Now showing items 1-2 of 2
Abstract: | Photothermal deflection technique (PTD) is a non-destructive tool for measuring the temperature distribution in and around a sample, due to various non-radiative decay processes occurring within the material. This tool was used to measure the carrier transport properties of CuInS2 and CuInSe2 thin films. Films with thickness <1 μm were prepared with different Cu/In ratios to vary the electrical properties. The surface recombination velocity was least for Cu-rich films (5×105 cm/s for CuInS2, 1×103 cm/s for CuInSe2), while stoichiometric films exhibited high mobility (0.6 cm2/V s for CuInS2, 32 cm2/V s for CuInSe2) and high minority carrier lifetime (0.35 μs for CuInS2, 12 μs for CuInSe2 |
Description: | Thin Solid Films 518 (2010) 1767–1773 |
URI: | http://dyuthi.cusat.ac.in/purl/4712 |
Files | Size |
---|---|
Non-destructive ... l deflection technique.pdf | (1.073Mb) |
Abstract: | SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined |
Description: | Thin Solid Films 518 (2010) 4370–4374 |
URI: | http://dyuthi.cusat.ac.in/purl/4713 |
Files | Size |
---|---|
Optimization of ... d p-type layers of SnS.pdf | (827.3Kb) |
Now showing items 1-2 of 2
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.