Now showing items 1-3 of 3
Abstract: | Ash-based polymer composites are assuming increasing importance because of the pollutant potential, fine particle size, and low price of ash. Fly ash and rice husk ash are two prominent ash materials on which some investigations have already been done for potential use in polymer composites. This article highlights the results of a study on the use of wood ash in HDPE. Wood ash is mainly a mixture of various metallic compounds and some silica. Here, the characterization of wood ash has been done with the help of XRD, ICPAES, light scattering based particle size analysis, FTIR, and SEM. The results show that wood ash particle size has an average value of 293 nm, much lower than other categories of ash. When blended with HDPE in the presence of a compatibilizer, wood ash gives rise to vastly improved mechanical properties over that of the base polymer. The results prove that wood ash is a valuable reinforcing material for HDPE and the environmental pollution due to wood ash can be solved in a most profitable way by this technique. |
Description: | Journal of Applied Polymer Science, Vol. 124, 1659–1667 (2012) |
URI: | http://dyuthi.cusat.ac.in/purl/4719 |
Files | Size |
---|---|
HDPE-Ash Nanocomposites.pdf | (1.043Mb) |
Abstract: | Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics |
Description: | Polymer 55 (2014) 3614e3627 |
URI: | http://dyuthi.cusat.ac.in/purl/4694 |
Files | Size |
---|---|
Microwave exfol ... rformance applications.pdf | (4.632Mb) |
Abstract: | Unsaturated polyester resins (UPRs) are extensively used by the fiber-reinforced plastic (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, UPRs were chemically modified by reactive blending with polyurethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of unsaturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer. The prepolymers were based on toluene diisocyanate (TDI) and each of hydroxy-terminated natural rubber (HTNR), hydroxy- terminated polybutadiene (HTPB), polyethylene glycol (PEG), and castor oil. Properties like tensile strength, toughness, impact resistance, and elongation-at-break of the modified UPRs show considerable improvement by this modification. The thermal stability of the copolymer is also marginally better |
Description: | Journal of Applied Polymer Science, Vol. 100, 449–456 (2006) |
URI: | http://dyuthi.cusat.ac.in/purl/4688 |
Files | Size |
---|---|
Modification of ... lyurethane Prepolymers.pdf | (183.4Kb) |
Now showing items 1-3 of 3
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.