





















































(2) Letx={ab,c,d}. J={x, ¢, {a, b}, {a, c}, {a, b, c}, {b,d}, {a, b, d}, {b}, {a}}
and :X—>X be defined by f(a) = b, f(b) = a, f (c) = d f(d)= c. Then

O,(a) =0,(b)={a,b} =X and P, (X) = X. But fis not sensitive. Let x = c and u = {c,
d} theny =d and,

If n = 1; we have V = {b, d}. So that f(x) = f'(x) =d & V and f(y) = f'(d) = ¢
¢ V. (for V= {b, d} is clopen in X) if n=2, we have, V = {a, c}. So that f*(x) = f(c) =
ceVand fi(y)=f(d)=d ¢ V. So if U = {c, d} then there is no problem. But if U
={a, c} theny =aand if n = 1, f*(x) = f'(c) = d and f%(y) = f'(a) = b. But every open set
which contains d also contains b. So we can’t have an open set V such thatd € V, b
g V.If
n=2, f'(x) = f(c) = c and f'(y) = () = a. Again every open set which contains ¢ also
contains a. So we can’t have an open set V such that f"(x) ¢ Vand f'(y) ¢ V.n=3, 5,
R is same as the case withn=1and n=4, 6, 8, ..... is same as the case with n =
2. So if n € Z. there exist no open set V such that f'(x) € V and f'(y) ¢ V. .. fis not

sensitive on X

(3) (i)=>(1)
The identify function on any interval in IR with usual topology proves this.

(4) (i1) and (iii) # > (ii)
Let X = [0, o0]. Define f:X— X as,

f(x)=4x;0<x<%
4x+2:Y%<x<%
4x -2 ;% <x<¥%
4-4x ;% <x<1
fix-1);x >1.

Fie.
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1 Y
This example is enough to show that (iii) #> @i). Since |f(x)| =4 ; V x € X,

every neighborhood around a point will expand under iteration. Since f is the tent map

oneach[n,n+%];n>0; P, (x) =X.But f[0, 1] = [0, 1]. So O, (x) # Xforany x & X.

(3) (iii) => (ii)

Let X = [0, %] and f : X— X be defined by,

Sy

f(x)=§2i,if0$xs‘/z

=ﬁ;—x),if1/23xs%.

Figa.

[N

o
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Since [f'(x)] > = , V x e [0, %], the function is expanding. But there is no periodic

SR RVS)

point in (O.g). So P,(X) # X This example is enough to show that (i) #> (ii)and (i)
and

(1) #> (11).

It is clear that C(F) < S(F). The other inclusion need not be true in general.
Let X =1IR, F=[-1, 1] and f: F — F be defined by f(x) = X2 By Cor.2.1.9, f € S(F). But
Py(F)=1{-1,0,1}.So P.(F) #F. So f ¢ C(F).

If X is discrete or indiscrete, S(F) = ¢, V F € K(X) .. X is not a chaos space.

Result.2.1.15 :
IR is a chaos space.

Proof : Let F = [0, 1] and f:F — F be the map

_ J2x0<x<1/2
defined by, f(x) = {2(1 -x)1/2<x<1

then f € C(F). .. H(F)# ¢ .. F € CH(R). Hence R is a chaos space.

Result.2.1.16 :

n
Ifeach X;,1=1, 2, 3,...... ,n1s Tz and chaos then X = [] Xi is a chaos space.
¢ i=1

Proof : Since each X is T3 it is T also.

S Xis T3 and Tz.

Given that each X; is chaos. So there exist F; € K(X;) and f; : F; — F; such that
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n . .
tfi e C(Fj). Let F = T[] Fi . Then F ¢ K(X). Since each F; is perfect F is also perfect.
i=1

Define f: F— F by f(x) = f(xy, X3, ....Xn) = (fi(X1), f2(x2),....fa(xn)) Where

X = (X1, X2, -+---Xn)-

f e S(F) by Cor.2.1.8. We will prove that f e C(F). ie. We have to show that,
(1) m= F. for some x € F and (i1) m =F.

First we prove (i). Since f; € C(Fi), there exist x; € Fi

such that Of, (x;)=Fi, fori=1, 2, 3,.....,n. Let x =(xy, X2,....Xn).

Then we have,

O1(x) < Opi(x1) xOp(x2)x....x0Omn(Xn) .

5o0(x) € O, (x;) X Opy(x,)%x....x Op (X))

mg F (Since m=Fi, fori=1,2,....n)
Now we prove, F ¢ m
For that, lety € F. Let y = (yi, ¥2,....,yn), Where y; € Fi for1 =1, 2,....,n. Also each F; is
such that F; = (m for some x;, € F;. So there is a sequence in Ofi(x;) which
converges to yi. for i = 1, 2...n ie. there is a subsequence of {f"(x;)}7., which
converges to y;. So given a neighborhood Vy;of yi, 3 N; € Z: Such that Vm > N; " (x;)

€ Vyi.

n
Let N = Max{Ny, Na...... Np}. Then if G(= [] Vyi ) is an open neighbourhood of y,
i=1

then Vn 2N, f'(x) € G. So {fK(x)} converges toy. Soy € O«x). Hence, F ¢ O, (x).
~.We have. F = O, (x).

By a similar argument we have, P, (F)=F
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. eC(F), hence F e CH(X)

. X 1s a chaos space

IR", ¥n21, is a chaos space.

Proof : By Result 2.1.15 and 2.1.16

Result.2.1.18 :

Being a chaos space is a topological property.

Proof : We want to prove that if X is a chaos space and if X and Y are
homeomorphic, then Y is a chaos space. Let h : X—Y be a homeomorphism. Since X
is a chaos space, there exists F € CH(X). So C(F) # ¢. Let f € C(F). Let g = hofoh™.
Then g is a continuous function from h(F) to h(F). We prove that g € C (h(F)) so that

h(F) € CH(Y). ie. We have to prove that (i) O, (y)= h(F), for some y € h (F).
(i) P,(h(F))=h(F) and (iii) g € S(h(F)).

To prove (i) :

SinceF e CH(X),dx e F3 O, (x) =F.......... (D)

If possible. suppose O, (y)#h(F), for any y € h (F). ie. O, (h(x))#h(F), for any x € F.

ie. There is an open set V in h(F) such that Og(h(x)) "V = ¢

=>o"(h(x)) ¢V, forany n¢ Z.

=> (o fo h™)" (h(x)) ¢V, for any n
=> (ho % h™") (h(x)) ¢V, for any n
=> (hof") (x) ¢V, for any n

=> f'(x) ¢ h™'(v), for any n, which contradicts ().
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- Og(y) =h(F), forsomey € h(F).
Proof of (i1) is similar To pro(ze (111).

Let y; € h(F). Then y; = h(x,), for some x; € F. Let V be an open neighborhood of y;.
Thenh™'(v) is open in F and h'(v)isa neighborhood of x,. Since f e S(F),
Ix, € h'(v)AF and n € Z, and an open set p such that f"(x;) € U and f'(x2)¢ U.
Since
f'(x1) € U, (hof" (x1) € h(U)

=> (hof"h™) (h (x)) € h (U)

=>g"(y1) € h(U)

In the same way, g"(y2) ¢ h(u). Hence g € C(h(F)) and so, h(F) € CH(Y). .. Y

is a chaos space

Notation.2.1.19 :

Let D(F) = {x € F| O, (x)=F}

Result.2.1.20 :

Let X be a T, space without isolated points and f : X— X be continuous. Then, D(F) =

¢=> D, (F)=F.

Proof. Let x € D(F). Then O,(x)= F. Since X is T, having no isolated points,

removing a finite set from a dense set leaves a dense set.

So, O(f(x)) = (O(x) - {x})is dense in F.
So. f(x) € D«(F). Also D(F)is invariant under f.
- If x € D(F), Ofx) < D(f). But O, (x) =F

~D.(F)=F
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The following example shows that Of(x)=F #> sz (x)=F
Let C be the Complex piane and S} be the unit circle in C.
Let C— C be defined by, g(z) = 2z-1. Let S} be the circle of radius 2 with

centre at —1. Then g(S}) = S, .

Fig.

S, is internally tangent to S, at 1.

Let X =S, U S) with Eucledian topology. Define f:x— x by,

f(z) = g(z%) ; if z &S|

[g' (@) ;ifzeS)

By Baire Category theorem, there is a point x € x. Such that O, (x)= X. But £

leaves both S: and Sz'. invariant and thus has no dense orbits. In particular, OFz (x)=
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X. Note that f is chaotic on X because any (4"-1)" root of unity is periodic and f-image

of that root is also periodic. But f* is not chaotic.

So a question aries that under what conditions f is chaotic=> f is chaotic. We will

answer this question through the following results.

Result.2.1.22 :

Let X be T, without isolated points and f: X— X be continuous such that

x € D¢(X). Then, x ¢D o (X)<=> There exist a seperation D;, D, of D such that each

of the sets D; and D, is invariant under £,

Proof. Assume that x ¢ D p (X). . O (x)#XLet G=X- O, (x). So G is open in X.

We will show that, for each non-negative integer k, f 'Zk(G) c G. Let k be a non-
negative integer and suppose that [ 2I"(G)]m m # (-m-mmmme- ™)

G is open and f is continuous. .. (G) is open. Since (m =X, [fMG)] N Ox) =
0.

So there exists a non negative integer m such that > (x) e[f*(G)]. So f**"™(x) € G.

Which is a contradiction to the definition of G.

~.(*) is not possible. ie. f *(G) c G.

Claim :
f1(G) < (X\G).
If possible assume that GG 2@.
Since m=X and ™'(G) NG is open, there is a non-negative integer j such that
fi(x) € £'(G) NG. But this j can’t be even (for fi(x) €G) and j can’t be odd
(since fj(x) e f (G = F+'(x) €G and j+1 is even).
This is a contradiction .
~f(G) c (X\G).
~fHG)NG= ¢



Note that f l(G) and G are open.
-k

Let y € D((X). Then there is a k>0 such that ff(y) € G.ie.y € f (G) and is either in
G (if k is even) or £f4G) [if k is odd, because then f(y) £ (G) <G for some r].Soy
eD(x) =>y eGory ef (G) ...DX) c f(G) UG.
By hypothesis D¢(x) is dense. .. D{X) f(G) # ¢ and Dgx) "G ¢.
Let D;=D(X) NG and D, = D¢(x) N f (G).
Then D, D; is a seperation of Dg(x). We complete the proof by showing that f(D,)CD,
and f(D)CD,.
Suppose z €D;. Then z € £ (G) and z € D(x)

=>f(z) € G and z € D((x)

=> f(z) €G and f(z) eDy(x). (By Result.2.1.20)

=> f(z) € GN Di(x) =D,

~.f(Dy) = D).

Now, let z! eD,
=> 7' € GN D¢(x)

=z'eG

Suppose f(z') €G. Then z' € G N fY(G).

But this contradicts the fact that GNf'(G) = ¢.
~f(He(X\G)

So f(z) € can’t be in D,. Since z!' €Dy, f(z') € D¢(x). So f(z') € D,
- (D) ¢ Ds.

Result.2.1.23:

Let X be T, without isolated points. Let x € X be such that x € Di(x) and x gD#(x).
Let Uy = [X\(O,. (x))] and U, = £ (Uy). Then,

(l) U]ﬁU2= ¢

i) U,uU,=X
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(i) f(Uy) c U,
(v) flU) c X))

V) (U;uUy)" is invariant under f.

Proof : (1), (i) and (iv) follows from Result.2.1.22. (ii1)follows from definition of U,.
Now, to prove (v) :
Let z €(UyuU,)C. If f(z) were in Uy, then z ef "'(U}) = U, . If f(z) €Us, then f(z) € U,
,s0 by Result2.1.21,z € U,.
. (@) e (S1USy)°.
~R(U1VU)%) < (U1uUy)°.

Result.2.1.24 :
Let X be a T, space without isolated points such that x €D¢(X) and the closure of the

set of points of x having odd period under f has non-empty interior, then x € D 2 (X).

Proof : Neither U; nor U, contain a point having odd period under f and ((U;uU,)%)° =
¢ because U, u U, = X. (by Result 2.1.23). If possible assume that x ¢ Dg(X). Then

set of points having odd period is contained in (U;wU,), a closed set with empty
mterior. which is a contradiction.

~.x € DAX).

Result.2.1.25:
Let X be a regular space without isolated points. If f € C(X) and the closure of the set

of points of X having odd period under f has non-empty interior then f > € C(X).

Proof : f € C(X) => O;(x)=X, forsome x € X

=> 0_,(x)= X (By Result.2.1.24)

==X GDfZ(X) """"""""" (1)

Again, f eC(X) => P, (X)=X
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=> P, (x)= X comommommmomees ()
Since I eC(X), f eS(X) => X is perfect. (By Result Cor.2.1.7) because f is non-
constant (If f is constant D{X) - 0).
~f2 eS(X). So, 2 e C(X).

Note that if f* € C(X) then f eC(X), for any topological space X. So we have,

Cor.2.1.26:
Let X be regular without isolated points and f : X— X be continuous such that closure

of set of points having odd period under f has non-empty interior then,

feC(X) <=>f? eC(X).
Proof : By Result.2.1.25.
2.2. Scveral definitions of chaos

There are several definitions of chaos in the literature. Some of them are
defined on [0. 1]. Some of them in metricspaces and some of them are on more general
topological spaces. In this section we give generalizations of these definitions and

compare their relations.

The First one is Definition 2.1.10, which we call by the name TC. The second

one is Devaney’s definition (in metricspaces) we call this by DC.

Next we define;

Definition.2.2.1 :
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Let (X, 3) be a topological space and f : X— X be continuous. f is said to be
Sharkovsky chaotic (SC) on X if f has points of period n, VneZ..

By Li-Yorke result f: [0, 1] — [0, 1] is SC if f has a point of period three.
Next, we generalize Li-Yorke’s definition [Definition 1.1.5] of chaotic functions in [0,

1] into metric spaces. For that we want a notation.

Notation.2.2.2 :
Let M = {(x, y)} eXxX | lim sup d(f"(x), f'(y)) > 0 and lim inf d (f'(x), f'(y)) > o}
and A = {(x, x) | x € X}

Now we define,

Definition.2.2.3 :

Let (X, d) be a metricspace and f: X— X be continuous. f is Li-Yorke chaotic (LYC) if

there exist an uncountable set S ¢ X such that,

(M\A) /s =(SxS)\ (Als).
[Here, (M \ A) /s) = {x eM\A|xe S} and
Als={(x,x) | x € S}]

Now we generalize Auslander — Yorke definition into topological spaces. [see

Definition 1.1.9]. Before that,

Definition.2.2.4 :

Let X be a topological space and f: X—X be continuous f is stable at x if given any
neighborhood. U of x there is a neighborhood V of x such that, V < U and (V) c U,

V¥n >1. fis unstable at x if f is not stable at x.

Definition.2.2.5 :
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Let (X, 3) be a topological space and f: X—X be continuous. f is Auslander-Yorke

chaotic (AYC) on X if (i) O, (x)=X, for some x € X and (i) f is unstable at x, VxeX.

Definition.2.2.6 :

Let (X. d) be a metricspace and f: X—X be Continuous. Then f is Generically chaotic
(GC) on X if there exist. D < M such that D = XxX.
(M is as defined in Notation 2.2.2.)

We have Block-Coppel definition of chaos in terms of topological entropy
[Definition.1.1.10].

Definition.2.2.7 :

Let (X. 3) be a topological space and f: X— X be continuous, then f is Block-Coppel
chaotic (BC) on X if topological entropy of f, ie. top (f), > 0.

Knudsen [ 49* ] defined chaotic functions as,

Let (X, d) be a metric space and f: X— X be continuous. Then f is Knudsen
chaotic (KC) iff (i) O,(x)= X, for some x € X and (ii) f is sensitive to initial

conditions.

Now we define expansive chaotic functions.

Definition.2.2.9 :
Let (X, d) be a Metric space and f : X— Xbe continuous. Then f is expansive on x if

35>0 such that Vx, y € x with x=y ; d (f'(x), f'(y)) = 8, for some n. (Note that J is

uniform ie. & is independent of the points x and y).
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It is clear from the definition that,

Result.2.2.10 :

If f is expansive then f'is sensitive

Let (X. d) be a metric space and f: X—X be continuous. Then f is Expansively chaotic
(EC) if (1) f is transitive, (i1) P, (x)= X and (111) f is expansive. Now we compare ali

definitions.

2.2.12 : TC versus other definitions

(1) TC > DC
Suppose X has an isolated point, say ae X, then f can’t be transitive at a.

But if x has no isolated points then fis TC => f'is DC because, by Result.1.1.11.

It X is Second countable Baire space then fis transitive => x €Dy (X), for some
xeX.

So we have,

If X is a second countable Baire space without isolated points and f:X—>X is
continuous f" is non constant, for some n, in every open set G, then
fisTC <=>{fisDC

Proof is clear from above statement .

(3) TC #>SC
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Let £ [0, 1] — [0, 1] defined by

. 1 2
f(x) = x+ < 0<x< -
J . J
2 2
:1_9(,(__),2 <x<—3
373 30
2 23
=X- =, —<x<1
3 30

clearly fis TC. But there is no point of period 2. So fis not SC.

(4) TC #> LYC
Let S' be the unit circle and f: S' — S' be the irrational rotation of S'. ie. f(e'®) =

""" where 2 is not rational. Then O,(x)= S', vx € S' and fis TC. But f is not
/4

LYC.

(5) TC #> AYC
But on metric spaces, TC => AYC. Since on metric spaces f is sensitive => f is

unstable.

(6) TC #> BC
Let X be a Compact chaos metric space and f e H(X). Such that {f"} is equicontinuous

then top (f) = 0 (by Result 1.1.15). So fis TC but not BC.

(1Y TC = KC

clear from definitions

(8) TC = EC

Usual tent map is an example for TC. But it is not EC because there are points x=y

such that f (x) = f(y).



2.2.13 : DC versus other definitions

(1) DC #> TC
because, f is transitive #> D¢ (x) # ¢.
But if X is a second countable Baire space then

fis DC=>fis TC

(2) DC #> SC

Same as example 2.2.12(.3).

(3) DC => LYC

Clear from definitions

(4) DC #> AYC

But on second countable Baire spaces DC => AYC

(5) DC => GC
Since D(X) # ¢, D (x) = x, by Result 2.1.20
So D = D(X) x D(X) is such that D = XxX.

(6) DC > BC
Same as 2.2.12.(6)

(7)DC = KC
But if X is second Countable baire then DC => KC.

(8) DC = EC

2.2.14 : SC versus other definitions

(1) SC #> Any other definitions
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Just one example is enough to show this .

Let X = [0, 1] and f be the identity map on X . Note that top(f) = log (f'(x)) =log 1 =0.

2.2.15 : LYC versus other definition

(1) LYC #> any other definitions
Let X =[-1, 1] and f: X— X be defined as,
f(x) =-2x-2;-1<x< %
2X |x] < Y2

2-2x; Y<x<1

Note that f restricted to [0, 1] is the usual tent map. Tent map is LYC. So there exist a
scrambled set M for f. but f is not transitive on [-1, 1]; Since none of the points in (0, 1)
can reach any subinterval of (-1, 0). Also top (f) = 0.

But if f is transitive, then fis LYC =>fis TC and fis LYC => fis DC.

2.2.16 : AYC versus other definitions

(1) AYC #> any other definitions

Classical sturmian systems are examples. Let Y be the 1-torus and f, be the rotation by
the irrational number «cey. Code the orbits of Y according to the closed cover
C={[0,1-a],[]1-a,1]}of Y. Let X be the closed set of all bi-finite C-names and let
be the shift. Then ¢ : x — x is AYC but not TC. (there are no periodic points for c).

This example is enough to prove that AYC #> other definitions except for AYC #>
EC.

() AYC #> EC
The test map on [0, 1] is AYC, but not expansive so not EC.

Note that if set of periodic points if f is non-empty then fis AYC =>fis LYC.

2.2.17 : GC versus other definitions




(1) GC #> any other definitions
Let X be the set of all words with two letter and f: X— X be full shift. Let g be the
irrational rotation of the unit circle Y. Define, h : X xY— X xY as h(x, y) = (f(x),

g(y)). Then h is GC on X xY with product topology ; But h is not any other chaos.

2.2.18 : BC versus other definitions

All chaotic maps with zero topological entropy is an example for this. For example
2.2.15(1) .

2.2.19 : KC versus other definitions
(HKC = TC

Because periodic points need not be dense

If periodic points of fare dense then fis KC => fis TC.

(2) KC #> DC

If X has no isolated points and periodic points of f are dense then fis KC => fis DC.

(3) KC => SC
See 2.2.12.(3).

(4) KC #> LYC
See 2.2.12.(4).

(5)KC => AYC

f is sensitive => f is unstable

(6) KC #> GC
See 2.2.16.(1).

(7) KC #> BC
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See 2.2.15.(1).

(8) KC #> EC

Any example for O, (x)= X #> {is transitive

2.2.20 : EC versus other definitions

(1) EC #> any other definitions

Examples can be taken from already given ones.

Now we represent all these implications in the following table.

For example third row last column is filled by ‘T’. That means DC => EC in general.
But second row sixth column is entered with 2. That means in general, TC #>AYC

But if 2 is assumed, ie. in Metricspaces,TC => AYC

(see the table on next page )

34



Table.l

=> [|TC |[DC [sC TJLYC [AYC [GC [BC [KC [EC
TC |T 1 F F 2 F F T F
DC |3 T F T 3 T F 3 T
SC [F F T F F F F F F
LYC |4 4 F T 4 F F 4 4
AYC |6 1&6 | F 5 T F F 4 F
GC |F F F 4 F T F F F
‘BC |F F F F F F T F F
KC |6 1&6 | F F T F F T F
EC |3 T F F 3 F F 3 T

Where ‘T’ means True, ‘F’ means False

=true if X has no isolated points.
=true if X is a Metric space.

=true if X is second countable Baire.
=true if F is transitive.

=true if Set of Periodic points is non-
empty.

. =true if Periodic points are dense.

N W N —

Now we prove that in [0, 1] almost all the above definitions are equivalent and

some more can be added to this. For that we want following notations

Li(x)= N, (f* x)))
k=o

Qr (X) = {x € x| x is non wandering}

and we define,
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Definition.2.2.22 :

Let X be a topological space and f: X— X be continuous. Then f is ‘stirring’ if given
any pair of non empty open sets U and V in X, 3 some k € Z. such that f *(U)n £ *(V)
#h .

fis ‘strongly stirring” if 3 k € Z+ and an open set G in X such that, G f %U) ~ £EV).

Let X be a T,, second countable, Baire space without isolated points and f: X— X be
continuous and onto. Then the following are equivalent.

(1) f is transitive on x
(it)  There exists x €X such that O, (x) =X (ie D¢(X) # ¢)

(iii)  There exists x € X such that L¢(x) = X.

Proof .

(iii) => (i1)
If Li(x) = X and since m =X O¢(x) W L¢(x), we have

(i1) => (iii)
Suppose that these exist an xe X with Of_(x) =X Letx'e X with f(x') =x
Now, x' € m = O¢(x) UL(x) .
If x> eLi(x) then x = f(x") € L{x). Since L{(x) is closed and f (L{x)) cL{x),
0, (x) cLi(x). So, Li(x) = X.

Now, if x> € Ogx) then x = {(x’) € O«x) and O¢ (x) = (m = L{x) = X is a finite set.
But X is infinite. So x’ € Ogx).

(i) => (iii)
Suppose f'is transitive. ie. given U, V open in X there exist n>0 such that f'(U)NVzQ.

Let B = {Uy, U,....,U,,.....} be a countable base for X. Forj,N € Z,,



Define U_i(N) = U(fk )"'(U,) . Since f is transitive and continuous U_i(N) is open and

kzn

dense. Since X is Baire, ) U(N) is dense in X.
N
So, f(x) € U;, for some k>N. Hence L{(x) N ij # ¢.
S Ldx) =X
(iii) => (i)
Suppose Lix) = X, for some xeX. Let U, V be open in X. We show that

[ U(fk)_1 U) ]V #J . Let k >0 such that f%x) eV. Let r>0 Such that f ™* x) eU.
k

So, £¥(x) e VAEY ' (U) € VA [ UEX) ™1 (U)] . Hence fis transitive.
K

From Example 2.1.14.(3) we have P, (x)=X #>0,(x)=X.
From Result.2.2.23. on T,, Second countable Baire spaces without isolated points
0,(x)=X <=> f is transitive. So in general, P, (x)= X. #> f is transitive But if { is

strongly stirring then P, (x)=X => fis transitive.

Result.2.2.24 :

Let X be topological space and f : X— X be continuous. Then P (X)= X and f is

strongly stirring => f'is transitive.

Proof . et U and V be open sets in X. Since f is strongly stirring there is an open set G

in X such that G < f*(U) nf* (V), for some KeZ,

~ ~

Let V= ()" (G) NV. Since fis continuous V is open. Since P (X)= X, there is a

~ ~

periodic point xe V say of period p. But since xe V fk(x) €G and f(x) eV. But
G < £5U) nfXV). So R ef ).

fe. f*(x) = tK(y) for some yeU

) =170 (E(y) = 179 (5 0) = £7(x) = x,
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~

wherey €e Uandx € V ("o V V).
S0 AV ).

-.fis transitive.

Cor.2.2.25:

Let X be a topological space and f : X— X be continuous. Then f e C(X) if (i) PfT(—)=
X (ii) f is strongly string and (iii) f € S(X) .

Proof. Follow from Definition.2.1.10 and Result 2.2.24.

Result.2.2.26:
Let X be T, and f: X— X is either transitive or P,(X) = X, then Q¢(X) = X.

Proof. Suppose f is transitive on X. Let U be a neighborhood of xeX. Then f "(U)"U=
o, for some n €Z,. So xeQ(x) . Since xeX is arbitrary Q(X) = X .

If m=X then, xe m=> there is a sequence {Xj, Xa,....,Xp.....} in P{X) which
converges to X. So given a neighbourhood U of x 3k>0 such that x,€U, Vn >K. But

Xi, for i = k+1, k+2,....are periodic points. So there exist nje Z. such that fm(xi) =X;.

Hence f"(U) NU# ¢. So. xeQ¢ (X).

ie. P (X) < Qr(X). Since P(X)= X, Q¢ (X) =X.

Cor.2.2.27 :
If fis chaotic on X then Q¢ (X) =X

Proof . Follows from Result.2.2.26

Result.2.2.28 :

Let X be a topological space and f : X—X be continuous. Then Q¢ (X) = X => f is

transitive on X.

Proof. Let U and V be any two open sets in X. then (UNV) is also open in X. Since



Qr (X) = X, 3neZ. such that, f'[(UNV)]N( UNV) # ¢ ; which in turn implies
f'(U) NV ¢.

-.fis transitive on X.

Result.2.2.29 :
Let X be a T, Second Countable Baire space without isolated points and

f: X— X be continuous. Then following are equivalent.

(1) fisTC
(i)  fis transitive and P,(X)=X
(iili)  Given any two non-empty open sets U, V in X there exist a periodic
point pe U such that O{p)nV= ¢
(iv)  Let {U,}" be a collection of open sets. Then there exists a periodic
point p; € U;. such that O¢ (pi) "Uj # ¢, Vi£] .
Proof. Suppose fis TC.
Then (6;—(;)) = X for some xeX and m= X. But by Result.2.2.3, f is transitive
and P, (X)=X. So (i) => (ii)
If f is transitive and periodic points are dense and since has no isolated points fe S(X).
~.feS(X).
~feCX) ()= (1) .
To prove (i1) => (ii1)
Suppose f is transitive and P—t.—(f)=X. Given any pair of non-empty open sets U, V in X
JueU and ke Z.. Such that f°(u) € V. Let W = (f %' (V)NU. Since W is the
intersection of two open sets and ue(f *)'(V) NU. W is non empty and open. Also f
(W) < V. Since. W=X, there is a periodic point p in W. So. pe WcU. Such that
f(P)ef* (W) cV. So, O(p) "V=o .Hence (ii) = (iii)
To Prove (ii1) => (ii)

Assume (iii). Given any open set V there is a periodic point p in X such that



Odp) NV=¢. Since p is periodic, f "(p) is periodic for all neZ, So V contains a
periodic point. Hence P, (X)=X. Let U, V be any two non-empty open sets. Then there
exists peU such that f K(p)eV for some keZ,. ie. f *(U) NV=¢. So f is transitive. ie.

(ii)) => (i)-

Now we prove (iii) => (1v)

Assume (iii). ie. Given any two non-empty open sets U and V, there is a periodic point

peU. Such that Odp) NV#¢. We have to prove that if {U ; }:'zl is a collection of open

sets then there exist some p; € U; Such that Oi(p;) N Ujz¢, Vizj.
We prove this by induction.
Let n be the number of open sets in our collection. If n =1, Since m= X (by (i1))
(iv) is true. If n =2, by (i11) ; (1v) is true. Assume that the assertion (iii) => (iv) holds for
n = r, say. We will show that it holds for (r+1) non-empty open subsets. We can
assume that the collection of (r+1) open subsets are disjoint, because if they are not
disjoint then the intersection is again open so that pair can be replaced by their
intersection giving r open sets for which our assertion holds. From our disjoint
collection choose a subset G. the remaining r subsets, by hypothesis, has the property
(iv). Let U, be a subset from this collection. By (iv) 3p, with period such that
O p)NUi=Vi. Since the collection is disjoint m>(r-1). Now consider the iterates of p.
IK,. €Z, such that f*'(p) is in one of the open set in the collection. Let this subset be
U,. Ki<m. Again 3K, €Z, such that fKZ(p)eUz for some U, is the collection ;
0<K,;<K,<m. Continuing in this way, we have f*(p)e U;, Vi =0, 1, 2,.....(r-1) where 0
= Ko< K< <K i<m.

Let Wo= U,.;Then f**! (p) e W,

Let W, = f (KE2-KeD (W y AU,

W, is open. It is non-empty because,

£ K2 (p)eU,. and £ X (p) e W,

fK(r-Z) (p) = flK(r-Z)- K(r-D)] (fK(r-l) (p) e]v[K(r-Z)— MH)D(WO).

So, " (p) e W,
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Also fIRED =KDl y = W,

In general, we have,

W; = £ IRED=RET Wy AU ey ; for =1, 2,......(r-1).

Also, fRED=KEEDL (wiy W, fori=1, 2,...., (r-1)

So there exist a periodic point pe G such that , Odp) "W,.1# ¢.

ie f(pHeW. c U, ie. fi(p') = F*°(p") € W .c U,

{RI(ply = KIKO KOy ply o fKIKO W o U

ie. £%,(p") eUifori=0, 1, 2,...,(r-1)

So, O(p)NUi = ¢, V i=0, 1, 2,...,(r-1)

- (i) => (iv) .

If for any collection r, (iv) is true it is true for r = 2 also.
o (iv) => (iii)

So we proved (1) <=> (ii) <=> (iii) <=> (iv) .

Let f be continuous on X =[0, 1]. Then the following are equivalent.

(i) fisDC
(i)  D(X)#¢

(iii) | J/™"(U)is dense in [0, 1] for each open set U.
n=1

Proof . f'is DC => f is transitive <=> D, (x)# ¢ (by Result.2.2.23) .
So (1) => (ii).
To prove (i1) => (1) .
Suppose f is Such that m # ¢. Then fis transitive.
(1) is proved if we prove that m= X.
Suppose not, ie. m:tx. Then 3 JcX Containing no periodic points. Let xeJ and

NcJ. Let Ec (J\N). Since f'is transitive on X there exist a m>0 such that
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f"N) NE= ¢. So Ja yel with f(y) eEcJ. Since P(J) = ¢, y=f"(y). Since f is
continuous there exist a neighborhood U of Y with f"(u) mu = ¢. Since U is an open set
and f is transitive there exist n>m and a zeU with f'(z) €U. But then, 0<m<n and z,
f'(z) eu while f "(z)¢U. This violates the Result 1.1.18 .

So (i) => (i) .
To prove (i1) => (ii1) .

Suppose D, (X)#O. Let U, W be open sets in X. We show that

w 'd
UF™™ (UNW= ¢. Let K>0 such that f(x) e W. Let 1 >0 such that, f **! (x)eU.
n=1

. e 0]
So. fMx) eWnf'(U)cWn Uf 2 ).
n=1

To prove (iii) => (i1)

0
Suppose for each open set U, Uf ™ (U) is dense in X. Let B ={U;, U,,...} be a
n=1I

countable basis for X. Let Uj(N) = Uf- k (Uj) ; VUjeB and NeZ, .
k>N
By Baire category theorem, ﬂU ; W

1>0.N>0

0.

So for every pair of positive integers j and N , xe U; N so f¥x) e Uj, for some k>N .
~Li(x)m fJ_i =0
Hence L (x) =X => O,(x)=X, by result 2.2.23

In 1986, K Jankova and J. Smital proved that f is LYC on I = [0,1] iff L (x)

contains two f- non separable points a and b, for some x € |
Combing all the results that we have so far

Result. 2.2.3.1:
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let f: I—1 be a continuous function, Where 1 = [0,1]. Then the following are
equivalent ,
(1) fis transitive an X
(2) fis TC
(3) fis DC
(4) fisLYC
(5) fisAYC
(6) fis KC
(7) fis EC
(8) every point of I is unstable
(9) De(M) = ¢
(10) 3xel such that Li (x) =1
(11) fis transitive and periodic points are dense
(12) QD=1
(13) given any two non- empty open sets U, Vin1 there exits a periodic point

peU such that Os (p) "V = ¢
(I14)let {U.}, be acollection of open sets in I. Then there is a periodic point

pi € Uisuchthat O (p)NU;# ¢, Vi]

(15) Ut (U)is dense in | for each open set U .

n=|

(16) 3 x £ I such that Li(x) contains two f- non separable points .

From the Resultl.1.13. we have if t: [0,1]— [0,1] has a point of period 3 than f is
LYC. Also by Sharkovskys theorem if f: [0,1] — [0,1] has a point of period 3 ten f is
SC.

So, period 3 =>LYC

and period 3 => SC

Motivated by this we consider space in which period 3 => SC. We define

Sharkovsky spaces in the next section.
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2.3. Sharkovsky Spaces

In this section we define Sharkovsky spaces. In Sharkovsky spaces, period three

implies SC.

Definition 2.3.1.

let X be a topological space and f: X— X be continuous. Arrange the set of
positive integers in the following order

3<5<7<9<. .. <2.3<2.5<2.7<....<22.3<22 5<.. <23<2%<2%<0<«]

X is called a Sharkovsky space iff for every continuos function on X existence of a
point of period n => existence of a point of period m for every m such that n<m. From

the definitions it is clear that,

Result 2.3.2.

Let X is a Sharkovsky space and f: X — X be continuos. If there is a point of period 3

tor fthen fis SC on X

From the Sharkovsky’s theorem (Result. 1.1.14) we have

Result. 2.3.3.
R is a Sharkovsky space

Note that if t is SC on X then f must have points of all periods. In particular f

has points of period 3. So, in general, the converse of Result. 2.3.2 is true so we have,

Result. 2.3.4.

Let X be a Sharkosky space and f: X—X be continuous then following are equivalent,
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(1) fis SC
(1) f has a point of period 3

Next example shows that a chaos space need not be a Sharkovsky space

Example 2.3.5.
We know that C is a chaos space since C is homeomerphic to R%. But C is not a

Sharkosky space.

Define f:C— C as, f(z) = -z+2* .

Then f has a point of period 3, but those is no point of period 2(note that 3<2 in

the order) .

So a question arises which properly of R makes it a sharkovsky space, which lacks for

C. we will try to answer this question. For that first we have.

Definition 2.3.6.

If (X, <) be a totally ordered set with more than one point. Then X is a linear
continuum 1f
(1) X has the least upper bound property (equivalently the greatest
lower bound property),
(i) X s order dense ie. If X<y, then there exist z such that x<z<y.

(i) X has the order topology .

The following result is a generalization of the Intermediate value theorem.

Result 2.3.7.
Let [a. b] be a closed interval in the linear continuum X. if f: {a, b]—X is a continuous
function and y is a point of X lying between f(a) and f(b), then there exists a point

x¢[a. b] such that f(x)=y .
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We will prove that,

Every linear continuum is Sharkovsky space.

To prove this result, we want the following results.

Result. 2.3.9.
Let X be a linear continuum. Let I and J be closed intervals in X and let f:
X—X be a continuous function. If Jcf (I), then there exists a closed interval Qcl so

that

fQ=J.

Proof. We take two points p, q € I with p<q so that J= [f (p), f(q)] or
J=[f (q), f(p), and define , p <1r<q, by r=sup [ x € [p, q] | {(x)= f(p)}. We claim that
f(r)=f (p). For otherwise we can find (as X is T;) an open set V so that f(r) eV and
f(p) V. and by continuity of f an open neighborhood Uof r such that f(U) ¢ V. As X
is order dense, we can choose p<r’<r with [r" r] U, hence f [1’ r] cV implies
f(p) & t({r’. r]). But this contradicts the definition of r as a sup. If we definer <s <q
by s = inf {xe(r, q] | f(x)= 1(q)}, then f(s)= f(q) can be proved analogously. Let Q= [r,
s] cl. We prove that f(Q)=J.
Result. 2.3.7 Applied to f ([r, s]) shows that Jcf ([r, s]). But we also have f ([r, s]) <J,
for otherwise there exists. r<x<s with f(x) ¢J. if f(x) <f(p) <(q) or f(q) < f(p) < f(x),
then result. 2.3.7 applied to f| [x, s] asserts that f(p)= f(x’) for some r<x<x’<s, which
contradicts the definition of r as a sup. If f(x)<f(q)<f(p) or f(p)<f(q)<f(x), then the
result. 2.3.7 applied to f | [r, X] yields a contradiction to the definition of s as an

infemum. Therefore no such point can exist. So, J=f(Q).

Result 2.3.10.
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Let X be a linear continuum. Let I be a closed interval in X and f:X—>X be a

continuous function If I < f(I), then f has a fixed point in [.

Proof : We use Result. 2.3.9 to choose a closed interval Qcl with f(Q)=I, and we will

show that f has a fixed point in Q.

If possible assume that f/Q has no fixed point. Than QcAUB, where A =
{xeX|x<f(x)} and B= {xeX]f(x)<x}. To see that A is open, let x € A be a point such
that x<z<f(x) and an open neighborhood Uc (‘«,z) of x with f (U) < (z, ). Then
UcA, so x is an interior point of A. Similarly B is open. Hence (QnA)and (QMB) are
open in Q, and Q = (QNA)U (QMB). To see that QNA=¢, let [= [c,d]. As f(Q)=1, there
exists x €Q with f(x")= d, and if {/Q has no fixed point then x’# d. As Qcl, we have
X'<f(x’)=d, so

x’ € QNA. Analogously we can find x”e Q-{c} with f(x”)=c and x” € QNB. Hence
QNA and QB form a separation of the connected set Q, which is impossible

.. f must have a fixed pointin Q .

Result 2.3.11.

Let X be a linear continuum and f: X—X be a continuous function. If f has a periodic

point, then f has a fixed point.

Proof. Let f: X—X have a point of period k>1, and choose a in the sequence a, f(a),
fz(a),..., fk(a)= a, so that a < f(a). As the orbit of a returns to a, these exists a point b=
f(a), for i= 1.2, ..., k-1. with f(b)<b. As in the proof of Result 2.3.10 it follows that the
sets A= {x € X]| x<f(x)} and B= {x € X] f(x) < x} are open. If f has no fixed point,
then X= AUB, hencea € A,b e Band A nB=¢=> A and B form a separation of

the connected space X. which is a contradiction. So f must have a fixed point.
Proof of Result. 2.3.8 can now he completed analogously as proof of theorem

3.31n [ 67 ]. In that proof replace R by X. since there is nothing new in the proof we

are not giving it now.
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Result 2.3.12.

Every sharkovsky space is connected.

Proof. Let X be a Sharkovsky space. We have to prove that X is connected. If X is not
connected, then X = AUB, where A and B are non-empty closed subsets of X with
AnB = ¢, We choose points a € A and b € B, and define f: X—>X by,

f(x)= b.¥xe A
a, vxe B

Then f is continuous by the pasting lemma and a and b are points of period
two. But f has no fixed point and 2<1. So X is not a Sharkovsky space, which is a

contradiction. .. X must be connected.

Next set of examples show that we can not avoid the assumption of a linear

continuum in Result. 2.3.8.

Example 2.3.13.

(1) Let X= (-1,0) U (0,1). X is order dense but lacks the sup. property
clearly X is not a sharkovsky space, as it is not connected.

(i)  Let X=[-2,-1] U [1,2]. X has sup. property but is not order dense. X is
not a sharkovsky space.

(iif)  Let X be the space which consist of three line segments which join the

point (0,-1), (g, %), (ﬂ 14) to the origin. A partial order which

7 b

is order dense and has the sup. property is defined if we write (x, y) <

(x’,y’) when every <y’.
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!

Let f: X—X be the rotation through 2?ﬂwith the origin as centre. Then all point

of X\ {(0,0)} are point of period three and the origin is a fixed point .ie. f has no points
of period n where n ¢ {1,3} in X, so X is not a Sharkovsky space.

i
Next we consider topological'!entropy.

2.4. Topological entropy

Let X be a chaos space and X e CH(X). Then there may be so many chaotic
function on X. Topological entropy measures complexity of those chaotic functions on
X.In[ 2] Lemma 4.1.2 it has been proved that top (f)= n top (f) and Lemma 4.4.19
states that top (f) > 0 iff f has periodic points of period 2", ¥ n € Z.. Now, topological
entropy can be considered as a function from C (X, X) to [0,0]. So given a function
from C(X.X) to [0.e0] whether it 1s the topological entropy or not is the question of our
interest. ie. Can we characterize topological entropy? We can’t give a full answer to
this question. But we know that I= [0,1] € CH(IR). We give a characterization of

topological entropy as a function from C(LI) to [0, o].

Note that the ordering we defined in definition. 2.3.1 is called sharkovsky

ordering
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Now we define,

Definition 2.4.1.

Fort e NU{27}, we define N(t) = {k € Nl k < t}.

Notation 2.4.2.

Per (f) = set of all periods of f.

Detinition 2.4.3.

Let f: X — X then f is said to be of ‘type t’ if per (f) = N(t). The class of all
maps f eC(X.X) such that type (f) =t (respectively, type (f) <t, type (f)<t, type (f) > t,
type (f) 2 t) will be denoted by T(t) (respectively, T (<t), T (<t) T(>t), T(=t)) .

Remark 2.4.4.
Let y: C (X. X)—> [0.,¢]. Then we say that "y characterizes BC” if y (f) > 0 is

equivalent to top (f) > 0.

Result. 2.4.5
Let y: C(X. X) — [0,00] satisfy the following properties.
(1) v is lower semicontinuos
) y(@ ) =ny@dforn=0
(i)  y(f)=0wheneverf e T(1)
(iv)  y (f) >0 when ever f=gog where g € T (3)

Then y characterizes BC.

Proof. Let f & T (< 2%). We will first prove that y (f)= 0. If f € T (1) then there is

nothing to prove because of (ii1) .

life T (2" then 2" € T(1). So by (ii) and (iii) w(f) = %t//(fz" )=0.
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Iff e T (2%) then clearly fe{f|type (f)<2” } so by (i), y (f) = 0.
Hence we have proved that y (f)= top (f) = 0 for all maps f such that type (f) < 2.
We have from [ 69 ] top(f)>0 iff f € T (>2). So we have proved.

15. A measure on chaos spaces.

Suppose X is a chaos space we can measure the measure of complexity of the
space through the chaotic function on X.In this section we will find measure of some

chaos space.

Definition. 2.5.1.

Let X be a chaos space and Fe CH (X)
Let u(F) = Inf {top (f) [T C (F)} .

Definition 2.5.2.

A tree X is any space which is uniquely arc wise connected and homeomophic to the

union of finitely many copies of the unit interval.

By result. 2.2.31. fis chaotic on [ iff f is transitive on I. So we have,

Result. 2.5.3.
Let X be a tree and f: X — X be continuous then € C(X) iff f is transitive on X.

In [ 3 ] it has been proved that if f: [» I is transitive, then top (f) = (Log2)/2 .

So we have,

Result. 2.5.4.
() > (Log2)/2 .
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In [ 3] it has been proved that, top (f) > ! log 2, where f: X — X, X is a tree
n

with n end points. So more generally.

Result. 2.5.5.
Let X be a tree with n end points, then p (x) > (Log2) /n .

ok ok 2k ok 2k ok ok ok %k ok ok *k ok % ok
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CHAPTER 3
PARTIAL SELF SIMILARITY, SUPER SELF SIMILARITY,
SUBSELF SIMILARITY AND FRACTALS

There are three sections in this chapter. In the first section we define Partial self
similarity . Super self similar sets are defined in section two. In section three we prove

that chaotic self-similar sets are dense.

3.1. Partial self similarity '

Definition 3.1.1.

Let (X.d) be a metric space and Kc X . K is called Partial self similar if there are sets

{
K, K, ..., K such that K= U K, and for each K;;, there are contraction maps ¢;j,

i=l

fori= L. ...t,j= 1,....tand k= 1, ... w(ij). with w (i,j)> 0 such that K;= | J¢,, (K} .

1.k
This partial self similarity can be represented by means of a directed graph. The
vertices of the graph correspond to the sets K, Ks,.... ,K;. Each K; is a union of
contracted copies of the K; s and there is one directed edge from K; to K; for each
contraction map ¢;jx. Note that the contraction ¢;x maps K; to K; but that the arrows

goes from the node K to the node K.

If the directed graph has only one node then the set is strictly self similar.

Fig.

Gk kj ¢f



Suppose that each contraction map ¢ in a partial self similarity, is a similitude with
ratio 1y, suppose the set of similitudes satisfies the open set condition, so that K; do not
overlap too much. Then a similarity argument shows that the similarity dimension of
the set K is the largest value of x such that the t x t matrix, whose (1,j)™ element

. X .
1sZrM, , has one as an eigen value[33].
K

If all the similitudes have the same ratio, so that rjjx = r for all i, j and k then this

o .. logi . . . .
similarity dimension 1s——2g——, where A is the dominant eigen value of the matrix
log[—)
r

whose (i,j)th element is Nj;, the number of edges from the node K to node K;. Our aim
is to compare the Hausdorff dimension of the partial self similar set and its similarity

dimension.
We Will prove the following,

Result 3.1.2.

Let (X.d) be a complete separable metric space. Let K be a partially self similar set

with similarity dimension s. then dim y(K) <s.

Proof . Since most of the result in this area use ‘words’ we use them here also.
Consider the graph corresponding to a partial self similar set write E, " for the set of
all infinite words, using symbols from E, where the initial vertex of the first edge is u
and the terminal vertex of each edge is the initial vertex of the next edge. A Path in the
graph is a finite string o= ey, €a,...... ex of edges, such that terminal vertex of each edge
e 1s the initial vertex of next edge ej+;. The initial vertex of a is the terminal vertex of

last letter e, We write E,(k) for the set of all paths of length k that begin at u and end

atv.and

'Some results in section 3.1. is to be published in Fractals .
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£, for the set of all paths of length K that begin at u. E." is the set of all finite paths
of any length that begin at u and E" is the set of all finite paths. By convention, E,*
cwonsists of a single “empty path” A, of length zero, from node u to itself. If o € E, "
ndf e E.", then we write (o B) for the path made by concatenation of o and P, so
that

(@p)e Eu“,(k“'). A partial order may be defined on E® as follows. Write o < Biffaisa
prefix of B . ie B = (o y) for some path y. With this ordering, Ey(*) becomes a tree
Yuev. o and B are incomparable iff neither is a prefix of the other a=a | k-1,

obtained by omitting the last letter of a. A ‘cut’ is a finite set T € E * such that for

every infinite word o € E™ there is exactly one n with the restriction o/n € T.

Let 6 >0 be fixed.

T={a I uveVae By < 0} isacut
For each a €T, we have,

O Imin <1y 6.

Let us estimate cardinalities of T\,

M= S () A

nevy  acluv

2(Sl'min)S Amin I Tul

A
I Tu ' < (6 rmin)-S e s Yu SV,

min

But, K, c UaKu (Here K = UK, where K,= Uﬁ,(K‘,)) .

ael, vel” el

ad, diam (aKy) < r, diam (K,) <6.dmax - Let N= 8.dmax. So considering number of
boxes of K, that covers K, and their diameter less than 8.dmax, we have,
A

77? rnin B max
Ny(Ky) £ | —™| .—/—
n(Kv) (d J 2

max min

Taking logarithm and dividing by —log 1 and let n— 0 we get,
dimg(Ky) <s.
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But from [ 35 ] dimy (X) < dimg (X) .

Sodimy (Ky) € s
Since X is separable K is also separable . Assume that dimy (X) < oo . Then
dimy; (K) =sup, {dim(K,)}.

~.dimy (K,) £8S.

Result 3.13
Let (X, d) be a complete metric space and K < X such that K = U K, where

N

K= |J£(K,)) where

vel ezl

i) d(fe (x), fe(y) 2 re’. d (x, y) and
ii) Foranyu,v,v: e V,e e E,, €’ € Em_. ,e=e’ wehave f,(K,)n fL (Ky)=

¢

Then, dimy (k) = S., where S is the similarity dimension of K.

Proof . Since (f.) are disjoint there is 1) > 0 so that d (f; (k.), fe (ky)) >n,Yu v, v'e, e’.
we claim that if cand o’ are not comparable in Eu'™ then,
daK,, a’K¢) > 1" g n

For let v be the longest common prefix of aand o’,since aand o’are in comparable,
they are strictly stronger than y. So, y < a, hence rg < y So there exist e and e’ such
thata=ye B, a’ =ye' B’ Let P € By and B’ € Ey'”. Then BK, <K, and
B Ky cky-. since e # €”. we have

d(e B K,.e’p’ Ky)=>d(eKy, €’ ky)> 1

~diye B Ky, ye’ BKy) 2y n2rg.m

diam(B)
n

Let B < X be a broel set and 6=

* -
LelT={a| ueV,veV,aeEy ),ra’SSSra'}

Then if *C’ is a countable cover of K,,we have
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> (diamB)’ 2 U—JZ u, (7(B))

> LK)

max

7 N
LH (K 22— (k) > 0

max

- dimy(Ky) = S
- dimy (K) > S

From result 3.1.2 and 3.1.3 we have ,

Result 3.1.4
Let (X. d) be a complete separable metric space and K ¢ X be partialy self similar with

K=u K, where K; =U ¢j(K;) where each ¢;ij are similarities with
ko X

diin (Ki) ™ ik (K;) =¢; then similarity dimension of K coincides with Hausdorff

dimension of K.
3.2. Super self similar sets

We know that self similar sets are introduced by Hutchinson and sub self
similar sets by K. Falconer.Reversing the inclusion in the definition of subself similar

sets we define super self similar sets.

Definition 3.2.1

Let (X. d) be a metric space and E € K (X). E 1s called super self similar if there are

contractive similarities fj: X >X fori=1,...,nsuchthat E> Uf,(E).

i=1
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No finite set in K (R") with more than one element is super self similar.

m

Proof Let F be a finite set with more than one element and let {f,}" be contractive

i=1

n

similarities. We will show that F 2 (_/] fi(F) . Let x be the fixed point of f; and lety € F

m

such that |x-y| = d (x. F\{x }) then f|(y) ¢ F. so F2 (Jl ti (F).

Since finite sets are dense in K(R") we have,

Cor. 3.2.3.

The set of non super self similar sets is dense in K(R") .

Result. 3.2.4.

The set of sub self similar sets can be expressed as the countable union of closed, no

where dense subsets of K(R") .

Proof. For m, n € N. define S, to be the set of all those sub self similar sets E such

m

that there exists contractive similarities {fj} " with — <r (f) < 1- 1 ,EC U fi (E)
n n

i=1
i=1

and
5L(0)]<nforeveryi e {1,...m}. Clearly U U Smn 1s precisely the set of sub
m=! n=I

self similar sets. We prove that Sy, is closed for every m, n € N. suppose that Ex.—>E

in the Hausdorff metric. where E €Sy, for every k eN. To each Ej corresponds {f*}

m

such that l <r (fik) < 1- l , BEx c U]’,k(Ek) and lfiK(O)l < n. Using the standard
n

n -1

matrix, vector representation of: an affine transformation each fi* may be associated

with a point, x¥. in R"*"_ The condition on each f* ensure that the set of all such
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points. K. is compact. By recursively choosing successively finer susbsequences. we

may assume that each scquence {xiK}:‘:l is convergent to say X;.€ K. Each point x; in
. C . a n P | 1

turn defines a contractive similarity fi: R® — R" satisfying — <r (fj) < 1-—and | f; (0)]
n n

<nforeverie {1, ., m}. The correspondence between affine transformations on R"

and points in R" ™, along with the continuity of the algebraic operations, implies that

m
f*— f; pointwise as k—>o0. We must now show that Ec |J fi (E). Let x € E. Then for
i=1

every k € N, there is an x; € Ej such that the sequence {x,};_, converges to x. Since
Ex c lﬂ f¥(E,), there is an
i=1

ik €{l,....m} such that x; € fit (E,) . Since there are only finitely many choices for iy,
at least one must occur infinitely often. Thus we have a subsequence {K;}}., and a
fixed

I e {1,..m} such that i; = i for every j. Along this subsequence we have fi':j(EKj)=
f9E k) fi(E) as j — o, since 9 — f, point wise and Ej —E in the Hausdorff

metric. Thus x € fi(E) since xx; — x and x;; € fin (Exj), V' j. Smn is closed and contains

no open set because Sy, is dense in R" by cor. 3.2.3 .

Result. 3.2.5.

The set of super self similar sets can be expressed as the countable union of closed, no

where dense subsets of K(R").

Proof. The proof is similar to that of result 3.2.4.

Notation 3.2.6
Let (X, d) be a complete metric space

S= {F cX| F is self similar }
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S'= {F cX| F is super self similar}
S« = {F cX| F is sub self similar}

Result 3.2.7.

(i)  (S\S)=S.,inR"
(i)  (S\S)=S",inR"

Proof. Proof of (i) is simple because any finite set is subself similar and finite sets are

dense in K(R") and so dense in (S«\S).

To prove (it). It suffices to find a class of super self similar sets which are not self
similar, but are dense in K(R"). Note that S =K(R") ([ 35 ]). Let E be self similar for
the transformations {f }", . Choose R>0 such that f; (Br(0)) < Br(0) for eachi ¢ {1,2,..,

m m

m}. Let E;= U fi (Br(0)) and for n>1, let E;= | f; (En1). Then each E, is super
i=1 i=1

self similar, but not self similar and E, —» E in the Hausdoff metric. So we can

approximate a self similar set by a sequence of super self similar sets which are not self
similar.
In the next section we prove some results on self similar sets.

3.3. Self Similar Sets>

We know that [=, [0,1] is a self sinmilar set. s true for S'? we will prove tat S'

is a self similar set. ie. There are contractive mappings {f,}" from S' to S'such that

*Some results in section 3.3 is to be published in Journal of Mathematical Analysis and Applications.
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§'is a self similar set.
Proof. Topologicaly S!' = AUBUCUD where
A=10.1]x {0}, B= {1} x [0,1], C=[0,1] x {1] and D= {0}x [0,1]

Let ¢, for © = - w/2, n/2, © be the antilock wise rotation centred at ( 2, /2 ) of angle 6.
Note that ¢g is @ map from S'to Sh.
Letf;: S =B be defined as,

fi(x,y) = (1, % (2-x)Nif(x,0) eAandx <Y,

2 .

(1, 3 x-%2)if(x,0) e Aandx > %
1 e

(1, 3 (1ty)if (1,y) €B

2 .

(1. 1-5 x-2)if(x,1) e Candx 2%
2 .

(1. 3 x+))if(x,1)e Candx <A

(I = (1+))if 03)D
J

let  f:S'— C be defined as

£r=0¢x2 0fi 0.2
f3: S' — D be defined as,
f3=¢n0fi0¢x
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and fs: S'— A be defined as
fs= @2 0 1 0 02
Now we define d;, as
d(x,0)x’,y)= x —-xif(x,y)eAandx<x’

1-(x-y)if (x’,y’) € B.
3-(x+x)if (x’,y) e C
4-(x+y)if (x’,y’)e D
4- (x-x)if (x’,y’) e Aand x’<x .

and

dl ((X’ Y)a (X’a )”)) = dl(¢1t/2 (X,)’), ¢-1t/2(x” )”)) if (X,)’) eB
dl(¢’ﬂ (Xa Y)a ¢’Tt(x’a )”)) lf(X’Y) eC
dl(¢’n/2 (X,)’), ¢’-1t/2(x” y’)) lf(X,)’) eD

Associated wit this d, and for a fixed v € S' we can define ‘<’ on S' as,
Z<,wifd; (v,z) <d; (v, w)

This *d’, is a quasimetric because need not be symmetric on S'.

Let d, = d,” be the conjugated quasimetric of S'

Letd (z, w) = min {d, (z, w); d; (z,w)}

Now this *d’ is a metric on S'.

(i) d(x,y) =0 iff min {d, (z, w); d2 (z,w)} =0 iff z=w

(1)  since d; (z,w) = dl'l (z,w)= d; (w,z) then d(z,w)= min {d; (z. w); d; (w.,2)}=
d(w,z)

()  supposed (z,w) =d, (z,w)

if t <, w then d(z.t) = dy(z,t) , d(t,w) = di(t,w) and then d(z,w) = dy(z,w) = d\(z,t)

+d,(t,w) = d(z,t) + d(t,w) .

Case. 1
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d (z. t) = d; (z. t) and d (t. w)= da(t, w).
Then d(z, w) <da (z,t) £da(z, )+ d2 (t, w) =d (z, )+ d(t, w).

Case. 2
d(z,t)=d; (z,t)and d (t, w)=d,(t, w)
Since w <, t then d;(z, w) <d;(t, w) and then

d(z, w)=d;(z, w) <d\(t, w)=d(t,w) <d (z, )+ d (t, w).

Case. 3

d (z,t) =d, (z, t) and d (t, w)= da(t, w).similar to case 2.

Case. 4

d (z,t) =di(z, t) and d (t, w)=d,(t, w) similar to case 1.
In any case we have thatd (z ,w) < d (z,t) + d (t, w)

(iv)  The case d (z, w) = da(z, w) is analogous to(iii)
Let Aj=[0,%]x {0},
Ar=["%,1}x{0},C,=[0, %2 ] x{1}
Cy=[172,11 x {1}.
Let a; =(0,0),a,=(",0); a;=(1,0)
as=(0,1); as = ( %2,1) and a, = (0,1)

‘d’ is compatible with the topology of S'.

let x € Sl, and let r = min {d(x.,a;), d(x, a3), d (x, as)d(x,a¢)}. Then Bgy (x, ) =
By (x. 8):V &< 1. were d, is the usual metric on S'. This proves that the identify map is

alocal isomety between the two metrics.



On the other hand, it is clear that ¢g is d- isometric for 6= n/2, n, -n/2 since d,

is defined using ¢y we prove that f; is a contraction so that all f; s* for ¢g is a d-

isometry for 6 =n/2, &, -n/2.

|. If z. w are both in the same set A, Ay, C), Cy, then it is clear that d (fi(z), fi(w)) =

.
jd (z, w) and if z, w are both in B or D then d (f 1(z), fi(w)) = 1/3 d (w, z).

2. Letze Ay and w € Aj. Then d (fi(2), fi(w)) < d ((fi1)(2), fi(az)) + d(fi(a).fi(w)) =

[OS I NS]

2
(d(z.a) +d (@, w))= ?d (z, w). Thecasesz € A;andw €A;ze Cyand w € Cy;

ze C;and w € C, are analogous to this. Therefore, if z w are both in the same set

2
A.B.C. D then we have that d (f;(z), fi(w)) < § d(z, w).

N

3.letz €A and w g€ B. then d (fi(2), fi (w)) =d (f; (2), fi(a3)) +d (fi (a3), f; (W)) < =

W

(d (z,a3) + d (a;. w)) = %d(z, w). thecasesze Bandwe A,ze Candwe B;z €
J
Bandwe A; ze AandweD; zeDandwe A;ze CandweD;ze Dandw
€ C are analogous to this.
4. letze Aand we C. ifd ( z, w) =di(z,w) then d (fj (2) . fi(W)) <d (fi(2), fi(ag)) +d

2
(11 (), Fi(w)) < 22 (d (2, ag) + d (ag, W)= § d (z, w). If d (z, w) = d »(z, w) the

L2t

reasoning 1s analogous. The casesze Candw € A;zeBandw e D;ze Dand w

€ B are analogous to this.
So f| is a contractive map with factor of contractivity 3 and hence

S'=1(SHuU K (SHUFSH Uf4(SY . S'is self similar.

In [35 ] falconer proved that self simil sets in R " are dense ie. In (R", d), S =
K(R™
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Next, we prove that chaotic self similar sets are dense in R" ie (CH (IR"))nS =K (R")
Result 3.3.2.
Chaotic self similar scts are dense in R"

Proof Consider R . [0,1] eCH (R). so any closed internal is in CH (R). Collection of

closed intervals is dense in K (R) , so CH (IR) = K(R). Hence CH (IR")=K(R")

Since we have S =K (R"), (CHIR")nS)=K (R") .

ok ok ok ok o 3k ok ok ok ok ok K ok ok ok ok ok ok
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CHAPTER -4
FRACTALS IN TOPOLOGICAL SPACES

We know that some Julia sets (Def.1.2.6) in C are fractals. Note that C is a
compact chaos space. So it is interesting see how fractals behave in chaos spaces. But
the concept of fractals can’t be exfended to general topological space fast it involves
Hausdorff dimensions. In this chapter we define a set which can be considered as a
generalization of Julia sets. We also study some chaotic properties of these sets. We
also give an example to show that if f;, : C— C are functions which converges to f
then it need not be true that J(f;) — J(f) in K (C). We also define a set which is a

generalization of the classical Mandelbrot set.
4.1 A Generalization of Julia Set

Julia set of a function fin Cis defined as the collection of points at which {f"} is
not normal. But according to Montel’s theorem, if f is meromorphic then {f'} is

normal at z iff {f"} is equicontinous at z. Motivated by this we define,

Definition 4.1.1

Let (X, d) be a compact metric space and f: X— Xbe continuous. Let
E(f) = {x £ X|{f"}is equicontinuous at x }
Let E* () =X (E()).

From Montel’s theorem we have,

Result 4.1.

|2

letf: C— Cbe meromorphic, then J(f) = E*(f)
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Result 4.1.3.
Let (X, d) be a compact metric space and f: X—X be continuous. If fis stable at x € X

then x € E ().

Proof. clear from the definition of stability and E(f) .

Cor.4.14

If (X.d) is compact and f: X—X is continuos, then {x x|f} if is stable at x} < E(f).

Result 4.1.5.
Let (X, d) be a compact Metric space and f: X—X be continuous. If f is transitive and

every point is stable then D(X) = X and f is a homeomorphism.

Proof. We first prove that D¢ (X) = X.
For that, let x ¢ Di(X). Let y ¢ X.Then there are sequence {K;} and {l;} of positive
integers such that f“(x)—)y, and fm“(x) — X . Since y is a stable point , d(f"i+ki(x), f i(y)
=d (t“(t“(x), t“(y))—> 0, so d(x,t“(y)) —0,and x € O(x) € m , S0 ye D¢ (X).

~. Xe Di(X).
But always, D(X) c X

Hence D(X) = X.
To show that { is a homeomorphism ,

Consider the space C(X,X) with the topology of pointuise convergence

Let G= {f"|n=12.....,...} € C (XX)

Since {f"} is equicontinuous, all elements of G are continuous. If X,y € X, thereisa g
€G such that g(y) = x (because O_t.E)_= X and C(X,X) is compact). Also gof =fog.
(because. let {f"} be a net such that " — g. Then **' = fo " - fog and {"*'= "~
gof) now, let x € X, and let y = f(x). Let g €G be such that g(y) = x. then (fog) (x) =
(gol) (x) = g (y) = x. Also, gof* = f*og, Vk > 0 and (gof) t¥(x) = ff(gof (x) = *(x).
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smilarly, (fog) f"(x) = f(x). Hence fog = gof is the identity on O¢x). But of(x)= X,
fog = gof is the identity map. So f is inevitable.

Hence { is a homeomorphism.

Result 4.1.6.

Let (X. d) be a compact metric space and f: X — X be transitive. Then,

1. E(f) 29 => E(f) = D(X)

2. E(f) = ¢ =>fis sensitive

Proof (1) Let x € DX). Let Gy = {x € X| 3 a neighborhood U of x such that x;, x5 €

U=>d (1"(x)), I (x2) < % V¥n 20}. Since Gy is open there is an n>o such that {(x) €

Gy.
Since Gy is invariant, X € Gg. Thus x € N G = E(f)
- D(X) c E(D).
Since I is transitive. Then, x¢ D¢ (X) => Oy (x) # X => Lf(x) # X = f is not

equicontinuous at X.

- x ¢ E(f).
So. E(f) € Dr(X)
Hence Di(X) = E(f)

2) Each Gy 1s open and [i(f) = rK\GK.

IFE(f) = ¢ then some Gy is non dense in X (by Baire category theorem) and so empty.

(since it A is invariant, non- empty, open then f is transitive iff A=X)

Note that if we define
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di(x,y) — Supd(f'(x), f'(y)) ten d and dy are equivalent if {f"} is

neN

equicontinuous. So x € Gy Iff x has a neighbourhood whose dr diameter is <
1/k. so we have Gy = ¢. for some k. but every non- empty open set has d¢

diameter greater than 1/k. so f'is sensitive on X.

Cor4.1.7.

Let (X, d) be compact and f: X—X be continuous and transitive. Then E*(f) = X => {

is sensitive on X .

ie. E¥(f)= X=>f¢e S (x).

4.2. Juliasetson C

Result 4.2.1
Letf: C—> Chbea meromorphic function. Then for every open set V < C satisfying

V J(f) # ¢, there exist some integer n € N such that f'(VAJ(f)) covers J(f) except at

most two points.

Proof. Fix an open set V ¢ C satisfying VN J (f) # ¢. Assume V< C.

Case: |
Assume "/, is analytic, ¥V n g N.
Then {f/,}n N can’t miss 3 points because otherwise it forms a normal family => V N

J(f) = ¢. Hence " (V N J (f)) cover J(f) except at most two points for some n € N.

Case: 2
Assume that %/, is not analytic for some n e N. then f as an essential

singularity at co.
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Assume that {""/y to be analytic and « ef*' (V)= U. Due to open mapping
theorem, U is an open neighborhood of <. But « is an essential singularity of f.
Hence picards theorem => f (U\{c0}) to cover except at most two points.

{"(v ™ J()) cover J (f) except at most two points _

Result 4.2.2
Let f: C— Cbe a meromorpic function let 0 < & < % diam (J(f)) and x € J (f) such
that f" is defined at x. Then for every open neighborhood U of x contains a point z € U

N J(f) such that d (f'(x), " (z)) > 8, for some n € N.

Proof. Let D = diam (J(f)).

Duc to result 4.2.1. 3 some n € N 3 " (U n J (f)) covers J(f) except at most two
points. Now we choose two point Xx;, X2 € J (f) such that d (xj, x) =D since J (f) is
perfect,

3 {wn Jmen € J (f) converging to x;.

o '(y1) = wmy and d (f'(y1) , x1) < %2 (D-8) for some m; € N and some

y1 £ 1 (1) N Usatisfying {'(y;) = Wa.

Similarly, we have some y; € J (f) » Usuch that d (f'(y2), x2) < %2 (d-s).

Now. d (f(y), f(y2)) > 2 8.

< d(F'(2), £'(y1)) > S or d (f'(2), {" y2)) > 8.

This result says that f is sensitive at x and for every neighborhood U of zy we can
choose O € (0, ¥2 diam J(f)) as sensitivity constant. Next example show that the Result

4.2.3 can’t be generalized into arbitrary spaces.

Example 4.2.3.

There exists a family {fo}nen of chaotic (TC) mappings of the unit vide S’ such

| . - e
that (=) is the optimal bound for the sensitivity constant of fn for every n € N.
1

Letf: 1_3 - R be defined as,
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f(x) = 4x3- 12x%+ 9x . fe C (R) and J () =[ 0.2].
Let X= R/, Then Xz S' and f can be viewed as self mapping of R/,
diam (x)= 2. For x € R, let [x] denote the remainder with respect to division by 2, ie.

[x] € Rfp,, x = [x] mod 2 and x-[x] € 2z. fix n € N and define,

fy: X =X as,

00 = - [f([nx] + (nx- [mx]))+2]
n

fa: X—> X, and for u = o, ., n-1, f; is a mapping of degree 3 from
W 2 2 3
__u’_(u+1) omito 2(u+1)’2(u+2) . Since, f (_u+1)=2(11+3)] holds the
N n N n N n

o 1 . .
sensitivity constant has to be smaller than (—). Also fis chaotic on
n

P 2v+1)

. 1 A
i|.So if ¢ € (0, (—). Then c can be used as sensitivity constant.
n n n

4.2 Generalized Mandelbrot set

Definition 4.3.1.
let (X, d) be a compact metric space and let . <C (X,X).
Define M(Z)) = {f € . _ | E* (f) is connected} .

Definition 4.3.2.

The collection . < C (X, X) is said to be ‘distinguishable’ if there is a one- one on to

map from C to X.
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If we consider X = C and f= { >+ ¢}, ¢ € C then f is distinguishable, because
VoL > C is defined as, w(fc) where f: C— Cis f.(z)= z+ c; is one- one and onto;

then M is the classical Mandelbfot set.

Not that the function space C(X, X) can be considered as the subspace of the
hypespace K(X). in this direction we prove some results. Our space is (X,d) which is
compact and each member of C (X, X) has a closed graph in X x X and hence such a
function can be identified as an element of K (X x X) note that since X is compact , so
is X x X and hence K (X x X) is also compact. Local conceitedness of the Mandelbrot
set is an open problem. In [ 62 ] these are many results on K (X). but we will prove a
result which is not in { 62 ] and some to be very are in our context.

Here we topologise K(X) with the vieterious topology ie topology induced by the

Hausdortt metric.
Let A1, A2....., An are subsets of X, then

(A1, A2........ An)={ E eK (X) | foreachi=12,.... N, EnAi # ¢ and E

UI Ai. then B = { (ul, u2, ..., un)| ui’s are open in X} is a basis for a topology. That

topology is called viterious topology.

Notation 4.3.3. C (X) = {E ¢ X | E is connected }
GX)={EcX[EeKX)nCX)}

Result 4.3.4. Let (X, d) be locally compact. Ten following are equivalent
1) X s locally connected
2) C(X) is locally connected

3) Cy (X)is locally connected

Proof: (1)=> (2)
Suppose X is locally connected. Let E € C (X) .
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Let (uy. ua,...., uy) NC (X) be a basic open set containing E. for each
i=1.2....nand each x € E n Uj, let V, be a connected neighborhood of x such that

V., c Ui and Vi is compact. Let Y be the collection of all such V. Then Y covers E

and V=UY C L’/ u,and V is connected and open .Choose one Vy; € Y such that V. ¢

i=1

U, for each i = 1,2,... n. Then Ee (Vy1, V2, ..., Vin, V) < (up,ug,...u,) [ because
(Vi..... Vo, ) < (Uy, ....Uy) iff L_/luig (_]]u,, and for each Uj these is a Vj such that V;

cU;[62 J]and (Vxi. Vo ... Vi, V)N C () <€ (Uy, Uy, ... Uy) N C(x). Since Ck (X)
is open and dense in C (xX) [ 62 ], (Vxu.--.e Vin, V) NCi (X) is dense in (VxI,
Vx2....Vxn, V)N C (X).so, (Vx1, VxX2,..., Vxn, V) n C(X) is connected if (Vx1,
Vx2. ... Vxn, V) C (X)is connected .Let F , Eg € (Vx1, Vx2, ..., Vxn, V) n Cy
(X) .Since Ey U F is u compact subset of the connected, locally compact M containing
E, U I such that McV. Since E, €M implies MV, #¢ for each 1 and McV , Me
(Vx1, Vx2,... Vxn, V) NCy (X).
Let Ly =(G eC(M) | FCG} and
L= 1G € C (M) |, < G} . Then each of Lg, and L is connected and E,, m € Lg,
and F. M ¢ L. Hence L, U L is connected.
Let G € Lg. Then Fc G <M implies that G € (Vy1, Via,.... Vi, V) N Ci (X).
So Ly (V1. Vi, ... Vi, V) N Ci (X) is connected
Similarly Leo € (V1. Vias ooos Vi, V) 0 Gy (X)
2 (Ve Vi, oo Vi, V) N Ci(X) i1s connected .

Hence C(X) is locally connected at E
- ((X) 1s locally connected.
2)=>(3).
Suppose C(X) is locally connected. But Ci (X) is open in C(X) [62] . Since an open

subspace of a locally connected space is locally connected, Cy (X) is locally connected.

(3)=>(1)



wppose Cx (X) is locally connected. Ten for each x € X, Ci (X) 1s connected in
deinenat {x}. [ 62 ]. Thus for each x € X, X is connected im. Kleinen at x .So X is

wally connected.
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CHAPTER -5
HAUSDORFF DIMENSION, PACKING DIMENSION AND
FRACTALS

In this chapter we study the relations between Hausdorff dimension and
packing dimension. We will define regular sets in Metric spaces using packing
measures. In [35] regular sets were defined in IR" using Hausdorff measures.

.
5.1 Regular sets'

Regular points are defined in IR" [35] using Hausdorff measures. By
considering Borel measures and Packing measures we generalize this concept into

metric spaces. Packing measures were introduced by G.A.Edgar[ 33

Definition 5.1.1.

A *Constituent’ in a metric space (X, d) is an ordered pair (x, r); where x € X and r >
0. Collection of constituents is denoted by C .

We can consider (x, r) as Bi(x); Open ball of radius r.

Definition 3.1.2.

Lete > 0. A collection of Constituents is said to be g-fine iff r<ge ; V(x, 1) €C
Now we define some type of packings which are generalizations of packing defined in

(331

Definition 3.1.3.

C (1) is an (a)- packing iff d(x, y) > max {r,r }; V (x. 1) # (y, r’) inC
(i1) is a (b)- packing iff B, (x) n Bi(y)=¢; V(x, 1) # (y. ") in C .
(iii)  isa(c)- packing iffd(x,y)2r+r ; V (x,1) # (v.r’)in C.

"' Some results in section3.1 is to be published in Bulletin of London Mathematical Society .
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Definition 5.1.4.

An (a)- packing of a Set F ¢ X is an (a)- packing C Such that x eC F, V (x, r) €C.
Similarly for (b) and (c) packings.

Definition 5.1.5.

(1) Let P2 (¢, F) = Sup Zgﬁ (r), where the supremum is over all e-fine (a)

(x,r)eC

packings of F.
(i) Let P'(¢.F)= lim PZ(6,F)
(i) Letp®(¢, F)=Inf { Y P? (¢, U)/Uisa countable cover of F}.
UeU

We have the definition of Hausdorff function in the first chapter [Definition.1.2.].

Definition 5.1.6.

Let ¢ be a Hausdorff function. Then ¢ is c-blanked iff there is a constant ¢ < oo such
that. ¢ (2r) <c. ¢ (r) ; Vr<I.
[For example; ¢ (r)=(2r)® is c-blanked for every c greater than or equal to 23

while ¢ (r) = 2M/"% is not blanked for any c.

Notation 5.1.7.
If ¢ (r) = (2r)° then we denote, P* (¢, F) as P* (s, F).

Delinition 5.1.8.

Let PF) = Sup {s| P*(S, F) = «}
=1Inf {s | P*(S, F) =0}.
Then we say that P*(F) is the (a)-packing dimension of F.

All definitions for (b) and (c) packing dimensions are analogous.
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Notation 5.1.9.

[n this chapter g will denote a function from F to [0, «].

Definition 5.1.10.
A collection C of Constituents is g-fine iff r < g(x) ; V(x, r)eC.

Now we define regular sets in Metric spaces via the packing dimension.

Definition 5.1.11.

Let p be a Borel measure on X and ¢ be a Hausdorff function.

- ¢ (F,x)=1 —
Define (i) Dy, (F, x) = i inf =23
L L #(FﬂBr(x))
(ii) Df, (F,x)= lrlflc‘)l Sup T

It [):, (F,x)= D—f, (F. x) then we say that density of x in F exist and denote it by

BZ (F.x). DY (X, x) is denoted as D_‘f, (x).
If E)_;, (F, x) = 1 then x is called a (u,$) regular point of F. Otherwise, x is a (p,9)

irregular point of F.

Notation 5.1.12.

Let Reg’ (F) = {xeX|x is a (u,9) regular point of F}.

and [rgf,([?) = { xeX | xis a (u.p) irregular point of F }.

Definition 5.1.13.
Density of F in X is defined as,

N? (F\= 1nf D¢
DY (F) 1\13 D (F,x)



Definition 5.1.14.

Let Fc X. Then F is ‘regular’ in X iff D_f, (F) = 1. Collection of all regular subsets of

X is denoted by R(X).
Following definition of Vitali properties for packing dimensions are natural

generalizations of usual vitali properties.

Definitions 5.1.15.

Let u be a Borel measure on X. We say that p has (a).Vitali property (respectively (b)-
Vitali, (¢)-Vitali) iff for any Borel Set E ¢ X with p (E) < and any five cover U of E,
these exist a countable (a)-packing (respectively (b)-packing, (¢)-packing) C < U of E
such that it (E - UB,(x))=0.

(X.nece

Remark 5.1.16.
(1) If X =1R", d is the Eucledian metric, p is the Hausdorff measure and ¢ (r)

= (2r)° then D_‘f, (F, x) coincides with the densities defined in [; P.70].

(2) If X=iR2 . d is the Eucledian metric, t is the area (Lebesgue measure on
IR?) and ¢ (r) = diam (B«(x)) then Dj’, (F, x) is exactly same as the

Lebesgue density.
(3) Clearly Hausdorff measure satisfies (b)-vitali properly and (a)-vitali

properly in IR".

nesult 5.1.17.
Let (X. d) be a metric space and FeK(x). IF x¢F then x elrg(F).
Proof. I is Compact, so closed
x eF=> By(x)"F=¢, for very small r
=> 1i( By(x))NF)=(). ¥r which is very small
=> DY(F) (F.x)=0

=>x e Irg(F).
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S (X\F) < Irg (F).

Let (X, d) be a metric space and let p be a finite Borel measure and F < X. Let ¢ be a

Hausdorff function such that D‘Z (F) (F) is finite and non zero; then

(i) D‘: (F) (F)= —’UQ, if p satisfies (b) vitali properly

P*(¢,F)
i) D(F) 2 E%%F—) if ¢ is c-blanketed.
Proof.
(i) We first prove that D* (F) < PQEZ)F) (1)

Assume that D¢ (F)> 0. Let k € IR be such that D? (F)> k. We have to prove that,
k>P*(Q, F) < u(F)
Let €20 be given. Since p is a Borel measure then there is an open set U o F such that
puy<pF)+e 2).
Corresponding to each x €F, let g(x)>0 be so small that
H(B{x)NF) > k.Q(r) , Vr<g(x)
and  g(x) <d(x, X\U)
Then g:E—(0, o). Let (' be a 8-fine (b) packing of F.
Then UB,(x)c U and

Sé< L T u(BHAF).
(x,1)eC k

< pr(u)

1
K
" PP¢, F) < %(p(F)ﬂ) from (2)

Let e =0, then we have,
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1
P, F) < - (w(F)
ie. k.P? (¢, F) < u(F). So (1) is proved. Now we prove,

¢ F _'U(F_)_.
D (F)z P T G)

Here we uses the condition that p has (b) vitali properly. Let k’< o Such that

Df,(F) <k’. We have to prove that p(F) <k. Pb(d), F).
Let g: F — (0, «<) be function

Then, B = {(x.r)| x e F; r <g(x); p (Br(x)nF) <k’ ¢(x)} is a fine corer of F. BY
(b) vitali properly, there is a (b) packing C c B of F with

H(F)= p(F A (UB, (x))

o p(F) = uF N (UB, (x)))
< Z#(B,. (x))
K'Z¢(r>

H(F)SK P/(¢.F)
Since g 1s arbitrary

M(F) < K P/, F)

- (3) is proved

from (1) and (3).
H(F)
P'(4.F)

D*(F) =
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(ii) let t < oc, such that ﬂf‘ (F) < t. It is enough if we prove that p(F) <t ¢’. P (¢, F)

since ¢ is C- blanketed
0 <C o (r)
let g: F — (0, «<) be a function

HB,NF)
#3,)

Is a fine cover of F. Now By Result. 1.2, there is a packing {(x,r)|i=1,2,...} B

B={(x,n)|xeF, r<g(x),

such that

F g (D B]r:(xl) = L]|B4rl(xl)
i=| =

U(F)< X p(By, (x,)

St%qﬁ(r,)

so, p (F) <tc® P/ (9, F)

since g is arbitrary
n(F)<te’ P'(o, F).

in | 35 ] Taylor, defined F < X to be fractal if dimy (F) = dimy(F). in that sense a (p .

¢) regular set F in IR" is a factal.

Cor. 5.1.9
Let F be a (. ¢) regular set in IR". then P® (¢, F) = H® (F).

Proof: in result 5.1.18 put p = H.

Cor. 5.1.20
If I is (. ¢) regular then dimy (F) = P*(F)

ke ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
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