Short Nylon-6 Fibre/Rubber-Toughened Polystyrene Composites

Dyuthi/Manakin Repository

Short Nylon-6 Fibre/Rubber-Toughened Polystyrene Composites

Show simple item record

dc.contributor.author Jayalatha, Gopalakrishnan G
dc.contributor.author Dr.Sunil,Narayanankutty K
dc.date.accessioned 2013-10-29T09:38:14Z
dc.date.available 2013-10-29T09:38:14Z
dc.date.issued 2012-07
dc.identifier.uri http://dyuthi.cusat.ac.in/purl/3063
dc.description Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology en_US
dc.description.abstract The thesis describes studies on development of short Nylon-6 fibre composites based on rubber-toughened polystyrene (PS). Toughening was done using natural rubber (NR), styrene-butadiene rubber (SBR) and whole tyre reclaim (WTR). The composites were prepared by melt mixing in an internal mixer at 170 oC. It was found that the optimum blend ratio was 85/15 for PS/NR, 90/10 for PS/SBR and 90/22 for PS/WTR blends. The effect of dynamic vulcanisation on 85/15 PS/NR and 90/10 PS/SBR blends using dicumyl peroxide (DCP) at various concentrations were also studied. The dynamic crosslinking improved the tensile properties, flexural properties, impact strength and dynamic mechanical properties of both the blends. The effect of unmodified and resorcinol formaldehyde latex (RFL)-coated short Nylon-6 fibres on the mechanical properties, morphology and dynamic mechanical properties of 85/15 PS/NR, 90/10 PS/SBR and 90/22 PS/WTR blends were studied. Fibre loading was varied from 0 to 3 wt.%. For 85/15 PS/NR blend, there was a significant enhancement in tensile properties, flexural properties and impact strength with 1 wt.% of both unmodified and RFL-coated fibres. Dynamic mechanical analysis revealed that the storage modulus at room temperature was maximum at 1 wt.% fiber loading for both composites. The surface functionality of the fiber was improved by giving alkali treatment. Maleic anhydride-grafted-polystyrene (MA-g-PS) was prepared and used as a compatibiliser. The effect of MA-g-PS on the composites was investigated with respect to mechanical properties, morphology and dynamic mechanical properties. The compatibiliser loading was varied from 0 to 2 wt.%. The properties were enhanced significantly in the case of treated and untreated fibre composites at a compatibiliser loading of 0.75 wt.%. SEM analysis confirmed better bonding between the fibre and the matrix. Dynamic mechanical studies showed that the storage modulus at room temperature improved for treated fibre composites in the presence of compatibiliser. In the case of 90/10 PS/SBR composites, the addition of short Nylon-6 fibres at 1 wt.% loading improved the tensile modulus, flexural properties and impact strength while the tensile strength was marginally reduced. The surface treated fibers along with compatibiliser at 0.5 wt.% improved the tensile properties, flexural properties and impact strength. DMA reveale that the storage modulus at room temperature was better for composites containing untreated fibre and the compatibiliser. In the case of 90/22 PS/WTR blends, 1 wt.% unmodified fibre and 0.5 wt.% RFL-coated fibres improved tensile modulus, flexural properties and impact strength. Tensile strength was improved marginally. The surface treatment of Nylon fibre and the addition of compatibiliser at 0.5 wt.% enhanced the tensile properties, flexural properties and impact strength. The dynamic mechanical analysis showed that the storage modulus at room temperature was better for untreated fibre composites in conjunction with the compatibiliser. The thermal stability of PS/NR was studied by TGA. Thermal stability of the blends improved with dynamic vulcanisation and with the incorporation of RFL-coated Nylon fibres. The untreated and partially hydrolyzed fibre composites in conjunction with the compatibiliser enhanced the thermal stability. Kinetic studies showed that the degradation of the blends and the composites followed first order kinetics. en_US
dc.description.sponsorship Cochin University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Cochin University of Science and Technology en_US
dc.subject Thermodynamics of polymer Blends en_US
dc.subject Dynamic Vulcanisation en_US
dc.subject Parameters influencing the characteristics of short fibre -polymer composites en_US
dc.subject Fiber reinforced blends en_US
dc.title Short Nylon-6 Fibre/Rubber-Toughened Polystyrene Composites en_US
dc.type Thesis en_US


Files in this item

Files Size Format View Description
Dyuthi-T1037.pdf 7.846Mb PDF View/Open PdF

This item appears in the following Collection(s)

Show simple item record

Search Dyuthi


Advanced Search

Browse

My Account