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Chapter 1

Introduction

Graph theory is a branch of mathematics originated in the 18th

century when Leonhard Euler solved the Konigsberg bridge prob-

lem and it provides mathematical models for complex real world

situations. The term ‘graph’ refers to a set of vertices (points

or nodes) and of edges (links or lines) that connect the vertices.

A graph without loops and with at most one edge between any

two vertices is called a simple graph. Unless stated otherwise

the term graph in this thesis refers to a simple graph with finite

number of vertices. The origin of graph theory is well written

in [33].

In 1862, C. F. De Jaenisch [14] studied the problem of deter-

mining the minimum number of queens required to cover an n×n

chess board and W. W. Rouse Ball [51] reported the following

three basic types of problems of a chess player.
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• Determine the minimum number of a given type of chess

pieces that are necessary to attack every square of an n×n

chess board.

• Determine the smallest number of mutually non-attacking

chess pieces of a particular type that are necessary to attack

every square of an n× n board.

• Determine the maximum number of a particular type of

chess pieces that can be placed on an n × n chess board

such that no two pieces attack each other.

The above problems are the motivation for domination related

problems in graph theory. Oystein Ore [35] introduced the terms

“dominating set” and “domination number” of a graph G. The

concept of dominating set is applied in various fields such as

communication networks and facility location problems. There

are many variations of domination [48] and generalizations in-

cluding the total domination [30], the connected domination [17]

and the power domination [45].

In this thesis we study a competitive optimization variant of

domination, introduced by Brešar, Klavžar and Rall [2]. One

of the main problems in graph theory is to find some special

structures that are optimal with respect to some condition. For

example, the problem in graph matching is to find the largest

possible matching; however, when we view a maximal match-
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ing as an edge-dominating set, we suddenly want to find the

smallest maximal matching. This motivates the study of “com-

petitive optimization” parameters on graphs. A competitive

optimization parameter can be viewed as a game in which two

players, Min and Max, collaboratively build some desired struc-

ture. In the process, Min aims to minimize the cardinality of

the structure produced, while Max aims to maximize it.

The domination game played on a finite, undirected graph G

consists of two players, Dominator (D) and Staller (S), who al-

ternately taking turns choosing a vertex from G such that when-

ever a vertex is chosen by either player, at least one additional

vertex is dominated. Dominator uses a strategy to dominate

the graph in as few steps as possible, and Staller uses a strat-

egy to delay the process as much as possible. D game and S

game are two variants of the domination game in which Dom-

inator and Staller has respectively the first move. The game

domination number, denoted by γg(G), the number of ver-

tices chosen in a D game when both players play optimally. The

Staller-start game domination number, denoted by γ
′
g(G),

is the number of vertices chosen in an S game when both players

play optimally. (This differs from the parameter called ‘game

domination number’ by Alon, Balogh, Bollobas, and Szabo [32].)
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1.1 Definitions

The basic notations, terminology and definitions are from [38].

Definition 1.1.1.

• A graph is an ordered pair G = (V,E) where V is a non-

empty set and E is an unordered pair of elements of V .

• A graph G = (V,E) is trivial or empty if its vertex set

is a singleton set and it contains no edges.

• A graph G is non-trivial or non-empty if it has at least

one edge.

• A vertex of degree zero is an isolated vertex and of degree

one is a pendant vertex. An edge incident to a pendant

vertex is a pendant edge.

• If G is a graph of order n, then a vertex of degree n− 1 is

called a universal vertex.

• Let u and v be any two vertices of a graph G = (V,E),

then u dominates v if u = v or u is adjacent to v.

• The open neighborhood NG(u) = {v ∈ V : uv ∈ E(G)}

and the closed neighborhood NG[u] = NG(u) ∪ {u} will

be abbreviated to N(u) and N [u] when G will be clear from

the context.
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• If u ∈ V (G) and S ⊆ V (G), then let NS(u) = NG(u) ∩ S.

• The eccentricity eccG(x) of x is max{d(x, y) : y ∈ V (G)}

where dG(x, y) be the standard shortest-path distance be-

tween vertices x and y of G.

• A subgraph H of G is isometric if dH(u, v) = dG(u, v) holds

for every pair of vertices u and v of H and that H is 2-

isometric if for dG(u, v) = 2, u, v ∈ V (H), it follows that

dH(u, v) = 2.

Definition 1.1.2. A dominating set of a graph G = (V,E) is

a set S ⊆ V such that V = N [S] =
⋃
v∈S N [v]. Domination

number of G is the minimum number of vertices in a dominat-

ing set of G, denoted by γ(G).

Definition 1.1.3. A partially dominated graph is a graph

together with the declaration that some vertices S ⊆ V are

already dominated.

If S ⊆ V then let G|S denote the partially dominated graph in

which vertices from S are already dominated.

Definition 1.1.4. A vertex u of a partially dominated graph

G|S is saturated if each vertex in N [u] is dominated.

Definition 1.1.5.

• Two vertices u and v in G are true twins if N [u] = N [v].

• Two vertices u and v in G are false twins if N(u) = N(v).
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• A vertex u of a graph G is a support vertex if the vertex

u is adjacent to at least one pendant vertex in G.

• A set of vertices S ⊆ V (G) is an independent set if no

two vertices in S are adjacent in G.

• A set of vertices S ⊆ V (G) is a clique if every two vertices

in S are adjacent in G.

• An independent set (resp. a clique) is maximal if no other

independent set (resp. a clique) contains it

Definition 1.1.6. [41] A graph G = (V,E) is a split graph,

if V (G) can be partitioned into (possibly empty) sets K and I,

where K is a clique and I is an independent set. The pair (K, I)

is called a split partition of G.

In a search for triangle-free graphs with arbitrarily large chro-

matic numbers, Mycielski [23] in 1955 developed an interesting

graph transformation called Mycielskian of a graph.

Definition 1.1.7. For a graph G = (V,E), the Mycielskian

of G is the graph µ(G) with vertex set V ∪ V ′ ∪ {w}, where

V ′ = {u′ : u ∈ V } and edge set E ∪ {uv′ : uv ∈ E} ∪ {v′w : v′ ∈

V ′}. The vertex v′ is called the twin of the vertex v and vice

versa. The vertex w is called the root of µ(G).

Definition 1.1.8. A subdivision of an edge e = uv of a

graph G is obtained by replacing the edge e by the path uwv
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Figure 1.1: Mycielskian of P4

of length two for some vertex w not in V (G). It is denoted by

G� e.

Definition 1.1.9. The graph obtained by contraction of an

edge e = uv, denoted by G.e, is obtained from G−e by replacing

u and v by a new vertex w (contracted vertex) which is adjacent

to all vertices in NG−e(u) ∪NG−e(v).

Definition 1.1.10. A chordal graph is one in which every

cycle of length at least four has a chord, that is, an edge that

connects two non-consecutive vertices of the cycle.

Definition 1.1.11. [1]

• A vertex u ∈ N [v] is a maximum neighbour of v if for all

w ∈ N [v], N [w] ⊆ N [u]. Let Gi = G({vi, vi+1 . . . vn}) be

the subgraph induced by {vi, vi+1 . . . vn} and Ni[v] be the

closed neighbourhood of v in Gi.

• A vertex ordering (v1, v2, . . . , vn) ofG is a maximum neigh-
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bourhood ordering of G if for all i ∈ 1, . . . , n, the ver-

tex vi has a maximum neighbour ui ∈ Gi, that is for all

w ∈ Ni[vi], Ni[w] ⊆ Ni[ui].

• G is dually chordal if G has a maximum neighbourhood

ordering.

Definition 1.1.12. [37] A graph G is a tri-split graph if V (G)

can be partitioned into three disjoint sets A 6= ∅, B, and C with

the following properties. The set A induces a clique, B induces

an independent set, and C an arbitrary graph. Each vertex of

A is adjacent to each vertex of C and no vertex of B is adjacent

to a vertex in C.

1.2 A survey of previous results

The domination game was introduced by B. Brešar, S. Klavžar,

and D. F. Rall in [2]. One of the main tools for proving most of

the results in this area is the Continuation Principle.

The Continuation Principle [50]: Let G be a graph and

fix A,B ⊆ V (G). Let G|A and G|B be the partially-dominated

graphs arising from G with A and B dominated, respectively. If

B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ
′
g(G|A) ≤ γ

′
g(G|B).

It is known [2, 50] that the difference between γg(G) and

γ
′
g(G) is at most one. Exact game domination number of a few

classes of graphs are known and some of them are proved in
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[21, 22] by G. Košmrlj.

• γg(Cn) = γg(Pn) =


⌈
n
2

⌉
− 1 n ≡ 3(mod4)⌈
n
2

⌉
otherwise

• γ′
g(Cn) =


⌈
n−1
2

⌉
− 1 n ≡ 2(mod4)⌈

n−1
2

⌉
otherwise

• γ′
g(Pn) =

⌈
n
2

⌉
.

The Comb P ′k is the graph obtained from a path of length

k by adding a vertex of degree 1 adjacent to each vertex of

the path.

• γg(P ′k) = k +
⌈
k−7
10

⌉
.

• γ′
g(P

′
k) = k +

⌈
k−2
10

⌉
A new class of graphs related to game domination number is

defined by Dorbec et al. in [37] known as no-minus graphs. A

graph G is a no-minus graph if for any set S ⊆ V (G), γg(G|S) ≤

γ
′
g(G|S). Trees and split graphs are some examples of no-minus

graphs. A graph G is an equal graph if γg(G) = γ′g(G). Dorbec

et al. also studied the possible values of the domination game

parameters γg(G) and γ′g(G) of the disjoint union of two graphs

according to the values of these parameters in the initial graphs.

The concept of guarded subgraph of a graph was intro-

duced in [5]. Every convex subgraph is a guarded subgraph and

every guarded subgraph is a 2-isometric subgraphs. A guarded

9



subgraph is not comparable to isometric subgraphs. A subgraph

H of a graph G is guarded in G if for any vertex u in G there

exists a vertex v ∈ V (H) such that N [u]∩V (H) ⊆ N [v]∩V (H).

Such a vertex v will be called a guard of u in H. It is proved

[5] that if H is guarded in G, then γg(H) ≤ γg(G) and γ′g(H) ≤

γ′g(G).

B. Brešar et al. answered the following question in [6]: How

much γg(G) and γ
′
g(G) can change if an edge is removed. It is

proved [2] that γ(G) ≤ γg(G) ≤ 2γ(G) − 1 holds for any graph

G.

Critical graph with respect to the domination game is in-

troduced in [12]. A graph G is domination game critical or

shortly γg-critical if γg(G) > γg(G−v) holds for every v ∈ V (G).

Also G is kγg - critical if γg(G) = k.

Kinnersley, West, and Zamani in [50] posed a celebrated 3/5-

conjecture asserting that if G is an isolate-free forest of order

n or an isolate-free graph of order n, then γg(G) ≤ 3n/5. Hen-

ning and Kinnersley proved this conjecture for all graphs with

minimum degree at least 2 in [25]. Now this conjecture is

open for graphs with minimum degree 1.

The concept of bluff graph is introduced in [8]. A graph

is a bluff graph if every vertex is an optimal start vertex for

Dominator in D-game and every vertex is also an optimal start

vertex for Staller in S-game. It is proved [8] that every minus

10



graph is a bluff graph. Moreover, if G is a connected graph with

γg(G) ≥ 2 and δ(G) = 1, then G is a bluff graph if and only if

G is a minus graph.

Two new techniques cutting lemma and union lemma are

introduced in [36]. The cutting lemma bounds the game

domination number of a partially dominated graph with the

game domination number of suitably modified partially dom-

inated graph. The union lemma bounds the S-game domi-

nation number of a disjoint union of paths using appropriate

weighting functions.

It is proved [42] that the game domination number of a con-

nected graph can be bounded above in terms of the size of min-

imal edge cuts. In particular, if C a minimum edge cut of a

connected graph G, then γg(G) ≤ γg(G \ C) + 2κ′(G).

Motivated by all these results which had profound impact in

the theory of game domination, we shall in the next section sum

up our research work.

1.3 Summary of the thesis

This thesis entitled Studies on the Domination game in

Graphs is divided into five chapters. The first chapter is on the

basic definitions and terminology and contains the literature on

the domination game in graphs.
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The second chapter deals with the effect of γg(G) as well as

γ
′
g(G) when an edge or vertex is removed. Here we give a partial

answer to the following problem posed in [6] by B. Brešar, P. Dor-

bec, S. Klavžar and G. Košmrlj .

• Problem: Which of the subsets of {−2,−1, 0, 1, 2} can

be realized as {γg(G)−γg(G−e) : e ∈ E(G)} within the

family of all (respectively connected) graphs G?.

Considering the above problem in the class of no-minus graphs

we have the following result.

• If G is a no-minus graph and e ∈ E(G), then {γg(G) −

γg(G−e)} ⊆ {−1, 0, 1} and {γ′
g(G)−γ′

g(G−e)} ⊆ {−1, 0, 1}.

Trees are no-minus graphs. We have analyzed all possibilities

of γg and γ
′
g in trees when an edge is removed. Also we have

studied the effect of γg and γ
′
g when a vertex is removed in the

class of no-minus graphs .

• If v is a pendant vertex of a no-minus graph G, then

γg(G)− 1 ≤ γg(G− v) ≤ γg(G),

γ
′
g(G)− 1 ≤ γ

′
g(G− v) ≤ γ

′
g(G).

We have also studied the effect of γg and γ
′
g in trees when a

vertex is removed.

In the third chapter, we discuss the following.

12



• Problem: Find a graph operation that involves a

monotone behaviour of γg and γ
′
g of the graphs in

the sense that these parameters either increase or

decrease but not both.

This motivated us to study the contraction of an edge and the

subdivision of an edge in domination game. The main results

in this chapter are listed below. In the following, G.e denotes

the graph obtained from G by contracting the edge e and G� e

denotes the graph obtained from G by subdividing the edge e.

• Let G be a graph and e ∈ E(G) then

γg(G)− 2 ≤ γg(G.e) ≤ γg(G)

γ
′
g(G)− 2 ≤ γ

′
g(G.e) ≤ γ

′
g(G).

• Let G be a graph and e ∈ E(G) then

γg(G) ≤ γg(G� e) ≤ γg(G) + 2

γ
′
g(G) ≤ γ

′
g(G� e) ≤ γ

′
g(G) + 2.

• Let G be a no minus graph and e ∈ E(G) then

γg(G) ≤ γg(G� e) ≤ γg(G) + 1

γ
′
g(G) ≤ γ

′
g(G� e) ≤ γ

′
g(G) + 1.

Some examples are also provided here.

In chapter four, we discuss domination game in split graphs.

In the class of split graphs we have,

• If G is a connected split graph, then {γg(G)−γg(G−e) : e ∈

13



E(G)} ⊆ {−1, 0} and {γ′
g(G) − γ′

g(G − e) : e ∈ E(G)} ⊆

{−1, 0}.

• For any connected split graph G , γg(G) − 1 ≤ γg(G − v)

and γ
′
g(G)− 1 ≤ γ

′
g(G− v) for any v ∈ V (G).

Here we also discuss 3/5-conjecture. Kinnersley, West, and

Zamani in [50] posed a celebrated 3/5-conjecture.

• Conjecture: If G is an isolate-free forest of order

n or an isolate-free graph of order n, then γg(G) ≤

3n/5.

Motivated by the above conjecture this chapter also deals with

the bounds of game domination number as well as staller start

game domination number in the class of split graphs. The main

results are listed below.

• If G is a connected split graph with n(G) ≥ 2, then γg(G) ≤⌊
n(G)
2

⌋
.

• If G is a connected split graph with n(G) ≥ 2, then γ′g(G) ≤⌊
n(G)+1

2

⌋
.

• A split graph G is a 1/2 split graph if γg(G) = 1
2
n.

• A connected split graph of even order is a 1/2-split graph

if and only if every vertex in K is adjacent to at least one

leaf in I and degI(xi) ∈ [2] for i ∈ [k].

14



In chapter five, the domination game in the Mycielskian of a

graph is studied. The main results are,

• For any graph G, γg(µ(G)) = 2 if and only if G ∼= K1.

• For any graph G, γ′g(µ(G)) = 2 if and only if G ∼= Kn.

• For any disconnected graph G, γg(µ(G)) = 3 if and only if

G ∼= 2K1.

• Let G be a connected graph with at least two vertices,

then γg(µ(G)) = 3 if and only if every vertex of G lies in a

connected dominating set of order 2.

• For any connected graph G, γ′g(µ(G)) = 3 if and only if

G � Kn and ∆(G) = n− 1.

In the concluding remarks, we have listed some open prob-

lems.
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Chapter 2

Domination Game: Effect

of Edge and Vertex

Removal in Graphs

In this chapter, we describe the behaviour of the game domina-

tion number by the removal of an edge or a vertex in the class

of no-minus graphs. In general, the game domination number

can either increase or decrease by at most 2 when an edge is

removed and it can either increase arbitrary large or decrease

by at most 2 when a vertex is removed.

0Some results of this chapter are included in the following paper.
Tijo James, Paul Dorbec, A. Vijayakumar, Further progress on the heredity of the game
domination number, Lecture Notes in Comput. Sci.(Springer) 18 (3) (2016), 435 – 445.
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2.1 Edge Removal

Here, we prove that removing an edge from a no-minus graph

can either increase or decrease its game domination number by

at most 1.

Theorem 2.1.1. If G is a no-minus graph and e ∈ E(G), then∣∣γg(G)− γg(G− e)
∣∣ ≤ 1 and

∣∣γ′
g(G)− γ′

g(G− e)
∣∣ ≤ 1.

Proof. First we prove that γg(G) ≤ γg(G− e) + 1. It is enough

to show that Dominator has a strategy on G such that at most

γg(G−e)+1 moves will be played for any move of Staller. Con-

sider a D game on G and at the same time Dominator imagines

another D game on G − e with at most γg(G − e) steps. Dom-

inator’s strategy on G is as follows. He will copy every move

of Staller in the real game on G to the imagined game if it is a

legal move in the imagined game and responds optimally in the

imagined game on G − e. Each response by Dominator in the

imagined game is then copied back to the real game on G if it is

a legal move in G. Let e = uv and if every move of Dominator

in the imagined game is a legal move in the real game and every

move of Staller in the real game is also a legal move in the imag-

ined game, then both the games end at the same time. Since

the imagined game on G−e has at most γg(G−e) steps, Staller

plays optimally in the real game and possibily not Dominator,

so γg(G) ≤ γg(G− e).
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Suppose at the kth move, Dominator chooses a vertex in the

imagined game that is not a legal move in the real game. This

is possible only if Dominator chooses a vertex that dominates

either u or v itself and all other neighbours of that vertex are

already dominated. Suppose that the kth move dominates only

the vertex v which is already dominated in G. After this move

in the imagined game, the set of vertices dominated in both

the games are same. At this stage the number of moves in the

real game is k−1 and the next turn is that of Dominator. Since

Staller plays optimally in the real game and Dominator may not,

γg(G) ≤ k − 1 + γg(G|D), where D denotes the set of vertices

already dominated in G (it is to be noted that both u and v are

already dominated in the real game on G). If possible suppose

that u is not dominated in the real game on G, then the vertex

v is a legal move in G and by the same argument as above we

get γg(G) ≤ γg(G−e). But in the imagined game, the next turn

is that of Staller and the number of moves at this stage is k.

Since Dominator plays optimally in G− e and Staller may not,

k + γ
′
g(G− e|D) ≤ γg(G− e).
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So,

γg(G) ≤ k − 1 + γg(G|D)

= k − 1 + γg(G− e|D) (both ends of e are already dominated)

≤ k + γg(G− e|D)

≤ k + γ
′

g(G− e|D) (G is a no-minus graph)

≤ γg(G− e).

Hence, in this case the real game ends in at most γg(G − e)

steps.

Suppose at the kth move, Staller chooses a vertex in the real

game which is not a legal move in the imagined game. This is

possible only if Staller chooses one of the end vertices of e and

the other end vertex is the only vertex which is newly dominated.

Let v denotes the newly dominated vertex and D denotes the set

of vertices dominated in the real game on G after the kth move.

At this stage, the set of vertices dominated in the imagined

game on G− e is D− v. In the real game, k vertices are already

selected by both the players and the next is Dominator’s turn.

Since Staller plays optimally in the real game, we have γg(G) ≤

k + γg(G|D). But in the imagined game both the players have

selected k−1 vertices and the next turn is that of Staller. Since
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Dominator plays optimally in the imagined game, we have

k − 1 + γ
′

g(G− e|D − v) ≤ γg(G− e).

So,

γg(G) ≤ k + γg(G|D)

≤ k + γg(G− e|D) (both ends of e are already dominated)

≤ k + γg(G− e|D − v) (by the Continuation Principle)

≤ k + γ
′

g(G− e|D − v) (G is a no-minus graph)

= k − 1 + γ
′

g(G− e|D − v) + 1

≤ γg(G− e) + 1.

Thus γg(G) ≤ γg(G − e) + 1. Note that in the above proof of

this inequality, it does not matter whether D game or S Game

is played. Hence analogous arguments also give us γ′g(G) ≤

γ′g(G− e) + 1.

Now we prove that γg(G−e)−1 ≤ γg(G). This proof is anal-

ogous to the proof of γg(G − e) ≤ γg(G) + 2 in [6] but we sub-

stitute the condition γg(G|D) ≤ γ
′
g(G|D) instead of γg(G|D) ≤

1 + γ
′
g(G|D). For the sake of completeness we shall give the

proof mentioned in [6].

To prove the bound γg(G − e) ≤ γg(G) + 1, it suffices to

show that Dominator has a strategy on G− e such that at most
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γ(G) + 1 moves will be played. His strategy is to play the game

on G − e as follows. In parallel to the real game, he is playing

an imagined game on G by copying every move of Staller to

this game and responding optimally in G. Each response in the

imagined game is then copied back to the real game in G − e.

Let e = uv and consider the following possibilities.

Suppose that neither Staller nor Dominator plays on either

of u and v in the course of the real game. Then all the moves in

both games are legal and so the imagined game on G lasts no

more than γg(G) moves. (Recall that Dominator plays optimally

on G but Staller might not play optimally.) Since the game on

G− e uses the same number of moves, we conclude that in this

case the number of moves played in the real game is at most

γg(G).

Assume now that at some point of the game, the strategy

of Dominator on G is to play a vertex incident with e, say u,

but this move is not legal in the real game. This can happen

only in the case when v is the only vertex in NG[u], which is not

yet dominated. In this case Dominator plays v in the real game

and by the Continuation Principle it ensures that the game is

finished in no more than γg(G) moves.

Assume next that in the course of the game one of the players

played a vertex incident with e, say u, which is a legal move.

This means that, after this move is copied into the imagined
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game on G, the vertex v is dominated in this game but may not

yet be dominated in the real game. If all the moves are legal

in the real game (played on G − e), then after at most γg(G)

moves all vertices except may be v are dominated. Hence the

real game finishes in no more than γg(G) + 1 moves. In the

other case, Staller played a move in G−e with only v was newly

dominated, and this is not a legal move in G. Let this move of

Staller in G − e be the kth move of the game. Note that after

this move of Staller, the sets of dominated vertices are the same

in both games and is denoted by D. Since after the (k − 1)th

move it is Staller’s turn in the imagined game, we derive that

(k − 1) + γ′g(G|D) ≤ γg(G).

(This inequality holds because Staller need not necessarily play

optimally in the imagined game.) Now, Dominator does not

copy the move of Staller into the imagined game but simply

optimally plays the next moves. Therefore, since the number of

moves left to end each of the games is γg((G− e)|D), we have:

γg(G− e) ≤ k + γg((G− e)|D)

= k + γg(G|D)

≤ k + γ′g(G|D) (G is a no-minus graph)

≤ γg(G) + 1.
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We have thus proved that γg(G − e) − 1 ≤ γg(G). Since in

the above proof of this inequality it does not matter whether D

Game or S Game is played onG−e, it follows that γ′g(G−e)−1 ≤

γ′g(G).

2.2 Edge Removal in Trees

Trees are no-minus graphs [50] and for any tree T we have

|γg(T )−γg(T −e)| ≤ 1 and |γ′
g(T )−γ′

g(T −e)| ≤ 1, by Theorem

2.1.1.

Lemma 2.2.1. If T is the graph obtained by subdividing each

edge of the star K1,n, (n ≥ 2), then γg(T ) = γg(T |u) = γ′g(T ) =

γ′g(T |u) = n+ 1, where u is the centre of T .

Proof. First we show that γg(T ) = γg(T |u) = n + 1. For that

we prove γg(T ) ≤ n+ 1 and γg(T |u) ≥ n+ 1. Therefore by the

Continuation Principle γg(T |u) ≤ γg(T ) ≤ n + 1 and γg(T ) ≥

γg(T |u) ≥ n+ 1. Thus we get γg(T ) = γg(T |u) = n+ 1.

First we prove that γg(T ) ≤ n+ 1. It is enough to show that

Dominator has a strategy for any move of Staller on T which

ensures that the game has at most n+1 moves. Dominator first

chooses the vertex u and the residual graph after this move is

the disjoint union of n copies of K2 with one of its end vertices

is dominated. So this game has n + 1 moves. It is noted that

the first move of Dominator may not be optimal in this game
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and hence we conclude that γg(T ) ≤ n+ 1.

Now we prove γg(T |u) ≥ n+ 1 by showing that for any move

of Dominator in T |u, there is a strategy for Staller which ensures

that the game on T |u has at least n + 1 moves. Suppose that

Dominator chooses the vertex u as his first optimal move. In

this case the residual graph after this move is the disjoint union

of n copies of K2 with one of its end vertices is dominated and

hence a total of n + 1 moves in this game. On the other hand

suppose that Dominator chooses a vertex other than u as his

first optimal move. By the Continuation Principle, Dominator

prefers to select a vertex other than a pendant vertex. So Domi-

nator chooses a vertex adjacent to u and after that move Staller

selects u as next move. This is a legal move since u is adjacent to

at least two vertices in T |u (note that only one vertex adjacent

to u is dominated). Now the residual graph at this stage is the

disjoint union of n− 1 copies of K2 with one of its end vertices

is dominated . Therefore this game has 2+n−1 = n+1 moves.

Note that the vertex u may not be an optimal move for Staller

in this game on T |u and hence γg(T |u) ≥ n+ 1.

Now we show that γ′g(T ) = γ′g(T |u) = n + 1. For that we

prove γ′g(T ) ≤ n + 1 and γ′g(T |u) ≥ n + 1. Therefore by the

Continuation Principle γ′g(T |u) ≤ γ′g(T ) ≤ n + 1 and γ′g(T ) ≥

γ′g(T |u) ≥ n+ 1. Thus we get γ′g(T ) = γ′g(T |u) = n+ 1.

First we prove that γ′g(T |u) ≥ n + 1. It is enough to show
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that for any move of Dominator there is a strategy for Staller

which ensures that an S game on T |u has at least n+ 1 moves.

Staller selects her first move as u and the residual graph after

this move becomes n copies of K2 with one of its end vertices

is dominated. So this game has n + 1 moves. It is noted that

u may not be an optimal move for Staller in this game on T |u

and hence γ′g(T |u) ≥ n+ 1.

Now we prove that γ′g(T ) ≤ n + 1. Suppose that if Staller

chooses u as her first optimal move, then the residual graph is

the disjoint union of n copies of K2 with one of its end vertices is

dominated. So this game has n+ 1 moves. On the other hand if

Staller chooses a vertex other than u as her first optimal move,

then Dominator selects u as his next move and clearly u is a

legal move. So the residual graph after these two moves is the

disjoint union of n−1 copies of K2 with one of its end vertices is

dominated. In this case this game has 2 + n− 1 = n+ 1 moves.

So in this game Staller plays optimally and Dominator may not.

Hence γ′g(T ) ≤ n+ 1.

Thus we have γ′g(T ) = γ′g(T |u) = n+ 1.

Lemma 2.2.2. If T is the graph obtained by subdividing n − 1

edges of the star K1,n, (n ≥ 3), then γg(T ) = γg(T |v) = n and

γ′g(T ) = γ′g(T |v) = n+ 1, where v is the pendant vertex adjacent

to the centre of T .
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Proof. Let T be the graph obtained by subdividing each edge

except one, say e = uv of the star K1,n with centre u.

There are n support vertices in T and this ensures that γg(T ) ≥

γ(T ) ≥ n. Now we show that γg(T ) ≤ n by a strategy of Domi-

nator which ensures that at most n moves in a D game on T for

any move of Staller. Dominator first chooses the vertex u and

then the residual graph is the disjoint union of n − 1 copies of

K2 with one of its end vertices is dominated. It is to be noted

that u may not be an optimal move of Dominator in T . Thus

γg(T ) ≤ n− 1 + 1 = n.

Now we prove that γg(T |v) ≥ n. It is enough to show that

for any move of Dominator there exists a strategy for Staller

on T |v has at least n moves. It is known by the Continuation

Principle that Dominator prefers to select non-pendant vertices

in T |v. Suppose that Dominator chooses the vertex u as his

first optimal move. So the residual graph after this move is the

disjoint union of n− 1 copies of K2 with one of the end vertices

is dominated and this game has n moves. Again suppose that

Dominator chooses a non-pendant vertex other than u as his

first optimal move. In this case Staller selects u as her next

move. Since n ≥ 3, u is adjacent to atleast 3 vertices in T |v

and hence u is a legal move. The residual graph after these

two moves is the disjoint union of n − 2 copies of K2 with one

of the end vertices is dominated. So there are 2 + n − 2 = n

27



moves in this game. Dominator plays optimally in this game

and Staller may not. Therefore γg(T |v) ≥ n. It is known that

γg(T |v) ≤ γg(T ) = n and hence γg(T |v) = n.

Now we show that γ′g(T |v) = n + 1. It is known [50] that

γ′g(T |v) ≤ 1 + γg(T |v) = 1 + n. So it is enough to show that

γ′g(T |v) ≥ n+ 1. Staller first chooses the vertex v and this may

not be an optimal move. It is to be noted that v is a legal move

because v dominates u in T |v. Therefore γ′g(T |v) ≥ 1 + γg(T
′),

where T ′ is the residual graph of T |v after the first move. It is

clear that the residual graph T ′ is a tree in Lemma 2.2.1 with

n − 1 ≥ 2 support vertices. Therefore γg(T
′) = n − 1 + 1 = n.

So γ′g(T |v) ≥ n+ 1 and hence γ′g(T |v) = n+ 1.

Also n + 1 = γ′g(T |v) ≤ γ′g(T ) ≤ 1 + γg(T ) = 1 + n. Thus

γ′g(T ) = n+ 1.

Now we discuss all the possibilities of edge removal in trees.

Proposition 2.2.3. For any k ≥ 3 there is a tree T with an

edge e such that γg(T ) = k and γg(T − e) = k − 1.

Proof. For k = 3, we have T = P5 as the desired tree and e

is an edge of T which is not a pendant edge. It is known that

γg(P5) = 3 and γg(P5 − e) = γg(P3 ∪ P2). Clearly γg(P2) =

γ′g(P2) = 1. Therefore it follows from [37] that γg(P3 ∪ P2) =

γg(P3) + γg(P2) = 1 + 1 = 2.
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Figure 2.1: T4

For k = 4, we construct a tree T4 in the following way. Let

K1,3 be a star with u as its centre. T4 is obtained from K1,3 by

subdividing each edge except one edge and attaches two pen-

dant vertices to a vertex v, which is not adjacent to the vertex

u. Let e be the edge incident to u and a vertex in N(v). See

the Figure 2.1. It can be easily verified that γg(T4) = 4 and

γg(T4− e) = γg(K1,3∪P4) = γg(K1,3) +γg(P4) = 1 + 2 = 3 (note

that γg(P4) = γ′g(P4) = 2).

For k ≥ 5, we have a general construction Tk in the following

way. Subdividing each edge of the star K1,k−2 with centre u.

The graph Tk is obtained from the subdivided star by attaching

two vertices to one of the pendant vertices say v. Let e be the

edge incident to u and a vertex in N(v). See the Figure 2.2. We
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Figure 2.2: Tk

have to show that γg(Tk) = k. For that, first we show γg(Tk) ≥ k

and it is enough to show that for any move of Dominator there

is a strategy for Staller which ensures that the game has at least

k moves. Suppose that Dominator chooses the vertex v as his

first optimal move. In this case Staller selects the neighbour

vertex of v which is adjacent to u. This is a legal move since

u is additionally dominated by this move. The residual graph

after these two moves is the graph Tk|u in Lemma 2.2.1 with

k − 3 support vertices. So in this case the game has at least

2 + k − 3 + 1 = k moves. Now suppose that Dominator chooses

the vertex u as his first optimal move . So Staller selects a

pendant vertex attached to v as her next move. The residual

graph after these two moves is the disjoint union of k− 2 copies

of K2 with one of its end vertices is dominated. So in this case

the game has at least 2 + k − 2 = k moves. Again suppose

that Dominator chooses a vertex adjacent to u and v as his
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first optimal move. In this case Staller chooses u as her next

move. Clearly this is a legal move since u is adjacent to at least

3 vertices. So the residual graph after these two moves is the

disjoint union of k−3 copies of K2 with one of its end vertices is

dominated and a K1,2 with the centre vertex is dominated. So

in this case the game has at least 2+1+k−3 = k moves. By the

Continuation Principle, Dominator prefers to select a vertex of

degree at least two to a pendant vertex of an edge. Now again

suppose that Dominator chooses a vertex adjacent to u and a

pendant vertex as his first optimal move. In this case Staller

chooses the vertex adjacent to u and v as her next move and

the residual graph after theses two moves is the disjoint union

of Tk|u in Lemma 2.2.1 with k − 4 support vertices and a K1,2

with the centre is dominated. So in this case the game has at

least 2 + 1 + k − 3 = k moves. It is noted that Dominator

plays optimally and Staller may not. Thus we conclude that

γg(Tk) ≥ k.

Now we prove that γg(Tk) ≤ k. Dominator chooses his first

move as u and the residual graph T ′k after this move is the dis-

joint union of k − 3 copies of K2 with one of its end vertices

is dominated and a K1,3 with one of its pendant vertices is

dominated. So γ′g(T
′
k) = k − 3 + 2 = k − 1 moves. The first

move of Dominator may not be an optimal move and hence

γg(Tk) ≤ 1 + k − 1 = k.
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The graph Tk − e is the disjoint union of a K1,3 and a graph

T in Lemma 2.2.1 with k− 3 support vertices. By Lemma 2.2.1

the graph T is an equal graph, and K1,3 and T are no-minus

graphs. So γg(Tk − e) = γg(K1,3 ∪ T ) = γg(K1,3) + γg(T ) =

1 + k − 3 + 1 = k − 1.

Note 2.2.4. For k = 1, 2, there is no tree T with γg(T ) = k and

γg(T − e) = k − 1.

Proposition 2.2.5. For any k ≥ 1, there is a tree T with an

edge e such that γg(T ) = k and γg(T − e) = k + 1.

Proof. For k = 1, K1,2 is the desired graph. It is known that

γg(K1,2) = 1 and γg(K1,2 − e) = 2 for any edge e of K1,2.

For k = 2, let T2 be the graph obtained fromK1,2 by attaching

two vertices to a pendant vertex of K1,2. Clearly γg(T2) = 2 and

γg(T2−e) = 3 for any edge e incident to a newly attached vertex

of T2 .

For k ≥ 3, Tk is the graph obtained from the star K1,k with

centre u by subdividing each edge except one, say e. It is known

by Lemma 2.2.2 that γg(Tk) = k.

It is clear that Tk−e is the disjoint union of an isolated vertex

and a tree T in Lemma 2.2.1 with k − 1 support vertices. Thus

γg(Tk − e) = γg(K1) + γg(T ) = 1 + k − 1 + 1 = k + 1.

Proposition 2.2.6. For any k ≥ 2, there is a tree with an edge
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e such that γg(T ) = γg(T − e) = k.

Proof. For k = 2, P4 is the desired graph. It is clear that

γg(P4) = 2 and γg(P4 − e) = 2, where e is the middle edge

of P4.

For k ≥ 3, let Tk be the graph obtained by subdividing each

edge of K1,k−1 with centre u . It is known by Lemma 2.2.1 that

γg(Tk) = k.

Let e be any edge of Tk adjacent to u. It is clear that Tk − e

is the disjoint union of a K2 and a tree T in Lemma 2.2.1 with

k−2 support vertices. Thus γg(Tk−e) = γg(K2∪T ) = γg(K2)+

γg(T ) = 1 + k − 2 + 1 = k.

Note 2.2.7. There is no tree T with an edge e such that γg(T ) = 1

and γg(T − e) = 1. Clearly T − e is disconnected for any edge e

of a tree T and hence γg(T − e) ≥ 2.

Proposition 2.2.8. For any k ≥ 4, there is a tree T with an

edge e such that γ
′
g(T ) = k and γ′g(T − e) = k − 1

Proof. For k = 4, T4 is the graph obtained by subdividing an

edge of a K1,2 with centre u and attaching three pendant vertices

to the pendant vertex which is adjacent to u . Let e be the edge

of T4 which is adjacent to u and a degree 2 vertex. Clearly

γ
′
g(T4) = 4 and γ

′
g(T4 − e) = 3.

For k = 5, T5 is the graph obtained by subdividing two edges

of a star K1,3 with centre u and attaching two vertices to a
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pendant vertex which is not adjacent to u. Let e be the edge

with one end vertex is u and the other end vertex is a degree

two vertex which is neighbour of a degree 3 vertex. Clearly

γ
′
g(T5) = 5 and γ

′
g(T5 − e) = 4.

For k ≥ 6, Tk is the graph obtained by subdividing all edges

of the star K1,k−3 with centre v and attaching three vertices to

pendant vertex u and let e be the edge incident to v and a vertex

w ∈ N(v).

Now we show that γ′g(Tk) = k. For that, first we show that

γ′g(Tk) ≥ k and it is enough to show that for any move of Domi-

nator there is a strategy for Staller which ensures that the game

has at least k moves. Suppose that Staller first chooses a pen-

dant vertex adjacent to u as her move. Suppose that Dominator

chooses the vertex u as his first optimal move. In this case

Staller selects the neighbour vertex of u which is adjacent to v.

This is a legal move since v is additionally dominated by this

move. The residual graph after these three moves is the graph

Tk|v in Lemma 2.2.1 with k− 4 support vertices. So in this case

the game has at least 3+k−4+1 = k moves. Now suppose that

Dominator chooses the vertex v as his first optimal move . So

Staller selects a pendant vertex attached to u as her next move.

The residual graph after these three moves is the disjoint union

of k − 3 copies of K2 with one of its end vertices is dominated.

So in this case the game has at least 3+k−3 = k moves. Again
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suppose that Dominator chooses a vertex adjacent to u and v as

his first optimal move. In this case Staller chooses v as her next

move. Clearly this is a legal move since v is adjacent to at least

3 vertices. So the residual graph after these three moves is the

disjoint union of k−4 copies of K2 with one of its end vertices is

dominated and a K1,2 with the centre vertex is dominated. So

in this case the game has at least 3+1+k−4 = k moves. By the

Continuation Principle, Dominator prefers to select a vertex of

degree at least two to a pendant vertex of an edge. Now again

suppose that Dominator chooses a vertex adjacent to v and a

pendant vertex as his first optimal move. In this case Staller

chooses the vertex adjacent to u and v as her next move and

the residual graph after theses three moves is the disjoint union

of Tk|v in Lemma 2.2.1 with k − 5 support vertices and a K1,2

with the centre is dominated. So in this case the game has at

least 3 + 1 + k − 5 + 1 = k moves. It is noted that Dominator

plays optimally and Staller may not. Thus we conclude that

γ′g(Tk) ≥ k.

Now we prove that γ′g(Tk) ≤ k. Suppose that an optimal

first move of Staller is a pendant vertex adjacent to u. Now

Dominator chooses his first move as v and the residual graph T ′k

after these two moves is the disjoint union of k− 4 copies of K2

with one of its end vertices is dominated and a K1,2 with centre

is dominated. So γ′g(T
′
k) = k − 4 + 2 = k − 2 moves. So in this
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case this game has at most 2 + k − 2 = k moves.

Now Suppose that an optimal first move of Staller is a pen-

dant vertex which is not adjacent to u. Now Dominator chooses

his first move as v and the residual graph T ′k after these two

moves is the disjoint union of k − 5 copies of K2 with one of its

end vertices is dominated and a K1,4 with one pendant vertex

is dominated. So γ′g(T
′
k) = k − 5 + 2 = k − 3 moves. So in this

case this game has at most 2 + k − 3 = k − 1 moves.

Suppose that an optimal first move of Staller is the vertex

adjacent to u and v. Now Dominator chooses his first move

as v and the residual graph T ′k after these two moves is the

disjoint union of k − 4 copies of K2 with one of its end vertices

is dominated and a K1,3 with centre is dominated. So γ′g(T
′
k) =

k − 4 + 2 = k − 2 moves. So in this case this game has at most

2 + k − 2 = k moves.

Suppose that an optimal first move of Staller is v and the

residual graph T ′k after this move is the disjoint union of k − 4

copies of K2 with one of its end vertices is dominated and a K1,4

one pendant vertex is dominated.. So γg(T
′
k) = k−4+1 = k−3

moves. So in this case this game has at most 1 + k − 3 = k − 2

moves. By the Continuation Principle, it is clear that no other

vertex of Tk is an optimal first move for Staller (it is to be

noted that Staller prefers pendant vertex to a support vertex ).

In all the cases Dominator may not play optimally and hence
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γ′g(Tk) ≤ k. Thus γ
′
g(Tk) = k.

It is clear that Tk − e is the disjoint union of a K1,4 and a

tree T in Lemma 2.2.1 with k − 4 support vertices. Therefore

γ′g(T ) = k − 4 + 1 = k − 3. It is known [37] that γ′g(Tk − e) =

γ′g(K1,4 ∪ T ) = γ′g(K1,4) + γ′g(T ) = 2 + k − 3 = k − 1.

Proposition 2.2.9. For any k ≥ 1, there is a tree T with an

edge e such that γ
′
g(T ) = k and γ′g(T − e) = k + 1.

Proof. For k = 1, K2 is the desired graph. Clearly γ′g(K2) = 1

and γ
′
g(K2 − e) = 2.

For k = 2, P4 is the desired graph. Clearly γ
′
g(P4) = 2 and

γ
′
g(P4 − e) = 3 for any pendant edge e of P4.

For k = 3, let T3 be the graph obtained from P3 by attaching

three vertices at one of the end points of P3. Clearly γ
′
g(T3) = 3.

It is clear that γ
′
g(T3− e) = 4 for any pendant edge e is incident

to the highest degree vertex of T3.

For k ≥ 4, let Tk be the graph obtained by subdividing k− 2

edges of K1,k with centre u. Let e be any pendant edge incident

to u.

It can be proved that γ
′
g(Tk) = k by analogous arguments of

Lemma 2.2.2.

It is clear that Tk−e is the disjoint union of K1 and a tree T in

Lemma 2.2.2 with the centre is adjacent to k vertices. Therefore

γ′g(T ) = k− 1 + 1 = k and γ′g(Tk − e) = γ′g(K1 ∪ T ) = γ′g(K1) +
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γ′g(T ) = k + 1.

Proposition 2.2.10. For any k ≥ 2, there is a tree T with an

edge e such that γ
′
g(T ) = k and γ′g(T − e) = k.

Proof. For k ≥ 2, let Tk be the graph obtained by subdividing

each edge of K1,k−1 . It is known by Lemma 2.2.1 that γ
′
g(Tk) =

k. If e is any pendant edge, then it is clear that Tk − e is the

disjoint union of K1 and a tree T in Lemma 2.2.2 with k − 1

vertices adjacent to the centre. Thereore γ′g(T ) = k− 1 + 1 = k

and it is known [37] that γ
′
g(Tk − e) = γ′g(K1 ∪ T ) = γ′g(K1) +

γ′g(T ) = k + 1.

Note 2.2.11. For k = 1, there is no tree with γ
′
g(T ) = 1 and

γ′g(T − e) = 1.

2.3 Vertex Removal

If a vertex from a graph G is removed, its game domination

number either increases arbitrary large or decreases by at most

two [6]. However, if G is a no-minus graph having a pendant

vertex v, we have the following lemma.

Lemma 2.3.1. Let G be a no-minus graph and if v is a pendant

vertex, then

γg(G)− 1 ≤ γg(G− v) ≤ γg(G)

γ′g(G)− 1 ≤ γ
′
g(G− v) ≤ γ

′
g(G).
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Proof. First we prove that γg(G − v) ≤ γg(G|v). For that we

need to show that Dominator has a strategy on G− v such that

at most γg(G|v) moves will be played. The strategy is as follows.

Dominator and Staller play an ordinary D game on G − v and

at the same time Dominator imagines another D game on G|v.

He copies every move of Staller in the real game to the imagined

game and responds optimally in the imagined game. He then

copies back every optimal response in the imagined game to the

real game. Every move of Staller in the real game is a legal

move in the imagined game. By the Continuation Principle,

Dominator prefers to select a vertex other than v in the imagined

game, so every move of Dominator in the imagined game is a

legal move in the real game. Hence, the real game ends by at

most γg(G|v) steps. Note that Staller plays optimally in G− v

and Dominator may not. Thus γg(G − v) ≤ γg(G|v). By the

Continuation Principle γg(G|v) ≤ γg(G). Hence γg(G − v) ≤

γg(G).

Now, we prove that γg(G) ≤ γg(G − v) + 1. It is enough

to show that Dominator has a strategy on G such that at most

γg(G − v) + 1 moves will be played. Dominator imagines D

game on G − v simultaneously with the D game on G. He is

copying every move of Staller in the real game to the imaginary

game and responding optimally in it. Every optimal response

in the imagined game is then copied back to the real game.
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If all the moves are legal, then γg(G) ≤ γg(G − v). Suppose

at the kth move, Staller chooses a vertex that is not a legal

move in G − v and this is possible only if Staller chooses a

vertex whose neighbours are already dominated except v. Let

D denote the set of vertices dominated in the real game after

the kth move. But in the imagined game both the players have

played k − 1 moves and the next move is that of Staller. It is

noted that Dominator plays optimally in G− v and Staller may

not. Therefore k − 1 + γ
′
g(G− v|D − v) ≤ γg(G− v) and hence

γg(G) ≤ k + γg(G|D)

= k + γg(G− v|D − v)

≤ k + γ
′

g(G− v|D − v)

= k − 1 + γ
′

g(G− v|D − v) + 1

≤ γg(G− v) + 1.

Hence, γg(G)−1 ≤ γg(G−v) ≤ γg(G). The proof is independent

of who plays first. So γ
′
g(G)− 1 ≤ γ

′
g(G− v) ≤ γ

′
g(G).

2.4 Vertex Removal in Trees

Here, we consider the effect of vertex removal in trees. It may be

noted that, there are trees T whose game domination number

becomes arbitrarily large after removing a vertex from T . It

is proved [6] that there is no graph G with γg(G) = k and
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Figure 2.3: A tree T with γg(T ) = 7 and γg(T − v) = 5

γg(G − v) = k − 2 for k ≤ 4. We give examples of trees with

γg(T ) = k and γg(T − v) = k − t for any t ∈ {0, 1, 2} and any

integer k ≥ 5.

Proposition 2.4.1. For any k ≥ 5 there exists a tree T with a

vertex v such that γg(T ) = k and γg(T − v) = k − 2.

Proof. Let Tk be the tree obtained by subdividing each edge of

K1,k−2 with centre v and attaching two vertices to an end vertex

u of a subdivided edge as in Figure 2.3.

First we show that γg(Tk) = k. Dominator first chooses the

vertex v in a D game on Tk and this may not be an optimal

move. So γg(Tk) ≤ 1 + γ
′
g(Tk − v|N(v)). It is clear that Tk −

v|N(v) is the disjoint union of k − 3 copies of K2 with one end

vertex is dominated and a K1,3 with one of its pendant vertices is
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dominated. So γ
′
g(Tk−v|N(v)) = 2+k−3 and hence γg(Tk) ≤ k.

Now we show that γg(Tk) ≥ k. It is known by the Contin-

uation Principle that Dominator prefers to select non-pendant

vertices in Tk. Suppose that Dominator first chooses the ver-

tex u as an optimal move. The residual graph after this move

is the tree T ′k by removing the vertex u and two pendant ver-

tices adjacent to u together with the vertex adjacent to u and

v is considered as dominated. It is known by Lemma 2.2.2 that

γ′g(T
′
k) = 1+k−2 = k−1 and hence there are at least 1+k−1 = k

moves in Tk.

Suppose that Dominator first chooses a non-pendant vertex

other than u and v in Tk as an optimal move. In this case,

Staller chooses a pendant vertex adjacent to u. If second move

of Dominator is u, then the game ends with at least k moves. If

second move of Dominator is a vertex other than u, then Staller

chooses the other pendant vertex adjacent to u. In this case,

the game ends with at least k moves.

Suppose that an optimal first move of Dominator in Tk is v.

The the residual graph after this move is the disjoint union of

k−3 copies of K2 and a K1,3. So in this case there are at least k

moves. Thus we conclude that for any move of Dominator there

is a strategy for Staller in Tk which ensures that there are at

least k moves and hence γg(Tk) ≥ k.

Dominator first chooses the vertex u in Tk−v and the residual
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graph after the first move is the disjoint union of k − 3 copies

of K2. Therefore this game has 1+k-3=k-2 moves. The first

move of Dominator may not be an optimal move and hence

γg(Tk − v) ≤ k − 2. It is known [6] that the game domination

number decreases at most 2 when a vertex is removed. Thus

γg(Tk − v) = k − 2.

Proposition 2.4.2. For any k ≥ 1 there exists a tree T with

γg(T ) = k and γg(T − v) = k − 1 for some vertex v ∈ V (T ).

Choose T = Pn, n ≥ 1. This satisfies the above proposition,

as mentioned in [6].

Proposition 2.4.3. For any k ≥ 1 there exists a tree T with

γg(T ) = k and γg(T − v) = k for some vertex v ∈ V (T ).

Proof. Let k be a positive integer and let T ′ be an arbitrary tree

with γg(T
′) = k. Let x be an optimal first move of Dominator

in T ′. Let T be the tree obtained from T ′ by attaching a vertex

u to x as mentioned in [6]. In that case, T and T − u have the

same game domination number.

Proposition 2.4.4. For any k ≥ 1 there exists a tree T with

γ
′
g(T ) = k and γ

′
g(T − v) = k for some vertex v ∈ V (T ).

Proof. For k = 1, K2 is the desired tree.

For k ≥ 2, let Tk be the tree obtained by subdividing each

edge of the star K1,k−1. It is known by Lemma 2.2.1 that
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γ′g(Tk) = k

It is clear that Tk−v is a tree in Lemma 2.2.2 for any pendant

vertex v of Tk. Therefore γ
′
g(Tk − v) = k.

Proposition 2.4.5. For any k ≥ 1 there exists a tree T with

γ
′
g(T ) = k and γ

′
g(T − v) = k − 1

Proof. For k = 1, K1 is the desired tree.

For k ≥ 2, let Tk be the tree obtained by subdividing each

edge of the starK1,k−1 with centre v. It is known by Lemma 2.2.1

that γ
′
g(Tk) = k.

It is clear that Tk − v is the disjoint union k− 1 copies of K2

and hence γ
′
g(Tk − v) = k − 1.

Note 2.4.6. It is proved [6] that there is no graph G with γ
′
g(G) =

k and γ
′
g(G−v) = k−2 for k < 4 and there exist graphs G with

γ
′
g(G) = k and γ

′
g(G− v) = k − 2 for k ≥ 4.

Proposition 2.4.7. For any k ≥ 6 there exists a tree T with a

vertex v such that γ
′
g(T ) = k and γ

′
g(T − v) = k − 2.

Proof. Let Tk be the tree obtained by subdividing each edge of

K1,k−3 with centre v and attaching three vertices to one of the

end points say u of a subdivided edge as in Figure 2.4. It is

known by Proposition 2.2.8 that γ
′
g(Tk) = k.

It is clear that Tk− v is the disjoint union of a K1,4 and k−4

copies of K2. Therefore γ′g(Tk − v) = 2 + k − 4 = k − 2.
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Figure 2.4: A tree T with γ
′

g(T ) = 8 and γ
′

g(T − v) = 6

Proposition 2.4.8. There is no tree T with γ
′
g(T ) = 4 and

γ
′
g(T − v) = 2 for any vertex v ∈ T .

Proof. Assume the contradiction. Let T be a tree with a vertex

v such that γ
′
g(T ) = 4 and γ

′
g(T − v) = 2. First, consider the

case that if v is a pendant vertex of T then it is known by

Lemma 2.3.1 that γ
′
g(T ) − 1 ≤ γ

′
g(T − v) ≤ γ

′
g(T ). Therefore

γ
′
g(T ) is at most 3 and this contradicts γ

′
g(T ) = 4.

Now, consider the case that if v is a cut vertex. In this case

T − v is disconnected with exactly two components. If possible

suppose that T−v has more than two components then γ′g(T−v)

is at least 3. This is not possible. So clearly T − v has exactly

two components T1 and T2. Each component is either K1 or K2,

otherwise it contradicts that γ
′
g(T − v) is 2. Since T is a tree,
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v is adjacent to exactly one vertex in each component. In this

case γ
′
g(T ) is at most 3. This contradicts γ

′
g(T ) = 4.

Proposition 2.4.9. There is no tree with γ
′
g(T ) = 5 and γ

′
g(T−

v) = 3 for any vertex v in T .

Proof. Assume the contradiction. Let T be a tree with a ver-

tex v such that γ
′
g(T ) = 5 and γ

′
g(T − v) = 3. It is known by

Lemma 2.3.1 that removal of a pendant vertex from a tree de-

creases its game domination number by at most 1. So clearly v

is a cut vertex and T − v has at most 3 components. It is to be

noted that if T−v has at least 4 components, then γ′g(T−v) ≥ 4.

Now, we prove that the vertex v is not an optimal first move

of Staller in T . If possible let v be an optimal first move of

Staller in T . Then

γ
′

g(T ) = 1 + γg(T |N [v])

≤ 1 + γ
′

g(T |N [v])

= 1 + γ
′

g(T − v|N(v))

≤ 1 + γ
′

g(T − v).

Hence, γ′g(T − v) is decreased by at most 1.

First, we consider the case that T − v has 3 components. In

this case each component of T − v is either K1 or K2 otherwise

a contradiction to the assumption that γ′g(T − v) = 3. For an S
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game on T , Staller first chooses a vertex of T other than v. Now

Dominator can finish this game by next 3 moves by selecting the

vertex v. Here Staller plays optimally and Dominator may not.

Therefore γ′g(T ) ≤ 4 and is contradiction to the assumption that

γ
′
g(T ) = 5.

Now consider the case that T−v has exactly two components

say T1 and T2. In this case one component say T1 has γ
′
g(T1) = 1

and the other component T2 has γ
′
g(T2) = 2. So T1 is either

K1 or K2 and it is known [43] that every vertex of T2 is in

a dominating set of order 2 in T2. Consider an S game on T

and an optimal first move of Staller is either from T1 or from

T2. If an optimal first move of Staller in T is a vertex from T1

then Dominator chooses v as next move. Now Staller chooses

any vertex from T2 and then Dominator can finish this game by

next move. It is to be noted that every vertex of T2 is a member

of Dominating set of order 2 in T2. So this game on T is finished

in at most 4 steps. In this game on T Staller plays optimally and

Dominator may not. Therefore γ′g(T ) ≤ 4 and is a contradiction

that γ
′
g(T ) = 5. If an optimal first move of Staller is a vertex

from T2, then Dominator chooses a vertex from T2 in which all

vertices of T2 are dominated by these two moves. This is possible

because every vertex is a member of a dominating set of order 2

in T2. Now it is clear that this game is finished by at most two

moves. Here also Staller plays optimally and Dominator may
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not. Therefore γ′g(T ) ≤ 4 and is a contradiction that γ′g(T ) = 5.

So there is no tree with γ
′
g(T ) = 5 and γ

′
g(T − v) = 3.
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Chapter 3

Domination Game: Effect

of Edge Contraction and

Edge Subdivision

In this chapter we discuss two graph operations, the edge con-

traction and the edge subdivision. These operations have a

monotone behaviour on γg and γ
′
g of the graphs, in the sense

that these parameters either increase or decrease but not both.

3.1 Edge Contraction and Edge Subdivision

We first prove the following bounds for the game domination

number of the graph obtained by edge contraction.

Theorem 3.1.1. Let G be a graph and e ∈ E(G). If G.e is the
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graph obtained from G by contracting the edge e then

γg(G)− 2 ≤ γg(G.e) ≤ γg(G)

γ′g(G)− 2 ≤ γ′g(G.e) ≤ γ′g(G).

Proof. Let G be a graph and e = uv be an edge in G. In G.e,

we denote by w the new vertex obtained by the identification of

u and v.

We first prove the upper bounds by describing a strategy for

Dominator. We use the imagination strategy, as used in [2].

During the course of the game on G.e, Dominator imagines an-

other game played on G. Every time in his turn to play, he plays

an optimal move in the imagined game and copies this move to

the real game. Then he copies Staller’s answer in the real game

to his imagined game. In addition, in the imagined game, Dom-

inator may consider some extra vertices dominated during the

course of the game, and adapt his strategy. Note that by the

Continuation Principle, considering more vertices dominated in

the imagined game cannot make the imagined game last longer.

If Staller plays the vertex w, then Dominator will consider that

she played the vertex u in G and also adds the neighbourhood

of v to the set of dominated vertices. Similarly, if Dominator

is supposed to copy to the real game a move in the imagined

game on the vertex u or v, then Dominator plays to w and adds

both the neighbourhoods of u and v to the set of dominated
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vertices in the imagined game. Finally, if any player moves on a

neighbour of w in G.e, Dominator will assume that both u and v

get dominated in the imagined game. We know that Dominator

and possibly not Staller, is playing optimally in the imagined

game. This guarantees that the imagined game in G should last

no longer than γg(G) for the D game or than γ′g(G) for the S

game. Staller and possibly not Dominator, is playing optimally

in the real game on G.e. This implies that the total number of

moves made in the real game is at least γg(G.e) for the D game

and at least γ′g(G.e) for the S game. Moreover, at each stage of

the game, if S is the set of dominated vertices in the real game,

either S does not contain w or the set of dominated vertices in

the imagined game is precisely (S \ {w}) ∪ {u, v}. Eventually,

when the imagined game is over, the real game is also finished

and Dominator ensured that the number of moves in the real

game was no more than the number of moves in the imagined

game. Thus γg(G.e) ≤ γg(G) which proves the upper bound.

Now we prove that γg(G) − 2 ≤ γg(G.e). Consider a real D

game played on G and at the same time Dominator imagines

another D game played on G.e. Again, Dominator copies every

move of Staller in the real game except u and v to the imagined

game and copies back his optimal response in the imagined game

except w to the real game on G. Every move of Dominator in

the imagined game except w is a legal move in the real game.
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Suppose at some stage Dominator chooses w in the imagined

game, then he chooses either u or v in the real game instead of

copying w. Clearly one of u or v is a legal move in G. If Staller

plays either u or v in the real game then Dominator plays w for

Staller in the imagined game when it is a legal move. Assume

first that every move of Staller in the real game is also a legal

move in the imagined game. There may be vertices remaining

undominated in the real game when the imagined game is fin-

ished. If neither Dominator nor Staller played u or v, then the

only undominated vertices must be one among {u, v}. Other-

wise, all the undominated vertices must be included either in

N(v) or in N(u). In both cases the real game can be finished

by playing either u or v depending on the game. Thus the game

finishes in at most two more moves.

Assume now that the kth move of Staller is not a legal move

in the imagined game. Again, the only vertices that may be

dominated in the imagined game but not in the real game are

vertices from N [u] ∪ N [v]. More precisely, if any of u or v was

played in the real game then these vertices are contained in

N(v) or in N(u) respectively, otherwise only u or v may be

such a vertex. In any case Dominator plays any legal move x

in the real game. Let S be the set of vertices dominated in

the real game on G after the (k + 2)th move and let S ′ be the

set of vertices dominated in the imagined game after the kth
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move. The residual graph after the (k + 2)th move on G is G|S

and the residual graph after the kth move is G.e|S ′. Defining

S ′′ = S ′ ∪N [x] by adding the newly dominated vertices in N [x]

to the set S ′ of dominated vertices in the imagined game af-

ter the kth move. By the Continuation Principle, we get that

γ′g(G.e|S ′′) ≤ γ′g(G.e|S ′). It is clear that G.e|S ′′ and G|S are

isomorphic. Therefore γg(G.e|s′′) = γg(G|S). Staller and possi-

bly not Dominator, is playing optimally in the real game on G.

We then have

γg(G) ≤ k + 2 + γ′g(G|S)

= k + 2 + γ′g(G.e|S ′′)

≤ k + 2 + γ′g(G.e|S ′).

Also Dominator and possibly not Staller, is playing optimally in

the imagined game on G.e. Thus we get

k + γ′g(G.e|S ′) ≤ γg(G.e).

Therefore γg(G) ≤ γg(G.e) + 2.

The same arguments also hold for the staller start game dom-

ination number and hence the bounds proposed for the S game

can be proved similarly.

Now we consider the case of edge subdivision. Since in G�e,
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for any edge e′ incident to the added vertex of degree 2, (G�e).e′

is the initial graph G, we get as a corollary of Theorem 3.1.1.

Corollary 3.1.2. Let G be a graph and e ∈ E(G). The graph

G� e obtained from G by subdividing the edge e satisfies

γg(G) ≤ γg(G� e) ≤ γg(G) + 2

γ′g(G) ≤ γ′g(G� e) ≤ γ′g(G) + 2.

3.2 Edge Contraction in No-minus Graphs

In a no-minus graph it is of no advantage for either player to

pass a move. It is known already that forests [50], tri-split graphs

and dually chordal graphs [37] are no-minus graphs. We have

just proved that 0 ≤ γg(G) − γg(G.e) ≤ 2 and 0 ≤ γ′g(G) −

γ′g(G.e) ≤ 2. We shall now describe no-minus graphs, especially

trees, which attain all possible values for these differences.

Proposition 3.2.1. For any l ≥ 3 there exists a no-minus graph

G with an edge e such that γg(G) = l and γg(G.e) = l − 2.

Proof. For l ≥ 3, we construct the following family of no-minus

graphs denoted by Gl, l ≥ 0. Let G0 be the graph constructed in

the following way. Take two copies of K1,2 and label their centre

vertices as u and v. Join u and v by the edge e. For l ≥ 1, the

graph Gl is obtained from G0 by identifying the end vertices of l

copies of P3 with x. See Figure 3.1. We claim that γg(Gl) = l+3
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Figure 3.1: The graph Gl

and γg(Gl.e) = l+1. Note that if Dominator plays his first move

on x, then only l + 2 vertices remain undominated which yields

γg(Gl) ≤ l + 3.

Now we present a strategy for Staller which ensures that at

least l + 3 moves are needed to finish the game on Gl. If Domi-

nator starts by playing on u, then Staller selects a leaf adjacent

to v. The resulting residual graph at this stage is a partially

dominated graph consisting of l + 1 copies of K2 and hence at

least l+ 1 more moves are needed to finish the game. Therefore

a total of l + 3 moves will be played. Otherwise, if Dominator

does not start by playing on u, then Staller responds by playing

on a leaf adjacent to u. Note that all vertices of Gl are either

leaves or support vertices and the number of support vertices in

Gl is l + 2. By the Continuation Principle, Dominator prefers

to select support vertices to leaves. The number of support ver-

tices of the residual graph G′l after the first two moves of Gl is

l + 1. Clearly γg(Gl) ≥ 2 + γg(G
′
l) and γg(G

′
l) ≥ γ(G′l) ≥ l + 1
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(using the fact that the domination number of a graph is at least

as that of the number of support vertices of that graph). Thus

γg(Gl) ≥ l + 3 and get that γg(Gl) = l + 3.

Let Gl.e be the graph obtained from G by contracting the

edge e in Gl. Here u and v are identified by a new vertex say

w. If Dominator selects the vertex w then only l vertices remain

undominated which yield γg(Gl.e) ≤ l + 1. There are l + 1

support vertices in Gl.e and hence γg(Gl.e) ≥ γ(Gl.e) ≥ l + 1.

Thus we get that γg(Gl.e) = l + 1.

Proposition 3.2.2. For any l ≥ 2 there exists a no-minus graph

G with an edge e such that γg(G) = l and γg(G.e) = l − 1.

Proof. For l ≥ 2, we construct the graph Hl from a star K1,l by

subdividing each edge except one. We claim that γg(Hl) = l.

Note that if Dominator plays his first move on the centre ver-

tex, then only l − 1 vertices remain undominated which yields

γg(Hl) ≤ l. On the other hand the number of support ver-

tices in Hl is l and by the Continuation Principle Dominator

prefers to select a support vertex to a leaf. After the first move

of Dominator there remain l − 1 support vertices and hence

γg(Hl) ≥ 1 + l − 1 = l. Consider the graph Hl.e where e

is an edge not incident to the centre of Hl. We claim that

γg(Hl.e) ≤ l − 1. If Dominator plays his first move on the cen-

tre vertex of Hl.e, then only l − 2 vertices remain undominated
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which yields γg(Hl.e) ≤ l − 1.

It is clear thatHl.e has l−1 support vertices. Hence γg(Hl.e) ≥

γ(Hl.e) ≥ l − 1. Thus γg(Hl.e) = l − 1.

Proposition 3.2.3. For any l ≥ 1 there exists a no-minus graph

G with an edge e such that γg(G) = l and γg(G.e) = l.

Proof. For l ≥ 1, construct the graph Fl from a star K1,l+1 by

subdividing each edge except two. Clearly Fl has (l+1)−2+1 = l

support vertices. Hence γg(Fl) ≥ γ(Fl) ≥ l. On the other

hand if Dominator plays his first move on the centre vertex then

only l + 1 − 2 vertices remain undominated in Fl. So γg(Fl) ≤

1 + l + 1− 2 = l and thus γg(Fl) = l.

The graph Fl.e is obtained from Fl by contracting an edge e

incident with the centre and a leaf. By a similar argument we

can prove that γg(Fl.e) = l.

Proposition 3.2.4. There is no graph G with an edge e such

that γ′g(G) = 3 and γ′g(G.e) = 1.

Proof. We know that γ′g(G) = 1 if and only if G is complete.

Assume that G is a graph with γ
′
g(G) = 3 and hence G has at

least two non adjacent vertices say u and v. Clearly u and v are

non adjacent in G.e for any edge e of G. Therefore γ′g(G.e) ≥ 2

and conclude that there is no graph G with an edge e such that
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γ′g(G) = 3 and γ′g(G.e) = 1.

Proposition 3.2.5. For any l ≥ 4 there exists a no-minus graph

G with an edge e such that γ′g(G) = l and γ′g(G.e) = l − 2.

Figure 3.2: The graph Sk

Proof. For l ≥ 4, we construct the following family of no-minus

graphs denoted by Sk , k = l − 4 ≥ 0. Let S0 be the graph

constructed in the following way. Take two copies of K1,3 and

label their centre vertices as u and v. Join u and v by the edge

e. For k ≥ 1 the graph Sk is obtained from S0 by identifying the

end vertices by k copies of P3 with u. See figure 3.2. We claim

that γ′g(Sk) = k + 4 and γ′g(Sk.e) = k + 2. By Theorem 3.1.1

it suffices to show that γ′g(Sk) ≥ k + 4 and γ′g(Sk.e) ≤ k + 2.

First we show that γ′g(Sk) ≥ k + 4 by presenting a strategy for

Staller which ensures that the game ends with at least k + 4

moves. Staller first plays a leaf adjacent to u and we know that

all vertices of Sk are either support vertices or leaves. Dominator

prefers to select a support vertex to a leaf. If Dominator plays
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a support vertex other than u, then Staller chooses another leaf

adjacent to u otherwise Staller chooses a leaf adjacent to v. Let

S ′k be the residual graph after these three moves. We know that

the number of support vertices of Sk is k + 2 and the number

of support vertices of S ′k is k + 1. Therefore γgS
′
kγ(S ′k) ≥ k + 1.

Thus γ′g(Sk) = 3 + γg(S
′
k) ≥ 3 + k + 1 = k + 4.

Let Sk.e is the graph obtained from Sk by contracting the

edge e = uv and let w be the new vertex due to the contraction.

We show that γ′g(Sk.e) ≤ k + 2 by presenting a strategy for

Dominator which ensures that at most k + 2 moves are needed

to finish the game. Staller’s first move is a leaf on Sk.e. Now

Dominator plays w as his next move and the number of vertices

remain undominated in Sk.e is at most k. Hence γ′g(Sk.e) ≤ 2+k

and we conclude that γ′g(Sk) = k + 4 and γ′g(Sk.e) = k + 2.

Proposition 3.2.6. For any l ≥ 2 there exists a no-minus graph

G with an edge e such that γ′g(G) = l and γ′g(G.e) = l − 1.

Proof. For the general case l ≥ 2, consider the graph P2l−1. It

is known that γ′g(P2l−1) = l and γ′g(P2l−1.e) = γ′g(P2l−2) = l − 1

for any edge e.

Proposition 3.2.7. For any l ≥ 1 there exists a no-minus graph

G with an edge e such that γ′g(G) = l and γ′g(G.e) = l.

Proof. For the general case l ≥ 1, consider the graph P2l. It is

known that γ′g(P2l) = l and γ′g(P2l.e) = γ′g(P2l−1) = l for any
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edge e.

3.3 Edge Subdivision in No-minus Graphs

By Corollary [3.1.2] we have γg(G� e)− γg(G) ≤ 2

We here prove that the result can be strengthened in the case

of no-minus graphs, as follows.

Theorem 3.3.1. Let G be a no minus graph and e ∈ E(G).

The graph G� e satisfies

γg(G) ≤ γg(G� e) ≤ γg(G) + 1

γ′g(G) ≤ γ′g(G� e) ≤ γ′g(G) + 1.

Proof. We know that for any graph G, γg(G) ≤ γg(G � e) and

γ′g(G) ≤ γ′g(G� e) by Corollary 3.1.2. So this is true in the case

of no-minus graphs.

Now we prove that γg(G � e) ≤ γg(G) + 1. Let uv be the

subdivided edge and w be the vertex added in the subdivision.

Consider a real dominator start game played on G � e. At the

same time Dominator imagines another dominator start Staller-

pass game played on G. Dominator copies every move of Staller

in the real game except w to the imagined game and copies back

his optimal response. Every move of Dominator in the imagined

game is legal in the real game. If every move of Staller in the

real game is also legal in the imagined game then only one vertex
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may remain undominated in G� e at the end of the game, and

it is either u or v or w. Thus the real game is finished within

at most one move more than in the imagined game. Suppose at

the kth stage Staller chooses a vertex in the real game that is not

a legal move in the imagined game. This is possible only if that

move additionally dominates either w itself in the real game or

u or v itself and u and v are already dominated in the imagined

game. Let S be the set of vertices dominated in the real game

after the kth move and S ′ be the set of vertices dominated in

the imagined game after the (k− 1)th move. Clearly S ′ = S−w

and the residual graph after the kth move in the real game is

isomorphic with the residual graph after the (k−1)th move in the

imagined game. Staller but possibly not Dominator, is playing

optimally in the real game. This implies that

γg(G� e) ≤ k + γg(G� e|S)

= k + γg(G|S ′).

Dominator, but possibly not Staller, is playing optimally in the

imagined game and the kth move is of Staller’s. Staller skips

that move in the imagined game and for a no-minus graph G we
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have in [37], γspg (G) = γg(G). Thus

k − 1 + γg(G|S ′) ≤ γspg (G)

= γg(G).

Therefore

γg(G� e) ≤ k + γg(G|S ′)

= k − 1 + γg(G|S ′) + 1

≤ γg(G) + 1.

This concludes the proof.

The same argument also holds for staller start game domina-

tion number.

Proposition 3.3.2. For any l ≥ 1 , there is a no-minus graph

G with an edge e such that γg(G) = l and γg(G� e) = l.

Proof. For the case l = 1, consider the graph G = K2. It is clear

that γg(G� e) = 1 and γg(G) = 1.

For the case l = 2, consider the graph G = K2 ∪K2. It is clear

that γg(G) = 2 and γg(G� e) = 2 for any edge e of G.

For the general case when l ≥ 3, Consider the graph Gl−3 in

Proposition 3.2.1 and it is known that γg(Gl−3) = l, l ≥ 3. The

edge e as the edge joining the vertices x and y in the graph Gi−3.

Consider the graph Gl−3�e and claim that γg(Gl−3�e) = l. We
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present a strategy for Dominator which yields γg(Gl−3 � e) ≤ l.

Dominator selects his first move as u and by the Continuation

Principle, v is not an optimal first move of Staller because leaves

are adjacent to v. So Dominator selects v after the first move of

Staller and there are at most l−2 vertices remain undominated.

Therefore γg(Gl−3 � e) ≤ 2 + l − 2 = l. By Theorem 3.3.1 we

have l = γg(Gl−3) ≤ γg(Gl−3 � e). Thus γg(Gl−3 � e) = l.

Proposition 3.3.3. For any l ≥ 1 , there is a no-minus graph

G with an edge e such that γg(G) = l and γg(G� e) = l + 1.

Proof. For l ≥ 1, construct the graph G from a star K1,l by

subdividing each edge except one. Clearly γg(G) = l and let

G�e be the graph obtained fromG by subdividing the remaining

edge and we get γg(G� e) = l + 1.

Note: It is obvious that γ′g(G) = 1 if and only if G is a complete

graph . So there is no graph G with γ′g(G) = γ′g(G� e) = 1.

Proposition 3.3.4. For any l ≥ 2, there is a no-minus graph

G with an edge e such that γ
′
g(G) = γ

′
g(G� e) = l.

Proof. For the general case l ≥ 2, consider the graph G = P2l−1.

It is known that γ′g(P2l−1) = l. We know that P2l−1�e = P2l for

any edge e of P2l−1 and hence γ′g(P2l) = γ′g(P2l−1 � e) = l.
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Proposition 3.3.5. For l ≥ 1, there is a no-minus graph G

with an edge e such that γ
′
g(G) = l and γ

′
g(G� e) = l + 1.

Proof. For the general case l ≥ 2, consider the graph G = P2l.

It is known that γ′g(P2l) = l. We know that P2l � e = P2l+1 for

any edge e of P2l and hence γ′g(P2l+1) = γ′g(P2l � e) = l+ 1.

3.4 Edge Subdivision in General

For all no-minus graphs we have 0 ≤ γg(G� e)− γg(G) ≤ 1 and

0 ≤ γ′g(G � e) − γ′g(G) ≤ 1 by Theorem 3.3.1. But in general

0 ≤ γg(G� e)−γg(G) ≤ 2 and 0 ≤ γ′g(G� e)−γ′g(G) ≤ 2. Here

we discuss all possibilities of realizing γg(G�e) = γg(G)+2 and

γ′g(G� e) = γ′g(G) + 2. Note that all graphs with γg(G) ≤ 2 are

no-minus graphs. Hence in the following we consider only l ≥ 3.

Proposition 3.4.1. For any l ≥ 3 there is a graph G with an

edge e such that γg(G) = l and γg(G� e) = l + 2.

Proof. We present two families of graphs Uk and Vk that realize

odd and even values of l respectively. Construct U0 in the

following way. Take the disjoint union of C6 and K1,2 having

u as its centre. We get U0 by connecting u with one of the

vertices of C6 say v. The graph Uk, k ≥ 1 is obtained from U0

by identifying one end vertex of 2k copies of P3 with x. We set

e to be the edge between u and v. See Figure 3.3.
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Figure 3.3: The graph Uk

Figure 3.4: The graph UK � e

We claim that γg(Uk) = 2k+3 and γg(Uk�e) = 2k+5 ∀k ≥ 0.

By corollary 3.1.2, it suffices to show that γg(Uk) ≤ 2k + 3 and

γg(Uk�e) ≥ 2k+5. First we prove γg(Uk) ≤ 2k+3 by presenting

a strategy for Dominator which ensures that the game ends with

at most 2k + 3 moves. Dominator starts the game by playing

the vertex x. Any move of Staller on one of the 2k attached

paths is followed by a move of Dominator on some other path in

the same 2k attached paths, so that all vertices of this 2k paths
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are dominated. Therefore Staller is forced to be the first to play

in the subgraph C6 and it is known that γ′g(C6|y) = 2. Hence

Dominator can ensure that at most 1 + 2k + 2 = 2k + 3 moves

are needed to finish the game. Thus we get γg(Uk) ≤ 2k + 3.

Now we show that γg(Uk�e) ≥ 2k+5 by presenting a strategy

for Staller which ensures that at least 2k+5 moves are needed to

finish the game. We set w as the new vertex obtained due to the

subdivision of the edge e which is adjacent to u and v. Whenever

Dominator plays on one of the 2k attached paths then Staller

follows a move on some other path in the 2k attached paths. If

Dominator plays on u, then Staller responds by playing on w.

On the other hand if Dominator plays on w then Staller selects a

leaf adjacent to u [This is a legal move because u is not selected

and the leaves which are adjacent to u are not dominated yet].

By this strategy Staller forces Dominator to be the first to play

in the subgraph C6 and it is known that γg(C6|y) = 3. On the

other hand if Dominator starts to play a vertex in C6 then Staller

selects a vertex adjacent to the vertex selected by Dominator in

C6 and two more vertices remain undominated in C6. Now there

are two possibilities either Dominator selects a vertex in C6 that

dominates the remaining undominated vertices in C6 or selects a

vertex from {u,w}. In the first case Staller responds by playing

on w and the game is finished with 2k + 1 moves ( 2k moves

in the attached paths and one for x ). In the other case Staller
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selects a vertex in C6 which dominates only one new vertex. So

one more move is needed to dominate all vertices in C6 and 2k

moves are needed in the 2k attached paths. Hence in any case

at least 2k + 5 moves are needed to finish the game and thus

conclude the proof.

The family Vk realizes the case when l is even. Construct

V0 in the following way. Take disjoint union of the graph F ′

Figure 3.5: The graph F ′

in Figure 3.5 and K1,2 having u as its centre. We get V0 by

connecting one of the vertices of F ′ having degree two say v

with u. The graph Vk, k ≥ 1 is obtained from V0 by identifying

one end vertex of 2k copies of P3 with u. We set e to be the edge

between u and v. By using a similar argument in the previous

case we get γg(Vk) ≤ 2k + 4 and γg(Vk � e) ≥ 2k + 6.

Proposition 3.4.2. For any l ≥ 2 there is a graph G with an

edge e such that γ
′
g(G) = l and γ

′
g(G� e) = l + 2.
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Figure 3.6: The graph Vk

Figure 3.7: The graph Vk � e

Proof. For the case when l = 2, consider the Domino graph D

and set the edge e as the chord. It is known that γ′g(D) = 2

while after subdividing the edge e we get γ′g(D � e) = 4.

For the case l = 3, Construct the graph F ′′ from F by attaching

two vertices v′ and v′′ as true twins of v. It is known that

γg(F ) = 4 and γ′g(F ) = 3 and the game domination number

remains the same after attaching true twins. Therefore γ′g(F ) =
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Figure 3.8: The Domino

Figure 3.9: The graph F ′′

γ′g(F
′′) = 3 and we set e as the edge between v′ and v′′. After

subdividing the edge e we get γ′g(F
′′ � e) = 5

For the general case l ≥ 5, we present two different infinite

families Uk and Vk realizing even and odd l respectively. By

using analogous arguments as in the previous case we conclude

that γ′g(Uk) = 2k+4 and γ′g(Uk�e) = 2k+6 and γ′g(Vk) = 2k+5

and γ′g(Vk�e) = 2k+7, where e is the edge joining x and y.
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Chapter 4

Domination Game on

Split Graphs

This chapter deals with the effect of edge removal and vertex

removal on the game domination number as well as staller start

game domination number of split graphs. Here we also estab-

lish the bounds for game domination number as well as staller

start game domination number and prove that γg(G) ≤ n
2

for

an isolate free n-vertex split graph G. We also characterise split

graphs of even order with γg(G) = n
2
.

Split graphs can be characterized in several different ways,

in particular as the graphs that contain no induced subgraphs

0Some results of this chapter are included in the following paper.
Tijo James, Sandi Klavzar, A. Vijayakumar, Domination game on split graphs, Bull.
Aus. Math. Soc.99(2019),327-337
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isomorphic to a graph in {2K2, C4, C5}, [41]. If G is a split

graph with a split partition (K, I), then a maximal clique of G

is either K or it is induced with the closed neighborhood of a

vertex from I. Throughout this chapter we may assume that if

(K, I) is a split partition of a split graph G, then |K| = ω(G),

that is, K is the largest clique of G. We will also set k = |K|

and i = |I| and label K = {x1, x2, . . . , xk} and {y1, y2, . . . yi}.

Here degI(x) = |NI(x)|, that is, the number of vertices I which

are adjacent to x in G.

4.1 Edge Removal in Split Graphs

In this section we consider the effect of edge removal on the

game domination number of split graphs. In general it is known

[6] that if e is an edge of a graph G, then γg(G)− γg(G− e) ⊆

{−2,−1, 0, 1, 2} as well as γ′g(G)−γ′g(G−e) ⊆ {−2,−1, 0, 1, 2}.

It is known by Theorem 2.1.1 that for a no-minus graph G,

{γg(G) − γg(G − e) : e ∈ E(G)} ⊆ {−1, 0, 1} and {γ′
g(G) −

γ
′
g(G − e) : e ∈ E(G)} ⊆ {−1, 0, 1}. Here we strengthen these

bounds for split graphs as follows.

Lemma 4.1.1. Let G be a connected split graph with V = K∪I.

If e ∈ E(K), then γg(G) ≤ γg(G− e) and γ
′
g(G) ≤ γ

′
g(G− e).

Proof. To prove γg(G) ≤ γg(G−e), it suffices to show that Dom-

inator has a strategy on G which ensures that at most γg(G−e)
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moves will be played in a D game on G. Consider a D game on

G and at the same time Dominator imagines another D game on

G− e. The strategy of Dominator is as follows: he copies every

move of Staller in the real game to the imagined game if it is

a legal move in the imagined game and copies back his optimal

response in the imagined game to the real game if it is a legal

move in the real game. By the Continuation Principle, Domina-

tor prefers vertices from K. All vertices in K must be dominated

after the first move of Dominator in G and all vertices in K ex-

cept at most one vertex must be dominated after the first move

of Dominator in G−e. It is clear that all moves of Staller in the

real game on G is a legal move to the imagined game on G− e.

If all moves of Dominator in the imagined game is also a legal

move to the real game then the real game and the imagined game

are finished at the same time. Suppose that at the kth stage,

Dominator’s move in the imagined game is not a legal move in

the real game. This is possible when K has a vertex which is

not dominated after the first move of Dominator in G − e and

the only vertex which is newly dominated by this move of Dom-

inator is the undominated vertex in K. Now the set of vertices

dominated in G and G− e are equal and is denoted by S. The

residual graph after the kth move of Dominator in the imagined

game on G−e is G−e|S and the residual graph after the (k−1)th

move of Staller in the real game on G is G|S. It is clear that
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both G|S and G−e|S are isomorphic. Staller plays optimally in

G and possibly not by Dominator, so γg(G) ≤ K − 1 + γg(G|s).

Dominator plays optimally in the imagined game on G− e and

possibly not by Staller, so k + γ′g(G− e|S) ≤ γg(G− e) . Thus

γg(G) ≤ k − 1 + γ(G|S) ≤ k + γ′g(G|S) ≤ γg(G− e).

The same arguments also hold for the staller start game dom-

ination number and hence γ′g(G) ≤ γ′g(G− e).

Lemma 4.1.2. Let G be a connected split graph with V = K∪I.

If e ∈ E(G) with one end in K and the other end in I, then

γg(G) ≤ γg(G− e) and γ
′
g(G) ≤ γ

′
g(G− e).

Proof. To prove γg(G) ≤ γg(G−e), it suffices to show that Dom-

inator has a strategy on G which ensures that at most γg(G−e)

moves will be played in a D game on G. Consider a D game on

G and at the same time Dominator imagines another D game on

G− e. The strategy of Dominator is as follows: he copies every

move of Staller in the real game on G to the imagined game on

G− e if it is a legal move in the imagined game and copies back

his optimal response in the imagined game to the real game if it

is a legal move in the real game. If every move of Staller in the

real game is a legal move in the imagined game and every move

of Dominator in the imagined game is a legal move in the real

game then the imagined game has at most one vertex (note that

the end vertex of e in I may not be dominated in G − e) that
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remains to be dominated when the real game is finished. Sup-

pose that at some stage of the real game on G, Staller chooses

a vertex which is not a legal move in the imagined game on

G− e. This is possible when Staller chooses a vertex in K and

that vertex additionally dominates only the end vertex of e in

I. In this case, Dominator selects the end vertex of e in I for

the corresponding move of Staller in the imagined game instead

of copying the move in the real game and continues the game.

In the above cases the real game has no more moves than the

imagined game. It is noted that Staller plays optimally in the

real game and possibly not Dominator, so γg(G) ≤ γg(G− e).

Again suppose that at the kth move of Dominator in the

imagined game is not a legal move in the real game. This is

possible when Dominator chooses the end vertex of e in I which

is already dominated in the real game on G. In this case the

set of vertices Dominated in the real game after the (k − 1)th

move and the set of vertices dominated in the imagined game

after the kth move of Dominator in the imagined game are same.

Let S be the set of vertices dominated after the (k)th move of

Dominator in the imagined game on G − e. Thus the resid-

ual graph G|S after the (k − 1)th move of Staller in the real

game and the residual graph G − e|S after the (k)th move of

Dominator in the imagined game are isomorphic. It is noted

that Staller plays optimally in the real game and possibly not
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Dominator, so γg(G) ≤ k − 1 + γg(G|S). Also Dominator plays

optimally in the imagined game and possibly not Staller, so

γg(G−e) ≥ k+γ′g(G−e|S). Therefore γg(G) ≤ k−1+γg(G|S) ≤

k + γ′g(G|S) = k + γ′g(G− e|S) ≤ γg(G− e).

Theorem 4.1.3. If G is a connected split graph, then {γg(G)−

γg(G − e) : e ∈ E(G)} ⊆ {−1, 0} and {γ′
g(G) − γ′

g(G − e) : e ∈

E(G)} ⊆ {−1, 0}.

Proof. It is known by Theorem 2.1.1 that for a no-minus graph

G, {γg(G) − γg(G − e) : e ∈ E(G)} ⊆ {−1, 0, 1} and {γ′
g(G) −

γ
′
g(G− e) : e ∈ E(G)} ⊆ {−1, 0, 1}. Each edge of a split graph

G has either both end vertices are in K or one end vertex in K

and the other in I. Hence the proof follows from Lemma 4.1.1

and Lemma 4.1.2.

4.2 Vertex Removal in Split Graphs

In this section we consider the effect of vertex removal on the

game domination number of split graphs. In general it is known

[6] that if v is a vertex of a graph G, then γg(G)−γg(G−v) ≤ 2

as well as γ′g(G) − γ′g(G − v) ≤ 2. Here we strengthen these

bounds for split graphs as follows.

Lemma 4.2.1. If G is a connected split graph and y ∈ I, then

γg(G) − 1 ≤ γg(G − y) ≤ γg(G) and γ
′
g(G) − 1 ≤ γ

′
g(G − y) ≤

γ
′
g(G).
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Proof. To prove the bound γg(G − y) ≤ γg(G), it suffices to

show that Dominator has a strategy on G− y such that at most

γg(G) moves will be played in a D game on G− y. His strategy

is to play the game on G − y as follows. In parallel to the real

game, he is playing an imagined game on G by copying every

move of Staller to this game and responds optimally in G. Each

response in the imagined game is then copied back to the real

game played on G− y.

Note that every move of Staller in the real game on G − y

is a legal move in the imagined game on G. Let a and b be

the number of moves played on G − y and on G, respectively.

Suppose first that all the moves of Dominator in the imagined

game (played on G) are legal moves in the real game (played

on G − y). Then the real game will end in no more moves

as the imagined game, that is, a ≤ b. Since Staller is playing

optimally in the real game ( Dominator may not), γg(G− y) ≤

a. On the other hand, since Dominator is playing optimally

in the imagined game ( Staller may not), b ≤ γg(G). Hence

γg(G− y) ≤ a ≤ b ≤ γg(G).

Suppose now that at some stage of the game Dominator’s

move on G is not a legal move on G−y, let this be the rth move

of the game in G. This can happen only in the case when y is

the only newly dominated vertex in that move of Dominator in

the imagined game. Let X denote the set of vertices of G which
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are already dominated after the rth move in the imagined game.

So r+ γ
′
g(G|X) ≤ γg(G). (This inequality holds because Staller

does not necessarily play optimally in the imagined game.) Now

Dominator is not able to copy his optimal move from the imag-

ined game on G to the real game on G − y. The number of

moves in the real game to this move is r − 1 and it is now the

chance of Dominator to play. The set of vertices dominated at

this stage in the real game on G − y is X − y. This gives the

first equality in the following estimation:

γg(G− y) ≤ r − 1 + γg(G− y|X − y)

= r − 1 + γg(G|X)

≤ r − 1 + (γ
′

g(G|X) + 1)

= r + γ
′

g(G|X)

≤ γg(G)

Hence in any case, γg(G− y) ≤ γg(G).

To prove the bound γg(G) − 1 ≤ γg(G − y) it suffices to

show that Dominator has a strategy on G such that at most

γg(G− y) + 1 moves will be played. His strategy is to play the

game on G as follows. In parallel to the real game, he is playing

an imagined game on G− y by copying every move of Staller to

this game and responds optimally in G − y. Each response in

the imagined game is then copied back to the real game in G.
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Every move of Dominator in the imagined game on G − y is a

legal move in the real game on G. If in addition all the moves

of Staller in the real game on G are legal moves in the imagined

game on G− y, then since Dominator plays optimally on G− y

but Staller might not, and since the number of moves played

in the real game is the same as in the imagined game, we infer

(analogously as above) that γg(G) ≤ γg(G− y).

Suppose now that the rth move is played in the real game,

which is a Staller’s move, and this is not a legal move on G− y.

This can happen only if y is the only newly dominated vertex

in the rth move in G. Let X denote the set of vertices of G

which are already dominated after the rth move in G, so that

γg(G) ≤ r + γg(G|X) = r + γg(G − y|X − y). (Again we have

used the fact that Dominator may not be playing optimally in

the real game.) Now Dominator does not copy the optimal move

of Staller from the real game to G−y since it is not legal. In the

imagined game r− 1 moves were played so far and it is Staller’s

turn. Clearly, the set of vertices dominated at this stage in the

imagined game on G− y is X − y. Therefore

γg(G− y) ≥ r − 1 + γ
′

g(G− y|X − y)

≥ r − 1 + γg(G− y|X − y)

≥ (r − 1) + (γg(G)− r)

= γg(G)− 1 .
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Hence γg(G)− 1 ≤ γg(G− y).

The above arguments are independent of who moves the first.

Therefore a similar result holds also for the S-game.

Proposition 4.2.1 cannot be extended to vertices from the

clique K. For instance, consider the (split) graph K1,n. Then

γg(K1,n) = 1 but γg(K1,n − x) = n, where x is the degree n

vertex. A more interesting (connected) example is the follow-

ing. Let G′k be the split graph obtained from Gk (the latter

being defined at the end of Section 4.3) by adding the edges

x1y2, . . . , x1yk. Then γg(G
′
k) = 1 because x1 is a universal vertex.

On the other hand, G′k−x1 = Gk−1 and thus γ(G′k−x1) = k−1.

But we can still state the following result.

Lemma 4.2.2. If G is a connected split graph with at least two

vertices and x is a vertex of K with degI(x) = 0, then γg(G −

x) = γg(G).

Proof. By the Continuation Principle, the first move of Domi-

nator in G or in G − x is a vertex from K − x. After such a

move the residual graph is the same in both cases, hence the

assertion.

Lemma 4.2.3. If G is a connected split graph with at least two

vertices and x ∈ K, then γg(G) ≤ γg(G − x) and γ
′
g(G) ≤

γ
′
g(G− x).
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Proof. To prove the bound γg(G) ≤ γg(G−x) it suffices to show

that Dominator has a strategy on G such that at most γg(G−x)

moves will be played. His strategy is to play the game on G as

follows. In parallel to the real game, he is playing an imagined

game on G − x by copying every move of Staller to this game

and respond optimally in G−x. Each response in the imagined

game is then copied back to the real game played on G.

By the Continuation Principle, Dominator prefers to select

vertices from K. This implies that every move of Dominator in

the imagined game onG−x is a legal move to the real game onG.

Every move of Staller in the real game onG except the vertex x is

a legal move to the imagined game onG−x. It is to be noted that

degI(x) > 0 otherwise by Lemma4.2.2 that γg(G− x) = γg(G).

So by the Continuation Principle Staller prefers to select a vertex

adjacent to y in I to x. Thus every move of Staller in the real

game is legal to the imagined game and every move of Dominator

in the imagined game is legal to the real game. So the real game

on G has no more moves than the imagined game on G − x.

Let the real game has a moves and imagined game has b moves

and hence a ≤ b. Staller plays optimally in the real game and

Dominator possibly not, therefore γg(G) ≤ a. Also Dominator

plays optimally in the imagined game on G − x and possibly

not Staller, therefore b ≤ γg(G − x). Thus γg(G) ≤ a ≤ b ≤

γg(G−x). The above arguments also valid for S game. Therefore
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γ′g(G) ≤ γ′g(G− x).

Theorem 4.2.4. If v is a vertex of a connected split graph G,

then γg(G)− γg(G− v) ≤ 1 and γ′g(G)− γ′g(G− v) ≤ 1.

Proof. A vertex of a split graph G is either in K or in I. There-

fore by Lemma 4.2.1 and Lemma 4.2.3 we get γg(G)−γg(G−v) ≤

1 and γ′g(G)− γ′g(G− v) ≤ 1.

4.3 The 1/2 Upper Bound

In general the game domination number is bounded in terms of

its order. It is proved [50] that the game domination number of

an isolate free graph on n vertices is at most
⌈
7n
10

⌉
. W. B. Kin-

nersley, D. B. West, and R. Zamani posed a conjecture in [50]

that the game domination number of an isolate free graph is at

most 3n
5

. In this section we first prove that the game domination

number of an isolate free split graph is 1/2 of its order and then

the bound for the S-game. At the end the sharpness of both the

bounds is demonstrated.

Theorem 4.3.1. If G is a connected split graph with n(G) ≥ 2,

then γg(G) ≤
⌊
n(G)
2

⌋
.

Proof. The proof is by induction on n(G). We first check the

cases when 2 ≤ n(G) ≤ 5. If n(G) = 2, then G = K2, and if

n(G) = 3, then G ∈ {K3, P3}. For all these three (split) graphs
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the assertion clearly holds. From [50, Proposition 5.3] we recall

that if G is a (partially dominated, isolate-free) chordal graph,

then γg(G) ≤ 2n(G)/3. As split graphs are chordal, the same

conclusion holds for split graphs. Hence, if n(G) = 4, then

γg(G) ≤ 2n(G)/3 = 8/3, that is, γg(G) ≤ 2. Suppose finally

that n(G) = 5. If k = 2, then since G is connected, at least one

of the vertices, say x1, of K has at least two neigbors in I. Then

the move d1 = x1 yields γg(G) ≤ 2. If k = 3, then Dominator

starts the game with d1 = x1 where x1 is a vertex of K having

at least one neighbor in I. If the game is not finished yet, then

Staller must finish the game in her first move by dominating the

only undominated vertex in I. Hence again γg(G) ≤ 2. Finally,

if k ∈ {4, 5}, then γg(G) = 1. This proves the basis of the

induction.

Assume now that the result is true for all split graphs up to

and including n − 1 vertices, where n ≥ 6. We distinguish two

cases. Case 1: degI(xr) ≤ 1, r ∈ [k].

In this case we clearly have |I| ≤ |K|. If i = 0, then G = Kk

and the assertion is clear. Otherwise, let Dominator start the

game by playing a vertex of K with a neighbor in I. Then,

in every subsequent move (either by Staller or by Dominator),

exactly one new vertex (in I) will be dominated. It follows that
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γg(G) = |I|. Consequently,

γg(G) = |I| = |I|+ |I|
2

≤ |K|+ |I|
2

=
n(G)

2
.

Case 2: degI(xr) ≥ 2, for some r ∈ [k].

We may without loss of generality assume that x1y1, x1y2 ∈

E(G). The initial strategy of Dominator is to play d1 = x1.

After that Staller selects a vertex optimally which means that

she plays ys, where s /∈ [2], unless, of course, the game is over af-

ter the move d1 = x1. (We note that because of the Continuation

Principle if N [x] ⊆ N [w] and both x and w are legal moves, we

may assume Staller will play x over w.) Set Z = {x1, y1, y2, ys}.

Then, since Staller has played optimally ( Dominator may not),

after the first two moves we have,

γg(G) ≤ 2 + γg
(
G
∣∣ ∪z∈Z N [z]

)
.

Set G′ = G \ {x1, y1, y2, ys}. After x1 and ys have been played,

the vertices x1, y1, y2, and ys are saturated. Therefore, by the

Continuation Principle,

γg
(
G
∣∣ ∪z∈Z N [z]

)
≤ γg(G

′) .

Since n(G′) = n(G)− 4, we can combine the above two inequal-
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ities with the induction hypothesis into

γg(G) ≤ 2 + γg
(
G
∣∣ ∪z∈Z N [z]

)
≤ 2 + γg(G

′)

≤ 2 +

⌊
n(G)− 4

2

⌋
=

⌊
n(G)

2

⌋
and we are done.

The assumption in Theorem 4.3.1 that G is connected is es-

sential. For instance, for the complement Kn of Kn (both of

these graphs being split graphs) we have γg(Kn) = n.

Combining Theorem 4.3.1 with |γg(G) − γ′g(G)| ≤ 1 we get

that if G is a connected split graph with n(G) ≥ 2, then

γg
′(G) ≤ γg(G) + 1 ≤

⌊
n(G)

2

⌋
+ 1 =

⌊
n(G) + 2

2

⌋
. (4.3.1.1)

To slightly improve this bound, we first show the following:

Lemma 4.3.2. Let G be a connected split graph. If there exists

a vertex xr ∈ K with degI(xr) = 0, then xr is an optimal first

move of Staller in S-game.

Proof. Suppose that s′1 = xr. Then Dominator has an optimal

reply in K, say d′1 = xs, s 6= r. Indeed, the Continuation

Principle implies that if d′1 = yt ∈ I, then any neighbor of
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yt is at least as good for Dominator as yt. After the moves

s′1 = xr and d′1 = xs are played, the set of vertices dominated

is X = K ∪ NG(xs). Hence if Staller had played some other

vertex, Dominator can still play xs, unless Staller played xs. In

any case, if Y is the set of vertices dominated after such two

moves, then X ⊆ Y . By the Continuation Principle it follows

that s′1 = xr is an optimal move.

Now we can improve (4.3.1.1) as follows:

Theorem 4.3.3. If G is a connected split graph with n(G) ≥ 2,

then γ′g(G) ≤
⌊
n(G)+1

2

⌋
.

Proof. The assertion is clearly true for K2, hence we may assume

in the rest that n(G) ≥ 3. By Lemma 4.3.2 and the Continuation

Principle, Staller’s first move s′1 is either a vertex of I, or a vertex

from K with no neighbour in I. Let G′ = G \ s′1. Clearly, G′

is a connected split graph with n(G′) = n(G) − 1 ≥ 2, hence

from Theorem 4.3.1 we get γg(G
′) ≤ b(n(G)− 1)/2c. Therefore,

applying the Continuation Principle again, we have

γ′g(G) = 1 + γg(G|N [s′1])

≤ 1 + γg(G
′)

≤ 1 +

⌊
n(G)− 1

2

⌋
=

⌊
n(G) + 1

2

⌋
86



as claimed.

In view of Theorem 4.3.1 we say that G is a 1/2-split graph

if γg(G) = bn(G)/2c. To conclude the section we present two

families of 1/2-split graphs.

Let Gk, k ≥ 2, be the split graph with the split partition

(K, I), where K = {x1, . . . , xk} and I = {y1, . . . , yk} (that is,

i = k), and where xryr, r ∈ [k], are the only edges between

K and I. Then it is straightforward to see that γg(Gk) =

γg
′(Gk) = k, that is, Gk is a 1/2-split graph and the bounds

of Theorems 4.3.1 and 4.3.3 cannot be improved in general.

The above graphs Gk are of even order, hence the bounds of

Theorems 4.3.1 and 4.3.3 are the same. Let next Hk, k ≥ 2,

be a split graph obtained from Gk by adding one more vertex

yk+1 to I and the edge xkyk+1. Then degI(xk) = 2. From

Dominator’s first move d1 = xk in D-game and Staller’s first

move s′1 = yk+1 in S-game we respectively infer that γg(Hk) = k

and γg
′(Hk) = k + 1. These values again achieve the upper

bounds in the respective theorems.

4.4 1/2-Split Graphs of Even Order

We now characterize the 1/2-split graphs that have even order.

In the following two lemmas we first exclude split graphs that

are not such.
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Lemma 4.4.1. Let G be a connected split graph of even or-

der and suppose that at least one of the following conditions is

fulfilled:

(i) i < k;

(ii) i > 2k;

(iii) there exists a vertex xr ∈ K with degI(xr) = 0;

(iv) there exists a vertex xr ∈ K with degI(xr) ≥ 3;

(v) there exist xr, xs ∈ K with degI(xs) = 2 and NI(xr) ⊆

NI(xs).

Then G is not a 1/2-split graph.

Proof. In view of Theorem 4.3.3 we need to show that if one of

the conditions (i)-(v) holds, then γg(G) <
⌊
n(G)
2

⌋
.

(i) Suppose i < k. Let Dominator start the game by playing

a vertex xr ∈ K with at least one neighbor in I. After this

move the vertices left undominated are X = I \NI(xr). Clearly,

|X| ≤ i − 1. Since in the rest of the game at least one new

vertex is dominated on each move, γg(G) ≤ 1 + (i − 1) = i <

(k + i)/2 = n(G)/2 = bn(G)/2c.

(ii) Assume i > 2k. Then there exists a vertex xr ∈ K with

degI(xr) ≥ 3. Let Dominator start a D-game with d1 = xr, and

let Staller reply with an optimal move. After these two moves
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the graph G′ obtained from G by removing all saturated ver-

tices is again a connected partially dominated split graph with at

most n(G)−5 vertices. Indeed, G′ does not contain d1 = xr, the

neighbors of xr in I (at least three of them), and s1. Therefore,

γg(G) ≤ 2+γg(G
′) ≤ 2+(n(G)−5)/2 = (n(G)−1)/2 < n(G)/2

= bn(G)/2c where the second inequality holds by Theorem 4.3.1.

(iii) Suppose that there exists a vertex xr ∈ K with degI(xr) =

0. Because of (i) we can assume that k ≤ i. Therefore, since

degI(xr) = 0, there exists a vertex xs ∈ K with degI(xs) ≥ 2.

Let Dominator start the game by playing d1 = xs. Then, after

the first move of Staller, the graph G′ obtained from G by re-

moving all saturated vertices is a connected partially dominated

split graph with at most n(G) − 5 vertices because it does not

contain d1 = xs, the neighbors of xs in I (at least two of them),

the first move of Staller s1, and xr. The conclusion now follows

by the same argument as in (ii).

(iv) If there exists a vertex xr ∈ K with degI(xr) ≥ 3, then af-

ter Dominator plays xr and Staller an arbitrary (optimal) move,

we again have a connected partially dominated split graph with

at most n(G)− 5 vertices after removing all saturated vertices.

(v) Let Dominator start the game by playing d1 = xs. Then

xr, xs, and the two neighbors of xs in I have no role in the con-

tinuation of the game. So again, after the first move of Staller,

removing all saturated vertices from G we have a partially dom-
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inated connected split graph of order at most n(G)− 5.

Lemma 4.4.2. If G is a connected split graph of even order and

there exists a vertex in K which is not adjacent to a leaf in I,

then γg(G) < bn(G)/2c .

Proof. Let x1 ∈ K be a vertex that is not adjacent to a leaf in

I. If degI(x1) ≥ 3, then we are done by Lemma 4.4.1(iv).

Suppose next that degI(x1) = 1. Let y1 be the vertex of

I adjacent to x1. Since y1 is not a leaf, we may assume that

x2 ∈ K is another neighbor of y1. If degI(x2) ≥ 2, then we

are done by Lemma 4.4.1(iv) and (v). Suppose therefore that

degI(x2) = 1. Then N [x1] = N [x2], hence by [8, Proposition

1.4] we have γg(G) = γg(G|x1) = γg(G − x1). Therefore, by

Theorem 4.3.1 and the fact that n is even,

γg(G) = γg(G− x1) ≤ b(n(G)− 1)/2c < bn(G)/2c .

The remaining case to be considerd is that degI(x1) = 2.

Let y1, y2 ∈ I be the neighbors of x1 in I. Recall that by

our assumption y1 and y2 are not pendant vertices. If y1 and

y2 have a common neighbor xr in K, r 6= 1, then in view of

Lemma 4.4.1(iv) we may assume that degI(xr) = 2, but then

NI(x1) ⊆ NI(xr) and we are done by Lemma 4.4.1(v). It fol-

lows that there exist vertices x2, x3 ∈ K such that x2 is ad-

jacent to y2 and x3 is adjacent to y1. Using Lemma 4.4.1(v)
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again we see that degI(x2) = degI(x3) = 2. Let y3 and y4

be the other neighbors in I of x3 and x2, respectively. Let

Z = {x1, x2, x3, y1, y2, y3, y4} and letG1 andG2 be the subgraphs

of G induced by Z and V (G) \ Z respectively. Clearly, G1 is a

connected split graph. The same holds for G2 unless it is the

empty graph. It can be easily verified that γg(G1) = γ′g(G1) = 3.

Hence by [37, Theorem 2.7] they are no-minus graphs with

γg(G1) = γ′g(G1) and hence by [37, Theorem 2.11] we have

γg(G1 ∪ G2) = γg(G1) + γg(G2). Moreover, by Theorem 4.3.1

and because n is even we have

γg(G2) ≤ b(n(G)− 7)/2c = (n(G)− 8)/2

and consequently

γg(G1 ∪G2) ≤ 3 + (n(G)− 8)/2 = (n(G)− 2)/2 < bn(G)/2c .

The argument will be complete by proving that γg(G) ≤

γg(G1 ∪G2). For this sake we proceed by the imagination strat-

egy as follows. Consider a real D-game played on G and at the

same time Dominator imagines a D-game played on G1 ∪ G2.

Dominator plays optimally in the game on G1 ∪ G2 and copies

his moves from there to the real game on G. On the other hand,

Staller plays optimally in the real game on G (this is the only

game being played by Staller), and Dominator copies each move
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of Staller to the imagined game. Since a D-game is played in

both games, Dominator will first play a vertex of K in the real

game which is played on G. Hence every move of Staller will

be a vertex from I, thus newly dominating only this vertex. It

follows that every move of Staller in the real game is a legal

move in the imagined game. On the other hand, a legal move

of Dominator in the imagined game may not be legal in the real

game. If this happens, Dominator cannot copy this move to the

real game; instead, he selects an arbitrary legal move in the real

game (if there is such a move available, otherwise the game is

over). Under this strategy, the set of vertices dominated in the

imagined game is always a subset of the set of vertices dominated

in the real game. Hence, if s is the number of moves played in

the real game and t the number of moves in the imagined game,

then s ≤ t. Moreover, since Dominator may not play optimally

on G (but Staller does), we have γg(G) ≤ s. Similarly, as Domi-

nator plays optimally on G1∪G2, we infer that γg(G1∪G2) ≥ t.

Therefore, γg(G) ≤ s ≤ t ≤ γg(G1 ∪ G2) which completes the

argument.

Theorem 4.4.3. A connected split graph of even order is a 1/2-

split graph if and only if every vertex in K is adjacent to at least

one leaf in I and degI(xi) ∈ [2] for i ∈ [k].

Proof. Suppose that γg(G) = bn(G)/2c. Then by Lemma 4.4.2
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every vertex of K is adjacent to at least one leaf in I and by

Lemma 4.4.1(iii) and (iv), degI(xi) ∈ [2] for every vertex xi ∈ K.

Conversely, suppose that G is a connected split graph of even

order in which every vertex in K is adjacent to at least one leaf

in I and degI(xi) ∈ [2] for i ∈ [k]. By Theorem 4.3.1 we need

only to prove that Staller has a strategy that guarantees that

a D-game will last at least bn(G)/2c moves. After each move

we consider that the resulting graph is a partially dominated

graph without saturated vertices. The corresponding Strategy

of Staller is the following.

First, In Phase 1, she selects vertices which are not pendant

vertices in I. After this is no longer possible for Staller, Phase

1 is over and Phase 2 begins. At that time the vertices from

I that are not yet dominated are pendent vertices. In Phase 2

Staller selects pendent vertices which are neighbors of degree-2

vertices from K as long as this is possible. Phase 3 starts when

the only not yet dominated vertices from I are those that are

adjacent to vertices of K with exactly one neighbor in I.

Consider the number of saturated vertices during this game.

Since degI(xi) ∈ [2], i ∈ [k], after each move of Dominator in

Phases 1 and 2 the number of newly saturated vertices is at

most three. By the strategy of Staller, after each of her moves

in these two phases the number of saturated vertices increases

by exactly one. Suppose that Phase 2 is finished with the kth
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move of Staller. Then the number of saturated vertices is at

most 3k + k = 4k. If there are l vertices in Phase 3 yet to

be dominated, then the game is finished by the next l moves.

After each such move, no matter whether it was done either by

Dominator or Staller, two newly saturated vertices are created

and therefore n(G) ≤ 4k + 2l. The described strategy of Staller

may not be optimal, hence

γg(G) ≥ 2k + l = 2(2k+l)
2
≥ n(G)

2
=
⌊
n(G)
2

⌋
.

Suppose next that Phase 2 is finished with the kth move of

Dominator. In this case the number of saturated vertices at this

stage of the game at most 3k + k − 1 = 4k − 1. Let again l be

the number of vertices yet to be dominated in Phase 3. Then

the number of not yet saturated vertices is exactly 2l. Since G

is of even order, the number of vertices already saturated is at

most 4k − 2. Hence n(G) ≤ 4k − 2 + 2l and therefore

γg(G) ≥ (2k − 1) + l

=
2(2k − 1 + l)

2

=
4k − 2 + 2l

2

≥ n(G)

2

=

⌊
n(G)

2

⌋
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and we are done.

The study of odd order split graphs is in progress.
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Chapter 5

Domination Game on

Mycielskian of a Graph

In this chapter we establish bounds for the game domination

number of Mycielskian of a graph in terms of its domination

number and the game domination number. We characterise

Mycielskian of a graph (see Definition 1.1.7) with small game

domination number.

5.1 Bounds for the Game Domination Num-

ber of Mycielskian of a Graph

First we prove bounds for the game domination number of My-

cielskian of a graph in terms of its domination number.
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Theorem 5.1.1. For any graph G,

1 + γ(G) ≤ γg(µ(G)) ≤ 2γ(G) + 1.

Proof. It is known [2] that for any graph G, we have γ(G) ≤

γg(G) ≤ 2γ(G) − 1. So this inequality is true for µ(G) and

hence γ(µ(G)) ≤ γg(µ(G)) ≤ 2γ(µ(G)) − 1. Also it is known

[16] that γ(µ(G)) = 1 + γ(G). Therefore,

1 + γ(G) ≤ γg(µ(G)) ≤ 2γ(G) + 1.

Consider the graph K2 and µ(K2) ∼= C5. It is clear that

γ(K2) = 1 and γg(µ(K2)) = γg(C5) = 3. So K2 is an example of

a graph whose Mycielskian attains the above upper bound for

the game domination number. It can be easily verified that C4

is an example of a graph whose Mycielskian attains the above

lower bound for the game domination number.

Theorem 5.1.2. For any graph G,

1 + γ(G) ≤ γ′g(µ(G)) ≤ 2γ(G) + 2.

Proof. It is known [2] that for any graph G, we have γ(G) ≤

γ′g(G) ≤ 2γ(G). So this inequality is true for µ(G) and hence

γ(µ(G)) ≤ γ′g(µ(G)) ≤ 2γ(µ(G)). Also it is known [16] that
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γ(µ(G)) = 1 + γ(G). Therefore,

1 + γ(G) ≤ γ′g(µ(G)) ≤ 2γ(G) + 2.

Consider the graph K2 and µ(K2) ∼= C5. It is clear that

γ(K2) = 1 and γ′g(µ(K2)) = γ′g(C5) = 2. So K2 is an example

of a graph whose Mycielskian attains the above lower bound for

the staller start game domination number.

It is proved in [8] that the game domination number remains

the same after attaching a true twin. Now we describe how the

game domination number changes after attaching a false twin.

Let Gu be the graph obtained by attaching a false twin u′ of u in

G. That is, V (Gu) = V (G)∪{u′} and E(Gu) = E(G)∪{u′v|v ∈

N(u)}.

Lemma 5.1.3. For any graph G,

γg(G) ≤ γg(Gu|u′) and γ′g(G) ≤ γ′g(Gu|u′).

Proof. First we prove that γg(G) ≤ γg(Gu|u′). It is enough to

show that there is a strategy for Dominator on G which ensures

that a D game on G has at most γg(Gu|u′) moves. Dominator

imagines a D game on Gu|u′ when a real D game is played on G.
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The strategy of Dominator is as follows: he copies every move of

Staller in the real game on G to the imagined game if it is legal

and responds optimally in the imagined game. He copies back

his move in the imagined game to the real game on G if it is legal.

Every move of Staller in the real game on G is a legal move in the

imagined game on Gu|u′ since the set of vertices that are newly

dominated in G with a move are also newly dominated in Gu|u′.

By the Continuation Principle, Dominator prefers to select u in

Gu|u′ instead of u′ in Gu|u′. So every move of Dominator in the

imagined game is also a legal move in the real game. Thus the

real game ends when the imagined game is over. It is noted that

Staller plays optimally in the real game and Dominator plays

optimally in the imagined game. Hence γg(G) ≤ γg(Gu|u′).

The same arguments also hold for the staller start game dom-

ination number and hence γ′g(G) ≤ γ′g(Gu|u′).

By the Continuation Principle and Lemma 5.1.3 we get the

following theorem.

Theorem 5.1.4. For any graph G,

γg(G) ≤ γg(Gu) and γ′g(G) ≤ γ′g(Gu).

It is known that removing a vertex from a graph can either

increase its game domination number or decrease it by at most

two. It is clear by Theorem 5.1.4 that removing a false twin
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from a graph never increases its game domination number.

Theorem 5.1.5. For any graph G,

γg(G) ≤ γg(µ(G)) ≤ 2γg(G) + 1.

Proof. For any graph G, we have

γg(µ(G)) ≤ 2γ(µ(G))− 1 = 2γ(G) + 1 ≤ 2γg(G) + 1.

Now we have to prove the other part γg(G) ≤ γg(µ(G)). The

graph µ(G)−w is obtained from G by attaching a false twin to

each vertex ofG . So by applying Lemma 5.1.3 recursively we get

γg(G) ≤ γg(µ(G)−w|N [w]). The game domination number does

not change by the removal of a vertex w whose N [w] is already

dominated. Therefore γg(µ(G) − w|N [w]) = γg(µ(G)|N [w])

and by the Continuation Principle, γg(µ(G)|N [w]) ≤ γg(µ(G).

Hence γg(G) ≤ γg(µ(G)).

Theorem 5.1.6. For any graph G,

γ′g(G) ≤ γ′g(µ(G)) ≤ 2γ′g(G) + 2.

Proof. For any graph G, we have

γ′g(µ(G)) ≤ 2γ(µ(G)) = 2γ(G) + 2 ≤ 2γ′g(G) + 2.

Now we have to prove the other part γ′g(G) ≤ γ′g(µ(G)). The
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graph µ(G)−w is obtained from G by attaching a false twin to

each vertex of G. So by applying Lemma 5.1.3 recursively we get

γ′g(G) ≤ γ′g(µ(G)−w|N [w]). The staller start game domination

number does not change by the removal of a vertex w whose

N [w] is already dominated. Therefore

γ′g(µ(G)− w|N [w]) = γ′g(µ(G)|N [w])

and by the Continuation Principle γ′g(µ(G)|N [w]) ≤ γ′g(µ(G).

Hence γ′g(G) ≤ γ′g(µ(G)).

5.2 Mycielskian of a Graph with Small Game

Domination Number

Theorem 5.2.1. There is no graph G with γg(µ(G)) = 1.

Proof. It is known by Theorem 5.1.1 that γg(µ(G)) ≥ 1+γ(µ(G)).

Therefore γg(µ(G)) is at least 2.

Theorem 5.2.2. There is no graph G with γ′g(µ(G)) = 1.

Proof. It is known by Theorem 5.1.2 that γ′g(µ(G)) ≥ 1+γ(µ(G)).

Therefore γ′g(µ(G)) is at least 2.

Lemma 5.2.3. If G is a disconnected graph, then γg(µ(G)) > 2.

Proof. Suppose that G is a graph with ω ≥ 2 components, say

G1, G2, . . . , Gω. Now we show that γg(µ(G)) > 2. For that it is
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enough to show that for any move of Dominator in µ(G), there

is a strategy for Staller which ensures that a D game on µ(G)

has at least 3 moves. Suppose that Dominator first chooses an

optimal move w, the root vertex of µ(G). Now Staller chooses

her move v ∈ V in G1. Clearly each vertex v ∈ V is a legal move

since v dominates itself and that vertex is newly dominated. It

is clear that this vertex v is not adjacent to any vertex of other

components of G. So there are vertices which are not yet dom-

inated in µ(G) and hence this game has at least 3 moves. Now

suppose that Dominator first chooses an optimal move v′ ∈ V ′.

In this case Staller selects v , the twin vertex of v′ in µ(G) as her

move. This is a legal move for Staller since v is not dominated by

the previous move of Dominator. Now there are vertices which

are not yet dominated in µ(G) especially for vertices in V which

does not belong to the component of G containing the vertex v.

Thus there are at least 3 moves in this game. Finally suppose

that Dominator selects his first optimal move v ∈ V and then

Staller selects her move u ∈ V which does not belong to the

component of G containing v. It is clear that u is a legal move

for Staller since u is not adjacent to v. Now the vertex w is not

dominated and hence this game has at least 3 moves. So Staller

ensures that there are at least 3 moves in µ(G) for a D game on

µ(G). Thus γg(µ(G)) > 2.

Lemma 5.2.4. If G is a connected graph with at least two ver-
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tices, then γg(µ(G)) > 2.

Proof. Suppose that G is a connected graph with at least two

vertices. We prove γg(µ(G)) > 2 by showing that there is a

strategy for Staller in µ(G) which ensures that there are at least

3 moves in a D game on µ(G). Suppose that Dominator first

chooses his optimal move w, the root vertex of µ(G). Staller

chooses a vertex v′ ∈ V ′ as her first move. Clearly this is a legal

move since v′ dominates all vertices adjacent to v in G and it is

to be noted that the twin vertex v of v′ is not dominated. Thus

in this case there are at least three moves in µ(G) to finish the

game. Now suppose that Dominator chooses a vertex v′ ∈ V ′ as

first optimal move. Since G has at least two vertices and w is

adjacent to at least one vertex other than v′ in µ(G), it is clear

that the root vertex w is a legal move for Staller . So Staller

selects w as next optimal move and the twin vertex v of v′ is not

yet dominated. Hence there are at least 3 moves in this game .

Finally suppose that Dominator first chooses his optimal move

v ∈ V . In this case Staller selects a vertex u′ ∈ V ′ other than

v′, which is the twin vertex of v in µ(G), as her optimal move.

It is clear that u′ is a legal move because w is dominated by this

move. The twin vertex v′ of the vertex v is not yet dominated

and it ensures that there are at least 3 moves in this case. Hence

in all cases there are at least 3 moves for a D game on µ(G).

Hence we conclude that γg(µ(G)) > 2.
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Theorem 5.2.5. For any graph G, γg(µ(G)) = 2 if and only if

G ∼= K1.

Proof. It is known by Lemma 5.2.3 that γg(µ(G)) > 2 for every

disconnected graph G. Also by Lemma 5.2.4 that γg(µ(G)) > 2

for every connected graph G having at least two vertices. Thus

if G � K1, then γg(µ(G)) > 2.

Now suppose that if G ∼= K1, then µ(G) is the disjoint union

of a K2 and a K1. Thus γg(µ(K1)) = 2.

Lemma 5.2.6. If G is a graph with at least two non adjacent

vertices, then γ′g(µ(G)) > 2.

Proof. Suppose that G is a graph having two non adjacent ver-

tices say u and v. Now we show that there is a strategy for

Staller which ensures at least 3 moves in an S game on µ(G) .

Suppose that Staller selects v ∈ V as first move in µ(G). In this

case Dominator cannot finish this game with his next move. If

Dominator chooses w, the root vertex of µ(G), then the vertex

u is not dominated in µ(G). Again that if Dominator chooses

a vertex in V , then the root vertex w is not dominated. It is

clear that the twin vertices u′ of u and v′ of v are not dominated

after the first move of Staller in µ(G). So if Dominator chooses

a vertex in V ′, then there are vertices in µ(G) which are not yet

dominated. Thus there are at least 3 moves for an S game on

µ(G) and hence γ′g(µ(G)) > 2.
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Theorem 5.2.7. For any graph G, γ′g(µ(G)) = 2 if and only if

G ∼= Kn.

Proof. First we show that if G ∼= Kn, then γ′g(µ(Kn)) = 2. It is

known by Theorem 5.2.2 that for any graph G, γ′g(µ(G)) ≥ 2.

So we need to prove that γ′g(µ(Kn)) ≤ 2. It is enough to show

that for any move of Staller in µ(Kn) there is a strategy for

Dominator which ensures that there are at most two moves.

Suppose that Staller selects her first optimal move as w, the

root vertex of µ(Kn). Now Dominator can finish this game by

selecting a vertex v ∈ V . Clearly w dominates the vertex w

together with all vertices in V ′ and the vertex v dominates all

vertices in V . So in this case there are at most two moves. Now

suppose that Staller selects her first optimal move v′ ∈ V ′. In

this case Dominator can finish this game by selecting the twin

vertex v of v′. It is clear that the vertex v dominates all vertices

in V together with all vertices in V ′ except v′ and the vertex

v′ dominates the remaining vertices v′ and w. So this game

is finished by two moves. Finally suppose that Staller selects

her first optimal move v ∈ V . Now Dominator can finish this

game by selecting w, the root vertex of µ(Kn). It is clear that

v dominates all vertices in V and w dominates w itself and all

vertices in V ′. Thus we conclude that γ′g(µ(Kn)) ≤ 2 and hence

γ′g(µ(Kn)) = 2.

It is known by Lemma 5.2.6 that if G has two non adjacent
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vertices, then γ′g(µ(G)) > 2. So γ′g(µ(G)) = 2 if and only if

G ∼= Kn.

Lemma 5.2.8. If G is a disconnected graph having at least 3

components, then γg(µ(G)) > 3.

Proof. Suppose that G is a disconnected graph having at least

ω ≥ 3 components, say G1, . . . Gω. We prove that γg(µ(G)) > 3

by showing that for any move of Dominator there is a strategy

for Staller which ensures that a D game on µ(G) has at least 4

moves. First let us suppose that Dominator selects w , the root

vertex of µ(G) as his first optimal move. In this case Staller

selects a vertex v ∈ V . It is given that G has at least 3 compo-

nents and hence there are vertices which are not yet dominated

in two different components of G in µ(G). Thus at least two

more moves are needed to finish this game and hence a total of

at least 4 moves. Now suppose that Dominator chooses a vertex

v′ ∈ V ′ as his first optimal move. In this case Staller selects

the root vertex w as next move. Clearly the twin vertex v of v′

is not yet dominated and there are vertices which are not yet

dominated in two different components of G in µ(G). So in this

case there are at least 4 moves. Finally we suppose that Dom-

inator selects a vertex v ∈ V as his first optimal move. In this

case Staller selects the twin vertex v′ of v and there are vertices

in at least two components of G which are not yet dominated in
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µ(G). So there are at least 4 moves needed to finish this game.

Thus in any case we conclude that γg(µ(G)) > 3.

Lemma 5.2.9. If G is a disconnected graph having at least one

edge, then γg(µ(G)) > 3.

Proof. If G is a disconnected graph having at least 3 compo-

nents then it is known by Lemma 5.2.8 that γg(µ(G)) > 3. So

we assume that G is a disconnected graph having exactly two

components say G1 and G2 and let e = uv be an edge in G1. We

prove that γg(µ(G)) > 3 by showing that for any move of Domi-

nator there is a strategy for Staller which ensures that there are

at least 4 moves in a D-game on µ(G). First let us suppose that

Dominator selects w, the root vertex of µ(G) as his first optimal

move. In this case Staller selects u′ as next move. u′ is a legal

move for Staller since u is adjacent to v and hence u′ dominates

v. It is clear that no vertex in V from the component G2 and

the twin vertex u ∈ V of u′ from the component G1 are not

dominated. So two more moves are needed to finish this game.

Now suppose that Dominator selects a vertex x′ ∈ V ′ as his first

optimal move. In this case Staller selects the root vertex w as

her next move. It is clear that the twin vertex x ∈ V of x′ is not

dominated and no vertex of V from the component of G, which

does not contain x is dominated. So two more moves are needed

to finish this game. Finally suppose that Dominator selects a
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vertex x ∈ V of G1. In this case Staller selects the twin vertex

x′ ∈ V ′ of x. So the vertices and its twin vertices of G2 are not

dominated. Thus at least two more moves are needed to finish

this game. Hence γg(µ(G)) > 3.

Theorem 5.2.10. Let G be a disconnected graph, then γg(µ(G)) =

3 if and only if G ∼= 2K1.

Proof. Suppose that G is a disconnected graph with γg(µ(G)) =

3. It is known by Lemma 5.2.8 that G has exactly two compo-

nents and by Lemma 5.2.9 that G has no edge. A graph with

exactly two components and no edge is 2K1.

Suppose that if G ∼= 2K1 then µ(2K1) ∼= K1,3 ∪ 2K1. There-

fore γg(µ(2K1)) = γg(K1, 3) + γg(2K1) = 1 + 2 = 3.

Lemma 5.2.11. If γg(µ(G)) = 3 for a connected graph G, then

there exists a vertex u ∈ V (G) such that ecc(u) ≤ 2

Proof. Suppose that G is a connected graph with ecc(u) ≥ 3 for

all u ∈ V (G). Now we prove that γg(µ(G)) > 3. It is enough to

show that Staller has a strategy on µ(G) such that there are at

least 4 moves in a D game on µ(G). Suppose that an optimal

first move of Dominator is the root vertex w of µ(G). In this

case Staller selects a vertex u′ ∈ V ′. Now it is clear that u,

the twin vertex of u′, and vertices in S2(u) ∪ S3(u) ∈ V are not

dominated. So it is impossible to find a vertex in µ(G) which
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dominates u and vertices in S3(u) and hence there are at least

4 moves.

Suppose that an optimal first move of Dominator is a vertex

u′ ∈ V ′. In this case Staller selects the root vertex w of µ(G)

and it is clear that w is a legal move. Therefore there are at

least 4 moves needed by analogous arguments in the above case.

Suppose that an optimal first move of Dominator is a vertex

u ∈ V . In this case Staller selects a vertex in v ∈ S1(u) and it is

clear that v is a legal move. So the root vertex w and vertices

in S3(u) are not dominated. So it is impossible for Dominator

to finish this game by next move. So there are at least 4 moves.

In all the cases Dominator plays optimally and possibly not

by Staller, therefore γg(µ(G)) ≥ 4 and hence there exists a ver-

tex u ∈ V (G) such that ecc(u) ≤ 2.

Theorem 5.2.12. Let G be a connected graph with at least two

vertices, then γg(µ(G)) = 3 if and only if every vertex of G lies

in a connected dominating set of order 2.

Proof. Suppose that G is a connected graph with every vertex

of G lies in a connected dominating set of order 2. Now we show

that γg(µ(G)) = 3. It is known by Theorem 5.2.1 & 5.2.5 that

γg(µ(G)) ≥ 3. Therefore it is enough to show that γg(µ(G)) ≤ 3.

Now we show that there exists a strategy for Dominator which

ensures at most 3 moves in a D game on µ(G). An optimal first
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move of Dominator in µ(G) is the root vertex w. Suppose that

Staller selects a vertex u′ ∈ V ′. It is known by our assumption

that every vertex lies in a connected dominating set of order 2.

Therefore there exist a vertex v ∈ V which is adjacent to u and

{u, v} forms a dominating set of G. Now Dominator can finish

this game on µ(G) by selecting v as next move. It is clear that

w dominates itself together with all vertices in V ′. The vertex

u′ dominates all vertices in NG(u) and the vertex v dominates

u and all the remaining vertices in G. Thus V (µ(G)) = {w} ∪

Nµ(G)[u
′] ∪Nµ(G)[v] and this game ends by these 3 moves.

Suppose that Staller selects a vertex u ∈ V after the first

move of Dominator. By our assumption there exist a vertex

v ∈ V such that {u, v} is a connected dominating set in G.

Therefore it is clear that u, v&w dominates all vertices in µ(G)

and hence Dominator can finish this game by selecting the vertex

v as his next move. So we conclude that γg(µ(G)) = 3.

Conversely suppose that G is a connected graph with a vertex

u ∈ V (G) such that u does not belong to a connected dominating

set of order 2. It is clear that G has no universal vertex (if G

has a universal vertex v, then {u, v} is a connected dominating

set of order 2). Now we show that γg(µ(G)) 6= 3. For that it is

enough to show that Staller has a strategy in a D game on µ(G)

such that the game has at least 4 moves.

Suppose that an optimal first move of Dominator is the root
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vertex w in µ(G). Now Staller selects the vertex u′ and it is clear

that u is not dominated in µ(G). So the game is not finished by

the next move of Dominator. Since the vertex u does not belong

to a connected dominating set of order 2, it is impossible to find

a vertex v which is adjacent to u and {u, v} is a dominating set

of G.

Suppose that an optimal first move of Dominator is a vertex

v′ ∈ V ′ in µ(G). If v is adjacent to u, then {u, v} is not a

dominating set of G. Now Staller chooses u′ as next move. It

is clear that there exists at least one vertex say u1 in G such

that u1 is not adjacent to u and v in G. Therefore u1 and u′1 are

not dominated in µ(G). If Dominator chooses u1, then u′1 is not

dominated in µ(G) and if Dominator chooses u′1, then u1 is not

dominated in µ(G). If there exists a vertex u2 which is adjacent

to u, v and u1, then Dominator selects u2 and it dominates both

u1 and u′1 but the twin vertex u′2 of u2 is not dominated in µ(G).

If v is not adjacent to u in G, then v and u are not dominated

in µ(G) after selecting v′ by Dominator. Now Staller chooses u′

as her next move. Since u′ dominates itself, it is a legal move

for Staller. If there exists a vertex u1 ∈ V which is adjacent to

both u and v, then Dominator plays either u1 or u′1. In any case

the other twin vertex is not dominated and hence there are at

least 4 moves. If there is no vertex which is adjacent to both u

and v, then at least two more moves are needed to finish this
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game. So there are at least 4 moves in this case.

Suppose that an optimal first move of Dominator is a vertex

v ∈ V in µ(G). If v is not adjacent to u in G, then u, u′ and v′

are not dominated in µ(G) after selecting v by Dominator. Now

Staller chooses u as her next move. Since u dominates itself,

it is a legal move for Staller. If there exists a vertex u1 ∈ V

which is adjacent to both u and v, then Dominator plays either

u1 or u′1. In any case the other twin vertex is not dominated

and hence there are at least 4 moves. If there is no vertex which

is adjacent to both u and v, then at least two more moves are

needed to finish this game. So there are at least 4 moves in this

case.

Theorem 5.2.13. If G is a disconnected graph, then γ′g(µ(G)) ≥

4.

Proof. Suppose that G is a disconnected graph with at least two

components, say G1 and G2. Now we show that γ′g(µ(G)) ≥ 4.

It is enough to show that there exists a strategy for Staller which

ensures at least 4 moves in an S game on µ(G). Let V1 = V (G1)

and V2 = V (G2). Staller chooses her first move as u′ ∈ V ′1 . It

is clear that the twin vertex u of u′ in µ(G) and all vertices in

V2 ∪ V ′2 are not dominated. Suppose that if Dominator chooses

the vertex w as his optimal move, then the vertex u and all

vertices in V1 of µ(G) are not dominated. So there are at least
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4 moves needed to finish this game. If Dominator selects the

vertex v ∈ V ′2 as his optimal move, then it is clear that u and

v are not dominated. So there are at least 4 moves needed to

finish this game. If Dominator chooses a vertex v′ ∈ V1 as his

optimal move, then it is clear that all vertices in V2 ∪ V ′2 are

not dominated. So Staller selects a vertex in V ′2 and its twin

vertex is not yet dominated. Thus there are at least 4 moves

in this game. If Dominator chooses the vertex v ∈ V1 as his

optimal move, then it is clear that all vertices in V2 ∪ V ′2 are

not dominated. So Staller selects a vertex in V ′2 and its twin

vertex is not yet dominated. Thus there are at least 4 moves in

this game. If Dominator chooses a vertex v ∈ V2 as his optimal

move, then Staller selects u as her next optimal move. It is clear

that v′, the twin vertex of v in µ(G), is not dominated. Thus

we conclude thatγ′g(µ(G)) ≥ 4.

Lemma 5.2.14. If ∆(G) < n−1 for a connected graph G, then

γ′g(µ(G)) ≥ 4.

Proof. Let G be a connected graph with ∆(G) < n − 1. It is

clear that G has at least 4 vertices. To prove that γ′g(µ(G)) ≥ 4,

it is enough to show that there is a strategy for Staller which

ensures at least 4 moves in an S game on µ(G). Staller first

chooses a vertex u′ ∈ V ′. Since ∆(G) < n− 1, u is not adjacent

to at least one vertex say v ∈ V (G). Therefore it is clear that u
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and v are not dominated in µ(G) after the first move of Staller.

If Dominator chooses the root vertex w as his optimal move in

µ(G), then Staller selects v and it is clear that u is not dominated

by thsese 3 moves in µ(G). So there are at least 4 moves in this

case.

If Dominator chooses the vertex u, then it is clear that v and

its twin vertex v′ are not dominated. Now Staller chooses v and

it is clear that v′ is not dominated by these 3 moves in µ(G). So

there are at least 4 moves in this case.

If Dominator chooses a vertex u1 ∈ V which is adjacent to

u, then it is clear that u′1 is not dominated in µ(G). Since

∆(G) < n− 1, there exists a vertex u2 in G such that u2 is not

adjacent to u1. Therefore u′2 is not dominated in µ(G). Now

Staller selects u′1 and it is clear that u′2 is not dominated by

thsese 3 moves in µ(G). So there are at least 4 moves in this

case.

If Dominator chooses a vertex u1 ∈ V which is not adjacent

to u, then it is clear that u′1 is not dominated in µ(G). Now

Staller chooses u′1 and it is clear that u is not dominated by

these 3 moves in µ(G). So there are at least 4 moves in this

case.

If Dominator chooses a vertex u1 ∈ V ′, then Staller chooses

a vertex in V ′ other than u′ and u′1. It is known that G has

at least 4 vertices and hence in µ(G) there is at least 1 vertex
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which is not yet dominated in V ′. So there are at least 4 moves

in this case. Thus γ′g(G) ≥ 4.

Theorem 5.2.15. For any connected graph G, γ′g(µ(G)) = 3 if

and only if G � Kn and ∆(G) = n− 1.

Proof. Let G � Kn be a connected graph with ∆(G) = n−1. It

is known by Theorem 5.2.2 and Theorem 5.2.7 that γ′g(µ(G)) ≥

3. So we need to prove that γ′g(µ(G)) ≤ 3. It is enough to

show that there exist a strategy for Dominator which ensures at

most 3 moves in an S game on µ(G). Suppose that an optimal

first move of Staller is a vertex u ∈ V in µ(G). Now Dominator

chooses a universal vertex v ∈ V in µ(G) (this is possible because

∆(G) = n − 1). So all vertices in V ∪ V ′ is dominated and the

only vertex which is not dominated is w. Hence this game has

at most 3 moves.

If an optimal first move of Staller is a vertex u′ ∈ V ′ in µ(G).

Now Dominator chooses a universal vertex of G say v ∈ V in

µ(G) (This is possible because ∆(G) = n − 1). So all vertices

in µ(G) except v′, the twin vertex of v, are dominated in µ(G).

Hence this game has at most 3 moves.

If an optimal first move of Staller is the root vertex w in µ(G),

then Dominator can finish this game by selecting a universal

vertex of G say v ∈ V in µ(G). So we conclude that γ′g(µ(G)) ≤

3.
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Conversely suppose that γ′g(µ(G)) = 3 for a graph G. It is

known by Theorem 5.2.7 that G � Kn and by Lemma 5.2.14

that ∆(G) ≥ n − 1. Therefore if γ′g(µ(G)) = 3, then G � Kn

and ∆(G) = n− 1.
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Concluding Remarks

In this thesis we have studied the domination game in graphs.

We have described the effect of game domination number by the

removal of an edge or a vertex in the class of no-minus graphs.

We have discussed two graph operations, the edge contraction

and the edge sub division. These operations have a monotone

behaviour on the game domination number of graphs in the

sense that these parameters either increase or decrease but not

both. We have also studied the bounds for game domination

number in split graphs and characterise Mycielskian of a graph

with small game domination number.

Split graphs have several important generalizations. Chordal

graphs form one of them. Since trees are chordal graphs and

there exist infinite families of the so-called 3/5-trees [4, 28], The-

orem 4.3.1 does not extend to chordal graphs. Another impor-

tant generalization of split graphs are 2K2-free graphs [20, 19].

Now, C5 belongs to this class and γg(C5) = 3, hence Theo-
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rem 4.3.1 also does not extend to 2K2-free graphs. Actually we

know of one such class (tri-split graphs) but this extension is

rather straightforward.

The following problems may be of interest.

1. Whether there is some natural superclass of split graphs to

which Theorem 4.3.1 extends?.

2. Rall’s conjecture [47]: If a graph G contains a hamilto-

nian path, then γg(G) ≤
⌈
|V (G)|

2

⌉
.

Whether Rall’s Conjecture is true?.

3. Find a graph operation other than the edge contraction

such that the game domination number never increases.

4. Find a graph operation other than the edge subdivision

such that the game domination number never decreases.

5. Find the game domination number in product graphs.

(We have obtained some results on the lexicographic prod-

uct of graphs).
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[26] M. A. Henning, S. Klavžar, D. F. Rall, Total version of

the domination game, Graphs Combin. 31 (2015), 1453–

1462.
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