DSpace About DSpace Software
 

Dyuthi @ CUSAT >
Ph.D THESES >
Faculty of Sciences >

Please use this identifier to cite or link to this item: http://purl.org/purl/3696

Title: Some bivariate life time models in discrete time"
Authors: Asha Gopalakrishnan
Dr.Unnikrishnan Nair, N
Keywords: Reliability modelling
Scalar failure
Vector failure rate
Distribution theory.
Issue Date: 15-May-1995
Publisher: Cochin University Of Science And Technology
Abstract: The term reliability of an equipment or device is often meant to indicate the probability that it carries out the functions expected of it adequately or without failure and within specified performance limits at a given age for a desired mission time when put to use under the designated application and operating environmental stress. A broad classification of the approaches employed in relation to reliability studies can be made as probabilistic and deterministic, where the main interest in the former is to device tools and methods to identify the random mechanism governing the failure process through a proper statistical frame work, while the latter addresses the question of finding the causes of failure and steps to reduce individual failures thereby enhancing reliability. In the probabilistic attitude to which the present study subscribes to, the concept of life distribution, a mathematical idealisation that describes the failure times, is fundamental and a basic question a reliability analyst has to settle is the form of the life distribution. It is for no other reason that a major share of the literature on the mathematical theory of reliability is focussed on methods of arriving at reasonable models of failure times and in showing the failure patterns that induce such models. The application of the methodology of life time distributions is not confined to the assesment of endurance of equipments and systems only, but ranges over a wide variety of scientific investigations where the word life time may not refer to the length of life in the literal sense, but can be concieved in its most general form as a non-negative random variable. Thus the tools developed in connection with modelling life time data have found applications in other areas of research such as actuarial science, engineering, biomedical sciences, economics, extreme value theory etc.
Description: Division of Statistics, School of Mathematical Sciences, Cochin University of Science and Technology
URI: http://dyuthi.cusat.ac.in/purl/3696
Appears in Collections:Faculty of Sciences

Files in This Item:

File Description SizeFormat
Dyuthi-T1661.pdfPd F1.41 MBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback