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Abstract

In this paper equienergetic self-complementary graphs on p vertices for every

p = 4k, k ≥ 2 and p = 24t + 1, t ≥ 3 are constructed.

1 Introduction

Let G be a graph with |V (G)| = p and let A be an adjacency matrix of G. The eigenvalues of A

are called the eigenvalues of G and form the spectrum of G denoted by spec(G) [4]. The energy

[3] of G, E(G) is the sum of the absolute values of its eigenvalues. The properties of E(G) are

discussed in detail in [7, 8, 9]. Two non-isomorphic graphs with identical spectrum are called

cospectral and two non-cospectral graphs with the same energy are called equienergetic. In [2]

and [5], a pair of equienergetic graphs on p vertices where p ≡ 0(mod 4) and p ≡ 0(mod 5) are

constructed respectively. In [10] we have extended the same for p = 6, 14, 18 and for every

p ≥ 20. In [12] two classes of equienergetic regular graphs have been obtained and in [11], the

energies of some non-regular graphs are studied .

In this paper, we provide a construction of equienergetic self-complementary graphs for every

p = 4k, k ≥ 2 and p = 24t+1, t ≥ 3. The energies of some special classes of self-complementary

graphs are also discussed.
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All graph theoretic terminologies are from [1, 4].

We use the following lemmas in this paper.

Lemma 1. [4] Let G be a graph with an adjacency matrix A and spec(G) = {λ1, λ2, . . . , λp}.
Then det A =

p∏
i=1

λi. Also for any polynomial P (x) , P (λ) is an eigenvalue of P (A) and hence

det P (A) =
p∏

i=1

P (λi) .

Lemma 2. [4] Let M,N,P and Q be matrices with M invertible. Let S =




M N

P Q


. Then

|S| = |M | |Q− PM−1N | and if M and P commutes then |S| = |MQ− PN | where the symbol

|.| denotes determinant.

Lemma 3. [12] Let G be an r− regular connected graph, r ≥ 3 with spec(G) = {r, λ2, . . . , λp}.

Then spec(L2(G)) =




4r − 6 λ2 + 3r − 6 .. λp + 3r − 6 2r − 6 −2

1 1 .. 1 p(r−2)
2

pr(r−2)
2


,

E(L2(G)) = 2pr(r − 2) and E(L2(G)) = (pr − 4)(2r − 3)− 2.

Lemma 4. [4] Let G be an r− regular connected graph on p vertices with A as an adjacency

matrix and r = λ1, λ2, . . . , λm as the distinct eigenvalues. Then there exists a polynomial P (x)

such that P (A) = J where J is the all one square matrix of order p and P (x) is given by

P (x) = p× (x−λ2)(x−λ3)...(x−λm)
(r−λ2)(r−λ3)...(r−λm)

, so that P (r) = p and P (λi) = 0, for all λi 6= r.

Let G be an r− regular connected graph. Then the following constructions [6]result in

self-complementary graphs Hi, i = 1 to 4.

Construction 1. H1 : Replace each of the end vertices of P4, the path on 4 vertices by a copy

of G and each of the internal vertices by a copy of G. Join the vertices of these graphs by all

possible edges whenever the corresponding vertices of P4 are adjacent.

Construction 2. H2 : Replace each of the end vertices of P4, the path on 4 vertices by a copy

of G and each of the internal vertices by a copy of G. Join the vertices of these graphs by all

possible edges whenever the corresponding vertices of P4 are adjacent.
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Construction 3. H3 : Replace each of the end vertices of the non-regular self-complementary

graph F on 5 vertices by a copy of G, each of the vertices of degree 3 by a copy of G and the

vertex of degree 2 by K1. Join the vertices of these graphs by all possible edges whenever the

corresponding vertices of F are adjacent.

Construction 4. H4 : Consider the regular self-complementary graph C5 = v1v2v3v4v5v1, the

cycle on 5 vertices. Replace the vertices v1 and v5 by a copy of G, v2 and v4 by a copy of G

and v3 by K1. Join the vertices of these graphs by all possible edges whenever the corresponding

vertices of C5 are adjacent.

Note:-For all non self-complementary graphs G, Constructions 1 and 2 yield non- isomorphic

graphs and for any graph G, H1(G) = H2(G).

2 Equienergetic self-complementary graphs

In this section, we construct a pair of equienergetic self complementary graphs, first for p =

4k, k ≥ 2 and then for p = 24t + 1, t ≥ 3.

Theorem 1. Let G be an r− regular connected graph on p vertices with spec(G) = {r, λ2, . . . , λp}
and H1 be the self-complementary graph obtained by Construction 1.Then

E(H1) = 2
[
E(G) + E(G)− (p− 1)

]
+

√
(2p− 1)2 + 4

{
(p− r)2 + r

}
+

√
1 + 4 (p2 + r + r2) .

Proof. Let G be an r− regular connected graph on p vertices with an adjacency matrix A,

spec(G) = {r, λ2, . . . , λp} and H1 be the self-complementary graph obtained by Construction

1. Then the adjacency matrix of H1 is




A J 0 0

J A J 0

0 J A J

0 0 J A




, so that the characteristic equation

of H1 is

3



∣∣∣∣∣∣∣∣∣∣∣∣∣

λI − A −J 0 0

−J λI − A −J 0

0 −J λI − A −J

0 0 −J λI − A

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

that is

∣∣∣∣∣∣∣∣∣∣∣∣∣

−J λI − A 0 −J

λI − A −J −J 0

−J 0 λI − A 0

0 −J 0 λI − A

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, by a sequence of elementary transformations.

But, the last expression by virtue of Lemma 2 is

∣∣∣J2(λI − A)2 − [
(λI − A)

(
λI − A

)− J2
]2

∣∣∣ = 0

and so
p∏

i=1

{
〈P (λi)〉2 (λ− λi)

2 − [
(λ− λi) (λ− P (λi) + 1 + λi)− 〈P (λi)〉2

]2
}

= 0 by Lemmas 1 and 4.

Now, corresponding to the eigenvalue r of G, the eigenvalues of H1 are given by

{
p2 (λ− r)2 − [

(λ− r) (λ− p + 1 + r)− p2
]2

}
= 0 by Lemmas 1 and 4.

That is
[
λ2 + λ− (r2 + r + p2)

] [
λ2 − (2p− 1)λ− {

(p− r)2 + r
}]

= 0

So λ =
−1±

√
1 + 4 (p2 + r + r2)

2
;
2p− 1±

√
(2p− 1)2 + 4

{
(p− r)2 + r

}

2

The remaining eigenvalues of H1 satisfy
p∏

i=2

[(λ− λi) (λ + 1 + λi)]
2 = 0.

Hence , spec(H1) =




−1±
√

1+4(p2+r+r2)

2

2p−1±
√

(2p−1)2+4{(p−r)2+r}
2

λi
i=2 to p

−1− λi
i=2 to p

1 1 2 2


 .

Now, the expression for E(H1) follows.
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Theorem 2. Let G be an r− regular connected graph on p vertices with spec(G) = {r, λ2, . . . , λp}
and H2 be the self-complementary graph obtained by Construction 2. Then

E(H2) = 2
[
E(G) + E(G)− (p− 1)

]
+

√
(2p− 1)2 + 4

{
(p− r)2 + r

}
+

√
1 + 4 (p2 + r + r2) .

Proof. Let A be an adjacency matrix of G. Then the adjacency matrix of H2 is




A J 0 0

J A J 0

0 J A J

0 0 J A




.

By a similar computation as in Theorem 1 in which A is replaced by A, we get the characteristic

equation of H2 as
p∏

i=1

{
〈P (λi)〉2 (λ− P (λi) + λi + 1)2 − [

(λ− λi) (λ− P (λi) + 1 + λi)− 〈P (λi)〉2
]2

}
= 0, by Lem-

mas 1, 2 and 4.

Hence spec(H2) =




2p−1±
√

1+4(p2+r+r2)

2

−1±
√

(2p−1)2+4{(p−r)2+r}
2

λi
i=2 to p

−1− λi
i=2 to p

1 1 2 2


 .

Now, the expression for E(H2) follows.

Corollory 1.

1. If G = Kp, then E(H1) = E(H2) = 2(p− 1) +
√

1 + 4p2 +
√

8p2 − 4p + 1 .

2. If G = Kn,n, then p = 2n and E(H1) = E(H2) = 2(2p − 3) +
√

5p2 − 2p + 1 +
√

5p2 + 2p + 1 .

Theorem 3. For every p = 4k, k ≥ 2, there exists a pair of equienergetic self-complementary

graphs.

Proof. Let H1 and H2 be the self-complementary graphs obtained from Kk as in Constructions

1 and 2. Then by Theorems 1 and 2, they are equienergetic on p = 4k vertices.

Theorem 4. Let H3 be the self-complementary graph obtained from Kp by Construction 3.

Then E(H3) = 2(p− 1) +
√

4p2 + 1 +
√

8p2 + 4p + 1 .

Proof. Let A be an adjacency matrix of Kp. Then by Construction 3, the adjacency matrix of
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H3 is




A J 0p×1 0 0

J A Jp×1 J 0

01×p J1×p 0 J1×p 0

0 J Jp×1 A J

0 0 0 J A




.

Now, after a sequence of elementary transformations applied to the rows and columns and by

Lemma 2, the characteristic equation is

1

λ2p−1

∣∣∣
[{λ(λI − A)− J} (λI − A)− λJ2

]2 − [
(λ + 1)(λI − A)J

]2
∣∣∣ = 0.

Since G = Kp is connected and regular, by Lemmas 1 and 4 the characteristic equation of H3

is

λ2p−1(λ + 1)2p−2(λ2 + λ− p2)
[
λ2 − (2p− 1)λ− p(p + 2)

]
= 0.

Hence spec(H3) =




−1±
√

4p2+1

2

2p−1±
√

8p2+4p+1

2
−1 0

1 1 2p− 2 2p− 2


 . Now, the expression

for E(H3) follows.

Theorem 5. Let H4 be the self-complementary graph obtained from Kp by Construction 4.

Then E(H4) = 2 (2p− 1) +
√

4p + 1 +
√

8p2 − 4p + 1 .

Proof. Let A be an adjacency matrix of Kp. Then by Construction 4, the adjacency matrix of

H4 is 


A J 0p×1 0 J

J A Jp×1 0 0

01×p J1×p 01×1 J1×p 0

0 0 Jp×1 A J

J 0 0 J A




Now, after a sequence of elementary transformations applied to the rows and columns and by

Lemma 2, the characteristic equation is

1

λ2p−1

∣∣∣
[{λ (λI − A)− J}2 + (λ− 1) J2

] [
(λ− 1) J2 +

(
λI − A

)2
]
− λJ2

[
λ (λI − A)− J + λI − A

]2
∣∣∣ = 0
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Since G = Kp is connected and regular, by Lemma 4 the characteristic equation of H4 is

λ(2p−2) (λ + 1)(2p−2) (λ− 2p)
(
λ2 + λ− p

) (
λ2 + λ− 2p2 + p

)
= 0.

Hence spec(H4) =




2p −1±√4p+1
2

2p−1±
√

8p2−4p+1

2
−1 0

1 1 1 2p− 2 2p− 2


 . Now, the expres-

sion for E(H4) follows.

Corollory 2. Let G be a connected r− regular graph on p vertices with spec(G) = {r, λ2, λ3, . . . , λp}
and H be the self-complementary graph obtained as in Construction 4. Then

E(H) = 2
[
E(G) + E(G)− (p− 1)

]
+

√
1 + 4 (p2 + r + r2) + T where T is the sum of absolute

values of roots of the cubic x3−(2p− 1) x2− [p2 − 2p (r − 1) + r (r + 1)] x+2p (2p− r − 1) = 0.

Lemma 5. There exists a pair of non-cospectral cubic graphs on 2t vertices, for every t ≥ 3.

Proof. Let G1 and G2 be the non-cospectral cubic graphs on six vertices labelled as {vj} and

{uj}, j = 1 to 6 respectively.

Figure 1: The graphs G1 and G2.

Now replacing v1 and u1 in G1 and G2 by a triangle each we get two cubic graphs H1 and H2

on eight vertices containing one and two triangles respectively as shown in Figure 2. Since the
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number of triangles in a graph is the negative of half the coefficient of λp−3 in its characteristic

polynomial [4], H1 and H2 are non-cospectral.

Figure 2: The graphs H1 and H2

Replacing any vertex in the newly formed triangle in H1 and H2 by a triangle we get two

cubic graphs on ten vertices which are non co-spectral. Repeating this process (t−3) times, we

get two cubic graphs on 2t vertices containing one and two triangles respectively. Hence they

are non cospectral.

Theorem 6. For every p = 24t+1, t ≥ 3, there exists a pair of equienergetic self-complementary

graphs.

Proof. Let G1 and G2 be the two non co-spectral cubic graphs on 2t vertices given by Lemma

5. Let F1 and F2 respectively denote their second iterated line graphs. Then F1 and F2 have

6t vertices each and 6−regular with E(F1) = E(F2) = 12t and E(F1) = E(F2) = 3(6t− 4)− 2

by Lemma 3. Let F1 and F2 be the self-complementary graphs obtained from F1 and F2 by

Construction 4. Then F1 and F2 are on p = 24t + 1 vertices and by Corollary 2, E(F1) =

E(F2) = 2(24t− 13)+
√

169 + 144t2 +T where T is the sum of the absolute values of the roots

of the cubic x3 − (12t− 1)x2 − 6(6t2 − 10t + 7)x + 12t(12t− 7) = 0.
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