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CHAPTER 1

INTRODUCTION

1.1 Frame theory

The first mathematician to take the notion of open set as basic to the study of
continuity properties was Hausdorff in 1914. Using the lattice of open sets, Marshal stone
[ST], was able to give topological representation of Boolean algebras and distributive
lattices and H. Wallman(1938) [WA] used lattice theoretic constructs to obtain the
wallman compactification. In the 1940’s McKinsey and Tarski [M; T] studied the
“algebra of topology” that is topology studied from a lattice theoretical viewpoint. But a
fundamental change in the outlook came in late fifties; Charles Ehresmann {EH] in 1959
first articulated the view that a complete lattice with an appropriate distributivity property
deserved to be studied in their own right rather than simply as a means to study
topological spaces. He called the lattice a local lattice. Dowker and Strauss([D; P],,
[D; P],, [D; P]5) introduced the term frame for a local lattice and extended many results
of topology to frame theory. It was with the publication of John Isbell’s “Atomless parts
of spaces” [IS];, in 1972 that the real importance of the subject emerged. Since then

Frame theory is studied extensively by many authors.

1.2 Fuzzy set theory

Among the various paradigmatic changes in science and mathematics in this
century, one such change concems the concept of uncertainty. According to the

traditional view, science should strive for certainty in all its manifestations hence,



uncertainty (vagueness) is regarded as unscientific. According to modern view,
uncertainty is considered essential to science; it is not only an unavoidable plague, but it
has, in fact, a great utility. L.A. Zadeh in 1965 introduced the notion of fuzzy sets [ZA],
to describe vagueness mathematically in its very abstractness and tried to solve such
problems by giving a certain grade of membership to each member of a given set. This in
fact laid the foundations of fuzzy set theory. Zadeh has defined a fuzzy set as a
generalisation of the characteristic function of a subset. A fuzzy set can be defined
mathematically by assigning to each possible individual in the universe of discourse, a
value representing its grade of membership in the fuzzy set. The membership grades are
very often represented by real numbers in the closed interval between 0 and 1. The nearer
the value of an element to unity, the higher the grade of its membership. The fuzzy set
theory has a wider scope of applicability than classical set theory in solving various
problems. Fuzzy set theory in the last three decades has developed along two lines:

1. as a formal theory which got formalised by generalizing the original ideas

and concepts in classical mathematical areas.
2 as a very powerful modeling language, that can cope with a large fraction

of uncertainties of real life situations.

1.3 Intuitionistic fuzzy set theory

In 1983, K. Atanassov proposed a generalization of the notion of fuzzy set, [AT];
known as Intuitionistic Fuzzy sets. He introduced a new component degree of non
membership in addition to the degree of membership in the case of fuzzy sets with the

requirement that their sum be less than or equal to one. The complement of the two



degrees to one is regarded as a degree of uncertainty. Since then a great number of

theoretical and practical results appeared in the area of Intuitionistic Fuzzy sets.

1.4 Summary of the Thesis

The main objective of this thesis is to study frames in Fuzzy and Intuitionistic
Fuzzy contexts. The whole work is divided into six chapters. A brief chapter wise
description of the thesis is given below.

Chapter 1

This is devoted to the basic definitions and results concerning Frames, Fuzzy sets
and Intuitionistic Fuzzy sets which are required in the succeeding sections. All results
here are quoted from existing literature.

Chapter 2

In this chapter we introduce the notion of fuzzy frames and we prove some results,
which include

. If u is a fuzzy subset of a frame F, then u is a fuzzy frame of F iff each

non-empty level subset x4, of 4 is a subframe of F.

. The category FuzzFrm of fuzzy frames has products.

o The category FuzzFrm of fuzzy frames is complete.
Chapter 3

In this chapter we introduce the notion of fuzzy quotient frames. The operation of
binary meet and arbitrary join on a frame F induces, through Zadeh’s extension principle
new operations on the partially ordered set I¥. Here we define a fuzzy-quotient frame of F

to be a fuzzy partition of F, that is, a subset of FF and having a frame structure with



respect to new operations. We also define and study fuzzy ideals over F. The results

proved in this chapter include

Chapter 4

If g4 and y are fuzzy frames of a frame F having supremum property with
respectto A and v then #A ¥ and 4V ¥ are fuzzy frames of F.

IfR is an invariant fuzzy binary relation on a frame F then its fuzzy
partition Py, is a fuzzy quotient frame of F.

The set I F of all fuzzy ideals of the frame F is a frame.

In this chapter we define and study the notion of intuitionistic fuzzy frames and

obtain some results, which include

Chapter 5

If Ais an intuitionistic fuzzy set in F then A is an intuitionistic fuzzy frame
of F iff OA and QA ( ‘necessity’ and ‘possibility’ operators ) are
intuitionistic fuzzy frames of F.

If A is an intuitionistic fuzzy set on F then A is an intuitionistic fuzzy frame

on F iff every non empty level set A , te[0,1]of A is a subframe of the

frame F.
The category IFFm of intuitionistic fuzzy frames has products.

The category IFFrm of intuitionistic fuzzy frames is complete.

In this chapter we introduce the concept of Intuitionistic fuzzy Quotient frames

and has obtained the result:



. If R is an invariant intuitionistic fuzzy similarity relation on a frame F then
its fuzzy partition Py is an intuitionistic fuzzy quotient frame of F.
Chapter 6
Here we establish the categorical link between frames and intuitionistic fuzzy
topologies. The main results include the following:
. O is a contravariant functor from the category IFTOP of intuitionistic
fuzzy topological space to the category FRM of frames.
o Z is a contravariant functor from the category FRM of frames to the
category IFTOP of intuitionistic fuzzy topological spaces.

. Y and Q are adjoint on the right .

1.5 Basic Definitions and Results
1.5(a) Frames and Topological spaces

In the same way as the notion of Boolean algebra appears as an abstraction of the
power set P(X) of a set X, the notion of frame arises as an abstraction from the topology
7 of the topological space (X, 7).

The following definitions are adapted from [BA],, [BA),, [BAls, [D; P, , [D; Pl4,

[JOl. , [PI}, [VIC]

Definition 1.5.1. A frame is a complete lattice L satisfying the distributive law x A(V S)
= v {xAs|seS} for all xeL and ScL, where A denotes binary meet and V denotes

arbitrary join.



Definition 1.5.2. A subset M of a frame L is a subframe of L if O, €; e M where O

and €, are respectively bottom and top element of L, and M is closed under finite meets

and arbitrary joins.

Note 1.5.3. Given a, b eL a frame, with a< b then [a,b]= {xeL |a < x< b} is a frame

but not a subframe of L.

Definition 1.5.4. For frames L, M a map h: LM is a frame homomorphism if h
preserves finite meets (including top or unit element) and arbitrary joins (including
bottom or zero element). That is h(a Ab) = h(a) Ah(b) and h(V X) =V h(x) for all a, beL

and Xc L.

Definition 1.5.5. For a family of frames {L;|i €1}, its product L is the Cartesian product

of underlying sets with < defined as (a;); e A < (b) i e A iff g; < b;forall i el.

Definition 1.5.6. For any frame F, a subset J c F is an ideal if, J is a downset that is if (a €],

b < a) = bel and J is closed under finite joins.

Proposition 1.5.7. The set JF of all ideals of a frame F is a frame, under inclusion order.

There is an important relation between frames and topological spaces which we
describe below. The category of frames and frame homomorphisms will be denoted by

Frm. The category of topological spaces and continuous maps will be denoted by Top.

Definition 1.5.8. The contravariant functor Q : Top — Frm which assigns to each

topological space (X, 7 ) its frame 7 of open sets and to each continuous function



f:(X,7)> (X', ') the frame map Q(f): 7' — 1 given by Q(f)(u) = f'(u), where

ue 7' is called the open functor from Top to Frm.

Definition 1.5.9. Let L be a frame. The spectrum of L is the set ptL of all frame

homomorphisms p: L — {0, 1} with the spectral topology Tp a= { Z, | x eL } where

Z, = {peptL | p(x) = 1}. The contravariant functor X : Frm — Top which assigns to each

frame its spectrum (L) = (ptL, T b tL) and to each frame map f: L —» L' the continuous
map Z(f) : Z(L') - Z( L) given by Z(f)(p) = po f, where p is a point of L' is called the
spectrum functor from Frm to Top.

Theorem 1.5.10. Zand Q are adjoint on the right with adjunctions 74 : L - Q L given

bya> Z and £ :X> I QX givenbyx - X where x(U)=card(U N {x}).

1.5(b) Fuzzy Sets

The following definitions are adapted from [DU; P}, [K; Y], [MO; M], [OV],

[ZAL, [Z1].

Definition 1.5.11. A fuzzy set x4 of a set X is a function from X to I where I =[O0, 1].

Definition 1.5.12. The set all fuzzy sets of X, denoted by I* is the set of all functions

from X to [0, 1].

Definition 1.5.13. Let zzand y be fuzzy sets of a non empty set X. Then

H=y & puy=yx)forall xeX



Heye ux) <y forallxeX
HVvy=06 (x)=max { #(x),y7(x)} forall xeX

HAy=06 (x)=min { 4(x),y (x)} forall xeX

Definition 1.5.14. Let {4,|a € A} I*. Then define ;zi(a) = inf{ #4,(a) |a e A}
ieA

and U p.(a)=sup{,(a)| a € A}.
ieA !
Definition 1.5.15. If X is fuzzy set of X, for any t €I the set [,= {ae X |H(a) 2t} and

,UT = {ae X | H(a) > t} are respectively called level subset and strong level subset of A.

Definition 1.5.16. If X is fuzzy set of X then the height of X is defined by

hgt( £) = sup H(x).

xeX

Proposition 1.5.17. Let xand y be fuzzy sets of a non empty set X. Then (v y), =

Y7,

Definition 1.5.18. Let X and Y be two non empty sets and X any fuzzy set of X. Let f
a function from X into Y. Then K is said to be f- invariant if for all x, ye X, f(X) = f(y)

= H(x) =H(y).
Proposition 1.5.19. Let f be a mapping fromaset Stoaset Mand let { 4, | @ € A}

and {4, | @ € A} be families of fuzzy sets in S and M respectively. Then we have,



) (U )= U fl) i) f(CU )= U Q) ii)) ff (4)=4,if fis

aecl ach, acA, ach,

surjective iv) f 7'f(u,)=u, if K, is f-invariant.

Definition 1.5.20. Let ® be any arithmetic operation and A, B any two fuzzy numbers
then by Zadeh’s extension principle A®B is a fuzzy set given by A®B(z) =

sup min[A(x), B(y)]
z=xQ®y

Definition 1.5.21. A fuzzy binary relation R of a set X is a function from XxX to I

where I = [0, 1].

Definition 1.5.22. A fuzzy binary relation R on a set X (ReI*™*) is said to be a fuzzy
similarity relation if it satisfies for all x, y, ze X
1. Rx,x)=1 ( reflexive )

2. RE,y)=R(yXx) ( symmetric )

3. R(x,y) AR(y,2) <R (%, 2) ( transitive )

1.5(c) Intuitionistic Fuzzy Sets

The following definitions are adapted from [AT],[AT],, [B;B1;,[CO];, [COl,,[D; K]

Definition 1.5.23. An intuitionistic fuzzy set A in a nonempty set X is an object having
the form A= {(x, Ha(x), ¥ a(x)) | xeX} where the functions K, : X— [0,1] and
Ya: X—> [0,1] denote the degree of membership and degree of nonmembership

respectively and 0< H o(x) + Y a(x) < 1 forall xe X.



Definition 1.5.24. Let X be a non empty set and let A = {(x, K A(X), ¥ a(X)) | xeX} and
B= {(x, Hp(x), ¥5(x)) | xe X} be intuitionistic fuzzy sets in X. Then,

i)  AcBifandonlyif M,(x) < Hp(x)and ¥ \(x)> ¥ p(x) forall xe X

ii) A=Bifandonlyif A < BandB cA

i) A ={(x ¥a®), HaX)|xeX}

iv)  ANB={(x, Ha@)A Hux), ¥ aX)V ¥ p(x)) | xeX}

V) AUB={x, Hax)Vv Hp(x), ¥ Ax)A V(X)) | xeX}

vi)  OA= {(x, Ha(x), I- 4 A(x)) | x€X}

vii) QA= {(x, 1-7 (), ¥ a¥)) | xeX}

Remark 1.5.25. Operators Oand Q are called [AT]; respectively ‘necessity’ and

‘possibility’ which will transform every intuitionistic fuzzy set in to a fuzzy set.

Definition 1.5.26. Let { A; |ie A} be an arbitrary family of intuitionistic fuzzy sets in X

then,

D NA= G M), VI () xeX)

i) UA= {6 VA, NV a@) | xeX)

Definition 1.5.27. Let A= {(x, X a(x),  a(x)) | xeX} be an intuitionistic fuzzy set in X. For

any t €[0,1], A (= {xe X |/ a(x)< t < U A(x)} is called a level subset of the intuitionistic

fuzzy set A.

10



Result 1.5.28. Let A and B be intuitionistic fuzzy sets of a non empty set X. Then

(AuB), =A UB,.

Definition 1.5.29. Let X and Y be two non empty sets. An intuitionistic fuzzy relation

R is an intuitionistic fuzzy set of XxY given by,

R={((xy) (%), YR x€ X,y Y} where H_: XxY — [0, 1]

and 7 : XxY — [0, 1] satisfy the condition, 0< Hr(Xy)+Yr(X¥) <1 for every

(x,y) e XxY.

IFR( Xx Y ) denote the set of all intuitionistic fuzzy subsets of XxY.

1.5(d) Category Theory

The following definitions are adapted from [A; H; S], [BO], [JO],, [MA]

Definition 1.5.30. A category C consists of three things:
(b) A class of object, ob C denoted by capital letters
(c) For each ordered pair of objects (A, B), a set hom(A, B) whose elements
are called morphisms with domain A and codomain B.
(d)  For every ordered triple of objects (A, B, C) amap (f, g)—>gof of the
product set hom(A, B)x hom(B, C) into hom(A, C).
Also the objects and morphisms satisfy the following conditions
1. If (A, B) #(C, D) then hom(A, B) and hom(C, D) are disjoint.

2. If f e hom(A, B), ge hom(B, C) and he hom(C, D) then (hg)f= h(g /).

11



3. For every object A we have an element I, € hom(A, A) such that fo I, =f

for every f e hom(A, B) and I, g =g for every g € hom(B, A)

Definition 1.5.31. Let C be a category then the dual category of C is denoted by C** and
is defined as,

@ obC*=0bC

()  hom cop (A,B)= hom (B, A)

c) If fe homcop (A,B)and g € homCop (B, D) then go f (in C°%) =
f o g(asgivenin C)

(d IpisasinC.

Definition 1.5.32. Let C and D be two categories, then a covariant functor F: C —» D

consists of ,
(@ AmapA —>FAofobC intoobD

(b)  For every pair of objects (A, B) of C amap f - F(f) of hom (A, B)
into hom ; (F A, F B).

Also these satisfy the following conditions:
(1) Ifgo fis defined in C then F(go ) =F(g) o F(f)

(2) F(Ia)=Ifa

Definition 1.5.33. A contravariant functor from C to D is defined to be a covariant

functor from C to D.

12



Definition 1.5.34. Let f and g be C- morphisms from A to B. A pair (E, e) is called an
equalizer in C of f and g if (1) e: E - A is a C- morphism (2) fce=goeand (3) for
any C- morphism ¢’ : E' > A such that fo e’ =go ¢, there exist a unique C- morphism

¢: E >Esuchthat ¢ =ece

Definition 1.5.35. Let {A,|@ € A} be an indexed set of objects in a category C we
define a product [TA, of the A, to be a set {A, Py | @ € A} where A € ob C,

Py ehom (A, A;) such thatif B € ob C and fg € hom (B, A;), @ € A then there

exist a unique f € hom . (B, A) suchthatPg o f = fg.

Result 1.5.36. A category C is complete if and only if it has equalizers and products over

arbitrary sets of objects.

Definition 1.5.37. Let C and D be two categories and F and G be two functors from C to

D. Then a natural transformation 7 from F to G is a map that assigns to each object A in

C a morphism 7, € hom (F A, G A) such that for any object A, B of C and any f

€ hom . (A, B) we have G(f)o 77, = 75 © F(f).

Definition 1.5.38. Let A and X be categories. An adjunction from X to A is a triple

F
(F,G, ¢) : X »> A, where F and G are functors X (G—) A while ¢ is a function

which assigns to each pair of objects xe X, ae A a bijection ¢ = ¢, ,: A(Fx,a) =

X( x, Ga).

13



Here A( Fx, a) is a bifunctor X% x A —ExM 5 A0, A _hom , oot which sends
each pair of objects (x, a) to the hom-set A( Fx, a) and X(x, Ga) is a similar bifunctor

X% x A — set. The naturality of the bijection ¢ means that for all k: a— @’ and h: x' >x

both the diagrams:
A(Fx,a) —2 X(x,Ga) A(Fx, a) —2— X(x,G a)
ke (Gk)» (Fh)° h’ )
A(Fx, a')——(L)X(x,Ga') A(Fx',a)—(P——->X(x',Ga)

commute. Here ke =A(Fx,k) and h" = X(h, G a)

Remark 1.5.39. Adjunction may also be described as bijections which assigns to each

arow f:Fx > a anarow ¢ f : x — G a the right adjunct of f, such that the

conditionof (1) ¢ (foFh)=¢ foh, ¢(k o f)= Gko ¢ f hold for all f and all arrows

h: x' ->x and k: a— a’'. Given such an adjunction, the functor F is said to be a left adjoint

for G, while G is called a right adjoint for F.

14



CHAPTER 2
FUZZY FRAMES®
2.1 Introduction
In this chapter we generalise the concept of Frame in to a Fuzzy Frame and
some results related to that are obtained.
2.2 Fuzzy Frame
We give the following definition for fuzzy frame.

Definition 2.2.1. Let F be a frame; then a fuzzy set 4 : F— [0,1] of F is said to be a

fuzzy frame if ,

(F1) H(VS)2inf {H(a)|aeS} forevery arbitrary ScF
(F2) H(aab)2min {l(a), K(b)} foralla,b eF

(F3) H(ep)= H (0f) = HU(a) for all ac F, where € and O are respectively

the unit and zero element of the frame F.

Example 2.2.2, Let 4 “bea fuzzy set of I=[0,1] defined by,

1
H a(x =% O<x< Y where a is some chosen element in (3,1]

Then #4° isa fuzzy frame of I.

® Some of the results in this chapter were accepted for publication in the Journal Tripura Mathematical Society

IS5



Example 2.2.3. Consider the set R of real numbers with usual topology 7 , which is

a frame. Let M be a fuzzy setin 7 defined by,

l, u=R¢
HQ) = %’ u#R 4 where u et

Then X is a fuzzy frame of 7 .

Example 2.2.4. Let F be a frame with n elements. Let (F); -, 2, . . . 2m be a strictly
increasing chain of subframes of F where F, = {€g, O} and F,, = F. Define fuzzy
sets M and A on F as follows,

H: F— [0,1] such that

1
— ifXEF2k+l_F2k_l f(rk=1,2. . .,m'l

2kH’
H (€p)= H(0p=1, H(x)= 1 .
ﬂ,leEFm—Fzm_l
A :F—» [0,1] such that
| B
E, leGF2_Fl

Aep=A0)=1,A(x=] 1 _
F F o f x€By By, fork=2....m

Then X4 and A are fuzzy frames of F.

Proposition 2.2.5. If X is a fuzzy frame of F then X, is a sub frame of F for any tel
with t< (€)= H(Op).

Proof. For arbitrary {a;}; e » © M wehave H(V ;) 2 t, since U is a fuzzy frame and

16



H(a;)> tforalli. Hence V a; € K. Similarly for all a, be 4, wehaveanbe KU, Also

clearly €, O € i, Therefore K, is a subframe of F.

Remark 2.2.6. If E is a subset of a frame F then E is a subframe of F if and only if Y is

a fuzzy frame of F, where J g is the characteristic function of E.

Definition 2.2.7. Let 4 be a fuzzy frame and 2, be a level subset of the frame F for

some tel with t< H(€g). Then KU, is called a level subframe of F.

Denote s, > M, if p,> p',Now since t < t' if and only if 4, >/ for any t, t'
in H(F) every fuzzy frame of a frame F gives a chain with level subframes of F,

{0, €p)= Hy <Hy<...<H; =FwhereticImH and t>t,> ... >t,
Since all subframes of a frame F usually do not form a chain we have not all subframes

are level subframes of the same fuzzy frame.

We shall denote the chain of level subframes of a frame F by I , (F).

Definition 2.2.8. Let X be the set of all fuzzy frames of F, the relation “~” in X defined
by M~ 4 if and only if for all x, yeF, H(x)> H(y) < M (X) >4 (y). Then “~” is an

equivalence relation on X.

Proposition 2.2.9. Let /£ and 4/ be two fuzzy frames of a frame F then # ~ 4/ if and

onlyif I' , (F)=T , ().

17



Proof. Let #,eT , (F) and take = inf {4/(a) | ac 4} then K, =,tl;. Similarly if
,U;e 'y @ and t =inf {4 (a) | ae,ut'} then /lé =4, .Hence I , (F) =T ., (F).
Conversely for any x, y in Fif K(x)> H(y)thenye K , x= !‘; and M/ (y)<t < H(x) it
follows that £/ (x) >4/ (y). Similarly 2/ (x) >#/(y) implies that £{(x) > H(y). Hence

H~ .

Note 2.2.10. Thus two fuzzy frames X and 77 of a frame F are said to be equivalent if

they have the same family of level subframes otherwise 4 and 77 are non-equivalent.
We shall denote the equivalence class of X by [ 4].

Proposition 2.2.11. If two equivalent fuzzy frames X and 7] of a frame have the same

image sets then K = 7],

Proof. Obvious.

Proposition 2.2.12. If each non-empty level subset K, , tel of a fuzzy set i is a

subframe of F, then 4 is a fuzzy frame of F.

Proof. Given 4,= {xeF |H(x) 2t}, t €l is a subframe of F. x, being a subframe
Of, €r € [, ,t €l. In particular we have O, € € 4; where T the largest element of I

such that fip # ¢ Hence H(€p) = U (0Op) = T 2 U(a) for all acF. Now let S an

arbitrary subset of Fand lett = inf {4 (a)|a € S }. Clearly we have S c u, hence

18



V Se K, and therefore H(V S) > inf { 4 (a)}| aeS}. Similarly for all a, be F we have

H(aab) 2 min { ¥ (a), K (b) }. Hence U is a fuzzy frame of F.

Theorem 2.2.13. Let K be a fuzzy subset of a frame E. Then U is a fuzzy frame of F if

and only if each non-empty level subset &, of K is a subframe of F.

Proof. Follows from Proposition 2.2.5 and Proposition 2.2.12.

Theorem 2.2.14. Let F be a frame of finite order then there exists a fuzzy frame X of F

such that I' , (F) is a maximal chain of all subframes of F.

Proof. Since F is frame of finite order, the number of subframes of F is finite. So there
exists some maximal chain of subframes of F.

Take Fo= {Of, €g} < F, < F, < ... <F,=F. 4))
Now define LFo)={1} and L (F;s)\F) = {"/;1} for any i, 0< i <n. Clearly K is a fuzzy

frame of F and is given by the chain (1).

Remark 2.2.15. If F is a frame of finite order and K a fuzzy frame of it then " , (F) is
completely determined by X and conversely for any finite frame F and the subframe

chain { Of, €g }<F,<F,< ...<F,=F there exists an equivalence class of fuzzy frames

of F such that I" , (F) is the above chain.

Remark 2.2.16. If [ 4]+[0] then there exists a fuzzy frame 77 of F in [ 4] such that

nep="mn0g=1.

19



Theorem 2.2.17. If H is a subframe of F, X a fuzzy frame of F and 77 is restriction of X
to H then 77 is a fuzzy frame of H.

Proof. Obvious

Theorem 2.2.18. Let {1, |a € A } be a collection of subframes of F such that

i F=U 1
) aer ¢
it) s > t if and only if Is cl ¢ for all s, te A where Aa collection of

elements in [0,1].

Then a fuzzy set K defined on F by X (x) =sup {te A | xe It } is a fuzzy frame of F.

Proof. By Proposition 2.2.12 it is enough to show that non-empty level sets
B, ={xeF| H(x) 2t}, t €] are subframes of F. We have the following two cases,
Case-I. t=sup {se A |s<t}

ae 4, & ae{xeF| H(X) 2t} & ae[s foralls<t < ae ) [
s<t

Therefore 1, = IS is a subframe of F.
s<t

Case-II. t #sup {se A | s<t}

Inthiscase #, = U I .Forif ae U I thenael forsomes > t.
s>t st §

Hence we have K (x) > s >t. Thereforex € #4yandhence U I < 4,.
st

Now suppose x ¢ U Is. Then x ¢ Is for all s>t.
s2t
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Sincet #sup { se A |s<t} thereexist £>0 suchthat(t-£,t)NA=¢ .

Hence x ¢ Isfor alls > t-£. Thus # (x) <t-e<t andsox ¢ K,

Therefore U I o K4,
s2t § )

Thus £, = U Is which is therefore a subframe of F.
s2t

Combining the two cases we have the i‘equired result.

Definition 2.2.19. Let X be any fuzzy subset of the frame F then the fuzzy frame

generated by X in F is the least fuzzy frame of F containing /£ and is denoted by (n).

Theorem 2.2.20. Let X be a fuzzy set of the frame F then () (x) = V {t | xe { #,)}

for all xe F, where ( ,Ut) is the subframe of F generated by 4, .

Proof. Let 77 be any fuzzy frame of the frame F defined by 7(x) = V {t|xe ( ,Ut> } for

all xeF. Then for any arbitrary S cF we have for all xe S, 7(x) 2 inf{7)(y) | ye S}.Now
Sc ( /lt> = VSe ( ,Ut) , hence T(V S) > inf{7)(y) | yeE}. Also for x, yeF let
Mx)=t, and 7)(y)=t,. Suppose that t;>t,. Then ye (/t,) = Xe€ ( ,u‘) and so XAy
€ ( ,Ut> ,hence TAxAy) 2 tiAt,.

Again since €y, Op € <,u¢>for all t such that 4, #¢ it follows that

T(ep)=7)(0 )2 T)(x) for all xeF. Thus 7] is a subframe of F.

Let #(x) =t, then xe U, c (/lt)and thus 7(x)> H(x). Hence 71> ( ,U) since
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( M) is the smallest fuzzy frame of F which containing /. Now let ¥ be any fuzzy
frame of F such that y o £ then y, o #, andso 7, 2 ( ,ut> for all t. Hence ¥ o 7).

Thus 7= ( H ) . Therefore the result follows.

2.3 Homomorphisms

Theorem 2.3.1. Let L and M be two frames, ® a frame homomorphism from L onto M

and U a fuzzy frame of M, then A= 4o ® is a fuzzy frame of L.

Proof. Let S be an arbitrary subset of L. Now ®(V S)e M and equal to V {®(a) | aeS}.

Since U is a fuzzy frame by Definition 2.2.1,
H oD (VS8)=H{V {®(a) |aeS }} 2 inf { H(D (a)) |aeS }.
Also foralla,beL, LoD (anb)= L{D(a) AD(b)} 2min { £(D (a)), H(D (b))}.

Again H(D (01))= (D (€L)). Therefore A is a fuzzy frame of L.

Definition 2.3.2. Let 4, [ be fuzzy frames of frames L and M respectively. If there is a

frame homomorphism f from L onto M such that A= L. fthen we say A is homomorphic

to X and is denoted by f ~'(L).

If f is an isomorphism then we say that X and A are isomorphic.

Lemma 2.3.3. Let f be a homomorphism from a frame L on to a frame M and let X be

any fuzzy frame of M then (f~'(w)),= f'(H ) for every tel.

Proof. Let xel
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Now xe (f7 (), & [T @) 2 t & pu(f(x) 2 t & fix)e K < xe f(H)

Therefore (f™ (w),= S (K) for every tel.

Remark 2.3.4. Theorem 2.3.1 follows also from above lemma since the homomorphic

preimage of subframe is a subframe and again vby Theorem 2.2.13 if XU is any fuzzy

frame of the frame F then every non-empty level subset of /£ is also a sub frame of F.

Theorem 2.3.5. Let f : L— M be a homomorphism between frames L and M. Then for

every fuzzy frame U of L, f (K) is a fuzzy frame of M.

Proof. Define for all ye M,

F(1) ()= {S“P{Mxﬂxef' O #1029

0, otherwise
Now for any arbitrary S © M we have,
f(H) (V S)=sup{ H(x)| xe f(VS)}

2 inf{sup{ H(x)| xe [ (M) }} = ;Iég {{H())3-

Again for all a,beM we have,

f{H)anb) = sup{ L(x)|xe f'(anb)}

v

min{sup( H(x)| xe f7(a)), sup(H(x)| xe f7'(®)) }

min{f{ /(a)), f{ 4(b))}.

Also f ( /4) preserves the unit and the zero elements of M.

Hence f ( K4) is a fuzzy frame of M.
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Theorem 2.3.6. Let F be a frame of finite order and f: F — F be an onto homomorphism.

Let K be a fuzzy frame of F with Im [={ty, t,, ... t.} and t¢,>t,> ... >t . If the chain
of level subframes of U is { Oy, €r}= K < My c ... < H, =F. Then the chain of

level subframe of f () willbe {O¢, ef}= f(H,)c (Hy)c - c_:_f(/ltn)=F/.

Proof. Given F is a frame of finite order. We have f () is a fuzzy frame of F by
Theorem 2.3.5. Also clearly Imf ( /) cIm . Now f(,u)ti =f(Hy) foreach t; eIm f{ H).
For let yef (K )ti then f (H)(y) =t; by definition of level subset. Hence sup{ H(x)|

xe f7'(y) } 2t; follows from the proof of Theorem 2.3.5. Now choose xoeF such that
ﬁxo)=yef(ﬂti),ltfollowsthatf(,U)tic_:f(ﬂti) ¢))

Letf(x)e f(H ). Thenx e # hence H(x) 2 t; which implies

sup{ H(2) | ze f'(f(x)) }=t; which implies f(4)(f(x)) 2t; by Theorem 2.3.5. Hence

fix) e fl 4 )ti by definition of the level subset.

It follows that f(;llti)gf(,ll)ti )
From (1) and (2) we have f(,U)ti=f(/Uti) 3)
Alsoif,lltig,utj then f(H¢)c f(ﬂtj)forti,tjelm/l. C))

Combining (3) and (4) we have the required result.
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2.4 Intersection and union of fuzzy frames

Let X and A be two fuzzy frames of F then Z/c A means H(x) < A(x) for all
xeF. Let F denote the set of all fuzzy frames of the frame F. We shall denote the

supremum and infimum in F by U(union) and [)(intersection) respectively.

Thus N g (a) = inf{/4(a) | ieA} and U g (a) = sup{#(a)l iec A} where
ieA ieA

H; e F . The greatest element of F is F, which is the function ¥ and F has no least

element.

Proposition 2.4.1. The intersection of any set of fuzzy frames on the frame F is a fuzzy
frame.
Proof. Wehave N (0= N (€p2 N x4 (x) forall xeF clearly.

ieA ieA ieA

Also for all x,yeF

ﬂA/ﬁ("AY) = inf{A( xAy) | ieA} 2 inf{min(Hx), @) | ieA}
i€

=min(inf{ 4 (x) |ie A}Linf{ /4 (y) |lie A})=min( N LX), N £ (©))
ieA ieA

Similarly for arbitrary ScF we have,

N /ti(VS)Zinf{ inf (#l(x))lie A}= inf (inf{,Ui(x)|ieA})
ieA xes x€e€S

= inf (N 4

X€eS jeA
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Remark 2.4.2. The union of arbitrary family of fuzzy frames on a frame F need not be a

fuzzy frame.

For consider the frame F ={X, ¢,{a},{b},{a, b}} where X={a, b, ¢} and the

order is set inclusion.

Consider the fuzzy sets £ and A defined on F by,
HOO =)=, M) =5, BB =2, Al b=
MX)=A($)=1, A (@) =2, (Y =3, A(la b=,

Clearly £ and A are fuzzy frames.

Here (AU A)(X) = (KU AX#) =L, (£U AX@h=2, (KU D({b))=>,

(#U 2.)({a,b})=§ .Now U A is not a fuzzy frame as,

(#U A)(fa} v {b))= (H#U A)({a, b})= %< inf{(£U A)({a}), (#U A)({p})}

Remark 2.4.3. The union of any chain of fuzzy frames is clearly a fuzzy frame. We can

also have two non-comparable fuzzy frames such that their union is a fuzzy frame. For

consider Example 2.2.4 where we have XU and A are fuzzy frames of F such that neither

H<sAnor A< M Also M UAisgivenby (L UAXED=( KL UA)O0p=1,

(HU D)(x) = % ifxeF \F, ,fork=23,...,2m Hence U 4 is a fuzzy frame of F.

Theorem 2.4.4. Let (4.)._, , , bea finite collection of fuzzy frames of a frame F.
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Then Uy, is a fuzzy frame if and only if for te[0,1], 4;(x)>t for all xeS an arbitrary
i

subset of F and K;(x) > t, K;(y) = t for all x, ye F implies K, (vS) = tand 4 (xAY)

> tforsomek, 1<k <n.

Proof. By Theorem 2.2.13 an M, is a fuzzy frame if and only if each nonempty level
subset ( LiJ#i), is a subframe of F. Now ( LiJ/‘i)FLiJ (u i)t for each te[0,1].

But l;J (4 ,), is a subframe of F if and only if for any arbitrary Sc l.J () and
x,yeLiJ (#;), wehave VS eLiJ () and XAy € llJ (u)).

That is #;(x) > t for all xe S an arbitrary subset of F and #;(x) 2 t, 4;(y) 2 t

for all x, ye F implies £ (V' S) 2 tand X (xAY) > tforsomek, 1<k < n.

Proposition 2.4.5. F the set of all fuzzy frames of F under usual ordering of fuzzy set

inclusion < is not a complete lattice.

Proof. Since F' has no infimum the result follows.

Theorem 2.4.6. Let S be the set of fuzzy frames of a frame F such that ; (€f) =

H(0p=1 for all H; € §. Then § forms a complete lattice under the usual ordering of

fuzzy set inclusion <

Proof. Let { #; |ie A} be a family of fuzzy frames of a frame F. Since 1 4 is the
ieA
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largest fuzzy frame of F contained in each /; weset A pu,= (1 x4 . Also since the
ieA iel

fuzzy frame generated by the union U g, is the largest fuzzy frame containing each
ieA

H; weset V ,ui=< U ﬂ_>,where< U #_> is the fuzzy frame generated by
ieA ieAn ! ieA '

U u,. Also Z{ ) and Y  are respectively the least and greatest element of §
ieA % %

A

Thus § is a complete lattice.

Remark 2.4.7. S is not atomic for if U= Z{ o e }v a .be anatom where a; (aeF) is a
*>°F

fuzzy singleton, then we can find a t < tsuch that /l'= Z{O e }v ay <M.
**F

Theorem 2.4.8. Let f be a homomorphism of a frame F into a frame F/. Let {ﬂi |ie A}

be a family of fuzzy frames of F.

i) If U 4, isafuzzy frame of F, then U f(u,) is a fuzzy frame of F /.
ieA ieh '

if) If U f(u) isa fuzzy frame of F/then U M, is a fuzzy frame of F,

ieA ieA
provided £;’s are f-invariant.

Proof. i) Suppose U u, is a fuzzy frame of F. Then the homomorphic image
ieA

f (U ) is a fuzzy frame of F by Theorem 2.3.5.
ieA

Nowsince f( U )= U f (u#,) byProposition 1.5.19 wehave U f (u,)isa
ieA ieA ieA
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fuzzy frame of F /.

i) Suppose U f (4 ) is a fuzzy frame of F. Then f( U f(u))) is a fuzzy frame
ieA ieA

of F by theorem 4.2. Also since f™'( U f(u)= U f7f(u)= UA,ui by
i€

ieA ieA
Proposition 1.5.19 wehave U u, is a fuzzy frame of F.
ieA

Theorem 2.4.9. Let fbe a homomorphism of a frame F onto a frame F’ and {4, |ie A’}

be a family of fuzzy frames of F/ then the following are equivalent,

1) U 4, is a fuzzy frame of F/,
ieA

ii) U r71(4,) isa fuzzy frame of F.
ielA
Proof. Suppose U 4, is a fuzzy frame of F. Now by Theorem 2.3.1 f"l( UAad,isa
ieA ieA

fuzzy frame of F. Also by Proposition 1.5.19 wehavef"l( u 4 J=U f"l(ﬂ.i ).
ieA ieA

Therefore U f’"l(,ii ) is a fuzzy frame of F.
ielA

Conversely suppose U s (A . ) is a fuzzy frame of F. Now by Theorem 2.3.5
ieA

fcu f_l(ﬂ. .) ) is a fuzzy frame of F /. Also by Proposition 1.5.19 we have
ieA

U la J)= U A, Therefore U 4, isa fuzzy frame of F/,
ieA ieA ielA
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2.5 Product of Fuzzy frames

Definition 2.5.1. Let ( X, L) and (77, M) be fuzzy frames where L and M underlying sets
which are frame. A morphism f: (4, L) —(7, M) is a frame homomorphism
f:L ->M such that £ < 7of. That is the degree of membership of x in L does not

exceed that of f(x) in M. The function f: L —M is called the underlying function of £ .

Definition 2.5.2. Let 7: (4, L) (7, M) and &: (7, M) — (¥, N) be morphisms
then go f : (4, L) - (¥, N) is a frame homomorphism go f: L — M such that

H<yogof.

Let FFrm denote a category whose objects are fuzzy frames and morphisms as

defined above. We have the following theorem
Theorem 2.5.3. The category FFrm of fuzzy frames has equalizers.

Proof. Let (4,L) and (77,M) be fuzzy frames.
Let f: (ML) —» (7,M) and 3:(K4,L) —(77,M) be two morphisms.

L

Consider L — M
_—g._._)

Let K= { xeL | f(x) =g (x) } which is a subframe of L and let i:K —>L be the
inclusion map. Then clearly foi=goi.
Define a fuzzy set 1 on K as follows, fora eK let A(a) = u(a).

Then { is morphism from (A4, K) to (&, L).
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If for arbitrary fuzzy frame (&, N), & is a morphism from (£, N) to (4, L) such that
foh=_goh then there exist §: N - K such that i =h.

Also £<400 as for z €N, £(z) SHoh (2) = H(h (2) = H( i-0(2)) =
H(i (@)= Heo i (@)= 2(8(2)=(1-0)2)
Thus & is a morphism from (&, N) to (4, K)
Now for z €N
(HoioO)z) = (H=i)O(2)) = H(i(O(2))) = H((i°O)2)) = H(h(2)) = (= h)(2) 2 5(2)

Hence poio82&. Therefore the result follows.

Definition 2.5.4. Let /4, be fuzzy frame of the frame F, for @ € A. The product of £,’s

is the function # =[] a4, defined on the product F =]]F, with usual order by

aelA aelA

(5 )gen) = inf (A (x,))

Proposition 2.5.5. /4= [ u, is a fuzzy frame of F= []F,

aelA aecA

Proof. We have F = {(a ), | a, € F, forae A}

er= (e F acp@nd Op= (0 F ) e ar€ respectively the unit and zero element of F.

i) For arbitrary S cF we have,

H(V S) HY {(x)| aeA})

Y %))
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it

4,0/ 2)

v

inf\ { inf {H(X,)}}

inf {inf { 4:(%,)}}

inf H(x)
x€$

ii)  Forallx=(x,),.r>¥= ()0 €F

H((x)gep A Ugdaen) = MU, AY)pen)

= inf {H (x, Ay,)}
ael

v

,‘,‘éﬁ { min{ /,,(X,), 4:(¥2)}}

= min{inf {/4(%)}, inf {/6()2)}}

= min{ 4(x), K(y)}

iii) Heey) =]Ju,(ep

ash
= inf {H4(ey, )}
= géf\{lua(opa )}

= H,ua (05) = H(0p)

aelA

also p(ep) = [[u,(ep = inf{ /4, (ex )}zen

ael

> inf {4, (a,)},

32



I

[Ta, @ foralla=(a,),., €F

aelA

H(a)

Hence we have the required result.

]

Theorem 2.5.6. The category FFrm of fuzzy frames has products.

Proof. Consider a family of fuzzy frames {(/4,F,) | @€ A}. Corresponding to the

product F = H F, we have the fuzzy frame (/, F) where [ = H M, . Now consider the

aeA aeA
projection (homomorphism) P, : F— F,. We have H((x,),.,) = ;réfl; {H,(x,)}. Hence
H<lyoP, for ae A.

Therefore 11 is morphism from (X, F) to (,,F,) for a e A.

Now for arbitrary fuzzy frame (£, M ) if 4 is a morphism from (£, M) to

(#4,,E,). Then define 6 : M—>F as (6(2)), =P, (0(2))=(P, °0)z)=u,(z) for all

ae Aand zeM. Now 6(z) = (4, (2)) is a frame map as u, for @ € Aisa frame map.

M -, F
ua\ /pa
Fa

Also forz eM we have £(2) < 4,0 u, (2) forall e A and hence,
§(2) < ;1;11; Ho(u, (2))= igg{%(f?(z»a} = H(6(2))= H-0(2).

Hence & < Mo 8. Thus @ a morphism from (&, M) to (&, F).
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Clearly P o6 =u, forall e A
Also (H4,° P, 28)(2) = (Mo P, )8 (2))
| = H(EF, (6(2))
= H(u,(2))
=(Hou,)(@26(2)
Hence & < M, 0 P, of.

Thus for each family (4,,F, ), , of fuzzy frames there is a fuzzy frame (X, F)
and morphisms 13a : (#, F) > (4, F,) such that for any fuzzy frame (£, M ) and family
of morphisms i_: (£, M) — (4, F,) there is a unique morphism 0 :(&,M) >(U4,F)
such that P o0=u, and & < ,UaOPa o@ forall ae A.

Therefore the result follows.

Theorem 2.5.7. The category FFrm of fuzzy frames is complete.

Proof. Follows from Theorem 2.5.3 and Theorem 2.5.6. a

Theorem 2.5.8. Let X, and U, be fuzzy sets of frames F, and F, respectively such that

Hix Ky is a fuzzy frame of F; x F,. Then K, or MK, is a fuzzy frame of F, or F,

respectively.
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Proof. We have U;x K, (epl , epz) > Hix Hy(x, y) for all (x, y) € F, x F, also

Hix Ky (OFI’ Opz) = Hix H, (epl, epz) where (epl, epz) and (opl, OFz) are

N

respectively the unit and zero elements of the frame F, x F,.

Now H;x Hy(x,y) = inf {{,(x), H4,0)} for all (x, y) €F, x F, by Definition 2.5.3.
Then 4(®) < #,(€) or H,(0) < #,(€r,) also H#,(€z) and H,(€r,) are equal
to either 4,(Or,) or 4,(0F,).
If 4,0 < Hy(6r) then 14() < H,(€r,) or 1,0)< H,(Er).
Let £4,(0) < H#,(€z)) forallx € F,

Then for all x e Fy, Hyx M, (x, €)= inf{{4(x), H,(€r )= 14(x)

Now for arbitrary ScF, we have
Hi(VS) = HxHy(VS, )

= Hix Hp(V x, €g)
xeS

= Hix Hy( \e/s x, €£,)

v

;Iég { Hyx Hay(x, €F,)}

= inf { #,(x)}
xeS

Forall x,y € F,; we have,
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Hi(xny) = Hix Ha(xAy, €F,)

. = ylxyz((x’ eFZ)A(Y’ er))

v

min { #yx Hay(x, €r,), Hix Ha(y, €F,)}
= min {/4(), /,0)}
Now H\(€r )= tyx H, € , €g) > [ x Hy(x, €)= () forallx e F,
Also #,(0F )= ft;x 1, OF , €r)=inf{4(OF), H,(€,)}
If 45(8r,)= H,(OF,) then
HOr)=inf{H,(€r)), Hy(€r,)t= Hy(€r) 2 1) forall x € F,
If H3(€r,)= H,(OF,) then
() = inf{iy(Or), H2(0p)} = Hyx iy (O, Op, ) = pyx ty (€ €5 )
= inf{h(€r), (€, )= Hy(Er)
Thus H,(€r)=H,(0F) 2 }4(®) for all x € F,
Therefore K, is a fuzzy frame of F. )
Now let £4(¥) < #,(€,) is not true for all x e Fy. That is if £4(¥)> #,(€r,)for all
x €F, then 1,(0) < H4,(€r)) forally € F,.

Therefore forally e Fp, Hyx My €g, ) =inflt,(€), H,00} = 1,0
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Now for arbitrary S ¢ F; we have

Hy(VS) = Hyx Hy(CF,, VS)

= Hyx Hy(6F,, V X)

xes
= Hix By(V (€r,5x))
2 inf { Hyx Hy(8F, %)} = inf { ()}

Similarly for all x, y € ¥, we have H,(xAy) = min { #,(X), 1,()}

Now H2(€r,)= Hyx t; (€r , €r) 2 i x Hy( €r,,x )= Hy(X) forallx e F,.

Also H30r,)= thx 1, € , O ) =inf{th(&r), #,0p )}

If 1(&,)= #,(Op)) then,

Hy(0p, )= inf{( 05 ), Hy(Op, ) }= Myx 1, (Op, Op ) = Myx [y (€r ,€g )

= inf{t(&), Ky} = H,(Er)

If 4)(& )= H,(OF,) then,

Hy(0p,) = inf(14(€7), (6= 1(€r) > H1(€r,) 2 11, forall x € F

Thus #,(€r,)= H,(0r,) > f4)(®) forall x € F,

Therefore M, is a fuzzy frame of E,. )

Hence from (1) and (2) either X, or K, is a fuzzy frame of F, or F, respectively.
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Theorem 2.5.9. Let X, be fuzzy set of the frame F, for ae A such that H M, isa

aeA

fuzzy frame of F = H E, Now for x, e F, (@€ A)if ﬂa(epa)= ﬂa(opa) > H,(x,)

aelA

and o€ )= Ho(€ ) for all @, Be A where €, O  are respectively the unit
a p a a

and zero element of the frame F, then A, is a fuzzy frame of F, forall a e A.

Proof. We have H H, ((eFa Jacr) = H K, ((Opa Jaer) 2 H Mo (%) aen ) for

aelA ael\ aelA

all (x;)zer €F where (eFa daean and (OFa Jaen are respectively the unit and zero

elements of the frame F.
e (1) y if =«
Now for y € F, consider (Yg)gea €F where Vg = ey © therwise

Thenforally € E,, | [#5(0p)pen) = inf {H3(,)}= Ha0)
BeA Pel

Consider ¢ € A

Now for arbitrary Sc F we have,

H(VS) = H"ﬂ((yﬂ)ﬂel\)w}‘ere Yp= { \;S :)t;hf:visae
peh s
x if f= «
= g’u B (x\e/S (xﬂ)ﬁe/\) where Xg= { e 5 otherwise
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1\

inf L 145(C5p) 50y

= inf { 4,(x)}
xe§

Similarly it can be shown that for all x, y € E,

txay)= [TH5(0p)pen) wh {My vo- e
L(XAY) = 's YB)pea ) where Vg = .
Beh eFﬂ otherwise
2 min{ 4,(x), £, ()}
Hence the result follows. a

Let f be a homomorphism on a frame F. If # and o are fuzzy frames of the
frame f(F)then K x o is a fuzzy frame of f (F) x f(F). The pre image M ofand o ofare

fuzzy frames of F and (4 x o)< (f, f) a fuzzy frame of F x F. We study this relation.

Theorem 2.5.10. Let F be a frame and f a homomorphism on F. Let 4 and o be fuzzy

frames of the frame f(F) then Kof x g of = (K xo)°(f,f)

Proof. For all (x,, x;) €F x F we have,
(K xa)o(£S) (X1, x) = (K x o )f (x1), f (x2))
inf{ 4(f(x1)) ,o (f(x2))}

inf { Hof(x1) ,0 of (x2)}

(Hefxoof) (x1, %) o



The relation between images of product of fuzzy frames of a frame F is given as
follows.

Theorem 2.5.11. Let # and o be fuzzy frames of the frame F. If f is a

homomorphism on F, the product f( # ) x f( o )and (f, f N H xo ) satisfies

(L)(Hxo) o fFCH)f(0o).

Proof. f( /) and f( o ) are fuzzy frames of f(F)and f( £ ) xf( o ) is a fuzzy frame
of (f, fUNExF)=f(F)xf(F).
Now for each y = (y,, y2) € f(F) x f(F) we have,

[(f K xa))(y) =sup{(H xo)(x)|x e F'(y)} where F=(f, )

and x=(xy, X3)

sup {inf( H(x,), & (x2)) | (x1, X2) € F' ()}

IA

inf (sup{ H(x1) | xi € 7 (Y0}, sup{a(x) | X2 € 7 (¥2)})
inf { f(H(y1)),f (o (¥2) }

= (f(H) x f(o)y)
Thatis [(f, fUF x F)Iy) < (f(H)x f(o))y) forall ye f(F) x f(F)

I

Therefore the result follows. o
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CHAPTER 3

FUZZY QUOTIENT FRAMES AND FUZZY IDEALS

3.1 Introduction

The operations of binary meet and arbitrary join on a frame F induce, through
Zadeh’s extension principle new operations on the partial ordered set I'. We define a
fuzzy quotient frame of F to be a fuzzy partition of F that is a subset of I and having a

frame structure with respect to new operations. We also study regarding fuzzy ideals on a

frame F.
3.2 Extended Operations

The operation of binary meet A and arbitrary join V on a frame F can be

extended by means of Zadeh’s extension principle to operation A and Von F as

follows,

(HAYYx)=sup{ H(y)An Y (@) |y,z € Fandyrz=x}

(a\ZA Hor)(x)= supt a/e\A Ha (xa)| x, € Fand a\e/A Xa = x} (1)

forall 4, ¥,H, eI and xe F.

The original operation A and V on a frame F can be retrieved from A and Y, by

embedding F into I¥ as the set of all fuzzy singletons each of which is a fuzzy set 1, € I

which takes the value 1 at xe F and O elsewhere. Also £,/ : F—>1 given by 4(x) =0
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forall xeF and £ (x) = 1 for all xeF are the largest and smallest elements of I*. It can be

observed that for every Y €T, fh= A Y = 4V ¥V and LAY S W, LV V< I

forall Yy € ¥

Note 3.2.1. I is a bounded partial ordered set .

Note 3.2.2. For any family {A,| a€ A} of subsets of a frame F, \7A A, #={Va,|
aec

acA

a,€A,}and A A Ag= {anbja€ A ,bE Aﬂ} for all @, feA.

We give the following definitions for supremum property with respect to binary

meet A and arbitrary joinV

Definition 3.2.3. A pair { &, ¥ }of fuzzy sets of a frame F has supremum property with
respect to A if for any xe F there exist y,, z,€F with y,Az, = x such that sup{ Z(y) A

Y(@1y,z e Fand yaz=x}= H(yo) A ¥ ().

Definition 3.2.4. A family {/,| ae A} of fuzzy sets of a frame F has supremum

property with respect to V if for any xe F there exist {a, | ae A}cFwithx=V a

aeA %

such that sup{a'/e\A Hy(x,)| x, € Fand a\e/Axa=x}= a/E\A K (a).

Definition 3.2.5. A sub collection S of I is said to have supremum property with respect
A and V if every two elements of S has supremum property with respect to A and

every arbitrary subset of S has supremum property with respect to V.
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Proposition 3.2.6. Let { 4,) } be a pair of fuzzy sets and {/,| a € A} be a family of

fuzzy sets of the frame F having supremum property with respect to A and V

respectively then for each te[0, 1], (HA Y ) = A Y and (a\ZA k= a\ZA(ﬂa)t.

Proof. Let xe ;A ) then for some y, zeF with x = yAz we have H(y)>t and
Y (z) 2t. Therefore (LA Y )(x)=sup{ H(Y)A Y (2)|y,z EFandyrz=x}2t.
Therefore xe (A Y)..Hence A Y . c (KA Y ). (2)

Now let xe (4 A }),, then we have,

(HAYYx)=sup{H (A V(@D |y,ze Fandyaz=x}2 t.

Since M and } has supremum property there exist y,, zoe F with yo A 7z, = x such that
sup{H(y)A Y (2)|y,z € Fandyanz=x}= H(yo)r V(z0) 2 t.

Therefore yo € Uy 2o € ¥, thus yonzoe A Y Hence (A Y )< MR Yy 3)

Therefore from (2) and (3) we have (KA YV )= A Y.

V x_ we have
aeA ¢

Similarly if xe \'7A(;1,,)t then for {x | ae A}cF with x =
aec

Hy(x,) 2tfor all @ € A.

Therefore ( f/A H)(x)= sup{ /\A M (x,)| x, € Fand VA x, =X}t
ae ae ae
Therefore xe( V M) Hence V (M) < (V L) “)
aeA aeA asA

Now let x e ( \7A Ho)h Since { 4| @ € A} has supremum property there exist
ac
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Vox, = x}

aelA

{a,| ae A}cF with x =a\e/Aaa such that sup{al/E\A Hy(x,)| x, € Fand

= A M, (a,).2t. Therefore a, € (M) for all @ e A.Thus V a_e V (H4,).
aelA aelA

ael

mence(m\'gA M) c Q\ZA(ua)L €)

Therefore from (4) and (5) we have ( \7A K= \7A (K
ae ae

Theorem 3.2.7. Let { &, ) }be a pair of fuzzy frames and { /,| @€ A} be a family of

fuzzy frames of the frame F having supremum property with respect to A and V

respectively then A Y and \7A H, are fuzzy frames of F.
ae

Proof. To show that /A } is a fuzzy frame of F by Theorem 2.2.13 it is enough to
show that each level subset (4 A ¥).of {A }V is a subframe for te[0, 1].

By assumption X and ) are fuzzy frames of F hence again by Theorem 2.2.13 the level
subsets K, and ¥, are subframes of F. Since M,and /, are subframe ;A Y ,is a subframe
of F for te[0, 1]. Now by Proposition 3.2.6 we have (U4 A }), =HA Y Therefore

(KA Y) is a subframe of F for all te[0, 1]. Hence #A Y is a fuzzy frame of F.

Similarly we have \7A H, is a fuzzy frame of F.
ae

Theorem 3.2.8. Let 4, Mand ¥ € I . Then LR (7 V)S (HAMY (KR Y)

Proof. Let weF

Now (KA (7719 ¥ ))w) = sup { H(w) A(7V ¥ )(v)|u,v eF,un v=w} 6
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For arbitrary u, v € F such that u A v=w consider,

H@) A(Y YY) = H() A sup {7](y) v ¥ (2) | y,z €F,yv z=V}

= sup{(H(@) A7) A (KW) AV (2)]y,z €F,yv 2=V}

< sup{(H@)A TN A(H@)A Y (2) |y, z €F, (uay)v(ua 2) =uav}

< sup{(HAMUAYA(HA YV Xunr2) |y, zeF(uay)v(uaz)=uav}

=((HAV (KA T))W) (M
From (6) and (7) we have,

{HA (VYW {(HAMY (KR Y)}(w)

Hence UA(TIV YVYS (HATMV(HAY) =

Similarly we can have the following result
Theorem 3.2.9. For fuzzy set K and the family of fuzzy sets { /,| a € A} of the frame

E,HA(NV H) s V (UR W)
aelh aelA

Theorem 3.2.10. Let S be a sub collection of I which is closed with respect to A and

V, and having supremum property with respect to A andV then HA( \7A H) =
ae

V (KR H).
ael

Proof. By Proposition 3.2.6 we have,
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(HACY e = M AV M= M RV (B ) = V(B A =

\7A(p A= ( \7A( M A M), forall te [0, 1]. Hence the result follows.
ae ae

Remark 3.2.11. In terms of operations A and V the conditions (F1) and (F2) for

arbitrary fuzzy frame X in Definition 2.2.1 can be rewritten as,

(F1)y M2 \7A;t,, where = 1 (F2) M2 HA U

Proof. Wehave ( V /,)(x)
aelA

sup{ A\ H(4)| 4, €F, V a, =x}
acA aeA

sup{\ H(4,)| 4, €F, V a, =x}
aelA

IA

sup{ H( V a,)|%€F, V a,=x]
= M (x), for some xeF

also (KA H)(x) =sup{H(y) A H(2)|y,zeF,yrz=x}
< sup{ H(yAz)ly, zeF, yrz=x}

= H(x)

Remark 3.2.12. In fact equality holds in the above result as,
(KA B)(x)=sup{ H(y) A H(2) |y, zeF, yrz=x}

> H(x) A H(€r)=H(X)

Also (Y, H)(X) 2 H(x) A H(OR)A H(OR)A. .. = H(X)
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3.3 Fuzzy Quotient Frames

Definition 3.3.1. [OV], [MU] A fuzzy partition of F is a subcollection P of I ¥ whose

members satisfy the following three conditions
i) Every ) eP is normalized i.e. ¥ (x)=1 for at least one x€eF.
ii)  For each xeF there is exactly one } €P with }/ (x)=1.
iiiy If 4, ¥ ePand x, yeF are such that (x)= Y (y)=1then U(y)=}) (x)=
hgt (14 A ¥) where the height (hgt) of a fuzzy set Ae I is the real number,

hgt (A)= supA (x)
xeF

Given a fuzzy partition P of F and an element x eF, the unique member of P with

value 1 at x is denoted by [x] and is called fuzzy similarity class of x.

A 1-1 correspondence between fuzzy partition and fuzzy similarity relation is
defined by sending a fuzzy partition Pc I ¥ to its fuzzy similarity relation in I **¥ | where

for all x,ye F we have,

R; (x,¥) = [x](y) = [y}(x) = hgt ([x] A [y])

The inverse correspondence is defined by sending a fuzzy similarity relation R on F
to the fuzzy partition Prc 17 given by Pr={R (x) | xeF}, where R(x) is the fuzzy set of

F defined for all ye F by R(x)(y) =R(x, y).

Definition 3.3.2. We call a fuzzy partition Py of a frame F a fuzzy quotient frame of F if

Prisa subset of I1Fand (Pg, A,V) isa frame.
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Theorem 3.3.3. A fuzzy quotient frame P of a frame F satisfies the following properties

forallx,y eF and arbitrary {x | ae A} cF

i)

ii)

iii)

v)

Proof. i)

[x] A [y]=[xAy]
a\ZA[xa] B [a\e/Axa]

LA [yl=[xAayl=[x] Aly
1V [yl =lxvyl=[x] ¥ 1,
1 A [€¢]=(x]
1,V [06] =[x]

[€§] and [ O] are respectively the identity elements with respect to

-~ ~

A and V.

[x]°= [x°], where x° the complement of x in F if it exits.

We have for all x, yeF

(Ix] A [yD(xAy) = sup{[x](2) Alyl(W) |zAwW=xAY}

2 [x](x) Alyly) =1

P being a frame we have [x] A [y] is in P. Hence from the definition of fuzzy partition,

we have [x] A [y] =[xAy] as [xAY](xAY)=1.

Similarly WV V x_)=sup{ A Va=V
yaeA[xa](aeAxa) p{aeA[xa](aa)laeAaa aeAxa}

2 a/E\A[xa](xa) =1

P being a frame we have \7A [x,]is in P. Hence from the definition of fuzzy partition,
ae

have V =[V Vv Vx )=1
wehave aeA[xa] [aeA xa] as [aeAxa ](aeAxa)
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i) (1A [YD(xAY) =sup{l(z) Alyl(W) |zAw=xAY}
21L(x) Alyly) =1
Therefore 1, A [y] = [xAy].
Also ([y] A1)(xAY) 2 1, hence [xAy]=[x] Al,.
Similarly we have 1,¥ [y] =[xvyl=[x] ¥ 1,.
iii)  Clearly (1, A[€g])x) 21 and ([€F] A 1)(x) 2 1
Hence 1, A [€5] =[x]=[€f] A 1,
Similarly 1,V [0¢]=[x]= [0] ¥ 1,
iv)  wehaveby (i) [€5] A [x]=[€ra x]=[x]= [x] A[€]
also [0¢] ¥ [x]=[0F v x]=[x]= [x] V [€f]
V) As[€fl=[x v x]=[x] V [x]and [OF] =[x A x*]=[x] A [x°]

we have by (i) [x]°= [x°]

Remark 3.3.4. For all x, y, z <F we have,
[x)(yAz) = [zAy](x) by definition 3.11 of fuzzy partition
= ([z] A [yDX)
2 [z](x) A [y}(x)
= [x](2) A [x](y)
Also for xeF and arbitrary S cF

[x)(vS)= [vSI) = [ Y, %)

v

A [%](x)

aecl

= A [xI(%) =inf {{x)(%,) | % &S}

ael
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3.4 Invariant fuzzy binary relation

We give the following definition for an invariant fuzzy binary relation.

Definition 3.4.1. A fuzzy binary relation R on a frame F is invariant if it satisfies for all
xy,uveF

i) R(xAu,yAv) 2 R(x,y) ifx 2y

IA

R(xAu,yav) < R(x,y) ifx=y

v

ii) R(xvuy,yvv) 2 R(x,y) ifx #y

IA

R(xvuyvv) < R(x,y) ifx=y

Theorem 3.4.2. If R is an invariant fuzzy similarity relation on a frame F then its fuzzy

partition Py, is a fuzzy quotient frame of F.

Proof. We have forall x,y,z € F

(XIAlYD(@) = sup{[x](u) Alyl(v) [uav =2z}

sup{R(x,u) AR(y,V) |uav=2z} )]
Case-I:ifx #u, y #v

ThenR (x,u) A R(y, V)

IA

REAX AY), ua(uAV)) A R(YA(X AY), VA(UAYV))

= R(X AY,uAV) A R(X Ay,uAYV)

= R(X AY,UAV)
Therefore, sup{ R (x,u) A R(y, V) |uav=2z} < R(X Ay, 2) =[x A YI(2) (2)
Case-1I:ifx=u, y=v

ThenR (x,u) AR(y,V)=1 A 1=1=R (X Ay,uAv)
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Therefore, sup{ R (x,u) A R (¥, V) |[uav=2z} =R (X AY,2) =[x A y](2)
Case-IIl: ifx=u, y # v
ThenR (x,u) A R(¥,V) £ 1 A R(X AY,uAV) =R (X Ay, uAv)
Therefore, sup{ R (x,u) A R (¥, V) |[uav=z} <R(x AY,2) =[x A y}(2)
A similar case when x # u, y=v
Combining (1) (2) (3) and (4) we have [x] A[y] < [x A y]
Now for all x, y, z €F consider [x A y}(z) =R (x AY, 2)
Case-1:ifx Ay=2z
ThenR (x AY,Z)= R(X AY, X AY) = R(X,X) AR(¥,Y)
= [x1(x) A [yl(y)
< sup{ [x J(w) A [yl(v) [uav=2z}
= (XIAlYD@)
Case-I1: if x Ay # 2
ThenR (x AY,Z)= R(X AY,2) A R(X AY,2)
< R((x AY)VX,2vZ) A R((X AY)VY, ZVZ)
= R(x,2) A R(y,2)
= [x1@ A )
< sup{ [x J(@) A [y)(V) |uav=2}
= (X]AlyD()
Combining (6) (7) and (8) we have [x A y]< [x]A[y]
Hence from (5) we have [x] A [y] =[x A y].

Now for arbitrary {x | @€ A} < Fand z € F we have
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Y, = Va-=
(¥ [x, D@ =sup{ A 1%,1(a,)| V a,=2}

=sup{a/E\AR(xa,aa)|a\e/Aaa=z}
Case-I:ifxa;taa forall xe A
Then A R s < AR \VJ , \VJ

en aelA (xa aa) acA (xaV(aeAxa) a‘IV(aeAaa))
= AR(V<x,V =R(V«x,V
ael (aeAxa aeAaa) (aeAxa aeAaa)
Therefore, s AR , Va=z}=R(Vx ,z)=[V zZ
or up{meA (x, aa)laeAa,, z} (aeAxa z) [aeAxa]()

Case-II:ifxa= a, forall ce A

Then a{;\AR(x“’a“)=l=R(a\e/Ax“’ a\gAaa)

Therefore, sup{a/e\AR(xa,aa)l a\E/Aaa=z}= R(a\E/Axa,z)= [a\E/Axa](z)

Case-III : if x , # a, for atleastone a € A

Iffor BeA, Xg# ag thenR(xp, aﬂ)s R(xﬂv(a\e//\x“)’aﬂ v(a\e/Aaa))
- R(a\e/Ax“’ a\e/Aaa)

IfforaeA, x,= a, thenR(x,,a,)=1

encesup{m/e\A (xa,aa)la\e//\a‘Z z} R(a\e/Axa,z) [aeAxa](z)

Combining (9) (10) (11) and (12) wehave V [x,]1 <[V x_]
aelA aelA
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Now consider [ V x 1(2)=R(V x_,2) (14)
aeA aelA

Case-I:if VvV X, = Z

aecA

R(V R = R(V , V =
(aeAxa Z) ( xa aeAxa)

aelA

AR(%,x,) = A (x,)(x,) s

aelA

sup{ A [x51(a,)l V a, =V x,=2} = (V [x, )@ (15)

Case-II : if Vv X, # 2

ael

R(a\e/Axa,z) < R((a\e/Axa)A X,,2Az)=R(x,,z) forall aeA

Therefore R(a\e/Axa,z) < AR(x,,2)

IA

sup{a/E\AR(xa,aa) | a\!Aaa=z }

sup{a/e\A[xal(aa)I a\!A“fZ}

(V [x, )@ (16)
Combining (14) (15) and (16) we have [ ARE \7A [x,]

Hence from (13) we have V [x, 1=[V x,1]
aeA ael

Clearly [€f] and [ O] are respectively the unit and zero element of element of Py.

Now for any [x] € Py and arbitrary S ¢ Py we have,

(KA (98) = WALV x,]
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= [xA(V x,)]
aelA

[V (xax,)]

\V/ [xAx,]

aelA

)ZA (Ix] A [x,])

Hence Py satisfies infinite distributive law. Thus Py is a frame.

Therefore Py is a fuzzy quotient frame of F.

Remark 3.4.3. Let F be a frame, then the transformation Q from the set of invariant
fuzzy similarity relations on F to the set of fuzzy quotient frames P of F sends an
invariant fuzzy similarity relation R on F to its fuzzy partition Prxc I ¥ given by

PR={R(X> | XEF}

Remark 3.4.4. Let F be a frame such that every element of it has complement. Then for
some xe F, we have [x] A [x°] = [xAX‘]= [O}] and
[x] V [x°]=[xvx’]= [€f]
Also [€¢](x) = [xvx°](x)
= ([x] V [xD(x)
2 [x](x) A [x°](x)
= [x](x)

That is [ €¢](x) 2 [x]( x°). Similarly we have [ Og](x) = [x]( x°) for all xeF.
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Example 3.4.5. Consider the frame F = {{a, b, c}, {a, b}, {b, ¢}, {a}, {b}, {c},T}

under set inclusion. Define a fuzzy similarity relation Rg on F by,

which is invariant.

Now Pg = {[x] | xeF} where [x](y) = RK{X, y) is a fuzzy partition of F, hence a fuzzy

quotient frame.

3.5 Fuzzy Ideal of a Frame

We give the following definition for fuzzy ideal.

Definition 3.5.1. Let F be a frame, then a fuzzy set 4 on F is said to be a fuzzy ideal of
Fif

(F1) H(avb)2min {4 (a), 4 (b) },foralla,b eF

(F2) H(anb)2max {H(a), H(b)}, foralla,b eF

(F3) M (Of)=1 where O the zero element of F

Example 3.5.2. Consider the frame F = {{ab}, {a}, {b}, ¢} where the order is set
theoretic inclusion. Let £ and } be two fuzzy sets defined on F by,

H({ab}) =02, H({a})=0.5, H({b})=02, H(4)=1and

Y ({ab}) =03, ¥ ({a})=0.3, ¥ ({b})=04, Y (4)=1.

Then X and } are fuzzy ideals on F.
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Theorem 3.5.3. If /£ and } are two fuzzy ideals of F then [~ } is a fuzzy ideal of F.

Proof. (F1) (4N ¥)(avb) = min {4(avb), ¥(avb)}

v

min { min( 4 (a), # (b)), min(7 (a), 7 (b))}

v

min { min( A(a), ¥ (2)), min(£(b), ¥ (b))}
= min {(#£n )V )@),(Kn V)b)},foralla, beF

(F2) (#n ¥ Xanb) = min{H(anb), ¥ (anb)}
> min{ 4 (a), ¥ (a)} by Definition 3.5.1 (F2)
> (HAY)a), forall a, beF
Similarly (£~ ¥ )(aab) 2 (K ¥ )(b)
Therefore (KN ¥ Yaab) 2 (KN ¥ )(@) v (KN 7)), forall a, beF
(F3) (KN V)X Op)=min{H (0p), ¥ (0p} =1

Therefore 4 Y is a fuzzy ideal.

Result 3.5.4. If { /4;| ie A} a family of fuzzy ideals of F then 1 4, is a fuzzy ideal
ieA

of F.

Proof. As above.

Remark 3.5.5. Union of fuzzy ideals on a frame F need not be a fuzzy ideal on F.

For consider fuzzy ideals of Example 3.5.2
Now (Hu 7)({ab})=0.3, (KL 7)({a})=0.5, (K u ¥ )({b})=04, (KU ¥ )(#) =1.

HuU Y is not a fuzzy ideal of F since,

(Hu¥)({a}v {b})=(HuU 7V)({a,b}) = 03 <min{(H UL }¥)({a}), (KL ¥ )({b})}
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Definition 3.5.6. Let Zelf. Let{(u)= N {V | Hc V. ¥ a fuzzy ideal of F }, where

Hc ¥ means H(x)< ¥(x) for all xeF. Then (u) is called the fuzzy ideal of F

generated by K.

Note. {x) is the smallest fuzzy ideal of F containing 4.
We state without proof the following result.

Theorem 3.5.7. Let 4 and } be any two fuzzy subset of F, then
i)  (u) =M, if Hafuzzyideal
i) HcV=>(u)elr)
i) (u/s)c (/l)/s where S a subframe of F and,u/s and (ll)/s are the

restriction of M and {(u)toS. u]

Theorem 3.5.8. Let [, ¥ be two fuzzy ideals of F, then [V Y is a fuzzy ideal of F and

Lo y=(uuy).

Proof. Letx,y eF, then (#¥ ¥ )(x) = sup{ Z(u) A ¥()|u, veF,uvv=x}
2 Hx) AV (0p)= H(x)
Hence 44¥ ¥ o M. Similarly we have £V ¥ 2 7.
Thus UV Y o HOY

(F1) (#V Y)avb) = sup{Hu) A Y (¥)|u,veF,uvv=avb}
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2 sup{ H(u;vvy)) A Y (uvvy) |u, g, v, va€F, u vy =a,
V]VV2=b}

2 sup{(H(u) A H(v))) A(Y (1) A ¥V (V2)) | uy, 0, vy, V2 €F,

yvuy=a, vivva=b}

= sup{(H(u) AY()) ACH(MV) A ¥V (V2) |uy, 03, vy, V2 €F,

yvuy,=a vivva=>b}

sup{ H(u)) A YV (1) |u;,u; €F, yyvuy=a} A

sup{ L(V)A ¥ (V) | Vi, v2€E, vivva=b}
= (HVY)a) A (HV Y)b) foralla,b eF
(F2) (49 ¥)anb) = sup{H(aru) A ¥(@rv)|y,veF,uvv=>b}
> sup{ H(u) A ¥ (V) |u, v €F,uvv="b}
= (MY ¥)b) forall a,beF
Similarly we have (4 ¥ )anb) 2 (4 ¥ )(a), forall a, b F.
Therefore (4 ¥)@anb) 2 (45 ¥)@) v(H ¥ )b), forall a, b F.
(F3) If H(0p)=Y(0p)=1 thenclearly (¥ ¥)(OF) = H(Og)=1and
(£V V)(Ox) 2 Y(Op). Therefore (HV V)(0p) = 1.
Thus if /4, ¥ are any two fuzzy ideals of F then ¥ ¥ is a fuzzy ideal of F.
Now let & be any fuzzy ideal of F such that 4 ¥ C & then,
(HV ¥)x) = sup{H@u) AV (V)|u,veF,uvv=x}
< sup{&@) A (V) |u, veF, uvv=x}
< $(x)

Therefore UV Y < &.
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Thus MV Y is the smallest ideal of Fsuchthat LU Y c UV ).

Therefore U Y= (uuy).

Proposition 3.5.9. Let 1, ¥ eIf . If U, ¥ be any two fuzzy ideals of F, then 4 A ¥ <

HnY

Proof. (HAY)x) = sup{Hu) A Y (V) |u,veF,uanv=x}

IA

{HX) AY(x)} [ Huav)= H(x)2 H(w)v H(v) and
Y(@av)=Y @2 Y@v ¥ H)]
= (KN Y )x)
Therefore UA Y < KN Y.
Proposition 3.5.10. Let X be a fuzzy set of a frame F such that [(Og)=1.Then Uisa
fuzzy ideal of F if and only if each level subset 4, of X is anideal of F fort €l.

Proof. Let U be a fuzzy ideal of a frame to show that A, is a fuzzy ideal fort el.

For arbitrary a, be M, we have HU(a) 2 t, (b) 2 t hence U( avb) 2> t, as

H(avbd) > min{ 4(a), K(b)}.Henceavbe K,
AISO OF € #t as ”(OF)': 1.
Againanbe K, forall a,be K, since H(anb) > H(a) v H(Db).

Conversely suppose every strong level subset £ of the fuzzy set M an ideal of F

to show that X is a fuzzy ideal of F.
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Given H(O§) =1, therefore 4(Of) 2 H(x) for all xe F.

Now consider arbitrary a, b € F. Let t = inf {Z#(a), H(b)}. Clearly we have

a,b e K henceavbe K, . Therefore H(avb) = t=inf { H(a), H(b)}.

Now let ti(a) =t; and H(b) = t; then we have anbe K and anbe /. Hence

H(aab) 2 t;and H(aAb) 2 t;. Therefore L(anb) = t;v t,=H(a)v H().

Proposition 3.5.11. Let 4 and 77 be fuzzy ideal of a frame F then (KN 1), = K, N 7},

forallt el.

Proof. We have xe M, N 17, = xe M,and xe 7,
= M(x) >tand 7(x) >t
= inf{ 4(x), 7(x)} 2t
> (BNn)x) 2t
= xe(HN)

Therefore Ky 17, < (KN 1),
Also UN1 < Hand N7 < 7. Hence (KN 1)) < Brand (KN 1) S 7,

Therefore (M n), < K, N 1. Hence the result follows.

Proposition 3.5.12. Let X and 77 be fuzzy ideal of a frame F with supremum property

with respect to v, then (4 V n7),= 4,V 7, forallt el.

Proof. We have xe U, V 1), = there exist ye H,and ze 7}, such thatx=yvz
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= sup{H(Y) AV (D) | x=yvz}2t

= (HV ) 2t

= x e (LY ), forall xe F.
Therefore K,V 71, < (Hv 1),

Since M and 77 has supremum property we have, (X V 1), c 4,V 1,

Therefore the result follows.

Proposition 3.5.13. Let X, 17 and Y be fuzzy ideals of a frame F then UN(PV V) =

(KamV (HnY).

Proof. (Un(NV Y))w)= H(W) A (1Y Y)(W)
= HW) A sup{n(y) AV (@) |y,2z €F,yv z=w}
= sup{( (W) AT)A(HW) AY (@) |y,z €F,yv z=w}

< sup{( L) AN A(H@) AV (@) |y, 2 €F, yv z=w}

[y=yAwW,z=wAz]
= sup{(Ln M)y A(KN Y X2) |y, z €F,yv z=w}
= (KamV (KA Y )W) forallw F
Therefore LN (NV V) < (BnMV(HAY) (1)
Now Unnsfand UnY < H,also Unn<n <V Y and UnY <Y<V Y.
Therefore UN NS HA(NV Y)and B Y < B (7Y ¥) and hence,
(HAamV(HnY)<HAMVY) @

From (1) and (2) we have, U~ (NV V) =(H MV (HA)Y).
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Theorem 3.5.14. Given an arbitrary collection (;);c o and 77 of fuzzy ideals of a frame

Fthen 7 (Y, Hi)= Y (10 Hy).

Proof. For weF,

(M (Y, H)W) = 7(w) AV Hi)w)

nwW) A sup{ A Hi(a)] & eF, V a, =w)

sup{ A (11(w) A #i(a,)| @ €F, V. a, =w)

IA

sup{ A (1(a) A Hi(a))| a; <F, V a,=w)

[ .l. ai= ai /\W]

sup{ A (1100 Hi)(a) | a; €F, V a, =w)

(V. (1A H)Xw)

x_eA
Therefore 700 (Y, H)) < Y (100 1) (1)
Now 7 H;< M; foralli e A hence V. (10 Hi)s ¥V M also 7 ;< 7 hence
AACLYDER ]
Therefore V. (71 H3) < 1 (Y, i) @
From (1) and (2) we have ’_SA (M K)=nn (1:7/\ H)
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Theorem 3.5.15. The set I F of all fuzzy ideals of the frame F is a frame.

Proof. Iz F is a complete lattice, which is bounded above by % and below by l{op}

where the intersection of fuzzy ideals gives the meet and the join is given by the

operation V. Also here finite meet is distributed over arbitrary join. Hence I F is a frame.
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CHAPTER 4

INTUITIONISTIC FUZZY FRAMES®

4.1 Introduction

In this chapter we generalise the concept of Frame into an Intuitionistic fuzzy

frame and some results related to that are obtained.

4.2 Intuitionistic Fuzzy Frame

We give the following definition for an intuitionistic fuzzy frame.

Definition 4.2.1. Let F be a frame, then an intuitionistic fuzzy set A =
{(x, # A(x), ¥V aA(x)) | xeF} in F is called an intuitionistic fuzzy frame of F if it satisfies

the following conditions,

)  Ha(vS)z2inf{H,(a)|aeS}
Ya(VS) <sup{¥a(a)|acS} forevery arbitrary S F
ii)  Ha(aab)2min {H,(a), Ha(b)}
YV a(anb) smax {¥ A (a), ¥a(b)} foralla,b eF
i) A€ = Ha(05) 2 M4 ()
Ya(€p)=Ya(0p) SV (a) for all ac F, where €5 and O are

respectively the unit and zero element of the frame F.

® Some of the results in this chapter were accepted for publication in The Journal of Fuzzy Mathematics
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Example 4.2.2. Consider the set R of real numbers with usual topology 7 which is a

frame. Let A be an intuitionistic fuzzy set in 7 defined by, A={(x, 4 a(x), ¥ a(x))} xe F}

L x=R ¢ 0, x=R ¢
Where #,(x)= é, x#R ¢ , Ya(x)= é’ x#R, ¢

Then A is an intuitionistic fuzzy frame of 7 .

Example 4.2.3. Consider an intuitionistic fuzzy set A of I = [0,1] defined by,

A= {(x, H44(x), 75(x))|x€[0,1]} where a is some chosen element in (%,1] and

,u:(x)=<§, O<xs% , }’:(x)=<l—x, O<x<—

1-x, l <x<l1
L 2
Then A is an intuitionistic fuzzy frame of I.

Theorem 4.2.4. Let F be a frame and Ay, A2 two intuitionistic fuzzy frame in F then

A1 Az is an intuitionistic fuzzy frame of F.

Proof. Let A= {(x, Ha1(x), 7 a1 (x)) | xeF} and A= {(x, Ha2 (x), Va2 (x)) | xeF}
Then AinAz2= {(x, Ha1 (X)A Ha(x), Ym &) v Va2 (x)|xeF}

Let Hanm(x) = Har(X)A K (x)and Yana(x)= Yar(x) v ¥ a(x) forxeF
i) Hunm(xay) = Hua(xay)a B (xAy)

2 min { £ a1 (x), Ha1(y)} A min { £ (x), L (y)}
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= min { Ha1 (x) A Hr2 (x), Ham () A Haa(y)}
= min { Hmnw(x), Hnnr(y)} forallx, yeF
YmanEAy) =Ya(xay) v ¥ (xAy)
<max {¥a (), Va1 (y)}v max { ¥ n(x), ¥ (y)}
= max {Ya (X)v Y (x), Va1 (y) v Va2 (y)}
= max { ¥ mna(X), ¥ mAr(y)} forall x, yeF

i) HaAm(VS)=Ha(VS)A K (VS)

v

A inf {H,i(x)|xeS}

i=12

_inf{ A Mp@®)|xeS}

i=1
= inf { Har~a2(X) | xe S } for every arbitrary ScF

Ymnm(VS) = Yu(VS) v Vu(VS)

IA

v sup {¥ i (x)|xeS}

i=12

=sup { v 7ai(x)|xeS}

i=]
=sup {Yamna(x)|xeS } for every arbitrary S cF
iii) For unit element €y and zero element O of the frame F we have,
Hanmn(0g) =Ha~n(€r) 2 Uunn(x)and Yana(0F) =Y ann(€f)
<Y amAnx)forall xeF
For Hana(0F) = Hm(OpA Haa(0g)

2 Ha(x)A Haa (x) = Hmnn(x) forall xe F
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Similarly #a1na2(€r) 2 Karna(x) for all xeF.

AlsoYamna2(0r) = Ym(0p v Va2 (0p)

IA

Yax)v YaX)=Yanax)forall xeF.
Similarly ¥ a1~a2(€g) < ¥ ar~a2(x) for all xeF

Thus by definition A1 A2 is an intuitionistic fuzzy frame of F.

In a similar way we can prove the following result.

Result 4.2.5. If {Ai | ie A} a family of intuitionistic fuzzy frames of F then () Ai is
ieA

an intuitionistic fuzzy frame of F.

Theorem 4.2.6. Let F be a frame. If A is an intuitionistic fuzzy frame of F then OA is

also an intuitionistic fuzzy frame of F.

Proof. Let A= {(x, 4 A(X), ¥ a(X)) | x€F}. Then DA = {(x, K A(x), 1- 4 A(X)) | xF}
Let & A(x) = 1- 1 o(x) where xeF. Since A is an intuitionistic fuzzy frame for all x, y €F
we have M (xAy) 2 min{ 4, (x), K, (y)} also for every arbitrary SCF we have
Ha(V 8)2inf { K4 (x) | xeS }.
Now & s(xAY) = 1- K A(x AY) < 1-min{ 4 5 (x), H A ()}

= max{1- # o(x), 1- H A(y)}

= max {6 A(x), & A(y)} forall x, yeF.
Also F A(V S)=1-Uo(V S)< 1-inf { U 5 (x) | xeF}=sup {1- 4 o(x) | xeF}

= sup { 0 A(x) | xeF} for arbitrary ScF.
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Also clearly 4 (O )= H A(€F) 2 H p(x)for all xeF.
Also O A(0p) =1-H p(0p)<1- l  (X) = O s(x) for all xeF. Similarly J s(€p) < A(X)

for all x e F. Therefore the result follows.

Theorem 4.2.7. Let F be a frame if A is an intuitionistic fuzzy frame of F then QA isalso

an intuitionistic fuzzy frame of F.

Proof. Let A= {(x, £ o(x), ¥ a(x)) | x€ F}. Then QA = {(x, 1- ¥ a(X), ¥ a(x)) | x€F}

Let S A(x) = 1- ¥ o(x) for xeF. Since A is an intuitionistic fuzzy frame for all x, yeF
we have ¥ a(xAy) <max {¥a (x), ¥4 ()} and for every arbitrary ScF we have
Y a(V 8) <sup{¥a(x)|xeS}.

Now & A(xAYy) =1-Y A(xAY)2 1-max {¥ A (X), ¥ a ()}

min {1- ¥ 5(x), 1- ¥ A(¥)}

min {J A(x), & A(y)} forall x, yeF.

Alsod A(VS)=1-YA(VS) 2 1-sup { 4, (x) | xeF}

inf {1- K A(x) | xe F}
= inf {0 A(x) | xeF} for arbitrary ScF.
Again Y A(0g)= Y a(€5) £ Y a(x) for all xeF as A is an intuitionistic fuzzy frame, hence

clearly & A(Op)= 0 A(€§) < O A(x) for all xeF. Therefore the result follows.

Theorem 4.2.8. Let A= {(x, X A(x), ¥ a(x)) | x e F} be an intuitionistic fuzzy set in F. Then

A is an intuitionistic fuzzy frame of F if and only if OA and QA are intuitionistic fuzzy
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frames of F.

Proof. If A= {(x, K A(X), ¥ aA(X)) | x€F} is an intuitionistic fuzzy frame of F, then OA and

QA are intuitionistic fuzzy frames of F by Theorem 4.2.6 and Theorem 4.2.7.
Conversely if OA and QA are intuitionistic fuzzy frames of F then the fuzzy sets
Haand }—’A= 1- ¥ 4 are fuzzy frames of F. Now for arbitrary S cF we have,
HaA(VS) 2 inf { #,(x) | xeS }and
Y A(VS) zinf (¥ ()| xeS}
= inf {1-¥ 2 (x) | xeS }
=1-sup{¥ A (x)|xe8 }.
Also Y A(V S)=1-YA(V S).
Hence Y A(V S) < sup{ Y (x) | xeS}
Similarly we have for arbitrary x, yeF, # s(xAy) 2 min { # 5 (x), X4 (y)} and
Y a(xAy) smax {¥ 4 (x), ¥V a ()}
Again ¥ o(0p) =Y a(€p) 2 ¥ o (x) for all xeF.
Thatis 1- ¥ 5(Op) = 1- ¥ o(€g) 21- Y s(x) for all xeF. Hence ¥ A(Og)= Y a(€p) S ¥4
(x) forall xeF. Also # o (€p) = HA(0f) 2 H 5 (x)forall xeF.

Hence A is an intuitionistic fuzzy frame of F.

Remark 4.2.9. If A is an intuitionistic fuzzy frame of F then A cannot be an intuitionistic

fuzzy frame of F, which follows from Definition 1.5.24 and Definition 4.2.1.
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Remark 4.2.10. If A and B are two intuitionistic fuzzy frames of F then AU B need not be

an intuitionistic fuzzy frame of F.

For example consider the frame F = {X,4,{a, b}, {a, c},{a}} where X = {a, b, c}
and the intuitionistic fuzzy frames A and B defined as below A ={(x, & o(x), ¥ (X))| x € F}
where,

HaX)= Ha(9)=1, Ha({a,b})=0.5, K ,({ac}) =04, K ({a})=04

YV aX)=7a()=0, ¥ a({ab}) = 0.3, ¥ a({a,c}) = 0.2, ¥ o({a})= 0.3
and B = {(x, #8 (x), V'8 (x)) | xe F} where,

HeX)= He(¢)=1, Hes({ab})=04, He({ac}) =05, He({a})=04

Ve(X)= 7Ve(#)=0, ¥s({ab}) =04, ¥e({a,c}) =03, ¥s({a}) =03
Consider AUB = {(x, X A(®) v HB(x), ¥V s(X) A V'8 (x)) | xF}
Let Haup(x)= Ha(x) v He(x)and Y aus(x)= Y A(X) v ¥e(X)
We shall show that Zaus(xAy) < min{ HZaus(x), £aus(y)}
Forx = {a, b}, y = {a, ¢} wehave Haus(xAy)= Ha(xAy)v He(xAy)=
H x({a})v He({a}) = 0.4. Now Haus(x) = 0.5, Haue(y) = 0.5, min{ £aus(x),
Haus(y)} =0.5. Therefore Kaus(xAy) <min{ 4arus(x), Haus(y)}.

Hence here AU B is not an intuitionistic fuzzy frame of F.

Theorem 4.2.11. If H is a sub frame of F, A= {(x, X Ao(x), ¥ (X)) | x€F} an intuitionistic
fuzzy frame of F and B = {(x, H&(x), ¥ 8(x)) | xeF} the restriction of A to H then B is an
intuitionistic fuzzy frame of H.

Proof. Let S be an arbitrary subset of H.
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Now Up(V S)=HA(V S)2 inf { £, (x) |xeS }=inf { Up(x)|xeS } and
Ye(VS)=Ya(VS) <sup {¥Va(x)|xeS }=sup {¥s(x)|xeS }

Similarly for arbitrary x, ye H we have,
He(xAy) 2 min{ Ka(x), Hs(y) }, Ve(xAy) < max{}s(x), ¥s(y) }

Again since Oy = Opand €y = €; we have,

Ho(€y)=H a(€n), Ha(Oy)=H A(Oy) and Vs(€y) =} a(€n),Vs(O0n) =7 a(On)

Hence B is an intuitionistic fuzzy frame of H.

Proposition 4.2.12. If A an intuitionistic fuzzy frame of a frame F then every non empty

level set A ; of A for te[0,1] is a subframe of F.

Proof. If A is an intuitionistic fuzzy frame on F then for arbitrary x, ye A , we have

Va)S t < Hax), 7 a(y)s t < Ha®y).

Now by Definition 4.2.1 we have for all x, yeA,

Haxay)z min{H,(x), Ha(y) }2t, Y a(xAy) Smax{¥a(x), Ya(y) }<t
Again for arbitrary F (cA ,we have ¥ ,(x)< t < M4 5(x) forallx € F,.

Hence U o(VF )2 inf { H(x) |xe Fi}2t, YA(VF) <sup{¥a(x)|xe F }<t

Also clearly O and €g €A . Therefore A , is a subframe of F.

Lemma 4.2.13. Let A= {(x, X A(X), ¥ a(X)) | x€F} be an intuitionistic fuzzy frame of the
frame F then (K= { xeF |[Hao (X) 2t } and (Y a)y = { xeF |Y A (X) < t } where

t €[0,1] are either empty or subframes of F.
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Proposition 4.2.14. If every non empty level set A ,, te[0,1] of an intuitionistic fuzzy set
A= {x,Hax),Y A(x)) | xeF} is a subframe of the frame F then A is an intuitionistic

fuzzy frame on F.

Proof. Suppose A= {xe X |V a(X)< t < K 5(x)} for te[0,1] is a subframe on F.

A ; being a subframe we have €, O €A, for all te[0,1].

Hence Y a(€5) = YA(Op) <t S U (€5) = HA(Op) for all te[0,1]. In particular we
have € and Op belong to both ('u'\)Tl and (}/A)Tn also €g and O belongs to both
(H W)+, and (¥ a)1,, where T, and T; are respectively the largest and smallest element of
[0,1] such that (), (7 ) (44)5,, (¥ 23, are non empty.

Hence M (€5)= Ha(Op) 2 Hx(X)and Y A(€p) = ¥ a(OF) <V a(x) for all xeF.
Now let S be an arbitrary subset of F then

Ha(V 82 inf {,(x)|xeS }and ¥ o(V 8) < sup {¥ 4 (x)|xeS} ()
Otherwise there exists some Sy F such that

HA(VSp)<inf {H,(x)|xe Sp}or Y a(VS)>sup {Ya(x)|xe Sy}
Taking to =_ [#a(V S0) + inf {#x (9 | xe So }] we have Hu(V So)< to<

inf { 4 o (x) | xeSy }. Hence ty< M 5 (x) for all xeSy. Therefore xe(,UA)to for all xe Sy
and hence Soc(H ). Since (H,),, is a subframe by Lemma 4.2.13 we have V §; €

(H 2, Therefore [ ,(V Sp) >ty a contradiction.
Similarly taking t, = % [7a(V S + sup{¥a (X) | xe So }] we have
Ya(VSp)> ty>sup {¥a (X) | xeSy }. Hence ty >} o (x) for all xeS, Therefore

72



xe(}’,\)to for all xe Sy and hence S, g(}’A).o. Since (7‘0‘0 is a subframe by Lemma

42.13 we have V Sy e (Y A)‘o‘ Therefore ¥ A(V Sp) < t, a contradiction. Hence (1)
holds.

Also for arbitrary x, yeF we can show similarly that /£ , (xAy)2 min{ 4, (x), HA(Y) }

and Yo (xAy) Smax {¥A(x), YA (¥) }-

Therefore A = {(x, 4 A(X), ¥ a(X)) | xeF} is an intuitionistic fuzzy frame on F.

Theorem 4.2.15. Let F be a frame then an intuitionistic fuzzy set A on F is an
intuitionistic fuzzy frame on F if and only if every non empty level set A, te[0,1] of A is
a subframe of the frame F.

Proof. Follows from Proposition 4.2.12 and Proposition 4.2.14.

Definition 4.2.16. Let A be an intuitionistic fuzzy set of the frame F then the intuitionistic
fuzzy frame generated by A in F is the least intuitionistic fuzzy frame B of F with A B

and is denoted by (A ) .

Theorem 4.2.17. Let F be a frame and A = {(x, 4 A(X), ¥ a(X)) | xeF} an intuitionistic
fuzzy set of F then (A) = {(x, (14 ) (x), (¥a) (%)) | xF} where,

(HA) @ =V {t | xe((#a)) L {¥a)® = Aft | xe{(a),)} for all xeF is an
intutionistic fuzzy frame generated by A.

Proof. Consider (A ) = {(x, {Ha ) (x), {¥a ) (x)) | xeF} where,

(Ha) @)=V {t]xe ((#a))}, (74) @)= A ft]xe((¥4),)} forall xeF.
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Now for any arbitrary Sc F we have for all xe S, (£ ) (x) 2 inf{ (&4 ) (y) | yeS} and
(7a)®) < sup {{¥a) ) |yeS}.
Now Sc ((4a),) =V Se ((Ha),) and S ((74),) = VSe((Fa),)-
Hence (M) (V' S) 2 inf{ (H4 ) (¥) | yeS} and

(¥a)(V'S) < sup {{(¥2) () | yeS} (1)
Also forx, yeF let (#a)®)=t;, (¥4 ) (®) =t and

(Ba) ) =t, (Fa)®)=t,

Suppose that t,>t, and t, < t,’.
Thenye (#£a),) =>xe (i), ) and so XAy & ((#a),)
Similarly ye (¥4),) =% ((7a),) and soxay €{(7a),)
Hence (Ha) (xAy) = tiatyand (YA )(xAy) St/ v, . )
Again since €5, O belongs to both ((4£,),) and ((74),) for all t such that (1,), # ¢ ,

(7a), # ¢ it follows that,

(Ha) (€)= (Ha) (0p) 2 (#a) () and {¥a) (€)= (Ya) (08 2 (¥4a) x) for

all xeF. 3)
From (1), (2) and (3) we have thus (A ) is an intutionistic fuzzy frame of F.

Now let B be any intutionistic fuzzy frame of F such that B DA then (#5), 2 (44 ), and

(7.‘\ )t =2 (73 )t and so (luB)t =2 ((#A)t> and ((7A )t) = (73 )t forallt.

Hence B o (A ) . Therefore the result follows.
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Theorem 4.2.18. Let (4 ) where A ; = {(x, Ha, (x),7a, (x)) | xeF} be a finite

i=2...n

collection of intuitionistic fuzzy frames of a frame F. Then -gAAi is an intuitionistic
1

fuzzy frame if and only if for te[0,1] 7a, (x) <t <H4. (x) for all xeS an arbitrary

subset of F and 7a (x) <t <Ha (x), Va (y) <t <Ha (y) for all x, yeF implies
Y(VS)<tsHUy(VS)and Y (xAy) St < Hy(xAy) forsomek, 1<k <n.

Proof. By Theorem 4.2.15 igAAi is an intuitionistic fuzzy frame if and only if each
nonempty level subset ( l;JAi)t is a subframe of F. Now ( LiJAi)t=t‘_J (4;), for each
te[0,1]. But l,J ( A )t is a subframe of F if and only if for any arbitrary Sc l'J ( A, )t we
have V Se l'J (A, ), and for all a, b eLiJ (A), aAbeLiJ (A, ),. That is Y, (x) <t
< My, (x) for all xeS an arbitrary subset of F and a, (x) <t <Hj (x), Va (y) <t

< Ha (y) for all x, yeF implies 7(VS) <t SH(VS)and Yy xAy) St <

Hi(xAay) forsomek, 1< k < n.

Theorem 4.2.19. Let A = {(x, 4 A(x),” (X)) | xeF} be a intuitionistic fuzzy set of a
frame F with Card Im /4 <o and Card Im ) ,<w. Define subframes F; of F inductively
as follows Fy= ( K,) frame generated by Ko, where Ko ={ xeF | £ o(x) = sup{ £ A(Y) |
yeF }, Yax) =inf{YA(y) | yeF } }, F; = ( K;) frame generated by K;, where

Ki=F, U {xeF | U(x) = sup{ U(y) | yeF - F;}, Y (xX)=1inf{Y (y) | yeF - F;,}} for all
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i=12,...,n such that F, = F. Then the intuitionistic fuzzy set A" of F defined by
Has(x) = sup{ L a(y) | yeF }, Vae(x) = inf{ Y a(y) | yeF } for all xeFy and Hy(x) =

sup{ L a(y) | yeF-Fii}, Ya(x) = inf{¥a(y) | yeF-F,} for all xeF-F;, where

i= 1,2,...,n is the intuitionistic fuzzy frame generated by A in F.

Proof. Clearly A < A" as M ,< Mywand ¥ 5 > Y. Also F;’s form the chain, F,  F, ¢
F,c ... c F,=F of all level subframes of the intuitionistic fuzzy set A" of F. Hence by
Theorem 4.2.15, A" is an intuitionistic fuzzy frame of F.

Also we have A’ is generated by A. For let B= {(x, Hs(x), ¥8(x)) | x€F} be any
intuitionistic fuzzy frame of F such that A<B.

If xeKo then sup { L A(y) | yeF } = Ha(x) < Ho(x), inf{ ¥ o(y) | yeF } =¥ a(x) 2 Vs(x)
hence sup { £ A(Y) | yeF }< inf { Ho(x) | xeKo}, inf {¥a(y) | yeF }2 sup{¥s(x) |
xeKy}. Choosing inf { #s(x) | xeKo}= tp and sup{}s(x) | xeKo}= t; we have
He(x)2 toand ¥'s(x) < t, for all xe Ky. Therefore Koy ( #8),, the subframe of /s and
Ko< (V) 6 the subframe of )s by Lemma 4.2.13. Since (/Hs) toand (Vs q, are
subframes we have Foc (8),, and Foc (¥ s), . Therefore Hp(x)> to and Vs(x) < t,

for all xeF,. Hence for all xeF,,
Hos(x) = sup{ K a(y) | yeF } < inf { Ho(x) | xe Ko}=ty< Hp(x),

Vas(x) = inf{ ¥ a(y) | yeF } 2 sup{ V' 8(x) | xe Ko}= t, >V 8(x)
Also if xe K- Fo then sup{ K A(y) | ye F-Fo} = H a(x) < Ho(x) and inf{} A(y) | yeF-Fo}

=¥ a(x) 2 Vs(x). Hence sup { # A(y) | yeF-Fo} < inf { H35(x) | xeK,-Fo},
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inf { ¥ A(y) | yeF-Fo} 2 sup{ V8(x) | xe K;-Fp}. Choosing inf { Hs(x) | xeK;- Fo}=t, and
sup{ ¥ s(x) | xe K;- Fo}= t; we have Up(x)> t; and }s(x)< t; forall xeK;- F,.
Therefore K- Foc(48),, the subframe of s and K;- Foc= (7 6).; the subframe of }s.

Also Foc(H8),, <(Hs), and Foc (Y8, (V). Hence Fy <(Ma),, Fic(¥a),

and so Hp(x)> t; and ) s(x)< t; for all xeF,. Therefore for all xeF,-F,,
Hoa(x) = sup{ K a(y) | yeF-Fo } < inf { p(x) | xe Ki-Fo}=t;< Hp(x),
Vae(x) = inf{ ¥ A(y) | ye F-Fo} 2 sup{ ¥ s(x) | xe K\-Fo}= t; 2 ¥ 8().
Proceeding as above we have [hu(x)< Hp(x) and Yps(x) = V(x) for all xeF; - F;,,
i=273...n. Hence A" < B for all xeF. Therefore the result follows.
4.3 Homomorphisms

Theorem 4.3.1. Let L and M be two frames f: L— M be a frame homomorphism and

A = {(x, 4 A(X), ¥ a(x)) | x€F} an intuitionistic fuzzy frame of L. Then the image of A
under fdenoted by fA) = {(y, Hra)(¥) Yy (¥)) lye M}

- sup{y, (¥) | x ef'(y), iff'(y)=¢
where My (=17 L

inf{y,(x) [ xe f7(y)}, iff"(y)#¢

I, otherwise

Vi) = {

is an intuitionistic fuzzy frame of M.

Proof. For arbitrary Sc M we have,
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Heay(V 8) = sup{u, (x)|xe f(VS))

v

inf{sup{ #a(x) | xe () }}

= inf{ Hsa)(y)} foryeS.

YVeay(V 8) = inf{y,(x)|xef'(VSy

A

sup{inf{ ¥ a(x) |xe 7 (») }}

sup{ ¥ r(a)(y)} for yeS.
Again for x, y € M we have, Hpay( xAy ) 2 min{ Hsay(x), Hra(y) } and
Yy (xay) < max{ ¥y (x),Yra) ()}

Also Hray(Om) = Hray(€m) 2 Hpay(x) and Ypa)(Om) = Yeay(€m) 2 ¥pa)(x)
forallx e M.

Hence f(A) is an intuitionistic fuzzy frame of M.

Theorem 4.3.2. Let L and M be two frames, f a frame homomorphism from L onto M

and B = {(x, #8 (x), V8 (x)) | xeF} an intuitionistic fuzzy frame of M. Then the preimage

of B under f denoted by f'(B)= {(x, # () x), ¥ B (x)) | xeF} where X4 By x) =

Hp(f(x)) and ¥ ) (x) = 73(f(x)) is an intuitionistic fuzzy frame of L.

Proof. Let S be an arbitrary subset of L, then f(V S) € M and is equal to

V{f(x)|xeS}.
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Now 41 5 (V 8) = Ha(f(V 8)) =Hu(V {f(x) | xe8})2 inf{ Ha(f(x)) | xeS }
= inf{# 15 (x) | xeS }
Y15y (V8) = V(S (V 8) =V &(V {f(x) | xe8}) < sup{Vs(f(x)) | xS }

= sup{7 15, ®) | x€8 )

Also for arbitrary x,y € L

H gy xAY) = He(f(xAY) = Hs(f(X) A £(¥))2 min{ Ls(f (X)), He(f(¥))}
=min{#4 15 (), # 15 (5D}
Y 15y AN = V(S xAY) =V (S (X) A f() < max {¥e(f (), Vs(S ()}

= max {¥ 15 (), ¥ 1,5 )}

Now since f(€1)=f(01) > f(x) for all xe L we have,

Hoig (€)= He(f(er) = He(f(O0)=H 14 (01)also
Heg (€)= Ha(f(€v) 2 Ha(f(x)= H 15 (x) forall xe L
Therefore # -1 5 (€1) = H 15 (01) 2 1 ) (x) for all xe L.

Similarly we have }/f“(B)(e'-) = }’f_l(B)(OL) < 7/“(8) (x) for all xe L.

Therefore f ™(B)is an intuitionistic fuzzy frame of L.
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Theorem 4.3.3. Let L and M be two sets f: L— M a bijection. If A= {(x, 4 A(x), ¥ AX)) |
xeF} is an intuitionistic fuzzy set of L then f™'(f(A))=A.

Proof. For arbitrary x € L let f(x) = y. Since f is a bijection we have f7'(y) = x.
Now Moty ®) = Hray (f () = Hyay ) = sup{ Hax) | x € f7(y)} = Ha(x) and
Y i ay @ = Yy (f®) =V peay (9) = inf {7 a(x) | x € f7(y) } = 7 a(x) since fis

bijective. Therefore £~ (f(A)) = A.

Corollary 4.3.4. Let L and M be two sets f : L— M be an isomorphism. If B an

intuitionistic fuzzy set of M then f(f~'(B))=B.

Lemma 4.3.5. Let f/ be a homomorphism from a frame L to a frame M and let

A= {(x, H A(x), ¥ a(x)) | x€F} be an intuitionistic fuzzy frame of M then (f "(A))t=

S7(A,) for every te [0, 1].

Proof. Let xel.
Now xe (f7(A)), & Vf_l(A)(x)S t < 'ur‘(A) XS YAfX) <t < HA(F(X)

& fe fT(A)

Therefore (f™'(A)),= f7'(A,) for every tel.

Remark 4.3.6. Theorem 4.3.1 follows by above lemma also since by a theorem the
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homomorphic preimage of subframe is a subframe, again by Theorem 4.2.15 if A an
intuitionistic fuzzy frame of any frame F then every non-empty level subset A , te[0,1]

of Ais also a sub frame of F.

Proposition 4.3.7. Let L and M be two frames, f: L— M a homomorphism. Let A be an

intuitionistic fuzzy frame of L then f(A),= f(A,) for every te[0, 1].

Proof. We have by Theorem 4.3.1 £ (A) an intuitionistic fuzzy frame of M. Also clearly
Im f(A) cIm A. Now f(A) ;= f(A ) for each te Im f( 1¥).
For, let yef (A) ¢ then Ypa)(y) < t < Hpa)(y) hence inf { ¥ 5(x)| xe f7'(»)} < tand

sup{ 4 A(x)| xe f~'(y) } 2t .Choose xoe L such that f(xo) = yef(A)).
Therefore f(A): < f(A . 1)

Let f (x)e f (A ) then x €A ; and hence Y ,(f(x)) < t < U A(f(x)). Which implies

inf {7 a(2) | ze [T (f(x))} < tssup{ Ha(z) | ze £ (S (X)) }.

Hence 7ya)(f(x)) < t< Hpay (F(x)).
Therefore f (x) € f(A), and hence f(A ) < f(A) 2

From (1) and (2) we have f(A)=f(A ).
4.4 Product of Intuitionistic Fuzzy frames
We use notation (A, L) to denote the intuitionistic fuzzy frame A of the frame L.

Definition 4.4.1. Let (A, L) and (B, M) be intuitionistic fuzzy frames where A =

{(x, Hax), Va(x)) | xe L } and B = {(x, Hp(x), Vs(x)) | x¢ M }. A morphism
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f: (A, L) >(B, M) is a homomorphism f: L —M such that 4, < Mg of and
Y a 2 Vgof, that is the degree of membership of x in L does not exceed that of f(x) in
M and the degree of non membership of x in L exceed that of f (x) in M. We call the

function f: L — M the underlying function of f.

Definition 4.4.2. Let f: (A, L) -»(B, M) and &: (B, M) —(C, N) be morphisms then
gof : (A L) 5(C,N) is a frame homomorphism go f: L —M such that

Has Heogof and Yp2Ycogof

Let IFFrm denote a category whose objects are intuitionistic fuzzy frames and morphism

as defined above. We have the following theorem
Theorem 4.4.3. The category IFFrm of intuitionistic fuzzy frame has equalizers.

Proof. Let (A, L) and (B, M) be intuitionistic fuzzy frames where A= {(x, X A(X), ¥ a(X))
|xe L} and B= {(x, ¥p(x), V(X)) |xe M }.
Let f:(A,L) » (B,M)and g: (A L) - (B, M) be two morphisms.

_f
Consider L M
Tz

Let K= { xeL |f(x) =g (x) } which is a subframe of L and let i:K — L be the
inclusion map. Then clearly foi=goi.
Define an intuitionistic fuzzy set C = {(x, #(X), Y (X)) | xe K } on K as follows, for

a eK. let 4 (a) =M s(a) and Y (x) = ¥ a(X). Then i is morphism from (C, K) to (A, L).
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If for arbitrary intuitionistic fuzzy frame (D, N), D ={(x, #p(x), ¥ p(x)) | xeN }
h is a morphism from (D, N) to (A, L) such that fok=goh then there exist 8:N - K

such that ic8=h.

Also Hp< HcoBand Yp2Yco 8, asforzeN

Hp@) S(Haoh)2)=(Hacio8)2)=(Haci)0@)= Hc@@)=(Hc-8)2)
and ¥ p(2) 2(Ya o h)2) = (Y a0 io0)D)=(V a0 i YO @)=V c(0(@)=(¥co )2
Thus  is a morphism from (D, N) to (C, K)

Now for zeN,

(Hp0io0X2)= (2 )(O(2))= w (0D = p((-O)2)= p(M2)) =
(s oh)2) 2 pp(2) again we have (7, °io0X2)= (7, °)(0(2))= 7,(i(O(2))=
7a((20)2))= 7a(h(2)) = (¥4 > h)(2) < 71 (2)

Hence p, ©io82 p; and y, cio8 <y, . Therefore the result follows.

Definition 4.4.4. Let A = {(x, /;(x), ¥,(x)) | xe E, } be an intuitionistic fuzzy frame

of the frame F, for @€ A.Theproductof A ’sis A= H A, defined on the product

acA

F=]]F, withusual order by A = {(x, 4(x), ¥(x)) | xF} where,

aeA

H((x,)pen) = gé,f\{‘u“ (x,) } and Y((x,),ep) = sup {75 (x,) } forx = (x,),5 €F.

aelA

Proposition 4.4.5. A=]] A, is an intuitionistic fuzzy frame of F= [|F,

ael aeA
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Proof. Wehave F= {(a ), .| a, €F, for ae A}
€= (eFa )y cpand Og= (OFa ), < A are respectively the unit and zero element of F.
i) For arbitrary S cF we have,

H(VS) = H(V {(x)| aeA})
X
= H(V x),cn)
X

= inf{u,(Vx,)}
aelA x

v

inf { inf {H(x)}}

= inf {inf {4:(%,)}} = inf H(x)

Y(VS) = Y(V{(x)|aeA})
x
x

= sup{y, (Vx,)}

aelA

IA

sup {sup {7 (%;)}}

ael X

= sup {sup {7a(%)}} = sup {¥(x)}

X aeA xXeS

ii) Forall x= (x_,), > Y= (¥,)pecp €F Wehave

H((x)pen A Oglaen) = H((xy AV )pen)
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() gen A Ugdaen)

iii) H(éy)

also K(€p) = H u, (€r)

aeA

iré{{#a (x,A¥,)}
2 ,lzrét,; { min{ /,(%X,), Ha(Va)}}

= min{inf {/4(%,)}, inf {/(Y)})

min{ £(x), H(y)}

4 ((xa Aya)aeA)

sup {Ya(x, Ay,)}

aeA

IA

sup { max{},a(xa)’ },a(ya)}}

aeA

max{sup {7z(%,)}, sup {7a(Va)}}

aelA

= max{ H(x), K(y)}
[1x,(en

aecA

inf {/(eg, )}
inf { 4(0,,)}
[1x, (09

ael

H(Oy)

inf{ A(er. ) gen

v

inf { 4, (aa) }aeA
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[Tx, @ foralla=(a,),., €F

ael

= 1)

Now Y(€p) =]]r,(ep = sup {7a(eg )}

aecA aelA

= sup {7:(0o )}

aelA

= Y(0p)

also Y(ép) = H}’a(eF) =Sup{7a(epa)}aeA

aecA

< SUP{ Va (aa) }aeA

=[]7,(@ foralla=(a,),., €F

aeA

= Y(a)

Hence we have the required result.
Theorem 4.4.6. The category IFFrm of intuitionistic fuzzy frames has products.

Proof. Consider a family of intuitionistic fuzzy frame {(A_,F,) | @€ A} where

A, = {(x, 4,(x), ¥2(x)) | xe E, }. Corresponding to the product F = H F, we have an

aeA

intuitionistic fuzzy frame (A, F) where A = H A, ={(x, H(x), Y(x))|xeF }.

aelA

Now consider the projection (homomorphism) P, : F- E,.

We have H((x,),.\)= E\{ﬂa(xa)} and ¥((x,),cp) = sup {7, (x,) } hence,

aelA
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H<H,oP and Yo 27 gof,for ae A.

Therefore P, is morphism from (A, F)to (A, ,F,) for a e A.

Now for arbitrary intuitionistic fuzzy frame (B, M ) where B = {(x, # m(X), (X)) |
xeM } if @, is a morphism from (B, M ) to (A,,F,). Then define § : M—>F as
(0(2)), =P, (6(2))=(P, O 2z) =u,(z) forall a e Aand zeM.

Now 6 (2)= (u,(2)) is a frame map as 4, for a € A is a frame map.

M -5 F

ua \ /pa
Fa

Also forzeM we have M \y(z) < Ky ou (z) and Y \(z) 2 Vo o U, (z) forall e Aand

hence,

Fu@) < int Ho (1, @)= inf {Ha OGN, = H O @)= H - 6@ and

Y w(@) 2sup Vo (u,(2))= sup {Va (0(2)), }=V @(2))= 7V - 0(2)

aelA aelA

Hence Uyy< H oB@and Y y2Y - 0

Thus @ is a morphism from (B, M ) to (A, F)

Clearly P -6=u, forall e A

Also (Mg ° P, 26)(2) (Hq ° E, )6 (2)

Ha (E, (6(2))

i

Ha (u,(2)
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= (Hq ouy) (2

2 Hy(2z)

again (Yz° F, °0)(2) = (Va°F,)0(2))

Ya(F, (6 (2))
= Va(uy(2)
= (Yaouy)
< @

Hence Hy < Hg o P o0 and fy 2} ° B, 2 0.

Thus for each family {(A,F,)la e A} of intuitionistic fuzzy frames there is an
intuitionistic fuzzy frame (A, F ) and morphisms Pa : (A, F) »>(A_,E,) such that for
any intuitionistic fuzzy frame (B, M) and family of morphisms i : (B,M)— (A ,F,)
there is a unique morphism 8: (B, M )= (A, F) such that P of=u, and Ky <
HogoP o8, \g2V,0 P, 00 forallae A.

Therefore the result follows.

Theorem 4.4.7. The category IFFrm of intuitionistic fuzzy frames is complete.

Proof, Follows from Theorem 4.4.3 and Theorem 4.4.6. o
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Theorem 4.4.8. Let A = {(x, 4(X), ,(x)) | xe F, } be an intuitionistic fuzzy set of

the frame F, for ae A such that HAa= {(x, H(x), Y(x)) | xeF} is an intuitionistic

aelA

fuzzy frame of F=] ] E, Now for x, e E (ae A)if Hq(€r, )= Ha(OF,) 2 H,(x,),

aelA

Ya(€r, )= Va(Op,) < V,(%,) forall ae A and Ho(6r))= ﬂa(epﬂ),

7a(epa)= 7a(eFﬂ) for all @, Be A where €f_, Of  are respectively the unit and zero

element of the frame F, then A  is an intuitionistic fuzzy frame of F, forall e A.

Proof. We have M ((6g Jacn) = M (©Of aen) 2 M ((Xa)gen) and 7 ((€g aenr) =

}’( (OF(Z )ae,\) < 7 ((xa )ae}\) for all (xa )aeA GF, where (eFa )aeA and (OFa )aeA are

respectively the unit and zero elements of the frame F.

y if = a
er otherwise

Now for y e F, consider (¥4) gen €F where Yg= {
Thenforally € E,, # ((Vg)ger) = }’ni{/{g(yﬂ) }= M, and
€

Y (g)gen) = ;ulz {Tsp =720

Consider ¢ € A.

Now for arbitrary Sc F_ we have,
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VS iff=a

€y

H(V 8)

otherwise

'u((yﬂ)ﬂeA)Where Yﬂ={

= H(V_(pg,) where *g=

xS

{x if B=

e 5 otherwise

v

ﬁg {H ((xﬂ)pe/\)}
= i%g { H(0)}

VS if f=a«a

Cry

Also Y,(V S) otherwise

¥ ((¥p) ger ) where Y= {

=7 (x\e/S (xﬂ)ﬂe/\) where *p= e otherwise

x if f=«a
Fp

IA

sup { 7((xﬂ)pe/\)}

X€ES

= sup {7a(x)}

xX€eS

Similarly it can be shown that forall x,y € E_,

Ho(xay) 2 min{Hg(x), Ha(y)} and Yy (xAYy) < max{Va(x), Y2()}

Hence the result follows. a

Let f be a homomorphism on a frame F. If A and B are intuitionistic fuzzy frames

of the frame f (F) then A x B is an intuitionistic fuzzy frame of f (F) x f (F). The

preimage f _l(A) and f -l(B) are intuitionistic fuzzy frames of F and (f,f )-I(AxB) an

intuitionistic fuzzy frame of F x F. We study this relation.
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Theorem 4.4.9. Let F be a frame and f a homomorphism on F. Let A and B be

intuitionistic fuzzy frames of the frame f(F) then f -l(A) xf ® = . f )_I(AXB).

Proof. Let A= {(y, Ha(¥), Va(¥)) |ye f(F)} and B= {(y, Hg(y), Ve() |y € f(E)}

For all (x;, x,) €F x F we have,

(HaxHp)e(f, ) (x1,X2) = (HaxHp)f(X), f(x2))

inf{ L A(f(x1)), Hs(f(x2))}

inf { Hacf (), Hpof (x2)}
= (Haofx Hyef) (%1, %))
also (7 a x 75)° (fs ) @i x) = (¥ a x ¥ D)(S (R0, S ()
= sup{7 a(f(x0), ¥ u(S ()}
= sup{7 aof (%)), ¥ of (%)}
= (Zasf x Vaof) (51, %)
Hence (A x x Hp)o(f; /)= Haof x Hpof and (Vu x ¥5)o(f, /)= ¥ aof x Vuof

Therefore the result follows. o

The relation between images of product of intuitionistic fuzzy frames of a frame F

is given as follows.

Theorem 4.4.10. Let A and B be intuitionistic fuzzy frames of the frame F. If f is a
homomorphism on F, the product f (A) x f (B) and ( f, f) (A xB) satisfies

(f, N) (A xB)c f(A)xf(B).
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Proof. Let A= {(y, £ a(y), ¥ a(y)) | ye f()} and B = {(y, #s(y), 7 s(y)) | yef(F)}
f(A) and f(B) are intuitionistic fuzzy frames of f(F) and f(A) xf(B) is an intuitionistic
fuzzy frame of (f, f) (¥ x F) = f(F) x f(F).

Now for each y = (y1, y2) € f(F) x £(F) we have,

[(f, S Hax Hp))(y) =sup{(H s x Hp)(x) | x € F'(y)} where F = (f, f) and

X = (X1, X2)

= sup{inf 4 a(x1), Ha(x2)) | (x1, X2) € F' (¥)}

< inf(sup{ 4 a(x1) | X1 € f7(y1)}, sup{ Hu(x2) | X2 € f7'(¥2)})
= inf { f(Ka(yD), f(Hp(y2)) }

= (f(H ) xE(Hp))y)

Also

[(£ D( 7 a x 7 8))y) =sup{(¥ o x ¥ 8)(x) | x € F"'(y)} where F = (£, ) and

X= (xla X2)

= sup{sup( ¥ a(x1), ¥ s(x2)) | (x1, x2) € F'(y)}

sup(sup{ ¥ a(x0) | X1 € f7'(yD)}, sup{ ¥ s(x2) | X2 € £ (¥2)})

sup{ £ (7 a(y1), £ (¥ (y2)) }
= (£(¥ A xE (7Y
Thatis (f, f)( Hax Hp) < (M) xf(Hp)and (£, )( V4 x V) =F(Y A) xf(¥p)

Therefore the result follows. o
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CHAPTER 5

INTUITIONISTIC FUZZY QUOTIENT FRAMES

5.1 Introduction

The operations of binary meet and arbitrary join on a frame F can be extended to
obtain new operations on the collection of all intuitionistic fuzzy set IFS of F. We define
an intuitionistic fuzzy quotient frame of F to be an intuitionistic fuzzy partition of F that is

a subset of IFS and having a frame structure with respect to new operations.

5.2 Extended Operations

We extend the operation of binary meet A and arbitrary join VvV on a frame F to

operations A and V on the set of all intuitionistic fuzzy set IFS of F as follows.

For {A,| @€ A}c IFS where A = {(x, 4, (x), ¥,(x)) | xeF } we have,
Ay R AL = {(% (M A Hp)(X), (T Ay p)(X)) | x€F }
where (4, A, Hg)(x) = sup{ 4 (y)A H3 @) |y, z € Fand yAz=x} and
(Yo %2 ¥)) =inf( ¥, 5)v 75 @) |y, z € Fand yaz=x).
T A, = (6 (V1 )0, (V2 o)) [ xeF )

v = =
where(aa,\ H)(x) sup{a/e\A Hy(x,)| x, € Fand a\e/Axa x} and

(V2 %)) = inf{ V % (x,)| x, € Fand V x_ =x}
aeA aelA aeA
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Proposition 5.2.1. A, A A B and V A . are intuitionistic fuzzy set of F.

aelA

Proof. Consider A « AA Y

Clearly for all xeF, 0< (4, A Hg)(x) < 1 and 0< (¥, A, Yp)(x) <1. Now for x€F,

(Ho Py H)() + (T Ry ¥p)x) = sup(inf{ £4), H5(2)}| Y,z « Fand yAz=x)
+inf{ sup{ %, (), 75(@)}| ¥,z € Fandyaz=x)

< sup(inf{ /4(y), H5(2)}|y,z € Fandyaz=x)
+sup(sup{%;(y), 75(2)}|y,z eFand yArz=x)

= sup( inf{ /4,(y), H5(2)} + sup{7a(5),Vp(2)}| ¥, z eF and yAz=x)

< 1, forall xeF

Again for all xeF, 0< (VY 4,)(x) < 1 and 0< (V3 %,)(x) <1. Now for xeF,
aeA aeA

(Y )0 + (V2 %a)(x) = sup(inf {4,(x,)} x, € Fand V x_=x)
aeh aeA a aelA

+inf{sup {¥5 (x,)}| x, € Fand V x =x)
a acA

< sup(igf { H:(x,)} x, € Fand a\E/Axa=x)

+sup(sup {¥, (x,)} x, € Fand V x_=x)
a ael

= sup( inf {#,(x,)}+sup {¥; (x,) }|x, €F and VAxa=x)

IA

1, for all xeF (since for 0< a < 1 if inf {#,(x,)} > a
a

then we have sup {¥, (x,)} > b <l-aas ¥, (x,) <1-H(x,))

Hence the result follows.
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The original operation A and V on a frame F can be retrieved from A and Y, by

embedding F into IFS as the set of all intuitionistic fuzzy singletons each of which is an

1 if y=
intuitionistic fuzzy set T_= {(y, £(y), 7.(y)) | xeE} where A, (y)= Y=%  and
x 0 otherwise
0 ify=x )
Y.(y) = ) . The largest and smallest elements of IFS are respectively
1 otherwise

A= { (x, H(x), .(x)) | xeF } where H(x) = 1, ¥.(x) = O for all xeF and A =
{(x, #,(x), ¥,(x)) | xeF } where K,(x)=0, },(x) =1 for all xeF. It can be observed that
forevery AelFS,A = A AA=A VA and A, AA<A,A VA<A,.

Note 5.2.2. IFS is a partial ordered set with largest and smallest element.

Note 5.2.3. For any family {A | @€ A} of subsets of a frame F, A A Aﬁ = {aAb |

a€ A,,bE Ay} for all @, fe A and a\ZA A,V a,la,cA,}

Definition 5.2.4. [AT]: Let A = {(X, H#A(x), Y a(x)) | xe F } be an intuitionistic fuzzy
setin F. For any te[0, 1] A,= { xe F| Y a(x) < t< H (x)} is called the level subset of

the intuitionistic fuzzy set A .

Proposition 5.2.5. Let { A,B } be a pair of intuitionistic fuzzy sets and {A | @€ A} be
a family of intuitionistic fuzzy set of the frame F then for each te[0, 1], A, AB, <

(AAB) and V (A ),c(V A
acA a aeA a
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Proof. Let A = {(x, Ha(x), ¥ a(x)) | xe F } and B= {(x, Hp(x), V(X)) | xe F}

Letxe A; A B, then for some y, zeF withx =yAzwe have } ,(y) < t< K (y) and
Y n(2) < t< Hp(2).
Then (K o Ay Hp)(x)=sup{ ¥ aA(Y)A Hp(@) |y, z €EFand yaz=x}2 t and

(Va4 A Vp)X)=inf{Y aA(y)v Vs(2) |y, z €EFandyaz=x}<t

Therefore xe (A A B),. Hence A;AB; < (A AB),

Now for A, = {(x, H:(x), Ya(x)) | xeF },if xe \7A(,Ua)t then for {x,| ae A}cF

withx=V x wehave };(x,)<t <M, (x,)for all @ € A.

aelA
\7 = = >
Hence (ae}\ H)(x) sup{a/E\A,%,(xa)| x, € Fand a\e/Axa x} 2t and
v =i F =x}<t.
(V2 %)@ =inf{ V 7a(x,)| 5, € Fand V. 3, =x}<t

Therefore x €( v A ). Hence Y (A ( v A . o
aelA ael

aelA

We give the following definitions for supremum property with respect to binary

meet A and arbitrary joinV .

Definition 5.2.6. A pair {A,B} of intuitionistic fuzzy sets of a frame F where
A = {(x, Ha(x), 7 a(X) | xe F } and B = {(x, Kp(x), V(X)) | x€ F } has supremum

property with respect to A if for any xe F there exist y,, z,e F with y, Az, = x such that

(Ha A Hp)x) = Ha(yo) A Hp(z) and (7 4 A, Ve)X) = ¥ a(Yo)V ¥ B(z0)-
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Definition 5.2.7. A family {A | @€ A} of intvitionistic fuzzy sets of a frame F where
A, = {(x, H,(x), ¥2(x)) | xeF } has supremum property with respect to V if for any

xe F there exist {a | ae A}cFwithx=V ¢ suchthat(\71 H)YX)= A H,(a)
a aeA ¢ aeA acA a

and (V3 %)) = V. % (ay).
aeA aelA

Definition 5.2.8. A sub collection S of IFS is said to have supremum property with
respect A and V if every two elements of S has supremum property with respect to A

and every arbitrary subset of S has supremum property with respect to V.

Proposition 5.2.9. Let { A, B } be a pair of intuitionistic fuzzy sets and {A,| @€ A} be
a family of intuitionistic fuzzy set of the frame F having supremum property with
respect to A and V respectively then for each te[0, 1], (AAB), = A, AB, and

V A)X=V(A
(aeA a)t aeA( a)t

Proof. Let A = {(x, Ha(x), ¥ a(x)) | xe F } and B = { (x, Kp(x), ¥s(x)) | xe F }.
Letxe(A A B)ythen (¥4 A, Ve)(X) < t < (4 A, Hp)X). Since the pair {A,B} has
supremum property with respect to A there exist y,, z,€F with y,Az, = x such that
Va(o)v V(zo) st < Ha(yo) A Hp(zo)-

Hence Y a(Yo) St < Ha(Yo), V(z) £t < Hp(zo).
Therefore yp € Ayandzy e B;. Thus x=yy A Zgoe A A B,.

Hence (AAB), < A{A B,
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Therefore by Proposition 5.2.5 we have (A YV )= LA Y ;.

Similarly for A = {(x, 4,(x), /2(x)) | xeF } if xe( \7A A, )since {A | @€ A} has
ae

supremum property there exist {a,| ae A}cF withx = VA a, such that,
ae

V Fal@)StS A Hh(a,).

It follows }; (a,) < t < H,(a,) forall ae A.

Therefore a, € (A ) for all 2 € A. Thusx=V g € a\ZA(Aa)t.

aelA

Hence (a\e/A A c a\e//\ (A .

Then by Proposition 5.2.5 we have ( V H)= V (H)
aelA acA

Theorem 5.2.10. Let { A, B } be a pair of intuitionistic fuzzy sets and {A | e A} bea
family of intuitionistic fuzzy set of the frame F having supremum property with respect to

A and V respectivelythen A A B and V A_ are intuitionistic fuzzy frame of F .

aeAh ¢

Proof. To show that A A B is an intuitionistic fuzzy frame of F by Proposition 4.2.12
it is enough to show that each level subset (A A B), of A A B is a subframe for te[0,1].
Since A and B are intuitionistic fuzzy frames of F we have by Proposition 4.2.12 the level
subsets A;andB, are subframes of F. Since A,andB, are subframe A, AB,is a

subframe of F for te[0, 1]. Now by Proposition 5.2.9 we have (A AB),= A;AB.
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%q%g

Therefore (A A B), is a subframe of F for all te [0, 1]. Hence A A B is an intuitionistic

fuzzy frame of F. Similarly we have \7A A, is an intuitionistic fuzzy frame of F .
ae

Theorem 5.2.11. Let A, B and C be intuitionistic fuzzy sets of a frame F. Then

AR (BVYC)S(AARB)Y (AARC)

Proof. Let A = {(x, Ha(x), ¥ a(X)) | xe F},B={(x, Hp(x), Vp(x)) | xe F } and

C={(x, Hc(x), Vc(x)) |xe F }.

AABVC)={(x(HaAN(Hp VY H)X), (¥4 A (VBY, Y O)X)) | xeF }

Now (KA (MY H)x) =sup{ KA A (MY H)(@) |y, z €eFyaz=x} (1)
(Va2 (VY2 YO)®) =inf{ ¥ sV (¥8V2 Y )@ |y, 2 €F, yrz=x} (2)
For arbitrary y, z < F such that y Az =x

HaA(Hp¥ Bc)z)= KB a() A sup{ Ha@)A Hc(v) |u, v eF,uvv=2}

=sup{( Ha(Y)A Hs)A(HAY)A Hc(V) |0, v eF,uvv=2z}

< sup{(H a(y) A Ha@)A(HAG)A Hc(W) | o, v €F, (yau)v(yav)
=ynz}

<sup{( HaAy He)YAWA(HAA HXyAV) [u, veF(yau)v(YAY)

=((HaA Hp) Vi (HaN H)(X)

From (1) and (3) we have,
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Also 7A) v (VsV2 Y@=V aly) v inf{¥s@) v ¥V(v)|u,veF,uvv=2z}
=inf{(¥ a(y) v V8@) v (Ya(y) v 7 (V) |u,v €F,uvv=2}

2 inf{(¥ )V Ve@)V (Y 4V V() |u, v eF, (yAu)v(yav)
=yAz}

2 inf{(¥ a2 Vo) AWA(Y AR Y ) yAV) U, vEF(yAW) V(Y AY)
=ynAz}

=((YaA 7B V2 (YA Y OXx) ()

From (2) and (5) we have,

(Za 7YY Y )X) 2 (Y ary VB) VoY ary ¥ )Xx) for all xeF 6)

From (4) and (6) wehave AA (BVC)<(AAB)V(AACQC) o
Similarly we can have the following result

Theorem 5.2.12. For an intuitionistic fuzzy set A and the family of intuitionistic fuzzy

set {A_| ae A}ofaframeF AA(V A)< \7A(A7\Aa).
ae

aelA

Theorem 5.2.13. Let S be a sub collection of IFS which is closed with respect to A and

V, and having supremum property with respect to A andV then A A(V A ) =

aeA

V (ARA))

aecA

Proof. By Proposition 5.2.9 we have(A A B),= A A B;and ( \V, A = Y, (A )k
aelA aeA
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Now (AR(V Ak = AcA(Y A= AcA(Y (A)) = ¥ (ACR(AD =

\Y (AAA )= ( \Y (A AA))) forall te [0, 1]. Hence the result follows.
ael ael

Remark 5.2.14. In terms of operations A and V the conditions (i) and (ii) for arbitrary

intuitionistic fuzzy frame A = {(x, K a(x), / a(x)) | xe F } in Definition 4.2.1 can be

rewritten as,

(i) A V A, where A = A

aelA

i) A2 AARA

Proof. ¥ A, = {(x, (\Zk H)(), (\le\ Ya)®)) | x€F } where M= M, and ¥,= ¥4

for ae A.

For arbitrary xe F we have,

(V2 %)) = inf{ V %2(%)| &, €F, V a_ =x)
aeA aelA ael

inf{ V ¥ a(%)| &, €F, V a, =x}
aelA aelA

2inf{Ya( V a,)|% €F, V a =x}
aelA aelA

=Y a(®)

Hence \72 Y2 2 Y a. Similarly it can be shown that K, 2 \71 H,
ael

ael

Also AR A ={(x,(Ha A HX, (VA AV DX)|xeF }

For arbitrary xe F we have,
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(Ya A VX)) =inf{¥a(y) V Y4 (@)|y,z e Fandyrz=x}
2inf{Ya(yAz)|y,z e Fandyanz=x}
=Va®)
Hence Yo A, ¥ o 2 ¥ A Similarly it can be shown that L, A H, < 1 4.
Therefore the result follows.
Remark 5.2.15. Infact equality holds in the above result as,

(V2 %)) = inf{ V %,(%,)| & eF, V a, =X}
aeA aeA aecA

SYaX)VYA(OR) vYa(Op) v...
=)Ya(X)

Also (YA A Y a)x) = inf{Ya(Y) V Ya(@)|y,z € Fandyaz=x}

IA

YaX) v Ya(€p) =7V ax)

Hence Velz\}’as}’Aand YaAVasVa
a

Similarly we have \7| M, > Hpoand o A\ o2 Ho
aeA

5.3 Intuitionistic Fuzzy Quotient Frame
Definition 5.3.1. An intuitionistic fuzzy binary relation R on F Definition 1.5.29

(ReIFR(FxF)) where R = {((x,¥), Kr(%,¥) Yr (X, ¥)| X,y € F} is said to be an

intuitionistic fuzzy similarity relation if it satisfies for all x, y, ze F

i) Reflexive : ,UR x,x)=1, }’R x,x)=0
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ii)

iii)

Symmetric: £ ()= £ (%), 7 &)=Y %)
Transitive : R = RoR where,
RoR = {((X, 2)9 luRoR (X, Z), 7RoR (X, Z)) I xe F,ze F}

#ROR(X’Z)= supinf{[lR(x, Y), #R(Ya Z)}
y

7R0R(x’z)= infsup{},k(x9 y)’ }/R(y’ Z)}
y

Analogous to that of Definition 3.3.1 we define an intuitionistic fuzzy partition of

F as follows

Definition 5.3.2. An intuitionistic fuzzy partition of F is a subcollection P of the

collection of intuitionistic fuzzy sets (IFS) whose members satisfy the following three

conditions

i)

iii)

Every A= {(x, # a(X), ¥ a(xX)) | xe F } €P is normalized, that is /£ ,(x)=1
for at least one xeF.

For each x F there is exactly one A € P with M ,(x)=1and } A(x) = 0.
IfA= {(x, Ha(x), ¥ a(x)) | xe F }, B = {(x, Hp(x), Vs(x)) | xe F} P
and x, ye F are such that K o(x) = Hp(y)=1, ¥ a(y) = ¥ p(x) = 0 then
Ha(y)= Hp(x)=hgti (Ha A Hp)and ¥ A(y)= Vp(x) =hgta (¥a v V5)

where hgt) (£ 4 A Hp)= sup(Ha(X) A Hp(x)) and

xeF

hgty(¥Yav?¥p) = ;llég(}'A(x) v V(X))

103



Given an intuitionistic fuzzy partition P of F and an element xF, we denote by
x]= {(y, Hx(¥), ¥ w(y)) | y€ F } the unique member of P with £, (x)=1,} 4(x)=0
and is called intuitionistic fuzzy similarity class of x.

A 1-1 correspondence between intuitionistic fuzzy partition and intuitionistic
fuzzy similarity relation is defined by sending a fuzzy partition Pc IFS to its
intuitionistic fuzzy similarity relation R in IFR(F xF), where for all x,y e F we have,

H N x,y)= Hx(y)= Hy(x)=hgt, (K A Hiy)

YV &)= V)=V ) =hgts (Vg v Vi)
The inverse correspondence is defined by sending an intuitionistic fuzzy similarity

relation R in IFR(FxF) to the intuitionistic fuzzy partition Pp={ R(x) | xeF } cIFS

where R(x) is the intuitionistic fuzzy set of F defined by,
R(x)= {( ¥, U {xX¥), YR(xXXy) | y € F} with
Mg (X(y)= ,UR (x,y) and YR <xX(y)= }’R x, y).

Definition 5.3.3. We call an intuitionistic fuzzy partition Py of a frame F an intuitionistic

fuzzy quotient frame of F if Pgisa subset of IFS and ( Py, A,V) is a frame .

Theorem 5.3.4. An intuitionistic fuzzy quotient frame P of a frame F satisfies the

following properties for all x, y €F and arbitrary {x | @€ A} cF
)  [xX]A[yl=[xAy]

\V/ =[V
aeA[xa] [aeAx”]
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it) I Ayl=[xayl=[x] A Iy
LV IyI=lxvyl=[x] Vv 1,

iii) I _A[€f=Ix]
1V [0:)-X]

iv) [€g] and [Of ] are respectively the identity elements with respect to
A and V.

v) [x]°= [x°], where x° the complement of x in F if it exits.

Proof. i) We have for all x, yeF, [xAy] = {(z, Hxry1(2), Y (xry(2)) |2 F}

where lu[x/\y](XAY)= l, },[x/\y](XAY)=O'

Since P is a frame we have [x] A [y] is in P.
Now [x] A [y]={(z, (Hy A K@), (YA Vi) (@) |z F }
where (Mg Ay Hi)(xAY) =sup{ Hi(2) A Hiy(W) | ZAW =X AY)
2 Hi(x) A Hig(y) =1
(Y A VX Ay) =inf{ Y (1(2) v ¥ (y(W) | zAW = xAY}

S V) v Viy)=0

Hence from the definition of intuitionistic fuzzy partition, we have [x] A [y] = [xAY].

Similarly wehave V [x_]1=[V x_] as V [x_]isinP and
aeA a aeA % ael a
v Vx)=1,(V V x.)=0
(wl\ /u[xal)(aeAxa) ; (aelz\ y[xa])(ae,\x“)

i) I, A [yl = {(z, (Hx A H)@), (VxA, V) (2)) | z& F } where
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(K A By (xay)=sup{ H (2) A Hiy(W) |zaw=xAY}
> M () A Hly) =1
(7x A YV y)(xAy) =inf{ ¥ (2) v ¥ (W) | zAW =x Ay}
< V@) A p(y)=0
Hence from the definition of intuitionistic fuzzy partition, we have I_ A [y] = [xAy].
Also we have [x] A 1= [xay] as (Mg A H,)(xAy) =1 and (¥ g7, ¥ ,)(xAY) =0

Similarly we have I V [y] =[xvy]=[x] V Iy.

iii) Clearly (M, Ay Mg, )(X) 21and (¥, A; Y, JX) < 0
Hence I_A [€f] =[x].
Similarly we have I_ ¥ [0g]= [x].
iv) we have by (i) [€5] A [x]=[€rA x]=[x]= [x] A[€}]
also [05] ¥ [x]=[0F v x]=[x]= [x] ¥ [€f]
V)As[€rl=[x v x| =[x] ¥ [x*] and [O¢] = [x A x°]=[x] A [x]

we have by (i), [x]°=[x°]
Remark 5.3.5. For all x, y, z e F we have,
Hix(yaz)= Hyaz(x) by definition of intuitionistic fuzzy partition

= (U A HpE 2 Hpx) A g = B A Hx)

also ¥ 5 (yAZ) = Y (yaz(X) by definition of intuitionistic fuzzy partition

= (Vs M 7@X)S Vi) A VigX) = V) A V(@)
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Now for xe F and arbitrary S= {x | aeA}c F

Pu(v9)= Hrs® =H [ v 2,10 = e 2 A Hi ()

= a/e\A Iu[x](xa)
also Y y(vS)= Vivs® = ¥ | vAxa](x)=(Zi V)@ < VY, Vix ®

Vo V(X2)

ael
5.4 Invariant fuzzy binary relation

We give the following definition for an invariant intuitionistic fuzzy binary
relation.
Definition 5.4.1. An intuitionistic fuzzy binary relation,

R={((xy), #g(x,Y); Yr(X,¥Y)| X,y € F} on a frame F is invariant if it satisfies for
allx,y,u,v eF
i) ,UR(XAU,YAV) > ,UR(x, y) and }’R(XAu,y/\V) < }’R(x, y) ifx =y
,UR(XAu,'yAv) < ,UR(x, y) and }’R(xz\u,y/\v) 2 }’R(x, y) ifx=y
ii) #R(xvu, yvv) 2 #R(x, y) and }’R(xvu,yvv) < }’R(x, y) ifx 2y

H (xvu,yvv) < H (x,y)and ¥ (xvu,yvv) 2 7 (x,y) ifx=y

Theorem 5.4.2. If R is an invariant intuitionistic fuzzy similarity relation on a frame F

then its intuitionistic fuzzy partition Py, is a fuzzy quotient frame of F.
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Proof. We have for all x, y, z € F
x] A [yl={@z (K A Hy)@, (Vi Vi) (2) | ze F }
whete (/4 Ry Hiy)(2)=sup{ H (W) A Hig(¥) [uav=2}
—sup{ £ (x,u) A #_(3,) |unv=z) @
and (Vg A, ¥ (@) =inf{ ¥ (@) v ¥ (;1(v) [uav=2z}
—inf(¥ (x,0) V7 () luav=2} ®)
Proceeding as in the proof of Theorem 3.4.2 it can be shown that,
Hig M Hg= Hiay
Now we shall show that ¥ ;g Ay ¥ ;1= ¥ ny for %, y € F. Consider (b)
Case-L:ifx # u, y #v
Then 7 (6, 0) v 7 (1,9) 2 ¥ (XA A UA@AV) v 7 (FAG AY), VA@AY)
= 7 (X A%, UAV) V7 (X AY,UAY)
= 7 (x AY,uAY)
Therefore, inf {7 (x,0) v 7 (,V) [uav=2} 2 ¥ (X AY,2)= Yiany @ 1)

Case-II:ifx=u, y=v

Then }’R(x, u v }’R(y, v)=0v 0 =0= }’R(x AY, UAV)
Therefore, inf {7 (x,w) v ¥ (%¥) [uAv=2}=F (X AY,2)= ¥jxny @) @

Case-IIl:ifx=u, y# v

Then }’R(x, u) v }’R(y, v)20v }’R(x AY,UAV) = }’R(x AY, UAYV)
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Therefore, inf {7 _(x,u) v ¥ (y,V) [uav=2} 27 (X AY,2)= Vixny () &)
A similar case whenx # u, y=v
Combining (1) (2) (3) and (b) we have /5 A2 71y 2 Vixny @
Now for all x, y, z €F consider ¥ xay) (@)= 7 (X AY,2) Q)
Case-1:ifx Ay=z
Then /' (x Ay, 2)= ¥ (X AY, X AY)= V (%, X) V7 (¥,Y)

= Vw® v 7 u®)

2 inf {7 W) v ¥ (V) |uav=z}

= (Y A Y )2 ©6)

Case-I1:ifx Ay # z
Then 7 (x AY,2)= 7 (X A, D) v ¥ (X AY,2)
> ¥ (X AY)VX,2vZ) v ¥ (X AY)VY,ZV2)
=7 &) VY 32

= Y@ v Vi@

v

inf {Y () v V(v |uav=2z}

(7 A2 7 )(2) ™M
Combining (5) (6) and (7) wehave ¥ g Ay ¥ 151 £ Vixay
Hence from (4) we have Y3 A Y (1=Y xnq1 -

Therefore [X] A[y] =[x A ¥]

Similarly it can be shown that for arbitrary {x | aeA}c F ,
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Vi, Hix = H and Vo Ve =7
ae:l\ (X, [a\e/A Xe] ae:z\ (X1 [a\e/A Xg]
Therefore V [x,1=[V x,]
ael aeclA

Now clearly [€r] and [ OF] are respectively the unit and zero element of element of Pg.

For any [x] € Pg and arbitrary Sc Pr we have,

(A (99) =B ALV x,]
=[xA(V x,)]
acA

=[V (xAx,)]
aelA

V [xax,]

ael

V ([x] A [x, ]
aelA

Hence Py satisfies infinite distributive law. Thus Py, is a frame.

Therefore Py is an intuitionistic fuzzy quotient frame of F.

Remark 5.4.3. Let F be a frame, then the transformation Q from the set of invariant
intuitionistic fuzzy similarity relation on F to the set of intuitionistic fuzzy quotient
frames P of F sends an invariant intuitionistic fuzzy similarity relation R on F to its

intuitionistic fuzzy partition Pr c IFS given by Pr={ R(x)| xeF}

Example 5.4.4. Consider the frame F = {{a, b, ¢}, {a, b}, {b, c}, {a}, {b}, {c},T} under

set inclusion. Define an intuitionistic fuzzy similarity relation Ry on F by,

Rp = {((st)’ ,UR(X,Y), yR(xay))I X, Y€ F}
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1l ifx=y 0 ifx=y

wher: ,Y)= d ,Y)=
© ﬂR(x ) % otherwise an }’R(x y) % otherwise

Which is invariant.
Now Pr = {[x] | xe F} where [x](y) = R&(x, y) is an intuitionistic fuzzy partition of F, hence

an intuitionistic fuzzy quotient frame.
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CHAPTER 6

INTUITIONISTIC FUZZY TOPOLOGICAL SPACES AND
FRAMES

6.1 Introduction

The notion of Intutionistic fuzzy topology ( Dogen Coker[CO], ) generalises the
notion of topology but is still an example of a frame. In this chapter Intutionistic fuzzy
“open” and “spectrum” functors, adjoint on the right are constructed. This categorical

link between frames and Intutionistic fuzzy topologies are established.

6.2 Preliminaries

Definition 6.2.1.]CO], An intutionistic fuzzy topology on a nonempty set X is a
family 7 of intutionistic fuzzy sets in X satisfying the following axioms,

i) 0~-,1-e7 where0-={(x,0,1) | xeX}and 1 -= {(x, 1,0) | xe X}

ii) G,NG,e T forany G, G,e T

iii) U Gje T for any arbitrary family {G; |ie A}c T

Any intutionistic fuzzy set in 7 is known as an intutionistic fuzzy open set in X.

Remark 6.2.2.[CO], If T is an intutionistic fuzzy topology on X, then (X, 7) is called

an intutionistic fuzzy topological space.

Definition 6.2.3.[CO], Let X and Y be two nonempty sets and f: X— Y be a function.

If B= {(y, #s(y), ¥s(y)) | ye Y} is an intutionistic fuzzy set in Y, then the preimage

of B under f, denoted by f™'(B) is the intutionistic fuzzy set in X defined by
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£® = {(xH g @, 7 @) | xeX ) where () = H(f() and
7 1 gy @) = 7 5(£))

Remark 6.2.4. We also have f'(B)= {(x, ™ (4p)x), f (¥p)(X) | xeX} where
S (HB)) = Ha(fx)) and £~ (¥ 5)(®) = ¥ (f(x)).

Definition 6.2.5. [CO], Let f: X— Y be a function and (X,7,) and (Y,7,) be two
intutionistic fuzzy topological spaces then f is said to be fuzzy continuous if and only if

the preimage of each intutionistic fuzzy set in 7 , is an intutionistic fuzzy setin 7 ;.

Remark 6.2.6. An intutionistic fuzzy topology is infact a frame. The distributivity

property is easily verified.
6.3 Intutionistic fuzzy topological spaces and frames

Let Q be a functor from the category IFTOP of intutionistic fuzzy topological

spaces and fuzzy continuous maps to the category FRM of frames.

Definition 6.3.1. For each intutionistic fuzzy topological space (X,7) define

QX T)="Tif f:(X,T) — (Y,T,) is fuzzy continuous define Qf=f<'(A)= f A)

Theorem 6.3.2. If f:(X,7,) = (Y,T,) is a fuzzy continuous map then f “.7 21—7T

is a frame map.

Proof. Let A= {(y, Ha(y), ¥ a(y) | yeY},B={(y, #a(y), V() |yeY},
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Bi = {(y, #8i(y), ¥ 8i(y)) | ye Y} (ie A) be members of 7 ».

Then £ “(A NB)

f(ANB)
= {(% A rinn @ 7 g @) 1 XX)

= {(x, Hans(f (), ¥V ans (S (X)) | xeX}
= {(x, Ha(SDA He(f(x), YA (S X))V Vs (f(x))) | xeX}

= {(% B @A H g 00, Y o VT g (9)] x €X)

= {(x Hra )y X, ¥ 1,

(®))|xeX}N

(% #1007 1 (0)) [ x€X )
= fYANSFIB)
Alsof( UB) = f( UB)
ieA ieA
= {(x, 'uf'l(.u Bi)(x)’ }/f_‘l(.U Bi)(x))lxeX}
= {(X,/‘,UAB,. (f(x)), }"UAB,- (f(x)) | xeX}

= {(x, Y Mg, (f(), A 7B, (f®X)))[xeX}

= iEA {(x, Hg, (f(x), 7B, (X)) | xeX}

} i.lsJA {(x, Hrg (), ¥ 1 () | x€X)

= U f98)
ieA

Hence f€: T,—7T, is a frame map.
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Corollary 6.3.3. Q is a contravariant functor from the category IFTOP of intutionistic

fuzzy topological space to the category FRM of frames.

Definition 6.3.4. i) Let F be a frame define X F =hom (F, [0,1]) where [0,1] is a frame

in its usual ordering (<)

ii) For each aeF, define X , Za' : ZF —>[0,1]by Z,(p) = p(a) and Za' (p) =1-p(a)

iii) Let Eg.= {E_|acF } where E_= {(p, Z,(p), £, (p)) |pe ZF }

Theorem 6.3.5. (2 F,E) is an intutionistic fuzzy topological space.

Proof. We have Z, (p) = p(1) = 1 and Z'(p) = 0 for all pe EF. Also Z,(p) = p(0) =0 and
Z, (p)=1 for all pe ZF. So the top and bottom elements {(p,Z, (p), Z,'(p)) | pe ZF} and

{(>, Z,() 20' (p)) | pe ZF } of the set of all intutionistic fuzzy subsets of XF are
members of E;.

Now for a, beF we have,

E,NE,

a

{®, 2,0, Z,®)pe ZF}N{{, Z,®), Z, @) |pe =F }

{® Z,@)AZ,@), 2, @)V I, (@) |pe ZF }
= {(® p(a@) Ap(b), (1-p(a)) v (1-p(b)) |[pe ZF }
{(p, p(arb), I-p(arb)) |pe ZF }

{®Z,,,0:Z,0) peZF}

anb
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Therefore E, N E €Es

Also for g; €F (ie A) we have,

U E, = U {® Z,0) =, 6)|pcsF}
ieA ieA

(. V.2, 0) A T, () peZF)

= {@ V p@), A(-p@)|pe=F)

(@, V pla), 1= V p(a)) | pe ZF}

(. P(V @), 1-p(V &) |pe ZF )

U (@2, ®.,, G)lpe=F)

ieA ieA ieA
Va;
ieA

Therefore U E, € Eg
ieh !

Hence E, is an intutionistic fuzzy topology.

Theorem 1.14. Let f: L — M be a frame homomorphism. Define £f: TM — XL by

Zf(p)=pof,then Lf:(EM,Ey,, ) — (ZL,Ey ) is fuzzy continuous.

Proof. LetacL then E_= {(p, Z_(p), £, (p)) Ipe ZL }e E5
Now (Z/)(E,) = {(a, (N (Z )@, (Z) " (Z,)D) |q e ZM }

= {@ Z,(Zf@) Z, (Zf@)|q e EM }
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{(@, £,9°f, Z,q°f)|q e EM }
= {(@,q°f(a),1-qof(@))|qeZM}
{(3,9(f(@),1-q(f(a)))|qeZM}

(@ %, @ ¥/, @lg =M}

Therefore (£)( E ) e Egy

Hence Xfis fuzzy continuous.

Corollary 1.15. X is a contravariant functor from the category FRM of frames to the

category IFTOP of intutionistic fuzzy topological spaces.

Theorem 1.16. T and Q are adjoint on the right

Proof. Let fehom ((X, E), (2F,Ey;) ) and g ehom (F, Q(X, E) ) where,

gla@)={(x 'ug(a) (%), 7g(a)(x) ) |xeX}

Define f:F » QX,E)bya » f(a)

where f(a) = { ( X, ‘uj_'(a) (X), 7f(a) (X)) I xeX }

={(x, f(x)a), 1 - f(x)(a))|xeX}
Claim: f is a frame map
Fora,b €F,
f(@anb) = {(x, f(x)arb),1- f(x)(arb))|xeX}
= {(x, f)(@)A fF(x)b), (1 = f(x)(@)A (1- f(x}b))) |xeX}

= {(x, f(x)(@), 1 -f(x)(@)) | xeX }
{(x% f(®)®), 1 - f(x)(b))|xeX }
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=f@n f®)

Similarly it can be shown that for arbitrary { a; |i e A} c F,
f (i:{\ai)= '_2\ f (@)
Therefore f is a frame map.
Define g : (X,E) - (ZEEg) by x -  g(x), where g(x)(a) = Hy(s)(X)

Claim: g(x) € =F
Since g is a homomorphism we have, g(aab)= g(a) n g(b)

Now it follows from the equality of intuitionistic fuzzy set,
g(X) @Ab) = Ky (a Aty (X) = Hya) (X) A Hgr) () = 2()(a) A 2(X)(b)
Similarly g(x) (V &)= V (g()(a))
ieA ieA

Claim: g is a fuzzy continuous.

Fora F wehave E_ € Eg, and
g (B = {(x, g () g (Z)™)) [ x eX}
= {(x, 2,02 (®), £/ og()|xeX}
= {(x, 2@, 1- g(®)(@))|xeX}
= {(%, Hyy(®¥), 1 - Koy (®)) | xeX )

Now g (a) €E . Hence g "I(Ea) € E

Also £ (x)(@) = 7 (x)=f(*)(a)
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2(@)={(x g()(a),1-g(x)a))|xeX}
= {(x, Hga)(X), 1 = K0 (¥)) | x€X}

= g(a)

09 1

So f=fand g=g
Thus hom (F, Q(X,E)) = hom ((X,E), (2F,E;))

Now to check naturality condition

Leth €e hom (L, M) and g € hom ( (X, E), (Y,E'))

Consider

—~

Q)
L hom (L, Q(X,E)) —————> hom ((X,E),(ZL,Ey))

h (oh Tho(-)

M hom ( M, Q(X, E) ) —_—> hom( (X9 E)a (ZM’ E}.'.M ))

—~

O

Then for k € hom (M, Q(X, E) ) we have,
koh (x)(a) = Hxeha)(x) and Zho k(x)(@) = Zho Hy(g)(X) = Hien(a)(X)

Hence koh = Zhok.
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Now consider

|
~

(X’ E) hom ((Xa E)’ (E L: EZL )) _— > hom ( L’ Q(Xa E) )
g )-8 Qgo(-)

(Y,E") hom ((Y,E'), (EL,Eg; )) ——— hom (L, Q(Y,E"))

O
Then for f € hom ((Y,E'), (2L, Ey; )) we have,

fog@) = {(% Hrga (), 1= Brgy(®) | xeX }
= {(x, fog(¥) (@), 1- fog(x)(a))|xeX}

and Qgo f(a) = g7 { (%, Hpq)(®), 1 = H7( () | xeX}

= {(%, i) (8(x), 1 - H7e)(8(X)) |xeX }
= {(x, feg(®) (@), 1- fog(x)(@))|xeX}
Hence fog = Qgo f
Therefore naturality condition holds.

Hence the result follows.
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