,lm:ml] _n+1 a 
~n - E[Y] ----;;- k,n 

n:n 

(5.4.8) 
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It is noted that ~ is free of the parameter ()2 and is equal to 1 when k = n. The 

values of ~.nfor a = 0.2(0.2)1, n = 10,20,50,100 are tabulated in the following table. 

Table 5.4.2 

Values of ek,n 

n m k 0.2 0.4 0.6 0.8 1.0 

10 10 1 .5800 .6100 .6400 .6700 .7000 

2 5 .7570 .7796 .8008 .8207 .839 

5 2 .9251 .9330 .9404 .9473 .9538 

20 20 .5567 .5883 .6200 .6517 .6833 

10 2 .7227 .7535 .7775 .7996 .8198 

5 4 .8576 .8733 .8873 .8997 .9108 

4 5 .8891 .9017 .9128 .9227 .9315 

2 10 .9596 .9642 .9685 .9724 .9759 

50 50 .5427 .5753 .6050 .6407 .673 

25 2 .7107 .7381 .7687 .7870 .8080 

10 5 .8683 .8839 .8971 .9084 .9181 

5 10 .9367 .9446 .9513 .9569 .9618 

2 25 .9831 .9851 .9870 .9886 .9902 

100 100 .5380 .5710 .6040 .6370 .6700 

50 2 .7015 .7305 .7969 .7807 .8020 

25 4 .8310 .8506 .8672 .8813 .8933 

20 5 .8616 .8782 .8921 .9038 .9136 

10 10 .9294 .9385 .9459 .9520 .9570 

5 20 .9672 .9714 .9750 .9779 .9805 

4 25 .9751 .9783 .9810 .9833 .9853 

2 50 .9914 .9925 .9934 .9943 .9950 
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Table 5.4.2 illustrates that ~n increases with k and a. It tends to 1 as k approaches 

to n. This method of selection will substantially reduce the number of expensive 

measurements. For example, if n = 100 twenty-five percent of the expensive 

measurements give an efficiency greater than .975 for all a> O. 

5.5 Distribution and Expected values of the Rank of the rth Concomitant 

from the Morgenstern family 

In this section we are concerned with the distribution and expected value of 

the rank R[r:nJ of Y[r:nJ among n Yi . Suppose we have independent measurements 

(Xi,Yi ), i = 1,2 ... n, with cumulative distribution function specified in (2.2.1), on 

individuals AI ,A2, ... An and that A rank rth on the X measurements. Here we study 

the following questions: (a) What is the probability that Ai will rank sth on the 

V-measurement? (b) What is Ai'S expected rank on the V-measurement?~ 

Let R[r:nJdenote the rank ofY[r:nJ. Then 

where 

n 

R[r:nJ = I I (y[rn] - Yi ), 

i=1 

I(x) = 1 ifx~O 

= 0 ifx<O (5.5.1) 

The small sample distribution ofR[r:n] is given in O'Connell David and Yang (1977). 

They have derived the general formula for the finite distribution ofR[r:n] and is given 

in (1.2.18). 

If (X, Y) have the distribution specified by (2.1.1) and X and Y have 

marginal distribution of the same form then it is quick to obtain the following three 

relations. 
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Relation 5.5.1 

7r rs = 7r.r for r, s = 1,2 ... n . (5.5.2) 

Since for the Morgenstern family F x y (x, y) = Fy x (y, x) . . 

for r, s = 1,2, ... n. 

Relation 5.5.2 

7r rs = 7r n + I - r , n + I - s • (5.5.3) 

It follows directly from (1.2.18). 

Relation 5.5.3 

(5.5.4) 

Since for the Morgenstem family a is the correlation parameter. 

The values of 7r r. for the Morgenstem type uniform distribution is tabulated for 

a = 0.25 (.25) 1, n = 5,10 in Table 5.5.1. 

Table 5.5.1 

7rr• = P(~r:nl = s) as function of a for n = 5 and n = 10 

a 

n=5;r s 0.25 0.5 0.75 1 

5 .2282 .2573 .2873 .3184 

4 .2137 .2268 .2394 .2512 

5 3 .1996 .1983 .1962 .1933 

2 .1859 .1715 .1568 .1418 

1 .1726 .1461 .1203 .0952 
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4 .2071 .2145 .2226 .2314 

3 .2002 .2008 .2018 .2014 
4 

2 .1931 .1863 .1795 .1724 

1 .1859 .1715 .1568 .1418 

3 .2004 .2017 .2040 .2073 

3 2 .2002 .2008 .2018 .2030 

1 .1996 .1983 .1962 .1933 

n=10;r 10 .1189 .183 .1583 .1789 

10 9 .1145 .1292 .1441 .1591 

8 .1103 .1204 .1305 .1403 

7 .1061 .1118 .1173 .1225 

6 .1019 .1034 .1046 .1055 

5 .0975 .0952 .0923 .0891 

4 .0937 .0871 .0803 .0734 

3 .0886 .0792 .0687 .0582 

2 .0876 .0714 .0574 .0436 

1 .0867 .0638 .0464 .0294 

9 .1113 .1226 .1340 .1457 

8 .1080 .1160 .1240 .1320 

7 .1048 .1095 .1141 .1187 

6 .1015 .1030 .1043 .1057 

9 5 .0983 .0966 .0946 .0926 

4 .0951 .0902 .0851 .0793 

3 .0919 .0839 .0757 .0696 

2 .0886. .0776 .0665 .0555 

1 .0856 .0704 .0574 .0436 



Extremes of the rth concomitant from the Morgenstern family 108 

8 .1058 .1115 .1174 .1223 

7 .1035 .1070 .1106 .1143 

6 .1012 .1024 .1037 .1051 

5 .0989 .0978 .0968 .0958 
8 

4 .0966 .0932 .0898 .0864 

3 .0943 .0885 .0828 .0763 

2 .0916 .0839 .0757 .0676 

1 .0896 .0792 .0687 .0582 

7 .1021 .1044 .1069 .1085 

6 .1008 .1017 .1029 .1042 

5 .0994 .0989 .0987 .0986 

7 4 .0984 .0961 .0943 .0926 

3 .0911 .0932 .0898 .0864 

2 .0951 .0902 .0851 .0799 

1 .0937 .0871 .0803 .0734 

6 .1003 .1009 .1017 .1028 

5 .0999 .1000 .1033 .1009 

4 .0994 .0990 .0987 .0986 
6 

3 .0989 .0978 .0968 .0958 

2 .0983 .0966 .0946 .0926 

1 .0918 .0952 .0923 .0891 

5 .1003 .1009 .1017 .1028 

4 .1008 .1017 .1029 .1042 

5 3 .1012 .1024 .1037 .1051 

2 .1015 .1030 .1043 .1053 

1 .1019 .1034 .1046 .1055 
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The, expected rank ofY[r:n), E[R[r:n)], r = 1,2, ... n may be obtained from 

the formula (1.2.19) see David and Nagaraja (1998). 

We have 

OC) 00 

f BJ(y I x)dy = f Fx(x)Fy (y)[1 +a(l- Fx(x))O - Fy (y))]fy (y)[1 +a(l- 2F.,(x))O - Fy(y))}iy 
-00 -00 

1 1 I 

= Fx(x)[j udu +a(l- Fx(x))j u(l-u)du +a(l- 2Fx<x))j u(l- 2u)du +a2 (l- Fx(x))(l- 2Fx (x)) 
o 0 0 

00 

f u(l- u)(l- 2u)du], by the transformation u = F y (y) 
-OC) 

a 
[1 +-Fx (x)] 

= F x (x) _--=3'----__ 
2 

= 

= 

= 

B(r,n -r + 1)+(a / 3)B(r + l,n-r + 1) 

2B(r -1, n - r + 1) 

.!.( -1 + r(r -1)a] 
2 n 3n(n+ 1) 

(r -1) [l + a.r ]. 
2n 3(n + 1) 

OC) 00 

f B3 (x,y)f(y I x)dy = f[Fy (y) - Fx.y (x,y)]f(y I x)dy 
-00 -00 

a 
00 {1+-Fx(x)} 

= f Fy (y)fy (y)[1 + a(l- 2Fx (x))(l- Fy (y))]dy - Fx (x) 3 2 
-00 

(5.5.5) 

(5.5.6) 
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[1 - F x (x)] {1- a I 3(1- F x (x» } . 
2 

110 

(5.5.7) 

= 1 [B(r,n-r+l)-(a/3)B(r,n-r+2)] 
2B(r,n-r) 

= (n - r) [1- (a I 3) n - r + I] . 
2n n+1 

(5.5.8) 

Hence E[R[r:n]] = l+n{ (r-I)[I+ ar ]+(n-r)[I_(aI3)n-r+ln 
2n 3(n+ I) 2n n+ 1 

= .!.[I+n{l- (n-2r+l)a}]. 
2 3(n + 1) 

(5.5.9) 

It follows from (5.5.9) that E[R[r:n]l IS a linear function of a and it 

increases(decreases) with r for a> 0 «0). 

It readily follows that 

E[R[r:n]] = n+ 1- E[R[n+ l-r:n]] (5.5.10) 

and for negative a, we can use 

E[R[r:n](-a)] = n+l- E[R[r:n](a)]. (5.5.11) 

The values of E[R[r:n]] are tabulated for specific values of a and n in the 

following table. 
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Table 5.5.2 

E[R(r:nd as a function of a. for n=5, 10 and 20 

a. 

n r .25 .5 .75 1 

1 2.861 2.722 2.583 2.440 

2 2.931 2.861 2.792 2.722 

5 3 3 3 3 3 

4 3.069 3.139 3.208 3.278 

5 3.139 3.278 3.412 3.556 

1 5.159 4.818 4.477 4.136 

2 5.235 4.970 4.705 4.439 

3 5.311 5.121 4.932 4.742 

4 5.386 5.273 5.159 5.045 

5 5.462 5.424 5.386 5.348 
10 

6 5.538 5.576 5.614 5.652 

7 5.614 5.727 5.814 5.955 

8 5.689 5.879 6.018 6.258 

9 5.765 6.030 6.295 6.561 

10 5.841 6.182 6.523 6.864 
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1 9.746 8.992 8.238 7.484 

2 9.825 9.151 8.476 7.802 

3 9.905 9.310 8.714 8.119 

4 9.984 9.468 8.952 8.437 

5 10.043 9.627 9.190 8.754 

6 10.143 9.786 9.426 9.071 

7 10.222 9.994 9.667 9.389 

8 10.302 10.103 9.905 9.701 

9 10.381 10.262 10.143 10.024 

10 10.460 10.421 10.381 10.341 

20 11 10.540 10.579 10.619 10.659 

12 10.619 10.738 10.857 10.976 

13 10.698 10.897 11.095 11.294 

14 10.788 11.056 11.373 11.611 

15 10.857 11.214 11.571 11.929 

16 10.937 11.373 11.810 12.246 

17 11.016 11.532 12.048 12.563 

18 11.095 11.690 12.286 12.881 

19 11.175 11.849 12.524 13.198 

20 11.254 12.008 12.762 13.516 
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