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Simple forniulae are presented for calculating the resonant frequencies 
of a circular sided compact dual-port microstrip antenna. The calcula- 
tions are in agreement with the cxperiniental ohservations, with a 
percentage crror of less than two. 
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Introduction: A dual-port microstrip antenna with a crescent shaped 
patch with excellent isolation betwecn the ports has been reportcd [ I ] .  
Since circular-sided geometries are inore compact than rectangular 
oncs, thcy find morc applications in microstrip arrays. The crcscent 
shaped antenna geometry [ I ]  provides greater area rcductioii compared 
to other circular sided patches for broadband operation [ 2 ] .  In this 
Lctter, formulac for calculating thc TM, I and TMZI mode resonant 
frequencies of this microstrip antenna, obtained by modifying the 
equations of a standard circular patch [ 3 ]  are presentcd. Thcorctical 
results are compared with experimental observations a i d  the validity 
of the computation is established. 

Frequency calculation: Thc schematic diagram of thc antenna is 
shown in Fig. I .  The antenna gconietry is defined by two circular 
arcs of different radii r l  and r2 with their centres cI and c2 displaced 
by a distance d. The patch is etched on a substrate of thickness h and 
dielectric constant E , .  

Fig. 1 Geometry qf dual-port microstri) antenna 

The standard equations for computing the resonant frequencies of a 
circular patch antenna are modified to take into account the effect of 
different arc radius and the displaceinent between the centra  of circular 
arcs in thc prescnt geometry. 

The TMI1,  and TMzl resonant frequencics of a circular microstrip 
antenna of radius r fabricated on a substrate of dielectric constant 8,. and 
thickncss h are givcn by [3]:  

1.841 18c 
For TM,, mode ,f; = ~ 

2711, JF;; 

3.05424~ 
For TM,, mode ,f2 = ~ 2zr& 

The two resonant frequencies of thc cresccnt shapcd patch are calcu- 
lated as 

When the distance between thc centres of the two arcs of the crescent 
shaped geometry is large, (Le. d>0.04) the values of fl and f 2  are 
calculated using (I), ( 2 )  and ( 3 )  with ‘r’ replaced by ‘rl’. If the centres 
arc close, (Le. d 5 0.04), r is replaced by r =  (3 /2)r l  - (1 /2)r2 to takc 
into account the effect of r2. 

The correction terms df; and & are calculated as follows: 
For r2 - rl < 0.02 

for d < 0.04 (6) I -0.78f;d i- 0.23f2(r2 - rl) 
df, = ~ 

Cowiparison of theory cind experinlent: The theoretical variation of 
the Lwo resonant frequcncicsJ; and,fil with different values of v2 
and d a r e  given in Fig. 2. The experiincntal results arc also plotted in 
the same Figure for comparison. To further check the validity, the 
antennas are fabricated on substrates with diffcrcnt diclectric 
constants and thickness. Thesc rcsults are shown in the Fig. 3. In 
all thcsc cascs the theoretical results are found to be in good 
agreement with cxpcrimcntal values with an error less than 2%. 
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Fig. 2 Variation uf T M / /  and TMZl tnode ,fkquencies with distance 
hetweeiz centres of arcs,for d@rent r l  and r2 (i:,.=4.28, 11 = 0.0016 m) 

-- - - experiinental 
- - - theoretical 
0 yI = 0.04 m, r2 =0.06 m 
A rl  = 0.04 in, r2 =0.07 in 
0 r1 = 0.06 in, r2 = 0.07 m 
(i)./i I 
(ii) 121 
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Pig. 3 Vtrricition of’ TM) I and TM,, rnode ,fkqirencies with rli.c.ttrnce 
between centres c~f‘riio,s ,fiw different E,. cind h (r,  = 0.04 in,  r2 = 0. Oh tn) 

- - - - cxpcrimental 
~ thcorctical 
0 c, = 2.2, h = 0.0008 I l l  
A 
0 ~,.=4.28, h=0.0016 111 

= 10.2, / I  = 0.00066 111 

Concl~ision: Empirical formulas to determine thc rcsonaiice frcquen- 
cies of the dominant modes of a crescent shapcd dual-port microstrip 
antenna arc dcveloped. These calculations arc validated by cxpcri- 
mental results and the pcrccntage error is found to be less than 2. 
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Detection of microcalcifications in 
mammograms using local maxima and 
adaptive wavelet transform analysis 

A.M. Bagci and A.E. Cetin 

A incthod for coniputcr-aided diagnosis or microcalcificalion cluster? 
in mammogram iinages is prcscnkd. R~icrocalcilicatioii clustcrs which 
are an early sign of breast canccr appcar a s  isolatcd bright spots i n  
inammogratns. Therefore thcy corrcspond to local inaxinla of 
the iinagc. Thc local maxima or  the iinagc is Lirst dctccted and thcy 
are ranked according to a higher-order statistical test perforincd ovcr 
thc subband domain data. 

Introduction: Microcalcification clustcrs are an early sign of breast 
canccr. Thc survival ratc approaches I00 per cent if cancer is dctccted 
carly. Microcalcifications (MC) appcar as isolated bright spots on 
mammograms images [ 1-41, 

MCs correspond to local maxima of a mammogram as thcy are 
relatively bright and tiny regions in the image. The first step of our 
mcthod is the detection of thc local maxima of the mammogram image. 
Although a typical mammogram is much smoother than most natural 
images there arc thousands of local maxima in a mammogram imagc. 
After detecting the maxima locations we rank them according to a 
higher-ordcr statistical test perforincd ovcr the subband domain data 
obtained by the adaptivc wavclct transform. The distribution of wavclct 
data corrcsponding to the regular brcast tissuc is almost Gaussian [3,4]. 
l-iowevcr, MCs arc different in naturc than regular breast tissue and they 
produce outliers in the subband domain. Wc take advantage of this fact 
and rank thc local maxiina according to a higher-order statistical test 
estiinatcd in the ncighbourhood of cach local maximum. When the data 
is Gaussian thc test statistics becomes zero. The highcr thc value of thc 
test, the higher the rank of the maximum. Peaks due to MCs receive 
high ranks. Thc maxima due to small variations in  thc pixel values and 
smooth edgcs bccame low ranks. 

We rccenlly developed methods for detection of MCs bascd on 
higher-ordcr statistics, and wavelct analysis [3, 41. In these schemes 
thc suhband (or unvclct) domain image J.r//,j + J-v//J + J.rhr81 of the 
mammogram image x is dividcd into overlapping sinall windows and 
a higher-ordcr statistic (HOS) [5] is estimated in cach window. The 
windows with HOS values higher than a threshold value Tare marked 
as regions containing MC clustcrs. A weakness of the methods [3, 41 is 
that the threshold T should bc estimated from a set of training imagcs. 
Tlic threshold has to bc adjustcd from scanner to scanner and according 
to the data set. In addition, we computc thc HOS tcst only around 
maxima locations instcad of the entire imagc, thus achicving a compu- 
tationally morc cfficicnt method than [3, 41. Thc HOS test is reviewcd 
later in this Lettcr. 

Another important feature of this Lcttcr is that an adaptive wavelet 
(subband) transform [6] is used instead of a regular wavelet transform 
(WT). It is experimentally observed that adaptivc WT providcs better 
results than the ordinary Daubcchies WT. 

Adiiplive wavelet trwnxf~rni: Classical adaptive prediction conccpts 
are combined with the perfect reconstruction filter bank theory in [6] 
whcrc the key idea is to dccorrelate the polyphasc components of the 
multichannel structurc using an adaptivc prcdictor P as shown in 
Fig. I .  Adaptation of the prcdiclor coefficients are carried out by a 
least mean squarc (LMS)-type algorithm. 

L i  

Pig. 1 Analyis .rtnge of two-chiinnel cidtipiive ,filter honk striictiire 
(P, represents un u&ip/ive predictor) 

In Fig. 1, xl(n)  is the downsamplcd vcrsion of the original signal, 
s(n), thus it consists of the even samples of x(n). Similarly, the signal 
x2(n) consists of the odd samples. An LMS-based FIR predictor ofx2(n) 
from s l ( n )  can bc expressed as ,i2(n) = w(n)x’{(n) where 
x , (n)  = [xI(n - L),  . . . , xl(n + L)]’ is the observation vcctor, and thc 
2 L +  1 vector w(n) is thc vector of predictor cocfficicnts which is 
adapted by the equation 

wliere the error signal e(n) = xz(n) - i2(n) .  
Thc filterbank struclurc shown in Fig. I is thc simplest adaptive 

wavclct transform (AWT) structure. In this structurc, thc ‘highband 
signal’ is essentially the prediction crror and as a result the subsignals 
are expectcd to be decorrelatcd. Othcr AWT structures with antialising 
filters for the upper branch signal can be found in [6]. 
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