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Introduction

A ring (R,+, ·) is regular (also called von Neumann regular ring) if

the multiplicative semigroup (R, ·) is a regular semigroup. A study

of the structure of regular ring using the structure of regular semi-

group is the theme of this thesis. In this regard we extend the cross-

connection theory (categorical approach) used to study the structure

of regular semigroup initiated by K.S.S. Nambooripad to the study of

the structure of regular rings. Category theory was invented by Samuel

Eilenberg and Saunders Mac Lane in the 1940s. Their categorical view

point has been widely accepted by working mathematicians. There

are many successful attempts to use category theory to study several

mathematical structures like semigroups, groups, rings etc. The ESN

theorem (Erasmann-Schein-Nambooripad theorem) and inverse cate-

gories introduced by Lawson are great achievements in this direction

(cf.[19]). There are many approaches to study the structure theory

of regular semigroups by W.D. Munn, T.E. Hall, P.A. Grillet, K.S.S.

Nambooripad and many others, of which Nambooripad’s contribution

is remarkable. K.S.S. Nambooripad introduced normal category as a

category with subobjects, every morphism has normal factorization

and each object is a vertex of an idempotent normal cone (cf.[25]).

The principal left (right) ideals of a regular semigroup with suitable

translations form normal categories.

A cross-connection is a sort of categorical duality which turns out

to be very significant in the study of the structure of the algebraic

objects under consideration. The concept of cross-connection was orig-

inally introduced by Grillet in 1974 in order to study the structure of

regular semigroups using its ideal structure. In [12] he described the

cross-connection of regular semigroup S by considering principal left

(right) ideals of it as the regular partially ordered sets Λ(S)(I(S)) and



if I is any regular partially ordered set, then the set N(I) of all normal

mappings on I is a regular semigroup such that Λ(N(I)) is order iso-

morphic to I (cf.[13]). Moreover, given two regular partially ordered

sets Λ and I, the relation that should exist between them so that they

are respectively order-isomorphic to the partially ordered sets of left

and right ideals of a regular semigroup was characterized in terms of a

pair of mappings Γ : I → Λo and ∆ : Λ → Io where Λo[Io] denote the

regular partially ordered set of all normal equivalence relations on Λ[I]

satisfying certain axioms. Grillet calls such a pair (Γ,∆) of mappings

as a cross-connection between I and Λ[13]. Any regular semigroup

S induces, in a natural fashion, a cross-connection between I(S) and

Λ(S). Grillet showed that if (Γ,∆) is a cross-connection between reg-

ular partially ordered sets I and Λ, then the set U of all pairs (f, g) of

mappings in N(Λ)×N(I)op that respects the given cross-connection is a

subsemigroup of N(Λ)×N(I)op and is a fundamental regular semigroup

inducing the given cross-connection. N(I)op denotes the left-right dual

of the semigroup N(I).

In 1985, K.S.S. Nambooripad and F.J. Pastijn together established

the cross-connection (Γ,∆) of a complemented modular lattice L by re-

placing the regular partially ordered sets in Grillet’s theory with com-

plemented modular lattice L and its dual Lop(cf.[27]). They obtained

the fundamental regular semigroup U(L,Lop; Γ,∆) of all pairs (f, g)

of normal mappings that respecting the cross-connection (see Section

1.5). Later in 1994, K.S.S. Nambooripad extended Grillet’s theory to

construct arbitrary regular semigroups. He replaced regular partially

ordered sets Λ(S) and I(S) of left and right ideals of regular semigroup

S in Grillet’s theory by categories L(S) and R(S) of left and right ide-

als of S with morphisms as appropriate translations and replaced the

cross-connection in Grillet’s theory by a local isomorphism of R(S) to

the normal dual of L(S) (see Section 1.7).



In this thesis, we extend the category theoretical approach to the

study of the structure theory of arbitrary semigroups, rings, and mod-

ules. Also we establish the cross-connection of certain algebraic struc-

tures such as regular ring and Boolean lattice.

The thesis is divided into five chapters. The first Chapter is prelim-

inaries in which we include all definitions and basic results needed in

the thesis. This Chapter include sections on lattices, semigroups, rings,

modules, cross-connection of complemented modular lattice, category

theory and cross-connection of normal categories.

In Chapter 2, we describe the cross-connection of Boolean lattice

and obtain its representation as a cross-connection ring in which each

element is represented as a pair of idempotent normal mappings. The

addition is the Boolean addition (symmetric difference) and multipli-

cation meet, its cross-connection determines a Boolean ring (which is

a regular ring) and the principal ideals of such a ring again form a

Boolean lattice isomorphic to the initial Boolean lattice.

In Chapter 3, we introduce proper categories which are more general

than normal categories; in the sense that when restricted to appropriate

conditions they reduce to normal categories. Proper categories, pread-

ditive proper categories, abelian proper categories and RR−categories

are described here and it is shown that the principal left and right ide-

als of a semigroup are proper categories, that of a ring are RR−proper

categories. The set of all proper cones in a proper category is a semi-

group and set of proper cones in an RR−proper category is a ring. In

particular if the ring R is regular, then the category of the principal

left (right) ideals of R is an RR− normal category (cf.[20]). In Section

3.3, we discuss abelian proper categories. Here it is shown that for an

R-module M where R is a commutative ring with unity, the category

S(M) whose objects are submodules of M and morphisms R-module



homomorphisms is an abelian proper category. In particular when M

is a semisimple module, the submodule category S(M) is an abelian

normal category and the set of all normal cones form a semisimple

R−module.

Chapter 4 discusses certain set-valued functors called H−functors

and using the H−functors, the duals of proper categories, preadditive

proper categories and RR−normal categories are described.

Chapter 5 deals with the cross-connection of RR−normal cate-

gories. A cross-connection between two RR−normal categories C and

D is a local isomorphism Γ : D → N∗C where N∗C is the normal dual

of the category C. Local isomorphism Γ∗ : C → N∗D is the dual cross-

connection. Cross connection Γ determines a bifunctor Γ(−,−) : C ×
D → Set and cross-connection Γ∗ also determines a bifunctor Γ∗(−,−).

Then there exists a natural isomorphism χΓ : Γ(−,−)→ Γ∗(−,−). Us-

ing χΓ we get a collection of linked pair of normal cones U which is a

regular ring and this ring U is called cross-connection regular ring of

RR−normal categories.
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Chapter 1

Preliminaries

In this chapter we present some basic definitions and results regard-

ing different algebraic structures and categories arising out of these

structures used in the sequel. For the concepts in lattice we follow

Birkhoff ([4]), Gratzer ([10]), T.S. Blyth ([6]) and Halmos ([8]). Re-

garding semigroup theory, we follow J.M. Howie ([15]), P.A. Grillet

([12]) and Clifford and Preston ([7]). For rings and modules we follow

Musili ([24]), Artin ([2]) and Serge Lang ([18]). For the definitions and

results regarding category and cross-connections, we follow S.Mclane

([17]) and K.S.S. Nambooripad ([25]).

1.1 Lattices

Here we recall definitions and basic results regarding partially ordered

sets and lattices.

Definition 1.1.1 ([6], page 1). If L is a nonempty set then by

a partial order on L we mean a binary relation on L that is reflexive,

antisymmetric and transitive. We usually denote a partial order by the

symbol ≤. Thus ≤ is a partial order on L if and only if

(1) ∀a ∈ L, a ≤ a (reflexive);

1



2 Chapter 1. Preliminaries

(2) ∀a, b ∈ L, if a ≤ b and b ≤ a then a = b (antisymmetric); and

(3) ∀a, b, c ∈ L, if a ≤ b and b ≤ c then a ≤ c (transitive).

Example 1.1.1 (cf.[6], Example 1.3). On the set N of natural

numbers the relation of divisibility is a partial order.

Let (L,≤) be a poset and B ⊆ L.

• a ∈ L is called an upper bound of B ⇔ ∀b ∈ B : b ≤ a.

• a ∈ L is called a lower bound of B ⇔ ∀b ∈ B : a ≤ b.

• The greatest amongst the lower bounds, whenever it exists, is

called the infimum of B, and is denoted by infB.

• The least upper bound of B, whenever it exists, is called the

supremum of B, and is denoted by supB.

Definition 1.1.2 ([10]). A lattice is a poset (L,≤) such that

sup{a, b} and inf{a, b} exist for all a, b ∈ L. A sublattice of L is a

nonempty subset K of L such that K is closed under join and meet of

L.

Example 1.1.2 (cf.[6], Example 2.8). Let V be a vector space

and SubV denotes the set of subspaces of V then (SubV ;∩,+,⊆) is a

lattice.

A subset I of a lattice L is called an ideal if it is a sublattice of L

and x ∈ I and a ∈ L imply that x ∧ a ∈ I. An ideal I of L is

proper if I 6= L. The principal ideal L(x) of L generated by x ∈ L is

L(x) = {y ∈ L|y ≤ x}. It is the smallest ideal of L containing x. A

lattice in which every subset has meet and join is a complete lattice .

If (L,≤) is a lattice, so is its dual (L,≥).

If a lattice L contains the smallest (greatest) element with respect

to ≤, then this uniquely determined element is called the zero element
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(one element), denoted by 0 (1). 0 and 1 are called universal bounds.

The principal ideal L(x) of L generated by x ∈ L can also be

denoted as the interval [0, x].

Definition 1.1.3 (cf.[6], page 77). A lattice L with 0 and 1 is

called complemented if for all a in L, there exists at least one element

b such that a ∨ b = 1 and a ∧ b = 0. Then b is called the complement

of a. A lattice L is called relatively complemented if given a ≤ x ≤ b,

an element y exists such that x ∧ y = a and x ∨ y = b. A lattice L is

called modular if for every a, b, c ∈ L, a ≤ c⇒ (a∨ b)∧ c = a∨ (b∧ c).
A lattice L called distributive if for all a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A complemented distributive lattice is called Boolean lattice. In a

Boolean lattice complement of each element is unique.

Example 1.1.3 (cf.[6], Example 6.2). Lattice of all subspaces of

a vector space is a complemented modular lattice, however the com-

plement is not unique.

Example 1.1.4 ([28], page 72). The principal right [left] ideals of

a regular ring form relatively complemented modular lattice.

Example 1.1.5 ([8], page 8). The power set of any set X,

(P (X),∩,∪,c ) is a Boolean lattice.

Definition 1.1.4 ([8]). An ideal of a Boolean lattice L is a set

I ⊆ L such that

1. 0 ∈ I,

2. if a ∈ I and b ∈ I, then a ∨ b ∈ I, and

3. if a ∈ I and b ∈ L, then a ∧ b ∈ I.
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The principal ideal of L generated by a in L is L(a) = [0, a].

Definition 1.1.5 (cf.[8], page 202). Complete ideal in a Boolean

lattice L is an ideal I of L such that if {ai} is a family in I with a

supremum a in L, then a ∈ I.

Principal ideals are examples of complete ideals.

Definition 1.1.6 ([8], page 89). Let A and B be Boolean lattices.

A (Boolean) homomorphism is a mapping f : A→ B such that, for all

p, q ∈ A:

1. f(p ∧ q) = f(p) ∧ f(q),

2. f(p ∨ q) = f(p) ∨ f(q) and

3. f(ac) = f(a)c.

Theorem 1.1.1 (cf.[8], Theorem 21). The class of all complete

ideals in a Boolean lattice L is itself a complete Boolean lattice with

respect to the distinguished Boolean elements and operations defined

by

(1) 0 = {0},

(2) 1 = L,

(3) M ∧N = M ∩N ,

(4) M ∨N =
⋂
{I : I is a complete ideal in L and M ∪N ⊆ I} ,

(5) M c = {p ∈ L : p ∧ q = 0 for all q ∈M}.

1.2 Semigroups

The formal study of semigroups began in the early twentieth century. A

semigroup is a nonempty set S with a binary operation from S×S → S

as (x, y) → xy such that x(yz) = (xy)z for all x, y, z ∈ S. A subset T
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of a semigroup S is a subsemigroup of S if T is a semigroup with respect

to the restriction of the binary operation of S to T . A semigroup with

an identity element is called a monoid. A semigroup S is commutative

if the product in S is commutative. An element e ∈ S is said to be an

idempotent if e2 = e. The set of idempotents of S is denoted as E(S).

Example 1.2.1 ([15]). (N,+) and (N, ·) are semigroups with

respect to addition and multiplication of natural numbers.

Example 1.2.2 (cf.[15], page 6). The set of all maps from a set X

into X with the binary operation as composition of maps is a semigroup

which is called the full transformation semigroup on X.

Example 1.2.3 (cf.[15], page 16). The set of all binary relations

on a set X is a semigroup denoted by BX with the operation ‘◦’ defined

as, for all ρ, σ ∈ BX ,

ρ ◦ σ = {(x, y) ∈ X ×X : (∃z ∈ X)(x, z) ∈ ρ and (z, y) ∈ σ}.

An element φ of BX is called a partial map of X if |xφ| = 1 for all x in

domφ, that is, if, for all x, y1, y2 ∈ X,

[(x, y1) ∈ φ and (x, y2) ∈ φ]⇒ y1 = y2.

The set of all partial maps of X denoted as PTX is a subsemigroup

of BX with the same operation as in BX , called partial transformation

semigroup. TX is also a subsemigroup of BX .

Definition 1.2.1 ([14]). An element a of a semigroup S is called

regular if there exists an element x in S such that axa = a. The

semigroup S is called regular semigroup (von Neumann regular) if all

its elements are regular.

Example 1.2.4 ([15]). The full transformation semigroup TX on

a set X is regular and PTX is a regular subsemigroup of TX .
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Definition 1.2.2 (cf.[25], page 45). A left translation in a semi-

group S is a mapping λ : S → S such that λ(xy) = λ(x)y for all

x, y ∈ S. If λ and µ are left translations then so is λµ. Dually a right

translation in S can be defined.

Ideals and Green’s Relations

Green’s relations are five equivalence relations that characterise the el-

ements of a semigroup in terms of the principal ideals they generate,

are important tools for analyzing the ideals of a semigroup and related

notions of structure. The relations are named after James Alexander

Green, who introduced them in a paper in 1951. Instead of working di-

rectly with a semigroup S, we define Green’s relations over the monoid

S1 (see [15]).

Let S be a semigroup. I ⊆ S is called left [right] ideal of a semi-

group S if SI ⊆ I[IS ⊆ I]. The principal left ideal of a semigroup S

generated by a is S1a = {sa|s ∈ S1} where S1 is the semigroup S with

an identity adjoined if necessary. That is, S1a is Sa ∪ {a} . Dually

principal right ideal also can be defined.

The Green’s relations on a semigroup S written as L, R and J are

defined as follows: For elements a and b of S,

aLb⇔ S1a = S1b,

aRb⇔ aS1 = bS1

aJ b⇔ S1aS1 = S1bS1

where S1a, aS1 and S1aS1 are principal left, right and two sided ideals

generated by a respectively. The Green’s relations D and H are defined

as

D = L ∨R,

H = L ∧R.
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For commutative semigroups all the Green’s relations coincide. L-

class, R-class, H-class, D-class, J -class containing the element a are

denoted by La,Ra,Ha,Da,Ja respectively. Partial orders are defined

on the quotient sets S/L, S/R, S/J as follows:

La ≤ Lb ⇔ S1a ⊆ S1b

Ra ≤ Rb ⇔ aS1 ⊆ bS1

Ja ≤ Jb ⇔ S1aS1 ⊆ S1bS1.

We see that S/L(S/R, S/J ) is isomorphic to the partially ordered set

of all principal left (right, two-sided) ideals of S ordered by inclusion.

Proposition 1.2.1 ( cf.[15], Proposition 2.1.1). Let a, b be ele-

ments of a semigroup S. Then aLb if and only if there exist x, y ∈ S1

such that xa = b, yb = a. Also aRb if and only if there exists u, v ∈ S1

such that au = b, bv = a.

Let S be a semigroup. A relation R on the set S is called left

compatible (with the operation on S) if

(∀s, t, a ∈ S), (s, t) ∈ R⇒ (as, at) ∈ R,

and right compatible if

(∀s, t, a ∈ S), (s, t) ∈ R⇒ (sa, ta) ∈ R.

It is called compatible if

(∀s, t, s′, t′ ∈ S), [(s, t) ∈ R and (s′, t′) ∈ R]⇒ (ss′, tt′) ∈ R.

A left [right] compatible equivalence is called a left [right] congruence

and a compatible equivalence relation is called a congruence (cf.[14]).

Thus it can be seen that L is a right congruence and R is a left
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congruence.

Definition 1.2.3 ([12]). A fundamental semigroup S is a semi-

group in which the equality on S is the only congruence contained in

H, that is semigroups having no non-trivial idempotent separating con-

gruences.

The fundamental semigroups were first introduced by Munn in 1966

([23]).

1.3 Rings

A ring is an algebraic structure with operations that generalize the

arithmetic operations of addition and multiplication. A ring is a basic

structure in algebra and by a ring we always mean an associative ring

with identity.

Definition 1.3.1 (cf.[24], Definition 1.1.1). A nonempty set R

together with two binary operations called addition (+) and multipli-

cation (·) on R is called a ring, if

1. (R,+) is an abelian group,

2. (R, ·) is a semigroup and

3. Distributive laws hold.

Thus the theory of rings is a combination of a semigroup and

an abelian group structure usually written as (R,+, ·). In the ring

(R,+, ·), if the semigroup (R, ·) has an identity, it is unique and is

denoted by 1 and is called the identity element or the unity of R. A

ring R is said to be commutative if the semigroup(R, ·) is commutative.

Subring of a ring R is a non-empty subset S of R such that (S,+) is a

subgroup of (R,+) and (S, ·) is a subsemigroup of (R, ·).
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Example 1.3.1 (cf.[24], page 5). The set of all integers(Z), ra-

tional numbers (Q), real numbers (R) and complex numbers (C) are

commutative rings with unity under the standard operations of addi-

tion and multiplication. The subsets Z ⊂ Q ⊂ R are all subrings of

C.

Example 1.3.2 (cf.[24], Definition 1.8.3, page 24). Gaussian in-

tegers Z[i] where i ∈ C defined by Z[i] = {a+ bi|a, b ∈ Z} is a ring.

Example 1.3.3 (cf.[24], page 15). Let n ∈ N. The set of all

n × n matrices over R is a ring with respect to usual addition and

multiplication of matrices.

Definition 1.3.2 (cf.[24], Definition 3.1.1). A mapping f : R→ S

of rings R and S is called a homomorphism if f(a + b) = f(a) + f(b)

and f(ab) = f(a)f(b) for all a, b ∈ R. An isomorphism of rings is a

bijective homomorphism.

An integral domain R is a nonzero ring having no zero divisors.

That is if ab = 0, then a = 0 or b = 0 and also 1 6= 0 in R.

A ring R is a division ring if every nonzero element of R has a

multiplicative inverse in R. A commutative division ring is called a

field .

Definition 1.3.3 (cf.[24], Definition 4.1.1, page 107). Let a, b ∈
R, a 6= 0 where R is a ring. We say that a divides b or a is a divisor of

b and written a|b if there exists c ∈ R such that b = a · c.

Definition 1.3.4 (cf.[24], Definition 4.2.1). A commutative inte-

gral domain R (with or without unity) is called a Euclidean domain if

there is a map d : R∗ → Z+ where R∗ = Rr {0} such that:

1. ∀a, b ∈ R∗, a|b⇒ d(a) ≤ d(b)

2. Given a ∈ R, b ∈ R∗, there exists q, r ∈ R (depending on a and

b) such that a = qb+ r with either r = 0 or else d(r) < d(b).
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Example 1.3.4 ([24], Example 4.2.3). The ring of integers Z, any

field F and ring of Gaussian integers Z[i] are Euclidean domains.

Definition 1.3.5 ([28]). (R,+, ·) is a (von Neumann) regular ring

if it is a ring with the multiplicative part a regular semigroup (see

Definition 1.2.1).

Example 1.3.5 ([28]). Every field is von Neumann regular. The

ring of n×n matrices Mn(F ) is regular with entries from some field F .

An element e ∈ R is said to be idempotent if e.e = e. E(R) denotes

the set of all idempotents of R. The principal ideals of a regular ring

are idempotent generated and form a relatively complemented modular

lattice ([28]).

Definition 1.3.6 ([24], Definition 1.7.1). A ring R with identity

is called Boolean ring if every element is an idempotent.

Boolean ring corresponds to Boolean lattice and vice versa ([8]).

A subset of a Boolean lattice is a Boolean ideal if and only if it is an

ideal in the corresponding Boolean ring [8]. Note that a Boolean ring is

von Neumann regular ring, necessarily commutative and has cardinal

number a power of 2.

Example 1.3.6 ([24], Example 1.7.2). Let X be any non-empty

set and P(X) be the power set of X with addition and multiplication

on P(X) defined by A+B = A⊕B = (A∪B)r (A∩B) = (ArB)∪
(B r A) and AB = A ∩B is a Boolean ring.

Ideals and Green’s relations in rings

Let R be a ring. The left [right] ideal I of R is an additive abelian group

such that RI ⊆ I[IR ⊆ I]. Let a ∈ R. The principal left (right) ideal

generated by a is (a)l = Ra and (a)r = aR. If I is simultaneously both

left and right ideal of R, we say that I is a two-sided ideal. Suppose I
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and J are both left or right or two sided ideals of ring R. Their sum

I + J is defined as

I + J = {x+ y|x ∈ I, y ∈ J}

it is the smallest ideal containing both I and J .

Their intersection I ∩ J is the usual intersection of sets:

I ∩ J = {x|x ∈ I and x ∈ J}.

Following the Green’s relations in semigroups, analogous versions

of Green’s relations have been defined for rings (cf. [29]).

1.4 Modules

A module is one of the fundamental algebraic structures in abstract

algebra. A module over a ring is a generalization of the notion of vector

space over a field, wherein the corresponding scalars are the elements

of a ring (with identity) and a multiplication (on the left and/or on

the right) is defined between elements of the ring and elements of the

module. Just as the linear transformations between vector spaces, we

have homomorphisms between modules.

Definition 1.4.1 (cf.[24], Definition 5.1.1). Let R be any ring. A

left R-module M is an abelian group (M,+) together with a map from

R×M →M as (a, x) 7→ ax called the scalar multiplication such that

1. a(x+ y) = ax+ ay for all a ∈ R and x, y ∈M

2. (a+ b)x = ax+ bx for all a, b ∈ R and x ∈M

3. (ab)x = a(bx) for all a, b ∈ R and x ∈M

A left R-module M is called unitary left R-module if 1 · x = x for all

x ∈M .
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Similarly one can define the right R-module as an additive abelian

group with scalar multiplication on the right. If R is commutative, the

notions of left and right modules coincide.

Let M be an R-module. A nonempty subset N of M is called an

R-submodule of M if

1. N is an additive subgroup of M , i.e., x, y ∈ N ⇒ x− y ∈ N

2. N is closed for arbitrary scalar multiplication, i.e., x ∈ N, a ∈
R⇒ ax ∈ N.

Suppose M is an R-module and P , Q are both submodules of M .

Then the sum of the submodules P +Q = {x+ y|x ∈ P, y ∈ Q} is the

smallest R-submodule containing both P and Q. Their intersection

P ∩ Q = {x|x ∈ P and x ∈ Q} is the intersection of P and Q in the

usual sense.

A homomorphism of R-modules M and N is a map f : M → N

which is compatible with the laws of composition

f(x+ y) = f(x) + f(y) and f(ax) = af(x),

for all x, y ∈ M and a ∈ R. A bijective homomorphism is called iso-

morphism. The kernel of a homomorphism f : M → N is a submodule

of M ; denoted by kerf = {x ∈ M |f(x) = 0} and image of f is a

submodule of N .

Remark 1.4.1 (cf.[24], page 144-145). The direct product of

two R-modules is again an R-module. For a collection of R-modules

{Mi}i∈I , the direct product Πi∈IMi is the product of the underlying

sets Mi with R-module structure given by component-wise addition

and scalar multiplication.

The direct product Πi∈IMi is equipped with a collection of projec-

tion maps {πi : Πi∈IMi →Mi}i∈I given by πi((mi)i∈I) = mi for all i ∈
I. Each πi is an R-module homomorphism.
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The direct sum ⊕i∈IMi is a submodule of the direct product Πi∈IMi

consisting of elements (mi)i∈I such that all but a finitely many mi are

zero.

The direct sum ⊕i∈IMi is equipped with a collection of injection

maps {pi : Mi → Πi∈IMi}i∈I given by pi(m) = (mi)i∈I where for all

j 6= i,mj = 0 and mi = m, for all m ∈ Mi. Each pi is an R-module

homomorphism.

Example 1.4.1 ([2]). If R is a field F , then F -module is an

F -vector space. Unitary modules over Z are simply abelian groups.

A ring R can be considered to be both a left R-module and a right

R-module.

Definition 1.4.2 (cf.[24], Definition 5.8.3). A nonzero module M

is called simple module if it has only trivial submodules (0) and M . A

field is a simple module viewed as a module over itself. A module is

called semisimple if it is a direct sum of simple modules.

The module Mn(D) is semisimple for division ring D. Every simple

module is semisimple. Note that the ring Z is not a semisimple module

over itself but Zn with n, a square free integer is a semisimple module

over Z. If M is semisimple R-module, then every submodule and every

quotient module of M are semisimple.

Remark 1.4.2. Let M be a semisimple module and M =
⊕

i∈IMi

where Mi are simple modules and let W be a submodule of M , then

M = W
⊕

W ′ where W =
⊕

i:Mi⊂W Mi, hence W is semisimple. Also

W ′ =
⊕

i:Mi∩W=0 Mi. As M/W ∼= W ′, it is semisimple and it is the

complement of W . The submodules of a semisimple module form com-

plemented modular lattice with respect to intersection as meet and sum

as join.

Lemma 1.4.1 (cf.[24], Shur’s Lemma). Suppose M and N are
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two simple R-modules. Then any R-module homomorphism (R-linear

map) f : M → N is either 0 or an isomorphism. In particular, the

endomorphism ring EndR(M) is a division ring.

The first isomorphism theorem for modules states that if θ : M →
N is an R-module homomorphism between two R-modules M and N

then the induced homomorphism θ : M |Kerθ → Imθ is an isomorphism.

For semisimple modules M |Kerθ ∼= (Kerθ)c and hence (Kerθ)c ∼= Imθ.

1.5 Cross-connection of complemented modular lat-

tice

Here we describe Grillet’s method of cross-connection on regular posets

(cf.[12]) and K.S.S. Nambooripad and F.J. Pastijn’s method of cross-

connection on complemented modular lattices (cf.[27]).

Definition 1.5.1 (cf.[12], page 278). The ideal of a partially

ordered set X is a subset Y of X such that x ≤ y ∈ Y implies x ∈ Y .

The principal ideal X(x) of X generated by x ∈ X is {y ∈ X|y ≤ x};
it is the smallest ideal of X containing x.

Definition 1.5.2 (cf.[12], page 278). Let X be a partially ordered

set, a mapping f : X → X is a normal mapping if it has the following

three properties:

1. f is order preserving;

2. the range imf of f is a principal ideal of X;

3. for each x ∈ X there exists y ≤ x such that f maps X(y) isomor-

phically upon X(xf).

In particular, if f is normal, then there exists at least one element

b ∈ X such that f is an isomorphism of X(b) onto X(a) = imf . We

denote by M(f) the set of all elements b ∈ X with this property.
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Example 1.5.1. Consider the partially ordered set P below,

a

d c

b

The map f : P → P defined by f : a → b, b → b, c → c, d → d is a

normal mapping with M(f) = {a, b}.

The set of all normal mappings from X to X, denoted by N(X) is

a semigroup under composition. The elements of N(X) will be written

as right operators and the elements of its dual N op(X) will be writ-

ten as left operators. Idempotent normal mappings are called normal

retractions and a principal ideal X(a) is called normal retract if prin-

cipal ideal X(a) = ime where e is some normal retraction. X is called

regular poset if every principal ideal of X is a normal retract.

Example 1.5.2 (cf.[12], page 278). If S is a regular semigroup, L
and R are Green’s relations; then Λ = S/L and I = S/R are regular

posets.

Definition 1.5.3 (cf.[12]). An equivalence relation ρ on a poset

P is said to be normal if there exists a normal mapping f ∈ N(P ) such

that kerf = ff−1 = ρ.

The poset (under the reverse of inclusion) of all normal equivalences

on P is denoted by P o such that when P is regular, then so is P o

([13]). With each ρ ∈ P o we may associate the subset M(ρ) defined

by M(ρ) = M(f), where f is any normal mapping with kerf = ρ

and a ∈ M(ρ) iff P (a) intersects every ρ-class in exactly one element.

Then P (a) ∩ ρ(x) contains a single element which is minimal in its ρ-

class and the mapping εp(ρ, a) which sends each x in P to the unique

element in P (a)∩ ρ(x) is a normal retraction with kerεp(ρ, a) = ρ and
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imεp(ρ, a) = P (a). εp(ρ, a) is called the projection along ρ upon P (a)

(cf.[13]).

Proposition 1.5.1 (cf.[27], Proposition 1). Let I and Λ be regular

posets and f : I → Λ be a normal mapping. For σ ∈ Λo, define f o(σ) =

ker(fεΛ(σ, u)) = σf−1 where u ∈M(σ). Then f o : Λo → Io is a normal

mapping such that imf o = Io(kerf) and M(f o) = {ρ ∈ Λo|b ∈ M(ρ)}
where imf = Λ(b). If P,Q and R are regular partially ordered sets, and

if f : P → Q and g : Q→ R are normal mappings then (fg)o = f ogo.

Definition 1.5.4 (cf.[6], page 7). An order preserving mapping

f : P → Q of posets P and Q is said to be residuated if there exists

an order preserving mapping f+ : Q → P such that f · f+ ≥ idP and

f+ · f ≤ idQ. The mapping f+ is called the residual of f .

Example 1.5.3 (cf.[6], Example 1.17). If E is any set and A ⊆ E

then for the power set P(E) of E, λA : P(E) → P(E) defined by

λA(X) = A∩X is residuated with residual λ+
A given by λ+

A(Y ) = Y ∪Ac.

Example 1.5.4 (cf.[6], Example 1.20). If S is a semigroup, define

a multiplication on the power set P(S) of S by

XY =

{xy | x ∈ X, y ∈ Y } if X, Y 6= φ;

φ, otherwise.

Then multiplication by a fixed subset of S is a residuated mapping on

P(S).

The set ResP of all residuated maps of P is a semigroup and f →
f+ is a dual isomorphism of ResP onto the semigroup Res+P of all

residuals of elements of ResP . An f ∈ ResP is totally range closed if f

maps principal ideals onto principal ideals. Observe that a residuated

map that is also normal must be totally range closed. Further f ∈
ResP is strongly range closed if f and f+ are totally range closed
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transformations of P and P op respectively where P op is the dual of P .

The set B(P ) of all strongly range closed transformations of P is a

subsemigroup of ResP and f → f+ is an isomorphism of B(P ) onto

B(P op). If f ∈ ResP and if both f and f+ are normal, then f is

binormal mapping and f ∈ B(P ).

In [27] it is described that if I and Λ are regular posets and Γ :

Λ → Io, ∆ : I → Λo are order preserving mappings, then (f, g) ∈
N(I) × N(Λ)op is compatible with (Γ,∆) if the following conditions

hold:

(1) imf = I(x), img = Λ(y)⇒ kerf = Γ(y), kerg = ∆(x),

(2) the following diagrams commute:

I
∆−−−→ Λo

f

x xgo
I −−−→

∆
Λo

Λ
Γ−−−→ Io

g

x xfo
Λ −−−→

Γ
Io

The definition of cross-connection is given in the following theorem:

Theorem 1.5.1 (cf.[27], Theorem 2). Let I, Λ be regular partially

ordered sets and let Γ : Λ → Io, ∆ : I → Λo be order preserving

mappings. Then [I,Λ; Γ,∆] is a cross-connection if and only if the

following conditions are satisfied:

1. x ∈M(Γ(y))⇔ y ∈M(∆(x)), x ∈ I, y ∈ Λ,

2. if x ∈M(Γ(y)), then the pair

(εI(Γ(y), x), εΛ(∆(x), y))

is compatible with (Γ,∆).

Proposition 1.5.2 ([12], Proposition 2.3). Let [I,Λ; Γ,∆] be

a cross-connection between two regular posets I and Λ. Then U =
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U(I,Λ; Γ,∆) consisting of all the pairs (f, g) ∈ N(I)×N(Λ)op that are

compatible with (Γ,∆) is a fundamental regular semigroup.

In particular if the regular poset becomes a complemented modular

lattice L, the cross-connection of complemented modular lattices L

and its dual Lop is described below (cf.[27]).

Theorem 1.5.2 (cf.[6], Theorem 6.21, page 97). If L is a lattice

then a residuated mapping f : L → L is totally range closed if and

only if

f [f+(x) ∧ y] = x ∧ f(y), (∀x, y ∈ L);

and is dually totally range closed if and only if

f+[f(x) ∨ y] = x ∨ f+(y), (∀x, y ∈ L).

Proposition 1.5.3 (cf.[27], Proposition 3). Let L be a comple-

mented modular lattice, let a ∈ L and let ac be a complement of a in

L. Then (a; ac) : L → L, x → (x ∨ a) ∧ ac is a binormal idempotent

mapping such that (a; ac)+ : Lop → Lop, y → (y∧ ac)∨ a is the residual

of (a; ac). Further

ker(a; ac) = ∆(a) = {(x, y)|x ∨ a = y ∨ a}

ker(a; ac)+ = Γ(ac) = {(x, y)|x ∧ ac = y ∧ ac}

and M(Γ(a)) = M(∆(a)) = {ac|ac is a complement of a in L}.

Let L be a lattice with 0 and 1. For each a ∈ L the relation

Γ(a) = {(x, y)|x ∧ a = y ∧ a} (1.1)

is an equivalence relation on L, and the mapping Γ : L → Eq(L),

a 7→ Γ(a) is an order preserving embedding of L into the poset Eq(L)

of all equivalence relations on L ordered under the reverse of inclusion.
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Note that Γ(a) = kerfa, where fa : L → L, x 7→ x ∧ a is a normal

retraction of L. Hence Γ(a) ∈ Lo for all a ∈ L and

Γ : L→ Lo, a 7→ Γ(a) (1.2)

is an order preserving embedding of L into Lo. Above proposition shows

that if L is a complemented modular lattice, Γ is an order preserving

embedding of L into (Lop)o also. Dually,

∆(a) = {(x, y)|x ∨ a = y ∨ a} (1.3)

is a normal equivalence on Lop and

∆ : Lop → (Lop)o, a 7→ ∆(a) (1.4)

is an order preserving embedding of Lop into (Lop)o. Again by the above

proposition we see that if L is a complemented modular lattice, then

∆ is also an order preserving embedding of Lop into Lo.

Theorem 1.5.3 ([27], Theorem 6). Let L be a lattice with 0 and

1, and define Γ and ∆ as defined by equations 1.1, 1.2, 1.3 and 1.4.

Then the following are equivalent:

(i) L is a complemented modular lattice,

(ii) ∆ is an order embedding of Lop into Lo,

(iii) Γ is an order embedding of L into (Lop)o,

(iv) [Lop, L; Γ,∆] is a cross-connection.

If these conditions are satisfied, then the fundamental regular semi-

group U = U(Lop, L; Γ,∆) is given by

U = {(f+, f)|f ∈ B(L)}.
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1.6 Categories

A small category is a category in which the class of objects and class

of morphisms are both sets and all categories considered here are small

categories. We commence our discussion of the theory of categories

with the axiomatic definition of a category and then concentrate on

certain types of categories such as preadditive, additive, abelian etc.

A detailed survey of the categories with subobjects, factorization etc.

and the properties of the ideal categories of a regular semigroup are

provided here (cf.[25]). In this thesis all morphisms are written in the

order of their composition i.e., from left to right.

Definition 1.6.1 (cf.[17], page 7). A category C consists of the

following data:

1. objects denoted by a, b, c, ... and arrows (morphisms) f, g, h, ...

2. for each arrow f there are given objects: dom(f), cod(f) called

the domain and codomain of f . We write: f : a → b to indicate

that a = dom(f) and b = cod(f)

3. given arrows f : a → b and g : b → c, that is, with cod(f) =

dom(g) then there exists an arrow: f · g : a → c called the

composite of f and g

4. for each object a there is given an arrow: Ia : a → a called the

identity arrow of a.

These data are required to satisfy the following laws:

5. associativity: f ·(g ·h) = (f ·g) ·h, ∀f : a→ b, g : b→ c, h : c→ d

6. unit: f · Ib = f = Ia · f , ∀f : a→ b.

A category is anything that satisfies this definition. For a category C,
we denote by vC the set of objects of C and for a, b ∈ vC the set of

morphisms from a to b is denoted by C(a, b) or hom(a, b) and is called

homset .
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Example 1.6.1 (cf.[17], page 12). • Set: Category of sets with

maps,

• VctK: Category of vector spaces over a field K with linear map-

pings,

• Grp: Category of groups with group homomorphisms,

• Ab: Category of abelian groups with group homomorphisms,

• Rng: Category of rings with ring homomorphisms,

• R−mod: Category of left R-modules with module homomor-

phisms.

A subcategory C ′ of a category C is a collection of some of the objects

and some of the arrows of C, which includes with each arrow f both

the object domf and the object codf , with each object s its identity

arrow Is and with each pair of composable arrows s → s′ → s′′ their

composite. If C ′(a, b) = C(a, b), then C ′ is called full subcategory of C.
For example, Ab is a full subcategory of Grp.

A functor is a homomorphism of categories and is defined as follows:

Definition 1.6.2 (cf.[17], page 13). For categories C and B a

functor F : C → B with domain C and codomain B consists of two

suitably related functions: The object function F which assigns to

each object c of C an object F (c) of B and the arrow function which

assigns to each arrow f : c→ c′ of C an arrow F (f) : F (c)→ F (c′) of

B, in such a way that

F (Ic) = IF (c), F (f · g) = F (f) · F (g),

the later whenever the composite f · g is defined in C. F is called

covariant functor.

A simple example is the powerset functor P : Set→ Set.
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A functor F : C → D is called faithful if for each c, c′ ∈ vC the

restriction of F to C(c, c′) is injective. F is called full if for each c, c′ ∈
vC, F maps C(c, c′) onto D(F (c), F (c′)). An isomorphism of categories

is a full and faithful functor F in which vF is a bijection.

Definition 1.6.3 (cf.[25], page 36). Let C,D be categories. The

product category C × D is the category with an object is a pair (c, d)

of object c of C and d of D; a morphism (c, d) → (c′, d′) of C × D is

a pair (f, g) of arrows f : c → c′ and g : d → d′. The composition

of morphisms are defined component wise. A bifunctor or a functor in

two variables is a functor F : C×D → A(where A is another category).

A natural transformation is a morphism of functors and is defined

as follows:

Definition 1.6.4 (cf.[17], page 40). Given two functors F,G : C →
D, a natural transformation τ : F → G is a function which assigns to

each object c of C an arrow τc : F (c) → G(c) of D in such a way that

every arrow f : c→ c′ in C yields a diagram which is commutative.

F (c)
τc−−−→ G(c)

F (f)

y G(f)

y
F (c′) −−−→

τc′
G(c′)

Definition 1.6.5 (cf.[17], page 40). Let C andD be two categories,

then there is an associated category denoted by [C,D] in which every

functor from C to D is an object and every natural transformation

between two such functors is a morphism. Any subcategory of [C,D]

is called a functor category .

The category C∗ denote the functor category [C,Set] and C∗ is regarded

as a dual of C.

A morphism f in a category C is a monomorphism if for g, h ∈ C,
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gf = hf implies g = h; that is f is a monomorphism if it is right

cancellable. Dually a morphism f ∈ C is an epimorphism if f is left

cancellable.

A morphism f ∈ C(c, c′) is called a split monomorphism if there

exists a morphism g ∈ C(c′, c) such that fg = Ic. That is f has a right

inverse. A morphism f ∈ C(c, c′) is called a split epimorphism if f has

a left inverse. Two monomorphisms f, g ∈ C are equivalent if there

exists h, k ∈ C with f = hg and g = kf. The fact that f and g are

monomorphisms imply that h is an isomorphism and k = h−1.

An object a is terminal in C if for each object b there is exactly one

arrow b → a. An object c is initial object if to each object b there is

exactly one arrow c→ b.

Definition 1.6.6 ([17], page 20). A zero object or null object z in

C is an object which is both initial and terminal.

For any two objects a and b the unique arrows a → z and z → b

have a composite Ob
a : a → b called the zero morphism from a → b.

The zero object is unique up to isomorphism and the notion of zero

arrow is independent of the choice of the zero object.

Example 1.6.2 ([17]). Zero module is the zero object in the

category R−mod. Trivial group is the zero object in the category

Grp.

Definition 1.6.7 (cf.[17], page 70). An equalizer of f, g : b→ a in

C is an arrow e : d→ b such that e · f = e · g with that to any h : c→ b

with h · f = h · g there is a unique h′ : c→ d with h′ · e = h.

Dually coequalizer of f, g : a → b is an arrow u : b → d such that

f · u = g · u; and if h : b → c has f · h = g · h, then h = u · h′ for a

unique arrow h′ : d→ c.

Let C has a zero object. A kernel of an arrow f : a → b is defined

to be an equalizer of the arrows f,O : a ⇒ b. A kernel is necessarily
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a monomorphism. Dually cokernel of f : a → b is coequalizer of the

arrows f,O : a⇒ b. A cokernel is necessarily an epimorphism.

Definition 1.6.8 (cf.[17], page 68). The product of two objects a

and b of category C is written a×b or aΠb with two arrows p1 : aΠb→ a,

p2 : aΠb → b called the projections of the product aΠb such that for

any c ∈ C with given arrows f : c→ a and g : c→ b, there is a unique

h : c→ aΠb with h · p1 = f and h · p2 = g.

Dually coproduct is written as a + b or a q b with two arrows

q1 : a → a q b, q2 : b → a q b called the injections of the coprod-

uct a q b such that for any d ∈ C with given arrows f : a → d and

g : b→ d, there is a unique h : aq b→ d with q1 · h = f and q2 · h = g.

Biproduct of a finite collection of objects, in a category with zero

objects, is both a product and a coproduct. For example, in the cate-

gory of R−modules R−mod, the direct product of two R−modules

is a biproduct.

Definition 1.6.9 (cf.[17], page 192). A preadditive category (or

Ab-category)A is a category in which each homsetA(b, c) is an additive

abelian group and composition of arrows is bilinear relative to this

addition and A has zero object.

A preadditive category with biproduct for each pair of its objects,

is called additive category .

Definition 1.6.10 (cf.[17], page 198). An abelian category A is a

preadditive category satisfying:

1. A has biproducts,

2. every arrow in A has a kernel and a cokernel,

3. every monomorphism is a kernel, and every epimorphism is a

cokernel.

Example 1.6.3 ([17], page 199). R−Mod and Mod−R, the
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categories of left and right R-modules with R-module homomorphisms

are abelian categories with the usual kernels and cokernels.

Category with Subobjects

In the following we recall subobject relation in categories and provides

some results regarding categories with subobjects from [25].

A preorder P is a category such that, for any p, p′ ∈ vP ; the homset

P (p, p′) contains at most one morphism. In this case, the relation ⊆ on

the class vP defined by p ⊆ p′ ⇔ P (p, p′) 6= φ is a quasi-order on vP . In

a preorder, p and p′ are isomorphic if and only if P (p, p′) 6= φ 6= P (p′, p).

Therefore p ⊆ p′ is a partial order if and only if P does not contain any

nontrivial isomorphisms. Equivalently, the only isomorphisms of P are

identity morphisms and in this case P is said to be a strict preorder.

Definition 1.6.11 (cf.[25], Definition 1, page 18). Let C be a

category and P be a subcategory of C. Then (C, P ) is called a category

with subobjects if the following hold:

(1) P is a strict preorder with vP = vC

(2) every f ∈ P is a monomorphism in C

(3) if f, g ∈ P and if f = hg for some h ∈ C, then h ∈ P .

In a category with subobjects if f : a→ b is a morphism in preorder

P then f is said to be an inclusion, we denote this inclusion by j(a, b).

If there is a morphism e : b→ a such that j(a, b) · e = Ia, then e is

called a retraction from b→ a and is denoted by e(b, a).

In case a retraction from b to a exists then the inclusion j(a, b) :

a→ b is a split inclusion.

Any monomorphism equivalent to an inclusion is called an embed-

ding. Clearly every inclusion is an embedding.

Let C be a category with subobjects. A morphism f ∈ C has fac-
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torization if

f = p ·m

where p is an epimorphism and m is an embedding (see cf.[25], page

21). A category C is said to have the factorization property if every

morphism of C has a factorization.

Thus, if C has the factorization property, then any morphism f

in C has at least one factorization of the form f = qj, where q is an

epimorphism and j is an inclusion. Factorizations of this type are called

canonical factorizations .

A normal factorization of a morphism f in C is a factorization of

the form

f = euj

where e is a retraction, u is an isomorphism and j is an inclusion.

A morphism f in a category with subobjects is said to have an

image if it has a canonical factorization f = xj, where x is an epimor-

phism and j is an inclusion with the property that whenever f = yj′ is

any other canonical factorization, then there exists an inclusion j′′ such

that y = xj′′. A category is said to have images if every morphism in

C has an image. In this case, the codomain of x is said to be the image

of f .

When the morphism f has an image we denote the unique canoni-

cal factorization of f by f = f ojf , where f o is the unique epimorphic

component and jf is the inclusion of f .

Definition 1.6.12 ([25]). Let C be a category with subobjects,

images, every morphism in C has normal factorizations in which the

inclusion splits. For d ∈ vC, a cone with vertex d is a collection of

maps γ : vC → d from the base vC to d satisfying the following:

1. γ(c) ∈ C(c, d) for all c ∈ vC,

2. if c′ ⊆ c then j(c′, c)γ(c) = γ(c′).
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Definition 1.6.13 ([25] and [31]). Let C be a category with sub-

objects, in which inclusion splits and every morphism has normal [bal-

anced] factorization. Then a normal [balanced] cone in C is a cone with

at least one component isomorphism [balanced morphism]. For a cone

γ ∈ C, the M -set [B-set] of γ is defined by

Mγ = {c ∈ vC : γ(c) is an isomorphism} and

Bγ = {c ∈ vC : γ(c) is a balanced morphism} respectively.

The vertex d of the cone γ is usually denoted as cγ.

In [25] it is described that the set of all normal cones in the category

C is a regular semigroup denoted by T C with respect to the operation;

for γ, β ∈ T C
γ · β = γ ? β(cγ)

o. (1.5)

That is for every a ∈ vC,

(γ · β)(a) = γ(a) · β(cγ)
o.

Let E(T C) be the set of all idempotent normal cones in C and BC be

the concordant semigroup of all balanced cones in category C (cf.[31]).
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Definition 1.6.14 ([25]). A normal category is a pair (C, P ) sat-

isfying the following:

1. (C, P ) is a category with subobjects

2. every inclusion in C splits

3. Any morphism in C has a normal factorization

4. for each a ∈ vC there is a normal cone γ with vertex a and γ(a) =

Ia.

Proposition 1.6.1 ([22], Proposition 1.2.6). Let C and D be

two isomorphic normal categories, then T C is isomorphic to T D as

semigroups.

Ideal categories of regular semigroup

Let S be a regular semigroup. The category of principal left ideals

L(S) is defined as vL(S) = {Se : e ∈ E(S)}

L(S)(Se, Sf) = {ρ : Se→ Sf : (st)ρ = s(tρ) for all s, t ∈ Se}

Dually, the category of right ideals R(S) is defined as follows:

vR(S) = {eS : e ∈ E(S)}

R(S)(eS, fS) = {λ : eS → fS : λ(st) = (λs)t for all s, t ∈ eS}.

By Lemma 12 of [25], L(S) is the category whose vertex set is the

set of all principal left ideals and whose morphism set is the set of

right translations as defined above. Let ρ(e, u, f) = ρu|Se where e, f ∈
E(S);u ∈ eSf . Then we have the following:

1. For every e, f ∈ E(S) and u ∈ eSf, ρ(e, u, f) ∈ L(S)(Se, Sf).

Moreover the map ρ(e, u, f) 7−→ u is a bijection of L(S)(Se, Sf)

onto eSf .



1.6. Categories 29

2. ρ(e, u, f) = ρ(e′, v, f ′) if and only if eLe′, fLf ′, u ∈ eSf, v ∈ e′Sf ′

and v = e′u.

3. If ρ(e, u, f) and ρ(g, v, h) are composable morphisms in L(S) (so

that fLg, u ∈ eSf and v ∈ gSh), then

ρ(e, u, f)ρ(g, v, h) = ρ(e, uv, h).

In particular L(S) is a category with subobjects, in which every inclu-

sion splits and every morphism has a normal factorization.

Lemma 1.6.1 (cf.[25], Lemma 15, page 50). Let S be a regular

semigroup, a ∈ S and f ∈ E(La). Then the map

ρa(Se) = ρ(e, ea, f)

is a normal cone in L(S) with vertex Sa and such that

Mρa = {Se : e ∈ E(Ra)}.

Moreover, ρa is an idempotent normal cone in T L(S) if and only if

a ∈ E(S). E(La)[E(Ra)] is the set of all idempotents in the L[R]-class

of a.

Thus it is seen that given a regular semigroup S, the category L(S)

described above is a normal category. Further we have the following

proposition.

Proposition 1.6.2 (cf.[25], Proposition 13, page 48). Let S be a

regular semigroup and the category of principal left ideals of S, L(S)

is a normal category. Let ρ = ρ(e, u, f) : Se → Sf be a morphism in

L(S). We have the following:

1. The morphism ρ(e, u, f) is a monomorphism iff ρ(e, u, f) is injec-

tive and this is true iff eRu.
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2. ρ(e, u, f) is an epimorphism if it is surjective and this is true iff

uLf .

3. If Se ⊆ Sf , then j(Se, Sf) = ρ(e, e, f) and ρ(f, fe, e) : Sf → Se

is a retraction.

Theorem 1.6.1 (cf.[25], Theorem 19, page 53). Let C be a normal

category. Define F on objects and morphisms of C as follows. For

c ∈ vC, let

vF (c) = (TC)ε

where ε ∈ E(T C), with cε = c; and for a morphism f ∈ C(c, d), let

F : f 7→ ρ(ε, ε ∗ f o, ε′) : (T C)ε→ (T C)ε′

where ε, ε′ ∈ E(T C), with cε = c, cε′ = d and (ε ∗ f o)(a) = ε(a) · f o for

a ∈ vC. Then F : C → L(T C) is an isomorphism of normal categories.

From this theorem it is clear that for a normal category C the set of

all normal cones T C is a regular semigroup and its left ideal category

L(T C) is a normal category. Similarly the right ideal category R(T C)
is also a normal category.

Theorem 1.6.2 (cf.[25], Theorem 16, page 51). Let S be a regular

semigroup and Sρ be the set of all right translations on S. Then L(S)

is a normal category. Moreover there exists a homomorphism ρ̄ : S →
T L(S) and an injective homomorphism φ : Sρ → T L(S) such that the

following diagram commutes:

S
ρ−−−→ Sρy φ

x
S −−−→

ρ̄
T L(S)

Similar results holds for the category R(S) whose vertex set is the
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set of all principal right ideals and morphisms set is the set of all left

translations.

Normal dual

Let C be a normal category and T C be the regular semigroup of normal

cones. The poset of right ideals of T C can be represented as a poset of

certain set valued functors, called H-functors. For each γ ∈ T C, define

H-functor, H(γ;−) on objects and morphisms of C as follows:

H(γ; c) = {γ ? f o : f ∈ C(cγ, c)}

H(γ; g) : γ ? f o 7→ γ ? (fg)o.

Let γ, γ′ ∈ T C. If H(γ;−) = H(γ′;−) then Mγ = Mγ′ (cf.[25]). In

view of this result, we may write MH(γ;−) for Mγ.

Theorem 1.6.3 ([25], Theorem 11, page 44). Let C be a normal

category and γ, γ′ ∈ T C. Then

γLγ′ ⇔ cγ = cγ′ .

γRγ′ ⇔ H(γ,−) = H(γ′,−).

γDγ′ ⇔ cγ ∼= cγ′ .

Definition 1.6.15 (cf.[25], Definition 4, page 55). If C is a nor-

mal category, then the normal dual of C, denoted by N∗C is the full

subcategory of C∗ with objects H-functors H(ε,−) : C → Set, where ε

is an idempotent normal cone, that is

vN∗C = {H(ε;−) : ε ∈ E(T C)}

and the morphisms are appropriate natural transformations between

such functors.
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The following lemma describes morphisms of N∗C in terms of those

of C.

Lemma 1.6.2 ([25], Lemma 21, page 56). To every morphism

σ : H(ε;−)→ H(ε′;−) in N∗C, there is a unique σ̂ : cε′ → cε in C such

that the following diagram commutes.

H(ε;−)
ηε−−−→ C(cε,−)

σ

y yC(σ̂,−)

H(ε′;−) −−−→
ηε′

C(cε′ ,−)

In this case, the component of the natural transformation σ at c ∈ vC
is the map given by σ(c) : ε ∗ f o 7→ ε′ ∗ (σ̂f)o. In particular, σ is the

inclusion H(ε;−) ⊆ H(ε′;−) if and only if ε = ε′ ∗ σ̂. Moreover, the

map σ 7→ σ̂ is a bijection of N∗C(H(ε;−), H(ε′;−)) onto C(cε′ , cε).

Lemma 1.6.3 ([25], Lemma 22, page 57). Let ε, ε′ ∈ E(T C).
Then the map λ(ε, γ, ε′) 7−→ γ̃ where γ ∈ ε′(T C)ε and

γ̃ = γ(cε′)j(cγ, cε) (1.6)

is a bijection of R(T C)(ε(T C), ε′(T C)) onto C(cε′ , cε).

Lemma 1.6.4 ([25], Lemma 24, page 58). Let γ ∈ ε′(T C)ε and

γ′ ∈ ε′′(T C)ε′. Assume that γ̃, γ̃′ and γ̃′ · γ are morphisms defined by

Equation 1.6. Then γ̃′ · γ = γ̃′ · γ̃.

Theorem 1.6.4 ([25], Theorem 25, page 58). Let C be a normal

category. Define G on objects and morphisms of C as follows:

vG(ε(T C)) = H(ε;−)

and for λ = λ(ε, γ, ε′) : ε(T C) → ε′(T C), let G(λ) be the natural
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transformation making the following diagram commutative.

H(ε;−)
ηε−−−→ C(cε,−)

G(λ)

y yC(γ̃,−)

H(ε′;−) −−−→
ηε′

C(cε′ ,−)

Then G : R(T C)→ N∗C is an isomorphism of normal categories.

In the light of the above discussion we can conclude that for a

normal category C, its dual N∗C is also a normal category.

1.7 Cross-connection of normal categories

In this section we describe the cross-connection of normal categories

given by K.S.S. Nambooripad in [25].

Let C be a category with subobjects. Then an ideal denoted by 〈c〉
is the full subcategory of C whose objects are subobjects of c in C. It

is the principal ideal generated by c.

Definition 1.7.1 (cf.[25], Definition 1, page 62). A local isomor-

phism between two normal categories C and D is a functor F : C → D
which is inclusion preserving, fully faithful and for each c ∈ vC, F |〈c〉 is

an isomorphism of the ideal 〈c〉 onto 〈F (c)〉.

If C and D are normal categories a local isomorphism Γ : D → N∗C
is called a connection of D with C.

Definition 1.7.2 (cf.[25], Definition 5, page 86). A cross-connection

between two normal categories C and D is a triplet (D, C; Γ) where

Γ : D → N∗C is a local isomorphism such that for every c ∈ vC, there

is some d ∈ vD such that c ∈ MΓ(d) where MΓ(d) is the M -set of

normal cone with vertex d.
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Proposition 1.7.1 ([25], Proposition 12, page 77). Let Γ : D →
N∗C be a connection between normal categories C and D and let CΓ be

the subcategory of C such that

vCΓ = {c ∈ C : c ∈MΓ(d) for some d ∈ vD}

Then CΓ is an ideal in C.

Theorem 1.7.1 ([25], Theorem 15, page 81). Let Γ : D → N∗C
be a connection between normal categories C. Then there exists a

connection Γ∗ : CΓ → N∗D such that, for c ∈ vCΓ and d ∈ vD, c ∈
MΓ(d) if and only if d ∈MΓ∗(c).

Definition 1.7.3. Let Γ : D → N∗C be a connection between

normal categories C. The functor Γ∗ : CΓ → N∗D defined as in the

above theorem is called the dual of the connection Γ : D → N∗C.

Thus given a cross-connection Γ : D → N∗C, there is a dual cross-

connection Γ∗ : C → N∗D denoted by (C,D; Γ∗).

Remark 1.7.1 ([25]). Given a cross-connection Γ : D → N∗C,
since N∗C ⊆ C∗ (C∗ is the category of all functors from C to Set), by

category isomorphisms we get a unique bifunctor Γ(−,−) : C × D →
Set defined by

Γ(c, d) = Γ(d)(c) and

Γ(f, g) = (Γ(d)(f))(Γ(g)(c′)) = (Γ(g)(c))(Γ(d′)(f))

for all (c, d) ∈ vC × vD and (f, g) : (c, d) → (c′, d′). Similarly corre-

sponding to Γ∗ : C → N∗D, we have Γ∗(−,−) : C × D → Set defined

by

Γ∗(c, d) = Γ∗(c)(d) and

Γ∗(f, g) = (Γ∗(c)(g))(Γ∗(f)(d′)) = (Γ∗(f)(d))(Γ∗(c′)(g))

for all (c, d) ∈ vC × vD and (f, g) : (c, d)→ (c′, d′).
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Theorem 1.7.2 ([25], Theorem 4, page 67). Given cross-connection

(D, C; Γ), there is a natural isomorphism χΓ between the bifunctors

Γ(−,−) and Γ∗(−,−)such that χΓ : Γ(c, d) → Γ∗(c, d) is a bijection.

χΓ is known as the duality associated with Γ.

Let C and D be RR−normal categories and Γ : D → N∗C is a

cross-connection. Γ∗ : C → N∗D be its dual cross-connection. Define

EΓ = {(c, d) : c ∈ vCΓ, d ∈ vD and c ∈MΓ(d)}.

For each (c, d) ∈ EΓ, γ(c, d) denotes the unique cone in C such that

cγ(c,d) = c and Γ(d) = H(γ(c, d);−).

Similarly for each (c, d) ∈ EΓ, there is a unique cone γ∗(c, d) in D such

that

cγ∗(c,d) = d and Γ∗(c) = H(γ∗(c, d);−).

Let (c, d) ∈ vCΓ × vD and choose c′ ∈ CΓ and d′ ∈ vD such that

(c, d′), (c′, d) ∈ EΓ. Then every cone in Γ(c, d) can be represented as

γ(c′, d)?f o with f ∈ C(c′, c) and every element of Γ∗(c, d) can be written

as γ∗(c, d′)?go with g ∈ D(d′, d). Hence for every (c, d) ∈ vCΓ× vD and

γ(c′, d) ? f o ∈ Γ(c, d), we have natural isomorphism

χΓ(c,d)(γ(c′, d) ? f o) = γ∗(c, d′) ? go

where (c, d), (c′, d′) ∈ EΓ and f ∈ C(c, c′), g ∈ D(d′, d) are such that

the following diagram commutes.

Γ(d′)
ηγ(c,d′)−−−−→ C(c,−)

Γ(g)

y yC(f,−)

Γ(d) −−−−→
ηγ(c′,d)

C(c′,−)
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Definition 1.7.4 (cf.[25], Section 5.1, page 97). Let Γ be a cross-

connection of D with C. Define

UΓ =
⋃
{Γ(c, d) : (c, d) ∈ vC × vD} (1.7)

UΓ∗ =
⋃
{Γ∗(c, d) : (c, d) ∈ vC × vD} (1.8)

Proposition 1.7.2 (cf.[25], Proposition 31, page 99). For any

cross-connection Γ : D → N∗C, UΓ is a regular subsemigroup of T C
such that C is isomorphic to L(UΓ). UΓ∗ is a regular subsemigroup of

T D such that D is isomorphic to L(UΓ∗).

Definition 1.7.5 (cf.[25], page 100). For a cross-connection Γ :

D → N∗C, we shall say that γ ∈ UΓ is linked to δ ∈ UΓ∗ if there is a

(c, d) ∈ vC × vD such that γ ∈ Γ(c, d) and δ = χΓ(c, d)(γ).

Theorem 1.7.3 ([25], Theorem 32, page 101). Let Γ : D → N∗C
be a cross-connection. Then

S̃Γ = {(γ, δ) ∈ UΓ× UΓ∗ : (γ, δ) is linked }

is a regular semigroup with the binary operation defined by

(γ, δ) ◦ (γ′, δ′) = (γ · γ′, δ′ · δ)

for all (γ, δ), (γ′, δ′) ∈ S̃Γ. Then S̃Γ is a sub direct product of UΓ and

U(Γ∗)op and is called the cross-connection semigroup determined by Γ.

Now consider a regular semigroup S. From the above section it is

clear that for a regular semigroup S the categories L(S) and R(S) of

principal left and right ideals of S are normal categories. The set of all

normal cones T L(S) and T R(S) are regular semigroups.

Proposition 1.7.3 (cf.[25], Proposition 1, page 63). For any
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regular semigroup S, FSρ : R(S)→ R(T L(S)) defined by

FSρ(eS) = ρe(T L(S)) and

FSρ(λ(e, u, f)) = λ(ρe, ρu, ρf )

is a local isomorphism. Dually, FSλ : L(S)→ L(T R(S)) defined as

FSλ(Se) = (T R(S))λe and

FSλ(ρ(e, u, f)) = ρ(λe, λu, λf )

is also a local isomorphism.

Theorem 1.7.4 (cf.[25], Theorem 2, page 65). Let S be a regular

semigroup. For fS ∈ vR(S) and λ = λ(e, u, f) in R(S), let ΓS be

defined on objects and morphisms of R(S) by :

vΓS(fS) = H(ρf ;−),ΓS(λ) = ηρeL(S)(ρ(f, u, e),−)η−1
ρf
.

Then ΓS is a local isomorphism from R(S) to N∗L(S). Dually, Γ∗S,

defined on objects and morphisms of L(S) by

vΓ∗S(Se) = H(λe;−),Γ∗S(ρ) = ηλfR(S)(λ(e, u, f),−)η−1
λe .

for all Se ∈ vL(S) and ρ = ρ(f, u, e) ∈ L(S), defines a local isomor-

phism.

Since ΓS : R(S) → N∗L(S) ⊆ L(S)∗, by the category isomor-

phisms, there is a unique bifunctor ΓS(−,−) : L(S) × R(S) → Set.

ΓS(−,−) is defined on objects and morphisms as follows:

ΓS(Se, fS) = ΓS(fS)(Se);

ΓS(ρ, λ) = ΓS(fS)(ρ)ΓS(λ)(Se′) = ΓS(λ)(Se)ΓS(f ′S)(ρ)
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for all (Se, fS) ∈ vL(S)× R(S) and (ρ, λ) : (Se, fS)→ (Se′, f ′S).

Theorem 1.7.5 (cf.[25], Theorem 4, page 67). Let S be a regular

semigroup. Then there is a natural isomorphism χS from ΓS(−,−) to

Γ∗S(−,−) whose components are defined by

χS(Se, fS) : ρf ? ρ(f, u, e)o 7→ λe ? λ(e, u, f)o

for each (Se, fS) ∈ v
(
L(S)× R(S)

)
.

Theorem 1.7.6 (cf.[25], Theorem 17, page 87). Let S be a regular

semigroup. Then ΓS is a cross-connection of R(S) with L(S). The dual

cross-connection is Γ∗S = (ΓS)∗.

Note that any regular semigroup induces a cross-connection and

any cross-connection of normal categories induces a regular semigroup

S̃Γ as in Theorem 1.7.3.



Chapter 2

Cross-connection of Boolean

lattice

In this chapter, we discuss the cross-connection of Boolean lattice (com-

plemented distributive lattice) and it is shown that the cross-connection

determines a Boolean ring, which is a regular ring. Further it is also

shown that the principal ideals of the Boolean ring obtained from cross-

connection form a Boolean lattice which is isomorphic to the initial

Boolean lattice.

2.1 Cross-connection ring

We have already provided the definition of Boolean lattice and cross-

connection of complemented modular lattice in Sections 1.1 and 1.5 re-

spectively. In the following we proceed to describe the cross-connection

of Boolean lattice.

Lemma 2.1.1. Let L be a Boolean lattice and Lop be the dual

of L obtained by reversing the order. For a in L, let ac be the unique

complement of a in L, define

fa : L→ L as x→ x ∧ a, for all x ∈ L

39
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and

f+
a : Lop → Lop, y → y ∨ ac for all y ∈ Lop.

Then fa and f+
a are normal idempotent mappings such that f+

a is the

residual of fa.

Proof. It is easy to observe that fa is order preserving as

x ≤ y ⇒ x ∧ a ≤ y ∧ a⇒ xfa ≤ yfa.

Clearly im fa = L(a) is a principal ideal generated by a. For every

x ∈ L, there exists z = x ∧ a ≤ x such that L(z) = L(xfa). Now

fa : z → z ∧ a = x ∧ a i.e. fa : L(z)→ L(xfa) such that fa acts as an

identity morphism. Hence L(z) ∼= L(xfa). Thus fa and similarly f+
a are

normal mappings . Obviously xfa = x ∧ a, forallx ∈ L is a residuated

mapping with residual f+
a (y) = y ∨ ac (see Definition 1.5.4).

fa and f+
a defined above are totally range closed mappings and

hence fa is a strongly range closed mapping, fa ∈ B(L) and f+
a ∈

B(Lop).

Let Lo and (Lop)o are the Boolean lattices of all normal equivalences

on Boolean lattice L and Lop respectively. Now define order preserving

embeddings Γ : L→ (Lop)o and ∆ : Lop → Lo as

= Γ(a) = kerfa = {(x, y)/xfa = yfa} = {(x, y)/x ∧ a = y ∧ a} (2.1)

and ∆(a) = kerf+
ac = {(x, y)/f+

ac(x) = f+
ac(y)} = {(x, y)/x∨a = y∨a}

(2.2)

Obviously Γ(a) = ∆(ac), for all a in L.

Theorem 2.1.1. Let L be a Boolean lattice. Γ and ∆ are defined

as in equations 2.1 and 2.2. Then [L,Lop; Γ,∆] is a cross connection.
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Proof. From the definition of Γ and ∆ we get

imfa = L(a)⇒ kerf+
a = ∆(ac) = Γ(a)

imf+
a = Lop(ac)⇒ kerfa = Γ(a) = ∆(ac) for all a ∈ L.

The following two diagrams commute:

L
Γ−−−→ (Lop)o

f

x x(f+)o

L −−−→
Γ

(Lop)o

Lop
∆−−−→ Lo

f+

x xfo
Lop −−−→

∆
Lo

we can prove that Γ(xf) = (f+)−1Γ(x).

Let(u, v) ∈ Γ(xf)⇒ u ∧ xf = v ∧ xf
⇒ f+(u ∧ xf) = f+(v ∧ xf)

[since f+ preserves meet operation ]

⇒ f+u ∧ x = f+v ∧ x [ by Theorem 1.5.2]

⇒ (f+u, f+v) ∈ Γ(x)

⇒ (u, v) ∈ (f+)−1(Γ(x)).

Γ(xf) ⊆ (f+)−1Γ(x).

Similarly we can prove that

(f+)−1Γ(x) ⊆ Γ(xf).

Thus we get

Γ(xf) = (f+)oΓ(x) = (f+)−1Γ(x) and similarly

∆(f+y) = (∆y)f o = (∆y)f−1.

Thus (f, f+) is compatible with (Γ,∆). For a ∈ M(Γ(a)) there exists
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fa such that kerfa = Γ(a) and a ∈M(fa) that is imfa = L(a), princi-

pal ideal generated by a. Dually, ac ∈M(∆(ac)) means there exists f+
a

such that kerf+
a = ∆(ac) and ac ∈ M(f+

a ). That is imf+
a = Lop(ac),

principal ideal generated by ac. Thus a ∈ M(Γ(a))⇔ ac ∈ M(∆(ac)),

for every a ∈ L and being binormal idempotent maps (f, f+) is com-

patible with (Γ,∆). Hence [L,Lop; Γ,∆] is a cross connection.

For a Boolean lattice L we obtained a cross-connection [L,Lop; Γ,∆].

Then

U = U([L,Lop; Γ,∆]) = {(fa, f+
a )|fa ∈ B(L)},

is the set of all pairs of idempotent normal maps (fa, f
+
a ) with

fa : L→ L, f+
a : Lop → Lop,

that are compatible with (Γ,∆), is a subset of B(L)×B(Lop).

Define multiplication and addition in U as

(fa, f
+
a ) · (fb, f+

b ) = (fa∧b, f
+
a∧b)

and (fa, f
+
a ) + (fb, f

+
b ) = (fa⊕b, f

+
a⊕b)

where ⊕ is the symmetric difference defined by a⊕b = (a∧bc)∨(b∧ac).
The following lemmas give the results leading to the ring structure

on U . In our discussion let a, b, c, ... denote the elements of Boolean

lattice L and ac, bc, cc, ... their unique complements. Note that Boolean

lattice L is also a Boolean ring and vice versa.

Lemma 2.1.2. Let L be a Boolean lattice. For a, b ∈ L, U =

{(fa, f+
a )|fa ∈ B(L)} is a regular semigroup with respect to multipli-

cation defined by

(fa, f
+
a ) · (fb, f+

b ) = (fa∧b, f
+
a∧b).

Proof. For a, b ∈ L, a ∧ b ∈ L and hence (fa, f
+
a ) · (fb, f

+
b ) =
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(fa∧b, f
+
a∧b) ∈ U . So U is closed with respect to multiplication. Now

((fa, f
+
a ) · (fb, f+

b )) · (fc, f+
c ) = (f(a∧b)∧c, f

+
(a∧b)∧c)

= (fa∧(b∧c), f
+
a∧(b∧c)))

= (fa, f
+
a ) · ((fb, f+

b ) · (fc, f+
c ))

U satisfies associativity and hence U is a semigroup with respect to

multiplication.

Now for all (fa, f
+
a ) ∈ U ,

(fa, f
+
a ) · (fa, f+

a ) · (fa, f+
a ) = (fa∧a, f

+
a∧a) · (fa, f+

a )

= (f(a∧a)∧a, f
+
(a∧a)∧a)

= (fa, f
+
a ).

Hence each element (fa, f
+
a ) of U is regular and hence U is a regular

semigroup.

Also note that every element of U is an idempotent as

(fa, f
+
a ) · (fa, f+

a ) = (fa, f
+
a ).

Theorem 2.1.2. Let L be a Boolean lattice. U = {(fa, f+
a )|fa ∈

B(L)} obtained by cross-connection of L, is a regular ring with respect

to the addition

(fa, f
+
a ) + (fb, f

+
b ) = (fa⊕b, f

+
a⊕b)

where a⊕ b = (a ∧ bc) ∨ (b ∧ ac) and multiplication

(fa, f
+
a ) · (fb, f+

b ) = (fa∧b, f
+
a∧b).

Proof. By the above Lemma U is a regular semigroup. Now we

prove that U is an additive abelian group. Since a⊕ b is an element of
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Boolean lattice L and (fa⊕b, f
+
a⊕b) is in U , we have

((fa, f
+
a ) + (fb, f

+
b )) + (fc, f

+
c ) = (fa⊕b, f

+
a⊕b) + (fc, f

+
c )

= (f(a⊕b)⊕c, f
+
(a⊕b)⊕c)

= (fa⊕(b⊕c), f
+
a⊕(b⊕c))

[ since L is a Boolean ring.]

= (fa, f
+
a ) + (fb⊕c, f

+
b⊕c)

= (fa, f
+
a ) + ((fb, f

+
b ) + (fc, f

+
c ))

(f0, f
+
0 ) ∈ U is the additive identity since L and Lop are Boolean rings,

with additive identity 0 and

(fa, f
+
a ) + (f0, f

+
0 ) = (fa⊕0, f

+
a⊕0)

= (fa, f
+
a )

Also every element in U is its own inverse,

(fa, f
+
a ) + (fa, f

+
a ) = (fa⊕a, f

+
a⊕a)

= (f0, f
+
0 )

Since L and Lop are Boolean rings, addition is commutative in U as:

(fa, f
+
a ) + (fb, f

+
b ) = (fa⊕b, f

+
a⊕b)

= (fb⊕a, f
+
b⊕a)

= (fb, f
+
b ) + (fa, f

+
a )

Hence U = {(fa, f+
a )|fa ∈ B(L)} is an additive abelian group.

Now we prove that multiplication is distributive over addition in U .
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For (fa, f
+
a ), (fb, f

+
b ), (fc, f

+
c ) ∈ U ,

(fa, f
+
a ) · [(fb, f+

b ) + (fc, f
+
c )] = (fa, f

+
a ) · (fb⊕c, f+

b⊕c)

= (fa∧(b⊕c), f
+
a∧(b⊕c))

= (f(a∧b)⊕(a∧c), f
+
(a∧b)⊕a∧c))

= (fa∧b, f
+
a∧b) + (fa∧c, f

+
a∧c)

= [(fa, f
+
a ) · (fb, f+

b )] + [(fa, f
+
a ) · (fc, f+

c ).

Similarly we get

[(fa, f
+
a ) + (fb, f

+
b )] · (fc, f+

c ) = [(fa, f
+
a ) · (fc, f+

c )] + [(fb, f
+
b ) · (fc, f+

c )]

Thus multiplication is distributive over addition in U and hence U is a

regular ring.

Remark 2.1.1. The regular ring U = {(fa, f+
a )|fa ∈ B(L)} ob-

tained by cross-connection of L, is a Boolean ring since U is having the

identity element (f1, f
+
1 ) and each element of U is an idempotent.

U is a Boolean lattice with respect to

(fa, f
+
a ) ∧ (fb, f

+
b ) = (fa, f

+
a ) · (fb, f+

b ) and (2.3)

(fa, f
+
a ) ∨ (fb, f

+
b ) = (fa, f

+
a ) + (fb, f

+
b ) + (fa, f

+
a ) · (fb, f+

b ) (2.4)

Lemma 2.1.3. Let L be a Boolean lattice. U = {(fa, f+
a )|fa ∈

B(L)} is the Boolean ring (Boolean lattice) obtained by cross-connection

of L. Then for each (fa, f
+
a ) ∈ U , (fa, f

+
a )c = (fac , f

+
ac).

Proof.

(fa, f
+
a ) ∧ (fac , f

+
ac) = (f0, f

+
0 ) and
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(fa, f
+
a ) ∨ (fac , f

+
ac) = (fa, f

+
a ) + (fac , f

+
ac) + (fa, f

+
a ) · (fac , f+

ac)

= (fa⊕ac , f
+
a⊕ac) + (f0, f

+
0 )

= (f1, f
+
1 ) + (f0, f

+
0 )

= (f1⊕0, f
+
1⊕0)

= (f1, f
+
1 )

hence we get

(fa, f
+
a )c = (fac , f

+
ac).

Thus we constructed the cross-connection of a Boolean lattice L

and obtained a cross-connection Boolean ring U which is a Boolean

lattice also.

2.2 Representation of Boolean lattice

Here we prove that the Boolean lattice L is isomorphic to cross-connection

Boolean ring U and further the principal ideals of U form a Boolean

lattice which is isomorphic to the initial Boolean lattice L.

Definition 2.2.1. A homomorphism from a Boolean lattice L to

the ring of pairs of mappings on L is called a representation of Boolean

lattice.

Theorem 2.2.1. Let L be a Boolean lattice and U is the cross-

connection Boolean ring obtained. Then ψ : L → U defined by a →
(fa, f

+
a ), for all a ∈ L is a representation. Further ψ is an isomorphism.

Proof. The Boolean ring U is a Boolean lattice with respect to the

equations 2.3 and 2.4. Also the Boolean lattice L is a Boolean ring with

respect to multiplication ‘meet’ and addition ‘symmetric difference’.
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Clearly ψ : a 7→ (fa, f
+
a ) is well defined for each a ∈ L.

ψ(a ∧ b) = (fa∧b, f
+
(a∧b))

= (fa, f
+
a ) ∧ (fb, f

+
b )

= ψ(a) ∧ ψ(b)

ψ(a ∨ b) = (fa∨b, f
+
a∨b)

ψ(a) ∨ ψ(b) = (fa, f
+
a ) ∨ (fb, f

+
b )

= (fa, f
+
a ) + (fb, f

+
b ) + (fa, f

+
a ) · (fb, f+

b )

= (fa⊕b, f
+
a⊕b) + (fa∧b, f

+
a∧b)

= (fa⊕b⊕(a∧b), f
+
a⊕b⊕(a∧b))

= (fa∨b, f
+
a∨b)

Hence ψ(a ∨ b) = ψ(a) ∨ ψ(b).

Also ψ(ac) = ((fac , f
+
ac) = (fa, f

+
a )c = ψ(a)c.

Thus ψ is a Boolean homomorphism. Also ψ is onto as for each

(fa, f
+
a ) ∈ U, there exists a ∈ L such that ψ(a) = (fa, f

+
a ) and ψ

is one-one, as for a 6= b, (fa, f
+
a ) 6= (fb, f

+
b ) and ψ(a) 6= ψ(b). Hence ψ

is an isomorphism from L to U and hence L ∼= U .

Consider the Boolean ring U obtained as the cross-connection ring

of a Boolean lattice. For any (fa, f
+
a ) ∈ U , the principal ideal generated

by (fa, f
+
a ) is a complete ideal and these complete ideals form a com-

plete Boolean lattice L∗ (see Theorem 1.1.1). Let Ia = ((fa, f
+
a )), the

principal ideal generated by (fa, f
+
a ) ∈ U and since (fa, f

+
a )c = (fac , f

+
ac)

it is obvious that the unique complement of Ia is Iac .

Similar to the above theorem we can prove that U ∼= L∗. Thus we

get

L ∼= U ∼= L∗.
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Example 2.2.1. Consider the powerset ({a, b, c},⊆) which is a

Boolean lattice L with elements φ,A = {a}, B = {b}, C = {c}, Ac =

{b, c}, Bc = {a, c}, Cc = {a, b} and X = {a, b, c}. For every A ∈ L,

define fA : L → L as x → x ∩ A, for all x ∈ L and f+
A : Lop → Lop

as x → x ∪ Ac, for all x ∈ Lop, where Lop is the dual lattice of L.

The image of fA, imfA = L(A), principal ideal generated by A and

imf+
A = Lop(Ac), principal ideal generated by Ac. It is easy to see

that fA and f+
A are idempotent normal mappings. fA is a residuated

mapping with residual f+
A . Clearly fA and f+

A are totally range closed

mappings and {fA|∀A ∈ L} ⊆ B(L) and {f+
A |∀A ∈ Lop} ⊆ B(Lop).

The Boolean lattice L is given in figure,

X

Cc Bc Ac

A B C

φ

Γ(A) and ∆(A) denotes the kernels of fA and f+
Ac which are the nor-

mal equivalence relations. Let Lo and (Lop)o denotes the corresponding

Boolean lattices of these normal equivalences.

For every A ∈ L, Γ(A) = ∆(Ac) and hence

imfA = L(A)⇒ kerf+
A = ∆(Ac) = Γ(A)

and

imf+
A = Lop(Ac)⇒ kerfA = Γ(A) = ∆(Ac)
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and so (fA, f
+
A ) is compatible with (Γ,∆) and satisfies the conditions

of cross connection. Hence [L,Lop; Γ,∆] is a cross connection.

U = {(fA, f+
A ) ∈ B(L)× B(Lop)} is the ring with respect to the oper-

ations

(fA, f
+
A ) · (fB, f+

B ) = (fA∧B, f
+
A∧B) and

(fA, f
+
A ) + (fB, f

+
B ) = (fA⊕B, f

+
A⊕B).

Since every element of U is an idempotent U is a Boolean ring which

is given below,

{(fφ, f+
φ ), (fA, f

+
A ), (fB, f

+
B ), (fC , f

+
C ), (fAc , f

+
Ac , (fBc , f

+
Bc), (fCc , f

+
Cc), (fX , f

+
X )}.

The lattice diagram of U is the following,

(fX , f
+
X )

(fCc , f
+
Cc) (fBc , f

+
Bc) (fAc , f

+
Ac)

(fA, f
+
A ) (fB, f

+
B ) (fC , f

+
C )

(fφ, f
+
φ )

The complete ideals of U of the form IA = ((fA, f
+
A )), for every

A ∈ L are described below.

Iφ = ((fφ, f
+
φ )) = {(fφ, f+

φ )}

IA = ((fA, f
+
A )) = {(fφ, f+

φ ), (fA, f
+
A )}

IB = ((fB, f
+
B )) = {(fφ, f+

φ ), (fB, f
+
B )}
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IC = ((fC , f
+
C )) = {(fφ, f+

φ ), (fC , f
+
C )}

IAc = ((fAc , f
+
Ac)) = {(fφ, f+

φ ), (fAc , f
+
Ac), (fB, f

+
B ), (fC , f

+
C )}

IBc = ((fBc , f
+
Bc)) = {(fφ, f+

φ ), (fBc , f
+
Bc), (fA, f

+
A ), (fC , f

+
C )}

ICc = ((fCc , f
+
Cc)) = {(fφ, f+

φ ), (fCc , f
+
Cc), (fA, f

+
A )(fB, f

+
B )}

and IX = ((fX , f
+
X )) = U.

Clearly for every A ∈ L,

IA ∩ IAc = {(fφ, f+
φ )} = Iφ

and

IA ∪ IAc = U = IX .

These complete ideals form a Boolean lattice L∗ and obviously it is

isomorphic to U which is isomorphic to L. i.e., L∗ ∼= U ∼= L.

The figure of the Boolean lattice L∗ is given below.

IX

ICc IBc IAc

IA IB IC

Iφ
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Categories from semigroups,

rings and modules

Here we introduce and study the notion of ‘proper category ’ and see

how this concept is related to the structure of semigroups, rings and

modules. The principal left [right] ideals of a semigroup and that of

a ring together with suitable translations as morphisms form proper

category and preadditive proper category respectively and the sub-

modules of an R-module with R-module homomorphisms form abelian

proper category. Corresponding to each of these categories the set of

all proper cones is a semigroup, ring and R-module respectively. If

we restrict R-module to be semisimple R-module the abelian proper

category becomes abelian normal category and the set of all normal

cones is a semisimple R-module. Proper cones and proper categories

are generalization of normal cones and normal categories introduced

by K.S.S. Nambooripad [see Definitions 1.6.13 and 1.6.14]. This chap-

ter is motivated by Nambooripad’s work on set-based categories. The

definition and example of set-based category (S-category) are provided

below.

Let Set denotes the set category (see Example 1.6.1). A category

C is concrete if there is a faithful functor U : C → Set (see Definition

51
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1.6.2). Clearly all small categories are concrete.

Definition 3.0.1. Let C be a category and let U : C → Set be a

functor. C is set based(S−category for short) with respect to U if the

pair (C, U) satisfy the following:

1. U is an embedding,

2. U(imf) = imU(f) for all f ∈ C and

3. the functor U has the property: for c, c′ ∈ vC and x ∈ U(c)∩U(c′)

there is d ∈ vC such that

d ⊆ c, d ⊆ c′ and x ∈ U(d).

Example 3.0.1. Let S be a semigroup. An action of S on the

left of a set X is a map

α : S ×X → X

such that s(tx) = (st)x for all s, t ∈ S. A left S−set(left S−module)

is a pair (X,α) where X is a set and α an action of S on the left of X.

X and Y be left S-sets, a map α : X → Y satisfying

(sx)α = s(xα) for all s ∈ S and x ∈ X

is a left S−map. S−mod the category with S−modules as objects and

S−maps as morphisms is an S−category with subobjects and image.

3.1 Proper category

In the following we proceed to describe certain categories which we call

proper categories. These are concrete S−categories.

Definition 3.1.1. Let C be a category with subobjects, every

inclusion in C splits and every morphism has canonical factorization.
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A proper cone γ in C is a cone with vertex d such that there exists at

least one c ∈ vC with γ(c) : c→ d is an epimorphism (i.e., γ(c) = γ(c)o).

The set of all proper cones in category C is denoted by PC and for

γ ∈ PC, we denote by cγ the vertex of γ and by Nγ, the N−set defined

by

Nγ = {c ∈ vC : γ(c) is epimorphism} (3.1)

A cone γ in C is proper, balanced or normal cone according as Nγ 6= φ,

Bγ 6= φ or Mγ 6= φ respectively and

T C ⊆ BC ⊆ PC

where T C and BC are set of all normal and balanced cones respectively

(see Definition 1.6.13).

Definition 3.1.2. A small category C with subobjects is called

proper category if it satisfies the following:

1. every inclusion in C splits,

2. any morphism f ∈ C has canonical factorization and

3. each object of C is a vertex of a proper cone γ ∈ PC.
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3.1.1 Semigroup of proper cones

Now we proceed to show that in a proper category C the set of all

proper cones PC is a semigroup.

Proposition 3.1.1. Let C be a proper category and γ be a proper

cone in C. For f ∈ C(cγ, c), the map γ ? f o : a 7→ γ(a)f o is a proper

cone with vertex imf such that for all composable pair of morphisms

f, g ∈ C with domf = cγ

γ ? (fg)o = (γ ? f o) ? (jcc1g)o

where c1 = imf = imf o

Proof. Clearly γ ? f o is a cone with vertex imf . To prove that it is

proper,

let c ∈ Nγ ⇒ γ(c) is an epimorphism

⇒ γ(c) · f o is an epimorphism

⇒ (γ ? f o)(c) is an epimorphism

⇒ c ∈ Nγ?fo

hence γ ? f o is a proper cone.

Now f and g are as in the statement. Let η = γ ? f o so that cη =

imf = c1. Then we have

(γ ? (fg)o)(a) = γ(a)f o(jcc1g)o

= η ? (jcc1g)o(a)

= (γ ? f o) ? (jcc1g)o(a)

for all a ∈ vC.

Theorem 3.1.1. Let C be a proper category. Then PC the set

of all proper cones in C, is a semigroup with respect to the binary
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operation defined by

γ · η = γ ? η(cγ)
o

for all γ, η ∈ PC.

Proof. For γ, η ∈ PC, γ · η = γ ? η(cγ)
o is a proper cone with vertex

cγ·η = imη(cγ) (by Proposition 3.1.1). Now to show that the binary

operation defined is associative, let α, β, γ ∈ PC and for c ∈ vC,

(α(βγ))(c) = α(c)((βγ)(cα))o

= α(c)(β(cα)((γ(cβ))o)o

= α(c)[(β(cα))oj
cβ
Imβ(cα)(γ(cβ))o]o

= α(c)((β(cα))o(γ(cαβ))o

((αβ)γ)(c) = (αβ)(c)(γ(cαβ))o

= α(c)((β(cα))o(γ(cαβ))o

Thus α(βγ) = (αβ)γ and hence PC is a semigroup.

Proposition 3.1.2. γ ∈ PC is an idempotent proper cone if and

only if γ(cγ) = Icγ .

Proof. Suppose γ is an idempotent proper cone and let c ∈ Nγ.

Then (γ · γ)(c) = γ(c) implies γ(c)(γ(cγ))
o = γ(c). Since γ(c) is an

epimorphism (γ(cγ))
o = Icγ . Clearly γ(cγ) ∈ C(cγ, cγ) and so γ(cγ) =

Icγ . Conversely, if γ(cγ) = Icγ , then for every a ∈ vC, (γ · γ)(a) =

γ(a)(γ(cγ))
o = γ(a)Icγ = γ(a). Hence γ is an idempotent proper cone.

E(PC) denotes the set of all idempotent proper cones in C.

3.1.2 Ideal categories of semigroups

In the following we proceed to describe the categories of left [right]

principal ideals of an arbitrary semigroup S. Let S1 be the semigroup

obtained by adjoining identity to S (if it is necessary). The partially

ordered set S1/L of all L-classes of semigroup S1 is order isomorphic
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with the partially ordered set of all principal left ideals of the semigroup

S1. For Lx,Ly ∈ S1/L,

Lx ≤ Ly ⇔ S1x ⊆ S1y.

Dually the inclusion among the principal right ideals induces a par-

tial order on the set S1/R of all R-classes of S1 and S1/R is order

isomorphic with the partially ordered set of principal right ideals un-

der inclusion.

Let L(S) be the set of principal left ideals of S1 and morphisms

between principal left ideals are right translations ρ : S1a → S1b such

that (xy)ρ = x(yρ), for all x, y ∈ S1a.

Lemma 3.1.1. Let S be a semigroup. Then L(S), the set of

principal left ideals of S1, is a category whose objects and morphisms

are

vL(S) = {S1a : a ∈ S1} and

L(S)(S1a, S1b) = {ρ(a, s, b) : x→ xs with x ∈ S1a and as ∈ S1b}.

Proof. For all a, b ∈ S1 and x ∈ S1a, ρ(a, s, b) : x → xs with as ∈
S1b is the map ρs|S1a such that s ∈ S1 and as ∈ S1b. The composition

in L(S) is given by the rule

ρ(a, s, b) · ρ(c, t, d) =

ρ(a, st, d), if S1b = S1c

undefined, otherwise.

is associative whenever the composition is defined and ρ(a, 1, a) = IS1a :

S1a → S1a for all a ∈ S1 is the identity morphism and hence L(S) is

a category.

Dually R(S) is also a category with objects principal right ideals

and morphisms left translations,

vR(S) = {aS1 : a ∈ S1} and
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R(S)(aS1, bS1) = {λ(a, s, b) : x→ sx with x ∈ aS1 and sa ∈ bS1}.

Proposition 3.1.3. Let S be a semigroup and L(S) be the cate-

gory of principal left ideals. Let ρ(a, s, b) : S1a → S1b be a morphism

in L(S). Then

1. ρ(a, s, b) is epimorphism if and only if asLb

2. ρ(a, s, b) is a split monomorphism if and only if aRas

3. ρ(a, s, b) is an isomorphism if and only if aRasLb

Proof. ρ(a, s, b) : S1a → S1b such that for all x ∈ S1a, ρ(a, s, b) :

x → xs where as ∈ S1b. So it is easy to observe that ρ(a, s, b) is

epimorphism if and only if S1as = S1b and so asLb. Now ρ(a, s, b) is a

split monomorphism if and only if there is a σ = ρ(b, s′, a) : S1b→ S1a

such that ρσ = IS1a which implies ass′ = a and so aRas. (3) follows

from (1) and (2).

Theorem 3.1.2. The category L(S)[R(S)] of all principal left

[right] ideals of semigroup S1 is a proper category.

Proof. If ρ(a, s, b) = ρ(a, 1, b) where a · 1 ∈ S1b, then ρ(a, s, b) =

j(S1a, S1b) an inclusion. Identity mapping and set inclusions of princi-

pal left ideals are morphisms in the category. So L(S) is a category with

subobjects. {ρ(a, 1, b) : a ∈ S1b} is a choice of subobjects in the cate-

gory L(S). If ρ(a, s, b) is a morphism in L(S), then im ρ(a, s, b) = S1as

and ρ(a, s, b) = ρ(a, s, as) · ρ(as, 1, b) gives the canonical factorization

of ρ(a, s, b) in L(S). Let ρ(a, 1, b) : S1a ⊆ S1b be the inclusion which

splits by (2) of Proposition 3.1.3 as aRa. If inclusion splits, canonical

factorization is unique([25]). Hence L(S) is a category with subobjects,

every inclusion splits and every morphism has unique canonical factor-

ization.

Now we define ρd : vL(S) → S1d as ρd(S1a) = ρ(a, s, d) : S1a →
S1d, where S1a ∈ vL(S) and as ∈ S1d. Obviously ρd(S1a) ∈ L(S)(S1a, S1d)
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is well defined.

If S1a ⊆ S1b,

j(S1a, S1b)ρd(S1b) = ρ(a, 1, b) · ρ(b, v, d) where bv = qd ∈ S1d.

= ρ(a, v, d)

= ρd(S1a)

Since S1a ⊆ S1b, a = rb for some r ∈ S1 and so av = rbv = rqd ∈ S1d.

Hence ρ(a, v, d) = ρd(S1a) and j(S1a, S1b) · ρd(S1b) = ρd(S1a). Hence

ρd is a cone in L(S). Since ρd(S1a) has canonical factorization as

ρd(S1a) = ρ(a, s, d) = ρ(a, s, as) · ρ(as, 1, d), where as ∈ S1d. There

exists some s such that S1as = S1d. Thus ρd is a proper cone in L(S)

with vertex S1d and hence L(S) is a proper category.

The set of all proper cones in L(S) is a semigroup with the binary

operation

(ρa · ρb)(S1d) = ρa(S1d) · (ρb(S1a))o

and we denote this semigroup of proper cones by PL(S).

Remark 3.1.1. If Sop denote the opposite semigroup of S with

multiplication given by a ◦ b = b · a where the right side is the product

in S, then L(Sop) = R(S) and R(Sop) = L(S). Thus for any statement

which holds for L(S) (or R(S)) the corresponding dual statement holds

for R(S) (respectively L(S)). Thus for a semigroup S, R(S) is also a

proper category. vR(S) = {aS1 : a ∈ S1} and for all a, b ∈ S1, and for

some s ∈ S1

R(S)(aS1, bS1) = {λ(a, s, b) = λs|aS1 : x→ sx with sa ∈ bS1}.

Example 3.1.1. Consider the semigroup S given below:

· a b

a a a
b a a
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then the semigroup S1 obtained by adjoining 1 to S is

· a b 1

a a a a
b a a b
1 a b 1

In S1, the elements a and 1 are idempotents but b is not an idem-

potent. As S is commutative, principal left and right ideals coincide.

The principal left ideals are S1a = {a}, S1b = {a, b}, S1 = {a, b, 1}
and the empty set φ. So vL(S) = {S1a, S1b, S1, φ}. The proper cone

with vertex S1a is denoted by ρa and its components are given by; for

all S1d ∈ vL(S), ρa(S1d) = ρ(d, s, a) such that ds ∈ S1a for s ∈ S1.

The proper cone ρa with ρ(a, 1, a) as one component is the idempotent

proper cone with vertex S1a.

The morphisms from S1a to S1a are ρ(a, s, a) where as ∈ S1a, and s ∈
S1. To find these morphisms,

a · a = a · b = a · 1 = a ∈ S1a

so ρ(a, a, a) = ρ(a, b, a) = ρ(a, 1, a). Hence hom(S1a, S1a) = {ρ(a, 1, a)}.
To find the morphisms from S1 to S1a,

1 · a = a ∈ S1a, 1 · b = b /∈ S1a, 1 · 1 = 1 /∈ S1a

so the morphisms from S1 to S1a is ρ(1, a, a). In a similar way we can

find all homsets

hom(S1a, S1a) = {ρ(a, 1, a)},

hom(S1, S1a) = {ρ(1, a, a)},

hom(S1a, S1) = {ρ(a, 1, 1)},

hom(S1, S1) = {ρ(1, a, 1), ρ(1, b, 1), ρ(1, 1, 1)},

hom(S1a, S1b) = {ρ(a, 1, b)},
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hom(S1b, S1a) = {ρ(b, a, a)},

hom(S1b, S1b) = {ρ(b, a, b), ρ(b, 1, b)},

hom(S1b, S1) = {ρ(b, a, 1), ρ(b, 1, 1)},

hom(S1, S1b) = {ρ(1, a, b), ρ(1, b, b)}

The proper cones are;
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vL(S) = {S1a, S1b, S1, φ} and the set of all proper cones PL(S) =

{γ1, γ2, γ3, γ4} is a semigroup. γ1 · γ1 = γ1, γ1 · γ2 = γ1, γ3 · γ2 =

γ2, γ2 · γ3 = γ1 and so on. γ1, γ3 and γ4 are idempotent proper cones.

The principal right ideal proper category R(S) is same as category

L(S). The principal left ideals of semigroup PL(S) are given by

PL(S)γ1 = {γ1}

PL(S)γ2 = {γ1, γ2}
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PL(S)γ3 = {γ1, γ3, γ4}

PL(S)γ4 = {γ1, γ2, γ3, γ4}

Hence for the given general semigroup S1, PL(S) is a semigroup

and its left ideal category L(PL(S)) is a proper category with ob-

jects vL(PL(S)) = {PL(S)γ1,PL(S)γ2,PL(S)γ3,PL(S)γ4} and mor-

phisms right translations.

3.2 Preadditive proper category

Recall the definition of preadditive category (see Definition 1.6.9). A

preadditive category which is also a proper category is termed as a

preadditive proper category. In the following we proceed to discuss

certain specific preadditive proper categories and proper cones in such

categories.

3.2.1 RR−categories and Ring of proper cones

Definition 3.2.1. A preadditive proper category C satisfying the

following conditions:

1. the object set vC with partial order induced by subobject relation

is a relatively complemented lattice and

2. every subset of the object set which has an upper bound contains

a maximal element

is called an RR−proper category and these conditions are termed as

RR−conditions.

Now we proceed to show that the set of proper cones PC in an RR−
proper category C, is a ring.

Proposition 3.2.1. Let γ be a cone with vertex d in an RR−
proper category C. Let X = {imγ(a) : a ∈ vC} then there exists a
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unique maximum element d0 ≤ d in X.

Proof. Since RR−proper category C satisfies RR−conditions, X

has a maximal element say d0. To prove that it is unique let d0 and

d1 be two maximal elements of X. Then there exists b, c ∈ vC such

that d0 = imγ(b) and d1 = imγ(c). By RR−conditions b∨ c ∈ vC. Let

d = b ∨ c. Then b ⊆ d and c ⊆ d. Then

j(b, d)γ(d) = γ(b) and j(c, d)γ(d) = γ(c).

Obviously

imj(b, d)γ(d) ⊆ imγ(d) and imj(c, d)γ(d) ⊆ imγ(d).

Then imγ(b) ⊆ imγ(d) and imγ(c) ⊆ imγ(d) so that d0 ⊆ imγ(d) and

d1 ⊆ imγ(d). Since d0 and d1 are maximal elements in X, d0 = imγ(d)

and d1 = imγ(d). So d0 = d1. Also imγ(a) ≤ d0 for all a ∈ vC.

Lemma 3.2.1. If γ is a cone in an RR−proper category C with

vertex d and d0 = max{imγ(a)|a ∈ vC} then for every retraction

e : d→ d0, the cone γ∗ with vertex d0, defined by;

γ∗(a) = γ(a)e(d, d0), for all a ∈ vC

is a proper cone.

Proof. For all a ∈ vC, γ∗(a) : a → d0. Since e : d → d0 is a

retraction, d0 ⊆ d. Let d0 = imγ(d1) where d1 ∈ vC.

For a ⊆ b, jbaγ
∗(b) = jbaγ(b)e(d, d0)

= γ(a)e(d, d0) [since γ is a cone ]

= γ∗(a)

hence γ∗ is a cone. Now to prove that γ∗ is a proper cone, it is sufficient
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to prove that at least one component of γ∗ is an epimorphism.

We have imγ(d1) = d0 and γ(d1) = qj is the canonical factorization,

where q is the epimorphism and j : d0 ⊆ d, inclusion, then

γ∗(d1) = γ(d1)e(d, d0)

= qj(d0, d)e(d, d0)

= q

which is an epimorphism and hence γ∗ is a proper cone.

Remark 3.2.1. If γ is a proper cone, then γ∗ = γ.

Lemma 3.2.2. Let γ∗ be a proper cone in the RR−proper cate-

gory C as defined in Lemma 3.2.1, then the epimorphic component of

γ∗ is γ∗ i.e., (γ∗)o = γ∗.

Proof. (γ∗)o(a) = [γ(a)e(cγ, d0)]o where d0 = max{imγ(a)|a ∈ vC}.
Since e(cγ, d0) is the retraction, [γ(a)e(cγ, d0)]o = γ(a)e(cγ, d0). Hence

(γ∗)o(a) = γ∗(a).

Lemma 3.2.3. If γ, β are two proper cones in an RR−proper

category C and γ∗ is defined as in Lemma 3.2.1, then

(γ · β)∗ = γ · β∗

Proof. For all a ∈ vC, and let d0 = max{im(γ · β)(a)|a ∈ vC}

(γ · β)∗(a) = (γ · β)(a) · e(cβ, d0)

= γ(a) · [(β(cγ))
o · e(cβ, d0)]

= γ(a) · [β∗(cγ)]o

= γ(a) · [β∗(cγ)] [ by Lemma 3.2.2]

= (γ · β∗)(a)

Hence the proof.
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Lemma 3.2.4. Let C be an RR−proper category and PC the

semigroup of proper cones in C. For γ, δ ∈ PC, with vertices cγ = c

and cδ = d and for all a ∈ vC,

(γ ⊕ δ)(a) = γ(a)j(c, c ∨ d) + δ(a)j(d, c ∨ d)

Then γ ⊕ δ is a cone with vertex c ∨ d.

Proof. The result follows from [20]. In [20] Sunny Lukose and

A.R.Rajan defined addition of two cones in RR−categories as given

in the statement. We follow the same addition for proper cones in

RR−proper categories.

Corollary 3.2.1. If cγ = cδ, then the inclusions j(cγ, cγ ∨ cδ) and

j(cδ, cγ ∨ cδ) become identity maps and (γ ⊕ δ)(a) = γ(a) + δ(a).

Definition 3.2.2. Let C be an RR−proper category and PC the

semigroup of proper cones in C. For γ, δ ∈ PC, with vertices cγ = c

and cδ = d, define

γ + δ = (γ ⊕ δ)∗ (3.2)

where (γ ⊕ δ)∗(a) = (γ ⊕ δ)(a)e(c ∨ d, d0) for all a ∈ vC. Then γ + δ is

a proper cone with vertex d0, where d0 = max{im(γ ⊕ δ)(a), |a ∈ vC}.

Lemma 3.2.5. For anRR−proper category C, the set of all proper

cones PC is an additive abelian group with respect to the addition

defined in equation 3.2.

Proof. For γ, δ ∈ PC, γ + δ is a proper cone in PC. Since C is a

RR−proper category, it is preadditive and hence each homset in C is

an additive abelian group.

For γ, δ, ρ ∈ PC and for all a ∈ vC, let γ+δ = η, δ+ρ = τ, (cγ∨cδ)∨cρ =



66 Chapter 3. Categories from semigroups, rings and modules

cγ ∨ (cδ ∨ cρ) = d, then

((γ + δ) + ρ)(a) = (η + ρ)(a)

= (η ⊕ ρ)∗(a)

= [η(a)j(cη, d) + ρ(a)j(cβ, d)]∗

= [(γ(a)j(cγ, cγ ∨ cδ)
+ δ(a)j(cδ, cγ ∨ cδ))e(cγ ∨ cδ, cη)j(cη, d) + ρ(a)j(cρ, d)]∗

= [(γ(a)j(cγ, d) + δ(a)j(cδ, d)) + ρ(a)j(cρ, d)]∗

= [γ(a)j(cγ, d) + (δ(a)j(cδ, d) + ρ(a)j(cρ, d))]∗

[since addition is associative in hom(a, d)]

and

(γ + (δ + ρ))(a) = (γ + τ)(a)

= (γ ⊕ τ)∗(a)

= [γ(a)j(cγ, d) + τ(a)j(cτ , d)]∗

= [γ(a)j(cγ, d) + (δ(a)j(cδ, cδ ∨ cρ)
+ ρ(a)j(cρ, cδ ∨ cρ))e(cδ ∨ cρ, cτ )j(cτ , d)]∗

= [γ(a)j(cγ, d) + (δ(a)j(cδ, d) + ρ(a)j(cρ, d))]∗

hence the addition is associative.

Let 0 be the zero object in C and γ0 be the cone with vertex 0, where

γ0(a) = 0 for all a ∈ vC, then γ0(a) is the unique morphism from a to

0 and γ0 is a proper cone in PC. For every γ ∈ PC and for all a ∈ vC,
let d = max{im(γ ⊕ γ0)(a)|a ∈ C} = cγ, since γ is a proper cone.

(γ + γ0)(a) = (γ ⊕ γ0)∗(a)

= [γ(a)j(cγ, cγ) + γ0(a)j(cγ0 , cγ)]e(cγ, d)

= [γ(a) + γ0(a)j(0, cγ)]e(cγ, d)

= γ(a)
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thus γ+γ0 = γ. Similarly γ0 +γ = γ. Hence γ0 is the identity element

in PC.
For γ ∈ PC, define −γ by −γ(a) = −(γ(a)). Clearly −γ is a proper

cone in PC and c−γ = cγ.

(γ +−(γ))(a) = [γ(a)j(cγ, cγ ∨ c−γ) + (−γ)(a)j(c−γ, cγ ∨ c−γ)]∗

= [γ(a)j(cγ, cγ) + (−γ)(a)j(cγ, cγ)]
∗

= [γ(a)Icγ + (−γ)(a)Icγ ]
∗

= [γ(a) + (−γ)(a)]∗

= [γ0(a)]∗ = γ0(a)

i.e., γ + (−γ) = γ0. Similarly (−γ) + γ = γ0. Hence −γ is the additive

inverse of γ.

(γ + δ)(a) = [(γ ⊕ δ)(a)]∗

= [γ(a)j(cγ, cγ ∨ cδ) + δ(a)j(cδ, cγ ∨ cδ)]∗

= [δ(a)j(cδ, cγ ∨ cδ) + γ(a)j(cγ, cγ ∨ cδ)]∗

= [(δ ⊕ γ)(a)]∗

= (δ + γ)(a)

i.e., γ + δ = δ + γ. Thus PC is an additive abelian group.

Theorem 3.2.1. For an RR−proper category C, the set of all

proper cones PC is a ring.

Proof. As RR−proper category C is a proper category it is already

known that the set of all proper cones PC in C form a semigroup by

Theorem 3.1.1 with respect to the multiplication,

γ · β = γ ? β(cγ)
o

where γ, β ∈ PC. From the above Lemma 3.2.5, PC is an additive
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abelian group. So it is enough to prove that the multiplication dis-

tributes over addition. As RR−proper category is preadditive, compo-

sition of morphisms is distributive over addition.

For γ, δ, ρ ∈ PC, and for all a ∈ vC, let cρ = c and cγ ∨ cδ = d

[ρ · (γ + δ)](a) = ρ(a) · [(γ + δ)(c)]o

= ρ(a) · [(γ ⊕ δ)∗(c)]o

= ρ(a) · ([(γ(c)j(cγ, d) + δ(c)j(cδ, d))]∗)o

= ρ(a) · [(γ(c)j(cγ, d) + δ(c)j(cδ, d))]∗ [by Lemma 3.2.2 ]

[(ρ · γ) + (ρ · δ)](a) = [(ρ · γ)⊕ (ρ · δ)]∗(a)

= [ρ(a) · (γ(c))oj(imγ(c), d) + ρ(a) · (δ(c))oj(imδ(c), d)]∗

= [ρ(a) · (γ(c))oj(imγ(c), cγ)j(cγ, d)

+ ρ(a) · (δ(c))oj(imδ(c), cδ)j(cδ, d)]∗

= [ρ(a) · (γ(c)j(cγ, d) + δ(c)j(cδ, d))]∗

= ρ(a) · [(γ(c)j(cγ, d) + δ(c)j(cδ, d))]∗ [by Lemma 3.2.3 ]

Hence ρ · (γ + δ) = (ρ · γ) + (ρ · δ). Similarly we can prove that

(γ + δ) · ρ = γ · ρ+ δ · ρ. Thus PC is a ring.

3.2.2 Ideal categories of rings

Let R be a ring with unity. Then principal left [right] ideal of a ring

R generated by an element a of R is (a)l = Ra [(a)r = aR]. Since the

multiplicative part of a ring is semigroup, it follows that the principal

left [right] ideals of a ring R as objects and morphisms right [left]

translations form proper category L(R)[R(R)].

vL(R) = {Ra : a ∈ R} and for a, b ∈ R

L(R)(Ra,Rb) = {ρ(a, s, b) : x→ xs with as ∈ Rb; for all x ∈ Ra}
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Let ρ(a, s, b), ρ(a, t, b) ∈ L(R)(Ra,Rb), then as, at ∈ Rb. Since

a(s+t) ∈ Rb we have ρ(a, s, b)+ρ(a, t, b) = ρ(a, s+t, b) ∈ L(R)(Ra,Rb).

Lemma 3.2.6. The proper category L(R)[R(R)] of principal left

[right] ideals of a ring R with right [left] translations as morphisms is

a preadditive category.

Proof. For ρ(a, s, b), ρ(a, t, b) ∈ L(R)(Ra,Rb), the addition is de-

fined by

ρ(a, s, b) + ρ(a, t, b) = ρ(a, s+ t, b).

Under this addition homset L(R)(Ra,Rb) is an abelian group, further

if restricted to L(R)(Ra,Ra), it is a ring.

For ρ(a, s, b), ρ(a, t, b) ∈ L(R)(Ra,Rb) and ρ(b, u, c), ρ(b, v, c) ∈
L(R)(Rb,Rc) with as, at ∈ Rb and bu, bv ∈ Rc,

ρ(a, s, b)[ρ(b, u, c) + ρ(b, v, c)] = ρ(a, s, b)[ρ(b, u+ v, c)]

= ρ(a, s(u+ v), c) = ρ(a, su+ sv, c)

= ρ(a, su, c) + ρ(a, sv, c)

= ρ(a, s, b)ρ(b, u, c) + ρ(a, s, b)ρ(b, v, c)

Similarly [ρ(a, s, b)+ρ(a, t, b)]ρ(b, u, c) = ρ(a, s, b)ρ(b, u, c)+ρ(a, t, b)ρ(b, u, c).

Clearly the zero ideal is the zero object in the category L(R). Hence

for a ring R, the category L(R) and dually R(R) are preadditive proper

categories.

Let R be a ring with the property that any set of principal ideals

which is bounded above has a maximal element then the category L(R)

of principal left ideals of R is preadditive proper category with the

property that vL(R) (principal ideals of ring) form a complete lattice

with respect to the partial order induced from strict preorder. The join

and meet are defined by; Ra ∨Rb = Ra+Rb and Ra ∧Rb = Ra ∩Rb
where Ra + Rb is the smallest principal ideal containing both Ra and

Rb. The trivial ideals R and (0) are the bounds; and every subset
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of vL(R) which has an upper bound in vL(R) contains a maximal

element. Then L(R) is an RR−proper category. Examples of such

rings are Euclidean domains, ring of integers Z, polynomial ring F [X]

for a field F , Gaussian integers Z[i] etc.

Example 3.2.1. R = (Z4,+, ·)

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

As R is a commutative ring, the two sided principal ideals are (0) =

{0}, (1) = (3) = R, (2) = {0, 2}. We get a proper category L(R) with

objects (0), (1) and (2). The morphisms can be found as in Example

3.1.1. The homsets are

hom((1), (2)) = {ρ(1, 0, 2), ρ(1, 2, 2)},

hom((1), (1)) = {ρ(1, 0, 1), ρ(1, 1, 1), ρ(1, 2, 1), ρ(1, 3, 1)},

hom((2), (1)) = {ρ(2, 0, 1), ρ(2, 1, 1)},

hom((2), (2)) = {ρ(2, 0, 2), ρ(2, 1, 2)}.

The proper cones are;
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γ1, γ2 and γ5 are idempotent proper cones. But γ3 and γ4 are not

idempotent proper cones.

PL(R) = {γ1, γ2, γ3, γ4, γ5} is a ring. It is easy to see that γ1 · γ2 =

γ1, γ2 · γ3 = γ3, γ3 · γ4 = γ4, γ3 · γ5 = γ4, γ4 · γ5 = γ4 and so on.
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γ1 + γ2 = γ2, γ1 + γ3 = γ3 and so on. γ1 acts as additive identity

element. γ2 + γ2 = γ4, γ2 + γ3 = γ0, γ3 + γ4 = γ2 and so on.

3.2.3 RR−normal category

A normal category which is preadditive is called preadditive normal cat-

egory (see Definition 1.6.9 and 1.6.14). A preadditive normal category

satisfying RR−conditions is called RR−normal category (see Defini-

tion 3.2.1). A.R. Rajan and Sunny Lukose proved that the set of all

normal cones in an RR−normal category is a regular ring (cf.[20]). Let

T C be the set of all normal cones in an RR−normal category C and

E(T C) be the set of all idempotent normal cones in C (see Definition

1.6.13).

Definition 3.2.3. If γ is a cone in an RR−normal category C
with vertex d and d0 = max{imγ(a)|a ∈ vC} then for every retraction

e : d→ d0, the cone γ∗ with vertex d0, defined by;

γ∗(a) = γ(a)e(d, d0), for all a ∈ vC

is a normal cone.

Definition 3.2.4. Let C,D be RR−normal categories. A functor

F : C → D is said to be a functor of RR−normal categories if the

following hold:

1. if j : a → b is an inclusion in C then F (j) : F (a) → F (b) is an

inclusion in D

2. for a, b ∈ vC the restriction of F to hom(a, b) is a homomorphism

of groups from hom(a, b) to hom(F (a), F (b)).

Theorem 3.2.2 (cf.[20], Theorem 2.25). The set of all normal

cones T C in an RR-normal category C form a regular ring with respect

to the multiplication and addition of normal cones defined by: for
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γ, δ ∈ T C with cγ = c, cδ = d and for each a ∈ vC,

(γ · δ)(a) = γ(a) · δ(c)o and

(γ + δ)(a) = (γ ⊕ δ)∗(a)

where (γ ⊕ δ)∗(a) = [γ(a)j(c, c ∨ d) + δ(a)j(d, c ∨ d)]e(c ∨ d, d0)

and d0 = max{im(γ ⊕ δ)(a)|a ∈ vC} is the vertex of the normal cone

γ + δ.

Two RR−normal categories are isomorphic if there exists an iso-

morphism which preserves inclusions and addition in homsets. If C
is an RR−normal category, the set of all normal cones T C is a reg-

ular ring. The following theorem establishes the isomorphism be-

tween RR−normal category C and left ideal category of T C denoted

by L(T C).

Theorem 3.2.3. Let C be an RR−normal category. Define F on

objects and morphisms of C as follows: for c ∈ vC, let

vF (c) = (TC)ε,

where ε ∈ E(T C) with cε = c. For a morphism f ∈ C(c, b), let

F (f) = ρ(ε, ε ∗ f o, ε′) : (T C)ε→ (T C)ε′

where ε, ε′ ∈ E(T C), with cε = c, cε′ = b. Then F : C → L(T C) is an

isomorphism of RR−normal categories.

Proof. Let ε ∈ E(T C) and f, g : cε → b. First we prove that

(ε?f o)+(ε?go) = ε? (f+g)o, where ε?f o is a normal cone with vertex

imf and ε ? go is a normal cone with vertex img. Let v = imf ∨ img
and for a ∈ vC, let d0 = max{im(ε ? f o ⊕ ε ? go)(a)|a ∈ vC} then by
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Theorem 3.2.2,

(ε ? f o + ε ? go)(a) = [(ε ? f o)(a)j(imf, v)

+ (ε ? go)(a)j(img, v)]e(v, d0)

= [(ε(a)f o)j(imf, v) + (ε(a)go)j(img, v)]e(v, d0)

= ε(a)[f oj(imf, v) + goj(img, v)]e(v, d0)

= ε(a)[f oj(imf, v) + goj(img, v)]j(v, b)e(b, v)e(v, d0)

= ε(a)[f oj(imf, b) + goj(img, b)]e(b, d0)

= ε(a)[f + g]e(b, d0)

= ε(a)(f + g)oj(im(f + g), cod(f + g))e(b, d0)

= ε(a)(f + g)oj(im(f + g), b)e(b, d0)

= ε(a)(f + g)o[ since im(f + g) = d0]

= ε ? (f + g)o(a)

By Theorem 1.6.1 F : C → L(T C) is an isomorphism of normal cat-

egories. Now it is sufficient to prove that F preserves addition in

homsets. Let f, g : c → b. As in the statement of the theorem,

F (f) = ρ(ε, ε ∗ f o, ε′), F (g) = ρ(ε, ε ∗ go, ε′) : (T C)ε → (T C)ε′. Then

F (f + g) = ρ(ε, ε ∗ (f + g)o, ε′) : (T C)ε→ (T C)ε′.

F (f + g) = ρ(ε, ε ∗ (f + g)o, ε′)

= ρ(ε, (ε ? f o + ε ? go), ε′)

= ρ(ε, ε ? f o, ε′) + ρ(ε, ε ? go, ε′)

= F (f) + F (g)

hence F : C → L(T C) is an isomorphism of RR−normal categories.

From the above theorem it is clear that RR−normal category C
is isomorphic to L(T C) and hence L(T C) is an RR−normal category.

Dual result holds for R(T C).
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Ideal categories of regular rings

Let R be a regular ring and L(R)[R(R)] the category of principal left

[right] ideals of R with morphisms right [left] translations is a preaddi-

tive proper category by above Section 3.2.2. As the multiplicative part

of a regular ring is regular semigroup and ideal categories of regular

semigroups are normal categories, the category L(R)[R(R)] becomes

preadditive normal category .

The principal ideals of a regular ring are generated by idempotents

and form complemented modular lattice(cf.[28]). Also eR ∨ fR = gR

where e, f, g ∈ E(R). Thus any set of principal ideals which are

bounded above has a maximal element. Thus the preadditive nor-

mal category L(R) satisfies the RR−conditions and hence it is an

RR−normal category. Dual result holds for the category R(R).

For e, f ∈ E(R),

vL(R) = {Re|e ∈ E(R)}

L(R)(Re,Rf) = {ρ|(st)ρ = s(tρ); (s+ t)ρ = sρ+ tρ, for all s, t ∈ Re}

ρ = ρ(e, u, f) = ρu|Re : Re→ Rf is the translation x→ xu where u ∈
eRf. The multiplication and addition of morphisms in L(R) are as

follows:

ρ(e, u, f).ρ(g, v, h) = ρ(e, uv, f) where fLg, u ∈ eRf and v ∈ gRh

and ρ(e, u, f) + ρ(e, v, f) = ρ(e, u+ v, f) where u, v, u+ v ∈ eRf

As each principal ideal of a regular ring R is idempotent generated,

each L-class and R-class has at least one idempotent.

Lemma 3.2.7. Let R be a regular ring and a ∈ R, f ∈ E(La).
Then ρa is the normal cone in L(R) with vertex Ra = Rf whose

component at Re is

ρa(Re) = ρ(e, ea, f)
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and the M−set of ρa is,

Mρa = {Re : e ∈ E(Ra)}

where E(La)[E(Ra)] is the set of all idempotents in the L[R]-class of

a.

Proof. Since the multiplicative part of R is a regular semigroup,

the result follows from Lemma 1.6.1.

For a regular ring R the left ideal category L(R) is an RR−normal

category and by Theorem 3.2.2 the set of all normal cones T (L(R)) is

a regular ring. The following theorem describes a homomorphism of R

and T (L(R)).

Theorem 3.2.4. LetR be a regular ring and L(R) theRR−normal

category of principal left ideals of R. Rρ is the set of all right trans-

lations in R. Then there exists a homomorphism ρ̄ : R → T L(R) and

an injective homomorphism φ : Rρ → T L(R) such that the following

diagram commutes.

R
ρ−−−→ Rρy yφ

R −−−→
ρ̄
T L(R)

Proof. For a ∈ R, φ : Rρ → T L(R) as φ(ρa) = ρa and set ρ̄ = ρφ.

Then ρ̄(a) = ρa. By Theorem 1.6.2, ρ̄ is a homomorphism for a regular

semigroup S, hence to prove that ρ̄ is a ring homomorphism it is enough

to prove that ρ̄ preserves addition.

Given two normal cones ρa and ρb in T L(R), Sunny Lukose and

A.R. Rajan proved the existence of the sum ρa +ρb as the normal cone

ρa+b with vertex R(a+ b) in their Ph.D. thesis submitted to University
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of Kerala in 2003. Hence

ρ̄(a+ b) = ρφ(a+ b)

= φ(ρ(a+ b))

= φ(ρa+b)

= φ(ρa + ρb)

= ρa + ρb

= ρ̄(a) + ρ̄(b).

Hence ρ̄ = ρφ : R→ T L(R) is a ring homomorphism.

3.3 Abelian proper category

Our main interest in this section is the application of category theory

to module theory. A category of modules has a richer structure than

an abstract category since the additive structure on modules extends

to their homomorphisms.

An abelian category which is also proper [normal] is called abelian

proper [normal] category . Let M be an R-module, now we proceed

to show that the category of submodules of M is an abelian proper

category and in particular if we restrict to semisimple R-module, the

corresponding category is an abelian normal category .

Theorem 3.3.1. Let M be an R-module. The submodules of

M as objects and morphisms the R-module homomorphisms form an

abelian proper category S(M).

Proof. Let M be an R-module and Ni, i = 1, 2, ...n be submodules

of M , then S(M) with object set N ′is and morphisms are R-module

homomorphisms (R-linear maps) is a subcategory of R−mod, the

category of R−modules with morphisms R-module homomorphisms

which is an abelian category. Hence S(M) is also an abelian category.
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Further we prove that hom(Ni, Nk) is anR-module: for r, r1, r2 ∈ R,

f, g ∈ hom(Ni, Nk) and x ∈ Ni; f(x) ∈ Nk ⇒ rf(x) ∈ Nk [since Nk is

an R−module]. This implies rf ∈ hom(Ni, Nk). Also

1. 1 · f = f

2. (r1 · r2)f = r1(r2f)

3. (r1 + r2)f = r1f + r2f

4. r(f + g) = rf + rg.

Next we prove that the abelian category S(M) is a proper category.

The submodules of M act as subobjects under usual set inclusion.

Hence S(M) is a category with subobjects. For Ni, Nk ∈ vS(M),

let j : Ni → Nk be the inclusion. Then there exists an R−module

homomorphism e : Nk → Ni such that for all x ∈ Nk,

e(x) =

x, if x ∈ Ni

0, if x ∈ Nt

where Nt ∈ vS(M) is such that Ni ⊕Nk = Nt. Then je = INi . Hence

every inclusion splits. Every morphism f : Ni → Nk in S(M) has

canonical factorization as f = qj where q : Ni → imφ, an epimorphism

and j : imφ→ Nk an inclusion. For Ni ⊆ M , let γ : vS(M)→ Nm be

the map such that

1. γ(Ni) : Ni → Nm,

2. whenever Ni ⊆ Nk; j(Ni, Nk) · γ(Nk) = γ(Ni),

This collection of morphisms {γ(Ni) : Ni ∈ vS(M)} is a cone with ver-

tex Nm. Since every morphism has canonical factorization there exists

a submodule Nl of M such that γ(Nl) : Nl → Nm is an epimorphism.

Thus γ : vS(M)→ Nm is a proper cone with vertex Nm. Hence S(M)

is an abelian proper category.



3.3. Abelian proper category 79

Next Theorem shows that the set of all proper cones in S(M) is an

R−module.

Theorem 3.3.2. Let S(M) be the abelian proper category of sub-

modules of an R-module M . Then the set of all proper cones PS(M)

is an R-module.

Proof. The submodules of M form a relatively complemented mod-

ular lattice and any set of submodules bounded above has a maximal el-

ement. Hence the abelian proper category S(M) satisfiesRR−conditions

and hence S(M) is an RR−proper category. By Lemma 3.2.5, for

the RR−proper category S(M) the set of all proper cones PS(M)

is an additive abelian group. Now we define a scalar multiplication

from R × PS(M) → PS(M), such that for r ∈ R,Ni ∈ vS(M) and

γ ∈ PS(M), rγ(Ni) = γ∗(rNi) where γ∗ is as defined in Lemma 3.2.1

which is a proper cone in PS(M). Since each component of a cone lies

in some homset and since each homset is an R−module we have

1. 1γ = γ,

2. (r + s)γ = rγ + sγ;

3. (rs)γ = r(sγ);

4. r(γ + δ) = rγ + rδ.

Hence PS(M) is an R-module.

3.3.1 Abelian normal category

Here we consider the category S(M) of submodules of a semisimple

R-module M whose objects are submodules and morphisms R-module

homomorphisms. It is already seen that S(M) is an abelian proper

category. In the following we proceed to prove that S(M) is an abelian

normal category. Also we prove that the set of all normal cones in
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S(M) is a semisimple R-module. For that we recall addition of normal

cones in an RR-normal category (see Theorem 3.2.2).

Theorem 3.3.3. Let M be a semisimple R-module. The cate-

gory S(M) with objects submodules of M with morphisms R-module

homomorphism, is an abelian normal category.

Proof. Let M be a semisimple R-module and Ni, i = 1, 2, ...n be

submodules of M . By Theorem 3.3.1, the submodule category S(M)

is an abelian proper category. For Ni, Nk ∈ vS(M) every morphism

f : Ni → Nk in S(M) has normal factorization as f = quj where

q : Ni → (kerf)c, a retraction, u : (kerf)c → imf , an isomorphism

and j : imf → Nk an inclusion where Ni = kerf⊕ (kerf)c (see Section

1.4).

Since every morphism has normal factorization, proper cones be-

come normal cones. Normal cone γ : vS(M) → S(M) is defined such

that

1. for each submodule Ni of M , there is a γ(Ni) : Ni → Nm

2. whenever Ni ⊆ Nk, j(Ni, Nk) · γ(Nk) = γ(Ni) where j(Ni, Nk) is

an inclusion from Ni to Nk and

3. there exists at least one Nl ∈ vS(M) such that γ(Nl) : Nl → Nm

is an isomorphism.

This collection of morphisms {γ(Ni) : Ni ∈ vS(M)} is a normal cone

with vertex Nm. Now we prove that each object of S(M) is a vertex

of an idempotent normal cone. Let f : M → Nm be an R-module

homomorphism such that f(x) = x, for all x ∈ Nm. For any Ni ⊆ M ,

define γ(Ni) = f |Ni : Ni → Nm. Then γ(Nm) = INm . Thus γ is an

idempotent normal cone with vertex Nm ∈ vS(M). Hence S(M) is a

normal category.

Theorem 3.3.4. Let S(M) be the abelian normal category of
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submodules of an R-module M . Then the set of all normal cones

T S(M) is a semisimple R-module.

Proof. Abelian normal category S(M) is an RR−normal category

also. By Theorem 3.2.2, for an RR−normal category S(M) the set of

all normal cones T S(M) is an additive abelian group with respect to

the addition: for γ, δ ∈ T S(M) with cγ = c and cδ = d,

γ + δ = (γ ⊕ δ)∗

where for each a ∈ vS(M),

(γ ⊕ δ)∗(a) = (γ ⊕ δ)(a)e(c ∨ d, d0),

(γ ⊕ δ)(a) = γ(a)j(c, c ∨ d) + δ(a)j(d, c ∨ d)

and

d0 = max{im(γ ⊕ δ)(a)|a ∈ vC}.

Now define a scalar multiplication from R × T S(M) → T S(M)

such that for r ∈ R, Ni ∈ vS(M) and γ, δ ∈ T S(M),

rγ(Ni) = γ∗(rNi)

where γ∗(rNi) = γ(rNi)e(cγ, d
′); d′ = max{imγ(Ni)|Ni ∈ vS(M)} and

rNi is a submodule of M . Then rγ is a normal cone in T S(M) by the

definition of γ∗ given in Definition 3.2.3. Also,

1. 1γ = γ

2. (r + s)γ = rγ + sγ

3. (rs)γ = r(sγ)

4. r(γ + δ) = rγ + rδ
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hence T S(M) is an R-module.

Now we proceed to prove that T S(M) is semisimple. Let N0 =

{0}, N1, N2, ...Nr be simple submodules of M such that M = N0 ⊕
N1 ⊕ N2 ⊕ ... ⊕ Nr and let A0 be the set of all normal cones with

vertex N0, A1 be the set of all normal cones with vertex N1, A2 be the

set of all normal cones with vertex N2,... Ar be the set of all normal

cones with vertex Nr. Then each Ai is a submodule of T S(M) and

hence each Ai is an R−module. For γ, δ ∈ Ai with vertex Ni, γ + δ

is also a normal cone with vertex subobject of Ni that is either Ni

or N0 since Ni is simple. Thus the submodules of Ai are Ai and A0

and thus Ai = Ai ⊕ A0. Hence each Ai is a simple module. Thus

A0 ⊕ A1 ⊕ A2 ⊕ ...⊕ Ar ⊆ T S(M).

The vertex of any normal cone γ in T S(M) is a submodule of M .

So γ is in any submodule of A0 ⊕ A1 ⊕ A2 ⊕ ... ⊕ Ar. So T S(M)) ⊆
A0 ⊕ A1 ⊕ A2 ⊕ ...⊕ Ar and hence

T S(M)) = A1 ⊕ A2 ⊕ ...⊕ Ar.

Thus T S(M) is a semisimple R-module.

Example 3.3.1. Consider the semisimple Z-module M = Z6.

The submodules of M are {0}, N1 = {0, 3}, N2 = {0, 2, 4} and M . The

submodules form a Boolean lattice whose diagram is,

M

N1 N2

0
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Obviously M = {0} ⊕M and M = N1 ⊕N2.

Consider the abelian normal category S(M) with objects vS(M) =

{{0}, N1, N2,M} and morphisms Z−module homomorphisms given by

λn : x→ nx.

The homsets are

hom(N1, N1) = {λ0, λ1}, hom(N2, N2) = {λ0, λ1, λ2}, hom(N1,M) = {λ0, λ1},

hom(M,N1) = {λ0, λ3}, hom(N2,M) = {λ0, λ1, λ2}, hom(M,N2) = {λ0, λ2, λ4},

hom(N1, N2) = φ, hom(M,M) = {λ0, λ1, λ2, λ3, λ4, λ5} = A(say)

then A is a von Neumann regular ring isomorphic to M .

The normal cones are given by
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T S(M) = {γ0, γ1, γ2, γ3, γ4, γ5} is isomorphic to M and also isomorphic

to A = hom(M,M). The correspondence is

γ0 → λ0, γ1 → λ3, γ2 → λ2, γ3 → λ4, γ4 → λ1, γ5 → λ5.

It is easy to observe that the set of all normal cones T S(M) is a

semisimple module with submodules B0 = {γ0}, B1 = {γ0, γ1}, B2 =

{γ0, γ2, γ3} and T S(M). Obviously

B0 ⊕ T S(M) = T S(M) and B1 ⊕B2 = T S(M).

From this example it is clear that the set of all normal cones in

the abelian normal category S(M) of a semisimple module M , is a

semisimple module.



Chapter 4

H−functors and Dual

categories

We have described proper category, preadditive proper category and

RR−categories in Chapter 3. Now we proceed to describe the dual

categories of these categories and it is shown that the dual category of a

proper category, preadditive proper category and RR−normal category

are also proper category, preadditive proper category and RR−normal

category respectively.

4.1 Dual categories

For a regular semigroup S the category of principal left [right] ideals

L(S)[R(S)] is a normal category by Proposition 1.6.2. The set of all

normal cones in the category L(S) denoted by T L(S) is a regular semi-

group and the category of its principal left ideals L(T L(S)) is again

a normal category isomorphic to L(S). By Theorem 1.6.4, the normal

dual category N∗L(S) is isomorphic to the category of principal right

ideals R(S). But in an arbitrary semigroup S, all principal ideals are

not idempotent generated and ideal categories fails to be normal, how-

ever the category of principal left [right] ideals L(S)[R(S)] is a proper

85
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category (see Theorem 3.1.2). The set of proper cones in L(S) denoted

by PL(S) is a semigroup and its left ideal category L(PL(S)) is also

a proper category.

4.1.1 Dual of proper category

Let C be a proper category and PC the semigroup of proper cones

in C. Now we proceed to describe certain set valued functors called

H-functors on objects and morphisms of the proper category C.

Definition 4.1.1. Let PC be the semigroup of proper cones in a

proper category C. For each γ ∈ PC we define an H-functor, H(γ;−) :

C → Set defined by; for c, d ∈ vC and g : c→ d,

H(γ; c) = {γ ∗ f o|f : cγ → c}

H(γ; g) : H(γ; c)→ H(γ; d) maps γ ∗ f o 7→ γ ∗ (fg)o.

Clearly, H(γ; c) is a set for all c ∈ vC and by the uniqueness of

epimorphic component, H(γ; g) is a map of the set H(γ; c) to H(γ; d).

Lemma 4.1.1. For each γ ∈ PC, H(γ;−) : C → Set defined

above is an inclusion preserving covariant functor.

Proof. For each c ∈ vC, H(γ; c) is a set and H(γ; g) is a map from

H(γ; c) to H(γ; c′) where g : c→ c′. Now let h : c′ → c′′

H(γ; g)H(γ;h)(γ ? f o) = H(γ;h)(H(γ; g)(γ ? f o))

= H(γ;h)(γ ? (fg)o) = γ ? ((fg)h)o

= γ ? (fgh)o = H(γ; gh)(γ ? f o)

Thus H(γ; gh) = H(γ; g)H(γ;h).

Also H(γ; Ic) = IH(γ;c) and for c ⊆ c′, H(γ; jc
′
c ) = j

H(γ;c′)
H(γ;c) . Hence H is

an inclusion preserving covariant functor.
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Remark 4.1.1. H(γ;−) and C(cγ;−) are naturally isomorphic

functors and the natural isomorphism ηγ is given by ηγ(cγ) : H(γ; cγ)→
C(cγ, cγ) sending γ → Icγ .

Proposition 4.1.1. For γ, γ′ ∈ PC, H(γ;−) ⊆ H(γ′;−) if and

only if there exists a unique epimorphism h from cγ′ to cγ such that

γ = γ′ ? h.

Proof. Let γ = γ′ ? h where h : c′γ → cγ is an epimorphism and let

c ∈ vC. If γ ? f o ∈ H(γ; c), we have γ ? f o = γ′ ? hf o. Since h is an

epimorphism, by the uniqueness of canonical factorization (hf)o = hf o

and so γ ? f o ∈ H(γ′; c). Thus H(γ; c) ⊆ H(γ′; c) for all c ∈ vC.
Let g : c→ c′ be a morphism. Then

H(γ; g)(γ ? f o) = γ ? fgo and

H(γ′; g)(γ ? f o) = H(γ′; g)(γ′ ? (hf)o)

= γ′ ? (hfg)o

= γ ? (fg)o

and the following diagram commutes:

H(γ′; c)
H(γ′;g)−−−−→ H(γ′; c′)

j
H(γ′;c)
H(γ;c)

x xjH(γ′;c′)
H(γ;c′)

H(γ; c) −−−−→
H(γ;g)

H(γ; c′)

hence H(γ;−) ⊆ H(γ′;−).

Conversely, suppose that H(γ;−) ⊆ H(γ′;−), then γ ∈ H(γ; cγ) ⊆
H(γ′; cγ) and so γ = γ′ ? f o for some f ∈ C(cγ′ , cγ). Now cγ′?fo = imf

and γ = γ′?f implies imf = cγ = codf . Hence f is an epimorphism and

γ = γ′?f . If γ′?h = γ′?k, then for any c ∈ Nγ′ , we have γ′(c)h = γ′(c)k

and since γ′(c) is an epimorphism left cancellation holds and h = k.
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This proves the uniqueness.

Corollary 4.1.1. Let γ, γ′ ∈ PC. If H(γ;−) ⊆ H(γ′;−) then

Nγ′ ⊆ Nγ.

Proof. Let c ∈ Nγ′ then γ′(c) is an epimorphism. H(γ;−) ⊆
H(γ′;−) implies γ = γ′ ? h where h : cγ′ → cγ is an epimorphism and

γ(c) = γ′(c)h is epimorphism. Hence c ∈ Nγ and thus Nγ′ ⊆ Nγ.

Definition 4.1.2. If C is a proper category then the proper dual

of C denoted by P∗C is the full subcategory of C∗ with

vP∗C = {H(γ;−)|γ ∈ PC}

where each H−functor H(γ;−) is as defined in Definition 4.1.1.

Lemma 1.6.2 describes the morphisms of normal dual category in

terms of those of normal category C. We can extend the same result

to proper category since it differs with normal category only in normal

factorization. Since the result is independent of normal factorization

we have the following lemma which describes morphisms of P∗C in

terms of those of C.

Lemma 4.1.2. Let C be a proper category and its dual P∗C as

defined above. To every morphism σ : H(γ;−) → H(γ′;−) in P∗C,
there is a unique σ̂ : cγ′ → cγ in C such that the following diagram

commutes.
H(γ;−)

ηγ−−−→ C(cγ,−)

σ

y yC(σ̂,−)

H(γ′;−) −−−→
ηγ′

C(c′γ,−)

In this case, the component of the natural transformation σ at c ∈ vC
is the map given by σ(c) : γ ∗ f o 7→ γ′ ∗ (σ̂f)o. In particular, σ is the

inclusion H(γ;−) ⊆ H(γ′;−) if and only if γ = γ′ ∗ σ̂. Moreover, the
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map σ 7→ σ̂ is a bijection of P∗C(H(γ;−), H(γ′;−)) onto C(c′γ, cγ).

Remark 4.1.2. Let C∗ = [C,Set] (see Definition 1.6.5). Since

C∗ is a category with subobjects with respect to functorial inclusion,

P∗C is a category with subobjects, with the subobject relation induced

from C∗.

Lemma 4.1.3. Let C be a proper category. If f : c → d is an

epimorphism in C, then H(γ; f) : H(γ; c) → H(γ; d) in category P∗C
is an epimorphism. Similar result hold for monomorphism.

Proof. Let f : c → d is an epimorphism. Then for k1, k2 : d → a,

f · k1 = f · k2 ⇒ k1 = k2. Consider H(γ; c) = {γ ? ho|h : cγ → c},
H(γ; f) : H(γ; c)→ H(γ; d) defined as H(γ; f)(γ ? ho) = γ ? (hf)o. For

H(γ; k1), H(γ; k2) : H(γ; d) → H(γ; a) and for every γ ? ho ∈ H(γ; c),

let

H(γ; f)H(γ; k1)(γ ? ho) = H(γ; f)H(γ; k2)(γ ? ho).

But H(γ; f)H(γ; k1)(γ ? ho) = H(γ; k1)(H(γ; f)(γ ? ho))

= H(γ; k1)(γ ? (hf)o)

Now H(γ; k1)(γ ? (hf)o) = (γ ? (hfk1)o)

= (γ ? (hfk2)o) [ since k1 = k2]

= H(γ; k2)(γ ? (hf)o)

Thus for every γ ? (hf)o ∈ H(γ; d), H(γ; k1)(γ ? (hf)o) = H(γ; k2)(γ ?

(hf)o). Hence H(γ; k1) = H(γ; k2) and so H(γ; f) is an epimorphism.

Dually, if f : c → d is a monomorphism in proper category C, then

H(γ; f) : H(γ; c)→ H(γ; d) in P∗C is a monomorphism.

By Lemma 4.1.2, the homset P∗C(H(γ;−), H(γ′;−)) is isomorphic

to C(c′γ, cγ) and by Remark 4.1.1, H(γ;−) and C(cγ;−) are naturally
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isomorphic functors. The next theorem shows that P∗C satisfies all the

conditions for a proper category.

Theorem 4.1.1. For a proper category C, its dual P∗C is also a

proper category.

Proof. For a proper category C, its dual is defined as in Definition

4.1.2,

vP∗C = {H(γ;−) : γ ∈ PC}

such that for c, d ∈ vC and for g : c→ d,

H(γ; c) = {γ ∗ f o|f : cγ → c} and

H(γ; g) : H(γ; c)→ H(γ; d) maps γ ∗ f o 7→ γ ∗ (fg)o.

By Remark 4.1.2, P∗C is a category with subobjects.

Let H(γ; j) : H(γ; c) ⊆ H(γ; d) is an inclusion in P∗C. Obviously

j : c ⊆ d is an inclusion in proper category C which splits, implies there

exists retraction e : d→ c, such that je = Ic.

H(γ; c) = {γ ? f o|f : cγ → c} and H(γ; j)(γ ? f o) = γ ? (fj)o.

H(γ; e) : H(γ; d)→ H(γ; c) and

H(γ; j)H(γ; e) = H(γ; Ic) = IH(γ;c).

Hence H(γ; j) splits in P∗C.
If σ(c) : H(γ; c) → H(γ′; c) is an inclusion in P∗C then by Lemma

4.1.2, j : cγ′ → cγ is an inclusion in C which splits in C. Since the

homsets are isomorphic σ(c) also splits in P∗C.
Next we prove that every morphism in P∗C has unique canonical

factorization. Let f : c → d be a morphism in C which has unique

canonical factorization f = qj where q : c→ a and j : a ⊆ d.

Then H(γ; f) : H(γ; c) → H(γ; d) is defined as H(γ; f) : γ ? ho 7→



4.1. Dual categories 91

γ ? (hf)o where h : cγ → c

H(γ; q)H(γ; j)(γ ? ho) = H(γ; j)(H(γ; q)(γ ? ho))

= H(γ; j)(γ ? (hq)o) = (γ ? (hqj)o)

= (γ ? (hf)o) = H(γ; f)(γ ? ho)

Thus H(γ; f) = H(γ; q)H(γ; j), where H(γ; q) is an epimorphism and

H(γ; j) is an inclusion by Lemma 4.1.3.

If σ(c) : H(γ; c) → H(γ′; c), then by Lemma 4.1.2 there exists

σ̂ : cγ′ → cγ which has canonical factorization σ̂ = qj in C. Let

q : cγ′ → c′′γ and j : c′′γ → cγ then σ(c) has canonical factorization q′j′

where q′ : H(γ; c)→ H(γ′′; c) and j′ : H(γ′′; c)→ H(γ′; c). Since every

inclusion splits, by [25] σ(c) has unique canonical factorization.

Let γ be a proper cone in C with vertex cγ. For every a ∈ vC,
each component γ(a) : a → cγ. Then by Definition 4.1.1, H(γ; γ(a)) :

H(γ; a)→ H(γ; cγ). Hence there is a proper cone γ′ in P∗C with vertex

H(γ; cγ) as follows: for all H(γ; a) ∈ vP∗C

γ′(H(γ; a)) : H(γ; a)→ H(γ; cγ)

If H(γ; a) ⊆ H(γ; b) then

j(H(γ; a), H(γ; b))H(γ; γ(b)) = H(γ; j(a, b))H(γ; γ(b))

= H(γ; j(a, b)γ(b))

= H(γ; γ(a)).

since γ is a proper cone in C, there exists at least one c ∈ vC such

that γ(c) is an epimorphism. Then by Lemma 4.1.3, H(γ; γ(c)) is an

epimorphism which is a component of γ′ and hence γ′ is a proper cone

in P∗C. In a similar way we get proper cones in P∗C with each element

of P∗C as its vertex. Hence P∗C is a proper category.

Remark 4.1.3. If γ is an idempotent proper cone in C such that



92 Chapter 4. H−functors and Dual categories

γ(cγ) = Icγ . Then H(γ; γ(cγ)) = H(γ; Icγ ) = IH(γ;cγ) (see Lemma

4.1.1). Hence there exists an idempotent proper cone in P∗C with

vertex H(γ;−).

Example 4.1.1. Let S be the semigroup given in Example 3.1.1,

its principal left ideal category L(S) is a proper category. The dual of

this proper category P∗L(S) is the following.

vP∗L(S) = {H(γ1;−), H(γ2;−), H(γ3;−)}

and morphisms are of the formH(γ1; ρ(a, a, 1)) : H(γ1;S1a)→ H(γ1;S1).

Similarly

vP∗R(S) = {H(γ′i;−)|i = 1, 2, ...9}

and morphisms are of the formH(γ′1;λ(b, a, a)) : H(γ′1; bS1)→ H(γ′1; aS1).

4.1.2 Dual of preadditive proper category

Preadditive proper category C is described in Section 3.2. Now we

proceed to show that its dual P∗C is a preadditive proper category.

Theorem 4.1.2. Let C be a preadditive proper category. Then

its dual category P∗C is also a preadditive proper category.

Proof. Since every preadditive proper category C is a proper cate-

gory it is seen that dual P∗C is also a proper category (see Theorem

4.1.1). Now it is enough to show that in P∗C each homset is an addi-

tive abelian group and composition of morphisms is distributive over

addition.

hom(H(γ; c), H(γ; d)) = {H(γ; f)|f : c→ d}

since hom(c, d) is an additive abelian group and H(γ;−) is a covariant
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functor; for fi, fj ∈ hom(c, d), fi + fj ∈ hom(c, d). Define

H(γ; fi) +H(γ; fj) = H(γ; fi + fj) ∈ hom(H(γ; c), H(γ; d)).

Since hom(c, d) is an additive abelian group, under this addition hom(H(γ; c), H(γ; d))

is obviously an additive abelian group. Also composition of morphisms

is bilinear in P∗C.

H(γ; f) · (H(γ; g) +H(γ;h)) = H(γ; f) · (H(γ; g + h)

= H(γ; g + h) ·H(γ; f) = H(γ; (g + h)f)

= H(γ; gf) +H(γ;hf)

= H(γ; f) ·H(γ; g) +H(γ; f) ·H(γ;h).

Now by Remark 4.1.1, H(γ;−) and C(cγ;−) are naturally iso-

morphic functors. By Lemma 4.1.2, when C is proper, the homset

P∗C(H(γ;−), H(γ′;−)) to C(cγ′ , cγ) is a bijection. Let

φ : P∗C(H(γ;−), H(γ′;−))→ C(cγ′ , cγ)

is defined as φ(σ) = σ̂, where σ̂ ∈ C(cγ′ , cγ). For d ∈ vC, since the

diagram below commutes, φ is an isomorphism.

H(γ; d)
ηγ(d)−−−→ C(cγ, d)

σ(d)

y yC(σ̂,d)

H(γ′; d) −−−→
ηγ′ (d)

C(c′γ, d)

Now to prove the result for preadditive proper categories it is suffi-

cient to prove that addition is preserved between homsets. Let σ1, σ2 :

H(γ;−) → H(γ′;−) in P∗C, then there exists σ̂1, σ̂2 : cγ′ → cγ in

C. Since C is preadditive proper category, each homset is an additive
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abelian group and hence σ̂1 + σ̂2 ∈ C(c′γ, cγ). From the diagram

C(σ̂1,−) = η−1
γ σ1ηγ′ : C(cγ,−)→ C(c′γ,−)

C(σ̂2,−) = η−1
γ σ2ηγ′ : C(cγ,−)→ C(c′γ,−).

C(σ̂1 + σ2,−) = η−1
γ (σ1 + σ2)ηγ′

= η−1
γ σ1ηγ′ + η−1

γ σ2ηγ′

[ since C preserves addition in homsets]

= C(σ̂1,−) + C(σ̂2,−).

Thus we get σ̂1 + σ2 = σ̂1 + σ̂2 since C is preadditive proper category.

Hence

φ(σ1 + σ2) = σ̂1 + σ2

= σ̂1 + σ̂2

= φ(σ1) + φ(σ2).

Thus the homsets P∗C(H(γ;−), H(γ′;−)) and C(c′γ, cγ) are isomorphic.

Thus if each homset in C an additive abelian group and composition

distributes over addition then each homset in P∗C also have the same

property. If 0 is the zero object of C then H(γ; 0) is the zero object of

P∗C for each proper cone γ in C. Hence P∗C is a preadditive proper

category.

4.1.3 Dual of RR−normal category

In Section 3.2.3, the RR−normal categories are described and it is

shown that for an RR−normal category C the set of all normal cones

T C is a regular ring. Now we proceed to define the dual of RR−normal

category.

For γ, γ′ ∈ T C, γRγ′ if and only if H(γ;−) = H(γ′;−). T C being
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a regular ring each R−class contains at least one idempotent and so

for every γ ∈ T C we have H(γ;−) = H(ε;−) where ε is an idempotent

normal cone.

Definition 4.1.3. Let C is an RR−normal category, then the

dual of C, denoted by N∗C, is the full subcategory of C∗ with vN∗C =

{H(ε;−) : ε ∈ E(T C)} where H(ε;−) is defined on objects and mor-

phisms of C as for c, d ∈ vC and g : c→ d;

H(ε; c) = {ε ∗ f o|f : cε → c}and

H(ε; g) : H(ε; c)→ H(ε; d) maps ε ∗ f o 7→ ε ∗ (fg)o.

Lemma 4.1.4. Let C be an RR−normal category. To every

morphism σ : H(ε;−)→ H(ε′;−) in N∗C, there is a unique σ̂ : cε′ → cε

in C such that the following diagram commutes where ε, ε′ ∈ E(T C).

H(ε;−)
ηε−−−→ C(cε,−)

σ

y yC(σ̂,−)

H(ε′;−) −−−→
ηε′

C(c′ε,−)

In this case, the component of the natural transformation σ at c ∈ vC
is the map given by

σ(c) : ε ∗ f o 7→ ε′ ∗ (σ̂f)o.

In particular, σ is the inclusion H(ε;−) ⊆ H(ε′;−) if and only if

ε = ε′ ∗ σ̂.

Moreover, the map σ 7→ σ̂ is a bijection of N∗C(H(ε;−), H(ε′;−)) onto

C(c′ε, cε).

Proof. By Lemma 1.6.2, φ : N∗C(H(ε;−), H(ε′;−)) → C(c′ε, cε)



96 Chapter 4. H−functors and Dual categories

is an isomorphism between homsets for a normal category C. Now

since RR−categories are preadditive and since all normal categories

are proper categories, RR−normal category C is a preadditive proper

category and by Theorem 4.1.2 the homset N∗C(H(ε;−), H(ε′;−)) is

isomorphic to C(c′ε, cε). Hence the proof.

By Theorem 3.2.3, RR−normal category C is isomorphic to L(T C)
so that L(T C) is anRR−normal category. Dually R(T C) is anRR−normal

category. To prove that the dual category N∗C is an RR−normal cat-

egory we show that it is isomorphic to R(T C). To prove that two

RR−normal categories are isomorphic, we show that there is an iso-

morphic functor between the corresponding normal categories which

preserves addition in homsets.

Lemma 4.1.5. Let C be an RR−normal category and ε, ε′ ∈
E(T C). Then the map λ(ε, γ, ε′) 7→ γ̃ where γ ∈ ε′(T C)ε and

γ̃ = γ(cε′)j(cγ, cε)

is a bijection of R(T C)(ε(T C), ε′(T C)) onto C(c′ε, cε).

Proof. By Lemma 1.6.3, for a normal category C, there is a bijec-

tion between R(T C)(ε(T C), ε′(T C)) and ε′(T C)ε where T C is a regular

semigroup. Now for an RR−normal category C, T C is a regular ring.

It is sufficient to show that the mapping φ : γ → γ̃ preserves addition

between ε′(T C)ε and C(c′ε, cε). For γ, δ ∈ ε′(T C)ε, γ + δ ∈ ε′(T C)ε, let
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d0 = max{im(γ + δ)(a)|a ∈ vC} = c(γ+δ) and let cγ ∨ cδ = v.

φ(γ + δ) = ˜(γ + δ)

= (γ + δ)(cε′)j(c(γ+δ), cε)

=
[[
γ(cε′)j(cγ, v) + δ(cε′)j(cδ, v)

]
e(v, d0)

]
j(cγ+δ, cε)

= γ(cε′)j(cγ, v)e(v, d0)j(d0, cε) + δ(cε′)j(cδ, v)e(v, d0)j(d0, cε)

[since cγ+δ = d0]

= γ(cε′)j(cγ, cε) + δ(cε′)j(cδ, cε)

= γ̃ + δ̃

= φ(γ) + φ(δ)

Hence φ preserves addition between ε′(T C)ε and C(c′ε, cε) and we get

˜(γ + δ) = γ̃ + δ̃ (4.1)

Theorem 4.1.3. Let C be an RR−normal category. Define G on

objects and morphisms of R(T C) as

vG(ε(T C)) = H(ε;−)

and for λ = λ(ε, γ, ε′) : ε(T C) → ε′(T C), let G(λ) be the natural

transformation making the following diagram commutative.

H(ε;−)
ηε−−−→ C(cε,−)

G(λ)

y yC(γ̃,−)

H(ε′;−) −−−→
ηε′

C(c′ε,−)

Then G : R(T C)→ N∗C is an isomorphism of RR−normal categories.

Proof. By Theorem 1.6.4, G : R(T C) → N∗C is an isomorphism
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of normal categories. Now to prove that G is an isomorphism of

RR−normal categories it is sufficient to prove that the functor G pre-

serves addition between homsets.

εT C G−−−→ H(ε;−)
ηε−−−→ C(cε,−)

λ

y G(λ)

y yC(γ̃,−)

ε′T C G−−−→ H(ε′;−) −−−→
ηε′

C(c′ε,−)

From the diagram the definition of G(λ) is equivalent to

G(λ) = ηεC(γ̃,−)η−1
ε′ .

Let λ1 = λ(ε, γ, ε′) and λ2 = λ(ε, δ, ε′) mapping from ε(T C) to

ε′(T C). Then λ1 + λ2 = λ(ε, γ + δ, ε′) : ε(T C)→ ε′(T C).

G(λ1 + λ2) = ηεC( ˜(γ + δ),−)η−1
ε′

= ηεC(γ̃ + δ̃,−)η−1
ε′

[ since ˜(γ + δ) = γ̃ + δ̃ by Equation 4.1 ]

= ηεC(γ̃,−)η−1
ε′ + ηεC(δ̃,−)η−1

ε′

= G(λ1) +G(λ2)

Hence G is an isomorphism of RR−normal categories R(T C) and N∗C.

Thus for an RR−normal category C, C ∼= L(T C) and R(T C) ∼=
N∗C. Hence the dual category N∗C is an RR−normal category.
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Cross-connection of

RR−normal categories

The cross-connection of normal categories is described in Section 1.7

and the cross-connection semigroup-which turns out to be a regular

semigroup and thus obtained a beautiful structure theorem for regular

semigroups. Here we generalize this approach by describing the cross-

connections of RR−normal categories and obtain a regular ring.

5.1 Cross-connection

In Section 3.2.3, RR−normal category is described and now we pro-

ceed to describe cross-connection of RR−normal categories. In an

RR−normal category C the set of all normal cones T C is a regular

ring and L(T C) is an RR−normal category. Theorem 3.2.3 establishes

the isomorphism of C with L(T C). RR-normal dual category N∗C is

discussed in Section 4.1.3 and by Theorem 4.1.3, R(T C) is isomorphic

to N∗C.

Definition 5.1.1. Let C and D be RR−normal categories. A

functor F : C → D is said to be a local isomorphism if F is inclusion

preserving, fully-faithful, addition preserving in each homset and for

99
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each c ∈ vC, F |〈c〉 is an isomorphism of the ideal 〈c〉 onto 〈F (c)〉 .

Let R be a (von Neumann) regular ring. The category L(R)[R(R)]

of principal left [right] ideals of R are RR−normal categories (see Sec-

tion 3.2.3). The set of all normal cones T L(R)[T R(R)] of RR−normal

category L(R)[R(R)] is a regular ring. By Theorem 3.2.4, it is seen

that there is a ring homomorphism ρ̄ : a 7→ ρa of R into T L(R). The

following Proposition shows that the category of principal right ideals

R(T L(R)) is an RR−normal category by showing that it is isomorphic

to R(R).

Proposition 5.1.1. For any regular ring R, FRρ : R(R) →
R(T L(R)) defined by FRρ(eR) = ρe(T L(R)) and FRρ(λ(e, u, f)) =

λ(ρe, ρu, ρf ) is a local isomorphism and dually FRλ : L(R)→ L(T R(R))

defined by FRλ(Re) = (T R(R))λe and FRλ(ρ(e, u, f)) = ρ(λe, λu, λf )

is also a local isomorphism.

Proof. In Proposition 1.7.3, it is shown that FSρ : R(S)→ R(T L(S))

is a local isomorphism where R(S),L(S) are ideal categories of a reg-

ular semigroup S. To prove the result for a regular ring R and the

corresponding RR−normal categories L(R) and R(R) it is sufficient

to prove that the functors defined above preserves addition between

homsets.

Let λ1 = λ(e, u, f) and λ2 = λ(e, v, f) belong to R(R)(eR, fR)

FRρ(λ1 + λ2) = FRρ(λ(e, u, f) + λ(e, v, f)

= FRρ(λ(e, (u+ v), f)

= λ(ρe, ρu+v, ρf )

= λ(ρe, ρu + ρv, ρf )

[since ρu+v = ρu + ρv]

= λ(ρe, ρu, ρf ) + λ(ρe, ρv, ρf )

= FRρ(λ1) + FRρ(λ2)
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Hence FRρ : R(R) → R(T L(R)) is a local isomorphism between the

RR−normal categories R(R) and R(T L(R)).

Theorem 5.1.1. Let R be a regular ring and L(R)[R(R)] be the

RR−normal category of principal left [right] ideals of R. For e, f ∈
E(R), fR ∈ vR(R) and λ = λ(e, u, f) in R(R), let ΓR be defined on

objects and morphisms of R(R) by :

ΓR(fR) = H(ρf ;−),ΓR(λ) = ηρeL(R)(ρ(f, u, e),−)η−1
ρf
.

Then ΓR is a local isomorphism from R(R) to N∗L(R). Dually, Γ∗R,

defined on objects and morphisms of L(R) by

Γ∗R(Re) = H(λe;−),Γ∗R(ρ) = ηλfR(R)(λ(e, u, f),−)η−1
λe .

for all Re ∈ vL(R) and ρ = ρ(f, u, e) ∈ L(R), defines a local isomor-

phism.

Proof. We have L(R) and R(R) are RR−normal categories and

T L(R) is a regular ring. By Proposition 5.1.1, FRρ : R(R)→ R(T L(R))

is a local isomorphism. Also by Theorem 4.1.3, G : R(T L(R)) →
N∗L(R) is also a local isomorphism. Then obviously ΓR = FRρ ·G is

a local isomorphism from R(R) to N∗L(R). Dually Γ∗R is also a local

isomorphism.

For a regular ring R, the ideal categories L(R) and [R(R)] are

RR−normal categories and the corresponding dual categories N∗L(R)

and [N∗R(R)] are also RR−normal categories. ΓR(−,−) : L(R) ×
R(R) → Set is a bifunctor associated with the local isomorphism

ΓR : R(R)→ N∗L(R) defined on objects and morphisms as follows:

ΓR(Re, fR) = ΓR(fR)(Re);

ΓR(ρ, λ) = ΓR(fR)(ρ)ΓR(λ)(Re′) = ΓR(λ)(Re)ΓR(f ′R)(ρ)
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for all (Re, fR) ∈ vL(R)× R(R) and (ρ, λ) : (Re, fR)→ (Re′, f ′R).

Proposition 5.1.2. The bifunctor ΓR(−,−) : L(R) × R(R) →
Set defined above is addition preserving.

Proof. Let ρ1, ρ2, ρ1 +ρ2 : Re→ Re′ and λ1, λ2, λ1 +λ2 : fR→ f ′R

ΓR(ρ1 + ρ2, λ1 + λ2) = ΓR(fR)(ρ1 + ρ2)ΓR(λ1 + λ2)(Re′)

= H(ρf , ρ1 + ρ2)ΓR(λ1 + λ2)(Re′)

= [H(ρf , ρ1) +H(ρf , ρ2)][ΓR(λ1)(Re′) + ΓR(λ2)(Re′)]

= H(ρf , ρ1)ΓR(λ1)(Re′) +H(ρf , ρ2)ΓR(λ2)(Re′)

= ΓR(ρ1, λ1) + ΓR(ρ2, λ2)

Thus ΓR(−,−) is an addition preserving bifunctor between the cate-

gories L(R)× R(R) and Set.

Similarly Γ∗R(−,−) : L(R)×R(R)→ Set is also a bifunctor asso-

ciated with the local isomorphism Γ∗R : L(R) → N∗R(R) defined on

objects and morphisms as follows:

Γ∗R(Re, fR) = Γ∗R(Re)(fR);

Γ∗R(ρ, λ) = Γ∗R(Re)(λ)Γ∗R(ρ)(f ′R) = Γ∗R(ρ)(fR)Γ∗R(Re′)(λ)

for all (Re, fR) ∈ vL(R)× R(R) and (ρ, λ) : (Re, fR)→ (Re′, f ′R).

Theorem 5.1.2. LetR be a regular ring. ΓR(−,−) and Γ∗R(−,−)

are two set valued bifunctors defined as above. Then there is a natural

isomorphism χR from ΓR(−,−) to Γ∗R(−,−) whose components are

defined by

χR(Re, fR) : ρf ? ρ(f, u, e)o 7→ λe ? λ(e, u, f)o

for each (Re, fR) ∈ v
(
L(R)× R(R)

)
.
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Proof. By Theorem 1.7.5, for a regular semigroup S, χS is a natural

isomorphism between ΓS(−,−) and Γ∗S(−,−) whose components are

defined by

χS(Se, fS) : ρf ? ρ(f, u, e)o 7→ λe ? λ(e, u, f)o

for each (Se, fS) ∈ v
(
L(S) × R(S)

)
. By above Proposition 5.1.2, ΓR

and Γ∗R are addition preserving bifunctors. So obviously χR is also

addition preserving.

ΓR : R(R) → N∗L(R) is the connection of R and Γ∗R : L(R) →
N∗R(R) is the dual connection of R.

Proposition 5.1.3 (cf.[25]). Let Γ : D → N∗C be a connection

between RR−normal categories C and D and let CΓ be the subcategory

of C such that

vCΓ = {c ∈ C : c ∈MΓ(d) for some d ∈ vD},

where MΓ(d) is the M−set of normal cone with vertex d. Then CΓ is

an ideal in C.

Definition 5.1.2. Let C and D be RR−normal categories. A

cross-connection is a triplet (D, C; Γ) where Γ : D → N∗C is a local

isomorphism such that for every c ∈ vC there is some d ∈ vD such that

c ∈MΓ(d).

Theorem 5.1.3. Let R be a regular ring. Then the connection

ΓR of R is a cross-connection of R(R) and L(R). Moreover Γ∗R is the

dual of ΓR.

Proof. By Theorem 1.7.6, ΓS : R(S)→ N∗L(S) is a cross-connection

for a regular semigroup S and Γ∗S is the dual of ΓS. By Theorem 5.1.1,

ΓR : R(R)→ N∗L(R) is a cross-connection for a regular ring R. Dually

Γ∗R is the dual cross-connection of ΓR.



104 Chapter 5. Cross-connection of RR−normal categories

5.2 Cross-connection regular ring

Cross-connection of RR−normal categories is discussed in Section 5.1.

Now we proceed to describe the regular ring corresponding to the cross-

connection which we call the cross-connection regular ring.

Let C and D be RR−normal categories. Γ : D → N∗C is a cross-

connection and Γ∗ : C → N∗D be its dual cross-connection. Define

EΓ = {(c, d) : c ∈ vCΓ, d ∈ vD and c ∈MΓ(d)}.

For each (c, d) ∈ EΓ, γ(c, d) denotes the unique cone in C such that

cγ(c,d) = c and Γ(d) = H(γ(c, d);−). Similarly for each (c, d) ∈ EΓ,

there is a unique cone γ∗(c, d) in D such that cγ∗(c,d) = d and Γ∗(c) =

H(γ∗(c, d);−).

Let (c, d) ∈ vCΓ × vD and choose c′ ∈ CΓ and d′ ∈ vD such that

(c, d′), (c′, d) ∈ EΓ. Then every cone in Γ(c, d) can be represented as

γ(c′, d)?f o with f ∈ C(c′, c) and every element of Γ∗(c, d) can be written

as γ∗(c, d′) ? go with g ∈ D(d′, d).

Hence for every (c, d) ∈ vCΓ×vD and γ(c′, d)?f o ∈ Γ(c, d), we have

natural isomorphism

χΓ(c, d)(γ(c′, d) ? f o) = γ∗(c, d′) ? go

where (c, d), (c′, d′) ∈ EΓ and f ∈ C(c, c′), g ∈ D(d′, d) are such that

the following diagram commutes.

Γ(d′)
ηγ(c,d′)−−−−→ C(c,−)

Γ(g)

y yC(f,−)

Γ(d) −−−−→
ηγ(c′,d)

C(c′,−)

Let Γ be a cross-connection of D with C. Define

UΓ =
⋃
{γ(c, d) : (c, d) ∈ vC × vD};
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UΓ∗ =
⋃
{γ∗(c, d) : (c, d) ∈ vC × vD}.

For any cross-connection Γ : D → N∗C, UΓ is a regular subring of T C
such that

E(UΓ) = {γ(c, d) : (c, d) ∈ EΓ}.

Definition 5.2.1. Given a cross-connection Γ : D → N∗C, be-

tween RR−normal categories C and D, a cone γ ∈ UΓ is linked to

γ∗ ∈ UΓ∗ or (γ, γ∗) is linked relative to Γ if there is (c, d) ∈ vC × vD
such that

γ ∈ Γ(c, d) and γ∗ = χΓ(c,d)(γ).

Theorem 5.2.1. Let C and D be two RR−normal categories and

Γ : D → N∗C be a cross-connection. Then R̃Γ = {(γ, γ∗) ∈ Γ × Γ∗ :

(γ, γ∗) is linked } is a regular ring with binary operation defined by

(γ, γ∗)(δ, δ∗) = (γ.δ, δ∗.γ∗) and

(γ, γ∗) + (δ, δ∗) = (γ + δ, γ∗ + δ∗)

for all (γ, γ∗), (δ, δ∗) ∈ R̃Γ.

Proof. By Theorem 3.2.2, for an RR−normal category C the set of

all normal cones T C is a regular ring with respect to the multiplication

and addition of normal cones are defined by: for γ, δ ∈ T C with cγ =

c, cδ = d and for each a ∈ vC, (γ · δ)(a) = γ(a) · δ(c)o and (γ + δ)(a) =

(γ⊕δ)∗(a) where (γ⊕δ)∗(a) = [γ(a)j(c, c∨d)+δ(a)j(d, c∨d)]e(c∨d, d0)

and d0 = max{im(γ ⊕ δ)(a)|a ∈ vC} is the vertex of the normal cone

γ + δ.

Since T C and T D are regular rings for RR−normal categories C
and D respectively, T C ×T D is also a regular ring and R̃Γ is a regular

subring of T C × T D.

Example 5.2.1. Cross-connection of the Matrix Ring M2(Z2)

Consider the regular ring R = M2(Z2). This ring has 16 elements of
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which there are 8 idempotents. The idempotents of R denoted as E(R)

are listed below.

e0 =

[
0 0

0 0

]
, e1 =

[
1 0

0 0

]
, e2 =

[
0 0

0 1

]
, e3 =

[
1 1

0 0

]
,

e4 =

[
0 0

1 1

]
, e5 =

[
1 0

1 0

]
, e6 =

[
0 1

0 1

]
, e7 =

[
1 0

0 1

]
,

The egg-box picture of the idempotents is the following:

1
e6 e5

e2 e4

e1 e3

0

The elements other than idempotents are

a1 =

[
0 1

0 0

]
, a2 =

[
0 0

1 0

]
, a3 =

[
1 1

1 1

]
,

a4 =

[
0 1

1 0

]
, a5 =

[
0 1

1 1

]
, a6 =

[
1 0

1 1

]
, a7 =

[
1 1

0 1

]
, a8 =

[
1 1

1 0

]
L(R) is the category of idempotent generated principal left ideals of

ring R, its object set vL(R) consists of the following.

I0 =

{[
0 0

0 0

]}
, R = M2(Z2),

I1 =

{[
0 0

0 0

]
,

[
1 0

0 0

]
,

[
0 0

1 0

]
,

[
1 0

1 0

]}

I2 =

{[
0 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

0 1

]
,

[
0 1

0 1

]}
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I3 =

{[
0 0

0 0

]
,

[
1 1

0 0

]
,

[
0 0

1 1

]
,

[
1 1

1 1

]}
Recall that the morphisms of the category L(R) are defined by ρu =

ρ(e, u, f) : Re → Rf is the translation x → xu where u ∈ eRf. Hence

the homsets are

hom(I1, I1) = {ρe0 , ρe1}, hom(I1, I2) = {ρe0 , ρa1},

hom(I2, I2) = {ρe0 , ρe2}, hom(I1, I3) = {ρe0 , ρe3},

hom(I3, I3) = {ρe0 , ρe3}, hom(I2, I1) = {ρe0 , ρa2},

hom(I3, I1) = {ρe0 , ρe1}, hom(I2, I3) = {ρe0 , ρe4},

hom(I3, I2) = {ρe0 , ρa1}, hom(I1, I0) = {ρe0},

hom(I2, I0) = {ρe0}, hom(I3, I0) = {ρe0},

hom(R, I0) = {ρe0}, hom(R, I1) = {ρe0 , ρe1 , ρa2 , ρe5},

hom(I1, R) = {ρe0 , ρe1 , ρa1 , ρe3}, hom(R, I2) = {ρe0 , ρa1 , ρe2 , ρe6},

hom(I2, R) = {ρe0 , ρa2 , ρe2 , ρe4}, hom(R, I3) = {ρe0 , ρe3 , ρe4 , ρa3},

hom(I3, R) = {ρe0 , ρe1 , ρa1 , ρe3}, hom(R,R) = {ρu|u ∈ R}

Note that hom(R,R) = {ρu|u ∈ R} is also a von Neumann regular ring

with respect to the addition and multiplication defined by

ρu + ρv = ρu+v and

ρu · ρv = ρuv.

The normal cones in L(R) are the following:
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The set of all normal cones

T L(R) = {γ0, γ1, γ2, γ3, β1, β2, β3, δ1, δ2, δ3, α1, α2, α3, α4, α5, α6}

and it is a regular ring isomorphic to R and hom(R,R). It is easily

seen that γ1 + γ2 = γ3, β1 + γ1 = α3, δ2 + β1 = γ2, α3 + δ2 = γ3 and so

on.

The idempotents in T L(R) are

E(T L(R)) = {γ0, γ1, γ2, β2, β3, δ2, δ3, α1}.

Further L(R) ∼= L(T L(R)) and the correspondence is the following:

I0 → T L(R)γ0, I1 → T L(R)γ1, I2 → T L(R)β2, I3 → T L(R)δ2, R →
T L(R)α1.
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The dual category N∗L(R) is the category with

vN∗L(R) = {H(γi;−), H(βj;−), H(δj;−), H(α1;−); i = 0, 1, 2; j = 2, 3}

and morphisms are appropriate natural transformations.

The principal right ideals generated by idempotents are

I0 =

{[
0 0

0 0

]}
, R = M2(Z2)

,

J1 =

{[
0 0

0 0

]
,

[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
1 1

0 0

]}

J2 =

{[
0 0

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]
,

[
0 0

1 1

]}

J3 =

{[
0 0

0 0

]
,

[
1 0

1 0

]
,

[
0 1

0 1

]
,

[
1 1

1 1

]}
The category whose objects are these principal right ideals and mor-

phisms are of the form λu = λ(e, u, f) : eR → fR is the translation

x→ ux where u ∈ fRe is the normal category R(R).

The homsets are the following.

hom(J1, J1) = {λe0 , λe1}, hom(J1, J2) = {λe0 , λa2},

hom(J2, J2) = {λe0 , λe2}, hom(J1, J3) = {λe0 , λe5},

hom(J3, J3) = {λe0 , λe5}, hom(J2, J1) = {λe0 , λa1},

hom(J3, J1) = {λe0 , λe1}, hom(J2, J3) = {λe0 , λe6},

hom(J3, J2) = {λe0 , λa2}, hom(J1, I0) = {λe0},

hom(J2, I0) = {λe0}, hom(J3, I0) = {λe0},

hom(R, I0) = {λe0}, hom(R, J1) = {λe0 , λe1 , λa1 , λe3},
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hom(J1, R) = {λe0 , λe1 , λa2 , λe5}, hom(R, J2) = {λe0 , λe2 , λa2 , λe4},

hom(J2, R) = {λe0 , λa1 , λe2 , λa6}, hom(R, J3) = {λe0 , λe5 , λe6 , λa3},

hom(J3, R) = {λe0 , λe1 , λa2 , λe5}, hom(R,R) = {λu|u ∈ R}

The set of all normal cones T R(R) in the category R(R) are
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T R(R) = {γ′0, γ′1, γ′2, γ′3, β′1, β′2, β′3, δ′1, δ′2, δ′3, α′1, α′2, α′3, α′4, α′5, α′6}

and it is a regular ring isomorphic to R and hom(R,R). The idempo-

tent set E(T R(R)) = {γ′0, γ′1, γ′2, β′2, β′3, δ′2, δ′3, α′1}.
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Further N∗L(R) ∼= R(T L(R)) and the correspondence is given by

H(γ0;−)→ γ0T L(R), H(γ1;−)→ γ1T L(R), H(γ2;−)→ γ2T L(R),

H(β2;−)→ β2T L(R), H(β3;−)→ β3T L(R), H(δ2;−)→ δ2T L(R),

H(δ3;−)→ δ3T L(R), H(α1;−)→ α1T L(R).

Define ΓR : R(R) → N∗L(R) on objects and morphisms of R(R)

by

ΓR(fR) = H(ρf ;−),ΓR(λ) = ηρeL(R)(ρ(f, u, e),−)η−1
ρf

where λ = λ(e, u, f) in R(R). ρf is the normal cone in L(R) with

vertex Rf . The diagram given below commutes

eR
ΓR−−−→ H(ρe;−)

ηρe−−−→ L(R)(Re,−)

λ

y ΓR(λ)

y yL(R)(ρ(f,u,e),−)

fR
ΓR−−−→ H(ρf ;−) −−−→

η
ρf

L(R)(Rf,−)

and ΓR is a cross-connection of RR-normal categories L(R) and R(R).

Now we proceed to find the cross-connection regular ring.

EΓR = {(I0, I0), (I1, J1), (I1, J2), (I1, J3)(I2, J1), (I2, J2), (I2, J3), (I3, J1),

(I3, J2), (I3, J3), (R,R)}
For (I1, J1) ∈ EΓR, γ(I1, J1) denotes the unique cone in L(R) with

vertex I1. Define an addition preserving bifunctor ΓR(−,−) : L(R)×
R(R)→ Set as described below.

ΓR(I1, J1) = {γ(Ii, J1) ? (ρu)
o|ρu ∈ L(R)(Ii, I1); i = 1, 2, 3}

= {γ1 ? (ρe1)
o, γ2 ? (ρe1)

o, β2 ? (ρe2)
o, β3 ? (ρe2)

o, δ2 ? (ρe1)
o, δ3 ? (ρe1)

o}
= {γ1, γ2, γ3}

Similarly ΓR(I1, J2) = ΓR(I1, J3) = {γ1, γ2, γ3},
ΓR(I2, Ji) = {β1, β2, β3}, ΓR(I3, Ji) = {δ1, δ2, δ3}; i = 1, 2, 3.,

ΓR(I0, J0) = {γ0}, ΓR(R,R) = {α1, α2, α3, α4, α5, α6}.
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Thus we get

UΓR = {γ0, γ1, γ2, γ3, β1, β2, β3, δ1, δ2, δ3, α1, α2, α3, α4, α5, α6}

Similarly, we can define Γ∗R : L(R)→ N∗R(R) and obtain

UΓ∗R = {γ′0, γ′1, γ′2, γ′3, β′1, β′2, β′3, δ′1, δ′2, δ′3, α′1, α′2, α′3, α′4, α′5, α′6}.

Let χΓR(Ii, Ji) is a natural isomorphism from ΓR(Ii, Ji) to Γ∗R(Ii, Ji)

defined by γ(Ii, J1) ? f o 7→ γ∗(I1, Ji) ? g
o where f : I1 → Ii and

g : Ji → J1. Using χΓR, the linked pairs of normal cones are

R̃Γ = {(γ0, γ
′
0), (γ1, γ

′
1), (γ1, γ

′
2), (γ1, γ

′
3), (γ2, γ

′
1), (γ2, γ

′
2), (γ2, γ

′
3), (γ3, γ

′
1),

(γ3, γ
′
2), (γ3, γ

′
3), (β1, β

′
1), (β1, β

′
2), (β1, β

′
3), (β2, β

′
1), (β2, β

′
2), (β2, β

′
3), (β3, β

′
1),

(β3, β
′
2), (β3, β

′
3), (δ1, δ

′
1), (δ1, δ

′
2), (δ1, δ

′
3), (δ2, δ

′
1), (δ2, δ

′
2), (δ2, δ

′
3), (δ3, δ

′
1),

(δ3, δ
′
2), (δ3, δ

′
3), (α1, α

′
1), (α1, α

′
2), (α1, α

′
3), (α1, α

′
4), (α1, α

′
5), (α1, α

′
6),

(α2, α
′
1), (α2, α

′
2), (α2, α

′
3), (α2, α

′
4), (α2, α

′
5), (α2, α

′
6), (α3, α

′
1), (α3, α

′
2),

(α3, α
′
3), (α3, α

′
4), (α3, α

′
5), (α3, α

′
6), (α4, α

′
1), (α4, α

′
2), (α4, α

′
3), (α4, α

′
4),

(α4, α
′
5), (α4, α

′
6), (α5, α

′
1), (α5, α

′
2), (α5, α

′
3), (α5, α

′
4), (α5, α

′
5), (α5, α

′
6),

(α6, α
′
1), (α6, α

′
2), (α6, α

′
3), (α6, α

′
4), (α6, α

′
5), (α6, α

′
6)}

R̃Γ is the cross-connection regular ring which is a regular subring

of T L(R)× T R(R).

(γi, γ
′
j) + (βk, β

′
l) = (γi + βk, γ

′
j + β′l)

and (γi, γ
′
j) · (βk, β′l) = (γi · βk, β′l · γ′j).

The addition and multiplication of two normal cones is as defined in

Theorem 3.2.2 and it can be seen that (γ1, γ
′
1) + (δ1, δ

′
1) = (β2, β

′
2)

and so on. The multiplication is distributive over addition as (γ1, γ
′
1) ·

[(β2, β
′
2) + (δ1, δ

′
1)] = (γ1, γ

′
1) · (γ1, γ

′
1) = (γ1, γ

′
1) and (γ1, γ

′
1) · (β2, β

′
2) +

(γ1, γ
′
1) · (δ1, δ

′
1) = (β2, β

′
2) + (δ1, δ

′
1) = (γ1, γ

′
1) and so on.

Thus the principal left and right ideals of a regular ring areRR−normal

categories and their cross-connection gives a regular ring.



Scope of Further Study

In this thesis we discussed cross-connections of Boolean lattices and

that of regular ring. It is also shown that the ideal categories of ar-

bitrary semigroups, rings and modules as proper category, preadditive

proper category and abelian proper category respectively. The duals of

proper categories and preadditive proper categories are also discussed.

The cross-connection of proper categories and that of preadditive

proper categories are not discussed in this thesis, similarly the dual

of abelian proper category is also not discussed, hence these will be a

natural choice for any further study.

The submodules of a semisimple R-module form a complemented

modular lattice. Moreover it also forms an abelian normal category

with object set submodules and morphisms R-module homomorphisms.

The cross-connection of the semisimple R-module can be constructed

considering it as an abelian normal category and as a complemented

modular lattice. These constructions as well as their equivalences will

be a part of any future research based on this thesis.
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