Now showing items 1-1 of 1
Abstract: | Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year |
Description: | Power, Signals, Controls and Computation (EPSCICON), 2012 International Conference on |
URI: | http://dyuthi.cusat.ac.in/purl/4488 |
Files | Size |
---|---|
Short-Term Load ... ive Learning Algorithm.pdf | (978.7Kb) |
Now showing items 1-1 of 1
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.