Now showing items 1-8 of 8
Abstract: | Polyaniline thin films were prepared by ac plasma polymerization technique. Capacitance, dielectric loss, dielectric constant and ac conductivity of these films were investigated in the frequency range from 100 Hz to 1MHz and in the temperature range from 300 to 373 K. Capacitance and dielectric loss decreased with frequency and increased with temperature. This type of behaviour was found to be in good agreement with an existing model. The ac conductivity σ(ω) was found to vary as ωs with the index s 1. Annealing of polyaniline thin films in high vacuum at 373K for 1 h was found to reduce the dielectric loss. FTIR studies reveal that the aromatic ring is retained in the polyaniline thin films, which enhances the thermal stability of the polymer films |
Description: | J. Phys. D: Appl. Phys. 35 (2002) 240–245 |
URI: | http://dyuthi.cusat.ac.in/purl/4351 |
Files | Size |
---|---|
Characterizatio ... nthesized by ac plasma.pdf | (436.0Kb) |
Abstract: | Electrically conductive organic and metalloorganic polymers are of great interest and they have applications in electronic, optical, photonic, photoelectric, electrochemical, and dielectric devices. Tetrameric cobalt phthalocyanine was prepared by conventional chemical method. The dielectric permittivity of the tetrameric cobalt phthalocyanine sample was evaluated from the observed capacitance values in the frequency range 100 KHz to 5 MHz and in the temperature range of 300 to 383°K. It is found that the system obeys the Maxwell Wagner relaxation of space charge phenomenon. Further, from the permittivity studies AC conductivity was evaluated. The values of AC conductivity and DC conductivity were compared. Activation energy was calculated. To understand the conduction mechanism Mott’s variable range hopping model was applied to the system. The T 1/4 behavior of the DC conductivity along with the values of Mott’s Temperature (T0), density of states at the Fermi energy N (EF), and range of hopping R and hopping energy W indicate that the transport of charge carriers are by three-dimensional variable range hopping |
Description: | Journal of Applied Polymer Science, Vol. 91, 2529–2535 (2004) |
URI: | http://dyuthi.cusat.ac.in/purl/4384 |
Files | Size |
---|---|
Dielectric and ... thalocyanine Tetramers.pdf | (121.5Kb) |
Abstract: | Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system. |
Description: | Journal of Physics and Chemistry of Solids 67 (2006) 1496–1501 |
URI: | http://dyuthi.cusat.ac.in/purl/4359 |
Files | Size |
---|---|
Investigations ... camphor sulphonic acid.pdf | (360.4Kb) |
Abstract: | Thermally stable materials with low dielectric constant (k < 3.9) are being hotly pursued. They are essential as interlayer dielectrics/intermetal dielectrics in integrated circuit technology, which reduces parasitic capacitance and decreases the RC time constant. Most of the currently employed materials are based on silicon. Low k films based on organic polymers are supposed to be a viable alternative as they are easily processable and can be synthesized with simpler techniques. It is known that the employment of ac/rf plasma polymerization yields good quality organic thin films, which are homogenous, pinhole free and thermally stable. These polymer thin films are potential candidates for fabricating Schottky devices, storage batteries, LEDs, sensors, super capacitors and for EMI shielding. Recently, great efforts have been made in finding alternative methods to prepare low dielectric constant thin films in place of silicon-based materials. Polyaniline thin films were prepared by employing an rf plasma polymerization technique. Capacitance, dielectric loss, dielectric constant and ac conductivity were evaluated in the frequency range 100 Hz– 1 MHz. Capacitance and dielectric loss decrease with increase of frequency and increase with increase of temperature. This type of behaviour was found to be in good agreement with an existing model. The ac conductivity was calculated from the observed dielectric constant and is explained based on the Austin–Mott model for hopping conduction. These films exhibit low dielectric constant values, which are stable over a wide range of frequencies and are probable candidates for low k applications. |
Description: | New Journal of Physics 6 (2004) 64 |
URI: | http://dyuthi.cusat.ac.in/purl/4360 |
Files | Size |
---|---|
Low k thin film ... ma-polymerized aniline.pdf | (388.1Kb) |
Abstract: | Polyfurfural thin films lying in the thickness range of 1300–2000 A˚ were prepared by ac plasma polymerization technique. The current–voltage characteristics in symmetric and asymmetric electrode configuration were studied with a view to determining the dominant conduction mechanism.It was found that the Schottky conduction mechanism is dominant in plasma polymerized furfural thin films.The predominance of Schottky mechanism was further confirmed based on the thermally stimulated current measurements. |
URI: | http://dyuthi.cusat.ac.in/purl/2832 |
Files | Size |
---|---|
Dyuthi-P00388.pdf | (231.2Kb) |
Abstract: | Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques |
Description: | Bull. Mater. Sci., Vol. 29, No. 2, April 2006, pp. 159–163 |
URI: | http://dyuthi.cusat.ac.in/purl/4353 |
Files | Size |
---|---|
On the optical ... of rf and a.c. plasma.pdf | (98.18Kb) |
Abstract: | Conjugated polymers in the form of thin films play an important role in the field of materials science due to their interesting properties. Polymer thin films find extensive applications in the fabrication of devices, such as light emitting devices, rechargeable batteries, super capacitors, and are used as intermetallic dielectrics and EMI shieldings. Polymer thin films prepared by plasma-polymerization are highly cross-linked, pinhole free, and their permittivity lie in the ultra low k-regime. Electronic and photonic applications of plasma-polymerized thin films attracted the attention of various researchers. Modification of polymer thin films by swift heavy ions is well established and ion irradiation of polymers can induce irreversible changes in their structural, electrical, and optical properties. Polyaniline and polyfurfural thin films prepared by RF plasmapolymerization were irradiated with 92MeV silicon ions for various fluences of 1×1011 ions cm−2, 1×1012 ions cm−2, and 1×1013 ions cm−2. FTIR have been recorded on the pristine and silicon ion irradiated polymer thin films for structural evaluation. Photoluminescence (PL) spectra were recorded for RF plasma-polymerized thin film samples before and after irradiation. In this paper the effect of swift heavy ions on the structural and photoluminescence spectra of plasma-polymerized thin films are investigated. |
Description: | Synthetic Metals 155 (2005) 311–315 |
URI: | http://dyuthi.cusat.ac.in/purl/4382 |
Files | Size |
---|---|
Photoluminescen ... polymerized thin films.pdf | (320.2Kb) |
Description: | Plasma Science, 2002. ICOPS 2002. IEEE Conference Record-Abstracts. The 29th IEEE International Conference on |
URI: | http://dyuthi.cusat.ac.in/purl/4434 |
Files | Size |
---|---|
Plasma Assisted ... lyanisidine Thin Films.pdf | (86.27Kb) |
Now showing items 1-8 of 8
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.