Now showing items 1-7 of 7
Abstract: | Superparamagnetic nanocomposites based on g-Fe2O3 and sulphonated polystyrene have been synthesized by ion exchange process and the preparation conditions were optimized. Samples were subjected to cycling to study the effect of cycling on the magnetic properties of these composites. The structural and magnetization studies have been carried out. Magnetization studies show the dependence of magnetization on the number of ion exchange cycles. Doping of cobalt at the range in to the g-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The exact amount of cobalt dopant as well as the iron content was estimated by Atomic Absorption Spectroscopy. The effect of cobalt in modifying the properties of the composites was then studied and the results indicate that the coercivity can be tuned by the amount of cobalt in the composites. The tuning of both the magnetization and the coercivity can be achieved by a combination of cycling of ion exchange and the incorporation of cobalt |
Description: | Journal of Magnetism and Magnetic Materials 283 (2004) 344–352 |
URI: | http://dyuthi.cusat.ac.in/purl/4383 |
Files | Size |
---|---|
Effect of cobal ... styrene nanocomposites.pdf | (177.9Kb) |
Abstract: | Magnetic properties of nano-crystalline soft magnetic alloys have usually been correlated to structural evolution with heat treatment. However, literature reports pertaining to the study of nano-crystalline thin films are less abundant. Thin films of Fe40Ni38B18Mo4 were deposited on glass substrates under a high vacuum of ≈ 10−6 Torr by employing resistive heating. They were annealed at various temperatures ranging from 373 to 773K based on differential scanning calorimetric studies carried out on the ribbons. The magnetic characteristics were investigated using vibrating sample magnetometry. Morphological characterizations were carried out using atomic force microscopy (AFM), and magnetic force microscopy (MFM) imaging is used to study the domain characteristics. The variation of magnetic properties with thermal annealing is also investigated. From AFM and MFM images it can be inferred that the crystallization temperature of the as-prepared films are lower than their bulk counterparts. Also there is a progressive evolution of coercivity up to 573 K, which is an indication of the lowering of nano-crystallization temperature in thin films. The variation of coercivity with the structural evolution of the thin films with annealing is discussed and a plausible explanation is provided using the modified random anisotropy model |
Description: | J. Phys. D: Appl. Phys. 39 (2006) 1993–2000 |
URI: | http://dyuthi.cusat.ac.in/purl/4380 |
Files | Size |
---|---|
Effect of therm ... for magnetic evolution.pdf | (3.434Mb) |
Abstract: | Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications |
Description: | Journal of Magnetism and Magnetic Materials 320 (2008) 815–820 |
URI: | http://dyuthi.cusat.ac.in/purl/4433 |
Files | Size |
---|---|
Enhanced shape ... birefringence by high.pdf | (285.7Kb) |
Abstract: | Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications. |
URI: | http://dyuthi.cusat.ac.in/purl/2831 |
Files | Size |
---|---|
Dyuthi-P00387.pdf | (291.1Kb) |
Abstract: | Polycrystalline single phasic mixed ferrites belonging to the series Ni1−xZnxFe2O4 for various values of x have been prepared by conventional ceramic techniques. Pre-characterized nickel zinc ferrites were then incorporated into a natural rubber matrix according to a specific recipe for various loadings. The processability and cure parameters were then determined. The magnetic properties of the ceramic filler as well as the ferrite loaded rubber ferrite composites (RFC) were evaluated and compared. A general equation for predicting the magnetic properties was also formulated. The validity of these equations were then checked and correlated with the experimental data. The coercivity of the RFCs almost resemble that of the ceramic component in the RFC. Percolation threshold is not reached for a maximum loading of 120 phr (parts per hundred rubber by weight) of the filler. These studies indicate that flexible magnets can be made with appropriate magnetic properties namely saturation magnetisation (Ms) and magnetic field strength (Hc) by a judicious choice of x and a corresponding loading. These studies also suggest that there is no possible interaction between the filler and the matrix at least at the macroscopic level. The formulated equation will aid in synthesizing RFCs with predetermined magnetic |
Description: | JOURNAL OF MATERIALS SCIENCE 36 (2001) 5551 – 5557 |
URI: | http://dyuthi.cusat.ac.in/purl/4358 |
Files | Size |
---|---|
Magnetic and pr ... bber and mixed ferrite.pdf | (144.6Kb) |
Abstract: | Rubber ferrite composites have the unique advantage of mouldability, which is not easily obtainable using ceramic magnetic materials. The incorporation of mixed ferrites in appropriate weight ratios into the rubber matrix not only modi es the dielectric properties of the composite but also imparts magnetic properties to it. Mixed ferrites belonging to the series of Mn(1 – x )Znx Fe2O4 have been synthesised with diVerent values of x in steps of 0·2, using conventional ceramic processing techniques. Rubber ferrite composites were prepared by the incorporation of these pre-characterised polycrystallineMn(1 – x )Znx Fe2O4 ceramics into a natural rubber matrix at diVerent loadings according to a speci c recipe. The processability of these elastomers was determined by investigating their cure characteristics. The magnetic properties of the ceramic llers as well as of the rubber ferrite composites were evaluated and the results were correlated. Studies of the magnetic properties of these rubber ferrite composites indicate that the magnetisation increases with loading of the ller without changing the coercive eld. The hardness of these composites shows a steady increase with the loading of the magnetic llers. The evaluation of hardness andmagnetic characteristics indicates that composites with optimummagnetisation and almost minimum stiVness can be achieved with a maximum loading of 120 phr of the ller at x=0·4. From the data on the magnetisation of the composites, a simple relationship connecting the magnetisation of the rubber ferrite composite and the ller was formulated. This can be used to synthesise rubber ferrite composites with predetermined magnetic properties |
Description: | Plastics, rubber and composites,vol 31,issue 3,pp 106-113 |
URI: | http://dyuthi.cusat.ac.in/purl/4378 |
Files | Size |
---|---|
Processability, ... anganese zinc ferrites.pdf | (295.8Kb) |
Abstract: | Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties |
Description: | Bull. Mater. Sci., Vol. 24, No. 6, December 2001, pp. 623–631 |
URI: | http://dyuthi.cusat.ac.in/purl/4361 |
Files | Size |
---|---|
Tailoring magne ... taining mixed ferrites.pdf | (198.4Kb) |
Now showing items 1-7 of 7
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.