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Chapter 1

Introduction

“Mathematics, rightly viewed, possesses not only truth but supreme beauty”-

Bertrand Russel.

1.1 Introduction

Topology is an important tool in almost all areas of mathematics. Topol-

ogy is divided in to different branches that includes point set topology,

differential topology, algebraic topology, fuzzy topology, bi topological

spaces etc.

Beginning of topology is due to Euler. It began in 1736 while working

1



2 Chapter 1. Introduction

on the solution of Konigsberg bridge problem ; entitled ‘The solution of a

problem relating to geometry of position’. The title itself indicates that

the work deals with another concept of geometry where the matter of

distance is irrelevant. Before that no work was done without involving

measurement.

The word Topology was first introduced by Listing. But his ideas

were mainly due to Gauss who choose not to publish any of his work. He

wrote a paper called ‘Vorstudies Zue Topology’ and later he published

a paper dealing with study of Mobius Band and he also studied compo-

nents of surfaces and connectivity. The first person who studied about

connectivity was not Listing. Riemann done the same in 1851 and was

studied eventually by Poincare. While studying connectivity Poincare

introduced Fundamental Group of a variety and the idea of Homotopy

was introduced in 1895 papers.

Generalization of idea of convergence was the second way in which

topology was developed. This was done in 1817 by Bolzano while he

associate convergence with sequence of numbers. In 1872 Cantor intro-

duced concept of limit point, derived set etc. The fundamental concept

of point set topology that is the open set was also introduced by Can-

tor. That leads to the concept of neighborhood which was introduced by

Wierstrass while proving Bolzano Weirstrass theorem.

The concept of compactness was first introduced by Frechet in 1906.

Later in 1909, the axiomatic approach to topology excluding concept of

distance was developed by Riesz.

The third way in which topological concepts entered mathematics is

through Functional Analysis. A further step in abstraction was done by

Banach in 1932 when he considered inner product spaces.
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Another major concept in which topology was studied is Lattice The-

ory. Charles.S.Pierce and Earnst Schroder introduced the concept of lat-

tice at the end of nineteenth century as useful tool in investigating the

axiomatic approach of Boolean Algebra. Richard Dedekind’s study on

ideals of algebraic numbers also led to same idea of lattice. The devel-

opment of lattice theory began with the publication of two fundamental

papers by Dedekind.

The notion of continuity properties in topological spaces was first

studied by Hausdorff using notion of open sets. Till then topological

space was known to possess a lattice structure with open sets although

that lattice structure was not used there. American mathematician Mar-

shall Stone started the application of lattice theory to topological spaces.

The next work about the link between topology and lattice theory was

through Stones Representation theorem. The first person who involved

this idea was Henry Wallmann where he used lattice theoretic ideas to

construct Wallmann Compactification of a T1 topological space. The first

text book which presented topology from lattice theoretic view point was

written by Germann mathematician Nobeling.

Lattices are partially ordered sets in which least upper bound and

greatest lower bound of any two elements exist. Dedekind discovered

that this property may be axiomatized by identities. A lattice is a set

on which two operations are defined called meet and join denoted by

∧ and ∨. Lattices behave better than posets lacking upper or lower

bounds. General Topology and Lattice Theory are two related branches

of mathematics influencing each other. Many mathematicians studied

a lot of results [7], [19], [27] considering topology and lattice theory.

Perhaps Birkhoff and Vaidyanathswamy are fore runners in this direction.

In 1954 Frink and V.K.Balachandran[6] introduced the concept of join

irreducible and join prime elements in any lattice, while they were dealing
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with the solution for a problem of Birkhoff and Frink on the relation

between completely prime and completely join irreducible ideals. Dually

they defined meet irreducible and meet prime elements for any arbitrary

lattice.

Another way of looking at prime elements in any lattice was done

by Gierz et.al.[18] in 1980 in their work ‘A compendium of continuous

lattices’. They initiated the study by defining prime element in such

a way that, Let L be any lattice an element a ∈ L is said to be a

prime element if whenever b ∧ c ≤ a for b, c ∈ L then either b ≤ a or

c ≤ a. Johnstone[24] continued the study of join irreducible elements by

considering the dual notion of it. He considered the lattice of open sets

of any arbitrary topological space X and studied about the irreducible

closed sets in the lattice of open sets of X ; thereby introduced sober

spaces as spaces in which every irreducible closed subset is the closure of

a unique point of X. Johnstone proved that any sober space is T0. Also

derived some results in frames and locale theory by extending the notion

to it.

Later in 2004, Martin Maria Kovar[26] while solving an open problem

by J.Lawson and M.Mislove established a necessary and sufficient condi-

tion for any element of a lattice to be prime in terms of filter. Thereby

he partially solved the problem of J.Lawson and M.Mislove in which they

ask for which directed complete posets, Scott topology has a basis of open

filters and for which directed complete posets, the topology generated by

Scott open filter is T0.

Another notable work done using irreducible open sets was in the

area of Frames and Locales. Let (X,Ω(X)) be any topological space.

In 2011 Jorge Picardo and Ales Pultr[40] analyzed certain situations in

which complement of singleton sets become meet irreducible in the lattice

Ω(X). This definition of meet irreducible element is actually motivated
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by the definition of prime element in any lattice by Gierz et.al[18]. Ales

Pultr and Jorge Picardo extended the notion of prime to theory of filters

and thereby they defined prime and completely prime filter, to prove an

equivalent condition for a space to be sober. Any localic map sends meet

irreducible ones to meet irreducible ones only and hence they deduce

that corresponding to any meet irreducible open set there always exists

a topological space consisting of all completely prime filters containing

that irreducible open set which they called as spectrum of that locale

denoted by Sp(L) where L is the locale given. Also proved that Sp(L) is

always sober in nature.

Let (X,T ) be any topological space then the collection of all open sets

in T always forms a complete lattice and hence it is worthful to study

prime/irreducible elements in any topological space. Motivated by defi-

nition of Gierz.et.al[18] we introduce prime open sets in any topological

space and try to study some notions in topology using prime open sets.

The characterization of prime elements using filters itself implies ex-

istence of disjoint prime open sets corresponding to distinct points is not

possible in this context. That lead us to consider some lower separation

axioms for which basic foundation is generalised closed sets, semi-open

sets etc. We wish to give a brief description and history of such impor-

tant notions in topology. Generalised closed sets was first introduced by

N.Levine[31] in 1970 as a generalization of closed sets. Spaces in which

generalised closed sets and closed sets coincide are named as T1/2 spaces

by Levine. As the name itself indicates it lies between T0 and T1 ax-

ioms. T1/2 axioms were characterized and more studies were done by

William Dunham[16] in 1977. Dunham also provide structure theorems

for minimal and maximal T1/2 topologies on a given set. Levine intro-

duced generalised closed sets in order to extend many of the important

properties of closed sets to a larger family. It was shown by Levine that
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compactness, normality and completeness in uniform spaces are inher-

ited by g-closed sets. Later Dunham and Levine continue the study of

g-closed sets obtaining characterizations and other familiar theorems to

this general context. Thus they derived the generalized Tietze extension

theorem also.

Later in 1988 another characterisation of T1/2 spaces was done by

H.Maki et.al.[33] For that purpose they generalized the concept of v-set

introduced by Maki in [4] and there by they initiated the study of gener-

alised v-sets. Dunham[15] again in 1980 defined a new closure operator

by using generalised closed sets, thus investigated a new topology and its

properties. And the class of T1/2 spaces is characterized by the new topol-

ogy. He also proved that the new closure operator is a kuratowski closure

operator and examined which properties are extended to new topology.

Again in 1991 K.Balachandran et.al.[5] defined a class of mappings called

generalised continuous mappings which contains the class of continuous

mappings and Miguel Caldas Cueva[11] continued the study in 1993 by

generalizing some theorems of N.Levine. Also in 1993, N.Palaniappan

and K.Chandrashekara Rao[39] introduced regular generalised closed and

open sets and studied its properties.

Another separation axiom called T1/4 axiom was also introduced by

Arenas, Dontchev and Ganster[3] in their study of generalised closed

sets. Arenas et.al. introduced λ-closed sets and characterized T0 spaces

as those spaces where each singleton set is λ-closed and T1/2 spaces as

those spaces were each subset is λ-closed. The author also pointed out

that class of T1/4 spaces is strictly placed between the class of T0 and the

class of T1/2 spaces.

Levine[30] call a topology τ on an arbitrary set X a D-topology when-

ever every non empty open set is dense in X. D-spaces are characterized

as spaces in which every open set in X is connected. It was also proved
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that any topological space can be written as union of its maximal D-

subsets. In [30] Levine also studied about star sub topologies which are

topologies uniquely determined by D-subtopologies. In 1973, Pushpa

Agashe and N.Levine[1] proved that every non D-topology has an imme-

diate predecessor and consequently they concluded that every T1 topol-

ogy which is not a D-topology have immediate predecessor. D-spaces are

also called as irreducible in the sense of Bourbaki and spaces in which

every dense subset happens to be open is named as submaximal spaces

by [9]. It was proved by Jullian Dontchev in [13] that every irreducible

submaximal spaces are door spaces introduced by Kelley. Kelley[25] in-

troduced door spaces as spaces in which every subset is either open or

closed. Full identification of door spaces was completely done in [35] by

S.D.Mccartan.

A subset A of a topological space is said to be semi-open if there

exists an open set U such that U ⊆ A ⊆ cl(U) where cl(U) denotes

the closure of U with respect to the topology given. This concept was

also introduced by Levine[29]. Later a lot of work has been done in

this area. In [21], T.R.Hamlett showed how different topologies on a set

which determine the same class of semi-open sets can arise from functions

and points out some implications of two topologies being related in this

manner. Hamlett also introduced semi-continuous functions in [20] and

basic questions involving semi-continuous functions into T2 spaces were

investigated. Later Dragan.S.Tankori, Noiri etc continued the study of

semi-continuous functions. The notion of semi-closure was introduced

by Grossely and Hildebrand in [10], G.Dimaio[12] studied about s-closed

spaces utilizing semi-closure. The concept of semi-homeomorphism was

introduced and studied by Biswas, Crossely and Hildebrand, J.P.Lee etc.

Bhamini.M.P.Nayar and S.P.Arya[36] also continued the study by includ-

ing the minimality structure in to it. Later notions of connectedness,
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compactness were also examined using semi-open sets by V.Pipitone,

G.Russo, Thomas etc.

The concept of C-compactness was introduced by G.Viglino in [49].

Later it was characterized by [22] in terms of nets and filters. Let X be

any arbitrary set and let Σ(X) denote the collection of all topologies on

X. Vaidyanathswamy proved that Σ(X) is a complete lattice. Fröhlich

in [17] proved that every topology is the infimum of all ultraspaces finer

than the given topology. He also characterized ultraspaces in terms of

filters. These two results helps us to study the lattice Σ(X) and are also

used to identify prime elements in the lattice of topologies.

In this thesis we have attempted to study problems related to irre-

ducible open sets in the lattice of open sets of any arbitrary topological

space mainly focused in the following contexts :

1. Studies on some generalised concepts of open and closed sets in

topological spaces.

2. Various aspects of continuous transformations and separation prop-

erties.

3. Studies on some lattice theoretic view point.

1.2 Basic Concepts and Definitions

Definition 1.2.1. [8] A partially ordered set is a pair (P,≤) where P

is any arbitrary set and ≤ is an order relation on P obeying Reflexivity,

Anti-symmetry and Transitivity. The name “partially ordered set” is

often abbreviated poset. In a partially ordered set P , the join and meet
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of a subset S are respectively the supremum (least upper bound) of S,

denoted ∨S, and infimum (greatest lower bound) of S, denoted ∧S. In

general, the join and meet of a subset of a partially ordered set need not

exist; when they do exist, they are elements of P .

Definition 1.2.2. [8] A partially ordered set in which all pairs have

a join is a join-semilattice. Dually, a partially ordered set in which all

pairs have a meet is a meet-semilattice. A partially ordered set that is

both a join-semilattice and a meet-semilattice is a lattice. A lattice in

which every subset, not just every pair, possesses a meet and a join is a

complete lattice. The least element of a lattice is designated 0 and the

greatest element is designated 1.

By “a covers b” in a lattice (L,≤) we mean b < a and b < c < a

implies b = c or c = a.

Definition 1.2.3. [8] An atom is an element which covers the least

element. A lattice is atomic if every element other than 0 can be written

as the join of atoms.

Definition 1.2.4. [8] An anti-atom/ dual atom is an element which

is covered by 1. A lattice is anti atomic if every element other than 1 can

be written as the meet of anti-atoms.

Definition 1.2.5. [8] An element ‘a’ is called the complement of ‘b’

in a lattice if a ∧ b = 0 and a ∨ b = 1 . A lattice is called complemented

if every element has at least one complement.

Definition 1.2.6. [6] An element ‘a’ of a lattice L is called join

irreducible if a1∪a2 = a implies a1 or a2 = a, and join prime if a1∪a2 ≥ a
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implies a1 or a2 ≥ a. Similarly a is called completely join irreducible if

(for all existing joins
⋃
i

ai)
⋃
i

ai = a implies some ai = a, and completely

join prime if
⋃
i

ai ≥ a implies some ai ≥ a.

Definition 1.2.7. [18] An element a ∈ L in any arbitrary lattice L

is said to be prime if for any b, c ∈ L, whenever b ∧ c ≤ a then either

b ≤ a or c ≤ a.

Let (X,T ) be any arbitrary topological space, then clearly the col-

lection of open sets in T always forms a lattice under the operations of

union and intersection. Johnstone defined irreducible closed sets in that

lattice motivated by the above definitions.

Definition 1.2.8. [24] Let (X,T ) be any topological space, a closed

set F is said to be an irreducible closed set if it cannot be written as a

union of two closed subsets F1 and F2 such that both are proper closed

subsets of F . Also X is said to be sober, if every irreducible closed set

in X is the closure of a unique point of X.

Definition 1.2.9. [26] A partially ordered set (P,≤) is said to be

upward directed if for any ‘a’ and ‘b’ in P there must exist ‘c’ in P

with a ≤ c and b ≤ c and the dual notion is called down directed and

a partially ordered set is said to be directed if it is both upward and

downward directed. Also a poset (P,≤) is directed complete, if every

directed subset of P has a supremum.

Definition 1.2.10. [26] Let (P,≤) be any partially ordered set

or briefly a poset. For any subset A of a poset (P,≤) define ↑ A =

{x/x ≥ y; y ∈ A} and ↓ A = {x/x ≤ y; y ∈ A}.
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Definition 1.2.11. [26] Let (X,≤) be a directed complete poset. A

subset U ⊆ X is said to be Scott open, if U =↑ U and whenever D ⊆ X

is a directed set with supD ∈ U , then U ∩ D 6= φ. Scott open sets

of a directed complete poset always forms a topology called the Scott

topology.

Kovar characterized those T0 topological spaces X for which the Scott

topology on the lattice of open sets of X has a basis of open filters and

topology generated by Scott open filters is T0 by using the notion of

prime elements in a lattice.

Remark 1.2.1. [40] Let (X,Ω(X)) be any topological space. In

the lattice Ω(X), the elements of the form X − {x} have the following

property : if U ∩V ⊆ X−{x} then either U ⊆ X−{x} or V ⊆ X−{x}.
Such elements are called as meet irreducible elements.

Definition 1.2.12. [40] A filter F in a lattice is prime if a1∨a2 ∈ F
implies that ai ∈ F for some ‘i’. A filter is said to be completely prime

filter if above condition holds for any joins.

Proposition 1.2.1. [40] A space X is sober if and only if the

neighborhood filters are precisely the completely prime ones.

By extending the above definition of meet irreducible element to any

lattice Ales Pultr and Jorge Picardo derived the following results, by

calling the collection of all meet irreducible elements of any lattice L as

the spectrum of L denoted by Sp(L).

Theorem 1.2.1. [40] Let L be any lattice, corresponding to any

element of Sp(L) there always exists a topological space consisting of all
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completely prime filters containing that meet irreducible element.

Theorem 1.2.2. [40] For any lattice L, Sp(L) is always sober.

Definition 1.2.13. [31] Let (X,T ) be any topological space and

A ⊆ X. A is generalised closed briefly g-closed iff A ⊆ O whenever

A ⊆ O and O is open.

Definition 1.2.14. [31] Spaces in which g-closed sets and closed

sets coincide are said to satisfy the T1/2 axiom.

Theorem 1.2.3. [31] T1 implies T1/2 implies T0 but none of the

converse parts hold.

Theorem 1.2.4. [16] X is T1/2 if and only if for each x ∈ X, either

{x} is open or {x} is closed.

Theorem 1.2.5. [15] For a space (X,T ),

let D = {A : A ⊆ X and A is g-closed}. For any E ⊆ X, define c∗(E) =

∩{A : E ⊆ A ⊆ D}.

c∗ satisfies the following conditions :

1. c∗(φ) = φ

2. E ⊆ c∗(E)

3. c∗(E1 ∪ E2) = c∗(E1) ∪ c∗(E2)

4. c∗(c∗(E)) = c∗(E)

Thus c∗ is a Kuratowski closure operator.
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Theorem 1.2.6. [15] Let T ∗ be the topology on X generated by

c∗ in the usual manner, then (X,T ∗) is always T1/2 for any topological

space (X,T ).

Definition 1.2.15. [31] A mapping f : X → Y from a topological

space X into a topological space Y is called g-continuous if inverse image

of every closed set in Y is g-closed in X.

Definition 1.2.16. [33] A subset A of a topological space (X,T ) is

called λ-closed if A = L ∩ F where L is an intersection of open sets and

F is a closed set.

Theorem 1.2.7. [33] A space (X,T ) is T1/2 if and only if every

subset is λ-closed.

Definition 1.2.17. [30] A topology T for a set X is called a D-

topology if every non-empty open set is dense in X and the corresponding

topological space (X,T ) is said to be a D-space.

Definition 1.2.18. [30] Every topology τ on a set X contains a

uniquely defined D-subtopology τ ∗ called the star subtopology of τ , where

τ ∗ = {O∗ : O∗ is dense in X}.

Theorem 1.2.8. [1] Every non D-topology has an immediate pre-

decessor.

Definition 1.2.19. [28] Let (X,T ), (X,T ∗) be two topological

spaces and let S.O.(X,T ), S.O.(X,T ∗) be the collection of all semi-open

sets on X with respect to T and T ∗. If S.O.(X,T ) = S.O.(X,T ∗) then

the topologies T and T ∗ are said to be semi-correspondent.

Theorem 1.2.9. [28] Semi-correspondent topologies on any arbi-
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trary topological space shares the same collection of nowhere dense sets.

Definition 1.2.20. [28] A function is said to be semi-continuous if

inverses of open sets are semi-open and is said to be irresolute if inverses

of semi-open sets are semi-open.

Definition 1.2.21. [47] A topological space (X,T ) is said to be

semi-connected if it is not the union of two non-empty disjoint semi-

open sets and is said to be s-compact if every semi-open cover has a

finite subcover.

If T1 and T2 are two topologies on the set X and every set in T1
is also in T2, then T1 is said to be coarser than T2 and T2 finer than

T1. Under this order, the family Σ(X) of all topologies on X forms a

complete lattice.

Definition 1.2.22. [17] A topology T on X is an ultraspace if the

only topology on X finer than T is the discrete topology.

Theorem 1.2.10. [17] The ultraspaces on X are exactly the topolo-

gies of the form =(x, U) where x ∈ X and U is an ultrafilter on X ; such

that =(x, U) is the topology generated by subsets not containing ‘x’ and

U .

1.3 Summary of the Thesis

The thesis entitled ‘A Study on Lattice of Open Sets’ is divided in

to six chapters. The first chapter is an introductory one which contains

basic definitions and results used in the formulation of the thesis. Also
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chapter 1 contains a brief review of literature of basic concepts used in

the thesis.

Chapter 2 introduces a new class of open sets called prime open sets in

the lattice of open sets of any arbitrary topological space. Using Kovar’s

characterization of prime elements in any lattice we identified precisely

the prime open sets in any hausdorff space. Consequently we presented

a new concept of generalised p-closed sets as an analogous study of gen-

eralised closed sets, following Levine.

In chapter 3 we consider the separation axioms involving prime open

sets, generalised p-closed sets etc. and we introduce p-T0, p-T1, p-T1/2
axioms and identified the spaces in which all the separation axioms coin-

cides. Also introduced p-continuity, gp-continuity etc. and studied some

of its properties. For p-T1/2 spaces p-continuity and gp-continuity coin-

cides.

Chapter 4 discusses about spaces in which any two p-open sets inter-

sects which we named as non-prime isolated spaces. Characterization of

non-prime isolated spaces is also done. We proved that any topological

space can be written as union of its maximal non-prime isolated subsets.

Applying concept of prime open sets we introduce p-irreducible, p-door

and sub p-maximal spaces and proved that any non-prime isolated sub

p-maximal spaces are p-T1/2.

In chapter 5 we introduce semi p-open sets and investigated its prop-

erties. Mean while we introduce nowhere p-dense sets and obtained that

any semi p-open set can be written as the disjoint union of p-open and
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nowhere p-dense sets. A genre of mappings involving semi p-open sets

are introduced and examined implications amongst each of the mappings.

Also obtained that any p-homeomorphic image of a topological space of

first category can be written as the union of nowhere p-dense sets in it.

The final chapter considers the concepts of compactness and

C-compactness using p-open sets and discusses their characterizations

using nets and filters. Also we introduces prime topological spaces and

investigated its lattice properties. We also identified the prime elements

in the lattice of all topologies on X.

The thesis ends by some concluding remarks and suggestions for fur-

ther study.



Chapter 2

Generalised p-Closed Sets

2.1 Introduction

Consider any arbitrary set X with a topology τ . Clearly τ always forms

a partially ordered set and it forms a lattice since τ is closed under finite

intersections and unions. Thus extending the idea of prime element in

a lattice to any arbitrary topological space is worthful. Motivated by

the definition of prime element we introduced a new collection of open

sets called prime open sets shortly p-open sets in any arbitrary topolog-

ical space. It is quite natural to study various notions in topology using

Some results of this chapter are included in the following papers.

1. Vinitha. T and T. P. Johnson : On Generalised p-Closed Sets , International
Journal of Pure and Applied Mathematics, Volume 117 No. 4 2017, 609-619.

2. Vinitha. T and T. P. Johnson : Results on Generalised p-closed Sets, Annals
of Pure and Applied Mathematics , Vol. 16, No. 1, 2018, 91-103.

17
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prime open sets. Kovar in [26] proved that a subset A ⊆ L where L is

a lattice is prime if and only if collection of all elements which does not

belong to down set of A always forms a filter. By extending that result

to topological space we prove that only prime open sets in any hausdorff

topological space is the complement of singleton sets. In this chapter

we introduce generalised p-closed sets shortly g-p.closed sets and study

some of its properties. We established some equivalent conditions for a

set to be g-p.closed. Also we studied when the equivalence of p-closed

and g-p.closed happens. We proved that the collection of p-open sets and

collection of p-closed sets of any arbitrary topological space coincides if

and only if every subset of that topological space is a g-p.closed set. Also

we introduced generalised p-open sets as complement of g-p.closed sets

and studied some of its properties. Some properties of g-p.closed and

g-p.open sets related to subspace topology is also considered.

We begin by stating some preliminary definitions and results useful

in this chapter.

Given any lattice L, Kovar in [26] proved an equivalent condition for

any element a ∈ L to be a prime element in terms of filter. The next

definition and lemma is due to Kovar[26]

Definition 2.1.1. Let (P,≤) be any partially ordered set or briefly a

poset. For any subset A of a poset (P,≤) define ↑ A = {x/x ≥ y; y ∈ A}
and ↓ A = {x/x ≤ y; y ∈ A}.

Lemma 2.1.1. Let (X,≤) be any poset. Then L ⊆ X is prime if

and only if F = X− ↓ L is a filter.

Definition 2.1.2. [8] Let (L,≤) be any lattice an element a ∈ L is
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said to be an atom if there is no ‘x’ in L between 0 and a where 0 is the

smallest element of the lattice.

Definition 2.1.3. [8] Let (L,≤) be any lattice an element a ∈ L is

said to be a dual atom if there is no ‘x’ in L between 1 and a where 1 is

the largest element of the lattice.

Definition 2.1.4. [31] Let (X,T ) be any topological space and

A ⊆ X. A is generalised closed briefly g-closed iff A ⊆ O whenever

A ⊆ O and O is open.

2.2 p-Open Sets in The Lattice of Open

Sets of Any Arbitrary Topological Space.

In this section we introduced the idea of prime open sets in the lattice

of open sets of any arbitrary topological space and studied some of its

properties. Lemma : 2.1.1 proved an equivalent condition for an element

in a lattice to be prime in terms of filters. Using that result we obtained

a necessary and sufficient condition for an open set to be prime open and

also identified precisely the p-open sets in a T2 space.

Let (X,T ) be any arbitrary topological space. The open sets in T

forms a complete lattice with smallest element 0 and largest element 1

where 0 = φ and 1 = X. We define an open set in X to be prime as :

Definition 2.2.1. An open set G 6= 1 in T is said to be a prime

open set if H ∩K ⊆ G⇒ H ⊆ G or K ⊆ G ; where H,K are open sets

in T such that H ∩K 6= φ. Clearly 0 and 1 are prime in T . Prime open
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sets are denoted by p-open sets. Complements of p-open sets are called

p-closed sets.

Remark 2.2.1. p-open implies open but converse not true.

Example 2.2.1. LetX = {a, b, c} and T = {X,φ, {a} , {a, b} , {a, c}}
be a topology on X , then {a, b} , {a, c} are p-open sets in (X,T ) but {a}
is not p-open .

Remark 2.2.2. The above example illustrates that intersection of

two p-open sets need not be a p-open set.

In next result we analyzes a situation in which intersection of p-open

sets is always a p-open set.

Proposition 2.2.1. Let (X,T ) be any arbitrary topological space.

Intersection of p-open sets is a p-open set if and only if it forms a chain.

Proof. Let {Gi : i ∈ I} be a collection of p-open sets in T . Assume

that Gi ∩Gj is p-open for some i, j , to prove that Gi ⊆ Gj or Gj ⊆ Gi.

On contradiction assume that it does not forms a chain then Gi∩Gj = Gk

for some ‘k’ ; k 6= i, j and Gk is a p-open set. But since Gk ⊂ Gi and

Gk ⊂ Gj ; Gk cannot be prime which is a contradiction . Hence either

Gi ⊆ Gj or Gj ⊆ Gi and proof of sufficiency part is obvious.

While considering the closure property among intersection of p-open

sets we obtained an equivalent condition for it but for union that is not

the case :
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Proposition 2.2.2. Let (X,T ) be any arbitrary topological space.

Union of p-open sets is a p-open set if it forms a chain.

Remark 2.2.3. Converse of Proposition : 2.2.2 is not true, for

example let X = {a, b, c} and T = {X,φ, {a} , {b} , {a, b}} be a topology

on X , then all open sets are p-open but not a chain.

Since the collection of all open sets of any arbitrary topological space

is a lattice , results in Lemma : 2.1.1 can be extended to any ar-

bitrary topological space (X,T ) by defining upper set and lower set

of any G ⊆ X as : upper set of G denoted by U(G) is defined as

U(G) = {A ∈ T/A ⊇ G} and lower set of G denoted by L(G) is de-

fined as L(G) = {A ∈ T/A ⊆ G} and we obtain the result in Lemma :

2.1.1 as :

Proposition 2.2.3. Let (X,T ) be any arbitrary topological space

and G ∈ T . G is p-open if and only if T − L(G) is a filter ; where

T − L(G) is the collection of open sets which does not belongs to L(G).

Using Proposition : 2.2.3 we can say what are precisely the p-open

sets in a hausdorff space.

Theorem 2.2.1. Let (X,T ) be a hausdorff space and x ∈ X then

the only p-open sets are X − {x}.

Proof. Let G ∈ T,G 6= X − {x} for any x ∈ X and G be prime.

There exists at least two elements x1, x2 ∈ X such that x1 6= x2 and

x1, x2 /∈ G. Since X is T2 there exists disjoint open sets U1, U2 such that

x1 ∈ U1 and x2 ∈ U2. Clearly U1 ∈ T −L(G) and U2 ∈ T −L(G) implies

U1 ∩ U2 = φ ∈ T − L(G) which is not possible since G is prime. Hence
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G = X − {x} always.

Theorem 2.2.2. Let (X,T ) be a topological space and G ∈ T .

Then G is not prime in T if and only if there exists two open super sets

for G say G1 and G2 such that G1 ∩G2 ⊆ G

Proof. Sufficiency part easily follows since existence of such open su-

per sets trivially contradicts the definition of prime. To prove necessary

part assume that G is not prime and let G1 and G2 be two open sets in

T such that G1 ∩G2 ⊆ G. We have to prove that there exists two open

super sets for G whose intersection is a subset of G. Given G1 ∩G2 ⊆ G

and G is not prime then both G1 and G2 are not subsets of G by defini-

tion of prime. Now consider G1 and G ∪G2 both of them are open sets

and if G1 is a super set of G, then the open sets G1 and G ∪G2 will be

the required sets since

(G ∪G2) ∩G1 = (G ∩G1) ∪ (G2 ∩G1) = G.

Same is the case if G2 is a super set of G. Now if both of them are not

super sets of G but G1 ∩G2 ⊆ G then consider G∪G1 and G∪G2 both

are open super sets of G1 and G2 and then

(G ∪G1) ∩ (G ∪G2)

= G ∪ (G ∩G1) ∪ (G ∩G2) ∪ (G1 ∩G2)

⊆ G

Hence there exists two open super sets of G always such that G1∩G2 ⊆ G

whenever G is not prime.
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2.3 p-closure, p-interior and p-open sets in

relative topology

In order to proceed the study of notions in topology using p-open sets

we have to define some basic notions like closure , interior etc using p-

open sets. Throughout this section we try to study such notions and its

properties by including p-open sets only.

Since the intersection of p-closed sets need not be p-closed there arise

possibility for existence of more than one non-comparable p-closed super

sets corresponding to any set. In such cases notion of minimal p-closed

super sets have to be considered.

Definition 2.3.1. Let (X,T ) be a topological space and let A ⊆ X,

then the p-closure of A with respect to T is defined as the minimal p-

closed super set of A in X and is denoted as p-cl(A).

Example 2.3.1. Let X = {a, b, c, d} and

T = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}} be a topology on X then

p-cl({c, d}) = {b, c, d} and {a, c, d}.

Remark 2.3.1. Let (X,T ) be a topological space for any A ⊆ X,

A ⊆ p-cl(A) where A is the closure of A with respect to T .

Proposition 2.3.1. Let (X,T ) be a topological space, then for ev-

ery p-open set A ⊆ X there always exists a unique p-closed set containing

A.

Proof. Let A be a p-open set and Bc be a p-closed super set of A.
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On contradiction let Cc be another p-closed super set of A, then clearly

B,C are p-open sets of X. If B∩C = φ, then A will not be prime since A

can be written as intersection of open sets A∪B and A∪C which is not

possible. If B∩C 6= φ, then B can be written as the intersection of open

sets B ∪ C and A ∪ B, that is B is not prime which is a contradiction.

Hence there does not exists more than one p-closed super set of A.

Remark 2.3.2. For a p-open set definition of p-closure becomes

smallest p-closed set containing it.

Proposition 2.3.2. p-cl(A) ∪ p-cl(B) ⊆ p-cl(A ∪ B) ; for any two

subsets A and B of X.

Proof. Clearly

A ⊆ A ∪B;B ⊆ A ∪B (2.1)

⇒ p-cl(A) ⊆ p-cl(A ∪B); p-cl(B) ⊆ p-cl(A ∪B) (2.2)

Thus 2.2 implies p-cl(A) ∪ p-cl(B) ⊆ p-cl(A ∪B).

Remark 2.3.3. Let (X,T ) be any arbitrary topological space and

let A,B ⊆ X then p-cl(A∪B) 6⊆ p-cl(A)∪p-cl(B) ; for example consider

the discrete topological space (X,D) and let A = {x1}, B = {x2} where

x1, x2 ∈ X . Then p-cl(A) = {x1} , p-cl(B) = {x2} and p-cl(A∪B) = X.

Hence p-cl(A ∪B) 6⊆ p-cl(A) ∪ p-cl(B).

Proposition 2.3.3. Let (X,T ) be a topological space, A ⊆ X be a

p-open set in X and x ∈ X. Then x ∈p-cl(A) if and only if every p-open
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set containing ‘x’ intersects A.

Proof. If x /∈p-cl(A), then U = X−p-cl(A) is a p-open set containing

‘x’ which does not intersects A. Thus if every p-open set containing ‘x’

intersects A then x ∈ p-cl(A) and sufficiency part is proved. Next we

have to prove that x ∈ p-cl(A) implies every p-open set containing ‘x’

intersects A. On contradiction we assume that there exists a p-open set

U containing ‘x’ which does not intersect A, which implies X − U is a

p-closed set containing A. Then either p-cl(A) ⊂ X − U or X − U itself

happens to be p-cl(A) by definition of p-closure and by Proposition :

2.3.1 which implies x /∈p-cl(A) in both cases ; obtaining a contradiction.

Hence necessary part is also proved.

Remark 2.3.4. In general the above proposition is not true. Only

the sufficiency part always holds, necessary part need not be true for

non-prime open sets. For example Let X = {a, b, c, d} and

T = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}} be a topology on X then

p-cl({c, d}) = {b, c, d} and {a, c, d}. Here ‘a’ belongs to p-cl({c, d}) but

it does not satisfies condition of the proposition.

Proposition : 2.3.3 gives a condition for a point to be in p-closure of

any set and that lead us to the definition of p-limit point analogous to

limit point of any set.

Definition 2.3.2. Let (X,T ) be a topological space and A ⊆ X ;

an element x ∈ X is called a p-limit point/p-cluster point of A ⊆ X if

every p-open set containing ‘x’ intersects A.

Remark 2.3.5. Every limit point is a p-limit point but converse not

true. For example letX = {a, b, c, d}, τ = {X,φ, {a, c} , {a, b, c} , {a, c, d}}.
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Then (X, τ) is a topological space and if A = {b, d} then ‘a’ is a p-limit

point but not a limit point of A.

Proposition 2.3.4. Let A be a p-open subset of a topological space

X, then A is p-closed if and only if A contains all its p-limit points.

Proof. Proof is trivial by definition of p-limit point and Proposition

: 2.3.3.

Analogous to the definition of p-closure of any arbitrary set, we can

define the p-interior of any arbitrary set in a topological space using the

concept of maximal p-open subsets and we proved that for any p-closed

set there always exists a unique p-open set contained in it.

Definition 2.3.3. Let (X,T ) be a topological space and let A ⊆ X,

then the p-interior of A with respect to T is defined as the maximal

p-open subset of A in X and is denoted as p-int(A).

Proposition 2.3.5. Let (X,T ) be a topological space, then for

every p-closed set there always exists a unique p-open set contained in

A.

Proof. Proof is similar to that of Proposition : 2.3.1 by taking dual.

We conclude this section by studying the behavior of p-open sets in

the relative topology.

Theorem 2.3.1. Let (X,T ) be a topological space and Y ⊆ X. If

U is p-open in X then U ∩ Y is a p-open set in Y .
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Proof. Let X be any set with topology T , Y ⊆ X and let TY be the

relative topology on Y . Given U as a p-open set in X then by definition

of p-open set

H ∩K ⊆ U ⇒ H ⊆ U or K ⊆ U ; H,K ∈ T,H ∩K 6= φ (2.3)

We have to prove that U ∩Y prime in Y ; that is to prove that H ′∩K ′ ⊆
U ∩ Y ⇒ H ′ ⊆ U ∩ Y or K ′ ⊆ U ∩ Y where H ′, K ′ ∈ TY , H ′ ∩K ′ 6= φ ;

but H ′, K ′ ∈ TY implies H ′ = H∩Y for some H ∈ T and K ′ = K∩Y for

some K ∈ T . From (2.3) we have (H∩K)∩Y ⊆ U∩Y ⇒ H∩Y ⊆ U∩Y
or K ∩ Y ⊆ U ∩ Y
that is H ′∩K ′ ⊆ U∩Y ⇒ H ′ ⊆ U∩Y or K ′ ⊆ U∩Y where H ′, K ′ ∈ TY .

Hence U ∩ Y is prime in TY .

Proposition 2.3.6. Let (X,T ) be a topological space and Y be a

subspace of X. Then a set A is p-closed in Y if and only if it equals the

intersection of a p-closed subset of X with Y .

Proof. For the necessary part assume that A is p-closed in Y , then

Y − A is p-open in Y that is Y − A = U ∩ Y where U is open in X. U

must be prime because if U is not prime applying Theorem : 2.2.2 we

obtain that U ∩ Y = Y − A is not prime in Y but that is not possible,

which implies A = Y ∩(X−U). Hence A equals intersection of a p-closed

set in X with Y . For sufficiency assume that A equals intersection of a

p-closed set in X with Y ; that is A = C ∩ Y where C is p-closed in X

which implies Y − A = (X − C) ∩ Y . Hence Y − A is p-open in Y by

Theorem : 2.3.1 so that A is p-closed in Y .

Proposition 2.3.7. Let (X,T ) be a topological space, Y be a

subspace of X and A be any subset of Y . Let p-cl(A)X denote the p-
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closure of A in X. Then p-cl(A)Y in Y equals p-cl(A)X ∩ Y .

Proof. Let B denote the p-cl(A)Y in Y . p-cl(A)X is p-closed in X so

p-cl(A)X ∩ Y is p-closed in Y . Clearly A ⊂p-cl(A)X ∩ Y which implies

B ⊆ p-cl(A)X ∩ Y (2.4)

On the other hand, B is p-closed in Y . Hence by above proposition

B = C ∩ Y for some p-closed set C in X, then C is a p-closed set in X

containing A and hence p-cl(A)X ⊂ C which implies

p-cl(A)X ∩ Y ⊆ C ∩ Y = B (2.5)

Hence (2.4) and (2.5) implies B =p-cl(A)X ∩ Y .

2.4 Generalised p-closed sets

In section 2.2 it was proved that only p-open sets in any T2 space are the

complement of singleton sets. Hence the existence of spaces with disjoint

p-open sets corresponding to distinct points will not happen. Thus study

of higher separation axioms using p-open sets is not possible which lead us

to consider more weaker separation axioms like T1/2 axiom for which the

basic root is the generalised closed sets. In 1970 Levine [31] introduced

the concept of generalised closed sets as a generalisation of closed sets.

In this section we define generalised p-closed sets as a generalisation of

p-closed sets. Any generalised p-closed set is generalised closed set and

hence it is also a generalised concept of generalised closed sets.
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Definition 2.4.1. Let (X,T ) be a topological space and A ⊆ X

then A is said to be generalised p-closed shortly g-p.closed if p-cl(A) ⊆ O

whenever A ⊆ O and O p-open in X.

Remark 2.4.1. Any p-closed set is generalised p-closed and con-

verse need not be true. For example let X = {1, 2, 3, 4} and

T = {X,φ, {1, 2} , {1, 2, 3} , {1, 2, 4}} be a topology on X. Then {3, 4} is

generalised p-closed but not p-closed.

For any arbitrary topological space the existence of dual atoms are

inevitable and dual atoms are always p-open. Dually the existence of

p-closed atoms are also inevitable for any topological space. Using this

result we proved an equivalent condition for a set to be g-p.closed in

terms of p-closed sets and there by we proved that g-p.closed set is a

generalisation of g-closed set. The next two theorems prove such results.

Theorem 2.4.1. Let (X,T ) be a topological space and A ⊆ X then

A is generalised p-closed if and only if p-cl(A)−A contains no non-empty

p-closed set.

Proof. Assume that A ⊆ X is g-p.closed to prove that p-cl(A) − A
contains no non-empty p-closed set. Let F be a non-empty p-closed set

such that F ⊆ p-cl(A) − A then A ⊆ F c which implies p-cl(A) ⊆ F c

implies F ⊆ X−p-cl(A) which is not possible since F ⊆ p-cl(A) hence

there does not exists such a non-empty p-closed subset . Conversely

we assume that p-cl(A)− A contains no non-empty p-closed set and let

A ⊆ O,O is p-open in X to prove that p-cl(A) ⊆ O. On contradiction

let p-cl(A)∩Oc 6= φ then p-cl(A)∩Oc is a closed subset of p-cl(A)−A. If

p-cl(A)−O is prime nothing more to prove , otherwise there exists closed
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subsets G,H such that G ⊆ p-cl(A) ∩Oc and H ⊆ p-cl(A) ∩Oc again if

either G or H is prime proof is over otherwise continue until the atom

element of T is reached and since all atoms are p-closed ; p-cl(A) − A
always contains a non-empty p-closed set which is not possible thus A is

g-p.closed.

Theorem 2.4.2. Let (X,T ) be a topological space and A ⊆ X be

such that A is generalised p-closed then A is g-closed.

Proof. Given A as a g-p.closed set. Let A be not g-closed then A−A
contains a non-empty closed set and A−A ⊆ p-cl(A)−A which implies

p-cl(A)−A contains non-empty closed set and proceeding as in the proof

of above theorem p-cl(A) − A contains a non-empty p-closed set which

implies A is not g-p.closed. Hence g-p.closed implies g-closed.

Remark 2.4.2. Converse of above theorem is not true for example

; let (X,D) be a discrete topological space with cardinality greater than

two, consider A = {x, y}x, y ∈ X then A is g-closed but not g-p.closed.

Theorem 2.4.3. Let (X,T ) be a topological space, then the fol-

lowing conditions are equivalent for any subset A ⊆ X

1. A is g-p.closed.

2. For each x belongs to p-cl(A), p-cl({x}) ∩ A 6= φ.

3. B ⊆p-cl(A)− A , B ⊆ X and B p-closed implies B = φ.

Proof. We proceed through the following steps :

Step 1: Proof of (1)⇒ (2)
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Suppose x ∈ p-cl(A) and A is g-p.closed. To prove that p-cl({x})∩A 6= φ.

On contradiction we assume that p-cl({x})∩A = φ which implies A ⊆ (p-

cl({x}))c. Since A is g-p.closed and (p-cl({x}))c is p-open we obtain p-

cl(A) ⊆ (p-cl({x}))c implies x /∈ p-cl(A) which is not possible. Hence

p-cl({x}) ∩ A 6= φ always for x ∈ p-cl(A).

Step 2: To prove (2)⇒ (3)

Assume that p-cl(A) − A contains a non-empty p-closed set C and let

x ∈ C ; that is

x ∈ C ⊆ p-cl(A)− A (2.6)

(2.6) implies x ∈ p-cl(A)⇒ p-cl({x}) ∩ A 6= φ.

Thus φ 6= p-cl({x}) ∩ A
⊆ C ∩ A
⊆ (p-cl(A)−A)∩A = φ. Hence we obtain a contradiction and therefore

the only possibility is C = φ. Thus p-cl(A) − A contains no non-empty

p-closed set.

Step 3: (3)⇒ (1) holds by Theorem : 2.4.1

Hence by steps 1, 2 and 3 ; equivalent conditions for a set to be g-p.closed

are verified.

In Remark : 2.4.1 we already see that g-p.closed sets need not be

p-closed. In next theorem we get a necessary and sufficient condition for

the equivalence of p-closed and g-p.closed sets.

Theorem 2.4.4. Let (X,T ) be a topological space and A ⊆ X be

a g-p.closed set, then A is p-closed if and only if p-cl(A)−A is p-closed.

Proof. Given A as a g-p.closed set. Assume that A is p-closed then

p-cl(A)−A is empty set which is always p-closed. Conversely, p-cl(A)−A
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is p-closed then it is a p-closed subset of itself and p-cl(A)−A is empty.

Hence A is p-closed.

Remark 2.4.3. Union of two g-p.closed sets need not be g-p.closed,

for example let (X,D) be a discrete topological space with cardinality

greater than two and also let A = {x1} , B = {x2} both A and B are

g-p.closed but A ∪B is not g-p.closed.

Remark 2.4.4. Intersection of two g-p.closed sets need not be g-

p.closed, for example let X = {a, b, c} and T = {X,φ, {a}} be a topology

on X. A = {a, b} and B = {a, c} are g-p.closed sets but A ∩ B is not

g-p.closed.

Theorem 2.4.5. Let (X,T ) be a topological space. A ⊆ Y ⊆ X

and A is g-p.closed in X. Then A is g-p.closed relative to Y .

Proof. Let O′ be a p-open set in Y such that A ⊆ O′. We have

to prove that p-cl(A)Y ⊆ O′ where p-cl(A)Y is the p-closure of A with

respect to relative topology on Y . O′ p-open in Y implies thatO′ = O∩Y
where O is p-open in X. Then A ⊆ O′ implies A ⊆ Y ∩O implies A ⊆ O

which in turn implies p-cl(A)X ⊆ O , since A is given to be g-p.closed

in X. From which we obtain that p-cl(A)X ∩ Y ⊆ O ∩ Y which implies

p-cl(A)Y ⊆ O ∩ Y by Proposition : 2.3.7. Hence A is g-p.closed with

respect to Y .

Theorem 2.4.6. Let (X,T ) be a topological space. IfA is g-p.closed

and A ⊆ B ⊆p-cl(A) then B is g-p.closed.

Proof. It is given that A is g-p.closed therefore p-cl(A) − A has no

non-empty p-closed sets in it. Clearly p-cl(B) − B ⊆p-cl(A) − A hence
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p-cl(B) − B also contains no non empty p-closed set, that is B is g-

p.closed.

The next result analyses a condition for the equivalence of the col-

lection of all p-open and the collection of all p-closed sets in terms of

g-p.closed sets for any arbitrary topological space.

Theorem 2.4.7. Let (X,T ) be a topological space , P denote the

collection of p-open sets in X and F the collection of p-closed sets in X

then P = F if and only if every subset of X is a g-p.closed set.

Proof. First assume that P = F to prove that every subset of X is

g-p.closed. Let A be any subset of X such that A ⊆ O where O is p-open

in X which trivially implies p-cl(A) ⊆ O since O is also p-closed by our

assumption. Hence A is g-p.closed and since A is arbitrary every subset

is g-p.closed. For sufficiency assume that every subset of X is g-p.closed.

We have to prove that P = F . Let O ∈ P which implies O is a subset

of p-open set O itself and since it is g-p.closed, p-cl(O) ⊆ O . Thus O is

p-closed and P ⊆ F . Now let O ∈ F then Oc ∈ P ⊆ F . Hence O ∈ P
and P ⊇ F . Therefore P = F .

Theorem 2.4.8. Let (X,T ) be a topological space and let A ⊆ X,

then A is g-p.closed if and only if A = P−G where P is a p-closed subset

of X and G is such that G contains no non-empty p-closed subset of X.

Proof. Assume that A is g-p.closed to prove that A = P −G where P

is p-closed and G is such that G contains no non-empty p-closed subset

of X. Now take P = p-cl(A) and G = p-cl(A) − A then P is a p-closed

set and since A is g-p.closed ; G contains no non-empty p-closed set .
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Thus P and G are the required sets. Now consider P −G = p-cl(A)− (p-

cl(A)−A)=A ; that is A is of the required form and hence the necessary

part is proved.

For sufficiency part let A ⊆ X and A be of the form A = P − G where

P is p-closed and G contains no non empty p-closed set. We have to

prove that A is g-p.closed. Let A ⊆ O where ‘O’ is a p-open subset of

X to prove that p-cl(A) ⊆ O. P and Oc are p-closed subsets of X hence

P ∩ Oc is a closed subset of X and moreover P ∩ Oc is a closed subset

of G, then two cases arise either P ∩Oc is p-closed or it is only a closed

set but not a p-closed set. If the second case occurs, since the existence

of atoms which are p-closed is inevitable for a topological space ; P ∩Oc

contains at least atoms in T . Thus by definition of prime, in both cases

P ∩Oc contains a non-empty p-closed subset but as P ∩Oc ⊆ G and so

G contains a non-empty p-closed set if P ∩Oc contains. Hence the only

possibility is that P ∩ Oc = φ which implies P ⊆ O. But A ⊆ P ⇒ p-

cl(A) ⊆ P ⇒ p-cl(A) ⊆ O and hence A is g-p.closed.

Existence of g-p.closed sets itself implies the existence of its comple-

ment what we call it as g-p.open sets. In the forthcoming part of this

section we study about g-p.open sets and its properties. Also derived

some equivalent condition for a set to be g-p.open.

Definition 2.4.2. A set A ⊆ X in a topological space (X,T ) is said

to be generalised p-open shortly g-p.open if Ac is g-p.closed.

Theorem 2.4.9. Let (X,T ) be a topological space and A ⊆ X be

a g-p.open set then it is g-open.

Proof. Given that A is g-p.open ⇒ Ac is g-p.closed , but then Ac is
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g-closed by Theorem : 2.4.2 . Thus A is g-open.

Remark 2.4.5. Converse of Theorem : 2.4.9 is not true; Consider

X = {x, y, z} with discrete topology. A = X − {x, y} is g-open but not

g-p.open.

Theorem 2.4.10. Let (X,T ) be a topological space and let A ⊆ X.

Then A is g-p.open if and only if F ⊆ p-int(A) whenever F is p-closed

and F ⊆ A.

Proof. Assume that A is g-p.open which implies Ac is g-p.closed

⇒ p-cl(Ac) ⊆ O whenever Ac ⊆ O and O is p-open.

⇒ Oc ⊆ [p-cl(Ac)]c whenever Ac ⊆ O and O is p-open.

⇒ Oc ⊆ p-int(A) whenever Ac ⊆ O and O is p-open. By taking F = Oc

as the p-closed set , the necessary part is proved.

Conversely we assume that F is p-closed and

F ⊆ p-int(A) whenever F ⊆ A

⇒ [p-int(A)]c ⊆ F c whenever Ac ⊆ F c

⇒ Ac is g-p.closed. Thus A is g-p.open.

Theorem 2.4.11. Let (X,T ) be a topological space and let A ⊆ X,

then A is g-p.open if and only if O = X whenever O is p-open and p-

int(A) ∪ Ac ⊆ O.

Proof. Suppose A is g-p.open and p-int(A) ∪ Ac ⊆ O whenever O is

p-open

⇒ Oc ⊆ [p-int(A) ∪ Ac]c

= (p-int(A))c ∩ A = p-cl(Ac)− Ac.
Hence p-cl(Ac)−Ac contains a non-empty p-closed set but Ac is g-p.closed
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and thus Oc = φ⇒ O = X.

For sufficiency part assume F as a p-closed set and F ⊆ A. It is enough

to prove that F ⊆ p-int(A) for showing A is g-p.open. Consider p-

int(A) ∪ Ac ⊆ p-int(A) ∪ F c. Clearly p-int(A) ∪ F c is open , then there

arise two cases :

1. If p-int(A) ∪ F c is prime then by assumption p-int(A) ∪ F c = X

and hence F ⊆ p-int(A) which implies A is g-p.open.

2. If p-int(A) ∪ F c is not prime then there exists two open sets G1

and G2 containing p-int(A) ∪ F c. Now if at least one of G1 or G2

is prime then by assumption the corresponding set becomes equal

to X which is not possible by definition of prime. If both G1 and

G2 are not prime then again there exists G3 and G4 containing the

corresponding non-prime open set and again by the same reasoning

as above that is not possible. Continuing this argument we reach

the conclusion that whenever there exists open set containing p-

int(A) ∪ F c which is not prime, that will lead to a contradiction.

Hence the only possibility is that p-int(A)∪F c is prime and hence

the result follows from case 1.

Theorem 2.4.12. Let (X,T ) be a topological space and A ⊆ X. If

A is g-p.closed then p-cl(A)− A is g-p.open.

Proof. Assume that A is g-p.closed to prove that p-cl(A) − A is g-

p.open. That is to prove that F ⊆ p-cl(A)−A⇒ F ⊆ p-int(p-cl(A)−A)
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whenever F is p-closed. But F ⊆ p-cl(A)− A implies F = φ, since A is

g-p.closed and F is p-closed . Hence result trivially follows.

Proposition 2.4.1. Let (X,T ) be a topological space and A,B ⊆
X. If p-int(A) ⊆ B ⊆ A and A is g-p.open then B is g-p.open.

Proof. Given that p-int(A) ⊆ B ⊆ A ⇒ Ac ⊆ Bc ⊆ (p-int(A))c ⇒
Ac ⊆ Bc ⊆ p-cl(Ac)

Since A is given to be g-p.open, Ac is g-p.closed which implies Bc is

g-p.closed by Theorem : 2.4.6. Hence B is g-p.open.
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Chapter 3

Separation Axioms Involving

p-Open Sets.

3.1 Introduction

Continuity and continuous transformations happening to sets is the basic

key behind the development of the theory of topology. In this chapter

Some results of this chapter are included in the following paper.
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we consider various mappings involving p-open, g-p.open and g-p.closed

sets. Also try to identify the relation between such functions. Levine

defined g-continuous functions as functions in which the inverse image

of closed sets are g-closed. Analogously we define gp-continuous func-

tions and established that concepts of p-continuity and gp-continuity

are independent. Later in section 3 we proved that they coincides for

p-T1/2 spaces, the spaces for which g-p.closed sets and p-closed sets co-

incide. Also proved some necessary and sufficient conditions for a space

to be gp-continuous. Meanwhile we introduced p-continuous functions,

p-topological property etc and proved that p-T1/2 is a p-topological prop-

erty. Also any p-topological property happens to be a topological prop-

erty.

In chapter 2 we see that for T2 spaces what the p-open sets are and

that implies consideration of higher separation axioms using p-open sets

is not possible. However we can consider some weaker separation axioms

using p-open sets and g-p.closed sets defined in chapter 2. The real

motive of this chapter is to introduce such separation axioms and identify

the spaces in which all this separation axioms coincides. We introduce

p-T0, p-T1/2 and p-T1 axioms and obtained some equivalent condition

for this separation axioms. Also introduced prime symmetric spaces and

observed that all the separation axioms p-T0, p-T1/2 , p-T1, T1, T1/2 and T0
coincides for prime symmetric spaces. Also proved that corresponding to

any arbitrary topological space there always exists a finer adjacent p-T1/2
topological space.

Here are some definitions and results useful in this chapter.

Definition 3.1.1. [31] Let (X,T ), (Y, T ′) be two topological spaces.

Then f : (X,T )→ (Y, T ′) is g-continuous if inverse image of closed sets
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are g-closed.

Definition 3.1.2. [31] A topological space (X,T ) is said to be T1/2

if every g-closed set is closed.

Definition 3.1.3. [31] A topological space (X,T ) is said to be

symmetric if for x, y ∈ X ; x ∈ {y} implies that y ∈ {x}

Theorem 3.1.1. [31] If (X,T ) is a symmetric space , then (X,T )

is T0 iff T1/2 iff T1.

3.2 Mappings Involving p-open, g-p.open and

g-p.closed Sets

The most inevitable part in the theory of topological spaces is the con-

tinuous mappings and various deformations happens to sets under this

continuous mappings. Throughout this section we consider various map-

pings involving p-open, g-p.open and g-p.closed sets. We begin with the

mappings involving p-open sets only.

Definition 3.2.1. Let (X,T ), (Y, T
′
) be two topological spaces and

let f : (X,T ) → (Y, T
′
) be a mapping between this two topological

spaces. f is called p-continuous if the inverse image of p-open sets in T
′

are p-open in T . f is said to be p-open (p-closed) if p-open (p-closed)

sets are mapped on to p-open (p-closed) sets only.

Even though all p-open sets are open, the concepts of continuity and

p-continuity are independent of each other as the two succeeding remarks
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illustrates.

Remark 3.2.1. Let (X,T ), (Y, T
′
) be two topological spaces and

let f : (X,T ) → (Y, T
′
) be a continuous mapping between this two

topological spaces. Then f need not be p-continuous ; for example let

X = Y = {a, b, c} and let f : (X,D) → (Y, T ) be the identity mapping

such that D is the discrete topology on X and T = {X,φ, {a} , {a, b}}
then f is continuous but not p-continuous.

Remark 3.2.2. Let (X,T ), (Y, T
′
) be two topological spaces and

let f : (X,T ) → (Y, T
′
) be a p-continuous mapping between this two

topological spaces. Then f need not be continuous ; for example Let

X1 = R with co finite topology and X2 = R with discrete topology.

Identity function f : X1 → X2 is p-continuous but not continuous.

Now we are in a state to define p-homeomorphism and properties of

sets preserved under p-homeomorphism are named as p-topological prop-

erty. Clearly homeomorphism implies p-homeomorphism but converse is

not true. Hence any p-topological property will become a topological

property also.

Definition 3.2.2. Let (X,T ), (Y, T
′
) be two topological spaces and

f : (X,T ) → (Y, T
′
) be a mapping. f is said to be a p-homeomorphism

if f is one-one, onto and both f , f−1 are p-continuous.

Theorem 3.2.1. Homeomorphism implies p-homeomorphism .

Proof. Let (X,T ), (Y, T
′
) be two topological spaces. Let f : (X,T )→

(Y, T
′
) be a homeomorphism between this two topological spaces. Let

G be a prime open set in T ′ to prove that f−1(G) is prime in T . Al-
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ways f−1(G) is open in T since f is continuous. On contradiction as-

sume that f−1(G) is not prime in T then there exists two open subsets

f−1(H), f−1(K) of X such that f−1(G) ⊂ f−1(H) , f−1(G) ⊂ f−1(K)

and f−1(H) ∩ f−1(K) ⊆ f−1(G)

⇒ f(f−1(G)) ⊂ f(f−1(H)) , f(f−1(G)) ⊂ f(f−1(K)) and f(f−1(H) ∩
f−1(K)) ⊆ f(f−1(G))

⇒ G ⊂ H, G ⊂ K and H ∩K ⊂ G, where H and K are open subsets of

Y since f is an open continuous one one mapping . Hence G is not prime

in T which is not possible and therefore inverse image of p-open sets are

p-open that is f is p-continuous. Similarly we can prove that f−1 is also

p-continuous. Hence f is a p-homeomorphism.

Remark 3.2.3. Converse of above theorem is not true and example

in Remark : 3.2.2 illustrates it.

Definition 3.2.3. A property P is said to be a p-topological prop-

erty, if whenever a space X has that property P then any space p-

homeomorphic to that space also has the same property P . Hence any

p-topological property is a topological property.

Let (X,T ), (Y, T ′) be two topological spaces and f : X → Y be a

p-continuous, p-closed function. Then we can prove that any g-p.closed

set in X can be carried on to g-p.closed set in Y . But in order to prove

that we have to first consider the following lemma :

Lemma 3.2.1. A function f : X → Y is p-continuous if and only

if for every A ⊂ X ; f(p-cl(A)) ⊆ p-cl(f(A)).

Proof. Assume that f : X → Y is p-continuous. Now consider

f(A) ⊆ p-cl(f(A))
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⇒ A ⊆ f−1(f(A)) ⊆ f−1[p-cl(f(A))].

Since f is p-continuous and p-cl(f(A)) is p-closed, f−1[p-cl(f(A))] is a

p-closed set containing A

⇒ p-cl(A) ⊆ f−1[p-cl(f(A))]

⇒ f(p-cl(A)) ⊆ f(f−1[p-cl(f(A))]) = p-cl(f(A)). Hence f(p-cl(A)) ⊆ p-

cl(f(A)).

Conversely assume that f(p-cl(A)) ⊆ p-cl(f(A)) to prove that f is p-

continuous. Let B be a p-closed set in Y it is enough to prove that

f−1(B) is p-closed in X. That is to prove that p-cl(f−1(B)) = f−1(B).

Consider f(p-cl(f−1(B)) ⊆ p-cl(f(f−1(B))) = p-cl(B) = B

⇒ p-cl[f−1(B)] ⊆ f−1(B)

⇒ f−1(B) is p-closed and hence f is p-continuous.

Theorem 3.2.2. Let (X,T ), (Y, T ′) be two topological spaces. If

A is a g-p.closed subset of X and f : X → Y be a p-continuous and

p-closed function, then f(A) is g-p.closed in Y .

Proof. Let A be a g-p.closed subset and f be p-continuous and p-

closed. Assume that f(A) ⊆ O′ where O′ is p-open in Y which implies

A ⊆ f−1(O′) . Since f is p-continuous and O′ is p-open in Y , f−1(O′) is

p-open in X and again since A is g-p.closed, p-cl(A) ⊆ f−1(O′) implies

f(p-cl(A)) ⊆ O′ (3.1)

but f(p-cl(A)) is p-closed and for any set A ⊆ X, A ⊆ p-cl(A) which

implies p-cl(f(A)) ⊆ p-cl(f(p-cl(A))) = f(p-cl(A)) ⊆ O′ by Lemma :

3.2.1. and (3.1)

⇒ f(A) is g-p.closed.

Theorem 3.2.3. Let (X,T ), (Y, T ′) be any two topological spaces
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and f : (X,T )→ (Y, T ′) be a p-continuous, p-closed mapping. If B is a

g-p.closed subset of Y then f−1(B) is a g-p.closed subset of X.

Proof. Given B is a g-p.closed subset of Y we have to prove that

f−1(B) is g-p.closed in X , that is whenever f−1(B) ⊆ O where O is a

p-open set in X we have to prove that p-cl(f−1(B)) ⊆ O. For that it is

enough to prove that p-cl(f−1(B)) ∩Oc = φ.

But f(p-cl(f−1(B)) ∩Oc) ⊆ p-cl(B)− B. Since B is g-p.closed the only

possibility is that f(p-cl(f−1(B))∩Oc) = φ which implies p-cl(f−1(B)) ⊆
O whenever f−1(B) ⊆ O. Hence f−1(B) is g-p.closed.

Now we are going to consider functions involving g-p.closed and p-

closed sets and we defined it as gp-continuous functions.

Definition 3.2.4. A map f : X → Y from a topological space X

to another topological space Y is called generalised p-continuous shortly

gp-continuous if inverse image of every p-closed set in Y is g-p.closed in

X.

Remark 3.2.4. Let f : X → Y from a topological space X

to another topological space Y be a p-continuous function then it is

also gp-continuous. But converse need not be true. For example, Let

X = {1, 2, 3, 4}. Also let T = {X,φ, {1, 2} , {1, 2, 3} , {1, 2, 4}} , T ′ =

{X,φ, {1, 2}} be two topologies on X. Then the identity mapping from

(X,T ) to (X,T ′) is gp-continuous but not p-continuous.

Example 3.2.1. Let R be the real line and let I be the iden-

tity mapping from the topological space R with cofinite topology to the

topological space R with usual topology. Then I is gp-continuous but

not g-continuous.
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Example 3.2.2. Let X = {a, b, c, d} and let I be the identity map-

ping from (X,D) to (X,T ) where D is the discrete topology on X and

T = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}}. Then I is g-continuous

but not gp-continuous.

Remark 3.2.5. The concepts of g-continuity and gp-continuity are

independent of each other as the above two examples illustrates.

Theorem 3.2.4. Let (X,T ), (Y, T ′) be any two topological spaces

and f : (X,T ) → (Y, T ′) be a mapping between the two topological

spaces. Then the following conditions are equivalent :

1. f is gp-continuous.

2. Inverse image of every p-open set in Y is g-p.open in X.

Proof. Assume that f : X → Y is gp-continuous and let G be a p-

open set in Y , then Y −G is p-closed set in Y . Since f is gp-continuous,

f−1(Y − G) is g-p.closed in X. Trivially f−1(Y − G) = X − f−1(G).

Y − G is p-closed in Y which implies f−1(Y − G) is g-p.closed in X.

Hence X − f−1(G) is g-p.closed in X and thus f−1(G) is g-p.open in X.

Conversely we assume that inverse image of every p-open set in Y is g-

p.open in X. To prove that f is gp-continuous. Let H be a p-closed set

in Y , then Y −H is p-open in Y which implies f−1(Y −H) is g-p.open in

X. But f−1(Y −H) = X − f−1(H) ; which implies f−1(H) is g-p.closed

in X. Thus f is g-p.continuous.

In Lemma : 3.2.1 we obtained an equivalent condition for p-continuity

in terms of p-closure. Now we are going to examine whether the result

will be valid for gp-continuity, for that purpose we defined g-p.cl(A) for
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any subset A ⊆ X in any arbitrary topological space X. We defined it

as the intersection of g-p.closed super sets of A.

Definition 3.2.5. Let (X,T ) be a topological space and let A ⊆ X

then generalised p-closure of A is defined as the intersection of all g-

p.closed supersets of A and is denoted as g-p.cl(A).

Remark 3.2.6. Since all p-closed sets are g-p.closed ; g-p.cl(A) ⊆ p-

cl(A) for any subset A ⊆ X.

Example 3.2.3. Let X = {a, b, c, d} and

T = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}} be the topology on X.

Consider A = {c, d} then p-cl(A) = {d, b, c} and {a, d, c}
and g-p.cl(A) = A itself.

Theorem 3.2.5. If f : (X,T )→ (Y, T ′) is a gp-continuous function

between the topological spaces (X,T ) and (Y, T ′) then f(g-p.cl(A)) ⊆ p-

cl(f(A)) for every subset A ⊆ X.

Proof. Given f is gp-continuous. Let A ⊆ X to prove that f(g-

p.cl(A)) ⊆ p-cl(f(A)). Consider p-cl(A) it is p-closed set in X and also

p-cl(f(A)) is p-closed set in Y . Since f is gp-continuous f−1(p-cl(f(A)))

is a gp-closed set in X. Clearly A ⊆ f−1(p-cl(f(A))) which implies

g-p.cl(A) ⊆ f−1(p-cl(f(A))) which in turn implies f(g-p.cl(A)) ⊆ p-

cl(f(A)).

Remark 3.2.7. Converse of above proposition need not be true

; for example let X = Y = {1, 2, 3} also let T = {X,φ, {1}} , T ′ =

{Y, φ, {1, 3}} be topologies on X and Y respectively. Define f : (X,T )→
(Y, T ′) by f(1) = 2, f(2) = 1 and f(3) = 3. Condition of above theorem

is satisfied here but the function is not gp-continuous.
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Theorem 3.2.6. Let (X,T ), (Y, T ′) be any two topological spaces

and f : (X,T ) → (Y, T ′) be a mapping between the two topological

spaces. Then the following conditions are equivalent :

1. Corresponding to each point x ∈ X and each p-open set V con-

taining f(x) there exists a g-p.open set U containing ‘x’ such that

f(U) ⊆ V

2. For every A ⊆ X ; f(g-p.cl(A)) ⊆ p-cl(f(A)) holds.

Proof. First we will prove (1) implies (2). Let y ∈ f(g-p.cl(A)). We

have to prove that y ∈ p-cl(f(A)). Let V be a p-open set containing ‘y’

then there exists a point x ∈ X and a g-p.open set U containing ‘x’ such

that f(x) = y and f(U) ⊆ V by assumption.

y ∈ f(g-p.cl(A))

⇒ f−1(y) ∈ g-p.cl(A)

⇒ x ∈ g-p.cl(A).

Since U is a g-p.open set containing ‘x’ ; U ∩A 6= φ⇒ f(U) ∩ f(A) 6= φ

which in turn implies V ∩ f(A) 6= φ since f(U) ⊆ V . Thus V ∩ f(A) 6= φ

for every p-open set containing ‘y’. Hence y ∈ p-cl(f(A)) by Proposition

2.3.3 and thus f(g-p.cl(A)) ⊆ p-cl(f(A)).

Next to prove (2) ⇒ (1). Assume that ∀A ⊆ X ; f(g-p.cl(A)) ⊆ p-

cl(f(A)). Also let x ∈ X and V be a p-open set containing f(x). Take

A = f−1(V c) then if x ∈ A , f(x) ∈ f(A) = V c which is not possible

since V is a p-open set containing f(x). Hence the only possibility is

that x /∈ A.

Now consider
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g-p.cl(A) ⊆ f−1(f(g-p.cl(A)))

⊆ f−1(p-cl(f(A))

= f−1(p-cl(V c))

= f−1(V c) = A

and then the only possibility is that g-p.cl(A) = A. Since x /∈ A, x /∈ g-

p.cl(A) which implies there exists a g-p.open set U containing ‘x’ such

that U ∩A = φ which implies U ⊆ Ac and hence f(U) ⊆ f(Ac) ⊆ V that

is f(U) ⊆ V . Hence (1) is proved.

Remark 3.2.8. Composition of gp-continuous functions need not

be gp-continuous. For example, Let X = Y = Z = {1, 2, 3} also T =

{X,φ, {1, 2}}, T ′ = {Y, φ, {1} , {2, 3}} and T ′′ = {Z, φ, {1, 3}}. Define

f : (X,T )→ (Y, T ′) by f(1) = 3, f(2) = 2, f(3) = 3 and g is the identity

function from Y to Z. Clearly both fand g are gp-continuous but gof is

not gp-continuous.

3.3 Separation axioms using p-open sets and

g-p.closed sets

Norman Levine introduced the weaker separation axiom T1/2 using gen-

eralised closed sets and he proved that for any symmetric space the sepa-

ration axioms T0, T1/2 and T1 coincides. As mentioned in section 2.4 , no

higher separation axiom beyond T1 can be considered using p-open sets.

In this section we discuss p-T0 , p-T1 axioms etc using p-open sets and

proved that T1 and p-T1 axioms always coincides. Also identified spaces

in which all the separation axioms defined coincides.

Definition 3.3.1. Let (X,T ) be any topological space. X is said
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to be p-T0 if for every two distinct points x, y ∈ X there exists p-open

set U such that x ∈ U, y /∈ U .

Remark 3.3.1. p-T0 implies T0 but converse is not true for example

1. Let X be any set with overlapping interval topology then X is T0

but not p-T0

2. Consider any set X with either or topology then only p-open set is

X − {0} and hence it is T0 but not p-T0.

Definition 3.3.2. Let (X,T ) be any topological space. X is said

to be p-T1 if for every two distinct points x, y ∈ X there exists p-open

sets U, V such that x ∈ U, y /∈ U and y ∈ V, x /∈ V .

Most important fact noticed is that T1 and p-T1 axioms always coin-

cides and for proving that we have to prove a necessary condition for a

space to be T1.

Proposition 3.3.1. Let (X,T ) be any topological space. X is p-T1

if and only if {x} is p-closed.

Proof. Necessary part trivially follows since p-T1 implies T1. For suffi-

ciency let x, y be two distinct points in X and assume that {x} is p-closed

which implies X − {x} is a p-open set containing ‘y’ and not ‘x’. Simi-

larly by assuming {y} to be p-closed we get a p-open set containing ‘x’

and not ‘y’. Hence X is p-T1.

Theorem 3.3.1. Let (X,T ) be any topological space. X is T1 if

and only if it is p-T1.
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Proof. Proof is trivial by using the last proposition.

Definition 3.3.3. Let (X,T ) be any topological space then X is

p-T1/2 if every g-p.closed set is p-closed.

Next result proves an equivalent condition for a space to be p-T1/2
in terms of p-closed sets and as a corollary we have obtained that any

p-T1/2 space is a T1/2 space and converse is not true.

Theorem 3.3.2. A topological space (X,T ) is p-T1/2 if only if each

singleton subset is either p-open or p-closed .

Proof. Suppose X is p-T1/2 and let x ∈ X. To prove that {x} is p-

open or p-closed. Assume that {x} is not p-closed , then X − {x} is not

p-open and the only p-open set containing it is X which implies X−{x}
is g-p.closed and since X is p-T1/2 , X−{x} is p-closed which implies {x}
is p-open. Hence {x} is either p-open or p-closed. For converse part we

assume that {x} is either p-open or p-closed. Then there arise two cases.

For case 1 assume {x} is p-closed. Since x ∈ p-cl(A) and A is g-p.closed

; p-cl({x}) ∩ A 6= φ by Theorem 2.4.3 which implies {x} ∩ A 6= φ which

in turn implies x ∈ A. Thus p-cl(A) ⊆ A. Hence p-cl(A) ⊆ A implies

A is p-closed. Thus X is p-T1/2 since A is an arbitrary g-p.closed set.

As a second case we assume each singleton set to be p-open then (X,T )

becomes a discrete space and thus p-T1/2 trivially.

Corollary 1. Any p-T1/2 topological space is also T1/2.

Proof. Since p-closed sets are always closed, the proof is trivial by

last theorem.
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Remark 3.3.2. T1/2 does not implies p-T1/2 for example, Let X =

{a, b, c} and T = {X,φ, {a} , {a, b} , {a, c}} be a topology on X then

(X,T ) is a T1/2 space but not p-T1/2.

Theorem 3.3.3. If (X,T ) is a p-T1/2 topological space and Y ⊆ X

, then (Y, TY ) is also p-T1/2.

Proof. Let y ∈ Y ⊆ X. Consider {y}. Since X is p-T1/2, it is p-open

or p-closed in X. Then {y} is p-open or p-closed in Y by Theorem :

2.3.1 .

A property is said to be an expansive property if whenever a topo-

logical space has that property then any topological space finer to it will

also has the same property. And a property is said to be contractive

if whenever a topological space has that property then any topological

space coarser to it will also has the same property.

T1/2 property is an expansive but not contractive property, whereas

p-T1/2 is neither expansive nor contractive.

Remark 3.3.3. p-T1/2 is not an expansive property as the following

example illustrates :

Let X = {a, b, c} and T = {X,φ, {a} , {b} , {a, b}},
U = {X,φ, {a} , {b} , {a, b} , {a, c}} be two topologies on X. Clearly

T ⊂ U and (X,T ) is p-T1/2 but (X,U) is not.

Remark 3.3.4. p-T1/2 is not a contractive property for example let

X = {a, b} and T = {X,φ, {a}}, U = {X,φ, {b}} be topologies on X.

Then both T, U is p-T1/2 but T ∩ U is not p-T1/2.
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Now we are moving to the most important part of the section. We

try to find the implications between the separation axioms defined and

identified the spaces in which all of them coincides. For that purpose

we defined prime symmetric space analogous to symmetric space defined

by N. Levine and later proved that all separation axioms coincide for a

prime symmetric space.

Theorem 3.3.4. Let (X,T ) be a p-T1/2 topological space then it is

always p-T0.

Proof. Let (X,T ) be a non p-T0 topological space then there exists

x, y ∈ X ; x 6= y, such that any p-open set containing ‘x’ contains ‘y’

and vice versa. Consider G = p-cl({x}) ∩ {x}c

Claim : G is g-p.closed but not p-closed.

First we will prove that O ∩ G 6= φ for every p-open set O containing

‘x’ which in turn implies ‘x’ is a p-limit point of G and since x /∈ G ; G

becomes a non p-closed set. In order to prove that O ∩G 6= φ for every

p-open set O containing ‘x’ we will prove that {y} ⊆ O ∩ G ; that is to

prove that {y} ⊆ O ∩ p-cl({x}) ∩ {x}c.

clearly; y ∈ {x}c (3.2)

Since X is non p-T0

y ∈ O (3.3)

again non p-T0 implies ‘y’ is a p-limit point of {x} and hence

y ∈ p-cl({x}) (3.4)
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Thus (3.2), (3.3) and (3.4) implies {y} ⊆ O ∩ G and G becomes a non

p-closed set. Again we claim that G is g-p.closed ; for that we assume

that G ⊆ O1 ∈ T where O1 is p-open in X to prove that p-cl(G) ⊆ O1.

But p-cl(G) = p-cl(p-cl({x}) ∩ {x}c) ⊆ p-cl({x}). Now it is enough

to prove that p-cl({x}) ⊆ O1. But if x ∈ O1 , G ∪ {x} ⊆ O1 which

implies p-cl({x}) ⊆ O1. Thus it is enough to prove that x ∈ O1. On

contradiction if x /∈ O1 then (O1)
c is a p-closed super set of {x} which

implies p-cl({x}) ⊆ (O1)
c , but y ∈ p-cl({x}) by (3.4) which implies

y ∈ (O1)
c. Also y ∈ G ⊆ O1 that is y ∈ O1 and y ∈ (O1)

c which is not

possible. Hence x ∈ O1 and therefore there exists a g-p.closed but not

p-closed set in X . Thus X is not p-T1/2 if it is not p-T0 and the theorem

is proved.

Remark 3.3.5. Let (X,T ) be a p-T0 topological space then it need

not be p-T1/2. For example Let X = {a, b, c} and

T = {X,φ, {a} , {a, b} , {a, c}} then (X,T ) is p-T0 but not p-T1/2.

Theorem 3.3.5. Let (X,T ) be a p-T1 topological space then it is

always p-T1/2.

Proof. In order to prove that X is p-T1/2 it is enough to prove that

every g-p.closed set is p-closed. Let A be a non p-closed set then p-

cl(A) 6= A then there exists an x ∈ X such that {x} ⊆ p-cl(A)−A which

implies p-cl(A)− A contains a p-closed set since the given space is p-T1

which implies A is not g-p.closed. Hence all g-p.closed sets are p-closed

that is X is p-T1/2.

Remark 3.3.6. p-T1/2 does not implies p-T1. For example Let

X = {1, 2} and T = {X,φ {1}} , then (X,T ) is p-T1/2 but not p-T1.
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Definition 3.3.4. A topological space (X,T ) is said to be prime

symmetric if x ∈ p-cl({y}) =⇒ y ∈ p-cl({x}).

Using direct definition of prime symmetric space it is not easy to find

examples and getting results. In order to solve that problem we obtained

an equivalent condition for a prime symmetric space in terms of p-closed

sets and hence we proved that all prime symmetric spaces are symmetric.

Theorem 3.3.6. A topological space (X,T ) is prime symmetric if

and only if {x} is g-p.closed for every x ∈ X.

Proof. Assume (X,T ) to be prime symmetric to prove that {x} is

g-p.closed. Let {x} ⊆ O where O is p-open in X to prove that p-

cl({x}) ⊆ O. On contradiction Oc ∩ p-cl({x}) 6= φ and let y ∈ Oc ∩ p-
cl({x}) ⊆ p-cl({x}) but then x ∈ p-cl({y}) ⊆ Oc , that is x ∈ Oc which

is not possible. Hence {x} is g-p.closed.

For sufficiency assume that {x} is g-p.closed for every x ∈ X to prove that

X is prime symmetric. On contradiction we assume that X is not prime

symmetric, then there exists y 6= x in X such that x ∈ p-cl({y}) but

y /∈ p-cl({x}) which implies {y} ⊆ (p-cl({x}))c implies p-cl({y}) ⊆ (p-

cl({x}))c since singleton sets are assumed to be g-p.closed ; but then

x ∈ p-cl({y}) ⊆ (p-cl({x}))c which is not possible. Hence X is prime

symmetric.

Corollary 2. Let (X,T ) be a prime symmetric topological space,

then it is always a symmetric space.

Proof. Proof is trivial by last theorem since g-p.closed sets are always

g-closed.
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Proposition 3.3.2. Let (X,T ) be a p-T1 topological space then it

is a prime symmetric one.

Proof. Since the space is p-T1, singleton sets are all p-closed and

hence g-p.closed which in turn implies prime symmetry.

Remark 3.3.7. Prime symmetry need not implies p-T1 and indis-

crete topology serves as an example.

Proposition 3.3.3. A topological space (X,T ) is prime symmetric

and p-T0 if and only if (X,T ) is p-T1.

Proof. Sufficiency part is trivial by definition of p-T0 and p-T1. For

necessary part assume that (X,T ) is prime symmetric and p-T0. Clearly

then each singleton set is g-p.closed and hence g-closed. Also p-T0 implies

T0. But if a space is T0 and each singleton subset is g-closed then it must

be T1. Now by Theorem : 3.3.1, (X,T ) is p-T1 also and hence the

equivalent condition is proved.

Proposition 3.3.4. Let (X,T ) be a prime symmetric topological

space then (X,T ) is p-T0 ⇔ p-T1/2 ⇔ p-T1.

Proof. Proof is trivial by Theorem : 3.3.4, Theorem : 3.3.5 and

Proposition : 3.3.3. .

Now we are about to reach the solution of the problem. Above result

indicates that p-T0 ⇔ p-T1/2 ⇔ p-T1 for prime symmetric spaces. Also

we proved that prime symmetric spaces are always symmetric and it is

known that T0 ⇔ T1/2 ⇔ T1. But by Theorem : 3.3.1, p-T1 ⇔ T1 always.

Hence for prime symmetric spaces we have the following result.
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Theorem 3.3.7. Let (X,T ) be a prime symmetric topological space

then (X,T ) is p-T0 ⇔ p-T1/2 ⇔ T1 ⇔ T1/2 ⇔ T0.

Proof. Proof directly follows from Theorem : 3.1.1, Theorem : 3.3.1,

Corollary : 2 and Proposition : 3.3.4.

In the rest of this section we discuss some more properties of p-T1/2
spaces

Theorem 3.3.8. Let (X,T ) be a p-T1/2 topological space and f :

X → Y is p-continuous, p-closed and onto. Then Y is p-T1/2.

Proof. Let B ⊆ Y be a g-p.closed set then by Theorem : 3.2.3,

f−1(B) is g-p.closed and since X is p-T1/2, f
−1(B) is p-closed. Hence

B = f(f−1(B)) is p-closed in Y and thus Y is p-T1/2.

As a corollary we obtain that p-T1/2 is a p-topological property and

hence a topological property.

Corollary 3. p-homeomorphic image of p-T1/2 space is p-T1/2.

Proof. Proof is trivial by last theorem.

In section 3.2 we obtained a counter example showing that gof is not

gp-continuous even when g and f are gp-continuous. Now we established

a condition when the composition of gp-continous functions become gp-

continuous.
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Theorem 3.3.9. Let X, Y, Z be any three topological spaces, more-

over Y be a p-T1/2 space. Also let f : X → Y and g : Y → Z be

gp-continuous. Then gof : X → Z is also gp-continuous.

Proof. We have to prove that gof : X → Z is gp-continuous ; that is

to prove that inverse image of p-closed set in Z is g-p.closed in X. Let

H be a p-closed set in Z then g−1(H) is g-p.closed in Y and since Y is

p-T1/2, g
−1(H) is p-closed in Y which implies f−1(g−1(H)) is g-p.closed

in X provided H is p-closed in Z. Hence gof is gp-continuous.

Remark 3.3.8. In section 3.2, Remark : 3.2.4 indicates that con-

cepts of p-continuity and gp-continuity are independent, but when the

domain space is p-T1/2 both the two concepts coincide.

Let (Xα, Tα) be an indexed family of topological spaces and X =∏
Xα be their product space. Let us examine some results concerning

the product topological space and p-T1/2 axiom.

Definition 3.3.5. Let {(Xi, Ti)/i ∈ I} be a collection of topological

spaces and let (X =
∏
Xi, T ) be their product space. Then the p-open

sets in T are sets of the form
∏
Ui ; where Ui = Xi for infinitely many

i’s and other Ui’s are all prime open in Ti.

Lemma 3.3.1. Projection functions are p-continuous.

Proof. Let {(Xi, Ti) : i = 1, 2..n} be a collection of topological spaces

and let (X,T ) be their product space. We have to prove that the pro-

jection map πi : X → Xi is p-continuous. Let Vi ∈ Ti be a p-open set.

Clearly (πi)
−1(Vi) = X1 ×X2 × ......×Xi−1 × Vi ×Xi+1.......×Xn × ......
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which is clearly p-open by definition of p-open set in product topology.

Hence each projection map is p-continuous.

Theorem 3.3.10. Let {(Xα, Tα) : α ∈ I} be a collection of topo-

logical spaces and let X =
∏
Xα be their product topological space. If

X is p-T1/2 then Xα is p-T1/2 for every α ∈ I.

Proof. X contains a subspace p-homeomorphic to Xα and by using

above lemma and Corollary 3 Xα is p-T1/2.

Theorem 3.3.11. Let {(Xα, Tα) : α ∈ I} be a collection of topolog-

ical spaces and let X =
∏
Xα be their product topological space. Then

X is p-T1/2 if and only if X is p-T1.

Proof. Sufficiency part is trivial since p-T1 ⇔ T1 ⇒ p-T1/2 by Theo-

rem : 3.3.1 and Theorem : 3.3.5. For necessary part, consider {x}, it

is not open in product space and hence trivially not p-open in product

topology and since X is p-T1/2, {x} is p-closed always for every ‘x’ which

implies X is p-T1.

Corollary 4. Let X =
∏
Xα. Then X is p-T1/2 if and only if Xα is

p-T1 for every α ∈ I.

Proof. Proof is trivial by last result and by p-T1 ⇔ T1.

We conclude this chapter by proving that corresponding to any topo-

logical space, there always exists a finer adjacent p-T1/2 topological space.

Theorem 3.3.12. Let (Xα, Tα) be a collection of p-T1/2 topological

spaces and if {Tα/α ∈ I} forms a chain with inclusion as the order, then
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(X,∩{Tα/α ∈ I}) is p-T1/2.

Proof. We have to prove that (X,∩{Tα/α ∈ I}) is p-T1/2. Let x ∈ X
it is enough to prove that {x} is either p-open or p-closed in ∩{Tα/α ∈ I}.
Asssume {x} not p-open in ∩{Tα/α ∈ I}. Then two cases arise :

1. {x} is not open in ∩{Tα/α ∈ I}.

2. {x} is open in ∩{Tα/α ∈ I} but is not prime in ∩{Tα/α ∈ I}.

If case :1 occurs, then there exists β ∈ I such that {x} /∈ Tβ. Since Tβ

is p-T1/2, X − {x} ∈ Tβ and is always prime. Now if Tβ ⊆ Tα, then

X − {x} ∈ Tα and is always prime in Tα. If Tβ ⊇ Tα and X − {x} is

not p-open in Tα, then {x} ∈ Tα ⊆ Tβ which implies {x} ∈ Tβ which is

a contradiction. Hence in both cases , that is if Tβ ⊆ Tα and Tβ ⊇ Tα

; X − {x} is p-open in Tα for all α ∈ I. Thus {x} becomes p-closed in

∩{Tα/α ∈ I} and that implies ∩{Tα/α ∈ I} is p-T1/2.

If case : 2 occurs , that is if {x} is open in ∩{Tα/α ∈ I} but not is

prime in ∩{Tα/α ∈ I}. Then there exists U , V ∈ ∩{Tα/α ∈ I} such

that U ∩ V ⊆ {x} and {x} ⊂ U , {x} ⊂ V which implies {x}, U , V are

open in Tα for every α ∈ I implies {x} is not prime in Tα for every α ∈ I.

But since each Tα is p-T1/2 by Theorem : 3.3.2, X − {x} is p-open in

Tα for every α ∈ I and thus X − {x} is p-open in ∩{Tα/α ∈ I}. Hence

(X,∩{Tα/α ∈ I}) is p-T1/2.

Therefore in both cases {x} is either p-open or p-closed in ∩{Tα/α ∈ I}
for each x ∈ X and that implies the result.
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Theorem 3.3.13. Let (X, τ) be any topology on X, then there

exists a topology U on X such that

1. τ ⊆ U .

2. (X,U) is p-T1/2.

3. If (X, γ) is p-T1/2 where (X, γ) is such that τ ⊆ γ ⊆ U , then γ = U .

Proof. Let G = {τα/α ∈ I} be the indexed family of p-T1/2 topologies

on X finer than τ . G 6= φ since G contains atleast the discrete topology.

Consider a chain of subsets of G say {τα/α ∈ J} then ∩{τα/α ∈ J} is p-

T1/2 and τ ⊆ ∩{τα/α ∈ J}. But then ∩{τα/α ∈ J} belongs to G and by

applying dual statement of Zorn’s lemma it contains a minimal element

U such that τ ⊆ U and U is p-T1/2 and by minimality, condition 3 is also

satisfied. Hence the theorem is proved.





Chapter 4

Non-prime Isolated,

p-Irreducible, p-Door

and Sub p-maximal Spaces

4.1 Introduction

In [30] Levine introduced the concept of D-spaces as spaces in which

any two open sets intersects. Now it is worth studying about the spaces

in which any two p-open sets intersects. In present work we try to in-

troduce such spaces called non-prime isolated spaces and study some

of its properties. We proved that being a non-prime isolated space is

Some results of this chapter are included in the following paper.
Vinitha.T and T.P.Johnson, Non-prime Isolated, p-Irreducible, p-Door
and Sub p-maximal Spaces, Bulletin of Kerala Mathematical Association, Vol.14, Dec
2017, No.2.
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a p-topological property and also a productive property. We obtained

that any topological space can be written as the union of its maximal

non-prime isolated subsets. Meanwhile we introduce p-irreducible, sub p-

maximal and p-door spaces using the concept of p-open sets. We proved

that p-irreducible and non-prime isolated spaces are equivalent. Also

obtained the equivalent condition for a topological space to be sub p-

maximal and proved that every non-prime isolated sub p-maximal spaces

are p-T1/2.

The following are some definitions useful in this chapter :

Definition 4.1.1. [34] A topological space (X,T ) is said to be hyper

connected if any two open sets intersects.

Definition 4.1.2. [30] A topology T for a set X is called a D-

topology if every non-empty open set is dense in X and the corresponding

topological space (X,T ) is said to be a D-space.

Definition 4.1.3. [9] An irreducible topological space is a topolog-

ical space such that it cannot be written as union of two disjoint closed

subsets of it.

Definition 4.1.4. [13] A topological space in which every subset is

either open or closed is called a door space.

Definition 4.1.5. [9] A topological space (X,T ) is said to be sub

maximal if every subset U such that cl(U) = X should be open.
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4.2 Non-prime isolated and

p-irreducible spaces

Throughout this section we studied about spaces in which any two non-

empty p-open sets intersects which we called as non-prime isolated spaces.

The main result obtained in this section is that any topological space can

be written as union of its maximal non-prime isolated subsets. Also we

introduce p-irreducible spaces and proved that non-prime isolatedness

and p-irreducibility are equivalent always.

Definition 4.2.1. Let (X,T ) be any arbitrary topological space

then (X,T ) is said to be a prime isolated space if there always exists

two p-open sets U , V such that U ∩ V = φ. Otherwise if there does not

exists two disjoint p-open sets in X then such spaces are called non-prime

isolated spaces.

Let us consider some examples of prime isolated and non-prime iso-

lated spaces.

Example 4.2.1. Consider X = {a, b, c} and

let T = {X,φ, {a} , {b} , {a, b}} be a topology on X. Then the topological

space (X,T ) is a prime isolated one.

Example 4.2.2. Let X = {a, b, c, d} and

T = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}} be a topology on X. Then

the topological space (X,T ) is a prime isolated one.

Example 4.2.3. Let X be any arbitrary set and let the topology

on it be the cofinite topology, then it is a non-prime isolated space.
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Example 4.2.4. Consider X = {a, b, c}
and let T = {X,φ, {a} , {a, b} , {a, c}} be a topology on X. Then the

topological space (X,T ) is a non-prime isolated one.

Hyper connected spaces are spaces for which intersection of any two

non-empty open sets is non-empty. Since all p-open sets are open, if open

sets intersects then p-open sets also intersects trivially.

Remark 4.2.1. Hyper connected spaces are always non-prime iso-

lated but converse is not true ; for example any discrete space is non-

prime isolated but not hyper connected.

In a non-prime isolated space any two non-empty p-open sets inter-

sects and then by definition of p-limit point defined in chapter 2, for any

p-open set in any arbitrary topological space X, any point of X hap-

pens to be a p-limit point and the converse also holds. Using this we

obtain the following necessary and sufficient condition for a space to be

non-prime isolated in terms of p-closure.

Theorem 4.2.1. Let (X,T ) be any arbitrary topological space then

the following conditions are equivalent :

1. (X,T ) is non-prime isolated.

2. For every p-open set U in X ; p-cl(U) = X.

Proof. Assume that (X,T ) is non-prime isolated and let U be a p-

open set in X we have to prove that p-cl(U) = X. For that it is enough

to prove that every x ∈ X is a p-limit point of U by Proposition 2.3.3

and Definition 2.3.2. Consider V as a p-open set containing ‘x’. Since
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X is non-prime isolated V ∩ U 6= φ for every p-open set V in T which

implies ‘x’ is a p-limit point of U . Since ‘x’ is arbitrary ; any point of X

is a p-limit point of U . Hence p-cl(U) = X.

Conversely assume that p-cl(U) = X for every p-open set U in X to

prove that U ∩ V 6= φ for any two p-open sets U, V in X. U and V p-

open ⇒ p-cl(U) =p-cl(V ) = X ; which implies any point of X happens

to be a p-limit point of U and V ; particularly any point of U happens

to be a p-limit point of V and vice versa which implies U ∩V 6= φ always

and hence X is non-prime isolated.

N.Levine defined a topological space X to be a D-space if for every

non-empty open set U in X, U = X. Analyzing Theorem 4.2.1 and this

definition we can deduce the relationship between D-space and non-prime

isolated space as follows :

Remark 4.2.2. Any D-space is non-prime isolated and converse

is not true ; for example any hausdorff space is non-prime isolated but

cannot be a D-space.

Next result shows that non-prime isolatedness is preserved under p-

continuous mappings and hence it is a p-topological property and there-

fore a topological property.

Theorem 4.2.2. The p-continuous image of a non-prime isolated

space is also non-prime isolated.

Proof. Let (X,T ), (Y, T ′) be two topological spaces and f : (X,T )→
(Y, T ′) be a p-continuous function also assume that X is non-prime iso-

lated. We have to prove that f(X) is non-prime isolated. On contra-
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diction we assume that f(X) is prime isolated. Then there exists two

disjoint p-open sets U, V in f(X), clearly then f−1(U) and f−1(V ) be-

comes two disjoint p-open non-empty sets in X which is not possible.

Hence f(X) is also non-prime isolated.

Theorem 4.2.3. p-homeomorphic image of non-prime isolated

space is also non-prime isolated.

Proof. Let (X,T ), (Y, T ′) be two topological spaces and f : (X,T )→
(Y, T ′) be a p-homeomorphism between them. Since f and f−1 are p-

continuous the result is trivial by last theorem.

A topological property P is said to be productive if whenever product

space has property P then each co-ordinate space also has the property

P and vice versa. The next result shows that non-prime isolatedness is

productive in nature.

Theorem 4.2.4. Let (Xi, Ti) be a collection of topological spaces

and
∏
Xi be their product space, then

∏
Xi is non-prime isolated if and

only if each Xi is non-prime isolated.

Proof. Necessary part is trivial by Theorem : 4.2.2 and since pro-

jection functions are p-continuous and on to. To show sufficiency part

let ‘O’ be a p-open set in X, then we have to prove that p-cl(O) = X

which implies non-prime isolatedness by Theorem : 4.2.1. Let x ∈ O,

then there exists i ∈ I and Ui p-open in Ti such that

x ∈
⋂{

π−1i (Ui)/i = 1, 2.......n
}
⊆ O (4.1)
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Consider X =
⋂{

π−1i (Xi)/i = 1, 2.......n
}

=
⋂{

π−1i (p-cl(Ui))/i = 1, 2.......n
}

⊆ p-cl(
⋂{

π−1i (Ui)/i = 1, 2.......n
}

)

⊆ p-cl(O) .........by (4.1)

= X

Hence p-cl(O) = X and since ‘O’ is an arbitrary p-open set we obtained

the result that X is non-prime isolated.

Subspace of D-space is always a D-space but for non-prime isolated-

ness that is not the case.

Remark 4.2.3. Subspace of non-prime isolated space need not be

non-prime isolated ; for example Let X = {a, b, c} and T be the discrete

topology on X. Also let Y = {a, b} and TY = {Y, φ, {a} , {b} , {a, b}} be

the subspace topology on Y . Clearly (X,T ) is non-prime isolated but

(Y, TY ) is prime isolated.

Definition 4.2.2. Let (X,T ) be a topological space and A ⊆ X.

Then A is said to be non-prime isolated if the subspace topology on A

with respect to T that is TA is non-prime isolated.

Proposition 4.2.1. Let (X,T ) be a topological space and let Y be

a non-prime isolated space such that p-cl(Y ) = X and Y is p-open in X

; then X itself is a non-prime isolated space.

Proof. Let U and V be non-empty p-open sets in X to prove that

U ∩ V 6= φ. Since p-cl(Y ) = X ; G ∩ Y 6= φ for every p-open set G

in T which implies U ∩ Y 6= φ and V ∩ Y 6= φ which again implies

(U ∩ V ) ∩ Y 6= φ , then the only possibility is that U ∩ V 6= φ. Hence X

is non-prime isolated.
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Theorem 4.2.5. If Y is a non-prime isolated sub space of X such

that Y is p-open in X, then p-cl(Y ) is also non-prime isolated.

Proof. Let Y ′ = p-cl(Y ). Since Y is non-prime isolated and Y ′ con-

tains Y ; Y ′ satisfies the condition of proposition : 4.2.1. Hence p-cl(Y )

is always non-prime isolated whenever Y is non-prime isolated.

Levine proved that any topological space can be written as the union

of its maximal D-subsets. Now the problem is whether the result holds

using non-prime isolated subsets. In order to solve the problem we have

to apply Zorn’s lemma and succeeding propositions provide a route to

the solution of the problem.

Proposition 4.2.2. Let (X,T ) be a topological space and {Yα/α ∈ I}
be a chain of non-prime isolated subsets of (X,T ). Also let Y =

⋃
Yα :

α ∈ I. Then Y is also non-prime isolated.

Proof. We have to prove that Y =
⋃
Yα : α ∈ I is non-prime isolated

given each Yα is non-prime isolated. On contradiction we assume that Y

is prime isolated ; then there exists two disjoint p-open sets U, V in Y

and they will be of the form U = Uα ∩ Y and V = Vα ∩ Y where Uα and

Vα are p-open sets in X.

Let x ∈ Uα ∩ Y ⇒ x ∈ Yα for some α ∈ I
and y ∈ Vα ∩ Y ⇒ y ∈ Yβ for some β ∈ I
Since {Yα} is a chain either Yα ⊆ Yβ or Yα ⊇ Yβ ; we assume that Yα ⊆ Yβ

, then {x, y} ⊆ Yβ which implies Yβ ∩Uα and Yβ ∩Vα are disjoint p-open

sets in Yβ. Hence Yβ becomes prime isolated which is a contradiction

which implies Y is non-prime isolated.
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Proposition 4.2.3. Let Y be a non-prime isolated subset of a

topological space (X,T ). Then there exists a maximal non-prime isolated

subset Y ∗ such that Y ⊆ Y ∗ and if Y happens to be p-open in X, then

that maximal element is always p-closed.

Proof. Let {Yα/α ∈ I} be a chain of non-prime isolated subsets of

X containing Y . Then by above proposition {
⋃
Yα : α ∈ I} is also non-

prime isolated ; that is every chain of non-prime isolated subsets has an

upper bound. Now we can apply Zorn’s lemma and that implies there

exists a maximal element Y ∗ such that Y ⊆ Y ∗ and Y ∗ is non-prime

isolated. Next assume that Y is p-open in X, to prove that Y ∗ is p-

closed ; If Y ∗ is not p-closed then there exists non-prime isolated subset

p-cl(Y ∗) such that Y ∗ ⊆ p-cl(Y ∗) by Theorem : 4.2.5. But by maximality

of Y ∗ the only possibility is Y ∗ = p-cl(Y ∗) ; that is Y ∗ is p-closed.

Theorem 4.2.6. Let (X,T ) be any topological space, then X is the

union of its maximal non-prime isolated subsets.

Proof. Let x ∈ X. Consider {x}, it is a non-prime isolated subset

always. By Proposition : 4.2.3 there exists a maximal non-prime iso-

lated subset containing {x} and this is true for any x ∈ X. Clearly

X =
⋃
{{x} : x ∈ X} which implies X =

⋃
{Yx : x ∈ X} where Yx is

the maximal non-prime isolated subset containing {x} for each x ∈ X.

Thus X is the union of maximal non-prime isolated subsets.

We conclude this section by proving another equivalence for non-

prime isolatedness.
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Definition 4.2.3. A topological space is said to be p-irreducible if

and only if X 6= G1 ∪G2 for any p-closed sets G1 and G2 in X.

Remark 4.2.4. Irreducible implies p-irreducible by definition itself

but converse need not be true ; for example Discrete space with cardi-

nality greater than three is p-irreducible but not irreducible.

Theorem 4.2.7. A topological space is p-irreducible if and only if

it is non-prime isolated.

Proof. In order to prove the necessary part we assume that X is

p-irreducible and on contradiction we assume that there exists disjoint

p-open sets G1 and G2 in X but then X = (X −G1) ∪ (X −G2) which

implies X can be written as union of two p-closed subsets of X, which is

not possible. Hence there does not exists such disjoint p-open sets G1, G2

in X which implies X is non-prime isolated. Proof of sufficiency part is

similar to the proof of necessary part by applying De-Morgan’s law.

4.3 p-door spaces and sub p-maximal spaces

In chapter 3 we introduced the weaker separation axiom p-T1/2 and

proved that any topological space X is p-T1/2 if only if each singleton

subset is either p-open or p-closed. Now the question arises whether

there exists spaces for which each subset is either p-open or p-closed.

Dontchev in [13] introduced door spaces as spaces in which any subset is

either open or closed by restricting definition to prime case we reach the

answer to our question and we named such spaces as p-door spaces. Triv-

ially p-door spaces are generalization of p-T1/2 spaces. We also discuss
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relation between p-T1/2 spaces and non-prime isolated spaces introduced

in section 2. For that purpose we defined sub p-maximal spaces and

proved that any non-prime isolated sub p-maximal spaces are p-T1/2.

Definition 4.3.1. A topological space (X,T ) in which every subset

is either p-open or p-closed is called a p-door space.

Remark 4.3.1. Any p-door topological space is also a door space

but converse is not true ; for example Let (X,T ) be a topological space

such that X = {a, b, c} and T = {X,φ, {a} , {a, b} , {a, c}}, then (X,T )

is a door space but not a p-door space.

The property of being a door space is expansive whereas property of

being a p-door space is not expansive.

Remark 4.3.2. The property of being a p-door space is not expan-

sive; for example consider X = {a, b, c} and T = {X,φ, {a} , {b} , {a, b}}
be the topology on X then (X,T ) is a p-door space but the discrete

topology on X which is always finer than T is not p-door.

Theorem 4.3.1. If (X,T ) is p-door space and if Y ⊆ X , then

(Y, TY ) is also a p-door space.

Proof. We have to prove that every subset of Y is either p-open or

p-closed in Y . Let A be a subset of Y . Since Y ⊆ X, A happens to be a

subset of Y and since X is p-door A is either p-open or p-closed in X .

But by Theorem : 2.3.1, A∩ Y is either p-open or p-closed in Y ; which

implies A ∩ Y = A is either p-open or p-closed in Y . Since A ⊆ Y is

arbitrary Y is a p-door space.
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p-doorness is a p-topological property and hence a topological prop-

erty.

Proposition 4.3.1. p-open image of p-door space is a p-door space.

Proof. Let f : (X,T ) → (Y, T ′) be a p-open mapping and X be a

p-door space. To prove that f(X) is p-door space. Let A ⊆ f(X) then

f−1(A) is a subset of X and since X is p-door f−1(A) is p-open or p-

closed which implies f(f−1(A)) = A is p-open or p-closed . Hence f(X)

is a p-door space.

Theorem 4.3.2. p-homeomorphic image of p-door space is a p-door

space.

Proof. Proof is trivial using Proposition : 4.3.1.

Next we introduce spaces such that if p-closure of any set happens to

be full set then such a set is always p-open analogous to the concept of sub

maximal spaces introduced by N.Bourbaki. Also procured a necessary

and sufficient condition for a space to be sub p-maximal in terms of p-

open and p-closed sets. Using that equivalent condition we can deduce

that sub p-maximality is a restricted version of sub maximality.

Definition 4.3.2. A topological space (X,T ) is said to be sub p-

maximal if every subset U such that p-cl(U) = X should be p-open.

Theorem 4.3.3. A topological space (X,T ) is sub p-maximal if and

only if any subset S ⊆ X can be written as the intersection of p-open

and p-closed set in X.
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Proof. For necessary part we assume that X is sub p-maximal and

let S be any subset of X

Consider O = X − [p-cl(S) ∩ Sc]
= [p-cl(S)]c ∪ S
⇒ p-cl(O) = p-cl[[p-cl(S)]c∪S] ⊇ p-cl[(p-cl(S))c]∪p-cl(S) by Proposition

: 2.3.2

But p-cl[(p-cl(S))c] ∪ p-cl(S) = X

⇒ X ⊆ p-cl(O)

⇒ X = p-cl(O). But by our assumption X is sub p-maximal which im-

plies O is p-open and by definition of O it is clear that S = O ∩ p-cl(S)

; that is S can be written as the intersection of a p-open and a p-closed

set in X. Thus the necessary part is proved.

In order to prove the other part let S be any subset of X and assume

that any subset can be written as the intersection of a p-open and a p-

closed set in X ; that is S = O ∩C where O is p-open and C is p-closed

in X. We have to prove that X is sub p-maximal , for that let us choose

S in such a way that p-cl(S) = X. Now it is enough to prove that S is p-

open. Consider p-cl(S) = p-cl(O∩C) ⊆ p-cl(O)∩p-cl(C) = p-cl(O)∩C;

since C is p-closed which implies X ⊆ p-cl(O) ∩ C ⇒ p-cl(O) = X and

C = X. Hence S = O ∩C implies S = O and which in turn implies S is

p-open. Since S is arbitrary, X is sub p-maximal.

Corollary 5. Let (X,T ) be a sub p-maximal space then it is sub

maximal also.

Proof. Proof is trivial by last theorem since p-open and p-closed sets

are open and closed sets respectively.
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Remark 4.3.3. Converse of above corollary is not true in general.

For example, Let X be any discrete space such that cardinality of X is

greater than three, then any subset is open and hence X is sub maximal,

but consider {x1, x2} where x1, x2 ∈ X , clearly p-cl({x1, x2}) = X but

{x1, x2} is not p-open and hence X is not sub p-maximal.

Next result analyzes relation between p-door and sub p-maximal

spaces. We use directly the definition of p-door to prove it and estab-

lished that all p-door spaces are sub p-maximal, but only p-irreducible

sub p-maximal spaces are p-door.

Theorem 4.3.4. Every p-door space is sub p-maximal.

Proof. Let (X,T ) be a p-door topological space and let A ⊆ X be

such that p-cl(A) = X. In order to prove that X is sub p-maximal it is

enough to prove that A is p-open . On contradiction assume that A is not

p-open , then since X is p-door A should be p-closed ; but that implies

A = p-cl(A) = X which is not possible always. Hence our assumption is

wrong ; that is A is p-open which proves that X is sub p-maximal.

Theorem 4.3.5. Every p-irreducible sub p-maximal spaces are p-

door.

Proof. Let (X,T ) be a p-irreducible, sub p-maximal topological space

and let A ⊆ X we have to prove that A is either p-open or p-closed. If

p-cl(A) = X, then A is p-open since X is sub p-maximal. Otherwise

there exists at least one point x ∈ X in such a way that ‘x’ is not a

p-limit point of A which implies there exists at least one p-open set U

such that x ∈ U and U ∩ A = φ which in turn implies there exist a
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p-open set U such that U ⊆ X −A. Given that X is p-irreducible which

implies p-cl(U) = X by Theorem : 4.2.7 and Theorem : 4.2.1 and hence

p-cl(X−A) = X which implies X−A is p-open since X is sub p-maximal

; that is A is p-closed. Thus in both cases A is either p-open or p-closed

and hence X is p-door.

Corollary 6. Every non-prime isolated sub p-maximal topological

space is p-door.

Proof. Proof is trivial by last theorem and Theorem : 4.2.7.

Proposition 4.3.2. Let (X,T ) be a p-door topological space , then

it is always p-T1/2.

Proof. Let A be any g-p.closed set to prove that A is p-closed. Since

(X,T ) is p-door, A is either p-open or p-closed. If A is p-closed nothing

to prove. If A is p-open, applying definition of generalised p-closed set

we obtain that A is a p-closed set.

We conclude this chapter by establishing the result that every non-

prime isolated sub p-maximal spaces are p-T1/2.

Theorem 4.3.6. Every non-prime isolated sub p-maximal spaces

are p-T1/2.

Proof. Proof follows from last proposition and Corollary : 6 .

Since non-prime isolatedness implies and implied by p-irreducibility

we have
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Corollary 7. Every p-irreducible sub p-maximal spaces are p-T1/2.



Chapter 5

Semi p-Open Sets, Semi

p-Homeomorphisms and

Nowhere p-Dense Sets.

5.1 Introduction

Norman Levine introduced semi-open sets as a generalization of open sets

in any arbitrary topological space and later many authors [10], [20], [28]

worked on it. Levine also defined semi continuous functions as functions

in which inverse image of open sets are semi-open.

In this chapter we try to apply the concept of p-open sets to semi open

sets and thereby we introduce the notion of semi p-open sets. Mean while

we introduce nowhere p-dense sets and obtained that any semi p-open set

can be written as the disjoint union of p-open and nowhere p-dense sets.

79
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We studied semi p-continuous, semi-irresolute and semi p-open mappings

using p-open and semi p-open sets. Examined the implications amongst

each of the mappings and analyzed the behavior of semi p-open sets, p-

open sets and nowhere p-dense sets under such mappings. Also obtained

that any p-homeomorphic image of a topological space of first category

can be written as the union of nowhere p-dense sets in it.

Definition 5.1.1. [29] A set A in a topological space X will be

termed semi-open if there exists an open set O such that O ⊆ A ⊆ O ;

where O is the closure of O in X.

Definition 5.1.2. [10] A function f is said to be semi-continuous if

inverse image of open sets are semi-open.

In [10] Crossely and Hildebrand studied about some more genre of

functions involving semi-open sets such as irresolute and pre semi-open

functions which are not necessarily continuous functions.

Definition 5.1.3. [28] A function f : X → Y is said to be irresolute

if for every semi-open set S of Y f−1(S) is semi-open in X.

Definition 5.1.4. [28] Let X and Y be topological spaces , a func-

tion f : X → Y is pre semi-open if every semi-open set in X is mapped

to semi-open set in Y only.

5.2 Semi p-open sets and Nowhere p-dense

sets

.
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Definition 5.2.1. Let (X,T ) be a topological space and A ⊆ X.

A is said to be semi p-open if there exists a p-open set ‘O’ such that

O ⊆ A ⊆ p-cl(O) and A is said to be semi p-closed if its complement is

semi p-open.

Remark 5.2.1. Trivially p-open implies semi p-open but converse

is not true ; for example Let X = {a, b, c, d} and

τ = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}} be a topology on X. In

(X, τ) , {a, c} is not p-open but it is semi p-open.

For a hausdorff space only prime open sets are complement of single-

ton sets and that implies the following result :

Remark 5.2.2. For a hausdorff space, p-open sets and semi p-open

sets coincides.

Neither semi-openness nor semi p-openness implies each other. But

we established a necessary and sufficient condition for a set to be semi

p-open and that equivalence indicates a situation where semi p-open

implies semi-open.

Remark 5.2.3. For any arbitrary topological space, semi open sets

are not always semi p-open. For example consider real line with usual

topology, then (0, 1] is semi-open but not semi p-open.

Theorem 5.2.1. Let (X,T ) be a topological space and A ⊆ X. A

is semi p-open iff A ⊆ p-cl(p-int(A)).

Proof. For necessary part we assume A as a semi p-open set which

implies there exists a p-open set G such that
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G ⊆ A ⊆ p-cl(G) (5.1)

Now G ⊆ A and G is p-open, which implies G ⊆ p-int(A) which again

implies

p-cl(G) ⊆ p-cl(p-int(A)) (5.2)

Now (5.1) and (5.2) implies G ⊆ A ⊆ p-cl(G) ⊆ p-cl(p-int(A)). Particu-

larly A ⊆ p-cl(p-int(A))

Conversely assume that A ⊆ p-cl(p-int(A)). Take p-int(A) = G, then G

is a p-open set such that G ⊆ A ⊆ p-cl(G). That is A is semi p-open.

Corollary 8. Let (X,T ) be a topological space and let A ⊆ X be a

semi p-open set in X then A is semi-open if p-cl(p-int(A)) ⊆ cl(int(A)).

Remark 5.2.4. Generally semi p-open sets are not always semi-

open. Let X = {1, 2, 3, 4} and

τ = {X,φ, {1} , {2, 3} , {1, 4} , {1, 2, 3} , {2, 3, 4}}. In the topological space

(X, τ) , {1, 2, 4} is semi p-open but not semi-open.

Remark 5.2.5. Union of semi p-open sets need not be semi p-

open. For example let X = {a, b, c} and the topology on it be τ =

{X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}}. Here {a} and {b} are semi p-

open but {a, b} is not semi p-open.

Remark 5.2.6. Intersection of two semi p-open sets need not be

semi p-open. Consider any arbitrary set with cardinality greater than

three and with discrete topology, clearly X − {x1} , X − {x2} are semi

p-open but their intersection is not semi p-open.

Proposition 5.2.1. Let (X,T ) be a topological space and let A be

a semi p-open set in (X,T ) . Also let A ⊆ B ⊆ p-cl(A), then B is also
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semi p-open.

Proof. Given A as a semi p-open set then by definition of semi p-open

set there exist a p-open set ‘O’ such that

O ⊆ A ⊆ p-cl(O) (5.3)

Now O ⊆ A and A ⊆ B which implies

O ⊆ B (5.4)

From (5.3) we obtain A ⊆ p-cl(O)

⇒ p-cl(A) ⊆ p-cl(O).

But we have B ⊆ p-cl(A) by assumption. Hence B ⊆ p-cl(A) ⊆ p-cl(O)

and (5.4) implies O ⊆ B ⊆ p-cl(O). Thus B is also semi p-open.

Trivially any p-open set is also a semi p-open set and Proposition :

5.2.1 implies that if B is any subset of an arbitrary topological space X

such that B lies between a semi p-open set and its p-closure, then B is

also semi p-open. Comparing this two results we locate collection of sets

satisfying the two results.

Theorem 5.2.2. Let (X,T ) be any topological space and G = {Gα}
be a collection of sets in X such that

1. Collection of p-open sets in T belongs to G.

2. Gα ∈ G and Gα ⊆ H ⊆ p-cl(Gα) implies H ∈ G.



84
Chapter 5. Semi p-Open Sets, Semi p-Homeomorphisms and Nowhere

p-Dense Sets.

Then the collection of all semi p-open sets in X belongs to G and it

is the smallest collection of sets in X satisfying 1 and 2.

If a set is semi p-open in the original space then it is semi p-open in

the corresponding subspace but not conversely.

Theorem 5.2.3. Let (X,T ) be a topological space with a subspace

(Y, TY ) where Y ⊆ X. If A ⊆ Y is semi p-open in (X,T ), then A is semi

p-open in (Y, TY ).

Proof. Given A is semi p-open in (X,T ) then by definition of semi

p-open set there exists a p-open set ‘O’ such that

O ⊆ A ⊆ p-clX(O) (5.5)

where p-clX(O) is the p-closure of ‘O’ with respect to (X,T ).

We have O ⊂ A ⊂ Y which implies O ⊂ Y .

Now (5.5) implies O ∩ Y ⊂ A ∩ Y ⊂ p-clX(O) ∩ Y
⇒ O ∩ Y ⊂ A ∩ Y ⊆ p-clY (O) by Proposition : 2.3.7.

Since O ⊂ Y , O ∩ Y = O. Hence we obtain O ⊆ A ⊆ p-clY (O). Thus A

is semi p-open in (Y, TY ).

Remark 5.2.7. Converse of above result need not be true. For

example consider the discrete topological space X = {x1, x2, x3} and let

Y = {x1, x2}. Then Y − {x2} is semi p-open in Y but not semi p-open

in X.

In the forth coming part of this section we establish that any semi

p-open set can be written as disjoint union of two sets. With that motive
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in mind we define nowhere p-dense sets. Also we introduced Dp(A) as

the set of all p-limit points of A where A is any subset of an arbitrary

topological space, to examine some results related to semi p-open sets

and corresponding set of p-limit points.

Definition 5.2.2. Let (X,T ) be a topological space and let A ⊂ X

then we define Dp(A) as the set of all p-limit points of A with respect to

T .

Definition of p-limit point and Remark : 2.3.5 implies the following

result :

Remark 5.2.8. Clearly D(A) ⊆ Dp(A) but not conversely where

D(A) denotes the set of all limit points of A.

Theorem 5.2.4. Let (X,T ) be a topological space and let A ⊆ X

be such that A is p-open, then p-cl(A) = A ∪Dp(A).

Proof. To prove that A∪Dp(A) ⊆ p-cl(A). Let x ∈ A∪Dp(A), then

x ∈ A or x ∈ Dp(A).

If x ∈ A, then trivially x ∈ p-cl(A). Now if x ∈ Dp(A), then by definition

‘x’ is a p-limit point of A. By Proposition : 2.3.3 and Definition : 2.3.2 ;

x ∈ p-cl(A). Thus in either cases x ∈ p-cl(A) ; that is A ∪ Dp(A) ⊆ p-

cl(A).

Conversely assume that x ∈ p-cl(A). To prove that p-cl(A) ⊆ A∪Dp(A).

If x ∈ A the result trivially follows. If x /∈ A then since x ∈ p-cl(A) every

p-open set ‘U’ containing ‘x’ intersects A which implies ‘x’ is a p-limit

point of A. Hence x ∈ A ∪ Dp(A). Thus p-cl(A) ⊆ A ∪ Dp(A) always

and hence p-cl(A) = A ∪Dp(A)
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Remark 5.2.9. Above theorem does not works in general. That is

for any arbitrary set A ⊆ X, only p-cl(A) ⊇ A ∪ Dp(A) and the other

part need not holds.

Next we initiate the study of nowhere p-dense sets and proved that

it is a restricted variety of nowhere dense sets.

Definition 5.2.3. A subset A of a topological space (X,T ) is said

to be nowhere p-dense if p-int(A) = φ, where A is the closure of A with

respect to T .

Remark 5.2.10. Nowhere p-dense does not implies nowhere dense.

Consider (R,U) and let A be the set of all rationals between 0 and 1

then A is nowhere p-dense but not nowhere dense.

Remark 5.2.11. Trivially if int(A) = φ then p-int(A) = φ. Hence

nowhere dense implies nowhere p-dense.

Proposition 5.2.2. Let (X,T ) be a topological space and A ⊆ X

then A is nowhere p-dense if and only if every non-empty p-open set in

X contains a non-empty open set which is disjoint from A.

Proof. For necessity assume that A is nowhere p-dense, that is p-

int(A) = φ. We have to prove that every non-empty p-open set in X

contains a non-empty open set which is disjoint from A. Let U be the

given non-empty p-open set. Clearly U is not a subset of A, if U ⊆ A

then p-int(A) 6= φ which is not possible. Hence U ∩ (X − A) is a non-

empty open set disjoint from A and thus disjoint from A and such that

U ∩ (X − A) ⊂ U . Thus U contains a non-empty open set disjoint from

A and since U is arbitrary this can be done for any arbitrary p-open set.
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Thus proved the necessary part.

Conversely assume the sufficiency part in order to prove that p-int(A) =

φ. On contradiction let p-int(A) 6= φ then there exists a p-open set G

such that G ⊂ A. Thus any point of G happens to be a limit point

of A ; that is all open sets containing points of G must intersects A

which implies there does not exists an open set in G disjoint from A

contradicting our assumption. Hence p-int(A) = φ.

Proposition 5.2.3. Let (X,T ) be a topological space and let O be

p-open in X; then p-cl(O) ∩Oc is nowhere p-dense in X.

Proof. By Theorem : 5.2.4 we have p-cl(O) = O ∪ Dp(O) which

implies p-cl(O) ∩ Oc ⊆ Dp(O). That is p-cl(O) ∩ Oc contains all p-limit

points of O. We have to prove that p-cl(O) ∩ Oc is nowhere p-dense.

Let U be a non-empty p-open set in X, it is enough to prove that U

contains an open set disjoint from p-cl(O)∩Oc. If U ⊆ O ; then U ∩ (p-

cl(O)∩Oc) = φ that is U itself is a p-open set disjoint from p-cl(O)∩Oc.

Hence p-cl(O) ∩ Oc is nowhere p-dense. If O ∩ U = φ then U contains

no points of O which implies it does not contains any p-limit points of O

which implies U ∩(p-cl(O)∩Oc) = φ. Now if both of the above cases fails

that is if O∩U 6= φ and U is not a subset of O then U ∩O is a non-empty

open subset of U as well as O. Now let G = (p-cl(O) ∩ Oc) ∩ (U ∩ O),

then clearly G = φ. Thus in this case also U contains an open set disjoint

from p-cl(O) ∩Oc which implies p-cl(O) ∩Oc is nowhere p-dense.

In the next result we prove that any semi p-open set can be written

as disjoint union of a p-open set and a nowhere p-dense set.

Theorem 5.2.5. Let A be a semi p-open set in a topological space
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(X,T ). Then A will be of the form A = O ∪ B where O is a p-open set

in X such that O ∩B = φ and B is nowhere p-dense.

Proof. Given A as a semi p-open set which implies there exists a p-

open set O such that O ⊆ A ⊆ p-cl(O). Clearly any arbitrary set A can

be written as A = O ∪ (A ∩ Oc). Now let B = A ∩ Oc, since A ⊆ p-

cl(O) we have B ⊆ p-cl(O) ∩ Oc. By Proposition : 5.2.3, p-cl(O) ∩ Oc

is nowhere p-dense and that implies B is also nowhere p-dense. Thus

A = O ∪B and it satisfies all conditions of the theorem.

Merely by using definition of p-interior we obtained that the collec-

tion of p-open sets and collection of p-interior of all semi p-open sets in

any topological space coincides and this result holds for any arbitrary

topological space.

Theorem 5.2.6. Let (X,T ) be a topological space and let P denote

the collection of p-open sets in T . If G denote the collection of p-interior

of all semi p-open sets in X then G = P .

Proof. Let P ∈ P , then p-int(P ) = P itself which implies P ∈ G.

Hence P ⊂ G. Now let G ∈ G ⇒ G = p-int(G1) for some G1 semi p-open

in X which is a maximal p-open subset of G1 which implies G ∈ P .

Hence G ⊂ P and thus G = P .

Lemma 5.2.1. Let A be a semi p-open set in a topological space

(X,T ). Then there exists a p-open set O such that (A ∩Oc) ⊆ Dp(O).

Proof. Given A as a semi p-open set then by definition of semi p-

open set there exists a p-open set O such that O ⊆ A ⊆ p-cl(O). Clearly
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A ∩Oc ⊆ p-cl(O) ∩Oc ⊆ Dp(O). Hence for any semi p-open set A there

exists a p-open set O such that A ∩Oc ⊆ Dp(O).

Theorem 5.2.7. Let (X,T ) be a topological space with A as a

semi p-open set. Then there always exists a p-open set O such that

Dp(A ∩Oc) ⊆ Dp(O).

Proof. Let y ∈ Dp(A ∩ Oc) then any p-open set containing ‘y’ must

contain points of A ∩ Oc but by above lemma A ∩ Oc ⊆ Dp(O) which

implies any p-open set containing points of A∩Oc must contain points of

O. Hence any p-open set containing ‘y’ must contain points of ‘O’ that

is y ∈ Dp(O). Thus Dp(A ∩Oc) ⊆ Dp(O).

5.3 Mappings Involving semi p-open sets

and p-open sets

.

In this section we consider variety of mappings involving p-open, semi

p-open etc and try to find out the implications among them.

We begin this section by proving that being semi p-open is preserved

under p-continuous, p-open mappings.

Theorem 5.3.1. Let f : (X,T ) → (Y, T ′) be a p-continuous, p-

open mapping between the topological spaces (X,T ) and (Y, T ′). If A is

semi p-open in (X,T ), then f(A) is semi p-open in (Y, T ′).
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Proof. Given A is semi p-open in (X,T ) , then by Theorem : 5.2.5,

A = O ∪B where O is p-open and B is nowhere p-dense. Now from the

proof of Theorem : 5.2.5, B is such that B ⊆ p-cl(O) ∩Oc.

Clearly O ⊆ A

⇒ f(O) ⊆ f(A)

= f(O) ∪ f(B)

But B ⊆ p-cl(O) ∩Oc ⊆ p-cl(O)

which implies O ⊆ A ⊆ f(O) ∪ f(p-cl(O))

⊆ f(O) ∪ p-cl(f(O)) by Lemma : 3.2.1

⊆ p-cl(f(O)).

Thus f(O) ⊆ f(A) ⊆ p-cl(f(O)). Since f(O) is p-open in Y , f(A) is

semi p-open in Y .

Next we consider functions in which inverse image of each p-open

set is semi p-open, which we call as semi p-continuous functions. We

noticed that semi p-continuity does not implies p-continuity and even

continuity. Also it is independent of semi-continuity. But trivially p-

continuity implies semi p-continuity since all p-open sets are semi p-open

also.

Definition 5.3.1. Let f : (X,T ) → (Y, T ′) be a mapping between

two topological spaces (X,T ) and (Y, T ′) , then f is said to be semi

p-continuous if inverse image of each p-open set in Y is semi p-open in

X.

Example 5.3.1. Let X = Y = {a, b, c, d}.
Also let T = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}}
and T ′ = {X,φ, {b} , {c} , {b, c}} be two topologies on X . Define f :

(X,T )→ (Y, T ′) by f(a) = f(c) = c , f(b) = b, f(d) = d. Then f is semi

p-continuous.
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Remark 5.3.1. The above example indicates that semi p-continuity

does not implies p-continuity and it does not implies even continuity.

Remark 5.3.2. Trivially p-continuity implies semi p-continuity.

Remark 5.3.3. Semi-continuity neither implies nor implied by semi

p-continuity. For example Let X = Y = {a, b, c}, T be the discrete

topology and T ′ = {X,φ, {c}}. Now define f : (X,T ) → (Y, T ′) as the

identity mapping . Then f is semi continuous but not semi p-continuous.

Now consider the function g : (R,U) → (R,D) where R is the real

line with Discrete topology D and usual topology U ; g is the identity

mapping. Clearly g is semi p-continuous but not semi-continuous.

From Remark : 5.2.2 it is clear that for all T2 spaces p-open and semi

p-open sets coincides and hence the following remark follows :

Remark 5.3.4. Let X be a T2 space and f is a function such that

f : X → Y is semi p-continuous then it is p-continuous.

Theorem 5.3.2. Let (X,T ), (Y, T ′) be two topological spaces and

f : (X,T )→ (Y, T ′) be a mapping such that f is a single valued function.

If f is semi p-continuous then for any f(x) ∈ G′ , G′ p-open in Y there

exists G semi p-open in X such that x ∈ G and f(G) ⊂ G′.

Proof. Let f(x) ∈ G′. Clearly f−1(G′) is semi p-open in X and

contains ‘x’. Now let G = f−1(G′) then x ∈ G and f(G) ⊂ G′.

Definition 5.3.2. Let (X,T ), (Y, T ′) be two topological spaces ;

then f : (X,T ) → (Y, T ′) is said to be semi-irresolute if and only if

inverse image of semi p-open set in Y is semi p-open in X.
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Example 5.3.2. Let X = Y = {a, b, c, d} and τ, τ ′ be two topologies

on X such that τ = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}} and τ ′ =

{X,φ, {c}} . Define a function f : (X, τ) → (Y, τ ′) as f(a) = f(b) = c,

f(c) = d and f(d) = a. Then f is semi- irresolute but not p-continuous.

Remark 5.3.5. Both p-continuity and semi p-continuity does not

implies semi -irresoluteness. For example Let X = Y = {a, b, c, d} and

let T = {X,φ, {a} , {c} , {a, c} , {a, c, d} , {a, b, c}}, T ′ = {X,φ, {a}} be

two topologies on X. Consider f : (X,T ) → (Y, T ′) as f(a) = c, f(b) =

b, f(c) = a, f(d) = d . Then f is p-continuous and semi p-continuous but

not semi -irresolute.

Every p-continuous, p-open functions are semi-irresolute. In order

to prove this we have to use the following lemma. Also we define semi

p-open function and proved that every p-continuous, p-open functions

are semi-irresolute and semi p-open.

Lemma 5.3.1. If f : X → Y is p-continuous and p-open , then

f−1(p-cl(A)) = p-cl(f−1(A)).

Proof. Since f is p-open , f−1 is p-continuous and hence f−1(p-

cl(A)) ⊆ p-cl(f−1(A)). For the other part we have A ⊆ p-cl(A) which

implies

f−1(A) ⊆ f−1(p-cl(A)) (5.6)

Since f is p-continuous and p-cl(A) is p-closed always, f−1(p-cl(A)) is

p-closed and thus (5.6) implies p-cl(f−1(A)) ⊆ f−1(p-cl(A)). Thus f−1(p-

cl(A)) = p-cl(f−1(A)).

Theorem 5.3.3. Let f : X → Y be p-continuous and p-open , then
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f is semi irresolute.

Proof. To prove that every semi p-open set in Y is mapped on to semi

p-open set in X. Let G be a semi p-open set in Y then by definition of

semi p-open set there exists a set O such that O is p-open and O ⊆ G ⊆ p-

cl(O)

⇒ f−1(O) ⊆ f−1(G) ⊆ f−1(p-cl(O)) = p-cl(f−1(O)) (5.7)

Since f is p-continuous, f−1(O) is p-open in X and then (5.7) implies

f−1(G) is semi p-open in X.

Theorem 5.3.4. Let (X,T ), (Y, T ′) be two topological spaces then

f : (X,T )→ (Y, T ′) is a semi - irresolute function if and only if for every

semi p-closed subset G of T ′, f−1(G) is semi p-closed in T .

Proof. Proof is trivial by taking complements.

Definition 5.3.3. Let (X,T ), (Y, T ′) be two topological spaces,

then a function f : X → Y is semi p-open if for every semi p-open set A

in X; f(A) is semi p-open in Y .

Example 5.3.3. Let f be the identity function from (R,D) to

(R,U) where R is the real line , D is the discrete topology and U is the

usual topology. Then f is semi p-open but not pre semi -open.

Theorem 5.3.5. Composition of semi-irresolute functions are semi

-irresolute.

Theorem 5.3.6. If f : X → Y is p-continuous and p-open then f

is semi-irresolute and semi p-open.
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Proof. If f is given to be p-continuous and p-open, then f should be

semi-irresolute by Theorem : 5.3.3. Also the proof of semi p-openness

analogously follows from the proof of Theorem : 5.3.3 and Lemma :

5.3.1.

5.4 Semi p-homeomorphism and Nowhere

p-dense Sets

Now we are in a situation to define semi p-homeomorphism. In this

section we notice that nowhere p-dense sets are preserved under

p-homeomorphisms and classified spaces for which nowhere p-dense sets

remain the same.

Definition 5.4.1. A function f : X → Y is said to be a semi

p-homeomorphism if f is one-one, onto, semi p-open and semi-irresolute.

Remark 5.4.1. Homeomorphism implies p-homeomorphism im-

plies semi p-homeomorhism and none of the converse implications holds.

For example , let X = {a, b, c, d} and let

T = {X,φ, {a, b} , {a} , {a, b, c} , {a, b, d}} , T ′ = {X,φ. {a}} be two

topologies on X. Consider the function f : (X,T ) → (X,T ′) defined by

f(a) = b, f(b) = c, f(c) = d, f(d) = a ; then f is a semi p-homeomorphism

but not a p-homeomorphism. The non occurrence of other implication

follows from Chapter 3.

In chapter 3, Lemma : 3.2.1 we proved an equivalent condition for

p-continuity in terms of p-closure. It is worthful to check whether such
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an equivalent condition will be obtained for semi-irresolute function in-

troduced in last section. For that purpose we defined semi p-closure.

Also later we defined semi p-interior and analogously such an equivalent

condition is true using semi p-interior also.

Definition 5.4.2. Let (X,T ) be a topological space and let A ⊆ X

then semi p-closure of A denoted by semip-cl(A) is defined as the minimal

semi p-closed super set of A.

Example 5.4.1. Let (X,T ) be a topological space with X =

{a, b, c} ,
T = {X,φ, {a} , {a, b} , {a, b, c} , {a, b, d}}. Let A = {c, d} , then semip-

cl({c, d}) = {c, d} = {c, d} and p-cl({c, d}) = X. Now let B = {b},
semip-cl({b}) = {b} and p-cl({b}) = {b, c, d} = {b}.

Proposition 5.4.1. Let (X,T ) be a topological space and A ⊆ X,

then semip-cl(A) ⊆ p-cl(A).

Proof. Since p-closed implies semi p-closed, the result is trivial.

Lemma 5.4.1. A function f : X → Y is semi-irresolute if and only

if f(semip-cl(A)) ⊆ semip-cl(f(A)).

Proof. Let A ⊆ X and consider semip-cl(f(A)) which is semi p-closed

in Y . For necessity assume that f is semi-irresolute and hence f−1(semip-

cl(f(A))) is semi p-closed in X.

But f(A) ⊆semip-cl(f(A))

f−1(f(A)) ⊆ f−1(semip-cl(f(A))). That is f−1(semip-cl(f(A))) is a semi

p-closed super set of A and by definition of semi p-closure

semip-cl(A) ⊆ f−1(semip-cl(f(A))).
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Now taking f on both sides f(semip-cl(A)) ⊆ f(f−1(semip-cl(f(A)))) ⊆semip-

cl(f(A)). Hence f(semip-cl(A)) ⊆semip-cl(f(A)), thus the required con-

dition is proved and hence the necessary part is proved.

Conversely let G be a semi p-closed set in Y to prove that f−1(G) is semi

p-closed in X. Consider f−1(G) and applying our assumption on f−1(G)

we have

f(semip-cl(f
−1(G))) ⊆semip-cl(f(f−1(G)))

⊆semip-cl(G) = G.

⇒semip-cl(f
−1(G)) ⊆ f−1(G) and then only possibility is f−1(G) =semip-

cl(f−1(G). Thus f−1(G) is semi p-closed and hence f is semi-irresolute.

Lemma 5.4.2. A function f : X → Y is semi-irresolute if and only

if for every H ⊆ Y ; semip-cl(f
−1(H)) ⊆ f−1(semip-cl(H)).

Proof. Necessarily we assume that f is semi-irresolute and consider

semip-cl(H) for H ⊆ Y . Since f is semi-irresolute, f−1(semip-cl(H)) is

semi p-closed in X.

But H ⊆semip-cl(H)

⇒ f−1(H) ⊆ f−1(semip-cl(H))

⇒semip-cl(f
−1(H)) ⊆ f−1(semip-cl(H)).

Conversely let H be a semi p-closed set in Y to prove that f−1(H) is

semi p-closed in X. Clearly f−1(H) ⊆semip-cl(f
−1(H)) ⊆ f−1(semip-

cl(H)) = f−1(H). Hence f−1(H) is semi p-closed in X and thus f is

semi-irresolute.

If the function happens to be a semi p-homeomorphism then using

the preceding two lemmas we obtain :
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Theorem 5.4.1. If f : X → Y is a semi p-homeomorphism then

semip-cl(f
−1(B)) = f−1(semip-cl(B)) for every B ⊆ Y .

Theorem 5.4.2. If f : X → Y is a semi p-homeomorphism then

semip-cl(f(B)) = f(semip-cl(B)) for every B ⊆ Y .

Definition 5.4.3. Semi p-interior of A ⊆ X in a topological space

X is defined as maximal semi p-open subset of A and is denoted as semi

p-int (A).

Theorem 5.4.3. If f : X → Y is a semi p-homeomorphism then

1. semip-int(f−1(B)) = f−1(semip-int(B)).

2. semip-int(f(B)) = f(semip-int(B))

Proof. Proof is trivial and analogous to proof of Lemma 5.4.1 and

Lemma 5.4.2.

Preceding theorems give four equivalent condition for a function to be

semi p-homeomorphic in terms of semi p-interior and semi p-closure. Us-

ing that conditions we prove that nowhere dense sets are preserved under

p-homeomorphisms which in turn helps us to prove the main objective of

this chapter. That is any p-homeomorphic image of a topological space

of first category can be written as the union of nowhere p-dense sets in

it.

Theorem 5.4.4. Let (X,T ) be a topological space and A ⊆ X.

Then A is nowhere p-dense if and only if p-int(semip-cl(A)) = φ.
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Proof. If p-int(semip-cl(A)) = φ then by Proposition : 5.4.1, p-int(p-

cl(A)) = φ which in turn implies A is nowhere p-dense. Converse is

trivial by definition of nowhere p-dense.

Proposition 5.4.2. If f : X → Y is a p-homeomorphism and

A ⊆ X is nowhere p-dense in X then f(A) is nowhere p-dense in Y .

Proof. Given A to be no where p-dense in X ; that is p-int(A) = φ

by definition of nowhere p-dense and also last theorem implies

p-int(semip-cl(A)) = φ. (5.8)

We have to prove that f(A) is nowhere p-dense that is to prove that

p-int(semip-cl(f(A))) = φ again by applying last theorem. Given f is

p-homeomorphic which implies f is semi p-homeomorphic also. Hence

p-int(semip-cl(f(A))) = f(p-int(semip-cl(A))) = f(φ) = φ by Theorem

: 5.4.2. Now (5.8) implies p-int(semip-cl(f(A))) = φ . Hence f(A) is

nowhere p-dense in Y .

Theorem 5.4.5. Let (X,T ) be a topological space of first category

and f : (X,T )→ (Y, T ′) be a p-homeomorphism from (X,T ) to another

topological space (Y, T ′). Then (Y, T ′) can be written as union of no

where p-dense sets in it.

Proof. Given X is of first category ; that is

X =
∞⋃
i=1

Gi (5.9)
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where each Gi is nowhere dense in X. By Remark : 5.2.10 each Gi

is nowhere p-dense in X and then Proposition : 5.4.2 implies each f(Gi)

is nowhere p-dense and (5.9) implies

Y = f(X) = f(
⋃∞
i=1Gi) =

⋃∞
i=1 f(Gi).

That is (Y, T ′) can be written as union of nowhere p-dense sets in it.

Approaching the end of this chapter we noticed that any two topo-

logical spaces with same collection of p-open sets always shares same

collection of nowhere p-dense sets.

Definition 5.4.4. Let X be any arbitrary set and τ, τ ′ be topologies

on X, then τ and τ ′ are said to be p-correspondent topologies on X if

(X, τ) and (X, τ ′) has the same collection of p-open sets.

Example 5.4.2. Any two hausdorff topologies onX is p-correspondent.

Theorem 5.4.6. Any two p-correspondent topologies on any arbi-

trary set X determines precisely the same nowhere p-dense subsets.

Proof. Proof is trivial by definition of p-correspondent topologies and

by Theorem : 5.4.5.





Chapter 6

p-Compactness,

C-p.compactness and Some

Lattice Theoretic Properties

6.1 Introduction

The chapter aims at studying the concepts of compactness and C-compactness

using p-open sets. If a topological space can be covered by a collection

of open sets , then surely such a cover can be constructed using closures

of that open sets also. This idea leads to the development of a new

Some results of this chapter are included in the following paper.
Vinitha.T and T.P.Johnson. : p-Compactness and C-p.compactness, Global Journal
of Pure and Applied Mathematics, Vol.13, No.9 (2017).

Some results of this chapter were presented in.
National Seminar on Topology and Its Applications, 7-9 February 2018,
St.Berchmanns College, Changanassery.
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concept in topology called C-compactness which was first introduced by

G.Viglino in 1969. Later in [22] Harry.L.Herrington and Paul. E. Long

characterized C-compactness using nets and filters.

Analogously it is meaningful to consider covers using p-open sets only

and thereby we introduce new types of compactness called p-Compactness

and C-p.compactness. We characterized

p-Compactness and C-p.compactness using nets and filters. For that

purpose we introduce the ideas of p-limit points and p-closure limit

points for nets and filters, regular p-open sets etc. Also proved that

p-Compactness is a p-topological property and thereby a topological

property. Some product theorems on p-Compactness is also considered.

Trivially p-Compactness and compactness are not equivalent concepts.

Using characterizations of p-Compactness we identified spaces for which

concepts of p-Compactness and compactness coincides.

In this chapter we also try to study about spaces in which all open sets

happens to be prime. We define such spaces as prime topological spaces

and we established a necessary and sufficient condition for a space to be

prime topological space. Let Pr(X) denote the collection of all prime

topologies on an arbitrary set X, we proved that Pr(X) forms a meet

complemented atomic semi lattice.

We conclude the thesis by extending the idea of prime element to

the lattice of all topologies on any arbitrary set X and we identified that

ultraspaces are precisely the prime elements in Σ(X), where Σ(X) denote

the lattice of all topologies on an arbitrary set X.
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6.2 p-Compactness In Topological Spaces

For any arbitrary topological space compactness and discreteness occurs

simultaneously only when the underlying set is finite. Introduction of

p-Compactness gives a variety of infinite p-Compact discrete topological

spaces ; in fact in Σ(X) the largest element is always p-Compact where

Σ(X) denotes the collection of all topologies on X.

Definition 6.2.1. Let (X,T ) be a topological space and let A ⊂ X

then the collection {Pi : i ∈ I} of prime open sets in T is said to be a

p-open cover of A if A ⊆
⋃
i Pi.

Definition 6.2.2. Let (X,T ) be a topological space, (X,T ) is said

to be p-Compact if every p-open cover has a finite sub cover.

Example 6.2.1. Any sober space is p-Compact.

Theorem 6.2.1. Any hausdorff space is p-Compact.

Proof. Proof is trivial by Theorem : 2.2.1.

Theorem 6.2.2. Every compact space is p-Compact.

Proof. Since any p-open cover is an open cover, existence of finite

sub cover for p-open cover obviously follows from the compactness of the

space.

Remark 6.2.1. The converse of above theorem is not true ; for

example Let X be any infinite set with discrete topology. Then X is

p-Compact but not compact.
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In Chapter 2 we studied about primeness in relative topology, using

that results we obtained that p-Compactness is an absolute property and

hence we also prove that p-closed subset of a p-Compact space is also

p-Compact.

Proposition 6.2.1. Let (X,T ) be a topological space and A ⊂ X.

Then A is p-Compact with respect to T if and only if it is p-Compact

with respect to TA ; where TA is the relative topology on A with respect

to T .

Proof. For necessity we assume that A is p-Compact with respect to

T to prove that A is p-Compact with respect to TA. Let {Gi : i ∈ I} be

a p-open cover of A where each Gi ∈ TA. Now by applying Proposition :

2.3.6 each Gi is of the form Hi ∩ A such that Hi is p-open in X but by

our assumption Hi has a finite sub collection which covers A ; that is

A ⊆
⋃
iGi ⊆

⋃
i(Hi ∩ A) ⊆

⋃
iHi

⇒ A ⊆ Hi1 ∪Hi2 ∪ ...... ∪Hin

⇒ A ⊆ (Hi1 ∪Hi2 ∪ ...... ∪Hin) ∩ A
= Gi1 ∪Gi2 ∪ ...... ∪Gin

That is A can be covered by finitely many members of Gi. Thus A is

p-Compact with respect to TA. Now in order to prove the sufficiency

part let Hi be a p-open cover of A by p-open sets in T

Then A ⊆
⋃
iHi

⇒ A ⊆ A ∩ (
⋃
iHi) =

⋃
iGi

where each Gi = A∩Hi and is p-open in TA again by applying Proposition

: 2.3.6 which implies

A ⊆ Gi1 ∪Gi2 ..... ∪Gin

⊆ A ∩ (Hi1 ∪Hi2 ∪ ...... ∪Hin)

⊆ Hi1 ∪Hi2 ∪ ......∪Hin . Hence A is p-Compact with respect to T . Thus
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proving the sufficiency part.

Theorem 6.2.3. Every p-closed subset of a p-Compact space is

p-Compact.

Proof. Let Y be a p-closed subset of a p-Compact space X we have

to prove that Y is p-Compact. Let G be a p-open covering of Y by sets

p-open in X then H = G∪{X − Y } is a p-open covering of X and since

X is p-Compact H has a finite sub cover in particular G has a finite sub

cover which covers Y . Hence Y is p-Compact.

Theorem 6.2.4. The p-continuous image of a p-Compact space is

p-Compact.

Proof. Let f : X → Y be p-continuous and let X be p-Compact.

We have to prove that f(X) is p-Compact, that is to prove that any

p-open covering of f(X) by sets p-open in Y has a finite sub cover. Let

{Gi : i ∈ I} be a p-open covering of f(X), where each Gi is p-open in Y .

Since f is given to be p-continuous each f−1(Gi) is p-open in X.

But we have f(X) ⊆
⋃
i

Gi

⇒ X ⊆
⋃
i

f−1(Gi).

Hence {f−1(Gi) : i ∈ I} forms a p-open cover of X and since X is p-

Compact

X ⊆
i=n⋃
i=1

f−1(Gi)

⇒ f(X) ⊆
i=n⋃
i=1

Gi.

That is finitely many of {Gi : i ∈ I} say G1, G2.............Gn cover f(X).

Then f(X) is p-Compact and therefore p-continuous image of a p-Compact
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space is p-Compact.

Theorem 6.2.5. p-Compactness is a p-topological property.

Proof. Let (X,T ), (Y, T
′
) be two topological spaces and f : (X,T )→

(Y, T
′
) be a p-homeomorphism between them. Let X be p-Compact we

have to prove that Y is also p-Compact. Since p-continuous image of a

p-Compact space is p-Compact and f is onto ; we obtain f(X) = Y as a

p-Compact space. Hence p-Compactness is a p-topological property.

6.3 Characterizations of p-Compactness

Proposition 6.3.1. Let (X,T ) be a topological space and let

{Fi} be a collection of p-closed subsets of X, then X is p-Compact if

and only if whenever
⋂
i

Fi = φ, {Fi} must contains a finite subclass

{Fi1 , ............Fim} with
j=m⋂
j=1

Fij = φ.

Proof. For necessary part assume X to be p-Compact. Given
⋂
i

Fi =

φ implies X =
⋃
i

(Fi)
c, so {(Fi)c} is a p-open cover of X, and since X is

p-Compact there exists a finite sub cover (Fi1)
c, ............(Fim)c such that

X =
j=m⋃
j=1

F c
ij

implies φ =
j=m⋂
j=1

Fij and thus required condition is proved.

Now to prove the sufficiency part we assume that whenever
⋂
i

Fi = φ

there exists a finite subclass {Fi1 , ............Fim} with
j=m⋂
j=1

Fij = φ. Let {Oi}
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be a p-open cover of X, that is X = ∪iOi which implies φ = ∩i(Oi)
c.

Since each Oi is p-open, {Oc
i} is a class of p-closed sets and has an empty

intersection. Hence there exists (Oi1)
c, (Oi2)

c, ...............(Oim)c such that
j=m⋂
j=1

Oc
ij

= φ. Thus X =
j=m⋃
j=1

Oij . Accordingly X is p-Compact.

Theorem 6.3.1. A topological space X is p-Compact if and only

if every class {Fi} of p-closed subsets of X which satisfies the finite

intersection property has itself a non-empty intersection.

Proof. Proof is trivial by last proposition.

Definition 6.3.1. Let (X,T ) be a topological space and let S :

D → X be a net. A point x ∈ X is said to be a p-cluster point/p-limit

point if for every p-open set U containing ‘x’ and m ∈ D, there exists an

n ∈ D such that n ≥ m and S(n)∩U 6= φ. Also S is said to p-converges

to a point x ∈ X if for every p-open set U containing ‘x’, there exists an

m ∈ D such that for all n ≥ m,n ∈ D ; S(n) ∩ U 6= φ.

Definition 6.3.2. Let (X,T ) be a topological space and F be a

filter on X. A point x ∈ X is said to be a p-cluster point /p-limit point

of F if every p-open set containing ‘x’ intersects every member of F . Also

F is said to p-converges to a point x ∈ X if every p-open set containing

‘x’ is a member of F .

Remark 6.3.1. Every limit point is a p-limit point but converse

need not be true ; for example let N the set of all natural numbers be

the directed set and let (N,D) be the given discrete topological space.

Also let I : N → N be the identity mapping, that defines a net on N .

Clearly any point of N is a p-limit point but not a limit point of the net
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I.

Theorem 6.3.2. Let (X,T ) be a topological space then the follow-

ing statements are equivalent

1. X is p-Compact.

2. Every net/filter in X has a p-cluster point.

Proof. Case :1 To prove that (1) =⇒ (2)

Let S : D → X be a net in X, we have to prove that S has a p-

cluster point. On contradiction we assume that S has no p-cluster point.

Then by definition of p-cluster point, for each x ∈ X there exist a p-

open set Ux such that x ∈ Ux and mx ∈ D such that for every n ∈ D,

n ≥ mx ⇒ S(n) ∈ X − Ux. For each x ∈ X there exists such Ux, hence

X =
⋃
x∈X

Ux. Since X is p-Compact there exists x1, x2, ...xk such that

X =
i=k⋃
i=1

Uxi (6.1)

For each xi ∈ X, there exists mxi ∈ D such that S(n) ∈ X − Uxi . Since

D is a directed set there exists n ∈ D such that n ≥ mxi for i = 1, 2, ...k.

But then S(n) ∈
⋂
{X − Uxi/i = 1, 2, ...k} which is equal to null set by

(6.1) not possible by definition of net. Hence our assumption is wrong

and S has at least one p-cluster point in X. Then since S is arbitrary,

(1)⇒ (2).

Case : 2 To prove that (2)⇒ (1)
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We assume that every net in X has a p-cluster point in X. To prove

that X is p-Compact. Consider F as a family of p-closed sets in X

having finite intersection property. We define D as the family of all finite

intersection of members of F . Now we make D a directed set by defining

for D1, D2 ∈ D ; D1 ≥ D2 ⇒ D1 ⊂ D2. Now define a net S : D → X

by S(D) = any point in D. By our assumption S has a p-cluster point

say x ∈ X. In order to prove p-Compactness it is enough to prove F
itself has non-empty intersection. For that we will prove x ∈

⋂
F∈F

F .

On contradiction we assume that x /∈
⋂
F∈F

F which implies there exists

F ∈ F such that x /∈ F . Then X − F is a p-open set containing ‘x’

. Since ‘x’ is a p-cluster point, by definition there exists F1 ∈ D such

that F1 ≥ F and S(F1) ∈ X − F . Now F1 ≥ F implies F1 ⊆ F and

S(F1) ∈ X − F1 which is a contradiction to our definition of net. Hence

x ∈
⋂
F∈F

F and X is p-Compact.

Theorem 6.3.3. A topological space is p-Compact iff every ultra

filter/ultra net in it is p-convergent.

Proof. Let (X,T ) be a topological space and assume that every ultra

filter in it is p-convergent. To show that X is p-Compact it is enough

to prove that every filter on X has a p-cluster point. Suppose F is a

filter on X then there exists an ultra filter F∗ containing F . By our

assumption F∗ p-converges to a point say ‘x’ on X which implies ‘x’ is

a p-cluster point of F∗. So every p-open set containing ‘x’ meets every

member of F∗ and in particular every member of F since F ⊂ F∗. Hence

‘x’ is a p-cluster point of F . Thus every filter on X has a p-cluster point

which implies p-Compactness of X. Necessary part is trivial by Theorem

: 6.3.2.
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Analyzing Theorem 6.3.1, Theorem 6.3.2 and Theorem 6.3.3 we char-

acterize p-Compactness of any arbitrary topological space according to

the following result.

Theorem 6.3.4. Let (X,T ) be any topological space. The following

statements are equivalent

1. X is p-Compact.

2. Each family of p-closed subsets of X with the finite intersection

property has non-empty intersection.

3. Every net/filter in X has a p-cluster point.

4. Every ultra filter in X p-converges.

Theorem 6.3.5. Let (X,T ) be a topological space. Then p-

Compactness of X implies compactness of X if and only if there exists

no net S in X such that S has a p-cluster point but has no cluster points.

Proof. Necessary Condition

Assume that X is p-Compact and p-Compactness implies compact-

ness. Compactness of X implies that every net in X has a cluster point

which in turn implies that there exists no net S in X such that S has a

p-cluster point but has no cluster points in X.

Sufficiency Condition

Assume that there exists no net S in X such that S has a p-cluster

point but has no cluster points and X is p-Compact. To prove that X

is compact. p-Compactness of X implies every net in X has a p-cluster
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point and by our assumption above every net has a cluster point hence

X is compact.

Towards the end of this section we discuss some product theorems

related to p-Compactness.

Theorem 6.3.6. Finite product of p-Compact spaces is p-Compact.

Proof. We shall prove that the product of two p-Compact spaces is

p-Compact and the theorem follows by induction for finite product and

we proceed through the following steps :

Step : 1

Let (X,T ) and (Y, T ′) be two topological spaces given with Y p-Compact.

Take a0 ∈ X and consider a0 × Y . For each y ∈ Y , let Gy ×Hy be a p-

open cover of a0×Y . Clearly y ∈ Hy and a0 ∈ Gy for every ‘y’. Then the

p-open sets {Hy}y∈Y forms a p-open cover of Y . As Y is p-Compact there

exists finite sub cover Hy1 , Hy2 , ................., Hyn such that Y =
i=n⋃
i=1

Hyi .

Now take G =
i=n⋂
i=1

Gyi , if
i=n⋂
i=1

Gyi is prime, otherwise choose G as a p-

open set such that
i=n⋂
i=1

Gyi ⊆ G ⊆ Gyi , for each i = 1, 2, ......n. Now if

both the above conditions does not holds choose G as G = Gyi for some

i = 1, 2, .....n. Then in each case G is a p-open set containing a0. Next

we will prove that G× Y can be covered by {Gyi ×Hyi} /i = 1, 2........n.

But since for each x× y ∈ G× Y , x ∈ Gyi for some i = 1, 2......n. Thus

G× Y can be covered by {Gyi ×Hyi} /i = 1, 2........n.

Step : 2
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Now consider two p-Compact topological spaces (X,T ) and (Y, T ′) and

let G be a p-open covering of X×Y . Let a0 ∈ X and then by step : 1, a0×
Y is p-Compact and can be covered by {Gi × Y/i = 1, 2......m}. Thus for

every x ∈ X there exists a p-open set Gx such that Gx×Y can be covered

by finitely many elements of G. Clearly {Gx} is a p-open covering of X

and by p-Compactness there exists {Gx1 , Gx2 .................Gxn} covering

X. Clearly then each of Gx1 × Y,Gx2 × Y....... can be covered by finitely

many elements of G. Since Gx1 × Y,Gx2 × Y....... covers X × Y , it can

be covered by finitely many elements of G. Hence X × Y is p-Compact

and any finite case follows by induction.

Lemma 6.3.1. Let X be the topological product of an indexed

family of spaces {(Xi, Ti)/i ∈ I}. Let F be a filter on Xand let x ∈ X.

If for each i ∈ I, the image filter of F under πi p-converges to πi(x) in

Xi then F p-converges to ‘x’.

Proof. Given for each i ∈ I, the image filter of F under πi p-converges

to πi(x) in Xi, we have to show that F p-converges to ‘x’ in X. Let

V be a p-open set in X containing ‘x’. Then V =
∏
Vi where each

Vi is a p-open set in Xi and Vi = Xi for infinitely many ‘i ’ s except

for i = i1, i2...............in. Given πik(F) p-converges to πik(x) for i =

1, 2, ............n which implies Vik ∈ πik(F) and hence there exists Fk ∈ F
such that

Vik ⊃ πik(Fk) for k = 1, 2, ...........n

⇒ π−1ik (Vik) ⊃ Fk for k = 1, 2, ...........n

⇒ π−1ik (Vik) ∈ F
⇒ V ∈ F since F is a filter. Hence F p-converges to ‘x’.

Theorem 6.3.7. Let (Xi, Ti) be a collection of non-empty topolog-
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ical spaces and let X be its topological product. Then X is p-Compact

if and only if each Xi is p-Compact.

Proof. Necessary part is trivial by Theorem : 6.2.4 and Lemma :

3.3.1. Conversely suppose each Xi is p-Compact to show that X is p-

Compact. It is enough to prove that every ultrafilter in it is p-convergent

by Theorem : 6.3.4. So let F be an ultrafilter on X and for i ∈ I let

Fi be its image filter under πi. Then Fi is a filter on Xi and infact it is

an ultrafilter on Xi. Since Xi is p-Compact Fi p-converges to xi which

implies F p-converges to ‘x’. Thus X is p-Compact.

6.4 C-p.compactness and Its Characteriza-

tions

The notion of covering a topological space by closures promoted the

study of C-compactness in topological spaces and G.Viglino defined C-

compactness as :

Definition 6.4.1. [49] A space X is said to be C-compact if for

each closed A ⊂ X and each open cover {Uα/α ∈ I} of A, there exists a

finite sub collection {Uαi
/i = 1, 2..n} such that A ⊆

i=n⋃
i=1

cl(Uαi
).

Similarly if p-open sets cover a particular set then definitely the p-

closures of corresponding sets also forms a cover. Such a conception bring

out the definition of C-p.compactness and in this section we introduced C-

p.compactness. Also obtained characterization of C-p.compactness using

nets and filters.
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Definition 6.4.2. Let (X,T ) be a topological space. A set U ⊆ X

is said to be regular prime open(regular p-open) if p-int(p-cl(U)) = U

and U is called regular p-closed set if it is the complement of a regular

p-open set.

Example 6.4.1. Consider X = {a, b, c, d} ,
T = {X,φ, {a} , {b} , {a, b} , {a, b, c} , {a, b, d}} then (X,T ) is a topologi-

cal space and {a} is a regular p-open set .

Definition 6.4.3. [41] Let (X,T ) be a topological space. A set

U ⊆ X is said to be regular open if int(cl(U)) = U .

Remark 6.4.1. In a discrete space all subsets are regular open but

all of them are not regular p-open hence regular open sets need not be

regular p-open.

Theorem 6.4.1. p-interior of a set A ⊂ X is regular p-open, if it

is p-closed.

Proof. In order to prove that p-int(A) is regular p-open it is enough

to prove that p-int(A)=p-int(p-cl(p-int(A))). Since A is p-closed p-cl(p-

int(A)) is A itself. Hence the result.

Corollary 9. For any set U ⊆ X, p-int(p-cl(U)) is a regular p-open

set always.

Proof. Proof is trivial by last theorem since p-cl(U) is always p-closed.

Proposition 6.4.1. Let (X,T ) be a topological space, then for ev-

ery p-open set there always exists a unique regular p-open set containing
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A.

Proof. Proof is trivial by Proposition : 2.3.1 and Proposition : 2.3.5

Definition 6.4.4. A space X is said to be C-p.compact if for each

p-closed A ⊂ X and each p-open cover {Uα/α ∈ I} of A, there exists a

finite sub collection {Uαi
/i = 1, 2..n} such that A ⊆

i=n⋃
i=1

p-cl(Uαi
).

Remark 6.4.2. Compactness implies p-Compactness implies C-

p.compactness.

Remark 6.4.3. C-p.compactness need not implies C-compactness

; in order to prove this we consider an example due to S.Sakai [42]. Let

X = {(a, b) : n,m ∈ N} such that a = 1/n, b = 1/m or a = 1/n, b = 0

or a = 0, b = 0 where N stands for the set of all positive integers. Also

let {Ni/i ∈ N} be the partition of N to infinitely many disjoint classes.

Define subsets of X as follows:

Hik = {{(1/i, 0)} ∪ {(1/i, 1/m)/m ≥ k}}∪{(1/n, 1/m)/n ≥ k,m ∈ Ni} ,
Lk = {(0, 0)} ∪ {(1/n, 1/m)/n > k,m /∈ Ni, 1 ≤ i ≤ k}.
Let T be the topology on X generated by {{(1/n, 1/m)} /n,m ∈ N} ∪
{Hik/i, k ∈ N} ∪ {Lk/k ∈ N} .Then (X,T ) is a C-compact hausdorff

space. Now let Y = {y0, y1, y2....} be a one point compactification of

a countable discrete space {y1, y2....}. Consider X × Y S.Sakai in [42]

proved that this is a non C-compact space, but this space is hausdorff

since both X and Y are hausdorff and hence it happens to be a p-

Compact and thus C-p.compact space.

Theorem 6.4.2. A space (X,T ) is C-p.compact if and only if for

each p-closed A ⊆ X and regular p-open cover (Cover in which all ele-
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ments are regular p-open) {Uα/α ∈ I} there exists a finite sub collection

{Uαi
: i = 1, 2...n} such that A ⊆

i=n⋃
i=1

p-cl(Uαi
).

Proof. Necessary Part:

If X is C-p.compact all p-open covers satisfies the given condition

we have to prove that each regular p-open cover {Uα/α ∈ I} satisfies the

given condition but since each Uα is regular p-open ; p-int(p-cl(Uα)) = Uα

for every α ∈ I that is each Uα is p-open and since each p-open cover

satisfies the given condition {Uα/α ∈ I} also satisfies the given condition.

Hence necessary part is trivial.

Sufficiency Part:

Assume that for each p-closed A ⊆ X and regular p-open cover

{Vα/α ∈ I} there exists a finite sub collection {Vαi
: i = 1, 2...n} such

that A ⊆
i=n⋃
i=1

p-cl(Vαi
). Let {Uα/α ∈ I} be any p-open cover of A. Then

{p-int(p-cl(Uα))/α ∈ I} is a regular p-open cover of A. So there exists a

finite sub collection {p-int(p-cl(Uαi
)) : i = 1, 2....n} such that

A ⊆
i=n⋃
i=1

p-cl(p-int(p-cl(Uαi
))).

Clearly p-cl(p-int(p-cl(Uαi
))) = p-cl(Uαi

)

hence A ⊆
i=n⋃
i=1

p-cl(Uαi
) ; that is A is C-p.compact.

Definition 6.4.5. Let (X,T ) be a topological space and let X 6= φ

, F a filter on X. Then F is said to be p-closure convergent to a point

a ∈ X if for every p-open set V in X containing ‘a’ ; p-cl(V ) ∈ F and

a ∈ X is said to be a p-closure limit point of F if every p-open set V

containing ‘a’ is such that p-cl(V ) ∩ A 6= φ for every A ∈ F.
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Remark 6.4.4. p-convergence implies p-closure convergence but

converse is not true. Similarly for p-closure limit point.

Example 6.4.2. Let (R, T = {R, φ,Q,Q′}) be a topological space

and a filter be defined on it as F = U(x)/x ∈ Q′ that is principal filter

generated by ‘x’.Then any rational point is a p-closure convergent point

but not a p-convergent point.

Definition 6.4.6. Let (X,T ) be a topological space and let S :

D → X be a net on X , then S p-closure converges to a point x ∈ X if

for every p-open set U containing ‘x’ there exists m ∈ D such that for

every n ≥ m ; S(n) ∩ p-cl(U) 6= φ and ‘x’ is said to be a p-closure limit

point of S if for every p-open set U containing ‘x’ and m ∈ D ; there

exists n ∈ D such that n ≥ m and S(n) ∩ p-cl(U) 6= φ.

Now we characterize C-p.compactness as follows :

Theorem 6.4.3. Let (X,T ) be a topological space then the follow-

ing conditions are equivalent:

1. X is C-p.compact.

2. Corresponding to each regular p-open cover (Cover in which all

elements are regular p-open) {Uα/α ∈ I} of an arbitrary p-closed

set A, there exists a finite sub collection {Uαi
: i = 1, 2...n} such

that A ⊆
i=n⋃
i=1

p-cl(Uαi
) and this is true for each p-closed set.

3. Corresponding to each family of non-empty regular p-closed sets

{Fα/α ∈ I} such that (
⋂
α

Fα) ∩ A = φ where A is any arbitrary p-

closed set, there exists a finite sub family {Fαi
/i = 1, 2......n} such
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that (
i=n⋂
i=1

p-int(Fαi
)) ∩ A = φ.

4. For each p-closed A ⊆ X and each filter with base F = {Aα/α ∈ I}
in A, there exists an a ∈ A such that the filter has ‘a’ as a p-closure

cluster point.

Proof. • (1)⇔ (2) already proved.

• To prove (1)⇒ (3).

Assume that X is C-p.compact. Given A as a p-closed set and

collection of non-empty regular p-closed sets {Fi/i ∈ I} such that

(
⋂
i

Fi)∩A = φ. To prove that there exists a finite sub family such

that (
i=n⋂
i=1

p-int(Fi)) ∩ A = φ.

Consider U = {Ui/Ui = X − Fi/i ∈ I} then each Ui is a regular

p-open set. Also (
⋂
i

Fi) ∩ A = φ

⇒ A ⊆
⋃
i

(X − Fi)

⇒ A ⊆
⋃
i

Ui.

That is A can be covered by a collection of regular p-open sets but

since X is C-p.compact and A is p-closed

A ⊆
i=n⋃
i=1

p-cl(Ui)

Now consider
i=n⋂
i=1

p-int(Fi) = X −
i=n⋃
i=1

p-cl(Ui) ⊆ X − A and hence

(
i=n⋂
i=1

p-int(Fi)) ∩ A = φ.

• To prove (3)⇒ (2)
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Let {Ui/i ∈ I} be a regular p-open cover of A, to prove that there

exists a finite sub collection {Ui : i = 1, 2...........n} such that A ⊆
i=n⋃
i=1

p-cl(Ui). Given A ⊆
⋃
i

Ui which implies A ∩ (
⋂
i

(X − Ui)) = φ.

Since X−Ui is regular p-closed now we can apply condition (3) and

that implies there exists a finite sub collection {Ui : i = 1, 2...........n}
such that

(
i=n⋂
i=1

p-int(X − Ui)) ∩ A = φ which implies

A ⊆ X − (
i=n⋂
i=1

p-int(X − Ui))

=
i=n⋃
i=1

(X − p-int(X − Ui))

=
i=n⋃
i=1

p-cl(Ui) Hence condition (2) is satisfied.

• To prove condition (1)⇒ (4)

Suppose there exists a filter F on A with filter base F = {Ai/i ∈ I}
in A to prove that F has a p-closure limit point. On contradiction

assume that F has no p-closure limit point. Then for each aj ∈ A
there exists a p-open set Uaj and some Ai(aj) ∈ F such that

Ai(aj) ∩ p-cl(Uaj) = φ. Such a p-open set Uaj exists for each

aj ∈ A and hence
{
Uaj/aj ∈ A

}
forms a p-open cover of A and

C-p.compactness of X implies

A ⊆
i=n⋃
i=1

p-cl(Uaj). (6.2)

Now corresponding to each Uaj ; j = 1, 2......n there exists Ai(aj) ∈ F

which implies
i=n⋂
i=1

Ai(aj) belongs to the filter
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which implies there exists Ai(a0) belongs to the filter base and is

such that Ai(a0) ⊆
i=n⋂
i=1

Ai(aj).

But clearly Ai(a0) ⊆ A and hence (6.2) implies

Ai(a0) ⊆
i=n⋃
i=1

p-cl(Uaj) which implies

Ai(aj) ∩ p-cl(Uaj) 6= φ for every j which is a contradiction. Hence

the result.

• To prove (4)⇒ (3)

In order to prove condition (3) it is enough to prove its contra pos-

itive statement. Suppose there exists a p-closed set A ⊆ X and

a collection of regular p-closed sets {Fi/i ∈ I} such that each fi-

nite sub collection {Fi/i = 1, 2.......n} has the property that (
i=n⋂
i=1

(p-

int(Fi))) ∩ A 6= φ but (
⋂
i

Fi) ∩ A = φ.

Then the sets {(p-int(Fi)) ∩ A/i ∈ I} together with all finite in-

tersections of the form (
i=n⋂
i=1

(p-int(Fi))) ∩ A will form a filter base

for a filter F on A ; then by our assumption F has a p-closure

limit point say a ∈ A. Then for any p-open set U(a) containing

‘a’ and each p-int(Fi) ; p-cl(U(a)) ∩ (p-int(Fi) ∩ A) 6= φ. But

Fi ∩ A 6= φ for every i ∈ I and (
⋂
i

Fi) ∩ A = φ together implies

there exists i0 ∈ I such that a /∈ Fi0 . Therefore a /∈ p-int(Fi0)

implies a ∈ X−Fi0 ⊂ p-cl(X−Fi0) ⊂ X−p-int(Fi0) which implies

p-cl(X − Fi0) ∩ p-int(Fi0) = φ which implies ‘a’ is not a p-closure

limit point of F which is a contradiction. Hence (
⋂
i

Fi) ∩ A 6= φ.

Hence proving the contra positive statement of (3).
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Remark 6.4.5. Let X be a topological space and ‘x’ in X is said to

be a p-closure cluster point of the filter F on X if and only if ′x′ is a p-

closure cluster point for the net associated with the filter and conversely.

Hence the above equivalent condition for C-p.compactness holds for any

net on any p-closed subset of the corresponding topological space.

6.5 Prime Topological Spaces and Its Lat-

tice Structure

Definition 6.5.1. A topological space (X,T ) is said to be a prime

topological space shortly p-topological space if every open set in T is a

p-open set.

Example 6.5.1. Consider the real line R with

T = {R, φ, {(−∞, a)/a ∈ R}}. Then (R, T ) is a prime topological space.

Remark 6.5.1. A topological space in which the open sets forms a

chain will always be a prime topological space. Converse of this remark

is not true , for example Consider real line R with T = {R, φ,Q,Q′}
where Q and Q′ are the rational and irrational numbers respectively is

a p-topological space but collection of all open sets in it will not form a

chain.

Theorem 6.5.1. A topological space (X,T ) is a prime topological

space if and only if either T is a chain or |B| ≤ 2 where B is the sub base

for T and elements of B are disjoint.

Proof. Sufficiency part is trivial and for proving necessary part we
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assume that (X,T ) is a prime topological space and let the collection

of open sets in it be not a chain. Then we consider two cases : either

|B| ≤ 2 or |B| > 2 where B is a sub base for T .

If the first case occurs and if B is not of the required form , then

T = {X,φ,A,B,A ∩B,A ∪B} then clearly A∩B is not prime in T and

that is not possible since by our assumption T is a prime topology on X.

If the second case occurs then cardinality of B is at least three and for

mean time we assume that |B| = 3. Let B = {A,B,C} then again there

arise two cases :

1. A ∩B 6= φ, B ∩ C = φ then

T = {X,φ,A ∩B,A,B,C,A ∪B,A ∪ C,B ∪ C}. Clearly here A∩
B is not prime obtaining a contradiction. Similarly we can prove

for cases when B ∩ C 6= φ, A ∩ C 6= φ. If each of them intersects

mutually then trivially there always exists non prime open sets.

2. A, B, C are mutually disjoint , then

T = {X,φ,A,B,C,A ∪B,A ∪ C,B ∪ C}. ThenA, B, C are clearly

not prime.

If cardinality of B is greater than three , then also B is of the required

form and the same proof above holds. Hence either B is a chain or

|B| ≤ 2 and elements of B must be disjoint.

Definition 6.5.2. [2] A topological space is said to be principal if

arbitrary intersection of open sets are open.

Remark 6.5.2. Analyzing Theorem : 6.5.1, we can deduce that all
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prime topological spaces are principal. Converse of this remark need not

be true since all finite topological spaces are principal but all are clearly

not prime topologies.

Proposition 6.5.1. Let X be any arbitrary set and let T , T ′ be

two prime topologies on X, then T ∩ T ′ is also a prime topology on X.

Proof. Let G ∈ (T ∩ T ′) and assume that G is not prime then there

exists H, K ∈ T ∩T ′ such that H ∩K ⊆ G but H not a subset of G and

K not a subset of G. Given H, K, G belongs to T ∩ T ′ which means H,

K, G belongs to both T and T ′ implies G not prime in T and T ′ which

is not possible. Hence T ∩ T ′ is a prime topology on X.

Remark 6.5.3. Join of two prime topologies need not form a prime

topology. For example Let X = R, real line with T = {(−∞, a)/a ∈ R}
and T ′ = {(b,∞)/b ∈ R}. Here both T and T ′ are prime topologies on

X, but T ∨T ′ is the discrete topology on R which is not a prime topology.

Let Pr(X) denote the collection of all prime topologies on any arbi-

trary set X, then Pr(X) forms a meet semi lattice on X. The minimal

element in Pr(X) is the indiscrete topology on X and atoms of Pr(X) is

same as atoms of the lattice of all topologies on X.

Theorem 6.5.2. Pr(X) is meet complemented.

Proof. Let T ∈ Pr(X) we have to prove that there exists T ′ ∈ Pr(X)

such that T ∩ T ′ = O, the indiscrete topology. If we take any prime

topology T then either it is a chain or not . In either case there exists

at least one singleton set {x0} , x0 ∈ X such that {x0} /∈ T . Then
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clearly T ∩ {X,φ, {x0}} = O. If there does not exists x0 ∈ X such

that {x0} /∈ T then T becomes discrete topology which is not a prime

topology. Hence there always exists such a singleton set and the atom

involving that element serves as the meet complement of prime topology

chosen.

Remark 6.5.4. Analyzing Theorem : 6.5.1 we can see that every

element of Pr(X) can be written as join of atoms. Hence Pr(X) is atomic.

Theorem 6.5.3. For any arbitrary set X , Pr(X) is meet comple-

mented atomic semi lattice.

Proof. Proof is trivial by Proposition :6.5.1, Theorem : 6.5.2 and

Remark : 6.5.4.

Theorem 6.5.4. Arbitrary product of prime topological spaces is

a prime topological space.

Proof. Let {(Xi, Ti) : i ∈ I} be a collection of p-topological spaces

and let (X =
∏
Xi, T ) be their product topological space. Then the

open sets in T are sets of the form
∏
Ui where Ui = Xi for infinitely

many i′s and other U ′is are open in Ti. But since Ui open in Ti , Ui is

p-open in Ti for every ‘i’ and hence each open set in X becomes a p-open

set. Thus X is a prime topological space.
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6.6 Prime Elements in the Lattice of Topolo-

gies

Let X be any arbitrary set and let T1 and T2 be any two topologies on X.

If every set in T1 is also in T2, then T1 is said to be coarser than T2 and T2

finer than T1. If Σ(X) denote the collection of all topologies on X, then

Vaidyanathswamy[48] proved that Σ(X) forms a complete lattice under

the above order of coarser and finer topologies.

Definition 6.6.1. Let Σ(X) denote the collection of all topologies

on an arbitrary set X. Let T ∈ Σ(X), then T is said to be prime in

Σ(X) if T1 ∧ T2 ≤ T implies T1 ≤ T or T2 ≤ T where T1,T2 ∈ Σ(X) with

T1 ∧ T2 6= O, the indiscrete topology.

Definition 6.6.2. [44] A topology T ∈ Σ(X) is called an ultraspace

if the only topology on X finer than T is the discrete topology on X.

Frohlich[17] characterised ultraspaces in terms of filters. He defined a

family δ(x, F ) for each filter F on X as δ(x, F ) = P [X −{x}]∪F where

P [X − {x}] is the collection of all subsets of X which does not contain

‘x’. And then he observed that ultraspaces on X are exactly topologies

of the form δ(x, U) where x ∈ X and U is an ultrafilter on X.

Theorem 6.6.1. [17] Every topology T on any arbitrary set X is

the infimum of all ultraspaces on X which are finer than T .

Theorem 6.6.2. Let X be any arbitrary set, then the prime ele-

ments in Σ(X) are precisely the ultraspaces in Σ(X).
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Proof. Proof follows directly from Theorem : 6.6.1 and Definition :

6.6.1.



Conclusion

Concluding remarks and suggestions for
further study

We have introduced p-open sets in the lattice of open sets of any ar-

bitrary topological space and studied the concepts of generalised closed

sets, semi open sets etc using p-open sets. Also analyzed some weaker

separation axioms like p-T1/2, p-T0, p-T1. However some more weaker

separation axioms like T1/4, T3/4 and properties like connectedness are

not yet analyzed. Application of this concept in other branches of math-

ematics is yet to be investigated.





Bibliography

[1] Agashe, P., and Levine, N. (1973) . Adjacent topologies. Journal of

Mathematics, Tokushima University, 7, 21-35.

[2] Alexandroff, P. (2012). Elementary concepts of topology. Courier Cor-

poration.

[3] Arenas, F. G., Dontchev, J., Ganster, M. (1997). On lambda-sets and

the dual of generalized continuity. Questions and answers in General

Topology, 15, 3-14.

[4] Araki, N., Ganster, M., Maki, H., Nishi, A. Properties of T1/4 spaces.

[5] Balachandran, K., Sundaram, P., Maki, H. (1991). On generalized

continuous maps in topological spaces. Mem. Fac. Sci. Kochi Univ.

Ser. A Math., 12, 5-13.

[6] Balachandran, V. K. (1955). On complete lattices and a problem of

Birkhoff and Frink. Proceedings of the American Mathematical Society,

6(4), 548-553.

[7] Birkhoff, G. (1936). On the combination of topologies. Fundamenta

Mathematicae, 26(1), 156-166.

129



[8] Birkhoff, G. (1940). Lattice theory (Vol. 25). American Mathematical

Soc.

[9] Bourbaki, N. (2013). General Topology: Chapters 14 (Vol. 18).

Springer Science and Business Media.

[10] Crossley, S., Hildebrand, S. (1972). Semi-topological properties.

Fundamenta Mathematicae, 74(3), 233-254.

[11] Cueva, M. C. (1993). On g-closed sets and g-continuous mappings.

Kyungpook Math. J, 33(2), 205-209.

[12] Dimaio, G., Noiri, T. (1987). On s-closed spaces. Indian Journal of

Pure and Applied Mathematics, 18(3), 226-233.

[13] Dontchev, J. (1995). On door spaces. Indian Journal of Pure and

Applied Mathematics, 26, 873-882.

[14] Dunham, W. (1977). T1/2-spaces, Kyungpook. Math. J., 17, 161-169.

[15] Dunham, W. (1982). A new closure operator for non-T1 topologies.

Bull. Kyungpook Math. J., 22, 55-60.

[16] Dunham, W., Levine, N. (1980). Further results on generalized

closed sets in topology. Kyungpook Math. J, 20, 169-175.
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