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INTRODUCTION

In this thesis ‘STUDY ON REGULAR RINGS- A BIORDERED SET

APPROACH’, we discuss various aspects regarding the idempotents of

a regular ring. The set of idempotents of a regular ring together with

two quasiorders is characterised as a biordered set and it is also shown

that the order ideals generated by these quasiorders called biorder ide-

als forms complemented modular lattices. Further the a coordinati-

sation theorem analogous to von Neumann’s coordinatization theorem

for complemented modular lattices is provided:

The concept of von Neumann regular rings was introduced by John

von Neumann in a paper ‘On Regular Rings’ in 1936. A ring R is

called a regular ring if for every a ∈ R there exists b ∈ R such that

aba = a. He used such rings as an algebraic tool for studying certain

lattices of projections on algebras of operators on a Hilbert space. A

lattice L is said to be coordinatized by a regular ring R, if the lattice L

is isomorphic to the lattice of all principal right(left) ideals of a regular

ring R. von Neumann proved that every complemented modular lattice

with order greater than or equal to 4 is coordinatisable.

It is obvious that the multiplicative reduct of a regular ring is a regular

semigroup and thus the study of regular semigroups play a significant

role in the study of regular rings. In order to study the structure of

a regular semigroup, Nambooripad in 1973 introduced the concept of

a biordered set. He characterized the set of idempotents E(S) of a

semigroup S as biordered set [25].

Here we extend the biordered set approach from regular semigroups to

regular rings by explicitly describing the structure of the multiplicative

idempotents ER of a regular ring R as a bounded and complemented



biordered set. The principal ideals generated by the left[right] qua-

siorder ωl[ωr] and their intersection ω in the biordered set ER are called

the biorder ideals of R and it is shown that these biorder ideals form a

complemented modular lattice Ωl(Ωr). Subject to certain conditions on

the biordered set ER the lattice Ωl will have properties like perspectiv-

ity, independence and order. We also consider the set of idempotents

with respect to the addition ⊕ defined by a⊕b = a+b−ab of the ring R

and it is observed that every multiplicative idempotent in R is also an

additive idempotent. This set of idempotents is denoted by E⊕R and as

biordered sets E⊕R possesses certain interesting properties as that of ER.

The converse problem of obtaining a biordered set from a comple-

mented modular lattice was discussed by Pastjin in case of strongly

regular baer semigroups (cf.[28]). He defined the normal mappings on

a complemented modular lattice L using complementary pairs.These

normal mappings is a semigroup P (L) and the set of idempotents

EP (L) of P (L) is the biordered set of the complemented modular lattice.

Here we extend successfully Pastjin’s approach of constructing regular

biordered sets of complemented modular lattice to regular rings. It is

observed that the set of idempotents of a regular ring ER is a bounded

and complemented biordered set and we identify the conditions for the

existence of a biordered subset E0
P (L) so that the lattice L admits a

homogeneous basis.

The first chapter is a preliminary where we recall all the basic concepts

and definitions regarding partially ordered sets, lattices, semigroups,

biordered sets and regular rings which are used in the sequel. The no-

tations and terminologies used are in par with the references [2], [7],

[12], [16], [25], [23].

In the second chapter, we consider the set of all multiplicative idempo-

tents ER of a regular ring and discuss its properties. Here we extend



the concept of biordered sets to include the class of all idempotents of a

regular ring. As examples, the biordered set of the matrix ringsM2(Z2),

M2(Z3) and M2(Z4) are given. We generalize this by considering the

matrix ring M2(Zp) where p is any prime and describe its biordered

set. Further, we also study the additive idempotents in the regular

ring R by defining a binary operation ⊕ defined by a⊕ b = a+ b− ab
so that the set of all multiplicative idempotents are idempotents with

respect to this addition. Thus the set of idempotents with respect to

this addition become a biordered set of special interest.

The third chapter is a study on the biorder ideal of a regular ring. Here

we consider the principal ideals obtained from the quasiorders ωr and

ωl and their intersection ω of the biordered set ER of a regular ring

(R,+, ·) which we call the biorder ideals. We define the join and meet

of two biorder ideals and show that they are closed under these two

operations and hence form the complemented modular lattice Ωl. Con-

sidering the case when these biorder ideals coincide that is ωr = ωl = ω

it is shown that the set of ω ideals form a complemented distributive

lattice. Later, some properties of this complemented modular lattice

like perspectivity, independence and order are studied. The perspec-

tivity of two elements of this lattice Ωl is given in terms of E-sequence,

thus showing that

• Two biorder ideals ωl(e) and ωl(f) are perspective if and only if

the length of their E-chain of idempotents, dl(e, f) is less than or

equal to 3.

The condition ei ω (1−ej) for i 6= j for idempotents e1, e2, . . . , en asserts

that the biorder ideals generated by these idempotents are independent

in the lattice Ωl with ωl(e1)∨ωl(e2)∨ . . . ωl(en) = ωl(e1 +e2 + . . .+en).

Moreover a necessary and sufficient condition for the independence of

elements in the lattice Ωl is given. Combining all these results regarding



perspectivity and independence in the complemented modular lattice

Ωl we arrive at the following:

• Let R be a regular ring with ei ω (1− ej) for i 6= j, dl(ei, ej) = 3

and e1 + e2 + . . .+ en = 1 then the complemented modular lattice

Ωl is of order n.

In the fourth chapter, we study the biordered set EP (L) obtained from

the complemented modular lattice L[28] and see that this biordered

set EP (L) is bounded and complemented. Further, we describe the

biordered subset E0
P (L) of EP (L) satisfying certain conditions, so that

the complemented modular lattice admits a homogeneous basis. Fi-

nally, analogous to von Neumann’s coordinatization we prove a coor-

dinatization theorem for complemented modular lattice by using the

biordered set of idempotents EP (L).
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Chapter 1

Preliminaries

In this chapter we recall all basic concepts and results which are used

in the sequel.

1.1 Partially Ordered sets and Lattices

Let P be a non-empty set, and let σ be a binary relation on P . The

relation σ is called a partial ordering of P if it is reflexive, transitive

and antisymmetric. We usually write x ≤ y for x σ y. The pair (P,≤)

is called a partially ordered set(poset). A non-empty set P together

with a binary relation σ is called a quasi-ordered set if σ is reflexive

and transitive.

Posets can be depicted as graphs with vertices representing the el-

ements and edges extending upwards to indicate the ordering. These

graphs are called Hasse diagrams.

Let (P,≤) be a poset, X ⊆ P and a ∈ P . When a ≤ x for all

x ∈ X, we call a a lower bound of X. The element a is called the

greatest lower bound or infimum of X if

for every p ∈ P, p ≤ x and a ≤ x =⇒ p ≤ a for all x ∈ X.

1



2 Chapter 1. Preliminaries

Analogous definitions for upper bound and least upper bound can be

given .

Definition 1.1.1. A subset I of a partially ordered set (P,≤) is

an ideal(order ideal) if the following conditions hold:

1. I is non-empty

2. for every x ∈ I, y ≤ x implies that y is in I and

3. for every x, y in I, there is some element z in I, such that x ≤ z

and y ≤ z.

The smallest ideal that contains a given element p is called a principal

ideal and p is said to be a principal element of the ideal. The principal

ideal ↓ p for a principal p is thus given by ↓ p = {x ∈ P |x ≤ p}.

Definition 1.1.2. (cf.[9] page 179) If P is a partially ordered set

and Φ : P −→ P is an isotone(order preserving) mapping, then Φ will

be called normal if

1. imΦ is a principal ideal of P and

2. whenever xΦ = y, then there exists some z ≤ x such that Φ maps

the principal ideal P (z) isomorphically onto the principal ideal

P (y).

Definition 1.1.3. (cf. [9] page 179) The partially ordered set P

will be called regular if for every e ∈ P , P (e) = imΦ for some normal

mapping Φ : P −→ P with Φ2 = Φ .

If P is a regular partially ordered set, then it is easy to see that

the set S(P )[S∗(P )] of normal mappings of P into itself, considered as

left [right] operators form a regular semigroup under the composition

of mappings.
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Definition 1.1.4. A lattice is a partially ordered set in which

each pair of elements has a least upper bound and a greatest lower

bound.

Let a, b be elements of a lattice L. Then we denote their greatest

lower bound (meet) by a∧ b and the least upper bound (join) by a∨ b.
It can be easily seen that a ∨ b and a ∧ b are unique. The operations

thus seen above ∨ and ∧ are idempotent, commutative and associative.

That is, they satisfy the following:

L1 Idempotency:

a ∨ a = a; a ∧ a = a.

L2 Commutativity:

a ∧ b = b ∧ a, a ∨ b = b ∨ a.

L3 Associativity:

(a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c).

These properties of the operations are also called the idempotent

identities, commutative identities, and associative identities, re-

spectively.

There is another pair of rules that connect ∨ and ∧.

L4 Absorption identities:

a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a.

An alternate definition treating lattices as algebras is the following:

Definition 1.1.5. An algebra 〈L;∧,∨〉 is called a lattice if and

only if L is a non empty set, ∧ and ∨ are binary operations on L, both
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∧ and ∨ are idempotent, commutative and associative, and they satisfy

the two absorption identities.

The notations a ∨ b and a ∧ b are analogous to the notations for

the intersections and union of sets. Some properties of union and in-

tersection carry over to lattices but some do not. For instance, the

distributive law need not hold in all lattices

Definition 1.1.6. A lattice L is called a distributive lattice if any

of the following identities hold:

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Next we define the property of modularity, which is a weak form of

distributivity.

Definition 1.1.7. A lattice L is called modular (Dedekind lattice)

if the modular law holds in it:

a ≤ c =⇒ (a ∨ b) ∧ c = a ∨ (b ∧ c).

The two typical examples of non-distributive lattices with 5 ele-

ments are N5 and M3. It can be seen that M3 is modular but N5 is

not. N5 is the smallest non-modular lattice.([2], Theorem 2.8)

1

b

a

0

c

Figure 1.1: N5
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1

a b c

0

Figure 1.2: M3

Theorem 1.1.1. (Dedekind, 1900) Let L be a lattice. The fol-

lowing are equivalent:

1. L is modular.

2. L satisfies ((x ∧ z) ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).

3. L has no sublattice isomorphic to N5.

The following theorem is analogous to the above theorem for dis-

tributivity ([2] Theorem 2.10)

Theorem 1.1.2. (Birkhoff) Let L be a lattice. The following are

equivalent:

1. L is distributive

2. L satisfies (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

3. L has no sublattice isomorphic to either N5 or M3.

A lattice is bounded if it has both a maximum element and a min-

imum element, we use the symbols 0 and 1 to denote the minimum

element and maximum element of a lattice. The notion of complemen-

tation in the sense of set theory can be generalized to an arbitrary

bounded lattice.
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Definition 1.1.8. A bounded lattice L is said to be complemented

if for each element a of L, there exists at least one element b such that

a ∨ b = 1 and a ∧ b = 0. The element b is referred to as a complement

of a.

It is quite possible for an element of a complemented lattice to

have many different complements. The lattices M3 and N5 illustrate

two ways an element can have multiple complements. Now we have the

definition of a relative complement.

Definition 1.1.9. An element x is called a complement of a in b

if a ∨ x = b and a ∧ x = 0.

Next we note a simple fact regarding the relative complement in a

lattice L. (see [23] Theorem 1.4)

Theorem 1.1.3. If x is a complement of a in b and y is a com-

plement of b in c, then x ∨ y is a complement of a in c.

Now we proceed to define the notion of independence in lattice

elements.

Definition 1.1.10. The elements x1, x2, · · ·xn of a lattice are

called independent if

(x1 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xn) ∧ xi = 0

for every i.

The following proposition characterizes the independence of ele-

ments in a modular lattice( [33], Proposition 2).

Proposition 1.1.1. For elements xi : i = 1, 2, . . . , n in a lattice L,

if (x1∨· · ·∨xi)∧xi+1 = 0 for every i, then x1, x2, · · ·xn are independent.

Next we define the notion of perspectivity, that is closely related
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to the idea of complement of an element.

Definition 1.1.11. Two elements a and b of a lattice L are said

to be perspective (in symbols a ∼ b) if there exists x in L such that

a ∨ x = b ∨ x, a ∧ x = b ∧ x = 0

such an element x is called an axis of perspectivity.

Following is the definition of a basis for a lattice (see[23]).

Definition 1.1.12. Let L be a complemented, modular lattice

with zero 0 and unit 1. By a basis of L is meant a system (ai : i =

1, 2, . . . n) of n elements of L such that

(ai; i = 1, 2, . . . n) are independent, a1 ∨ a2 ∨ . . . ∨ an = 1

A basis is homogeneous if its elements are pairwise perspective.

ai ∼ aj (i, j = 1, 2, . . . n)

The number of elements in a basis is called the order of the basis.

Definition 1.1.13. A complemented modular lattice L is said to

have order m in case it has a homogeneous basis of order m.

1.2 Semigroups

In the following we briefly recall some definitions and basic results in

semigroup theory. For details of the topic we refer to any book on

semigroup theory(cf. [3], [15], [8]).

A semigroup is a pair (S, ·), where S is a non-empty set and · is an

associative binary operation on S.

A subset T of S is a sub-semigroup of S if T is a semigroup with

respect to the restriction of the binary operation of S to T . If T is a
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subsemigroup of S, then S is called the extension of T .

If S is any semigroup, we can form the semigroup denoted by Sop

as follows: The set underlying Sop is same as the set S and the binary

operation of Sop (denoted by ◦) is defined by

x ◦ y = yx for every y ∈ S.

It is clear that ◦ is a binary operation and is called the left-right dual of

the binary operation of S is associative and hence Sop is a semigroup.

We call the semigroup Sop as the left-right dual of S.

It should be noted that if P is any statement about a semigroup, then

P op is the statement obtained by replacing every occurrence of the

binary operation in P , by its left-right dual. If P is true in S then P op

must be true in Sop. The relation between the statements P and P op

is called the left-right duality in semigroups.

If S is any semigroup and A ⊆ S, an element x ∈ S is called a left

identity of A if xa = a for every a ∈ A. An element x in S is called a

right identity of A in S if it is a a left identity of A in Sop. An element

x in S which is both a left and a right identity of A in S is called a

two-sided identity of A in S.

An element x is a left (right, two-sided) identity of S if the equation

xa = ax = a holds with A = S. Note that a subset of a semigroup

may have more than one left(right) identities. However, an identity of

S, if it exists is unique. Given any semigroup S we can always adjoin

a new left(right) identity as follows:

Let T = S ∪ {e} where e is not in S. Extend the multiplication in S

to T by

ex = x (xe = x), e2 = e for every x ∈ S.

Clearly this makes T a semigroup and e a left(right) identity of T

having S as a subsemigroup. Similarly, a new identity can be adjoined
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to S by extending the multiplication in S to T by

ex = xe = x for every x ∈ S, e2 = e.

Definition 1.2.1. A semigroup S with identity is called a monoid.

It is clear that any semigroup can be extended to a monoid by

adjoining a new identity to S. Given any semigroup S we denote by

S1 the monoid defined as follows:

S1 =

S if S is a monoid

T if S has no identity

An element x in a semigroup S is called a left,[right, two-sided]

zero of a subset A ⊆ S if xa = x[ax = x, ax = x = xa] for all a ∈ A.

When A = S, we say that x is a left,[right, two-sided] zero of S. Left

and right zeros of S need not be unique. But a two-sided zero (or just

zero for short) of S, when it exists, is unique and will be denoted by

0. As in the case of identities it is possible to adjoin a new left, right

or two-sided zero to S. Thus if 0 does not represent an element of

S, then T = S ∪ {0} becomes a semigroup with zero 0 having S as a

subsemigroup if we extend the multiplication in S to T by:

0x = x0 = 0, for every x ∈ S and 00 = 0

Again as defined above we define S0 by

S0 =

S if S has a zero

T if S has no zero

where T is the semigroup obtained by adjoining a zero 0 to S

Definition 1.2.2. An element e in a semigroup S is called an

idempotent if ee = e2 = e.
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It is clear that the left identities, right identities, identities, left

zero, right zero and zero of a semigroup S are idempotents in S. If

every element of a semigroup S is idempotent, we shall say S is itself

idempotent, or that S is a band.

In the following we give a list of examples of semigroups, for details

refer ([8], [15]).

Example 1.2.1. The semigroup of all partial transforma-

tions: Let PT X denote the set of all partial transformations(single

valued relations) on the set X. A partial mapping of X into itself (usu-

ally called a partial transformation of X) is a mapping α : A −→ X

whose domain A is a subset of X. When α : A −→ X and β : B −→ X

are partial transformations, the domain of αβ isD = {x ∈ A : xα ∈ B};
then x(αβ) = (xα)β for all x ∈ D. Since composition of single valued

relations are single valued, PT X s a semigroup.

Example 1.2.2. The semigroup TX: The set TX of all trans-

formations on X (all maps of X into X) is the full transformation

semigroup, the operation is composition of mappings; TX is clearly a

subsemigroup of PT X .

Example 1.2.3. Semilattices: A semilattice is a commutative

semigroup of idempotents (that is, a semigroup S in which every ele-

ment is an idempotent). Define a partial order by a ≤ b ⇐⇒ ab = a

for a, b ∈ S. Then S is a lower semilattice, in which the infimum(g.l.b)

a ∧ b of a and b is their product ab.

Ideals and Greens Relations

A subset I of a semigroup S is called a left ideal [right ideal] if for all

x ∈ I and a ∈ S, ax ∈ I [xa ∈ I]. I is called a two sided ideal (or simply

an ideal) if I is both a left as well as a right ideal. Or equivalently, I is

a left ideal if SI ⊆ I, a right ideal if IS ⊆ I and an ideal if it is both
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a left and a right ideal.

Given any subset A ⊆ S, the set of ideal that contain A is non empty

since S itself is a member of this set. The intersection L (A) of all left

ideals on S containing A is the smallest left ideal of S containing A and

L (A) is called the left ideal generated by A. Similarly the intersection

R (A) [J (A)] of all right [two-sided] ideals of S containing A is the right

[two-sided ] ideal generated by A. It is easy to show that

L (A) = SA ∪ A = S1A; R (A) = A ∪ AS = AS1; J (A) = S1AS1

When A = {a}, as usual, we write L (a) for S1a is called the principal

left ideal generated by a. Similarly aS1 denotes the principal right ideal

and S1aS1 denote the principal ideal generated by a.

Study of the structure of the set of ideals (both one-sided and two-

sided) via certain equivalence relations induced by them is an important

technique for analyzing the structure of a semigroup. These relations

were first introduced and studied by Green in 1951. The Greens rela-

tions on a semigroup S are defined by

L =
{

(x, y) : S × S : S1x = S1y
}

R =
{

(x, y) : S × S : xS1 = yS1
}

J =
{

(x, y) : S × S : S1xS1 = S1yS1
}

D = L ∨R

H = L ∧R

D is the smallest equivalence relation that contains both L and R. It

can be shown that the relations L and R commute. That is

L oR = RoL
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and consequently,

D = L oR.

For a ∈ S, the L -class, R-class, J -class, H -class and the D-class

containing a will be denoted respectively by La Ra, Ja, Ha and Da.

Since L ,R and J are defined in terms of principal ideals, the inclusion

order among these ideals induces a partial order on the quotient sets

S/L , S/R, and S/J by

La ≤ Lb ⇐⇒ S1a ⊆ S1b

Ra ≤ Rb ⇐⇒ aS1 ⊆ bS1

Ja ≤ Jb ⇐⇒ S1aS1 ⊆ S1bS1

The following proposition gives an alternate characterization of

these relations L and R in terms of the ”mutual divisibilty” aspect.

(see[16], Prop(2.1.1)).

Proposition 1.2.1. Let a, b be elements of a semigroup S. Then

aL b if and only if there exists x, y in S1 such that xa = b, yb = a and

aRb if and only if there exists u, v in S1 such that au = b, bv = a.

Definition 1.2.3. Let S be a semigroup. A relation R on the set

S is called left compatible (with the operation on S) if

(∀s, t, a ∈ S) (s, t) ∈ R⇒ (as, at) ∈ R,

and right compatible if

(∀s, t, a ∈ S) (s, t) ∈ R⇒ (sa, ta) ∈ R.

It is called compatible if

(∀s, t, s′, t′ ∈ S) [(s, t) ∈ R and (s′, t′) ∈ R]⇒ (ss′, tt′) ∈ R.
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A left [right] compatible equivalence is called a left [right] congruence

and a compatible equivalence relation is called a congruence.

Thus it can be seen that L is a right congruence and R is a left

congruence. If a ∈ Re, then a = ex for some x ∈ S1 and so ea =

e(ex) = e2x = ex = a. Similarly, we can see that be = b for all b ∈ Le.

Thus we have the following proposition([15] Prop(2.3.3)):

Proposition 1.2.2. Every idempotent e in a semigroup S is a left

identity for Re and a right identity for Le.

Every D-class in a semigroup S is a union of L -classes and a union

of R-classes. The intersection of an L -class and an R-class is either

empty or is an H -class. However, by the definition of D

aDb⇐⇒ Ra ∩ Lb 6= ∅ ⇐⇒ La ∩Rb 6= ∅.

Hence a D-class can be visualized as an egg-box picture, in which each

row represents an R-class, each column represents an L -class, and

each cell represents an H -class.

The main property of these Greens relations is that multiplication by

suitable elements induces bijections between R,L and H -class.

Lemma 1.2.1 (Green’s Lemma). Let a, b ∈ S and u, v ∈ S1, such

that ua = b, vb = a, that is aL b. Then the mappings ū : Ra −→ Rb

given by x −→ ux and v̄ : Rb −→ Ru given by y −→ vy are mutually

inverse L -class preserving bijections.

By Green’s Lemma, aL b implies |Ra| = |Rb| and |Ha| = |Hb|.
Dually, aRb implies |La| = |Lb| and |Ha| = |Hb|. Thus any two H -

classes contained in the same D-class have the same number of elements

and similarly for L - and R-classes.
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Regular and Inverse Semigroups

An important concept in the theory of semigroups is that of regularity.

The concept of regularity in a semigroup was adapted from an analo-

gous condition on rings, which was defined by J. von Neumann [23] in

1936.

Definition 1.2.4. An element a of a semigroup S is called regular

if there exists an element a′ ∈ S such that aa′a = a. S is called a regular

semigroup, if all the elements of S are regular.

The following result describes the regularity in a D-class ([16](Prop.

3.2.1))

Proposition 1.2.3. If a is a regular element of a semigroup S,

then every element of Da is regular.

Since idempotents e are regular (eee = e), it follows that every D

class containing e is regular. Conversely, every regular D-class must

contain at least one idempotent.

Proposition 1.2.4. In a regular D-class, each L -class and each

R-class contains an idempotent.

Therefore, the following result is quite straightforward.

Proposition 1.2.5. In a regular semigroup, every principal left

ideal and every principal right ideal is generated by an idempotent.

An idea of great importance in semigroup theory is that of an in-

verse of an element. This idea was introduced by Vagner in 1952 and

Preston in 1954. Its relationship to Green’s relation was explored by

Clifford and Miller in 1956.

Definition 1.2.5. Let a be an element of a semigroup S. Then
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a′ is called an inverse of a if

aa′a = a and a′aa′ = a′.

Notice that if an element a has an inverse, then it is necessarily regular.

Conversely, every regular element has an inverse since if there exists x

such that axa = a, then define a′ = xax and it is seen that

aa′a = a and a′aa′ = a′.

Obviously an element a in a semigroup may have more than one in-

verses. In a semigroup, the number and location of the inverses of an

element a can be determined by the locations of the idempotents in the

D-class of a. The following theorem asserts the above statement.

Theorem 1.2.1. [16] Let a be an element of a regular D-class D

in a semigroup S. If a′ is an inverse of a, then a′ ∈ D and the two

H -classes Ra∩La′ and La∩Ra′ contain, respectively, the idempotents

aa′ and a′a. Conversely, if a is an element of S and e, f are idempotents

in S with (e, f) ∈ D then a is regular and there exists an inverse a′ of

a such that aa′ = e and a′a = f .

The following egg-box picture explains this result.

La La′

Ra a aa′

Ra′ a′a a′

The following theorem can be used to locate the products of elements

in a D-class.
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Theorem 1.2.2. [12] Let S be a semigroup and a, b ∈ S then

ab ∈ Ra ∩ Lb if and only if Rb ∩ La contains an idempotent.

The eggbox picture is given below

La Lb

Ra a ab

Rb e b

1.3 Biordered Set

In many algebraic systems like semigroups, rings etc., the set of idem-

potents are important in analyzing the structure of the system. For a

semigroup S, the idea of using the set of idempotents E(S) in studying

the structure has a long history. For example, in the case of inverse and

orthodox semigroups, the set of idempotents form a sub-semigroup of

known type. In 1966, W. D. Munn constructed the inverse semigroup

T (E) now known as the Munn semigroup from an arbitrary semilat-

tice E for which E(T (E)) ∼= E. This implies that the structure of an

inverse semigroup S is determined by its semilattice of idempotents.

Note that a semigroup S is orthodox, if E(S) is a band. T. E. Hall(

1968) amd Yamada(1970) observed that when S is a regular orthodox

semigroup, the structure of S can be described in terms of E(S).

However, for any arbitrary regular semigroup S the set of idem-

potents E(S) is not a sub-semigroup and hence it is not clear, how

one can extend Munn’s theory to this class of semigroup and there are

different approaches to the use of the set of idempotents in the study
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of regular semigroups.

K.S.S Nambooripad introduced the concept of biordered sets as an

order structure to represent the set of idempotents of a regular semi-

group.

Let E be the set of idempotents of a regular semigroup. Namboori-

pad identified two quasiorders ωr and ωl and a set of partial transfor-

mations in the set of idempotents of a semigroup S satisfying certain

axioms [see the definition below] as a biordered set. A partial algebra

is a set X together with a partial binary operation. A partial binary

operation on X is a partial mapping from X×X to X. Let E be a par-

tial algebra and DE denote the domain of the partial binary operation

on E. On E, we define

ωr = {(e, f) : fe = e} ωl = {(e, f) : ef = e}

ωr(e) = {f : ef = f} ωl(e) = {f : fe = f}

R = ωr ∩ (ωr)−1

= {(e, f) : ef = f and fe = e}
L = ωl ∩ (ωl)−1

= {(e, f) : ef = e and fe = f}
ω = ωr ∩ ωl

= {(e, f) : ef = e and fe = e} .

Then a biordered set is defined as follows:

Definition 1.3.1. Let E be a partial algebra and DE denote the

domain of the partial binary operation on E. Let ωr, ωl,R,L and ω

be defined on E as above. Then E is a biordered set if the following
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axioms and their duals hold:

(B1) ωr and ωl are quasi orders on E and

DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1.

(B2) f ∈ ωr(e)⇒ f R fe ω e.

(B3) g ωl f and f, g ∈ ωr(e)⇒ ge ωl fe.

(B4) g ωr f ωr e⇒ gf = (ge)f

(B5) g ωl f and f, g ∈ ωr(e)⇒ (fg)e = (fe)(ge).

Let M(e, f) denote the quasi ordered set (ωl(e)∩ωr(f), <) where

‘ <′ is defined by g < h⇔ eg ωr eh, and gf ωl hf. Then the set

S(e, f) = {h ∈M(e, f) : g < h for all g ∈M(e, f)}

is called the sandwich set of e and f .

(B6) f, g ∈ ωr(e)⇒ S(f, g)e = S(fe, ge)

We shall often write E = 〈E,ωl, ωr〉 to mean that E is a biordered

set with quasi-orders ωl, ωr. The relation ω defined is a partial order

and

ω ∩ (ω)−1 ⊂ ωr ∩ (ωl)−1 = 1E.

The partial binary operation defined on E by ef = e or ef = f or

fe = e or fe = f is called the basic product on E.

A biordered set E is called a regular biordered set if S(e, f) 6= ∅ for

all e, f ∈ E.

Example 1.3.1. Let S be a semigroup. On E(S) = {e ∈ S : e2 = e}
define

eωrf ⇐⇒ fe = e
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eωlf ⇐⇒ ef = e

where the products ef and fe are the products in the semigroup S.

Let

DE(S) = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1

If (e, f) ∈ DE(S) then (e, f) ∈ ωr∪ωl or (f, e) ∈ ωr∪ωl. In the first

case either ef = e or fe = e. If fe = e, (ef)2 = e(fe)f = ef and so

ef ∈ E(S). Thus ef ∈ E(S) whenever (e, f) ∈ ωr∪ωl. Similarly it can

be seen that ef ∈ E(S) whenever (f, e) ∈ ωr ∪ ωl. Thus by restricting

the product in S to DE(S) we obtain a partial algebra on E(S) .

Definition 1.3.2. Let E and E ′ be biordered sets and θ : E −→ E ′

be a mapping. Then θ is called a bimorphism if it satisfies the following

axiom:

(e, f) ∈ DE =⇒ (eθ, fθ) ∈ DE′

and

(ef)θ = eθfθ.

Furthermore, θ is called a regular bimorphism if

S(e, f)θ ⊆ S ′(eθ, fθ)

and

S(e, f) 6= ∅ ⇐⇒ S ′(eθ, fθ) 6= ∅

for all e, f ∈ E where S ′(eθ, fθ) denotes the sandwich set of E ′. Call θ

a biorder isomorphism if θ is bijective and both θ and θ−1 are bimor-

phisms.

We call F a biordered subset of a biordered set E if F ⊂ E and F

is a partial sub-algebra of E in the sense that DF = DE ∩ (F ×F ) and

F satisfies the biordered set axioms with respect to the restrictions of

ωr and ωl to F .



20 Chapter 1. Preliminaries

Definition 1.3.3. Let e and f be idempotents in a semigroup

S. By an E-sequence from e to f , we mean a finite sequence e0 =

e, e1, e2, . . . , en−1, en = f of idempotents such that ei−1(L ∪ R)ei for

i = 1, 2, . . . , n; n is called the length of the E-sequence. If there exists

an E-sequence from e to f , d(e, f) is the length of the shortest E-

sequence from e to f ; and d(e, e) = 1. If there is no E-sequence from

e to f , we define d(e, f) = 0. For idempotents e and f , we define

dl(e, f) to be the length of the shortest E-sequence from e to f , which

start with the L relation and dr(e, f) to be the length of the shortest

E-sequence from e to f which start with the R relation.

The following theorem shows that if S is a regular semigroup, then

E(S) is a regular biordered set.

Theorem 1.3.1. ([25], Theorem 1.1) Let S be a semigroup such

that E(S) 6= φ.

1. The partial algebra E(S) is a biordered set.

2. For e, f ∈ E(S) define

S1(e, f) = {h ∈M(e, f) : ehf = ef}

Then S1(e, f) ⊂ S(e, f).

3. If e, f ∈ E(S) then ef is a regular element of S if and only if

S1(e, f) = S(e, f) 6= φ.

4. If S is regular, then E(S) is a regular biordered set.

Nambooripad [1979] showed that any biordered set satisfying reg-

ularity condition is the set of idempotents of some regular semigroup.

Thus we have the following result from ([25], Corollary 4.15).

Result 1. Every regular biordered set is isomorphic to the biordered
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set of some regular semigroup.

David Easdown (1985) proved the converse of this result viz., that

all biordered sets arise as the biordered set of semigroup. This shows

that the biorder axioms of Nambooripad [1979] are both necessary and

sufficient in order that the resulting structure represents the set of

idempotents of a semigroup.

1.4 Regular Rings

The concept of von Neumann regular rings was introduced by John von

Neumann in 1936 as an algebraic tool for studying certain lattices [23].

There he described the regular rings which coordinatize complemented

modular lattices. A lattice L is said to be coordinatised by a regular

ring R if it is isomorphic to the lattice of principal right ideals of R.

As von Neumann showed, almost all complemented modular lattices

could be coordinatized by a regular ring.

A ring is a set R together with two binary operations ′+′ and ′·′

with the following properties.

1. The set (R,+) is an abelian group.

2. The set (R, ·) is a semigroup.

3. The operation · is distributive over +.

A ring (R,+, .) is called a ring with identity if the semigroup (R, .)

has an identity 1. A ring (R,+, ·) is regular if for every a ∈ R there

exists an element a′ such that aa′a = a, that is, the ring is regular if

its multiplicative semigroup is regular.

Throughout the thesis, we deal with rings that are von Neumann reg-

ular.
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Example 1.4.1. 1. A field is a regular ring, for if F is a field

then for a 6= 0 in F there exists an a−1 in F with aa−1 = 1 so

that aa−1a = a.

2. Let V be a vector space over the field F and let R be the ring of

all linear transformations of V to itself. Then R is a regular ring.

Let t be a linear transformation of V to itself with range A and

kernel B. Let A′ and B′ be complements of A and B in V and

let t0 be the restriction of t to B′. Then t0 is a bijection onto A

and so has the inverse t−1
0 : A −→ B′. Let t′ be a linear extension

of t−1
0 to V . Then tt′t = t0t

−1
0 t = t.

3. For any field F the ring of all n×n matrices over F is isomorphic

to the ring of linear transformations of the vector space F n and

so is regular. More generally it is proved that a matrix ring over

a regular ring R is also regular see([23]).

Definition 1.4.1. [23] If R is a ring, and if A ⊆ R, then A

is a right ideal in case x + y ∈ A , xz ∈ A and A is a left ideal if

x + y ∈ A , zx ∈ A when x, y ∈ A , z ∈ R. Finally A is a called an

ideal in case A is both a left ideal and a right ideal.

Denote by RR the class of right ideals and by LR the class of all left

ideals.

Definition 1.4.2. A principal right ideal is one of the from 〈ar〉 =

{ar : r ∈ R}. Similarly, we can define a principal left ideal. The class

of all principal right [left] ideals will be denoted by R̄R [L̄R].

Proposition 1.4.1. ([23], Corollary 2) If X ⊆ RR is any class of

right ideals, there exists both a smallest right ideal (join or least upper

bound of X) containing every element of X and a greatest right ideal

(intersection or greatest lower bound of X) contained in every element

of X. Thus RR is a lattice with ⊂ and the operations thus defined.

The zero element of RR is 〈0〉r = 0 and the unit element is 〈1〉r = R.
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Definition 1.4.3. [24] Let A,B ∈ RR. Define A∨B = g.l.b(A,B)

and A∧B = l.u.b(A,B), A,B ∈ RR. Then (RR,∨,∧) is a lattice with

universal minimum 0 and maximum R. Two right ideals A and B are

inverses, if A ∨B = R and A ∧B = 0. (Similarly for left ideals)

Clearly, A ∨B is the set of all x+ y such that x ∈ A and y ∈ B.

In [23] John von Neumann describes the structure of principal ideals

of a regular ring.

Lemma 1.4.1. Let R be a ring, e ∈ R, then

• e is idempotent if and only if (1− e) is idempotent.

• 〈e〉r is the set of all x such that x = ex.

• 〈e〉r and 〈1− e〉r are mutual inverses.

• If 〈e〉r = 〈f〉r and if 〈1 − e〉r = 〈1 − f〉r where e and f are

idempotents, then e = f .

Theorem 1.4.1. Two right ideals a and b are inverses if and only

if there exists an idempotent e such that a = 〈e〉r and b = 〈1 − e〉r.
This property characterizes uniquely the idempotent e.

Next we give some equivalent conditions for a ring R to be regular.

Theorem 1.4.2. The following statements are equivalent

1. Every principal right ideal 〈a〉r has an inverse right ideal.

2. For every a there exists an idempotent e such that 〈a〉r = 〈e〉r.

3. For every a there exists an element x such that axa = a.

4. For every a there exists an idempotent f such that 〈a〉l = 〈f〉l.

5. Every principal left ideal 〈a〉l has an inverse left ideal.
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Definition 1.4.4. The ring R is said to be regular in case R

possesses any one of the equivalent properties of the above theorem.

Next we give the definition of an annihilator of an ideal.

Definition 1.4.5. For every right ideal A ⊆ R, we define

A l = {y : yz = 0 for every z ∈ A } ;

for every left ideal B ⊆ R we define

Br = {y : zy = 0 for every z ∈ B} ;

A l is a left ideal, and Br is a right ideal. A l is called the left

annihilator of the right ideal A and Br is called the right annihilator

of the left ideal B.

von Neumann showed that if for every principal right ideal A ⊂ R,

there exists a right ideal B in R which is inverse to A then R̄R is a

complemented lattice. Thus we can state the following theorem.

Theorem 1.4.3. Let R be a regular ring and R̄R, the set of all

principal right ideals of R then the set R̄R is a complemented modular

lattice, partially ordered by the relation ⊆, the meet being ∩ and the

join ∪; its zero is 〈0〉 and its unit is 〈1〉r.
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Biordered Sets and Rings

The concept of biordered sets was introduced by K. S. S.Nambooripad

in (cf. [25]) to describe the structure of the set of idempotents of

a regular semigroup. This biordered set has a significant role in the

study of structure theory of regular semigroups. Here we extend the

concept of biordered sets to include the class of regular rings. We

describe the set of multiplicative idempotents of a regular ring and

discuss its properties. Further we also define an addition on the regular

ring so that the set of idempotents with respect to this addition will

also become a biordered set of interest.

2.1 Multiplicative Idempotents of Regular Rings

The study of idempotents play an important role in describing the

structure of a regular semigroup. Since the multiplicative part (R, ·)
of a regular ring R = (R,+, ·) is a regular semigroup, the idempotents

of (R, ·) is a regular biordered set and we denote it by ER. Further

R being a ring (with unity), the biordered set ER possess some more

interesting properties which we discuss in this section.

Throughout this section, R denotes a regular ring with unity and ER,

25
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the set of all multiplicative idempotents in the ring R. Clearly 0 and

1 belongs to ER. In the following we prove a series of lemmas that

describes the properties of ER.

Lemma 2.1.1. Let R be a regular ring with unity, if e ∈ ER then

(1− e) ∈ ER and e(1− e) = (1− e)e = 0.

Proof. For e ∈ ER,

(1− e)2 = (1− e)(1− e) = 1− e− e+ e2 = 1− e.

That is, (1− e) is an idempotent and

e(1− e) = e− e2 = e− e = 0

and

(1− e)e = e− e2 = e− e = 0.

We have already seen that the set of idempotents of a regular semi-

group is a regular biordered set(see 1.3) and since for a regular ring R,

the semigroup (R, ·) is regular ER is a regular biordered set. Also it

is easy to see that 0 ω e and e ω 1 for every e ∈ ER. Thus 0 is the

least element and 1 is the greatest element in the partially ordered set

(ER, ω).

Lemma 2.1.2. Let e and f be idempotents in the regular ring R,

then ef = 0 if and only if e ωl (1− f)[f ωr (1− e)].

Proof. Suppose ef = 0. Then

e(1− f) = e− ef = e.

Thus e ωl (1− f). Conversely, if e ωl (1− f) then e(1− f) = e that is

e− ef = e, implies ef = 0.
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Also, if ef = 0, then (1 − e)f = f − ef = f implies that f ωr (1 − e)
and conversely, f ωr (1− e) implies ef = 0.

Lemma 2.1.3. Let R be a regular ring and e, f ∈ ER, then the

only idempotent in M(e, f) is 0 if and only if e ωl (1− f).

Proof. Suppose e ωl (1 − f). Then by above lemma ef = 0. Let

g ∈M(e, f). Then by definition,

ge = g and fg = g.

Hence

g = g2 = g · g = (ge)(fg) = g(ef)g = g0 = 0

Therefore, M(e, f) = {0}. Conversely, suppose M(e, f) = {0}. Since

R is regular, the element ef ∈ R has an inverse a ∈ R so that

(ef)a(ef) = ef

a(ef)a = a

Let g = fae. Then g2 = faefae = fae = g and ge = g = fg, so

g ∈M(e, f) hence g = 0, by hypothesis. Hence

ef = (ef)a(ef) = e(fae)f = egf = 0

Thus the proof.

Proposition 2.1.1. Let e and f be idempotents in a regular ring

R. Then the following holds:

1. e ωl f if and only if (1− f) ωr (1− e)

2. e ωr f if and only if (1− f) ωl (1− e)

Proof. Let e ωl f . Then,

(1− e)(1− f) = 1− e− f + ef = 1− e− f + e = 1− f.



28 Chapter 2. Biordered Sets and Rings

Thus (1− e)(1− f) = (1− f) implies, (1− f) ωr (1− e).
Conversely, suppose (1− e)(1− f) = (1− f) then

(1− e)(1− f) = 1− e− f + ef = 1− f

That is,

e− ef = 0 so that ef = e,

hence e ωl f .

Proof of (2) follows similarly.

Lemma 2.1.4. Let e,f ∈ ER with ef = fe = 0. Then e+ f is an

idempotent and e, f ∈ω (e+ f).

Proof. Given e, f ∈ ER with ef = fe = 0, then

(e+ f)2 = e2 + ef + fe+ f 2 = e+ f,

and

e(e+ f) = e2 + ef = e+ ef = e, and (e+ f)e = e2 + fe = e+ fe = e.

Thus e ωl (e+ f) and e ωr (e+ f). Therfore, e ω (e+ f).

Also,

f(e+ f) = fe+ f 2 = fe+ f = f and (e+ f)f = ef + f 2 = ef + f = f.

Thus f ωr (e+ f). Therefore, f ωl (e+ f) and f ω (e+ f).

Let e, f be in ER then the element e+ f in ER can be represented

in terms of the sandwich set. Recall that if e and f are idempotents of

a regular semigroup S then S(e, f) = S1(e, f) where

S1(e, f) = {h ∈ ER : fhe = h and ehf = ef} .

Lemma 2.1.5. Let e and f be in ER with ef = fe = 0. Then
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1 − (e + f) is the unique element belonging to both the sets S1(1 −
e, 1− f) ∩ S1(1− f, 1− e).

Proof. Since ef = fe = 0 the element e + f is in ER and so k =

1− (e+ f) is also in ER. Also

(1− f)(1− e) = 1− e− f + fe = 1− e− f = 1− (e+ f)

and

(1− e)(1− f) = 1− f − e+ ef = 1− f − e = 1− (e+ f)

so that

k = 1− (e+ f) = (1− e)(1− f) = (1− f)(1− e)

Hence

(1− f)k(1− e) = (1− f)((1− f)(1− e))(1− e) = (1− f)(1− e) = k

and

(1− e)k(1− f) = (1− e)((1− e)(1− f))(1− f) = (1− e)(1− f)

so that k ∈ S1(1 − e, 1 − f). Similarly, it is easy to show that k ∈
S1(1− f, 1− e) also.

Now we show that k is the unique element belonging to both these

sandwich sets, let g be an idempotent in the ring R belonging to both

these sets. Then

(1− e)g(1− f) = (1− e)(1− f)

since g ∈ S1(1− e, 1− f) and

(1− e)g(1− f) = g
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since g ∈ S1(1− f, 1− e). Hence

g = (1− e)g(1− f) = (1− e)(1− f) = k

This proves the result.

The following properties of the idempotents ER of the ring R are

easy to observe:

1. 1− (1− e) = e

2. f ωl e if and only if (1− e) ωr (1− f)

3. f ωl (1− e) if and only if M(f, e) = {0}

Further it is obvious that the map τ : ER −→ ER defined by

τ(e) = 1− e

is a complementation and so the biordered set ER of a regular ring is

a bounded and complemented biordered set.

On the other hand, given a biordered set E it can be enlarged to

a set Ē by including two elements (symbols), 0 and 1 such that 0 ω e

and e ω 1 and for every e ∈ E there is an element ec ∈ Ē with 0c = 1,

(ec)c = e and eec = ece = 0. Then Ē satisfies the following conditions:

• e ωl f if and only if f c ωr ec for e, f ∈ Ē

• f ωl ec if and only if M(f, e) = {0}

Then call Ē together with these properties as a bounded and comple-

mented biordered set.

Example 2.1.1. Biordered Set of the Matrix Ring M2(Z2)

Consider the matrix ring R1 = M2(Z2). This ring has 16 elements of

which there are 8 idempotents. The idempotents of R1 denoted as ER1
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are listed below.

0 =

[
0 0

0 0

]
, e1 =

[
1 0

0 0

]
, e2 =

[
0 0

0 1

]
, e3 =

[
1 1

0 0

]
,

e4 =

[
0 0

1 1

]
, e5 =

[
1 0

1 0

]
, e6 =

[
0 1

0 1

]
, 1 =

[
1 0

0 1

]
,

It can be easily seen that for each e ∈ ER1 , 1 − e ∈ ER1 . The ωr and

ωl class of these idempotents are:

ωl(0) = 0 and ωl(1) = ER1 ω
r(0) = 0 and ωr(1) = ER1

ωl(e1) = {0, e1, e5} ωr(e1) = {0, e1, e3}
ωl(e2) = {0, e2, e6} ωr(e2) = {0, e2, e4}
ωl(e3) = {0, e3, e4} ωr(e3) = {0, e3, e1}
ωl(e4) = {0, e4, e3} ωr(e4) = {0, e4, e2}
ωl(e5) = {0, e5, e1} ωr(e5) = {0, e5, e6}
ωl(e6) = {0, e6, e2} ωr(e6) = {0, e6, e5}

Clearly ωl(e1) = ωl(e5), ωl(e2) = ωl(e6), ωl(e3) = ωl(e4), similarly,

ωr(e1) = ωr(e3), ωr(e2) = ωr(e4), ωr(e5) = ωr(e6). Thus

e1Le5, e2Le6, e4Le3

and

e1Re3, e2Re4, e5Re6.

It can viewed that in this ring R1,

ωl = (ωl)−1 = L and ωr = (ωr)−1 = R.

Also it is seen that the cardinality of the ωl(ωr) class is 3. The egg-box
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picture of the idempotents is the following:

1
e6 e5

e2 e4

e1 e3

0

The M -set M(e, f) = ωl(e) ∩ ωr(f) for the ring R1 is as follows:

M(e1, e2) = M(e2, e1) = M(e1, e4) = M(e6, e1) = M(e2, e3) = M(e5, e2) =

M(e4, e5) = M(e4, e6) = M(e5, e4) = M(e3, e5) = M(e3, e6) = M(e6, e3) =

{0}
M(e1, e3) = M(e5, e3) = M(e5, e1) = {0, e1}
M(e4, e1) = M(e3, e1) = M(e4, e3) = {0, e3}
M(e2, e4) = M(e6, e4) = M(e6, e2) = {0, e2}
M(e5, e6) = M(e1, e5) = M(e1, e6) = {0, e5}
M(e3, e2) = M(e4, e3) = M(e3, e4) = {0, e4}
M(e6, e5) = M(e2, e5) = M(e2, e6) = {0, e6}
The sandwich set of two idempotents e and f is the maximum element

in the set M(e, f) = (ωl(e) ∩ ωr(f), <) where g, h ∈ M(e, f), g <

h⇐⇒ eg ωr eh and gf ωl hf .

Hence the sandwich set of the idempotents in M2(Z2) are:

S(e1, e2) = S(e2, e1) = S(e1, e4) = S(e6, e1) = S(e2, e3) = S(e5, e2) =

S(e4, e5) = S(e4, e6) = S(e5, e4) = S(e3, e5) = S(e3, e6) = S(e6, e3) =

{0}
S(e1, e3) = S(e5, e1) = S(e5, e3) = {e1}
S(e2, e4) = S(e6, e2) = S(e6, e4) = {e2}
S(e3, e1) = S(e4, e1) = S(e4, e3) = {e3}
S(e1, e5) = S(e1, e6) = S(e5, e6) = {e5}
S(e3, e2) = S(e4, e2) = S(e3, e4) = {e4}
S(e2, e5) = S(e2, e6) = S(e6, e5) = {e6}

From the above computations, it can be seen that the set M(ei, ej)
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can contain at most 2 elements. That is |M(ei, ej)| ≤ 2.

The elements in the sandwich sets can be obtained from the egg-box

picture of the semigroup. It is observed that the elements in the sand-

wich set S(ei, ej) is that idempotent element in Lei ∩ Rej and 0 in the

case the class Lei ∩Rej has no idempotents.

Example 2.1.2. Biordered set of the ring M2(Z3)

Consider the matrix ring R1 = M2(Z3). This ring has 81 elements out

of which there are 14 idempotents. The idempotents of this ring ER2

are listed below.

0 =

[
0 0

0 0

]
, e2 =

[
1 0

0 0

]
, e5 =

[
1 1

0 0

]
, e8 =

[
1 2

0 0

]
,

e11 =

[
1 0

1 0

]
, e20 =

[
1 0

2 0

]
, e28 =

[
0 0

0 1

]
, e29 =

[
1 0

0 1

]
,

e31 =

[
0 1

0 1

]
, e34 =

[
0 2

0 1

]
, e37 =

[
0 0

1 1

]
, e46 =

[
0 0

2 1

]
,

e69 =

[
2 1

1 2

]
, e81 =

[
2 2

2 2

]
.

The ωr and ωl class of these idempotents are:

ωl(0) = 0 and ωl(1) = ER2 ω
r(0) = 0 and ωr(1) = ER2

ωl(e2) = {0, e2, e11, e20} ωr(e2) = {0, e2, e5, e8}
ωl(e5) = {0, e5, e37, e81} ωr(e5) = {0, e2, e5, e8}
ωl(e8) = {0, e8, e46, e69} ωr(e8) = {0, e2, e5, e8}
ωl(e11) = {0, e2, e11, e20} ωr(e11) = {0, e11, e31, e81}
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ωl(e20) = {0, e2, e11, e20} ωr(e20) = {0, e20, e34, e69}
ωl(e28) = {0, e28, e31, e34} ωr(e28) = {0, e28, e37, e46}
ωl(e31) = {0, e28, e31, e34} ωr(e31) = {0, e11, e31, e81}
ωl(e34) = {0, e28, e31, e34} ωr(e34) = {0, e20, e34, e69}
ωl(e37) = {0, e5, e37, e81} ωr(e37) = {0, e28, e37, e46}
ωl(e46) = {0, e8, e46, e69} ωr(e46) = {0, e28, e37, e46}
ωl(e69) = {0, e8, e46, e69} ωr(e69) = {0, e20, e34, e69}
ωl(e81) = {0, e5, e37, e81} ωr(e81) = {0, e11, e31, e46}

It is easily observed that

ωl(e2) = ωl(e11) = ωl(e20), ωr(e2) = ωr(e5) = ωr(e8)

ωl(e5) = ωl(e37) = ωl(e81), ωr(e11) = ωr(e31) = ωr(e81)

ωl(e8) = ωl(e46) = ωl(e69), ωr(e20) = ωr(e34) = ωr(e69)

ωl(e28) = ωl(e31) = ωl(e34), ωr(e28) = ωr(e37) = ωr(e46)

Also it can be seen that every ωl(ωr) class has equal number of elements

each and the cardinality of the ωl(ωr) class is 4. The egg-box picture

of these idempotents can be drawn as follows:

1
e11 e81 e31

e8 e2 e5

e69 e20 e34

e46 e37 e28

0

From the above computations, here also it can be seen that the set

M(ei, ej) contains at most 2 elements. That is |M(ei, ej)| ≤ 2.

The elements in the sandwich sets is obtained from the egg-box picture

as given below.
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S(ei, ej) =

Lei ∩Rej , whenever Lei ∩Rej ∈ ER

0 otherwise

Example 2.1.3. Biordered set of the ring M2(Z4)

Consider the matrix ring R3 = M2(Z4). This matrix ring has 256

elements, of which there are 26 idempotents. The idempotents are as

follows:

0 =

[
0 0

0 0

]
, e2 =

[
1 0

0 0

]
, e6 =

[
1 1

0 0

]
, e10 =

[
1 2

0 0

]
,

e14 =

[
1 3

0 0

]
, e18 =

[
1 0

1 0

]
, e34 =

[
1 0

2 0

]
, e42 =

[
1 2

2 0

]
,

e50 =

[
1 0

3 0

]
, e65 =

[
0 0

0 1

]
, e66 =

[
1 0

0 1

]
, e69 =

[
0 1

0 1

]
,

e73 =

[
0 2

0 1

]
, e77 =

[
0 3

0 1

]
, e81 =

[
0 0

1 1

]
, e97 =

[
0 0

2 1

]
,

e105 =

[
0 2

2 1

]
, e113 =

[
0 0

3 1

]
, e156 =

[
3 2

1 2

]
, e168 =

[
3 1

2 2

]
,

e176 =

[
3 3

2 2

]
, e188 =

[
3 2

3 2

]
, e219 =

[
2 2

1 3

]
, e231 =

[
2 1

2 3

]
,

e239 =

[
2 3

2 3

]
, e251 =

[
2 2

3 3

]

It can be clearly seen that for each e ∈ ER3 , (1− e) ∈ ER3 . The ωr

and ωl class of these idempotents are:

ωl(0) = 0 , and ωl(1) = ER3 , ω
r(0) = 0 , and ωr(1) = ER3
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ωl(e2) = {0, e2, e18, e34, e50} ωr(e2) = {0, e2, e6, e10, e14}
ωl(e6) = {0, e6, e81, e176, e251} ωr(e6) = {0, e2, e6, e10, e14}
ωl(e10) = {0, e10, e42, e156, e188} ωr(e10) = {0, e2, e6, e10, e14}
ωl(e14) = {0, e14, e113, e168, e219} ωr(e14) = {0, e2, e6, e10, e14}
ωl(e18) = {0, e2, e18, e34, e50} ωr(e18) = {0, e18, e69, e188, e239}
ωl(e34) = {0, e2, e18, e34, e50} ωr(e34) = {0, e34, e42, e168, e176}
ωl(e42) = {0, e10, e42, e156, e188} ωr(e42) = {0, e34, e42, e168, e176}
ωl(e50) = {0, e2, e18, e34, e50} ωr(e50) = {0, e50, e77, e156, e231}
ωl(e65) = {0, e65, e69, e73, e77} ωr(e65) = {0, e65, e81, e97, e113}
ωl(e69) = {0, e65, e69, e73, e77} ωr(e69) = {0, e18, e69, e188, e239}
ωl(e73) = {0, e65, e69, e73, e77} ωr(e73) = {0, e73, e105, e219, e251}
ωl(e77) = {0, e65, e69, e73, e77} ωr(e77) = {0, e50, e77, e156, e231}
ωl(e81) = {0, e6, e81, e176, e251} ωr(e81) = {0, e65, e81, e97, e113}
ωl(e97) = {0, e97, e105, e231, e239} ωr(e97) = {0, e65, e81, e97, e113}
ωl(e105) = {0, e97, e105, e231, e239} ωr(e105) = {0, e73, e105, e219, e251}
ωl(e113) = {0, e14, e113, e168, e219} ωr(e113) = {0, e65, e81, e97, e113}
ωl(e156) = {0, e10, e42, e156, e188} ωr(e156) = {0, e50, e77, e156, e231}
ωl(e168) = {0, e14, e113, e168, e219} ωr(e168) = {0, e34, e42, e168, e176}
ωl(e176) = {0, e6, e81, e176, e251} ωr(e176) = {0, e34, e42, e168, e176}
ωl(e188) = {0, e10, e42, e156, e188} ωr(e188) = {0, e18, e69, e188, e239}
ωl(e219) = {0, e14, e113, e168, e219} ωr(e219) = {0, e73, e105, e219, e251}
ωl(e231) = {0, e97, e105, e231, e239} ωr(e231) = {0, e50, e77, e156, e231}
ωl(e239) = {0, e97, e105, e231, e239} ωr(e239) = {0, e18, e69, e188, e239}
ωl(e251) = {0, e6, e81, e176, e251} ωr(e251) = {0, e73, e105, e219, e251}
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From the above ωl-classes, it can be easily observed that

ωl(e2) = ωl(e18) = ωl(e34) = ωl(e50)

ωr(e2) = ωr(e6) = ωr(e10) = ωr(e14)

ωl(e6) = ωl(e81) = ωl(e176) = ωl(e251)

ωr(e18) = ωr(e69) = ωr(e188) = ωr(e239)

ωl(e10) = ωl(e42) = ωl(e156) = ωl(e188)

ωr(e34) = ωr(e42) = ωr(e168) = ωr(e176)

ωl(e14) = ωl(e113) = ωl(e168) = ωl(e219)

ωr(e50) = ωr(e77) = ωr(e156) = ωr(e231)

ωl(e65) = ωl(e69) = ωl(e73) = ωl(e77)

ωr(e65) = ωr(e81) = ωr(e97) = ωr(e113)

ωl(e97) = ωl(e105) = ωl(e231) = ωl(e239)

ωr(e73) = ωr(e105) = ωr(e219) = ωr(e251)

Also it can be seen that every ωl(ωr) class has equal number of elements

each and the cardinality of the ωl(ωr) class is 5. The egg-box picture

of these idempotents can be drawn as follows:

1
e97 e113 e81 e65

e168 e34 e176 e42

e239 e18 e188 e69

e14 e2 e6 e10

e231 e50 e156 e77

e105 e219 e251 e73

0

From the above computations, here also it can be seen that the set

M(ei, ej) contains at most 2 elements. That is |M(ei, ej)| ≤ 2.

The elements in the sandwich sets is obtained from the egg-box picture
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as given below.

S(ei, ej) =

Lei ∩Rej , whenever Lei ∩Rej ∈ ER

0 otherwise

Let R be the ring of all 2 × 2 matrices over a finite field then we

have the following theorem:

Theorem 2.1.1. Let R = M2(Zp) and ER denote the set of all

idempotents in R. Then for Ei, Ej ∈ ER,

1. All the idempotents in R other than 0 and 1 are in the same

D-class.

2. |M(Ei, Ej)| ≤ 2, that is M(Ei, Ej) has at most two elements.

3. Each ωl(ωr)- ideal has the same number of elements

4. The elements in the sandwich set can be characterized as:

S(Ei, Ej) =

LEi
∩REj

, whenever LEi
∩REj

∈ ER

0 otherwise

Proof. 1. In M2(Zp), all the idempotents other than 0 and 1

have the same rank. Therefore, from Lemma(2.1)([17]), all the

idempotents with same rank are D- related. Therefore, they lie

in the same same D-class.

2. Now we prove that |M(Ei, Ej)| cannot exceed 2. For that suppose

there exists two idempotents Eh and Ek in M(Ei, Ej) other than

0. We prove that Eh = Ek.

In the ring R = M2(Zp), Ei ω
l Ej implies ωl(Ei) = ωl(Ej). Thus

we have ωl(Ei) = ωl(Eh), ωr(Ej) = ωr(Eh) and ωl(Ei) = ωl(Ek),

ωr(Ej) = ωr(Ek). Therefore, ωl(Ei) = ωl(Eh) = ωl(Ek) and
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ωr(Ej) = ωr(Eh) = ωr(Ek). Hence

Eh = EjEhEi = EkEjEhEiEk = EkEhEiEk = EkEhEk = Ek

3. We know that in this ring R, ωl = (ωl)−1 = L. We have by

Greens lemma, that any two L-classes contained in the same D-

class have the same number of elements. Here any two ωl(ωr)-

class generated by idempotents other than 0 and 1 are in the same

D-class. Therefore, any two ωl(ωr)-class in this D-class has the

same number of elements.

4. We show that

S(Ei, Ej) =

LEi
∩REj

, whenever LEi
∩REj

∈ ER

0 otherwise

Since Ei and Ej have the same rank, EiDEj. Therefore, there

exists Mij ∈ ER such that EiLMijREj. Therefore, by definition

of L and R classes, there exists matrices X,X ′, Y, Y ′ such that

XEi = Mij and EjX
′ = Mij

YMij = Ei and MijY
′ = Ej

Suppose Mij ∈ ER. Then

EiMij = (YMij)Mij = YM2
ij = YMij = Ei

MijEi = (XEi)Ei = XE2
i = XEi = Mij

Similarly, MijEj = Ej and EjMij = Mij. Also,

Mij(EiEj)Mij = (MijEi)EjMij = MijEjMij = EjMij = Mij

EiEjMijEiEj = Ei(EjMij)EiEj = EiMijEiEj = EiMijEj = EiEj
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Thus Mij ∈ V (Ei, Ej). Moreover,

MijEi = (XEi)Ei = XE2
i = XEi = Mij

and

EjMij = Ej(EjX
′) = E2

jX
′ = EjX

′ = Mij

Therefore, Mij ∈ S(Ei, Ej).

Suppose Mij /∈ ER. But MijEi = Mij = EjMij. Since the ring

R is regular, S(Ei, Ej) 6= ∅. But 0 ∈ M(Ei, Ej). Therefore,

S(Ei, Ej) = {0}.
Conversely, if H ∈ S(Ei, Ej) then H ωl Ei and H ωr Ej. But

in this ring M2(Zp), H ωl Ei implies HLEi and H ωr Ej implies

HREj. Hence H ∈ LEi
∩REj

and if H = 0, then S(Ei, Ej) = {0}.

2.2 Additive Idempotents in Regular Rings

In general the only idempotents in a regular ring which are idempotents

with respect to addition are 0 and 1. Hence the biordered set theory

for the set of additive idempotents in a regular ring collapses to trivial.

However, if we define an addition ⊕ on the ring (R,+, ·) by

a⊕ b = a+ b− ab for every a, b ∈ R

it is easily seen that ⊕ is an associative binary operation on R and the

additive reduct (R,⊕) is a semigroup.

Let e be an idempotent in R. Now consider e as an element in (R,⊕).

Then

e⊕ e = e+ e− e.e = e.

That is, e is also an idempotent in (R,⊕). Thus every multiplicative

idempotent in the ring (R,+, ·) is an additive idempotent with respect

to ⊕ in R. We denote the idempotent set in (R,⊕) by E⊕R . As sets
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the multiplicative biordered set ER coincides with E⊕R , further it is seen

that the biorder structure on E⊕R is determined by the biorder structure

on ER.

Lemma 2.2.1. Let R be a ring and e, f be idempotents in R.

Then

1. e ωl f in E⊕R ⇐⇒ f ωr e in ER,

2. e ωr f in E⊕R ⇐⇒ f ωl e in ER.

Proof. Let e ωl f in E⊕R then e⊕ f = e. Therefore by definition,

e⊕ f = e+ f − ef = e

That is, ef = f therefore, f ωr e. Conversely, let f ωr e in ER,

then ef = f . Therefore,

e⊕ f = e+ f − ef = e+ f − f = e.

Thus e⊕ f = e. That is e ωl f in E⊕R . Similarly, assume that e ωr f in

E⊕R then f ⊕ e = e. Therefore by definition,

f ⊕ e = f + e− fe = e

That is fe = f , therefore, f ωl e. Conversely, let f ωl e in ER, then

fe = f . Therefore,

f ⊕ e = f + e− fe = f + e− f = e.

Thus e ωr f in E⊕R .

Let

DE⊕R
=
(
ωr ∪ ωl

)
∪
(
ωr ∪ ωl

)−1
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For (e, f) ∈ DE⊕R
either (e, f) ∈ ωr ∪ ωl or (f, e) ∈ ωr ∪ ωl. In

the first case, either f ⊕ e = e or e ⊕ f = e. If f ⊕ e = e then

(e⊕f)2 = (e⊕f)⊕ (e⊕f) = e⊕ (f ⊕ e)⊕f = e⊕ e⊕f = e⊕f and so

e⊕ f ∈ E⊕R . Thus e⊕ f ∈ E⊕R whenever (e, f) ∈ ωr ∪ ωl. Similarly, it

can be seen that e⊕ f ∈ E⊕R whenever (f, e) ∈ ωr ∪ ωl also. Thus, by

restricting the operations in the ring R to (DER
,⊕) we obtain a partial

algebra on E⊕R . Let ER denote the biordered set with the relation ωr

replaced by (ωl)−1 and ωl by (ωr)−1. Thus we can say that as biordered

sets, ER is same as E⊕R .

For e, f ∈ E⊕R the set M̃(e, f) of e and f in that order is defined by

M̃(e, f) = {g : eωrg and fωlg}.

For g, h ∈ M̃(e, f) we define g ≺ h if and only if h < g in M(f, e).

The sandwich set of e and f (in that order) in E⊕R is defined as follows

S̃(e, f) =
{
g ∈ M̃(e, f) such that g ≺ h for all h ∈ M̃(e, f)

}
.

If E and F are biordered sets, a bimorphism φ : E → F is called a

biorder isomorphism if φ is bijective. That is,

eωrf if and only if eφωrfφ and (ef)φ = (eφ)(fφ)

eωlf if and only if eφωlfφ and (fe)φ = fφeφ.

If E and F are biordered sets a bijective map φ : E → F which

preserves product and satisfies

fωre if and only if eφωlfφ and fωle if and only if eφωrfφ

then φ is called a biorder anti isomorphism. Two biordered sets E

and F are said to be anti isomorphic if there exists an anti biorder



2.2. Additive Idempotents in Regular Rings 43

isomorphism between them.

Theorem 2.2.1. The biordered sets ER and E⊕R derived from the

ring (R,+, ·) are anti isomorphic.

Proof. Consider the map φ from ER to E⊕R defined by

(e · f)φ = eφ⊕ fφ, for all e, f ∈ ER

clearly φ is a bijective homomorphism. For f ωr e in ER, we have

(e)φ⊕ (f)φ = (e)φ+ (f)φ− (ef)φ

= (e)φ+ (f)φ− (f)φ

= (e)φ

That is, eφ ωl fφ. Similarly it is seen that if f ωl e in ER then

(e)φ ωr (f)φ in E⊕R . Thus ER and E⊕R are anti isomorphic.

Example 2.2.1. Consider the ring (R,+, ·), where x · y = x ∧ y
and x+ y = (x ∧ y′) ∨ (x′ ∧ y), clearly x · x = x and x+ x = 0, that is

(R,+, ·) is a multiplicative band in which x = −x. Thus (R,+, ·) is a

Boolean ring. Define ⊕ in R by

x⊕ y = x+ y + x · y, for all x, y ∈ R

then ER = E⊕R = R and since R is commutative we have ωr = ωl = ω.

Thus the sandwich set of e and f in ER is S(e, f) = {ef} and if eωlf

S(e, f) = {e} and in E⊕R , S̃(e, f) = e⊕ f = {f}.

In the following example we consider the semigroup ring Z2 [R2],

(see cf.[6] page 47).

Example 2.2.2. Let R2 = {x, y} be the two element right zero

band. Consider the ring Z2 [R2] = {0, x, y, x+ y} with operations ‘+′

and ‘·′ defined by
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+ 0 x y x+ y

0 0 x y x+ y

x x 0 x+ y y

y y x+ y 0 x

x+ y x+ y y x 0

· 0 x y x+ y

0 0 0 0 0

x 0 x y x+ y

y 0 x y x+ y

x+ y 0 x+ y x+ y 0

clearly ER = {0, x, y} is the set of idempotents with respect to ‘·′ and

with respect to the addition ⊕ defined by

x⊕ y = x+ y + x · y for all x, y ∈ Z2[R2]

the idempotent set E⊕R coincides with ER. The biorder relations in the

semigroup ring Z2 [R2] are xRy, 0 ω x, 0 ω y, ωl(x) = {0, x} , ωr(y) =

{0, x, y} and

M(x, y) = (ωl(x) ∩ ωr(y), <) = {0, x} ,

S(x, y) being the maximum of elements in M(x, y) with respect to <,

we have

S(x, y) = {x} .

The quasi ordered set M̃(x, y) = {y} and additive sandwich set S̃(x, y) =

{y}.

Example 2.2.3. Consider the ring Z2 [R1
2] where R1

2 is 1 included

toR2 in the previous example. Thus Z2 [R1
2] = {0, 1, x, y, x+ y, 1 + x, 1 + y}

with operations + and . defined by
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+ 0 1 x y 1 + x 1 + y x + y

0 0 1 x y 1 + x 1 + y x + y

1 1 0 1 + x 1 + y x y 1 + x + y

x x 1 + x 0 x + y 1 1 + x + y y

y y 1 + y x + y 0 1 + x + y 1 x

1 + x 1 + x x 1 1 + x + y 0 x + y 1 + y

1 + y 1 + y y 1 + x + y 1 x + y 0 1 + x

x + y x + y 1 + x + y y x 1 + y 1 + x 0

. 0 1 x y 1 + x 1 + y x + y

0 0 0 0 0 0 0 0

1 0 1 x y 1 + x 1 + y x + y

x 0 x x y 0 x + y x + y

y 0 y x y x + y 0 x + y

1 + x 0 1 + x 0 0 1 + x 1 + x 0

1 + y 0 1 + y 0 0 1 + y 1 + y 0

x + y 0 x + y 0 0 x + y x + y 0

The biordered set is {1, 0, x, y, 1 + x, 1 + y} with biorder relation

x ω 1, y ω 1, xRy, (1 + x) ω 1, (1 + y) ω 1, (1 + x)L(1 + y), 0 ω

x, 0 ω y, 0 ω (1 + x), 0 ω (1 + y). Thus ωl(x) = {0, x} , ωr(y) =

{0, x, y}. Hence

M(x, y) = {x, 0} and S(x, y) = {x} .

Since, x ∈ ωr(y), y ∈ ωl(y) and x ∈ ωr(1), y ∈ ωl(1), we have

M̃(x, y) = {1, y} and since y ω 1 S̃(x, y) = {y}

Example 2.2.4. Let B = {e, f, ef} be the three element band

whose biordered relations are defined by e ωr f, eRef, ef ω f . Now

consider the semigroup ring Z2 [B] = {0, e, f, ef, e+ f, e+ ef, f + ef} .
Then it has the following biordered set {0, e, f, ef, f + ef, e⊕ f} with

relations defined by 0 ω e, 0 ω f , 0 ω ef , 0 ω (f + ef), e ω (e ⊕ f),

eRef , e ωr f , ef ω f , (f + ef) ω f , (e⊕ f)Rf . Consider idempotents

e ⊕ f and f . Then ωl(e ⊕ f) = {0, e⊕ f, e, f + ef} and ωr(f) =
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{0, f, e, ef, f + ef, e⊕ f}. Hence,

M(e⊕ f, f) = {0, e, f + ef, e⊕ f} .

We have 0 ω e, 0 ω f + ef , 0 ω e⊕ f , f + ef ω e⊕ f , e ω e⊕ f . Thus

S(e⊕ f, f) = {e⊕ f}

Now, since e ⊕ f ∈ ωr(f) and f ∈ ωl(f), the additive sandwich set is

given by

M̃(e⊕ f, f) = {f} and S̃(e⊕ f, f) = {f} .



Chapter 3

Lattice of Biorder Ideals on

Regular Rings

In this chapter, we consider the principal ideals obtained from the

biorders ωr, ωl and their intersection ω of the biordered set ER of a

regular ring (R,+, ·), which we call the biorder ideals. We discuss sev-

eral properties of the biorder ideals and it is shown that the collection

of all biorder ideals Ωl obtained from the left quasiorder ωl and the

collection of biorder ideals Ωr obtained from the right quasiorder ωr

are complemented modular lattices. Many of the result included in

this chapter has already appeared in the paper entitled Biorder Ideals

and Regular Rings, Algebra and its Applications, Springer Proceedings

in Mathematics and Statistics, ICSAA, Aligarh, 2014 Vol 174, ISSN

2194-1017, 265-274.

3.1 Biorder Ideals of a Regular Ring

Let R be a regular ring with unity and ER is the bounded and com-

plemented biordered set discussed in chapter(2.1).

47
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Then for e in ER define

ωl(e) = {f : fe = f} ; ωr(e) = {f : ef = f}

where ωr and ωl are quasiorders defined as in [25]. Then ωl(e)[ ωr(e)]) is

called the left[right] principal ideal in ER and are called the left[right]biorder

ideals. The set ω(e) = {f : fe = ef = f} is the two sided biorder ideal

generated by e.

Denote by Ωr the class of all principal ωr-ideals and by Ωl the class

of all principal ωl-ideals. For e, f ∈ ER with e ωl f then ωl(e) ⊆ ωl(f).

Hence we can define a relation ≤ on the set of all principal left biorder

ideals in ER by

ωl(e) ≤ ωl(f) if and only if e ωl f.

Also by the definition of ≤, it is obvious that ≤ is a partial order on

ER. Similarly we can define a partial order ≤ on the set Ωr of the

principal right biorder ideals in ER by

ωr(e) ≤ ωr(f) if and only if e ωr f.

The following proposition shows the relation between the biorder ideals

of idempotents and their inverses in a regular ring.

Proposition 3.1.1. Let e and f be idempotents in the ring R.

Then the following hold.

1. ωl(e) = ωl(f) if and only if ωr(1− e) = ωr(1− f)

2. ωr(e) = ωr(f) if and only if ωl(1− e) = ωl(1− f)

Proof. Suppose ωl(e) = ωl(f). Then from the definitions of e ωl f
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and f ωl e we have,

(1− e)(1− f) = 1− e− f + ef = 1− e− f + e = 1− f

and

(1− f)(1− e) = 1− f − e+ fe = 1− f − e+ f = 1− e.

Hence (1− f) ωr (1− e) and (1− e) ωr (1− f). Thus,

ωr(1− e) = ωr(1− f).

Similarly (2) can also be proved.

Proposition 3.1.2. Let e and f be idempotents in the ring R, if

ωr(e) = ωr(f), ωr(1− e) = ωr(1− f), then e = f .

Proof. Suppose ωr(e) = ωr(f). By above proposition ωr(1 − e) =

ωr(1 − f) implies ωl(e) = ωl(f). Thus we have ω(e) = ω(f) implies

e = f .

In the next lemma, it is shown that the biorder ideals of idempotents

in a regular ring R is closed under the operation join and meet.

Lemma 3.1.1. Let R be a regular ring, let e, f ∈ ER and choose

h ∈ S1(e, 1− f). Then

ωl(e) ∨ ωl(f) = ωl(h(1− f) + f) and ωl(e) ∧ ωl(f) = ωl(e(1− h)).

Proof. By hypothesis, we have h ∈ S1(e, 1 − f) so that h is in ER

with

he = h = (1− f)h and eh(1− f) = e(1− f).

Let k = h(1− f), then

k2 = h((1− f)h)(1− f) = h · h(1− f) = h(1− f) = k.
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Therefore, k is an idempotent in R. Define g = k + f then

kf = h(1− f)f = 0, fk = fh(1− f) = 0.

Hence g = k + f is an idempotent with

eg = e(k + f) = ek + ef = eh(1− f) + ef = e(1− f) + ef = e.

Hence e ωl g and

ωl(e) ⊆ ωl(g).

Also,

fg = f(k + f) = fk + f = f.

so that f ωl g and

ωl(f) ⊆ ωl(g).

Thus,

ωl(e) ∨ ωl(f) ⊆ ωl(g).

But

g = k + f = h(1− f) + f = he− hf + f = he+ (1− h)f

Thus

g ∈ ωl(e) ∨ ωl(f).

Therefore,

ωl(g) ⊆ ωl(e) ∨ ωl(f)

and so

ωl(e) ∨ ωl(f) = ωl(g).

Next we find an idempotent g′ ∈ ER and prove that

ωl(e) ∧ ωl(f) = ωl(g′).
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Let g′ = e(1− h). Then

(g′)2 = (e(1− h))2 = e(e− he)(1− h) = e(e− eh) = e(1− h) = g′.

and

g′e = e(1− h)e = e− ehe = e− eh = e(1− h) = g′

implies, g′ ∈ ωl(e). Thus

ωl(g′) ⊆ ωl(e).

Also,

g′f = e(1− h)f = ef − ehf

and since eh(1− f) = e(1− f), we have eh− ehf = e− ef from which

we have ehf = eh−e+ef , so we get g′f = ef −eh+e−ef = e−eh =

e(1− h) = g′ implies g′ ∈ ωl(f). Thus

ωl(g′) ⊆ ωl(f).

Hence

ωl(g′) ⊆ ωl(e) ∧ ωl(f).

To prove the reverse inclusion, let x ∈ ωl(e) ∧ ωl(f), so that xe = x =

xf . Hence

xg′ = x(1− h) = xf(1− h) = x(1− (1− f)h) = x− x(1− f)h

and since xf = x, x(1− f) = 0, so that

xg′ = x− x(1− f)h = x.

That is x ∈ ωl(g′). Therefore,

ωl(e) ∧ ωl(f) = ωl(g′).
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In the light of the above lemma, we have the following theorem.

Theorem 3.1.1. The set of all ωl-ideals Ωl is closed with respect

to the operation ∨ and ∧ defined in Ωl. Thus (Ωl,∨,∧) is a lattice.

Next we introduce the notion of annihilators in the principal ωr and

ωl-ideals.

Definition 3.1.1. For every ωr-ideal we define

(ωr(e))L = {y : yz = 0 for every z ∈ ωr(e)}

and for every ωl-ideal,

(ωl(e))R =
{
y : zy = 0 for every z ∈ ωl(e)

}
.

Then (ωr(e))L is a left ideal and (ωl(e))R is a right ideal.

Using the concept of annihilators of biorder ideals in ER we can

show that the lattice of all principal ωl-ideals Ωl is isomorphic with the

dual of the lattice of all principal ωr-ideals Ωr.

Proposition 3.1.3. For e ∈ ER, (ωl(e))R is a principal ωr-ideal

and (ωr(e))L is a principal ωl-ideal. In fact, (ωl(e))R = ωr(1 − e) and

(ωr(e))L = ωl(1− e).

Proof. We have by definition,

ωr(e) = {g : eg = g}
= {g : (1− e)g = 0}
= {g : u(1− e)g = 0; for every u ∈ ER}
=

{
g : hg = 0 for every h ∈ ωl(1− e)

}
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where h = u(1− e). Since h(1− e) = u(1− e)(1− e) = u(1− e) = h we

have h ∈ ωl(1− e) . Thus ωr(e) = (ωl(1− e))R. Therefore, replacing e

by 1− e we get,

ωr(1− e) = (ωl(e))R.

The proof for left annihilators of principal ωr-ideals is similar.

Lemma 3.1.2. Let e, f ∈ ER and ωr(e) and ωr(f) be ideals

generated by e and f then

1. ωr(e) ⊂ ωr(f)⇒ (ωr(e))L ⊃ (ωr(f))L.

2. ωr(e) = (ωr(e))LR and (ωr(e))L = (ωr(e))LRL.

Proof. 1. Let g ∈ (ωr(f))L then gh = 0 for every h ∈ ωr(f). If

ωr(e) ⊂ ωr(f) then gh = 0 for every h ∈ ωr(e) thus g ∈ (ωr(e))L

and so

(ωr(f))L ⊂ (ωr(e))L.

2. By above Proposition,

(ωr(e))LR = ((ωr(e))L)R = (ωl(1− e))R = ωr(1− (1− e)) = ωr(e)

and

(ωr(e))LRL = (ωr(e))L.

Lemma 3.1.3. Let R be a regular ring and ER the set of idem-

potents in R. Define θ and ρ on Ωl and Ωr by

θ(ωl(e)) = (ωl(e))R and ρ(ωr(e)) = (ωr(e))L.

Then θ and ρ define a one-one correspondence between Ωl and Ωr and

hence they are inverse anti-isomorphisms between these sets.
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Proof. Let e be in ER with ωl(e) ∈ Ωl then

θ(ωl(e)) = (ωl(e))R = ωr(1− e)

Thus θ maps the lattice Ωl to Ωr. Now for idempotents e, f ∈ ER

suppose ωl(e), ωl(f) ∈ Ωl such that ωl(e) ⊆ ωl(f). But from the

above lemma ωl(e) ⊆ ωl(f) implies (ωl(f)R ⊆ (ωl(e))R and θ(ωl(e)) ⊆
θ(ωl(f)). Similarly, ρ is an order preserving map from Ωr to Ωl. More-

over, for ωl(e) ∈ Ωl

ρ(θ(ωl(e))) = ρ(ωr(1− e)) = (ωr(1− e))L = ωl(1− (1− e)) = ωl(e).

Thus for ωl(e) ∈ Ωl we have ρθ(ωl(e)) = ωl(e) and similarly for

ωr(e) ∈ Ωr, θρ(ωr(e)) = ωr(e). Hence θ and ρ are mutually inverse

anti-isomorphisms between Ωl and Ωr.

For any idempotent e ∈ ER, ωl(e) ∨ ωl(1− e) = ωl(he+ (1− e)) =

ωl(e + 1 − e) = ωl(1) = ER and ωl(e) ∧ ωl(1 − e) = ωl(e(1 − e)) =

ωl(0) = {0}, since h ∈ S(e, e) = {e} . Thus ωl(e) and ωl(1 − e) are

complements of each other in the lattice of all principal left ω-ideals.

Similarly, ωr(e) and ωr(1 − e) are complements to each other in the

lattice of all principal right ω-ideals of ER.

Thus we have the following theorem.

Theorem 3.1.2. Let R be a regular ring and ER denote the set of

idempotents in R. Then Ωl the set of all principal left biorder ideals in

ER is a complemented modular lattice with respect to the order defined

by

ωl(e) ≤ ωl(f) if and only if e ωl f

and the join and meet are given by

ωl(e) ∨ ωl(f) = ωl(h(1− f) + f) and ωl(e) ∧ ωl(f) = ωl(e(1− h))
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where h ∈ S1(e, 1 − f) its zero being 0 and its unit is ωl(1). Dually,

the set Ωr is a complemented modular lattice and the map ωl(e) −→
ωr(1− e) is an anti-isomorphism of Ωl onto Ωr.

Now we consider a special case when ωl = ωr = ω and we describe

the structure of the ω-ideals.

Lemma 3.1.4. Let e and f be two idempotents in ER and ω(e)

and ω(f) denote the ω-ideals generated by e and f respectively. Then

ω(e) ∨ ω(f) and ω(e) ∧ ω(f) are both principal ω-ideals.

Proof. Suppose S1(e, 1 − f) ∩ S1(1 − f, e) 6= ∅. Choose an h ∈
S1(e, 1− f) ∩ S1(1− f, e), so that h is in ER with

he = h = (1− f)h and eh(1− f) = e(1− f),

h(1− f) = h = eh and (1− f)he = (1− f)e

Define g = h+ f . Then

g2 = (h+ f)(h+ f) = h+ hf + fh+ f = h+ f = g.

Hence g is an idempotent satisfying

eg = e(h+ f) = eh+ ef = eh+ e− eh+ ehf = e+ ehf = e,

since ef = e− eh+ ehf and

ge = (h+ f)e = he+ fe = he+ e− he+ fhe = e+ fhe = e

since fe = e− he+ fhe Therefore,

eg = ge = e, implies ω(e) ⊆ ω(g)

that is,

ω(e) ⊆ ω(h+ f)
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Also

fg = f(h+ f) = fh+ f = f

and

gf = (h+ f)f = hf + f = f.

But

fg = gf = f implies ω(f) ⊆ ω(g)

and

ω(e) ∨ ω(f) ⊆ ω(g).

Thus

g = h+ f = ehe+ f ∈ ω(e) ∨ ω(f)

and so

ω(g) ⊆ ω(e) ∨ ω(f).

Hence

ω(e) ∨ ω(f) = ω(h+ f).

Let g′ = e(1− h). Then

(g′)2 = e(1− h)e(1− h) = e(e− he)(1− h) = e2(1− h) = e(1− h).

with

g′e = e(1− h)e = e(e− he) = (e− ehe) = e(1− h) = g′

eg′ = ee(1− h) = e(1− h) = g′

thus

g′ ω e hence ω(g′) ⊆ ω(e).

Now

g′f = e(1− h)f = e(f − hf) = ef − hf

and since eh(1 − f) = e(1 − f) we have eh − ehf = e − ef and
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ehf = eh−e+ef so we get g′f = ef−eh+e−ef = e−eh = e(1−h) = g′.

Also,

fg′ = fe(1− h) = fe− feh = fe− fh = fe− fhe

and since (1− f)he = (1− f)e we have he− fhe = e− fe, and fhe =

he−e+fe so we get fg′ = fe−he+e−fe = e−he = e(1−h) = g′. Thus

g′ ω f and so ω(g′) ⊆ ω(f). To prove the converse, let x ∈ ω(e)∩ω(f).

Then xe = x = xf and ex = x = fx. Then

xg′ = xe(1−h) = xe−xeh = x(1−h) = xf(1−h) = xf−xfh = xf = x

and

g′x = e(1− h)x = ex− ehx = x− ehx = x− hx = x− hfx = x

that is

xg′ = g′x = x hence x ω g′

Therefore,

ω(x) ⊆ ω(g′)

Thus

ω(e) ∧ ω(f) = ω(e(1− h)).

Denote the class of all ω-ideals of ER by Ω(R). Then Ω(R) is a

partially ordered set with the usual set containment.

Lemma 3.1.5. Suppose e, f be elements in ER. Then S1(e, 1 −
f)∩S1(1−f, e) 6= ∅ if and only if e(1−f) = (1−f)e. Further, in this case

h = e(1−f) = (1−f)e is the unique element in S(e, 1−f)∩S(1−f, e)

Proof. Suppose that S1(e, 1 − f) ∩ S1(1 − f, e) 6= ∅ and let h ∈
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S1(e, 1− f)∩S1(1− f, e). Since h ∈ S(e, 1− f) = S1(e, 1− f) we have

eh(1− f) = e(1− f) ; (1− f)he = h

and since h ∈ S(1− f, e) = S1(1− f, e) we have

(1− f)he = (1− f)e ; eh(1− f) = h

From these equations it follows that h = e(1−f) = (1−f)e and there-

fore, ef = fe.

Conversely suppose that h = e(1− f) = (1− f)e then

(1− f)he = (1− f)((1− f)e)e = (1− f)2e2 = (1− f)e = h

and

eh(1− f) = ee(1− f)(1− f) = e2(1− f)2 = e(1− f)

hence h ∈ S1(e, 1− f) = S(e, 1− f). Similarly, h ∈ S(1− f, e). Thus

h ∈ S(e, 1− f) ∩ S(1− f, e) and S(e, 1− f) ∩ S(1− f, e) 6= ∅.

Using Lemma(3.1.4) it follows that

ω(e) ∨ ω(f) = ω(h+ f) = ω(e(1− f) + f) = ω(e+ f − ef)

and

ω(e)∧ω(f) = ω(e(1−h)) = ω(e(1−e(1−f))) = ω(e−e+ef) = ω(ef).

Now we proceed to show that the lattice Ω(R) is a distributive lattice.

Lemma 3.1.6. Let e, f, g ∈ ER. Then

(ω(e) ∨ ω(f)) ∧ ω(g) = (ω(e) ∧ ω(g)) ∨ (ω(f) ∧ ω(g)) .
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Proof. By Lemma(3.1.4), we have

ω(e) ∨ ω(f) = ω(e+ f − ef).

Therefore,

(ω(e) ∨ ω(f)) ∧ ω(g) = ω(e+ f − ef) ∧ ω(g).

Again by Lemma(3.1.4), we get

(ω(e) ∨ ω(f)) ∧ ω(g) = ω((e+ f − ef)g) = ω(eg + fg − efg)

and

(ω(e) ∧ ω(g)) ∨ (ω(f) ∧ ω(g)) = ω(eg) ∨ ω(fg)

thus

(ω(e) ∧ ω(g)) ∨ (ω(f) ∧ ω(g)) = ω(eg + fg − egfg)

Since gf = fg we have

(ω(e) ∧ ω(g)) ∨ (ω(f) ∧ ω(g)) = ω(eg + fg − efg).

Thus the distributive law holds.

For any idempotent e, f ∈ ER, ω(e) and ω(f) are complements if

and only if

ω(e) ∨ ω(f) = ω(1) and ω(e) ∧ ω(f) = ω(0).

Since

ω(e) ∨ ω(f) = ω(e+ f − ef) = ω(1)

and

ω(e) ∧ ω(f) = ω(ef) = ω(0)
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we have

e+ f − ef = 1 and ef = 0

that is

e+ f = 1 implies f = 1− e.

Hence

ω(e) ∨ ω(1− e) = ω(1) = ER

and

ω(e) ∧ ω(1− e) = ω(e(1− e)) = ω(0) = {0} .

That is ω(e) and ω(1− e) are complements of each other and ω(1− e)
is the unique complement of ω(e) in the lattice of all principal ω-ideals

in ER. Thus we have the following theorem.

Theorem 3.1.3. Let R be a regular ring with unity, then the set

of all principal ω-ideals Ω(R) of ER is a complemented, distributive

lattice with its zero being 0, and its unit being ω(1).

3.2 Order of the Complemented Modular Lattice

In the following we discuss the properties of the complemented modular

lattice Ωl[Ωr] such as perspectivity, independence, order etc.

The following lemma characterizes when two ωl ideals are complements

to each other.

Lemma 3.2.1. Two biorder ideals ωl(e) and ωl(f) are comple-

ments in Ωl if and only if there exists an idempotent h ∈ S(e, 1 − f)

such that ωl(e) = ωl(h) and ωl(f) = ωl(1− h).

Proof. Suppose there exists an idempotent h ∈ S(e, 1 − f) with

ωl(h) = ωl(e) and ωl(1 − h) = ωl(f), then ωl(e) ∨ ωl(f) = ωl(h) ∨
ωl(1 − h) = ωl(1) and ωl(e) ∧ ωl(f) = ωl(h) ∧ ωl(1 − h) = 0. Hence

ωl(e) and ωl(f) are complements of each other.
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Conversely, suppose that ωl(e) and ωl(f) are complements of each other

in Ωl. Then

ωl(e) ∨ ωl(f) = ωl(1) and ωl(e) ∧ ωl(f) = {0}

and there exists h ∈ S1(e, 1− f), so that by lemma 3.1.1

ωl(e) ∨ ωl(f) = ωl(h(1− f) + f) and ωl(e) ∧ ωl(f) = ωl(e(1− h))

Therefore,

ωl(h(1− f) + f) = ωl(1) and ωl(e(1− h)) = {0}

and so by definition, (h(1−f)+f)1 = h(1−f)+f and 1(h(1−f)+f) = 1

and e(1− h)0 = 0 and 0(e(1− h)) = e(1− h). Hence, h(1− f) + f = 1

and e(1 − h) = 0 so that h(1 − f) = (1 − f) and e(1 − h) = 0, thus

(1 − f) ωr h and e ωl h so that ωr(1 − f) ⊆ ωr(h) and ωl(e) ⊆ ωl(h).

Since h ∈ S1(e, 1 − f), we have h ωr (1 − f) and h ωl e, so that

ωl(h) ⊆ ωl(e) and ωr(h) ⊆ ωr(1 − f) hence ωr(h) = ωr(1 − f) and

ωl(h) = ωl(e). Now, since ωr(h) = ωr(1−f), we have ωl(1−h) = ωl(f).

Thus ωl(h) = ωl(e) and ωl(1− h) = ωl(f).

Similarly two ωr-ideals, ωr(e) and ωr(f) are complements if and

only if there exists an idempotent k such that ωr(e) = ωr(k) and

ωr(f) = ωr(1− k).

Two elements of a lattice are said to be in perspective if they have a

common complement.

Now, we describe perspectivity of two members of Ωl in a regular ring

in terms of the E-sequence as follows:

Lemma 3.2.2. Let ωl(e) and ωl(f) be biorder ideals in Ωl. Then

ωl(e) and ωl(f) are perspective in Ωl if and only if 1 ≤ dl(e, f) ≤ 3.

Proof. Suppose that ωl(e) and ωl(f) are in perspective. Then there
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exists a common complement ωl(g) of ωl(e) and ωl(f) in Ωl. Since ωl(e)

and ωl(g) are complements of each other in Ωl, there exists h in ER by

lemma 3.2.1 with

ωl(h) = ωl(e) and ωl(1− h) = ωl(g)

Again, since ωl(f) and ωl(g) are complements of each other, there exists

k in ER such that

ωl(k) = ωl(f) and ωl(1− k) = ωl(g)

But ωl(e) = ωl(h), so that e L h and since ωl(k) = ωl(f), we have

k L f . Also, ωl(1 − h) = ωl(g) = ωl(1 − k) so (1 − h) L (1 − k) and

hence h R k. Thus e L h R k L f , so the E-sequence from e to f is of

length 3.

Conversely, suppose 1 ≤ dl(e, f) ≤ 3, then there exist g and h in ER

with e L g R h L f . Since e L g, we have e ωl ∩(ωl)−1g, so e ωl g and

g ωl e. Thus ωl(e) ⊆ ωl(g) and ωl(g) ⊆ ωl(e). Hence ωl(e) = ωl(g) and

so ωl(1 − g) is a complement of ωl(g) = ωl(e). Also, from g R h, we

have (1− g)L(1− h) so that ωl(1− g) = ωl(1− h) and so ωl(1− g) is

a complement of ωl(h). Moreover, from h L f , we have ωl(h) = ωl(f).

Hence ωl(1− g) is a complement of ωl(h) = ωl(f), thus ωl(1− g) is a

complement of both ωl(e) and ωl(f).

Definition 3.2.1. Let Ωl be a complemented modular lattice with

zero 0 and unit ωl(1). A basis of Ωl is a collection{
ωl(ei) : i = 1, 2, . . . n

}
∈ ΩL such that

{
ωl(ei) : i = 1, 2, . . . , n

}
are in-

dependent, ωl(e1) ∨ . . . ∨ ωl(en) = ωl(1). The number of elements in a

basis is called the order of the basis. Further, a basis is homogeneous

if its elements are pairwise perspective.

Proposition 3.2.1. Let e, f ∈ ER and f ω (1− e) then

ωl(e) ∨ ωl(f) = ωl(e+ f), ωl(e) ∧ ωl(f) = {0}
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in the lattice Ωl.

Proof. Since f ω (1−e), clearly e+f ∈ ER and e+f ∈ ωl(e)∨ωl(f).

Thus

ωl(e+ f) ⊆ ωl(e) ∨ ωl(f).

Also, since e(e + f) = e and f(e + f) = f , ωl(e) ⊆ ωl(e + f) and

ωl(f) ⊆ ωl(e+f), and so ωl(e)∨ωl(f) ⊆ ωl(e+f). Hence ωl(e)∨ωl(f) =

ωl(e+f). Let g ∈ ωl(e)∧ωl(f), then ge = gf = g, so g = ge = gfe = 0.

Thus ωl(e) ∧ ωl(f) = {0} whenever f ω (1− e).

The above result can be extended to a finite number of idempotents.

Let e1, e2, e3 ∈ ER with ei ω (1− ej), i 6= j, then

e1 + e2 + e3 ∈ ωl(e1) ∨ ωl(e2) ∨ ωl(e3).

Hence,

ωl(e1 + e2 + e3) ⊆ ωl(e1) ∨ ωl(e2) ∨ ωl(e3).

Since ei ω
l (e1 + e2 + e3), i = 1, 2, 3

ωl(ei) ⊆ ωl(e1 + e2 + e3)

and so,

ωl(e1) ∨ ωl(e2) ∨ ωl(e3) ⊆ ωl(e1 + e2 + e3).

Thus

ωl(e1) ∨ ωl(e2) ∨ ωl(e3) = ωl(e1 + e2 + e3).

Since eiω(1 − ej) we have eiej = 0 for i 6= j, i, j = 1, 2, 3. Thus

e1e2 = e2e1 = 0 implies e1 + e2 ∈ ER and therefore

(ωl(e1) ∨ ωl(e2)) ∧ ωl(e3) = ωl(e1 + e2) ∧ ωl(e3).

Now let e1 +e2 = k. Then since eiej = 0 for i 6= j, we have ke3 = 0 and

e3k = 0. Hence k ωl (1− e3) and k ωr (1− e3). Therefore, k ω (1− e3)
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and by above lemma 3.2.1

(ωl(e1) ∨ ωl(e2)) ∧ ωl(e3) = ωl(e1 + e2) ∧ ωl(e3) = ωl(0) = 0

Thus generalizing the above result for n idempotents, we have the

following lemma.

Lemma 3.2.3. Let e1, e2, . . . en ∈ ER with ei ω (1− ej) for i 6= j

for any i, j. Then ωl(e1), ωl(e2), . . . , ωl(en) are independent elements

in the lattice Ωl with ωl(e1)∨ωl(e2)∨ . . . ωl(en) = ωl(e1 +e2 + . . .+en).

Lemma 3.2.4. Let e1, e2, . . . en ∈ ER. Then

ωl(e1), ωl(e2), . . . , ωl(en) are independent elements in the lattice Ωl if

and only if ei ω (1− ej) for i 6= j, i, j = 1, 2, . . . , n.

Proof. Suppose ei ω (1− ej). By above lemma

ωl(e1), ωl(e2), . . . , ωl(en) are independent. Conversely, suppose n = 1,

then the statement follows trivially. Suppose ωl(e1), ωl(e2), . . . , ωl(en+1)

are independent. Then by definition

(ωl(e1) ∨ ωl(e2) ∨ . . . ∨ ωl(en)) ∧ ωl(en+1) = {0}

Now by corollary to Theorem (1.4)(part 1)[23], there is a complement,

ωl(ek) of ωl(en+1) such that

ωl(ek) ≥ ωl(e1) ∨ ωl(e2) ∨ . . . ∨ ωl(en).

By Lemma 3.2.1, there exists an idempotent e such that ωl(ek) = ωl(e)

and ωl(en+1) = ωl(1 − e). Since ωl(e1), ωl(e2), . . . , ωl(en) are indepen-

dent, by induction hypothesis, there exists idempotents e1, e2, . . . en

such that eiej = 0. Now define e′i = eei(i = 1, 2, . . . , n) and en+1 =

1 − e. We show that e′ie
′
j = 0 for i 6= j. Since ei ∈ ωl(ei), we have

ei ∈ ωl(ek) = ωl(e) and so eie = ei. Therefore, (e′i)
2 = eeieei = eeiei =

eei = e′i. Therefore, e′i is idempotent for i = 1, 2, . . . , n and obviously
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en+1 is an idempotent. Now e′i ∈ ωl(ei); also e′iei = (eei)ei = eei = e′i.

Thus e′i ∈ ωl(ei) and hence ωl(e′i) ⊆ ωl(ei). Also e′i = eei ∈ ωl(ei).

Now eie
′
i = ei(eei) = (eie)ei = eiei = ei. Therefore, ei ∈ ωl(e′i). Hence

ωl(ei) ⊆ ωl(e′i) and so ωl(ei) = ωl(e′i) for i = 1, 2, . . . , n.

Finally for i, j = 1, 2, . . . , n, i 6= j,

e′ie
′
j = (eei)(eej) = e(eie)ej = eeiej = e0 = 0

en+1e
′
i = (1− e)ee′i = 0

and

e′ien+1 = eei(1− e) = eei − eeie = eei − eei = 0

therefore, this result holds for i = n+ 1. By induction this result holds

for every n.

Lemma 3.2.5. Let e1, e2, . . . , en ∈ ER with ei ω (1−ej) for i 6= j.

Then dl(ei, ej) = 3 for i 6= j.

Proof. Suppose all these ωl(ei)’s are perspective to each other. Then

for each i and j with i 6= j, there exists a common complement ωl(eij)

of ωl(ei) and ωl(ej) in Ωl. Since ωl(ei) and ωl(eij) are complements of

each other in the lattice Ωl, there exists some ωl(eji) in Ωl such that

eiLeijRejiLej and so dl(ei, ej) ≤ 3.

Since eiej = 0 for i 6= j, ei and ej are neither L-related nor R re-

lated. So, dl(ei, ej) 6= 1. Again if there is an idempotent f ∈ ER

with eiLfRej then eiReiej = 0, by Clifford Miller Theorem, so that

ei = 0 which is not true. Therefore, it follows that dl(ei, ej) 6= 2. Thus

dl(ei, ej) = 3.

In the light of the above Lemmas and Propositions, we have the

following theorem.

Theorem 3.2.1. Let R be regular ring with ei ω (1 − ej) for

i 6= j, dl(ei, ej) = 3 and e1 + e2 + . . .+ en = 1, Then the complemented,
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modular lattice Ωl is of order n.

Proof. Since M(ei, ej) = {0} we have by above Lemma(3.2.3) that

ωl(e1), . . . , ωl(en) are independent elements in Ωl with ωl(e1)∨ωl(e2)∨
. . . ∨ ωl(en) = ωl(e1 + e2 + . . . + en) and since e1 + e2 + . . . + en = 1,

ωl(e1)∨ωl(e2)∨. . . ωl(en) = ωl(1). Since dl(ei, ej) = 3, by Lemma(3.2.2)

we have ωl(ei) and ωl(ej) are perspective to each other. Therefore by

the definition of homogeneous basis, Ωl admits a homogeneous basis of

rank n. Thus Ωl is a complemented, modular lattice of order n.

Example 3.2.1. Consider the matrix ring R = M2(Z2). Clearly,

this ring R is a regular ring with |M2(Z2)| = 16. The idempotent set

ER has 8 elements and are listed as follows:

0 =

[
0 0

0 0

]
, e1 =

[
1 0

0 0

]
, e2 =

[
0 0

0 1

]
, e3 =

[
1 1

0 0

]
,

e4 =

[
0 0

1 1

]
, e5 =

[
1 0

1 0

]
, e6 =

[
0 1

0 1

]
, 1 =

[
1 0

0 1

]
,

The biorder ideals generated by the idempotents in this ring is as fol-

lows:

ωl(0) = 0 and ωl(1) = ER, ω
r(0) = 0 and ωr(1) = ER

ωl(e1) = {0, e1, e5} ωr(e1) = {0, e1, e3}

ωl(e2) = {0, e2, e6} ωr(e2) = {0, e2, e4}

ωl(e3) = {0, e3, e4} ωr(e3) = {0, e3, e1}

ωl(e4) = {0, e4, e3} ωr(e4) = {0, e4, e2}

ωl(e5) = {0, e5, e1} ωr(e5) = {0, e5, e6}

ωl(e6) = {0, e6, e2} ωr(e6) = {0, e6, e5}
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It can be observed that

e1Le5, e2Le6, e4Le3.

and

e1Re3, e2Re4, e5Re6.

It can be seen that ωl(e1) and ωl(e2) are complements to each other,

since there exists an idempotent, e5 such that ωl(e1) = ωl(e5) and

ωl(e2) = ωl(1− e5). Similarly, there exists an idempotent, e6 such that

ωl(e2) = ωl(e6) and ωl(e3) = ωl(1 − e6). Therefore, ωl(e2) and ωl(e3)

are complements of each other. Also, ωl(e3) = ωl(e4) and ωl(e1) =

ωl(1−e4). Therefore, ωl(e1) and ωl(e3) are complements of each other.

The complemented modular lattice Ωl of this ring is as shown below:

ER

ωl(e1) ωl(e2) ωl(e3)

0

Thus it can be seen that (ER, 0), (ωl(e1), ωl(e2)), (ωl(e1), ωl(e3)),

(ωl(e2), ωl(e3)) are the complementary pairs in the lattice Ωl and the

pairs (ωl(e1), ωl(e2)), (ωl(e1), ωl(e3)), (ωl(e2), ωl(e3)) are the perspec-

tive elements in this lattice Ωl.

The egg-box diagram of elements of M2(Z2) is given by

1
e6 e5

e2 e4

e1 e3

0
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Also, it can be seen from the egg-box picture that M(e1, e2) =

M(e2, e1) = M(e2, e3) = {0}. Thus we get
{

0, ωl(e1), ωl(e2)
}

is a basis

of this complemented modular lattice Ωl and dl(e1, e2) = 3. Thus this

lattice Ωl has a homogeneous basis of order 2.

Example 3.2.2. Consider the matrix ring R = M3(Z2). Clearly,

this ring R is a regular ring with |M3(Z2)| = 512. The idempotent set

ER has 58 elements and are listed as follows:

0 =

 0 0 0

0 0 0

0 0 0

 , e2 =

 1 0 0

0 0 0

0 0 0

 , e4 =

 1 1 0

0 0 0

0 0 0

 ,

e6 =

 1 0 1

0 0 0

0 0 0

 , e8 =

 1 1 1

0 0 0

0 0 0

 , e10 =

 1 0 0

1 0 0

0 0 0

 ,

e17 =

 0 0 0

0 1 0

0 0 0

 , e18 =

 1 0 0

0 1 0

0 0 0

 , e19 =

 0 1 0

0 1 0

0 0 0

 ,

e22 =

 1 0 1

0 1 0

0 0 0

 , e25 =

 0 0 0

1 1 0

0 0 0

 , e46 =

 1 0 1

1 0 1

0 0 0

 ,

e49 =

 0 0 0

0 1 1

0 0 0

 , e50 =

 1 0 0

0 1 1

0 0 0

 , e54 =

 1 0 1

0 1 1

0 0 0

 ,

e55 =

 0 1 1

0 1 1

0 0 0

 , e57 =

 0 0 0

1 1 1

0 0 0

 , e66 =

 1 0 0

0 0 0

1 0 0

 ,
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e74 =

 1 0 0

1 0 0

1 0 0

 , e82 =

 1 0 0

0 1 0

1 0 0

 , e122 =

 1 0 0

1 1 0

1 0 0

 ,

e145 =

 0 0 0

0 1 0

0 1 0

 , e146 =

 1 0 0

0 1 0

0 1 0

 , e147 =

 0 1 0

0 1 0

0 1 0

 ,

e152 =

 1 1 1

0 1 0

0 1 0

 , e196 =

 1 1 0

0 0 0

1 1 0

 , e210 =

 1 0 0

0 1 0

1 1 0

 ,

e217 =

 0 0 0

1 1 0

1 1 0

 , e239 =

 0 1 1

1 0 1

1 1 0

 , e257 =

 0 0 0

0 0 0

0 0 1

 ,

e258 =

 1 0 0

0 0 0

0 0 1

 , e260 =

 1 1 0

0 0 0

0 0 1

 , e261 =

 0 0 1

0 0 0

0 0 1

 ,

e266 =

 1 0 0

1 0 0

0 0 1

 , e273 =

 0 0 0

0 1 0

0 0 1

 , e274 =

 1 0 0

0 1 0

0 0 1

 ,

e275 =

 0 1 0

0 1 0

0 0 1

 , e277 =

 0 0 1

0 1 0

0 0 1

 , e279 =

 0 1 1

0 1 0

0 0 1

 ,

e281 =

 1 0 0

1 1 0

0 0 1

 , e289 =

 0 0 0

0 0 1

0 0 1

 , e290 =

 1 0 0

0 0 1

0 0 1

 ,

e293 =

 0 0 1

0 0 1

0 0 1

 , e296 =

 1 1 1

0 0 1

0 0 1

 , e298 =

 1 0 0

1 0 1

0 0 1

 ,
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e317 =

 0 0 1

1 1 1

0 0 1

 , e321 =

 0 0 0

0 0 0

1 0 1

 , e337 =

 0 0 0

0 1 0

1 0 1

 ,

e345 =

 0 0 0

1 1 0

1 0 1

 , e361 =

 0 0 0

1 0 1

1 0 1

 , e385 =

 0 0 0

0 0 0

0 1 1

 ,

e386 =

 1 0 0

0 0 0

0 1 1

 , e388 =

 1 1 0

0 0 0

0 1 1

 , e391 =

 0 1 1

0 0 0

0 1 1

 ,

e449 =

 0 0 0

0 0 0

1 1 1

 , e458 =

 1 0 0

1 0 0

1 1 1

 , e467 =

 0 1 0

0 1 0

1 1 1

 ,

e512 =

 1 1 1

1 1 1

1 1 1


It can be seen that in this ring the ωl ideals satisfy
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(I1) ωl(e2) = ωl(e10) = ωl(e66) = ωl(e74)

(I2) ωl(e4) = ωl(e25) = ωl(e196) = ωl(e217)

(I3) ωl(e6) = ωl(e46) = ωl(e321) = ωl(e361)

(I4) ωl(e8) = ωl(e57) = ωl(e449) = ωl(e512)

(I5) ωl(e17) = ωl(e19) = ωl(e145) = ωl(e147)

(I6) ωl(e18) = ωl(e82) = ωl(e146) = ωl(e210)

(I7) ωl(e22) = ωl(e152) = ωl(e337) = ωl(e467)

(I8) ωl(e49) = ωl(e55) = ωl(e385) = ωl(e391)

(I9) ωl(e50) = ωl(e122) = ωl(e386) = ωl(e458)

(I10) ωl(e54) = ωl(e239) = ωl(e345) = ωl(e388)

(I11) ωl(e257) = ωl(e261) = ωl(e289) = ωl(e293)

(I12) ωl(e317) = ωl(e260) = ωl(e296) = ωl(e281)

(I13) ωl(e258) = ωl(e266) = ωl(e290) = ωl(e298)

(I14) ωl(e273) = ωl(e275) = ωl(e277) = ωl(e279)

and it can be sen that

I1, I2, I5 ⊆ I6

I3, I4, I5 ⊆ I7

I2, I4, I11 ⊆ I12

I1, I4, I8 ⊆ I9

I2, I3, I8 ⊆ I10

I5, I8, I11 ⊆ I14

I1, I3, I11 ⊆ I13
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The ωr ideals satisfy

ωr(e2) = ωr(e4) = ωr(e6) = ωr(e8)

ωr(e17) = ωr(e25) = ωr(e49) = ωr(e57)

ωr(e10) = ωr(e19) = ωr(e46) = ωr(e55)

ωr(e66) = ωr(e196) = ωr(e261) = ωr(e391)

ωr(e18) = ωr(e22) = ωr(e50) = ωr(e54)

ωr(e74) = ωr(e147) = ωr(e293) = ωr(e512)

ωr(e82) = ωr(e122) = ωr(e277) = ωr(e317)

ωr(e145) = ωr(e217) = ωr(e289) = ωr(e361)

ωr(e146) = ωr(e152) = ωr(e290) = ωr(e296)

ωr(e210) = ωr(e239) = ωr(e279) = ωr(e298)

ωr(e257) = ωr(e321) = ωr(e385) = ωr(e449)

ωr(e266) = ωr(e275) = ωr(e458) = ωr(e467)

ωr(e260) = ωr(e258) = ωr(e386) = ωr(e388)

ωr(e273) = ωr(e281) = ωr(e337) = ωr(e345)

The complemented modular lattice Ωl of the biorder ideals is as follows:
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ER

ωl(e258) ωl(e50) ωl(e54) ωl(e18) ωl(e22) ωl(e317)ωl(e273)

ωl(e49) ωl(e257) ωl(e2) ωl(e4) ωl(e17) ωl(e6) ωl(e8)

0

It can be easily seen from this diagram that this lattice has a homoge-

neous basis with 3 elements. For example the set
{
ωl(e2), ωl(e4), ωl(e6)

}
is a homogeneous basis of this lattice. Thus we can say the lattice is

of order 3.
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Chapter 4

Biordered Sets and

Complemented Modular

Lattices

In [28], Pastjin has constructed a biordered set EP (L) from a comple-

mented modular lattice L. In this chapter, we discuss the properties

of this biordered set EP (L) and it is shown that the set of idempotents

ER of a regular ring R is isomorphic to EP (L).

4.1 Biordered sets of lattices and homogeneous

basis

In the following we briefly recall the construction of the biordered set

EP (L) of the complemented modular lattice L. It is shown that this

biordered set is bounded and complemented. Some interesting proper-

ties of the biordered set EP (L) are also discussed. Finally we describe

the biordered subset satisfying certain conditions as E0
P (L) so that the

complemented modular lattice admits a homogeneous basis.

Let L be a complemented modular lattice and (n; v) be any pair of

75
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complementary elements of L

Let (n; v) : L −→ L, be the map defined by

x −→ v ∧ (n ∨ x) for all x in L

and (n; v)′ : L −→ L defined by

x −→ n ∨ (v ∧ x) for all x in L

are idempotent order preserving normal mappings. We let the map

(n; v) act on L as right operator and denote by P (L) the subsemigroup

of S∗(L) which is generated by these idempotent normal mappings

(n; v), n, v ∈ L. Analogously the mapping (n; v)′ is an order preserving

idempotent mapping of L onto the principal ideal [1, n] of (L,∨); hence

(n; v)′ is a normal mapping of (L,∨) into itself. Letting (n; v)′ act on

L as left operators, denote by P (L)′ the subsemigroup of S(L) which

is generated by these idempotent normal mappings (n; v)′, n, v ∈ L.

Let

EP (L) = {(n; v) : n, v ∈ L n ∨ v = 1, n ∧ v = 0}

and

EP (L)′ = {(n; v)′ : n, v ∈ L n ∨ v = 1, n ∧ v = 0}

we refer to the elements (n; v)[(n; v)′] as idempotent generators of

P (L)[P (L)]′.

Theorem 4.1.1 (cf.[28], Theorem 1). Let L be a complemented

modular lattice. Then

1. P (L) is a regular subsemigroup of S∗(L) and

EP (L) = {(n; v) : n, v ∈ L n ∨ v = 1, n ∧ v = 0} .
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2. In (EP (L), ω
l, ωr) we have

(n1; v1) ωl (n2; v2)⇐⇒ v1 ≤ v2 in L

and then

(n2; v2)(n1; v1) = (n2 ∨ (v2 ∧ n1); v1);

we have

(n1; v1) ωr (n2; v2)⇐⇒ n2 ≤ n1 in L

and then

(n1; v1)(n2; v2) = (n1; v2 ∧ (n2 ∨ v1))

3. Let (n1; v1) and (n2; v2) be any idempotent of P (L). Let n be any

complement of v1∨n2 in [n2, 1]; let v be any complement of v1∧n2

in [0, v1]; then n and v are complementary in L and (n; v) is an

element in the sandwich set S((n1; v1), (n2; v2)). Conversely, any

element in the sandwich set S((n1; v1), (n2; v2)) can be obtained

in this way.

The above theorem provides a biordered set EP (L) from a comple-

mented modular lattice L.

The zero of P (L) is (1; 0) and the identity is (0; 1), obviously (1; 0) and

(0; 1) are in EP (L). For any (n; v) in biordered set EP (L), (n; v) ω (0; 1)

and (1; 0) ω (n; v).

The following lemma is immediate.

Lemma 4.1.1. Let (n1; v1), (n2; v2) ∈ EP (L) then

1. S((n1; v1), (n2; v2)) = S((n2; v2), (n1; v1)) = {(1; 0)} if and only if

v1 ≤ n2 and v2 ≤ n1.

2. For v1 ≤ n2 and v2 ≤ n1, (v1 ∨ v2;n2 ∧ n1) is the unique element

in S((v1;n1)(v2;n2)) = S((v2;n2)(v1;n1)).
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Proof. 1. Let (n1; v1), (n2; v2) ∈ EP (L) with v1 ≤ n2. Now let

(n; v) ∈ S((n1; v1), (n2; v2)). Then by definition of sandwich set

as in [[28], Theorem 1] n is a complement of n2 in [n2, 1] and v is a

complement of v1 in [0, v1]. Since, (n; v) ωl (n1; v1) and (n; v) ωr

(n2; v2), it follows that n2 ≤ n and n ∨ n2 = 1 implies n = 1 and

v ≤ v1 and v ∧ v1 = 0 implies v = 0. Thus S((n1; v1), (n2; v2)) =

{(1; 0)}. Similarly, S((n2; v2), (n1; v1)) = {(1; 0)} if v2 ≤ n1. The

converse follows immediately.

2. For v1 ≤ n2 and v2 ≤ n1, by definition,

(v1;n1)(v2;n2) = (v1∨ (n1∧ v2);n2∧ (v2∨n1)) = (v1∨ v2;n2∧n1)

and

(v2;n2)(v1;n1) = (v2∨ (n2∧v1);n1∧ (v1∨n2)) = (v2∨v1;n1∧n2).

Thus (v1;n1)(v2;n2) = (v2;n2)(v1;n1). It can be easily seen that

(v1 ∨ v2) is a complement of v2 ∨ n1 in [v2, 1] and (n2 ∧ n1) is

a complement of v2 ∧ n1 in [0, n1]. Thus (v1 ∨ v2;n2 ∧ n1) ∈
S((v1;n1)(v2;n2)). Similarly, (v1 ∨ v2) is a complement of v1 ∨ n2

in [v1, 1] and (n2∧n1) is a complement of v1∧n2 in [0, n2]. There-

fore, (v1 ∨ v2;n2 ∧ n1) ∈ S((v2;n2)(v1;n1)).

Now it remains to prove the uniqueness of this element. Suppose

there exists another element say (a; a′) ∈ S((v1;n1)(v2;n2)) ∩
S((v2;n2)(v1;n1)). Then v1 ≤ a, a′ ≤ n1, v2 ≤ a, a′ ≤ n2 and

from the definition of sandwich set as in [28] it can be seen that

a∨n1 = 1, a′∧v2 = 0, a∨n2 = 1, a′∧v1 = 0 and a∧n1 ≤ v2, n1 ≤
a′∨v2, a∧n2 ≤ v1, n2 ≤ a′∨v1. Thus a = v1∨v2 and a′ = n1∧n2

and (a; a′) = (v1;n1)(v2;n2) is unique.

Thus EP (L) has the following properties:
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For each (n; v) ∈ EP (L) there exists an element (v;n) ∈ EP (L) such

that (n; v)(v;n) = (v;n)(n; v) = (1; 0). The element (v;n) is called the

inverse of (n; v).

• (n1; v1) ωl (n2; v2)⇐⇒ (v2;n2) ωr (v1;n1).

• v1 ≤ n2 ⇐⇒ S((n1; v1)(n2; v2)) = (1; 0)

Hence the biordered set EP (L) is a bounded and complemented biordered

set.

From here onwards we consider the biordered subset of EP (L) sat-

isfying vi ≤ nj for all (ni; vi), (nj; vj) and i 6= j.

For (ni; vi), (nj; vj), with i 6= j in the biordered subset we have (vi;ni)(vj;nj) =

(vj;nj)(vi;ni) = (vi ∨ vj;nj ∧ ni). Now define

(ni; vi)⊕ (nj; vj) = (ni ∧ nj; vi ∨ vj)

.

Lemma 4.1.2. For the biordered subset of EP (L) with vi ≤ nj

for i 6= j and let (p; q) = (ni; vi) ⊕ (nj; vj). Then (p; q) satisfies the

following properties:

1. (ni; vi), (nj; vj) ∈ ω((p; q))

2. If (r; s) ∈ EP (L) with (ni; vi), (nj; vj) ∈ωl ((r; s)) then (p; q) ∈ωl

((r; s)).

3. If (r; s) ∈ EP (L) with (ni; vi), (nj; vj) ∈ωr ((r; s)), then (p; q) ωr

((r; s)).

Proof. 1. Note that (p; q) ∈ S((ni; vi)(nj; vj))∩S((nj; vj)(ni; vi)).

Therefore, (q; p) ωl (vi;ni), (q; p) ω
r (vj;nj), (q; p) ω

l (vj;nj) and

(q; p) ωr (vi;ni). Thus p ≤ ni, p ≤ nj, vj ≤ q, vi ≤ q and (ni; vi) ω

(p; q) and (nj; vj) ω (p; q).
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2. Let (r; s) ∈ EP (L) with (ni; vi) ω
l (r; s) and (nj; vj) ω

l (r; s), then

vi ≤ s and vj ≤ s. Then as seen above in lemma 4.1.1(2),

(q; p) = (vi;ni)(vj;nj).

Thus, vj ≤ s implies (s; r) ωr (vj;nj), that is (vj;nj)(s; r) = (s; r).

Similarly, vi ≤ s implies (s; r) ωr (vi;ni), that is (vi;ni)(s; r) =

(s; r).

Therefore,

(q; p)(s; r) = (vi;ni)(vj;nj)(s; r) = (s; r),

that is (s; r) ωr (q; p) also (p; q) ωl (r; s).

3. The proof follows similarly as above.

The next lemma shows that the addition defined is cancellative.

Lemma 4.1.3. Let (ni; vi), (nj; vj), (nk; vk) ∈ EP (L) with vi ≤
nj, vj ≤ ni and vi ≤ nk, vk ≤ ni for i 6= j 6= k . Then (ni; vi)⊕(nj; vj) =

(ni; vi)⊕ (nk; vk) if and only if (nj; vj) = (nk; vk).

Proof. If (nj; vj) = (nk; vk), then in EP (L)

(ni; vi)⊕(nj; vj) = (nj∧ni; vi∨vj) = (nk∧ni; vi∨vk) = (ni; vi)⊕(nk; vk).

Conversely suppose that (ni; vi)⊕ (nj; vj) = (ni; vi)⊕ (nk; vk). Then

(nj∧ni; vi∨vj) = (ni∧nj; vj∨vi) = (nk∧ni; vi∨vk) = (ni∧nk; vk∨vi).
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Also since vj ≤ ni and vi ≤ nj;

(nj; vj)(vk;nk) = (nj; vj)(vi;ni)(vk;nk)

= (nj; vj)((vi;ni)(vk;nk))

= (nj; vj)(vi ∨ vk;ni ∧ nk)

= (nj; vj)(vj ∨ vi;nj ∧ ni)

= (nj; vj)(vj;nj)(vi;ni)

= (1; 0)(vi;ni)

= (1; 0)

Therefore, S((nj; vj)(vj;nj)) = {(1; 0)} and so vj ≤ vk and

(vk;nk)(nj; vj) = (vk;nk)(vi;ni)(nj; vj)

= (vk;nk)((vi;ni)(nj; vj))

= (vk ∨ vi;ni ∧ nk)(nj; vj)

= (vi ∨ vj;nj ∧ ni)(nj; vj)

= (vi;ni)(vj;nj)(nj; vj)

= (vi;ni)(1; 0)

= (1; 0)

Therefore, S((vk;nk)(nj; vj)) = {(1; 0)} and so nj ≤ nk. Interchanging

(nk; vk) and (nj; vj), nj ≤ nk. Thus nj = nk and vj = vk. That is,

(nj; vj) = (nk; vk).

Corollary 4.1.1. Let (ni; vi), (nj; vj) ∈ EP (L) with vj ≤ ni for

i 6= j. Then

(ni; vi)⊕ (nj; vj) = (0; 1) if and only if (nj; vj) = (vi;ni).

Proof. By Lemma(4.1.1) we have

S((ni; vi)(vi;ni)) = S((vi;ni)(ni; vi)) = {(1; 0)} .
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Therefore,

S((ni; vi)(vi;ni)) ∩ S((vi;ni)(ni; vi)) = {(1; 0)} .

That is, ((vi ∨ ni;ni ∧ vi)) = (1; 0). Thus we get

(ni; vi)⊕ (vi;ni) = (ni ∧ vi; vi ∨ ni) = (0; 1).

Conversely, suppose (ni; vi)⊕ (nj; vj) = (1; 0). Since (ni; vi)⊕ (vi;ni) =

(1; 0), it follows that (nj; vj) = (vi;ni), by above lemma.

Lemma 4.1.4. Let EP (L) be the biordered set with vi ≤ nj,

vj ≤ ni, vi ≤ nk, vk ≤ ni, vj ≤ nk, vk ≤ nj for i 6= j 6= k. Then for

elements (ni; vi), (nj; vj), (nk; vk), i, j, k = 1, 2, . . . , N with i 6= j 6= k in

EP (L), the collection {v1, v2, . . . , vN} are independent elements in the

lattice L.

Proof. We have the set {(ni; vi) : i = 1, 2, . . . , N} in EP (L) so that

the elements v1, v2, . . . , vN are in the complemented modular lattice L.

We show that the collection {v1, v2, . . . , vN} are independent elements

in the lattice. Since vi ≤ nk and vj ≤ nk for i 6= j in EP (L), we have

(vi ∨ vj) ≤ nk for i 6= j 6= k.

Then

(vi ∨ vj) ∧ vk ≤ nk ∧ vk = 0

Thus for any such pairs (ni; vi), vi’s satisfy this property. Hence the

collection {vi : i = 1, 2 . . . , n} are independent.

For any biordered subset of EP (L) consisting of N elements, with vi ≤
nj, i, j = 1, 2, . . . , N , i 6= j, the collection {v1, v2, . . . , vN} are indepen-

dent in the lattice L.

In the following we assume that the biordered set EP (L) has elements

{(ni; vi) : i = 1, 2, . . . , N} satisfying the following properties:

1. vi ≤ nj for i 6= j
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2. (n1; v1)⊕ (n2; v2)⊕ . . .⊕ (nN ; vN) = (0; 1)

3. dl((ni; vi), (nj; vj)) = 3 for i 6= j.

and denote this biordered set as E0
P (L).

In the light of (Theorem 6, [28]) stated below,

Theorem 4.1.2. Let L be any complemented modular lattice,

let v1, v2 ∈ L and let n1[n2] be any complement of v1[v2] in L. Then

v1 ∼ v2 in L if and only if (n1; v1) and (n2; v2) are connected by an

E-sequence in EP (L).

From the fact that the perspectivity in the complemented modu-

lar lattice L is transitive if and only if any two elements (n1; v1) and

(n2; v2) are connected by an E-sequence of length 3 (see[28], page 218),

it is easy to see that the complemented modular lattice L with the

biordered set E0
P (L) having elements {(ni; vi), : i = 1, 2, . . . N} the col-

lection {v1, v2, . . . vN} in L satisfies, v1 ∨ v2 ∨ . . . vN = 1 and each vi’s

are pairwise perspective. That is, the complemented modular lattice

admits a homogeneous basis of order N that is L is a lattice of order

N(see definition in [23]).

Example 4.1.1. Consider the complemented modular lattice

Ωl =
{
ωl(ei) : ei ∈ R

}
of order n (See Chapter3, Theorems 3.1.2, 3.2.1)

where

ωl(e) ∨ ωl(f) = ωl(h(1− f) + f) and ωl(e) ∧ ωl(f) = ωl(e(1− h))

The maps

(ωl(1− e);ωl(e)), (ωl(1− e);ωl(e))′ : Ωl −→ Ωl defined by

(ωl(1− e);ωl(e))(x) −→ ωl(e) ∧ (ωl(1− e) ∨ x)
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and

(ωl(1− e);ωl(e))(x) −→ ωl(1− e) ∨ (ωl(e) ∧ x)

are idempotent order preserving normal mappings. We denote by P (Ωl)

the subsemigroup of S∗(Ωl) which is generated by these idempotent

normal mappings (ωl(1− e);ωl(e)) defined as in [28]. Then

EP (Ωl) =
{

(ωl(1− e), ωl(e)) : ωl(1− e) ∨ ωl(e) = 1, ωl(1− e) ∧ ωl(e) = 0
}
.

EP (Ωl) is the biordered set of the semigroup P (Ωl) and it can be eas-

ily seen that EP (Ωl) has elements (ωl(1 − ei);ω
l(ei)) : i = 1, 2, . . . , N

satisfying all the properties of E0
P (L).

The next lemma gives a biorder isomorphism between the biordered

set of idempotents in the ring R and the biordered set EP (Ωl).

Lemma 4.1.5. Every idempotent e in a ring R is associated with

a pair (ωl(1 − e);ωl(e)) of complementary biorder ideals in ER. The

map ε : ER −→ EP (Ωl) defined by ε(e) = (ωl(1 − e);ωl(e)) is a biorder

isomorphism.

Proof. For each e ∈ ER, (ωl(1− e);ωl(e)) is a complementary pair

in the lattice Ωl and the mapping

ε : e −→ (ωl(1− e);ωl(e)) for all e ∈ ER

is a map of ER into EP (Ωl). The map ε is clearly injective. It follows

from the definition of biordered set [[25], Definition 1] and the equation

1 in Theorem(1) [28] that the map ε preserve basic products and hence

ε : ER −→ EP (Ωl) is a biorder isomorphism. Also, it can be easily seen

that this map ε is a regular bimorphism.

Thus we have EP (Ωl) and ER are biorder isomorphic. Now we show

that there exists elements e1, e2, . . . , eN in ER satisfying all the condi-

tions of E0
P (Ωl)

.
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Consider E0
P (Ωl)

. Then there are elements ((ωl(1 − ei);ω
l(ei) : i =

1, 2, . . . , N) such that

1. ωl(1− ei) ≤ ωl(ei) for i 6= j

2. (ωl(1−e1);ωl(e1))⊕(ωl(1−e2);ωl(e2))⊕. . .⊕(ωl(1−eN);ωl(eN)) =

(0; 1)

3. dl((ω
l(1− ei);ωl(ei)), (ω

l(1− ej);ωl(ej))) = 3

Since EP (Ωl) and ER are biorder isomorphic, corresponding to each

((ωl(1− ei);ωl(ei) : i = 1, 2, . . . , N), there exists elements e1, e2, . . . , eN

such that

1. ωl(1 − ei) ≤ ωl(ej) for i 6= j implies (ωl(1 − ei);ω
l(ei))(ω

l(1 −
ej);ω

l(ej)) = {(0; 1)}. But ωl(1− ei) ≤ ωl(ej) implies 1− ei ωl ej

thus ei ω
r (1− ej) and so eiej = 0 for i 6= j.

The second condition implies

2. (ωl(1− e1);ωl(e1))⊕ . . .⊕ (ωl(1− eN);ωl(eN)) = (0;ωl(1)) which

implies ωl(e1) ∨ ωl(e2) ∨ . . . ∨ ωl(eN) = ωl(1). But we have from

Lemma 3.2.3, eiej = 0 for i 6= j implies ωl(e1) ∨ ωl(e2) ∨ . . . ∨
ωl(eN) = ωl(e1+e2+. . .+eN) = ωl(1) and hence e1+e2+. . .+eN =

1.

3. dl((ω
l(1 − ei);ω

l(ei)), (ω
l(1 − ej);ω

l(ej))) = 3 implies there ex-

ists elements (ωl(1 − ei);ω
l(ei))L (ωl(1 − eh);ωl(eh))R (ωl(1 −

ek);ωl(ek))L(ωl(1− ej);ωl(ej)). Therefore, by definition of L and

R, ωl(ei) = ωl(eh) and ωl(1−eh) = ωl(1−ek) and ωl(ek) = ωl(ej).

But ωl(1− eh) = ωl(1− ek) implies ωr(eh) = ωr(ek). Thus we get

eiLehRekLej and hence dl(ei, ej) = 3.

Since E0
P (Ωl)

is a biorder subset of EP (Ωl), and corresponding to each

element in EP (Ωl), there exists elements in ER satisfying all the con-

ditions of E0
P (Ωl)

, as shown above, we have E0
P (Ωl)

and ER are biorder

isomorphic.
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4.2 Von Neumann coordinatisation Theorem and

its analogue

A coordinatisation theorem is a statement that expresses a class of

geometric objects in algebraic terms. See for example the classical

coordinatisation theorem of Arguesian affine planes(cf [1], page 101).

This idea was extended to the coordinatisation of modular lattices by

regular rings due to von Neumann [23].

Von Neumann’s Coordinatisation Theorem:

Theorem 4.2.1. If a complemented modular lattice L has a span-

ning finite homogeneous basis with at least four elements, then there

exists a von Neuman regular ring R such that L is isomorphic to the

lattice of all principal right[left] ideals of R.

In the previous section, we have shown that if a complemented

modular lattice L admits the biordered subset E0
P (L) consisting of N

elements, then L has a homogeneous basis of order N . Thus analogous

to von-Neumann’s coordinatization theorem, we have the following the-

orem:

Theorem 4.2.2. Let L be a complemented modular lattice admit-

ting a biordered subset with at least 4 elements, having the following

properties:

1. vi ≤ nj for i 6= j

2. (n1; v1)⊕ (n2; v2)⊕ . . .⊕ (nN ; vN) = (0; 1)

3. dl((ni; vi), (nj; vj)) = 3 for i 6= j,

then there exists a von Neumann regular ring R such that L is isomor-

phic to the lattice of all principal left ideals of R.
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In the following, we provide some examples of complemented modu-

lar lattice L with biordered set EP (L) admitting biordered subsets E0
P (L)

having 2 elements.

Example 4.2.1. Consider the lattice M3 = {0, 1, a1, a2, a3}

1

a1 a2 a3

0

The biordered set

E(M3) = {(a1; a2), (a2; a3), (a1; a3), (a2; a1), (a3; a2), (a3; a1), (0; 1), (1; 0)}

and the biorder relations are as follows:

(a1; a2)L(a3; a2), (a2; a1)L(a3; a1), (a1; a3)L(a2; a3)

and

(a1; a2)R(a1; a3), (a2; a3)R(a2; a1), (a3; a1)R(a3; a2)

The egg-box picture of this biordered set is as follows:

(a1; a2) (a1; a3)
(a2; a1) (a2; a3)
(a3; a1) (a3; a2)

This lattice M3 has a homogeneous basis of order 2, since the

biordered subset E0
P (L) has only 2 elements {(a1; a2), (a2; a1)}. Recall

the matrix ring M2(Z2) as in (Chap.2, Example 2.1.1). The egg-box

picture of the idempotents of this ring is the following:



88 Chapter 4. Biordered Sets and Complemented Modular Lattices

1
e6 e5

e3 e1

e4 e2

0

It is easily seen that these two biordered sets E(M3) and E(M2(Z2))

are isomorphic. As seen in Chapter 3, Example 3.2.1 that the ωl-ideal

of the ring M2(Z2) is the complemented modular lattice M3. Therefore,

the lattice M3 is coordinatised by the ring M2(Z2).

Example 4.2.2. Consider the lattice M4 = {0, 1, a1, a2, a3, a4}

1

a1 a2 a3 a4

0

The biordered sets of M4 is the following:

(a1; a2) (a1; a3) (a1; a4)
(a2; a1) (a2; a3) (a2; a4)
(a3; a1) (a3; a2) (a3; a4)
(a4; a1) (a4; a2) (a4; a3)

It can be seen from the biordered subset E0
P (L) that the lattice M4

also has a homogenoeous basis of order 2. Consider the ring M2(Z3)

and the biordered set of M2(Z3) is
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1
e11 e81 e31

e46 e37 e28

e69 e20 e34

e8 e2 e5

0

Here also it is easy to observe that the biordered sets E(M4) and

E(M2(Z3)) are isomorphic. The lattice of biorder ideals of the ring

M2(Z3) is the lattice M4 given below:

ER

ωl(e2) ωl(e37) ωl(e8) ωl(e28)

0

Thus M2(Z3) is coordinatised by M4.

Example 4.2.3. Consider the lattice M5 = {0, 1, a1, a2, a3, a4, a5}

1

a1 a2 a3 a4 a5

0
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has a homogenoeous basis of order 2. The biordered sets of M5 is the

following:

(a1; a2) (a1; a3) (a1; a4) (a1; a5)
(a2; a1) (a2; a3) (a2; a4) (a2; a5)
(a3; a1) (a3; a2) (a3; a4) (a3; a4)
(a4; a1) (a4; a2) (a4; a3) (a4; a5)
(a5; a1) (a5; a2) (a5; a3) (a5; a4)

Consider the ring M2(F4) where F4 is the field of order 4 defined

by F4 = {0, 1, β, β + 1} where β is a root of x2 + x + 1, x ∈ Z2. The

idempotents of this matrix ring is as follows:

0 =

[
0 0

0 0

]
, e1 =

[
1 0

0 0

]
, e2 =

[
0 0

0 1

]
, e3 =

[
0 1

0 1

]
,

e4 =

[
0 0

1 1

]
, e5 =

[
0 β

0 1

]
, e6 =

[
0 β2

0 1

]
, e7 =

[
0 0

β 1

]
,

e8 =

[
0 0

β2 1

]
, e9 =

[
1 1

0 0

]
, e10 =

[
1 0

1 0

]
, e11 =

[
1 β

0 0

]
,

e12 =

[
1 β2

0 0

]
, e13 =

[
1 0

β 0

]
, e14 =

[
1 0

β2 0

]
, e15 =

[
β 1

1 β2

]
,

e16 =

[
β2 1

1 β

]
, e17 =

[
β β

β2 β2

]
, e18 =

[
β2 β2

β β

]
, e19 =

[
β β2

β β2

]
,

e20 =

[
β2 β

β2 β

]
, 1 =

[
1 0

0 1

]
,

and the biordered set of M2(F4) is
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1
e14 e18 e15 e5

e8 e4 e7 e2

e19 e10 e20 e3

e16 e13 e17 e6

e11 e1 e9 e12

0

Here also it is easily seen that the biordered sets that E(M5) and

E(M2(F4)) are isomorphic and the lattice of biorder ideals of E(M2(F4))

is M5.

Example 4.2.4. Consider the following lattice.

1

a1 a2 a3 a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14

0

The complementary pairs of this lattice are:

(a1; a8), (a4; a8), (a5; a8), (a6; a8), (a1; a11), (a2; a11), (a7; a11), (a5; a11),

(a1; a12), (a2; a12), (a3; a12), (a6; a12), (a1; a14), (a3; a14), (a4; a14), (a7; a14),

(a2; a9), (a3; a9), (a4; a9), (a5; a9), (a2; a13), (a4; a13), (a7; a13), (a6; a13)
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(a3; a10), (a5; a10), (a6; a10), (a7; a10), (a8; a1), (a8; a4), (a8; a5), (a8; a6),

(a11; a1), (a11; a2), (a11; a7), (a11; a5), (a12; a1), (a12; a2), (a12; a3), (a12; a6)

(a14; a1), (a14; a3), (a14; a4), (a14; a7), (a9; a2), (a9; a3), (a9; a4), (a9; a5)

(a13; a2), (a13; a4), (a13; a7), (a13; a6), (a10; a3), (a10; a5), (a10; a6), (a10; a7)

and the eggbox picture of the biordered set of this lattice is given in

page 93:

Consider the elements {a10, a11, a13} in the lattice L. It is easily

seen that these elements are independent in this lattice and hence the

biordered set EP (L) has a biordered subset

E0
P (L) = {(a3; a10), (a1; a11), (a4; a13)}

Thus this lattice has a homogenoeus basis with 3 elements and so the

lattice L is of order 3. Also from Example 3.2.2, it is evident that this

lattice is coordinatised by the ring M3(Z2).



4.2. Von Neumann coordinatisation Theorem and its analogue 93

(a
1
;a

8
)

(a
1
;a

1
1
)

(a
1
;a

1
2
)

(a
1
;a

1
4
)

(a
2
;a

9
)

(a
2
;a

1
1
)

(a
2
;a

1
2
)

(a
2
;a

1
3
)

(a
3
;a

9
)

(a
3
;a

1
0
)

(a
3
;a

1
2
)

(a
3
;a

1
4
)

(a
4
;a

8
)

(a
4
;a

9
)

(a
4
;a

1
3
)

(a
4
;a

1
4
)

(a
5
;a

8
)

(a
5
;a

9
)

(a
5
;a

1
0
)

(a
5
;a

1
1
)

(a
6
;a

8
)

(a
6
;a

1
0
)

(a
6
;a

1
2
)

(a
6
;a

1
3
)

(a
7
;a

1
0
)

(a
7
;a

1
1
)

(a
7
;a

1
3
)

(a
7
;a

1
4
)

(a
8
;a

1
)

(a
8
;a

4
)

(a
8
;a

5
)

(a
8
;a

6
)

(a
9
;a

2
)

(a
9
;a

3
)

(a
9
;a

4
)

(a
9
;a

5
)

(a
1
0
;a

3
)

(a
1
0
;a

5
)

(a
1
0
;a

6
)

(a
1
0
;a

7
)

(a
1
1
;a

1
)

(a
1
1
;a

2
)

(a
1
1
;a

5
)

(a
1
1
;a

7
)

(a
1
2
;a

1
)

(a
1
2
;a

2
)

(a
1
2
;a

3
)

(a
1
2
;a

6
)

(a
1
3
;a

2
)

(a
1
3
;a

4
)

(a
1
3
;a

6
)

(a
1
3
;a

7
)

(a
1
4
;a

1
)

(a
1
4
;a

3
)

(a
1
4
;a

4
)

(a
1
4
;a

7
)



94 Bibliography



Bibliography

[1] E. Artin: Geometric Algebra, Interscience Publishers INC, New

York , ISBN: 9780470034323

[2] Clifford Bergman: Universal Algebra Fundamentals and Selcted

Topics, CRC Press, ISBN: 978-1-4398-5129-6

[3] A. H. Clifford and G. B. Preston : The Algebraic Theory of Semi-

groups, Volume 1 Math. Surveys of the American. Math. Soc.7, Prov-

idence, R. I. 1964.

[4] T. S. Blyth: Lattices and Ordered Strusctures, (Springer) ISBN 1-

85233-905-5

[5] David Easdown: Biordered sets comes from semigroups, Journal of

Algebra, 96, 581-591, 87d:06020 1985.

[6] David Easdown: Biordered sets of rings, Monash Conference on

Semigroup Theory(Melbourne, 1990), 43-49, World Sci. Publ., River

Edge, NJ, MR1232671 1990

[7] George Gratzer: General Lattice Theory, Birkhuser Verlag, Basel,

ISBN 3-7643-6996-5

[8] M. P. Grillet and P. A. Grillet : Completely 0-Simple Semirings,

Transactions of the American Mathematical Society Vol 155, Num-

ber 1, 1971.

95



96 Bibliography

[9] P. A. Grillet : The structure of regular semigroups. I. A represen-

tation, Semigroup Forum 8, 177-183, 1974.

[10] P. A. Grillet : The structure of regular semigroups. II. Cross-

Connections, Semigroup Forum 8, 254-259 1974.

[11] P. A. Grillet : The structure of regular semigroups. III. The reduced

case, Semigroup Forum 8, 260-265, 1974.

[12] P. A. Grillet : Semigroups : An Introduction to the Structure

Theory, Monographs and Textbooks in Pure and Applied Mathe-

matics,193. Marcel Dekker Inc, New York, 1995.

[13] T. E. Hall : On Regular Semigroups J. Algebra 24, 1-23, 1973.

[14] Peter. M. Higgins : Techniques of Semigroup Theory, Oxford Sci-

ence Publications. The Clarendon Press, Oxford University Press,

New York 1992.

[15] J. M. Howie : An Introduction To Semigroup Theory, Academic

Press Inc. (London) ISBN: 75-46333, 1976.

[16] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon

Press, Oxford (New York). ISBN: 0-19-851194-9, 1995

[17] Jan Okinski, Semigroup of Matrices, World Scientific Publishing

Co. Pvt. Ltd, ISBN 981-02-3445-07

[18] Alexander James : Structure of Regular Rings,(PhD Thesis), Uni-

versity of Kerala (Kerala) 2004.

[19] Mark. V. Lawson : Inverse Semigroups The Theory Of Partial

Symmetries, World Scientific Publishing Co. Pt. Ltd, Singapore,

1998.

[20] Mark V. Lawson :Rees Matrix Semigroups, Proceedings of the Ed-

inburgh Mathematical Society 1990.



Bibliography 97

[21] W. D. Munn : Uniform semilattices and bisimple semigroups,

Quart. J. Math. Oxford Ser. 17, 151-159, 1966.

[22] W. D. Munn : Fundamental inverse semigroups, Quart. J. Math.

Oxford Set. 21, 157-170, 1970.

[23] John von Neumann: Continuous Geometry, Princeton University

Press, Princeton, New Jersey, ISBN-13:987-069105893 1960

[24] John von Neumann: On Regular Rings, Proc. N. A. S. Vol.22,

701-713 1936

[25] K.S.S. Nambooripad: Structure of Regular Semigroups (MEM-

OIRS, No.224), American Mathematical Society, ISBN-13: 978-0821

82224 December 1979

[26] K.S.S. Nambooripad: Structure of Regular Semigroups, Doctoral

Dissertation, University of Kerala, Trivandrum, India 1973.

[27] K.S.S. Nambooripad: Structure of Regular Semigroups,I, Funda-

mental regular semigroups, Semigroup forum 9, 1975.

[28] F.Pastjin: Biordered sets and complemented modular lattices,

Semigroup Forum Vol.21, 205-220, 1980.

[29] P. G. Romeo and R Akhila: Additive Biordered Set Derived from

a Ring, Southeast Asian Bulletin Of Mathematics 2016 (accepted).

[30] P. G. Romeo and R Akhila: Biorder Ideals and Regular Rings,

Algebra and its Applications, Springer Proceedings in Mathematics

and Statistics, ICSAA, Aligarh, 2014 Vol 174, ISSN 2194-1017, 265-

274.

[31] P. G. Romeo and R Akhila: On the Biordered Set of Rings, Malaya

Journal of Mathematik, Vol.4, No.3, 463-467, 2016.

[32] P. G. Romeo and R Akhila: Rees Matrix Semirings, Advances in

Algebra, ISSN 0973-6964 Vol.7, No.1, 13-19, 2014.



98 Bibliography

[33] Skornyakov L. A.: Complemented Modular Lattice and Regular

Rings, Oliver and Boyd, 1964.



Publications

• P. G. Romeo and R Akhila: Additive Biordered Set Derived

from a Ring, , Southeast Asian Bulletin Of Mathematics, (2018)

42: 111-116.

• P. G. Romeo and R Akhila: Biorder Ideals and Regular

Rings, Algebra and its Applications, Springer Proceedings in

Mathematics and Statistics, ICSAA, Aligarh, 2014 Vol 174, ISSN

2194-1017, 265-274.

• P. G. Romeo and R Akhila: On the Biordered Set of Rings,

Malaya Journal of Mathematik, Vol.4, No.3, 463-467, 2016.

Papers presented
• P. G. Romeo and R Akhila: Biorder Ideals of Regular Rings,

International conference of Algebra and its Applications, Aligarh

Muslin University, Aligarh, India 15-17, December 2014.

• R. Akhila and P. G. Romeo: Complemented Modular Lat-

tice of Regular Rings, International Conference of Semigroups,

Algebra and its Applications, 17-19, September 2015.

• R. Akhila and P. G. Romeo: Rings and Distributive Lattices,

International seminar on Algebra and Coding Theory, 8-10, Jan-

uary 2017

99





Scope of Further Study

In this thesis the biordered sets (both additive and multiplicative) of

a regular ring are described. But the converse problem of constructing

a regular ring from the biordered set of idempotents was successfully

done only for some very special class of rings. So one can look into this

problem for various classes of rings.

It is shown that the biorder ideals of a regular ring is a comple-

mented modular lattice and an analogous theorem to von Neumann’s

coordinatization theorem is provided. But the actual construction of

the ring coordinatizing the lattice using biordered sets (independent of

von Neumann’s construction of L- numbers) is yet to achieve.

In chapter 4, we provide some examples for biordered sets of lattices

of order two and three. But the existence of the biordered set does not

guarantee the coordinatization of the lattices of order less than 4. This

demands further study in this direction.
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