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Chapter 1

Preliminaries

1.1 Introduction

The statistical data that measure time to occurrence of some event is referred to as

lifetime data, also called failure time data or survival data. Such data correspond

to the time from a well-defined time origin until the occurrence of some particular

event of interest or end-point, which marks the termination of the experiment. In

medical research, the time origin may often corresponds to the recruitment of an

individual into a c1inical trial to compare two or more treatments and the event of

interest may be the time to the diagnosis of a particular condition, or the occurrence

of some adverse event, or the time when a disease symptom subsided significantly,

or the end-point which is the death of a patient. In an engineering study, one may

be interested in observing the event of failure of an electronic component from the

time when it was put on test. The branch of statistics that deals with modelling

and analysis of lifetime data is referred to as survival analysis or reliability analysis.

Survival analysis concerns with the models for the lifetime data from medical and

biological studies, whereas reliability theory discusses the models for lifetime of

components and systems in engineering studies. The origin of survival analysis

might be attributed to the early work on mortality tables centuries ago. A major

1
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advance in the field of survival analysis took place in the later of twentieth century.

Over the past few decades, there has been considerable progress in the research

for analyzing events observed over time, largely motivated by problems arising in

the analysis of data from clinical trials in medical research. Survival analysis has

found its applications in many areas including medicine, biology, public health,

epidemiology and economics.

The definition of lifetime, as mentioned earlier, includes a time scale, time

origin and the specification of the event that determines the lifetime. The lifetime

or failure time is usually considered as a nonnegative real valued random variable.

The analysis of lifetime data are not amenable to conventional statistical procedures

because of its special features like censoring and truncation, which are discussed in

a forthcoming section.

We now give some examples of lifetime data that arise in different practical

situations.

Example 1.1. One early example of the use of survival methods is found in the

work by Turnbull et al. (1974). The study describes the survival experience and

identification of risk factors associated with patients requiring heart transplants.

The ultimate aim of a heart transplant programme is to restore the patient to the

level of risk of his or her healthy contemporaries of the same age. In this heart

transplant programme, patients are assessed for transplant and then, if suitable,

have to await a donor heart. One consequence of this wait is that patients may die

before a suitable donor has been found. For such patients, the waiting time from the

date of assessment of suitability until death is considered as their lifetime. For those

who receive a transplant their survival time is measured from the date of assessment
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of suitability and consists of their waiting time to transplant, plus their survival time

from their transplant until death.

Example 1.2. Nash et al. (1990) considered a group of patients with severe pain due

to some disease. The patients were given transcutaneous electrical nerve stimulus

(TENS) treatments for relieving pain. The study was intended to compare the value

of high as opposed to low frequency TENS for the relief of pain in a randomised

trial. They measured the time taken, from the date of randomisation for the patients

to achieve a 50% reduction in pain levels as compared to those levels recorded at

admission to the trial, where pain was measured using a visual analogue scale. This

elapsed time is considered as the lifetime of the patient.

Example 1.3. A standard experiment in the investigation of carcinogenic sub-

stances is one in which laboratory animals are subjected to doses of the substance

and then observed to see if they develop tumors. The main variable of interest is

the time to appearance of a tumor, measured from when the dose is administered

(Lawless (2003)).

Example 1.4. Suppose that we are interested in studying patients with systemic

cancer who subsequently develop a brain metastasis, our ultimate goal is to prolong

their lives by controlling the disease. A group of patients, treated with radio therapy,

were followed from first day of their treatment until the recurrence of original tumor.

In this study, lifetime is defined as the time to recurrence of tumor for each patient

(Le (1997)).
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1.2 Basic Concepts

Let T be a nonnegative random variable representing the lifetime of an individual

in a population. Let the distribution function of T be given by F (t) = P(T ≤ t),

t ∈ R. Assume that F (·) is absolutely continuous with respect to the Lebesgue

measure on the real line R, and that f(·) is the probability density function of

T . We now discuss some fundamental quantities related to the distribution of the

lifetime variate T .

1.2.1 Survival Function

The basic quantity employed to analyze the lifetime data is the survival function,

denoted by S(t). It is defined by

S(t) = P (T > t) =

∫ ∞
t

f(u)du. (1.1)

The function S(t) measures the probability of an individual surviving beyond time

t and S(t) = 1 − F (t). Note that S(t) is a non-increasing function with S(0) = 1

and S(∞) = lim
t→∞

S(t) = 0. It may be noted that f(t) = −dS(t)
dt

. In the context of

reliability analysis, S(t) is referred to as the reliability function.
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1.2.2 Hazard Rate

One of the basic concepts associated with the lifetime distribution is the hazard

rate h(t), which is defined by

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t |T ≥ t)

∆t
. (1.2)

The hazard rate specifies the instantaneous rate of failure or death of an individual

at time t, given that the individual survives at least t units of time. Thus h(t)∆t

is the approximate probability of failure in [t, t + ∆t), given survival of at least t

units of time. The hazard rate is sometimes referred to as hazard function or force

of mortality.

Note that h(t) is a nonnegative function and is related to the survival function and

probability density function by the identity

h(t) = −d log(S(t))

dt
=
f(t)

S(t)
. (1.3)

The cumulative hazard function, denoted by H(t) is defined as

H(t) =

∫ t

0

h(u)du. (1.4)

It is well known that h(t), or equivalently H(t), determines the distribution uniquely

by the identity

S(t) = exp(−H(t)) = exp
(
−
∫ t

0

h(u)du
)
. (1.5)
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1.3 Censoring

The main feature of survival data that renders standard statistical inference meth-

ods inappropriate is that lifetimes are frequently censored. The survival time of an

individual is said to be censored when the information about his lifetime is incom-

plete. It may be due to certain unavoidable or uncontrollable circumstances. When

censoring occurs, exact lifetimes are known only for a portion of the study subjects,

and lifetimes for remaining individuals are known only to belong to a subset of

the support of T . For example, in medical studies, patients in a clinical trial may

withdraw from the study, or the study may need to be terminated at a prefixed

time point. In such situations, only a partial information about the lifetimes are

known for those censored cases. There are various categories of censoring that oc-

cur naturally in observation schemes. The well known censoring schemes are right

censoring, left censoring, interval censoring, double censoring etc. We now give a

short survey of these schemes of censoring.

1.3.1 Right Censoring

Assume that a group of individuals are put on statistical investigation and are

continuously observed for a possible occurrence of a certain event of interest. The

resulting set of observations often include some individuals who do not fail during

their observation period and the data on these individuals are said to be right

censored. In such situations the lower bounds of the lifetimes are available for some

individuals. Thus right censoring may occur when the life test terminates before all
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individuals fail, or when the individuals in a prospective study are lost to follow up

because they move away from the region (Lawless (2003)).

Example 1.5. Prentice (1973) discussed the data on 40 lung cancer patients taken

from a study designed to compare the effect of two chemotherapy treatments in

prolonging survival time. All patients in the study were received prior therapy and

then randomly assigned to one of the two treatments termed standard and test.

Survival times are measured in days from the start of the treatment for each patient.

Observations corresponding to the patients who were still alive at the time of data

collection are considered to be right censored.

There are different forms of right censoring in practice. Some of them are Type

I censoring, Type II censoring and independent random censoring schemes. We give

a brief description of these schemes below.

(i) Type I Censoring: Suppose we fix a specific time point to terminate the

experiment. In Type I censoring, the event of interest is observed only if it occurs

prior to this pre-specified time. Let there be n individuals under investigation.

Each individual has a fixed potential censoring time Ci > 0 such that the lifetime

Ti is observed if Ti ≤ Ci, otherwise we only know that Ti > Ci, i = 1, 2, ..., n. For

example, consider a clinical trial concerning the duration of remission for patients

with leukemia, which was planned to run for one year with patients entering the

trial over that period. The lifetime variable Ti of the i’th patient is the duration of

the remission measured from time of entry to the study, and Ci would be the time

between the date of entry and the end of the study (Lawless (2003)).

(ii) Type II Censoring: Here, unlike the previous case, we don’t fix the upper

bound for the experiment duration, but we fix the number of individuals, say r, (r ≤



Preliminaries 8

n) that should fail to mark the end of the experiment, where n is the total number of

individuals that are put on test. That is, in Type II censoring, the study continues

until the r smallest lifetimes in a random sample of size n are observed, and r is

chosen before the experiment begins. A significant advantage of type II censoring

is that, we know the number of observed lifetimes in advance. Such a censoring

scheme is often found in a life testing experiment, where the experiment stops when

the first r units under investigation fails. Thus, the r smallest lifetimes are observed

and the rest are right censored.

(iii) Independent Random Censoring: In independent random censoring, each

individual is assumed to have a lifetime T and a censoring time C, where T and

C are independently distributed continuous random variables. This implies that

the censoring time C is non-informative in analyzing the lifetime T . The observed

vector will be (X, δ), where X = min(T,C) and the censoring indicator δ is defined

in such a way that δ = 1 if T ≤ C, and δ = 0 otherwise.

1.3.2 Left Censoring

Left censoring occurs when the event of interest has already occurred for certain

individuals before they enter into the study. For others, the exact event time is

observed. In such contexts, for those who are censored, the exact values of the

lifetime are not observed, but only the upper bounds of the lifetimes are recorded.

Example 1.6. If we follow individuals until they become HIV positive, we may

record a failure when an individual first tests positive for the virus. However, we

may not know exactly the time of first exposure to the virus, and therefore we do

not know exactly when the failure occurred. Thus, the lifetime is left censored since
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the true lifetime, which ends at exposure, is shorter than the follow up time, which

ends when the individual tests positive.

1.3.3 Interval Censoring

Interval censored data arise when the exact lifetime is not observable, but we know

that it lies in an interval of time points obtained from a sequence of examination

times. Here the study subject, or failure time processes of interest, is not under

continuous observation. Consequently the event times are neither observed exactly

nor right censored. Thus individuals are known to have experienced the event of

interest within an interval of time, but observations are taken intermittently. More

generally, one could define an interval censored observation as a union of several

non-overlapping windows of time points (Turnbull (1976)).

Interval censored lifetime data occur in many areas including demographical,

epidemiological, financial, medical, and sociological studies. A typical example of

interval censored data occurs in medical or health studies that entail periodic follow-

ups, and many clinical trials and longitudinal studies fall into this category. We

report one such example below.

Example 1.7. Odell et al. (1992) analyses the data set obtained from the Framing-

ham Heart Study, where the ages at which individuals first developed coronary heart

disease (CHD) are usually known exactly. However, the ages of first occurrence of

the subcategory angina pectoris may be known only to be between two consecutive

clinical examinations, approximately two years apart. Such observations would be

interval censored.
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1.3.4 Double Censoring

Let us consider a survival study involving two related events E1 and E2, and let

their times of occurrences be T1 and T2 respectively with P (T1 ≤ T2) = 1. Assume

that the survival time of interest is the inter-occurrence time, say T = T2 − T1.

When the observations on both T1 and T2 are interval censored, we say that the

survival time T is doubly censored or doubly interval censored (De Gruttola and

Lagakos (1989), Sun (1995), Sun (2004)). This means that instead of observing T1

and T2 exactly, one only observes two intervals, say (U1, V1] and (U2, V2] such that

T1 ∈ (U1, V1] and T2 ∈ (U2, V2], where U1 ≤ V1 and U2 ≤ V2 with probability 1, and

U1 ≤ U2 and V1 ≤ V2 with probability 1. In other words, the observations on T

are doubly censored. In biomedical studies, we often come across a special type of

doubly censored data in which T2 is only right censored. In this case, one has either

U2 = V2 or V2 =∞. Doubly censored failure time data are often found in a disease

progression study, where the two events may be thought of as an infection and the

subsequent onset of a certain disease respectively. In the following, we report one

such example.

Example 1.8. Kim et al. (1993) analyzed AIDS data, where inter-occurrence time

between two related events namely, HIV seroconversion and AIDS diagnosis times

are of interest. Let T1 and T2 denote HIV seroconversion and AIDS diagnosis

times respectively, and T = T2 − T1 be the AIDS incubation time or AIDS latency

time. This incubation time provides information about HIV infection progression

and plays an important role in predicting HIV prevalences. For most AIDS cohort

studies, because HIV infection is usually determined through periodic blood tests,

observations on it are not observed and are commonly interval censored. Also,
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observations on the diagnosis of AIDS could be, for example, right censored due to

the end of the study, thus yielding doubly censored data on T .

Another type of doubly censored data that often arise in situations where both

left censoring and right censoring occur together in a study. The survival time of

interest is observed exactly if it is within a window of time points, and left or right

censored if it is to the left or to the right of the window (Turnbull (1974), Chen

and Zhou (2003), Cai and Cheng (2004)). Here, unlike the doubly interval censored

data, some exact failure times are observed, but if not, they become case I interval

censored data. The data can be represented by a pair of variables (X, δ), where

X = max(min(T,R), L); δ is 1 if X is an event time; 0 if T is right censored; and

−1 if T is left censored. Here L is the time before which some individuals experience

the event and R is the time after which some individuals experience the event. T

will be known exactly if it is less than or equal to R and greater than or equal to L.

The methods of data analysis for these two variants of double censoring are entirely

different. We report a real life example for the latter case below.

Example 1.9. FitzSimmons (1993) describes a biomedical study concerned with

patients with cystic fibrosis. For these patients, the onset of Pseudomonas aerugi-

nosa (PA) is monitored as an important landmark event for lung disease and this

affects the survival rate adversely. Suppose we are interested in observing the age

at which PA infection occurs, which is treated as the lifetime. The patients with

cystic fibrosis enrolled in the study may either have developed PA infection before

they enter the follow up study, or they may not develop PA infection by the end

of follow up. The first situation renders left censoring and the second one causes

right censoring. Also exact lifetimes are observable for those who develop the PA
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infection in between the entry time and end of study. This poses a double censoring

scenario.

For an elaborate discussion on different schemes of censoring, one may refer to

Lawless (2003), Klein and Moeschberger (2005), and Sun (2006).

1.3.5 Middle-censoring

Middle-censoring introduced by Jammalamadaka and Mangalam (2003) occurs in

situations where a data point becomes unobservable if it falls inside a random cen-

soring interval. In such situations, the exact lifetimes are available for some indi-

viduals, and for others random censoring intervals within which the true lifetimes

belong are observed. To be more precise, let T be the random variable representing

the lifetime of interest and let (U, V ) be a bivariate random variable representing

the censoring interval such that P (U < V ) = 1. Under the middle-censoring set up,

the exact lifetime T becomes unobservable if T ∈ (U, V ) and in such instances we

only observe the censoring interval (U, V ). On the other hand, exact observation

on T will be available if T /∈ (U, V ).

Jammalamadaka and Mangalam (2003) describe middle-censoring scheme as

an important variation and generalization of censoring, since left censoring, right

censoring are special cases of this middle-censorship by suitable extensions of the

endpoints of the censoring interval. Middle-censoring, where a random middle part

is missing, appears at a first glance as complementary to the idea of double censoring

(Turnbull (1974)), where the middle part is what is actually observed. However,

if we consider these two schemes carefully, along with the resulting data sets, they
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turn out to be quite distinct ideas. Middle-censoring scheme is related to the mixed

interval censoring scheme (Yu et al. (2001)), which includes interval censored data

together with few exact lifetimes. Even though these two observation schemes are

entirely different, they produce similar data sets under certain restrictions. A nice

account of this is available in Shen (2011). Following are few situations where one

can come across middle-censoring scheme.

Example 1.10. In an early childhood learning center, interest often focuses upon

testing children, to determine the age at which a child learns to accomplish certain

skill. The age at which a child acquires the skill would be considered as the lifetime.

Let us envisage a scenario where there are no late entries, which correspond to cases

where the child already learned the skill before entering the study, and losses, which

correspond to the cases where the child had not acquired the skill by the end of the

study. Assume further that during a fixed time interval the observations were not

possible, perhaps due to a sudden outbreak of war, or a natural calamity etc. If

some children of varying ages develop the skill during this period of closure, we are

unable to observe the exact lifetime T of skill development, rather we have only the

information that the development occurred during a certain time interval (U, V ).

Example 1.11. In a prognostic study, the patients under observation may be with-

drawn from the study for a short period of time for some unforeseen reasons and

may return to study with a changed status of event of interest. This causes the exact

event time to become unobservable, but gives the information that it is contained in

some censoring interval. For those who were not missing, the exact event times are

recorded. Thus, the observed data consists of both exact observations and censoring

intervals, leading to a middle-censored set up.
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Example 1.12. In the case of reliability applications, suppose an experimenter

observes several mechanical components of a large machine, which is subject to

replacement of failed components. Suppose that the lifetime of interest is the exact

time duration (in hours) of components at work. If the experimenter accidentally

miss to observe a few of them for a short period of time and they happen to fail

during that particular time period, he only knows that those lifetimes belong to the

censoring interval. For other components, exact times of failure are observed. The

resulting data set is also middle-censored.

One important feature that can be noted in all these examples is that, in

each case, although the unobserved time interval is a fixed one, it is indeed a ran-

dom interval relative to the individual’s lifetime of interest. Moreover, one can

observe that the middle-censoring scheme is totally different from the scheme of

interval censoring. This is because of the fact that under interval censoring, one

never observes an exact lifetime and always observes the censoring events, as we

see in Example 1.7. But under middle-censoring, since the individuals are under

continuous observations, it is possible to observe exact lifetimes for some of the

individuals. In Example 1.7, we stated that the ages of first occurrence of angina

pectoris are known only to be between two consecutive clinical examinations, and

these examination times are, in effect, serving as censoring events. Therefore exact

age of first occurrence of angina pectoris remains totally unobservable. Beadle et al.

(1984) report a retrospective study to compare the cosmetic effects of radiotherapy

alone versus radiotherapy and adjuvant chemotherapy on women with early breast

cancer. In this study, the patients were observed initially every 46 months, and

when their recovery progressed, the interval between visits lengthened. Here the

event of interest was the first appearance of moderate or severe breast retraction,



Preliminaries 15

a cosmetic deterioration of the breast. For a patient, the exact time of retraction

is known to fall only in the interval between visits, and the exact event time is

never known. Thus the lifetimes of patients in this study are interval censored. In

both these examples, the study subjects are observed intermittently, and hence only

censoring events are observed. This feature distinguishes interval censoring scheme

from middle-censoring scheme. Under middle-censoring scheme, since the subjects

are continuously observed, except possibly within a random censoring interval, it is

possible to observe exact lifetimes for some of the subjects, in which case we observe

lifetime along with the censoring indicator, say, δ = 1. For the rest, we observe cen-

soring intervals along with δ = 0. In view of these examples, it is apparent that

the characteristics of middle-censoring and interval censoring schemes are entirely

different, and they produce different types of data sets.

1.4 Truncation

Truncation is another feature in lifetime data observation schemes. Under trunca-

tion, an individual enters the study if and only if the corresponding lifetime exceeds

some threshold value, say t0. Therefore, if an individual enters the study, we observe

the corresponding threshold value t0 along with its lifetime or censoring time as the

case may be. Individuals who do not enter the study are totally unobserved, and

the experimenter doesn’t know even their existence. Often truncation is observed

along with different forms of censoring. The situation described here is known as

left truncation. Other truncation schemes, like right truncation and double trun-

cation, are also observed in practice. For a concise description and some practical

examples, one could refer to Lawless (2003).
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1.5 Inference Procedures

The inference procedures employed for the analysis of lifetime data can be broadly

classified into three methods namely parametric, semiparametric, and nonparamet-

ric methods. In parametric approach, we assume that the lifetime variate T has

a probability density function f(t,ϑ), where f(t,ϑ) has a specified known func-

tional form, but the parameter vector ϑ is unknown. Various parametric families

of distributions are used in the analysis of lifetime data. In the continuous set up,

exponential, gamma, Weibull, inverse Weibull, lognormal, log-logistic, Pareto and

inverse Gaussian are the most widely used lifetime distributions. The estimation of

the parameters is done by different procedures such as method of maximum likeli-

hood, method of moments, Bayesian techniques etc. For a comprehensive review on

parametric models, one may refer to Martz and Waller (1982), Sinha (1986), and

Lawless (2003) among others.

In many practical situations, the lifetime data may not meet the assumptions of

a parametric model. In such contexts, semiparametric or nonparametric methods

are employed. Semiparametric methods do not make any assumption about the

underlying form of the lifetime distribution, but make some postulations on the

failure process. In contrast, nonparametric methods allow a completely distribution

free approach.
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1.5.1 Nonparametric Estimation Under Right Censoring

When we have a random sample of exact lifetimes, the empirical survival function

given by

ŜESF (t) =
k

n
, (1.6)

where n is the total number of observations, k is the number of observations which

are greater than or equal to t, t ∈ R, provides a nonparametric maximum likelihood

estimator (NPMLE) for the true survival function S(t) of T . When the sample con-

tains censored observations, the estimator (1.6) does not account the information

provided by an individual whose lifetime is censored before time t. Thus, a modifi-

cation to (1.6) becomes necessary. Accordingly, Kaplan and Meier (1958) suggested

a nonparametric estimator for survival function under right censoring.

1.5.1.1 Kaplan-Meier Estimator

Let (Xi, δi) be a random sample of lifetimes under right censoring, where Xi is

either an observed lifetime or a censoring time, and δi is the indicator function

which equals to one if Xi is a lifetime, and 0 otherwise, i = 1, ..., n. Assume that

there are k(≤ n) distinct lifetimes X ′1, ..., X
′
k. Let dj represents the number of deaths

at X ′j. Then the Kaplan-Meier estimator of S(t) is defined as

Ŝ(t) =
∏

j:X′j<t

nj − dj
nj

, (1.7)

where nj is the number of individuals at risk at X ′j, that is those individuals who

are uncensored and alive just prior to X ′j. The estimator (1.7) is often referred
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to as the product limit estimator. It can be noted that this estimator does not

change its value at censoring times. It can be shown that Ŝ(t) is an NPMLE of S(t)

(see Lawless (2003)). When there are no censored observations, Ŝ(t) reduces to the

estimator (1.6). The estimator for the variance of Ŝ(t) is given by

ˆV ar(Ŝ(t)) = Ŝ(t)2
∑
j:X′j<t

dj
nj(nj − dj)

.

1.5.1.2 Nelson-Aalen Estimator

Nelson (1969) proposed a nonparametric estimator of the cumulative hazard func-

tion (1.4). The estimator is given by

Ĥ(t) =
∑
j:X′j≤t

dj
nj
, (1.8)

where dj and nj are defined as in the case of Kaplan-Meier estimator. Ĥ(t) is

sometimes called the empirical cumulative hazard function, but is more commonly

known as the Nelson-Aalen (NA) estimator, as it was reinvented by Aalen in his

doctoral work in 1972. Note that Ĥ(t) is an NPMLE of H(t) (see Lawless (2003)).

The estimator of the variance of Ĥ(t) is given by

ˆV ar(Ĥ(t)) =
∑
j:X′j≤t

dj(nj − dj)
n3
j

.

Using the identity given in (1.5), we can estimate S(t) as

S̃(t) = exp(−Ĥ(t)).
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Both Kaplan-Meier and Nelson-Aalen estimators possess desirable large sample

properties like strong consistency and asymptotic normality. For more properties

of these estimators, one may refer to Lawless (2003).

1.5.2 Bayesian Analysis

We now consider the Bayesian method of estimating the unknown parameter ϑ in

the probability density function f(t;ϑ) of the lifetime variate T . Unlike the fre-

quentist approach of estimation, the Bayesian approach involves the terminology of

subjective probability for representing the uncertainty about ϑ. This term is used

to express our degree of belief about the truth of an event, here observing the true

value of ϑ in a range of its possible values, which is not based on the number of

times it happens in a long series of experiments. Moreover, this subjective probabil-

ity may change when new information is gathered as time evolves. Bayes’ theorem

gives us a formal rule for determining how our probabilities will change when we

acquire new information. Since the parameter ϑ is unknown, we regard it as a ran-

dom variable and our knowledge about this parameter is represented by means of

a probability distribution, called prior distribution, denoted by π0(ϑ). Apart from

the prior believes, we also have information about the unknown parameter con-

tained in the observed sample t1, t2, ..., tn. The term likelihood is used to represent

the probability of the data outcome, given the prior belief, viewed as a function of

the parameter. We usually denote the likelihood function as L(t1, t2, ..., tn|ϑ). This

function is particularly helpful in comparing the relative plausibility of different

parameter values, given the observed data. The prior density π0(ϑ) that we choose

reflects our opinion about ϑ before any data is observed. After the data has been
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observed, more information may be obtained. We incorporate this updated infor-

mation using a probability density function called posterior distribution, denoted

by π(ϑ|t1, t2, ..., tn), which can be written as

π(ϑ|t1, t2, ..., tn) = L(t1, t2, ..., tn|ϑ) · π0(ϑ).

Now the inference on ϑ is made from this posterior distribution, under a properly set

loss function. In practice, such an analysis involves laborious computations which

deter its advancement at an earlier stage. With the advent of sophisticated computa-

tional softwares, the area of Bayesian analysis recorded an immense growth. Several

works on Bayesian analysis of survival data appeared in literature over the past few

decades. Kalbfleisch (1978) carried out a seminal work on nonparametric treatment

of Bayesian analysis with survival data. Some important works on Bayesian analysis

of lifetime data are found in Sinha et al. (1999), Walker and Mallick (1999), Cheng

et al. (1999) and Sinha et al. (2003) among others. Recently, Danish and Arshad

(2017) discussed parametric proportional hazards model for randomly censored sur-

vival data. In the case of two sample censored data, a nonparametric Bayesian

analysis is carried out by Shang and Reilly (2017). For double-censored durations,

Dörre and Weißbach (2017) discussed a Bayesian estimation of a proportional haz-

ards model. A comparative study of maximum likelihood and Bayes estimators for

randomly censored discrete lifetime data is carried out by Krishna and Goel (2017).

For progressive Type II censored data, maximum likelihood and Bayes estimators

of the parameters are analyzed by Lee and Cho (2017).
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1.6 Regression Models

In biomedical survival studies, the prediction of the future of a patient with re-

spect to duration, course, and outcome of a disease, called prognosis, is of great

importance. A medical history as well as information from pathologic, clinical and

laboratory data are collated by a physician before he decides on the course of treat-

ment needed. Therefore many medical charts contain a large number of patient

characteristics, also called covariates or concomitant variables. In clinical trials,

factors such as age, gender and general conditions of the patient can be considered

as covariates. The covariates are mainly employed in survival studies to describe

the heterogeneity in the population under consideration. In such contexts, the main

objectives are to understand the relationship between the lifetime and the covari-

ates, and then to exploit this relationship to the benefit of forecasting. To this end,

we generally employ regression models in survival analysis. The primary aim in

doing this is to study the relationship between the lifetime and given covariates. In

some practical situations, the effect of covariates on lifetime variable may change

over time and such covariates are referred to as time-dependent or time-varying

covariates.

Parametric and semiparametric regression models are often employed to ana-

lyze lifetime data with covariates. The parametric regression analysis involves the

specification of the distribution of the lifetime variate T , given a p × 1 vector of

covariates z. A regression model can be developed by specifying a relationship

between the model parameters and covariates. For example, consider the Weibull

distribution with shape parameter α and scale parameter β. Conditional on z, let



Preliminaries 22

T assume Weibull distribution with parameters α and β = β(z). Then the survival

function of T , given covariate z, is given by

S(t|z) = exp

(
−
(

t

β(z)

)α)
.

A convenient specification of β(z) is β(z) = exp(z>θ), where θ is the p× 1 vector

of regression parameters and a> represents the transpose of vector a. In such

situations, one would be interested in estimating the regression parameter θ and

testing whether it has a significant effect on lifetime variate.

The log-location scale family of distributions or the accelerated failure time

models are the widely used types of parametric regression models. Parametric

regression models have been studied in literature by Feigl and Zelen (1965), Zippin

and Armitage (1966), Glasser (1967), and Prentice (1973) among others.

In semiparametric regression models, we do not make any assumption about

the underlying form of the lifetime distribution, but some postulations on the rela-

tionship between covariates and the lifetime variable are made. The proportional

hazards model introduced by Cox (1972) is the commonly employed semiparametric

regression model in survival analysis.

1.6.1 Proportional Hazards Model

The proportional hazards model assumes that the covariates have a multiplicative

effect on the hazard function of lifetimes of individuals. The proportional hazards

model associates the covariates effect on lifetime variate T by specifying the hazard
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function of T , given z as

h (t |z ) = h0 (t) r (z,θ) ,

where h0 (t) is the baseline hazard function and r (z,θ) is a positive real valued

function. The proportional hazards model possesses the property that, any two

individuals have hazard functions that are constant multiples of each other. The

model involves a parameter θ. However, the baseline hazard function is usually

treated nonparametrically and is left arbitrary.

A specification of the proportional hazards model proposed by Cox (1972) with

r (z,θ) = exp
(
θ>z

)
, is widely used in literature and is known as Cox proportional

hazards model. Therefore the Cox proportional hazards model may be written as

h (t |z ) = h0 (t) exp
(
z>θ

)
. (1.9)

The model (1.9) assumes that covariates have multiplicative effect on the hazard

function of the lifetime variable. The primary objective in this set up is to estimate

the regression parameter and the baseline hazard function.

Suppose that the lifetime variable T is randomly right censored by the censoring

variable C. We observe (X, δ, z) where X = min(T,C), δ = I(X = T ) is the

censoring indicator and z is a p×1 vector of covariates. The observed data consists

of (Xi, δi, zi), i = 1, 2, ..., n, which are independent and identically distributed copies

of (X, δ, z). To estimate θ, Cox (1972) proposed the partial likelihood method,
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where the partial likelihood function is formulated as

L (θ) =
n∏
i=1

 exp
(
θ>zi

)
n∑
l=1

Y∗l (Xi) exp
(
θ>zl

)

δi

,

where Y∗l(t) = I(Xi ≥ t). Maximum likelihood estimator (MLE) of θ can be

obtained by maximizing the partial likelihood function L (θ). A nonparametric

estimator of the baseline cumulative hazard function is then given by

Ĥ0 (t) =
∑
i:Xi≤t

 δi
n∑
l=1

Y∗l (Xi) exp
(
θ̂
>
zl

)
.

Using the identity (1.5), S0(t) can be estimated as Ŝ0(t) = exp(−Ĥ0(t)). From

(1.9), the survival function of T , given z, is given by

S(t|z) = S0(t)exp(z>θ),

where S0(t) is the baseline survival function and the estimator of the survival func-

tion S(t|z) is obtained as

Ŝ(t|z) = Ŝ0(t)
exp(z>θ̂)

.

For various properties of these estimators, one could refer to Lawless (2003).

1.6.2 Additive Hazards Model

The proportional hazards model provides a convenient way of summarizing covari-

ate effects in terms of relative risks. However, there are occasions where a measure



Preliminaries 25

of the additive effect of covariates is preferred over a multiplicative effect. In such

situations, the additive hazards model, which relates the conditional hazard func-

tion of the lifetime linearly to the covariates is more suitable. In contrast to the

proportional hazard models, the additive hazards model specifies that the hazard

function, given a set of covariates, is the sum of the baseline hazard function and

the regression function of the covariates.

Let z(t) = (z1(t), ..., zp(t))
> be a p × 1 vector of possibly time-dependent co-

variates. Then the additive hazards model is defined by

h(t|z) = h0(t) + z(t)>θ(t), (1.10)

where h0(t) is an arbitrary baseline hazard function and θ(t) = (θ1(t), ..., θp(t))
> is

the p× 1 vector of regression parameters. The model (1.10) is due to Aalen (1989)

and it allows θ(t) to be a function whose values change over time. To estimate

the cumulative regression functions, Bk(t) =
∫ t

0
θk(t) and the standard errors of

these functions, Aalen (1989) used the least squares approach. These estimators

can then be smoothed to obtain estimators of θk(t). The least squares estimators

and their variances were developed using the theory of counting process. Aalen

(1993) discussed a method for the goodness of fit of this model. For more details on

this topic, one could refer to Zahl and Tretli (1997), Borgan and Langholz (1997)

and Klein and Moeschberger (2005).

Lin and Ying (1994, 1997) studied a simplified form of the additive hazards

regression model by replacing the time-varying regression parameters in the Aalen

model (1.10) with the time-independent regression parameters. The model is given
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by

h(t|z) = h0(t) + z(t)>θ, (1.11)

where h0(t) is an arbitrary baseline hazard function and θ = (θ1, ..., θp)
> is the p×1

vector of regression parameters.

In two sample set up, the additive hazards model addresses the risk difference,

while the proportional hazards model concerns the risk ratio. The counting process

approach together with the resultant martingale structure is used in the inference

procedure of the parameters of the model (1.11). For modelling and analysis of

lifetime data using the additive hazards model under different contexts, one could

refer to Aalen (1989), McKeague and Utikal (1991), Lin and Ying (1994, 1997),

Gupta et al. (1998), Sun et al. (2006), and Li and Ling (2012).

1.6.3 Quantile Regression Model

A fundamental quantity of interest in survival analysis is the quantile function. A

lifetime distribution can be characterized by its quantile function. For the lifetime

variate T , the quantile function QT (τ) is defined by

QT (τ) = inf {t ∈ R : F (t) ≥ τ}, 0 ≤ τ ≤ 1. (1.12)

In many instances the quantile function provides a better alternative to the distri-

bution function in analyzing a distribution. Moreover, it has several useful features

which are not shared by the distribution function or characteristic function. A

rigorous treatment of quantile function and its properties is available in Gilchrist

(2000), and for its applications in reliability theory, one may refer to Nair et al.
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(2013).

In the presence of covariates, generally we analyze lifetime data using regression

models like proportional hazards model and additive hazards model. One major

drawback of hazard based regression approach is that it models the hazard function

rather than the survival times directly. In literature, the accelerated failure time

(AFT) model addresses this issue by regressing a monotone transformation of the

lifetime variable, say, T̃ = logT over the p× 1 vector of recorded covariates z. The

model assumes the form

T̃ = z>b+ ε, (1.13)

where b is an unknown p × 1 vector of regression parameters and ε is an error

term. The inference procedures for the model (1.13) have been derived without

specifying the actual distribution of ε, but generally require that the error term

is independent of z, as one can see in the works of Buckley and James (1979),

Wei and Gail (1983), and Ritov (1990) among others. This assumption precludes

data heteroscedasticity and entails a location-shift effect for each covariate, which

sometimes mislead us when some covariate effects are nonconstant in nature over

the support of T . An alternative and efficient approach called quantile regression

was put forward by Koenker and Bassett (1978) by simply computing the regression

quantiles for a transformation of the survival time by elegantly making use of the

concept of conditional quantiles. Let Z = (1, z>)> and τ ∈ [0, 1]. We define the

τ ’th conditional quantile for T̃ as QT̃ (τ |Z) = inf {t : P (T̃ ≤ t|Z) ≥ τ}. A quantile

regression model may associate the conditional quantile QT̃ (τ |Z) linearly to the

covariate Z for each 0 < τ < 1 as

QT̃ (τ |Z) = Z>β0(τ), (1.14)
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where β0(τ) is an unknown vector of regression parameters and represents the ef-

fects of covariates on the τ ’th quantile of T̃ and may change with τ . Note that

when β0(τ) = (Qε(τ), b>)>, where Qε(τ) is the τ ’th quantile of ε, the model (1.14)

reduces to the model (1.13). The advantage of the model (1.14) as compared to

(1.13) is that, it is more flexible in the sense that the effect of Z is not restricted

to be constant across the range of values of τ . This approach was extended to

the case of right censored survival data by Powell (1984, 1986) by introducing cen-

sored quantile regression, but with some restrictions on censoring variables. Later,

Portnoy (2003) proposed a recursively re-weighted estimator as a generalization of

the Kaplan-Meier estimator without imposing any stringent assumptions on cen-

soring variable. Some modifications to this was made by Portnoy and Lin (2010).

The analysis of right censored lifetime data using quantile regression model, when

the data is subject to conditionally independent censoring was developed by Peng

and Huang (2008). This method utilizes the martingale feature associated with

the censored data, which is found to be helpful in developing inference procedures

and in establishing the large sample properties of the estimators. Later, Ji et al.

(2012) developed quantile regression model for doubly censored data. A much more

generalized form of quantile regression model for T can be stated as

QT (τ |Z) = g(Z>β0(τ)), 0 < τ < 1, (1.15)

where QT (τ |Z) = inf {t : F (t|Z) ≥ τ} with F (t|Z) = P (T ≤ t|Z), and g(·) is

a known monotone link function. Here β0(τ) is a vector of unknown parameters

representing true covariate effects on QT (τ |Z). A commonly used choice for g(x)
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is ex, in which case model (1.15) reduces to model (1.14). This specification of τ -

varying coefficients can be effectively used to incorporate population heterogeneous

covariate effects. That is, the effect of z is not restricted to have a constant impact

for all values of τ . Our interest here is to draw inferences about the quantile process

β0(τ), for 0 < τ < 1.

1.7 Motivation and Present Study

A large amount of literature has built up in the analysis of censored lifetime data,

particularly on right censored, left censored, double censored and interval censored

lifetime data. The development of new stochastic models for the analysis of middle-

censored data in the presence of covariates is a topic of interest. However, only a

limited number of works are reported in literature in this direction.

Jammalamadaka and Mangalam (2003) pointed out various applications of

middle-censoring, and have developed an NPMLE of the distribution function of

the lifetime variate. They have proved that NPMLE is always a Self Consistent Es-

timator (SCE) (see Tarpey and Flury (1996)). A variant of this SCE was proposed

by Jammalamadaka and Iyer (2004) and its weak convergence was established. In

the parametric context, Iyer et al. (2008) studied analysis of survival data under

middle-censoring for the exponential distribution. Mangalam et al. (2008) devel-

oped a necessary and sufficient condition for the equivalence of SCE and NPMLE.

Jammalamadaka and Mangalam (2009) have discussed middle-censored data for the

von Mises model in the context of directional data. Shen (2010) proposed an inverse-

probability-weighted estimator for the distribution function under middle-censoring



Preliminaries 30

setup. Qin (2010) discussed a parametric estimation problem with exponential dis-

tribution under middle-censoring scheme. Shen (2011) has shown that NPMLE of

the distribution function, under middle-censoring scheme, can be obtained by using

Turnbull’s EM algorithm or self-consistent estimating equation under certain condi-

tions. Davarzani and Parsian (2011) developed an inference procedure for discrete

middle-censored data. Davarzani et al. (2015) developed an inference procedure for

middle-censored data under dependent setup. Jammalamadaka and Leong (2015)

analyzed discrete middle-censored data in the presence of covariates. Wang (2016)

developed a procedure for parametric estimation for middle-censored data with mul-

tiple causes of failure. Abuzaid et al. (2017) have discussed robustness of middle-

censoring scheme in parametric survival models. Recently, Bennett et al. (2017)

considered a parametric regression model under middle-censoring scheme. How-

ever, a systematic study on regression modelling and analysis of middle-censored

lifetime data is not yet carried out. Motivated by this, we develop new stochastic

models for the analysis of middle-censored lifetime data in the presence of covari-

ates. The present work develops several parametric and semiparametric regression

models for the analysis of middle-censored lifetime data arising from a continuous

population, where the random censoring interval is assumed to have an absolutely

continuous distribution function. We also consider the Bayesian analysis of regres-

sion models for middle-censored lifetime data.

The thesis is organized as follows. Chapter 1 gives a formal introduction to the

subject area and covering a comprehensive review of literature on middle-censoring.

In Chapter 2, we introduce and study a parametric proportional hazards model with

the baseline distribution as Weibull. The parameters are estimated by the method
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of maximum likelihood. The likelihood ratio test is proposed to test the signifi-

cance of the regression parameter. We establish the asymptotic normality of the

estimator. We carry out extensive simulation studies to assess the performance of

the proposed estimator with finite sample sizes. The proposed inference procedure

is illustrated using a real life data studied by Krall et al. (1975).

Chapter 3 discusses semiparametric proportional hazards model for the middle-

censored lifetime data. We develop an iterative algorithm for finding the semipara-

metric MLE (SPMLE) of the regression parameter. The NPMLE of the baseline

survival function is also derived. The consistency of the proposed estimators under

certain regularity conditions is established. We also discuss a test concerning the

significance of covariate effect. The finite sample performance of the proposed esti-

mator is studied using simulation studies. The proposed method is illustrated with

a real data set reported in Lee and Wang (2003).

Chapter 4 is devoted to a parametric additive hazards regression model for

middle-censored lifetime data. We assume that the baseline distribution of lifetime

variate is exponentiated exponential (Ahuja and Nash (1967)). The MLE for the

parameters of the model are derived. We show that under certain regularity con-

ditions, the estimator is asymptotically normally distributed. Extensive simulation

studies are conducted to assess the finite sample performance of the estimator. The

proposed method is applied to a real data set given in Karduan (1983).

Chapter 5 deals with an additive hazards regression model in a semiparametric

setup for the middle-censored data. We derive estimators for the regression param-

eter and the baseline survival function using two different estimation procedures.

The first one makes use of the martingale feature associated with the observed data

and the other one is based on an iterative algorithm. We establish large sample
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properties of the estimators under both estimation methods. Extensive simulation

studies are carried out to assess the finite sample performance of the proposed es-

timators. The model is applied to a real life data studied by Ichida et al. (1993).

In Chapter 6, we develop a quantile regression model for the analysis of middle-

censored lifetime data subject to conditionally independent censoring. We construct

a stochastic integral estimating equation for estimating the regression quantile. The

consistency and weak convergence of the estimators are established under certain

regularity conditions. The model diagnostic method is developed using martingale

residuals. Simulation studies are reported to assess the performance of proposed

estimator with finite sample sizes. The proposed quantile regression method is ap-

plied to a real data set studied by Copelan et al. (1991).

Chapter 7 discusses Bayesian analysis of regression problem for lifetime data

subject to middle-censoring in a parametric setup. We assume that the baseline dis-

tribution is Weibull. Simulation studies are carried out to assess the performance

of estimators with finite sample sizes. The proposed method is applied to a real life

data studied by Krall et al. (1975).

Chapter 8 summarizes the thesis, with major findings of the study. We also

discuss future works to be carried out in this area.



Chapter 2

Parametric Proportional Hazards Regres-

sion Model

2.1 Introduction

In survival studies, we usually express a regression model either as a paramet-

ric model, where the distribution of underlying lifetime variate is assumed to be

known, or as a semiparametric model, where the underlying distribution of the

lifetime variable is left arbitrary. The advantage of using a parametric model as

a lifetime model is that the inference procedure associated with it results in more

precise estimators than with a semiparametric model. A well known probability

distribution that is extensively used as a lifetime model is the Weibull distribution.

It has wide variety of applications in biological, medical, and industrial fields. A

key feature for this distribution is that it can accommodate monotone increasing,

monotone decreasing, and constant hazard rates depending on its shape parameter.

This flexibility can very well be exploited to the advantage of modelling lifetime dis-

tributions. Recently, Pradhan and Kundu (2014) used the Weibull distribution to

model the lifetime data under the interval censoring scheme. Motivated by the wide

1The results in this chapter are published in Journal of Statistics and Management Systems
(See Sankaran and Prasad (2014)).
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range of applications of this distribution, in this chapter, we consider a parametric

regression model with the baseline distribution of the lifetime variate as Weibull.

The rest of the chapter is organized as follows. In Section 2.2, we introduce a

parametric regression model and derive the inference procedure for the parameters

of the model. Section 2.3 describes the asymptotic properties of the proposed esti-

mator. A simulation study to assess the finite sample performance of the estimator

is described in Section 2.4. We apply the proposed method to a real life problem in

Section 2.5. The chapter ends with major conclusions in Section 2.6.

2.2 The Model and Inference Procedure

Let T be the random variable representing the lifetime, z be the p × 1 vector of

covariates and θ be the corresponding p × 1 vector of regression parameters. The

Cox proportional hazards model associates the covariate effects on the lifetime T

by specifying

h (t |z ) = h0 (t) exp
(
z>θ

)
. (2.1)

We specify h0(t) in (2.1) as the hazard function of Weibull distribution with shape

parameter α and scale parameter β, with probability density function f0(t) given

by

f0(t) = αβ−1
(
β−1t

)α−1
exp(−

(
β−1t

)α
), t > 0, α > 0, β > 0. (2.2)

Thus the baseline hazard function is

h0(t) = αβ−1
(
β−1t

)α−1
, t > 0,
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with the baseline survival function as

S0(t) = exp(−
(
β−1t

)α
), t > 0.

We now assume that T is middle-censored by the random censoring interval (U, V )

with P (U < V ) = 1, as defined in Chapter 1. Thus one can observe the vector

(X, δ, z), where

X =


T if δ = 1

(U, V ) if δ = 0,

and δ = I (X = T ) is the censoring indicator, with I(·) denoting the indicator

function. Further, we assume that T is independent of (U, V ) given z, and that the

censoring distribution is independent of z.

Under the proportional hazards model assumption (2.1), the survival function of T

given z, is given by

S (t|z) = (S0(t))exp(θ>z) = exp(−
(
γ−1t

)α
), (2.3)

where γ = βe−θ
>z/α. Thus the probability density function of T given on z is

obtained from (2.3) as

f(t|z) = αγ−1
(
γ−1t

)α−1
exp(−

(
γ−1t

)α
); t > 0, α > 0, γ > 0. (2.4)

The observed data consists of (Xi, δi, zi), i = 1, 2, ..., n, which are independent

and identically distributed copies of (X, δ, z) corresponding to n subjects under

investigation. The likelihood function corresponding to the observed data can be
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written as

L(ψ) ∝
n∏
i=1

f(ti|zi)δi [S(ui|zi)− S(vi|zi)]1−δi , (2.5)

where ψ = (α, β,θ>)>, and ti and (ui, vi) are the realizations of Xi. Note that

the likelihood formulation in (2.5) is quite distinct from that in the case of interval

censored data (Groeneboom and Wellner (1992); Geskus and Groeneboom (1996)),

since in the latter case one can only observe a censoring event and can note whether

the lifetime of interest occurred before or after the occurrence of the censoring event,

as we discussed in Chapter 1. Thus, the component specifying the exact event time

is not present in the likelihood function for interval censored data consequent to

this intermittent observation scheme. For a detailed discussion on this distinction,

one may refer to Jammalamadaka and Mangalam (2003), Mangalam et al. (2008),

Iyer et al. (2008), and Shen (2011).

Without loss of generality, we now arrange the observations in such a way that

first n1 observations are exact lifetimes and remaining n2 are censored intervals,

with n1 + n2 = n. We shall rewrite (2.5) as

L(ψ) =

n1∏
i=1

αγ−1
i (γ−1

i ti)
α−1exp(−(γ−1

i ti)
α)

n∏
i=n1+1

[
exp(−(γ−1

i ui)
α)− exp(−(γ−1

i vi)
α)
]
, (2.6)

where γi = βe−θ
>zi/α. Our objective is to estimate the regression parameter and

the parameters of the Weibull distribution. To achieve this, we can make use of

the Expectation-Maximization (EM) algorithm (Dempster et al. (1977)), which is a

powerful tool in handling the incomplete data problems. It is an iterative method,

where we repeatedly replace the missing data with estimated values and update
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the parameters. To begin with the algorithm, a hypothetical complete-data like-

lihood function, say LC(ψ), is first constructed. Thus, it is straightforward to

verify that the E-step requires the computation of the conditional expectation of

the complete-data log-likelihood function, given the observed data and the current

update of the parameter. The EM cycle is completed with M-step, where the MLE

is computed with the complete-data log-likelihood function with the missing ob-

servations replaced by their conditional expectations. This cycle is repeated until

the convergence up to a desired precision is met. Moreover, the convergence of this

iterative procedure is guaranteed (see McLachlan and Krishnan (2007)). An ele-

mentary treatment of its computational aspect is given in Kundu and Basu (2004).

Now, the complete-data likelihood function can be written as

LC(ψ) =

n1∏
i=1

f (ti|zi)
n∏

i=n1+1

f
(
ťi|zi

)
,

where ťi are potentially observable, but unobserved realizations of T , such that

ťi ∈ (ui, vi), i = n1 + 1, ..., n.

The complete-data log-likelihood function can be written as

lc(ψ) = logLC(ψ) =

n1∑
i=1

log f (ti|zi) +
n∑

i=n1+1

log f
(
ťi|zi

)
. (2.7)

Using the density function in (2.4), we can write (2.7) as

lc(ψ) = n logα−
n∑
i=1

log γi +

n1∑
i=1

(
(α− 1)log(γ−1

i ti)− (γ−1
i ti)

α
)

+

n∑
i=n1+1

(
(α− 1)log(γ−1

i ťi)− (γ−1
i ťi)

α
)
. (2.8)
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The E-step in EM algorithm is performed by taking the expectation of complete-

data log-likelihood function given in (2.8), given the current update of ψ and the

observed data. This expected value is given by

φ(ψ) = n logα− α
n∑
i=1

log γi + (α− 1)

n1∑
i=1

log ti −
n1∑
i=1

(γ−1
i ti)

α+

n∑
i=n1+1

(
(α− 1)ξ1i − γ−αi ξ2i

)
, (2.9)

where the terms ξ1i and ξ2i are defined as follows.

ξ1i = E (logT |ψ, T ∈ (ui, vi), zi) = (S(ui|ψ, zi)−S(vi|ψ, zi))−1
∫ vi
ui

log t f(t|ψ, zi)dt,

and

ξ2i = E (Tα|ψ, T ∈ (ui, vi), zi) = (S(ui|ψ, zi) − S(vi|ψ, zi))−1
∫ vi
ui
tα f(t|ψ, zi)dt.

We now give an algorithm to find the MLE ψ̂ = (α̂, β̂, θ̂
>

)> of ψ.

Algorithm 2.1

Step 1. Choose an initial value ψ(0) =
(
α(0), β(0),θ(0)>

)>
.

Step 2. At the j’th iteration (j ≥ 1), evaluate ξ
(j)
1 and ξ

(j)
2 using ψ(j−1) and sub-

stitute in (2.9).

Step 3. With α(j−1) and β(j−1) held fixed, express (2.9) as a function of θ and

solve ∂φ
∂θ

= 0 to get θ = θ(j).

Step 4. With θ = θ(j), express (2.9) as a function of α and β and solve ∂φ
∂α

= 0

∂φ
∂β

= 0 to get α(j) and β(j) and thus obtain ψ(j) =
(
α(j), β(j),θ(j)>

)>
.

Step 5. Repeat Step-2 to Step-4 till convergence in ψ is met, say when ‖ψ(k) −

ψ(k+1)‖ < 0.0001, for some finite positive integer k.

In regression analysis, often one would be interested to know whether the co-

variates have significant effect on the lifetime variate. This can be formulated as a
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hypothesis H0 : θ = 0, where 0 is the null vector of same order. This hypothesis can

be tested against the alternative hypothesis H1 : θ 6= 0 by means of likelihood ratio

test. The test statistic is given by Λ = 2 logL
(
θ̂, α̂, β̂

)
− 2 logL

(
0, α̃, β̃

)
, where α̃

and β̃ are the MLEs obtained when restricting θ to be 0. Under the null hypothesis,

Λ follows approximately chi-square distribution with p degrees of freedom for large

samples and the test rejects the null hypothesis for small P-values.

2.2.1 Bootstrap Method

We now discuss a procedure for generating bootstrap samples from a middle-censored

lifetime data for finding out the standard errors of estimates. Motivated by the re-

sampling scheme for the right censored lifetime data discussed in Davison and Hink-

ley (1997), we now develop a conditional bootstrap procedure for a middle-censored

lifetime data. Let the observed data consist of
(
Xi, δi, zi

)
, i = 1, 2, ..., n. Let Ĝ1(·)

be the empirical distribution function corresponding to the left censoring times Ui

in the data, and let Ĝ2(·) be the empirical distribution function corresponding to

the right censoring times Vi in the data. We designate the bootstrap observations

and the associated estimates by attaching an asterisk mark as a superscript. In

the following we provide an algorithm for the conditional bootstrap procedure for a

middle-censored data, where the resample observations are generated with replace-

ment.

Algorithm 2.2

For i = 1, 2, ..., n,

Step 1. Generate T ∗i from the fitted survival function
(
Ŝ0(t)

)exp(zi
>θ̂)

, where Ŝ0(t)

and θ̂ are the MLEs obtained using Algorithm 2.1.
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Step 2. Generate Ki from a Bernoulli distribution with success probability 0.5,

where Ki = 0 is used to denote the case when the unobserved censoring interval is

assumed to fall before the occurrence of the observed event; and Ki = 1 is used to

denote the case when the unobserved censoring interval is assumed to fall after the

occurrence of the observed event.

Step 3. For Ki = 0, if δi = 0, set V ∗i = vi and set U∗i = ui; and if δi = 1, we

first generate V ∗i from the conditional distribution Ĝ2(v)/Ĝ2(ti), for v < ti, which

is the estimated distribution of Vi conditional on Vi < ti. Then we generate U∗i

from the conditional distribution Ĝ1(u)/Ĝ1(v∗i ), for u < v∗i , which is the estimated

distribution of Ui conditional on Ui < v∗i .

Step 4. For Ki = 1, if δi = 0, set U∗i = ui and set V ∗i = vi; and if δi = 1, we first

generate U∗i from the conditional distribution Ĝ1(u)−Ĝ1(ti)

1−Ĝ1(ti)
, which is the estimated

distribution of Ui conditional on Ui > ti. We then generate V ∗i from the conditional

distribution
Ĝ2(v)−Ĝ2(u∗i )

Ĝ2(u∗i )
, which is the estimated distribution of Vi conditional on

Vi > u∗i .

Step 5 If T ∗i /∈ (U∗i , V
∗
i ), set X∗i = T ∗i with δ∗i = 1, otherwise set X∗i = (U∗i , V

∗
i )

with δ∗i = 0.

In practice, if the largest observation in a data set happens to be a lifetime tj, in

the sense that there is no observed censoring interval which is a subset of (tj,∞),

we fix Kj = 0 and then generate the censoring interval using Step 3. Similarly, if

tj happens to be a smallest observation in a data set, in the sense that there is no

observed censoring interval which is a subset of (0, tj), we fix Kj = 1 and generate

censoring intervals using Step 4.

Assume that we have B such bootstrap samples generated from the observed

data set, and that η̂ is an estimator of an unknown parameter η. Following Efron
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(1982), we compute the bootstrap standard error (SE) of the estimator η̂ as

SE(η̂) =
[ 1

B − 1

B∑
b=1

(η̂∗b − η̄∗)2
]1/2

, (2.10)

where η̂∗b is the estimate of η based on b’th bootstrap sample (b = 1, 2, ..., B) and

η̄∗ = 1
B

∑B
b=1 η̂

∗
b .

2.3 Asymptotic Properties

In this section, we discuss the asymptotic normality of the MLE ψ̂ of the parameter

ψ. We show that, under certain regularity conditions ψ̂ is asymptotically normally

distributed with mean ψ, the true mean value, and dispersion matrix I −1(ψ),

where I (ψ) is the Fisher information matrix given by I (ψ) = −E
( ∂2l(ψ)

∂ψ∂ψ>

)
, where

l(ψ) = logL(ψ). We provide explicit expressions of the second order partial deriva-

tives of l(ψ) in equations (2.11) - (2.16) below. First we define the following terms

for any collection of positive real numbers ai and bi, i = 1, 2, ..., n.

D1(ai, bi) = e−(β−1ai)
αeθ
>zi − e−(β−1bi)

αeθ
>zi ,

K1(ai) = e−(β−1ai)
αeθ
>zi (β−1ai)

α· log (β−1ai),

M1(ai, bi) = K1(ai)−K1(bi),

K2(ai) = K1(ai)/log (β−1ai),

M2(ai, bi) = K2(ai)−K2(bi) and
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A1(ai) = eθ
>zi(β−1ai)

α.

∂2l(ψ)

∂α2
= −n1α

−2+

n1∑
i=1

A1(ti) log(ti) log(β−1ti) +
n∑

i=n1+1

eθziD1(ui, vi)
−1

(
−D1(ui, vi)

−1eθziM(ui, vi)
2 + log(β−1vi)K1(vi)(1− A1(vi))

− log(β−1ui)K1(ui)(1− A1(ui))
)
. (2.11)

∂2l(ψ)

∂α∂θj
=

n1∑
i=1

zijA1(ti) log(βt−1
i ) +

n∑
i=n1+1

zije
θ>ziD1(ui, vi)

−1
(
eθ
>ziD1(ui, vi)

−1

M2(ui, vi)M1(ui, vi) +M1(ui, vi) + eθ
>zi
(
K1(ui)(β

−1ui)
α −K1(vi)(β

−1vi)
α
) )
,

(2.12)

where zij is the j’th component of zi, j = 1, 2, ..., p.

∂2l(ψ)

∂α∂β
= −n1β

−1 + β−1

n1∑
i=1

A1(ti)(1 + α log(β−1ti)) +
n∑

i=n1+1

eθziD1(ui, vi)
−1

(
β−1K1(ui)− αβ−1eθziD1(ui, vi)

−1M2(ui, vi)M1(ui, vi) + αβ−1K1(vi)

(A1(vi)− 1)− β−1K1(vi)− αβ−1K1(ui)(A1(ui)− 1)
)
. (2.13)

∂2l(ψ)

∂β2
= −n1αβ

−2 − α(α + 1)β−2

n1∑
i=1

A1(ti) +
n∑

i=n1+1

αβ−2eθ
>ziD1(ui, vi)

−1

(
−M2(ui, vi)− eθ

>ziD1(ui, vi)
−1M2(ui, vi)

2 +K2(ui)(A1(ui)− 1)+

K2(vi)(A1(vi)− 1)
)
. (2.14)
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∂2l(ψ)

∂β∂θj
= αβ−1

n1∑
i=1

zijA1(ti) + αβ−1

n∑
i=n1+1

zijD1(ui, vi)
−1eθ

>zi
(
M2(ui, vi)

+ eθ
>ziD1(ui, vi)

−1M2(ui, vi)
2 − eθ>zi

(
K2(ui)(β

−1ui)
α −K2(vi)(β

−1vi)
α
) )
,

(2.15)

for j = 1, 2, ..., p.

∂2l(ψ)

∂θj∂θk
= −

n1∑
i=1

zijzikA1(ti) +
n∑

i=n1+1

zijzike
θziD1(ui, vi)

−1
(
− eθ>ziD1(ui, vi)

−1

M2(ui, vi)
2 −M2(ui, vi) + eθ

>zi
(
K2(ui)(β

−1ui)
α −K2(vi)(β

−1vi)
α
) )
,

(2.16)

for j, k = 1, 2, ...p.

For the evaluation of the Fisher information matrix, we make some distribu-

tional assumptions on the random censoring interval (U, V ). We assume that U is

exponentially distributed with mean λ−1
1 , Y = V − U is exponentially distributed

with mean λ−1
2 , and that T, U and Y are mutually independent. Now the probabil-

ity density function of T , conditional on the event that T /∈ (U, V ) and z is given

by

fT |(T /∈(U,V ),z)(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t|T /∈ (U, V ), z)

= lim
∆t→0

1

∆t

P (t ≤ T < t+ ∆t, T /∈ (U, V )|z)

P (T /∈ (U, V )|z)

= lim
∆t→0

1

∆t

1

ṕ(ψ)
P (t ≤ T < t+ ∆t|z)P (T /∈ (U, V )|t ≤ T < t+ ∆t, z)

=
1

ṕ(ψ)
f(t|z)P (T /∈ (U, V )|T = t, z),
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where ṕ(ψ) = P (T /∈ (U, V )|z) =
∫
f(t|z)P (T /∈ (U, V )|T = t, z) dt.

Thus, for λ1 6= λ2, we obtain

fT |(T /∈(U,V ),z)(t) =
1

ṕ(ψ)

(
αγ−1(γ−1t)α−1e−(γ−1t)α

)
(

1− λ1

λ2 − λ1

e−λ2t
(
e−(λ1−λ2)t − 1

))
, (2.17)

and for λ1 = λ2 = λ (say), we get

fT |(T /∈(U,V ),z)(t) =
1

ṕ(ψ)

(
αγ−1(γ−1t)α−1e−(γ−1t)α

)
(1− λte−λt). (2.18)

In a similar way, we obtain the probability density function of U , conditional on

the event that T ∈ (U, V ) and z as

fU |(T∈(U,V ),z)(u) =
1

1− ṕ(ψ)
λ1αγ

−αe−u(λ1+λ2)

∫ ∞
t=u

tα−1e−(γ−1t)αe−λ2tdt, (2.19)

and the probability density function of Y , conditional on the event that T ∈ (U, V )

and z is given by

fY |(T∈(U,V ),z)(y) =
1

1− ṕ(ψ)
λ2e

−λ2y
∫ ∞
u=0

λ1e
−λ1u

(
e−(γ−1u)α − e−(γ−1(u+y))α

)
du.

(2.20)

Further, the joint distribution of (U, V ) is obtained as

g0(u, v) = λ1λ2e
−(λ2−λ1)ue−λ2v, u, v ∈ R+, u < v. (2.21)
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Using (2.21), we obtain the density function of (U, V ), conditional on T ∈ (U, V )

and z as

fUV |(T∈(U,V ),z)(u, v) =
1

1− ṕ(ψ)
g0((u, v))P (T ∈ (U, V )|(U, V ) = (u, v), z) . (2.22)

On simplification, (2.22) becomes

fUV |(T∈(U,V ),z)(u, v) =
1

1− ṕ(ψ)
λ1λ2e

−(λ2−λ1)ue−λ2v
(
e−(γ−1u)α − e−(γ−1v)α

)
. (2.23)

We use the density functions given in (2.17) - (2.23) to evaluate the expected values

of the second order partial derivatives of the log-likelihood function given in (2.11)

- (2.16), and hence we can evaluate the Fisher information matrix I (ψ). We

now assume that the covariate space is bounded. Then the likelihood function

(2.6) satisfies the standard regularity conditions (see Bain (1976)), and it follows

that the asymptotic distribution of ψ̂ is (p + 2)-variate normal with mean vector

ψ and dispersion matrix I −1(ψ). Thus,
√
n
(
ψ̂ − ψ

)> → Np+2

(
0, nI −1(ψ)

)
in

distribution.

2.4 Simulation Studies

Simulation studies are carried out to assess the finite sample performance of the

estimators. We assume that the baseline distribution of T is Weibull with probabil-

ity density function as given in (2.2). Under the proportional hazards assumption

given in (2.1), the survival function of T given z is as given in (2.3). We consider a

single covariate z in the present study which is generated from uniform distribution
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over [0, 15]. Observations are generated from the distribution given in (2.4), for

various values of α, β and θ. Now corresponding to each observation on T given

z, a random censoring interval (U, V ) is generated, where U and Y = V − U are

assumed to be independent exponential variates with means λ−1
1 = 15 and λ−1

2 = 10

respectively. If we find T /∈ (U, V ), then T is selected as the sample observation,

otherwise we choose the interval (U, V ) as the observation. We consider different

sample sizes and different censoring percentages for our study. Suppose that we

require n1 exact lifetimes and n2 censoring intervals in a simulated sample of size

n = n1 + n2, satisfying the required censoring percentage. To achieve this, we first

generate a large number of observations as mentioned above. We then randomly

select n1 lifetimes from among the generated exact lifetimes and n2 censoring in-

tervals from among the generated censoring intervals. In this study, we consider

three sample sizes, n = 50, n = 100, and n = 200. We consider three different

censoring percentages viz. mild (10% censoring), moderate (20% censoring) and

heavy (30% censoring) for analyzing the impact of censoring on the estimate of θ.

Table 2.1: Bias, MSE and CP of the estimator of θ under mild censoring.

n = 50 n = 100 n = 200
α β θ Bias MSE CP Bias MSE CP Bias MSE CP

0.05 0.75 -0.50 0.049 0.0034 0.895 0.045 0.0011 0.898 0.016 0.0003 0.962
0.05 8.00 1.00 0.047 0.0033 0.904 0.044 0.0010 0.907 0.019 0.0007 0.971
0.05 15.00 0.75 0.038 0.0039 0.917 0.035 0.0014 0.921 0.022 0.0009 0.959
0.50 0.75 -1.00 0.037 0.0058 0.895 0.035 0.0016 0.899 0.020 0.0011 0.966
0.50 8.00 0.05 0.012 0.0039 0.934 0.011 0.0017 0.937 0.005 0.0008 0.977
0.50 15.00 0.80 0.020 0.0056 0.937 0.016 0.0017 0.942 0.009 0.0006 0.974
1.00 0.75 -0.05 0.026 0.0033 0.923 0.024 0.0009 0.927 0.013 0.0005 0.958
1.00 8.00 0.10 0.038 0.0042 0.929 0.035 0.0011 0.934 0.016 0.0005 0.959
1.00 15.00 0.04 0.023 0.0062 0.887 0.019 0.0018 0.890 0.007 0.0009 0.961
2.00 0.75 -0.10 0.006 0.0034 0.904 0.004 0.0020 0.906 0.001 0.0007 0.971
2.00 8.00 0.05 0.044 0.0045 0.905 0.039 0.0019 0.907 0.018 0.0006 0.965
2.00 15.00 0.80 0.006 0.0046 0.913 0.004 0.0012 0.915 0.002 0.0007 0.974
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Table 2.2: Bias, MSE and CP of the estimator of θ under moderate censoring.

n = 50 n = 100 n = 200
α β θ Bias MSE CP Bias MSE CP Bias MSE CP

0.05 0.75 -0.50 0.050 0.0045 0.892 0.046 0.0029 0.897 0.021 0.0007 0.955
0.05 8.00 1.00 0.048 0.0081 0.901 0.046 0.0022 0.905 0.033 0.0011 0.966
0.05 15.00 0.75 0.041 0.0061 0.913 0.036 0.0024 0.920 0.028 0.0012 0.957
0.50 0.75 -1.00 0.039 0.0074 0.891 0.036 0.0034 0.897 0.025 0.0017 0.962
0.50 8.00 0.05 0.016 0.0056 0.932 0.012 0.0027 0.936 0.008 0.0012 0.971
0.50 15.00 0.80 0.023 0.0068 0.935 0.018 0.0032 0.940 0.014 0.0011 0.970
1.00 0.75 -0.05 0.028 0.0047 0.921 0.026 0.0021 0.926 0.017 0.0008 0.955
1.00 8.00 0.10 0.040 0.0088 0.926 0.036 0.0027 0.933 0.024 0.0007 0.954
1.00 15.00 0.04 0.027 0.0102 0.884 0.021 0.0029 0.889 0.011 0.0012 0.960
2.00 0.75 -0.10 0.011 0.0049 0.899 0.006 0.0037 0.905 0.004 0.0015 0.965
2.00 8.00 0.05 0.046 0.0090 0.901 0.041 0.0032 0.905 0.020 0.0018 0.961
2.00 15.00 0.80 0.009 0.0064 0.909 0.006 0.0028 0.914 0.005 0.0013 0.968

Table 2.3: Bias, MSE and CP of the estimator of θ under heavy censoring.

n = 50 n = 100 n = 200
α β θ Bias MSE CP Bias MSE CP Bias MSE CP

0.05 0.75 -0.50 0.054 0.0076 0.888 0.048 0.0042 0.895 0.028 0.0011 0.951
0.05 8.00 1.00 0.051 0.0101 0.898 0.048 0.0040 0.904 0.038 0.0014 0.960
0.05 15.00 0.75 0.046 0.0099 0.910 0.037 0.0039 0.918 0.034 0.0021 0.941
0.50 0.75 -1.00 0.040 0.0100 0.887 0.038 0.0047 0.896 0.029 0.0028 0.955
0.50 8.00 0.05 0.019 0.0104 0.930 0.013 0.0045 0.934 0.010 0.0024 0.957
0.50 15.00 0.80 0.025 0.0087 0.932 0.019 0.0042 0.939 0.017 0.0018 0.958
1.00 0.75 -0.05 0.031 0.0087 0.917 0.027 0.0036 0.924 0.025 0.0019 0.950
1.00 8.00 0.10 0.043 0.0129 0.923 0.038 0.0042 0.931 0.029 0.0011 0.950
1.00 15.00 0.04 0.029 0.0115 0.883 0.022 0.0040 0.888 0.018 0.0026 0.955
2.00 0.75 -0.10 0.013 0.0102 0.896 0.007 0.0055 0.903 0.005 0.0021 0.951
2.00 8.00 0.05 0.049 0.0129 0.898 0.042 0.0042 0.903 0.027 0.0029 0.958
2.00 15.00 0.80 0.013 0.0078 0.908 0.007 0.0040 0.912 0.006 0.0019 0.955

Further, different combinations of parameters are also considered. We now obtain

the MLE of θ using Algorithm 2.1 given in Section 2.2. The initial value of θ is set

as zero. The estimates obtained while fitting the data set consisting of only exact

lifetimes at baseline level to the Weibull model given in (2.2) is used as initial values

of distribution parameters α and β. We use 1000 iterations for each combination of

parameters. Average absolute bias (Bias) and estimated mean squared error (MSE)
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Figure 2.1: Histogram of estimates obtained for θ = 0.10.

of θ̂ are computed and are reported in Tables 2.1 to 2.3. The coverage probabilities

(CP) are computed using Wald 95% confidence intervals, which are also reported in

these tables. It can be observed that the bias and MSE are less and they decrease

as sample size increases, and the CP values are pretty high. Moreover, as the per-

centage of censoring increases, the bias and MSE increase, while the CP decreases.

Figure 2.1 shows a histogram of the estimates of θ = 0.10 under moderate censor-

ing. It is evident that the estimator is roughly normally distributed with mean 0.10,

the true parameter value, giving evidence in favour of asymptotic normality of the

estimator θ̂. Similar results are obtained for other values of θ.

2.5 Data Analysis

In this section, we apply our model to a real life data. We consider the data on

survival times in months for sixty five patients suffering from multiple myeloma

studied by Krall et al. (1975). The complete data set is given in Lawless (2003),

and we consider only the exact lifetimes for our study. We validate the distribution
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assumption in two stages. We first select all exact lifetimes in this data set and the

Weibull model given in (2.2) is fitted to this. The P-value is observed to be 0.8142

under the Kolmogorov-Smirnov test. This indicates that the Weibull distribution

is a plausible lifetime model for the data. The estimates of distribution parameters

obtained here are used later as initial values for Algorithm 2.1. At the second stage,

motivated by the method adopted by Jammalamadaka and Mangalam (2003), and

Iyer et al. (2008), we artificially middle-censored 20% of the lifetimes as described

in previous section with λ−1
1 = 15 and λ−1

2 = 8. This resulted in a dataset con-

sisting of both exact lifetimes and censoring intervals. This new data set is further

checked for its suitability under the Weibull model assumption as described be-

low. We first consider a likelihood function using baseline distribution, given by

L0(α, β) =
∏n1

i=1 f0(ti)
∏n

i=n1+1(S0(ui)−S0(vi)). The distribution parameters α and

β are estimated via the EM algorithm. The estimators thus obtained are denoted

by α̂0 and β̂0.

We now give a Nelson-Aalen-type estimator for the cumulative hazard function

when the data is subject to middle-censoring. For the i’th subject (i = 1, 2, ..., n),

we define the counting process {Ni(t); t ≥ 0} and the at-risk process {Ri(t); t ≥ 0}

by Ni(t) = I(X̄i ≤ t, δi = 1) and Ri(t) = I(X̄i ≥ t), where X̄ = T if δ = 1,

and X̄ = U if δ = 0. The process {Ni(t); t ≥ 0} denotes the number of observed

events up to time t for the i’th individual, and the at-risk process Ri(t) is a 0-1

predictable process, where the value 1 indicates whether the i ’th individual is at

risk at time t, which means whether it is alive and uncensored just prior to t. Then

the Nelson-Aalen-type estimator of baseline cumulative hazard function is defined

as

Ĥ0(t) =

∫ t

0

∑n
i=1 dNi(u)∑n
i=1Ri(u)

. (2.24)
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Figure 2.2: Plot of F0(t; α̂0, β̂0) against F̆0(t).

A probability-probability (PP)-plot is drawn with the distribution function of the

Weibull distribution with parameters as α̂0 and β̂0, say F0(t; α̂0, β̂0) along the Y-axis

and the distribution function F̆0(t), which is the estimator of baseline distribution

function obtained from (2.24) along the X-axis. If the model assumption holds, then

a straight line passing through origin making an angle 45 degrees with the X-axis

is expected. Figure 2.2 shows the PP-plot thus obtained. The graph seems to be

close to the line, which validate the distribution assumption.

Although there are five covariates in the original data, we take only one covari-

ate viz. logarithm of blood urea nitrogen measurement at diagnosis. We apply the

model given in Section 2.2 and obtain the MLE of parameters using Algorithm 2.1,

where the initial values of parameters are set as in previous section. The estimates

are reported in Table 2.4. The standard errors (SE) of these estimates are obtained

by the conditional bootstrap method and they are also reported in Table 2.4. It

is evident that the covariate has an adverse effect on the lifetime and the SE’s are

small. To test the significance of the covariate effect, we consider the null hypothesis

H0 : θ = 0 and we use the likelihood ratio test described in Section 2.2. The P-value

is obtained as 0.0091 and we conclude that the covariate has significant effect on
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Table 2.4: Estimates of parameters and their SE.

MLE SE
α 0.9134 0.1190
β 18.0546 1.8600
θ 0.1024 0.0314

lifetime.

We now check the overall fit of the model by using Cox-Snell residuals (Cox

and Snell (1968)). Suppose that the model given in (2.1) is fitted to the data. If

the model assumption is correct, then the probability integral transform of the true

death time T assumes a uniform distribution over [0, 1] or equivalently the random

variable H(T |z), which is the true cumulative hazard function corresponding to

(2.1), has an exponential distribution with hazard rate one.

Motivated by the definition of Cox-Snell residuals in the case of interval censored

data given in Farrington (2000), we now describe the method of obtaining Cox-Snell

residuals for the middle-censored data. For the observed data {(Xi, δi, zi) , 1 ≤

i ≤ n}, we assume that the first n1 observations are exact lifetimes and the re-

maining n2 are censoring intervals. Define the quantities r
(0)
j = Ĥ0(tj)e

z>j θ̂ for

j = 1, 2, ..., n1. For each j = n1 +1, ..., n, we define two quantities r
(1)
j = Ĥ0(uj)e

z>j θ̂

and r
(2)
j = Ĥ0(vj)e

z>j θ̂. Then we define the Cox-Snell residuals corresponding to the

middle-censored data as rj = r
(0)
j if δj = 1, and rj = (r

(1)
j , r

(2)
j ) if δj = 0. If the

model assumption is reasonable and the estimates of the parameters are close to the

true values, then {(rj, δj), 1 ≤ j ≤ n} should behave like a middle-censored sample

from unit exponential distribution. To check this we compute the Nelson-Aalen-

type estimator of the cumulative hazard function of the residuals using (2.24), where
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Figure 2.3: Plot of estimated cumulative hazard rates against rj ’s.

the counting process and at-risk process are computed corresponding to the resid-

uals. If the unit exponential distribution fits this data, then this estimator should

approximately be equal to the cumulative hazard function of the unit exponential

distribution. Thus, a plot of estimated cumulative hazard rates of rj versus rj’s

should be a straight line passing through origin and having a slope of one. Fig-

ure 2.3 shows the plot so obtained, which indicates that the data fits the model

reasonably well.

2.6 Conclusion

In the present chapter, we considered a parametric regression model for the anal-

ysis of middle-censored lifetime data. The baseline distribution was assumed to

be Weibull. Asymptotic normality of the estimator of regression parameter was

established. Simulation studies indicated that the estimator perform satisfactorily

under finite sample sizes. The model was applied to a real life data set studied by

Krall et al. (1975). For finding the expected Fisher information matrix, we need

to make some distribution assumptions for the random censoring interval (U, V ).

However, for numeric computation, we replaced the expected Fisher information
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matrix with the observed information matrix, which does not require any such as-

sumption. Moreover, this provides precise results since the estimator follows normal

distribution asymptotically (see Efron and Hinkley (1978)).





Chapter 3

Semiparametric Proportional Hazards Re-

gression Model

.

3.1 Introduction

In Chapter 2, we discussed a parametric proportional hazards model for a lifetime

data subjected to middle-censoring. Such parametric methods are powerful if the

underlying probability distribution of the lifetime variate is known. The inference

procedures of parameters in such models are studied by applying standard likeli-

hood techniques. However, in practice, the exact form of the underlying lifetime

distribution is usually unknown and we may not be able to find an appropriate

model. Therefore, the use of parametric methods in identifying significant prog-

nostic factors is somewhat limited. In this chapter, we discuss the Cox (1972)

proportional hazards model for middle-censored data in a semiparametric context,

where the model does not require knowledge of the underlying lifetime distribution.

Semiparametric models are flexible models for incorporating the covariate effect on

lifetime variate. Over the past few decades, they became increasingly popular due

1The results in this chapter have been published in Statistica (see Jammalamadaka et al. (2016))

55
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to their wide spectrum of applicability. For a review on this topic, one could refer

to Lawless (2003).

The rest of the chapter is organized as follows. In Section 3.2, we develop an iter-

ative method to derive the SPMLE of the regression parameter and the NPMLE

of baseline survival function. Further, we discuss large sample properties of these

estimators. Extensive simulation studies to assess the performance of these esti-

mators under finite sample set up with different censoring rates are carried out in

Section 3.3. We, in Section 3.4, apply the model to a real life data. Major findings

and conclusions are given in Section 3.5.

3.2 The Model and Inference Procedure

Let T be a nonnegative random variable representing lifetime of a study subject

with an unknown baseline distribution function F0(t). The only assumption we

make about the underlying population is that F0(t) is absolutely continuous. In

semiparametric context, we consider the proportional hazards model

h (t |z ) = h0 (t) exp
(
z>θ

)
, (3.1)

where the baseline hazard function h0(t) is arbitrary. Let (U, V ) be the random

vector representing the censoring interval. We assume that the distribution function

G0(·, ·) of (U, V ) is absolutely continuous with P (U < V ) = 1. Assume that (U, V )

is independent of T , given z, and that the censoring mechanism is independent of

the covariates. When lifetime T is middle-censored by the random interval (U, V ),
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one can observe (X, δ, z), where

X =


T if δ = 1

(U, V ) if δ = 0,

where δ = I(X = T ) represents the censoring indicator. Let us assume that there

are n individuals under study. Then the observed data consists of
(
Xi, δi, zi

)
,

i = 1, 2, ..., n, which are independent and identically distributed copies of
(
X, δ, z

)
.

When we have incomplete data due to censoring, the idea of self-consistency

plays a pivotal role in the estimation of the unknown baseline survival function

S0(t). If we estimate S0(t) via the Expectation-Maximisation algorithm (Dempster

et al. (1977)), as described by Tsai and Crowley (1985), the resulting estimating

equation takes the form Ŝ0(t) = EŜ0
[SESF (t)|observed data], where Ŝ0(t) is the

required estimate of S0(t) and SESF (t) is the empirical survival function defined

in (1.6). This equation is known as self-consistency equation and was first intro-

duced by Efron (1967) to derive a class of estimators of S0(t) under right censoring.

Jammalamadaka and Mangalam (2003) have shown that the NPMLE of F0(t) is

always a Self Consistent Estimator (SCE) which takes the form

F̂0(t) =
1

n

n∑
i=1

{
δiI(Xi ≤ t)+(1− δi)I(Vi ≤ t)+

(1− δi)I(t ∈ (Ui, Vi))
F̂0(t)− F̂0(Ui)

F̂0(Vi−)− F̂0(Ui)

}
. (3.2)

To estimate S0(t) = 1− F0(t) using (3.2), we first obtain its estimate at a number

of time points t using (3.2). Then a cubic polynomial of the form Ŝ0(t) = c0 +

c1t+ c2t
2 + c3t

3 is fitted using these estimated values, where c0, c1, c2 and c3 are the
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coefficients of the fitted curve. This estimator is used in the forthcoming iterative

algorithm.

Now, the survival function of T given z is given by

S (t|z) = (S0(t))exp(θ>z) . (3.3)

Differentiating (3.3) with respect to t, we get the probability density function of T

given z as

f(t|z) = f0(t) exp(θ>z) (S0(t))exp(θ>z)−1 ,

where f0(t) is the baseline probability density function of T . Our objective is to

estimate θ and S0(t) under middle-censored observation scheme.

The likelihood function corresponding to the observed data is given by

L(θ) ∝
n∏
i=1

f(ti|zi)δi
[
(S0(ui))

exp(θ>zi) − (S0(vi))
exp(θ>zi)

]1−δi
. (3.4)

Without loss of generality, arrange the observations in such a way that the first n1

observations are exact lifetimes, and the remaining n2 are censored intervals, with

n1 + n2 = n.

Now the likelihood function in (3.4), excluding the normalizing constant, is given

by

L(θ) =

n1∏
i=1

f(ti|zi) ·
n∏

i=n1+1

(
(S0(ui))

exp(θ>zi) − (S0(vi))
exp(θ>zi)

)
. (3.5)
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Then the log-likelihood function is given by

l(θ) =

n1∑
i=1

[log f0(ti) + θ>zi + exp(θ>zi) logS0(ti)]+

n∑
i=n1+1

log
(

(S0(ui))
exp(θ>zi) − (S0(vi))

exp(θ>zi)
)
. (3.6)

The first order partial derivative of (3.6) with respect to θr, for r = 1, 2, .., p, is

given by

∂l(θ)

∂θr
=

n1∑
i=1

(
zir(1 + exp(θ>zi) logS0(ti))

)
+

n∑
i=n1+1

{
zir exp(θ>zi)

(
(S0(ui))

exp(θ>zi) − (S0(vi))
exp(θ>zi)

)−1

(
(S0(ui))

exp(θ>zi) logS0(ui)− (S0(vi))
exp(θ>zi) logS0(vi)

)}
, (3.7)

where zir is the r’th component of zi. We observe that (3.7) does not involve the

baseline density function f0(t). We now give an algorithm for estimating the pa-

rameters θ and S0(t)).

Algorithm 3.1

Step 1. Set the vector θ = 0.

Step 2. At the first iteration, find NPMLE S
(1)
0 (t) of S0(t) using (3.2) and substi-

tute this in (3.7) and solve ∂l(θ)/∂θr = 0, r = 1, 2, ..., p to get the estimate θ(1) of

θ.

Step 3. Find t̃i
(1)

= S
(1)−1

0

[
S

(1)
0 (ti)

exp(θ(1)
>
zi)
]
, i = 1, 2, ..., n1, and similarly find

ũ
(1)
i and ṽ

(1)
i , i = n1 + 1, ..., n as our updated observations at the first iteration.

Step 4. At the j’th iteration (j > 1), use t̃i
(j−1)

, i = 1, 2, ..., n1, and (ũ
(j−1)
i , ṽ

(j−1)
i ), i =

n1 +1, ..., n as our data points in (3.2) and obtain S
(j)
0 (t). Substitute S

(j)
0 (t) in (3.7)
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and solve ∂l(θ)/∂θr = 0, r = 1, 2, ..., p to obatain the j’th iterated update θ(j) of θ.

Step 5. Perform subsequent iterations by using Steps 3 and 4 until convergence is

met, say when ‖θ(k) − θ(k+1)‖ < 0.0001 and sup
t

{
|S(k)

0 (t)− S(k+1)
0 (t)|

}
< 0.001, for

some positive integer k.

Note that Step 3 in the algorithm is justified because if the model assumption

(3.1) is true and if we write ai = (S
(1)
0 (ti))

exp(θ(1)
>
zi), then ai ’s follow uniform

distribution over [0, 1], being the survival function of a continuous type random

variable. Therefore to scale these back to the baseline distribution, we need to

find t̃i = inf {t : S
(1)
0 (t) ≤ ai}. Thus, the correct choice is t̃i = S

(1)−1

0 (ai) =

S
(1)−1

0

(
S

(1)
0 (ti)

exp(θ(1)
>
zi)
)

.

3.2.1 Asymptotic Properties

To derive asymptotic properties of the estimators, we now define the parameter

space to be (Θ,Φ), where Θ, which is the parameter space for θ, is a bounded

subset of Rp, and Φ, which is the parameter space for S0(t), is defined as the class

of all absolutely continuous survival functions. We denote the estimator of θ as θ̂(n)

and that of S0(t) as Ŝ0(n)(t).

We now state an important assumption regarding the identifiability of the distribu-

tion function F0(t). Let [a, b], a ≤ b be any arbitrary interval in the support of T .

Define, for each r ∈ [a, b],

A0(r) = G0(r−,∞)−G0(r−, r) = P (U < r < V ). (3.8)
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Consider a situation where A0(r) = 1 for all r ∈ [a, b] for which F0(b) > F0(a−).

That is, censoring occurs with probability 1 on this interval where F0(t) has a

positive mass. Consequently, there will not be any exact observation in this interval,

making it impossible to distinguish between two distributions which are identical

outside [a, b] but differing only within [a, b]. To overcome this issue, we make the

following assumption.

A1: The probability defined in (3.8) is strictly less than one.

Besides this identifiability condition, the following conditions are also assumed to

hold for establishing the consistency property.

A2: Conditional on z, T is independent of (U, V ) and the censoring mechanism is

covariate independent.

A3: The joint distribution of (U, V,z) does not depend on the true parameter

(θ0, S0
0(t)).

A4: The covariate space is bounded. That is, there exist some finite M0 > 0 such

that P{‖z‖ ≤M0} = 1, where ‖ · ‖ is the usual metric on Rp.

A5: The distribution of z is not concentrated on any proper affine subspace of Rp.

Theorem 3.1. Suppose that Θ ∈ Rp is bounded and assumptions (A1) to (A5)

hold. Then the estimator (θ̂(n), Ŝ0(n)(t)) is consistent for the true parameter (θ0, S0
0(t))

in the sense that if we define a metric d0 : Θ× Φ→ R by

d0((θ1, S01(t)), (θ2,S02(t))) = ‖θ1 − θ2‖+

∫
|S01(t)− S02(t)|dF0(t)+[∫ (

(S01(u)− S02(u))2 + (S01(v)− S02(v))2
)
dG0(u, v)

] 1
2

,

(3.9)
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where θ1,θ2 ∈ Θ and S01(t), S02(t) ∈ Φ, then d0

(
(θ̂(n), Ŝ0(n)), (θ

0, S0
0(t))

)
→ 0

almost surely (a.s.).

Proof. In the following discussion we denote Di = (Xi, δi). Let the probability

function of D be given by

p(d;θ, S0(t)) =
n∏
i=1

f(ti|zi)δi [(S0(ui))
exp(θ>zi) − (S0(vi))

exp(θ>zi)]1−δig0(ui, vi)q(zi),

(3.10)

where g0(u, v) is the joint probability density function of (U, V ), and q is the prob-

ability density function of z.

Using (A2) and (A3), the log-likelihood function scaled by 1/n for the sample

(di, zi), i = 1, 2, ..., n, up to terms not depending on (θ0, S0
0(t)), is

l(θ, S0(t)) =
1

n

n∑
i=1

{
δi log f(ti|zi) + (1− δi) log [(S0(ui))

exp(θ>zi) − (S0(vi))
exp(θ>zi)]

}
.

(3.11)

We write pn(d) = p(d; θ̂(n), Ŝ0(n)(t)) and p0(d) = p(d;θ0, S0
0(t)) where (θ̂(n), Ŝ0(n)(t))

is the MLE that maximizes the likelihood function over Θ × Φ and (θ0, S0
0(t)) ∈

Θ×Φ. Therefore
n∑
i=1

log pn(Di) ≥
n∑
i=1

log p0(Di),

and hence
n∑
i=1

log
pn(Di)

p0(Di)
≥ 0.

By the concavity of the function x 7→ logx, for any real α, 0 < α < 1,

1

n

n∑
i=1

log

(
(1− α) + α

pn(Di)

p0(Di)

)
≥ 0. (3.12)
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The left hand side can be written as

∫
log

(
(1− α) + α

pn(Di)

p0(Di)

)
d(Pn − P)(D) +

∫
log

(
(1− α) + α

pn(Di)

p0(Di)

)
dP(D),

(3.13)

where Pn is the empirical measure of D and P is the joint probability measure of D.

We assume that the sample space Ω consists of all infinite sequences {D1, D2, ...},

along with the usual sigma field generated by the product topology on
∏∞

1 (R3 ×

{0, 1}) and the product measure P. For p defined in (3.10), let us define a class

of functions P =
{
p(d,θ, S0(t)), (θ, S0(t)) ∈ (Θ × Φ)

}
and a class of functions

H =
{

log(1 − α + αp/p0) : p ∈ P
}

, where p0 = p(d;θ0, S0
0(t)). Then it follows

from Huang and Wellner (1995) that H is a Donsker class. Further, from Glivenko-

Cantelli theorem, there exists a set Ω0 ⊂ Ω with P(Ω0) = 1 such that for every

ω ∈ Ω0, the first term of (3.13) converges to zero. Now fix a point ω ∈ Ω0 and

write θ̂(n) = θ̂(n)(ω) and Ŝ0(n)(·) = Ŝ0(n)(·, ω). By our assumption Θ is bounded,

and hence for any subsequence of θ̂(n), we can find a subsequence converging to

θ∗ ∈ ΘC, the closure of Θ. Also by Helly’s selection theorem, for any subse-

quence of Ŝ0(n)(t), we can find a further subsequence converging to some decreasing

function S0∗(t). Choose the convergent subsequence of θ̂(n) and the convergent

subsequence of Ŝ0(n)(t) so that they have the same indices, and without loss of gen-

erality, assume that θ̂(n) converges to θ∗ and that Ŝ0(n)(t) converges to S0∗(t). Let

p∗(d) = p(d;θ∗, S0∗(t)). By the bounded convergence theorem, the second term of

(3.13) converges to

A∗ =

∫
log

(
(1− α) + α

p∗(d)

p0(d)

)
dP(d), (3.14)
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which is nonnegative by (3.12). However, by Jensen’s inequality, (3.14) must be

non-positive. Therefore (3.14) must be zero and it follows that

p∗(d) = p0(d) P− almost surely,

which implies

S0∗(t) = S0
0(t) F0 − almost surely.

Therefore by bounded convergence theorem,

∫
|Ŝ0(n)(t)− S0

0(t)|dF0(t)→ 0 (3.15)

and also

(S0∗(u))exp(θ>∗ z) = (S0
0(u))exp(θ0

>
z) P− almost surely,

and

(S0∗(v))exp(θ>∗ z) = (S0
0(v))exp(θ0

>
z) P− almost surely.

This together with (A5) imply that there exist z1 6= z2 such that for some point c

interior to the support of T ,

(S0∗(c))
exp(θ>∗ z1) = (S0

0(c))exp(θ0
>
z1) and (S0∗(c))

exp(θ>∗ z2) = (S0
0(c))exp(θ0

>
z2).

Since S0∗(c) > 0 and S0
0(c) > 0, this implies (θ∗ − θ0)>(z1 − z2) = 0. Again by

(A5), the collection of such z1 and z2 has positive probability and there exist at

least b such pairs that constitute a full rank b × b matrix, it follows that θ∗ = θ0,
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This in turn implies that

S0∗(u) = S0
0(u) and S0∗(v) = S0

0(v) G0 − almost surely.

Therefore by bounded convergence theorem,

∫ (
(Ŝ0(n)(u)− S0

0(u))2 + (Ŝ0(n)(v)− S0
0(v))2

)
dG0(u, v)→ 0. (3.16)

The equations (3.15) and (3.16) together with θ∗ = θ0 hold for all ω ∈ Ω0 with

P(Ω0) = 1. This completes the proof.

3.2.2 Nonparametric Bootstrap Method

We discuss nonparametric bootstrap method for middle-censored data and some

inference procedures based on it. The method of conditional bootstrapping dis-

cussed in Chapter 2 was based on parametric simulations. In this chapter we use a

nonparametric counterpart of it. We obtain bootstrap samples using Algorithm 2.2

with the changes that instead of the fitted parametric model of the baseline survival

function, we use the estimate Ŝ0(n)(t), and instead of θ̂ we use θ̂(n) for generating

T ∗i . For an arbitrary parameter of interest say η, the standard error (SE) of its

estimate η̂ can be computed using (2.10).

The bootstrap method can be applied to derive a confidence interval for a pa-

rameter η. To achieve this we adopt the method of studentized bootstrap confidence

interval (Davison and Hinkley (1997)) of confidence coefficient (1− α), 0 < α < 1.

We define the studentized bootstrap statistic as W ∗ = (η̂∗−η̂)/M∗1/2 , where η̂∗ is the
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estimate of η, and M∗1/2 is an estimate of variance of η̂∗, both based on a simulated

random sample (X∗i , δ
∗
i , zi), 1 ≤ i ≤ n using Algorithm 2.2. Here M∗1/2 can be ob-

tained by double bootstrapping, that is, bootstrapping within each bootstrap sam-

ple. Then the required confidence interval is given by (η̂−m1/2w∗(1−α
2

), η̂−m1/2w∗(α
2

)),

where m is an estimate of Var(η̂) which can be obtained by using bootstrap method

as before, and w∗(α
2

), w
∗
(1−α

2
) are respectively the α/2’th and (1 − α/2)’th quantiles

of the studentized bootstrap statistic values w∗1, w
∗
2, ..., w

∗
B.

Suppose now that we want to test the significance of the regression parameter

θ. For this we first consider a general hypothesis H0 : θ = θ0, where θ0 is a specific

value of θ, and can be tested against the alternative hypothesis H1 : θ 6= θ0. We

then let θ0 = 0, where 0 is the null vector of same order. We follow the studentized

bootstrap test procedure outlined in Section 4.4 of Davison and Hinkley (1997) and

accordingly we define the studentized test statistic as ρ = (θ̂(n)−θ0)>Γ−1
0 (θ̂(n)−θ0),

where Γ0 is an estimated variance of θ̂(n) under the null hypothesis, which may be

obtained by means of bootstrap method. Let ρ0 be the observed value of ρ cor-

responding to the data. We now generate B bootstrap samples under the null

hypothesis and for the b’th sample (b = 1, 2, ..., B) we compute the studentized

bootstrap statistic ρ∗b = (θ̂
∗
(n)b − θ̂(n))

>Γ ∗
−1

0b (θ̂(n)b − θ̂(n)), where Γ ∗0b, which is the

estimated variance of the estimator based on b’th bootstrap sample can be obtained

by the method of double bootstrap. Then the P-value of the test can be approxi-

mated by p =
1+

∑B
b=1 I(ρ

∗2
b ≥ρ

2
0)

B+1
, where the quantities ρ∗1, ρ

∗
2, ..., ρ

∗
B are obtained from

the B studentized bootstrap statistic values generated under the null hypothesis.
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Table 3.1: Bias, MSE and BCP of the estimator of θ under mild censoring.

n = 50 n = 100
λ θ Bias MSE BCP Bias MSE BCP

0.10 -0.50 0.028 0.0044 0.926 0.025 0.0009 0.929
0.10 1.00 0.048 0.0037 0.913 0.044 0.0009 0.914
1.00 0.05 0.032 0.0042 0.933 0.029 0.0015 0.937
1.00 0.80 0.051 0.0042 0.922 0.047 0.0008 0.924
3.00 -0.05 0.006 0.0044 0.947 0.002 0.0010 0.950
3.00 0.10 0.008 0.0038 0.914 0.003 0.0012 0.916
8.00 -0.50 0.048 0.0056 0.919 0.045 0.0009 0.921
8.00 0.07 0.038 0.0046 0.948 0.036 0.0015 0.953

Table 3.2: Bias, MSE and BCP of the estimator of θ under heavy censoring.

n = 50 n = 100
λ θ Bias MSE BCP Bias MSE BCP

0.10 -0.50 0.035 0.0109 0.924 0.028 0.0035 0.925
0.10 1.00 0.054 0.0099 0.907 0.048 0.0036 0.911
1.00 0.05 0.039 0.0129 0.925 0.032 0.0043 0.933
1.00 0.80 0.059 0.0109 0.919 0.050 0.0045 0.921
3.00 -0.05 0.012 0.0107 0.941 0.004 0.0034 0.947
3.00 0.10 0.014 0.0109 0.911 0.007 0.0039 0.913
8.00 -0.50 0.051 0.0097 0.914 0.047 0.0038 0.917
8.00 0.07 0.044 0.0115 0.939 0.039 0.0053 0.951

3.3 Simulation Studies

Simulation studies are carried out to assess the finite sample performance of the

estimators. We consider exponential distribution with mean λ−1 as the baseline

distribution of lifetime variable T . We choose exponential distribution with mean

λ−1
1 = 8 as the distribution for U and exponential distribution with mean λ−1

2 = 5

as the distribution for Y = V −U . We assume that T, U and Y are mutually inde-

pendent. We consider a single covariate z in the present study, which is generated

from uniform distribution over [0, 10] and let θ be the corresponding regression

parameter. Under the proportional hazards assumption (3.1), the survival function
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of T given z is given by

S(t|z) = exp
(
− λ exp(θz)t

)
. (3.17)

We generate sample of sizes n = 50 and 100 from (3.17) for several combinations

of λ and θ. Now corresponding to each generated lifetime, a random censoring

interval is formed with (U, V ). If we find T /∈ (U, V ), then T is selected as a

sample observation, otherwise we choose the interval (U, V ) as a sample observation.

We consider two different censoring rates: 10% (mild censoring) and 30% (heavy

censoring) for our inference. The average absolute bias (Bias) and estimated mean

squared error (MSE) are computed using 1000 iterations and are given in Tables

3.1 - 3.2. In each case, a 95% symmetric studentized bootstrap confidence interval

for regression parameter is computed with B = 1000. The proportion of times the

true parameter value lies in such intervals is called bootstrap coverage probabilities

(BCP). They are also reported in Tables 3.1 - 3.2. It is evident that both bias and

MSE are small in each case and they decrease as the sample size increases. The

bootstrap coverage probabilities are found fairly large, close to 0.95. Further, as

the censoring rate increases the bias and MSE increase, while the BCP decreases.

For each combination of parameter values of (λ, θ) considered, we found out a

cubic polynomial estimate of S0(t) by running the iterative algorithm, where each

coefficient in the estimate Ŝ0(n)(t) is obtained by taking the average of corresponding

coefficients computed for all the 1000 iterations. These estimates are compared in

Figures 3.1 - 3.4. We see that the estimated survival functions are close to the true

survival functions and the estimates become closer to the true survival functions as

the sample size increases. Moreover, as the censoring rate increases, the estimated
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(a) λ = 0.1, θ = −0.50;n = 50 (b) λ = 0.1, θ = −0.50;n = 100
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(c) λ = 1, θ = 0.05;n = 50 (d) λ = 1, θ = 0.05;n = 100
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(e) λ = 3, θ = −0.05;n = 50 (f) λ = 3, θ = −0.05;n = 100
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(g) λ = 8, θ = −0.50;n = 50 (h) λ = 8, θ = −0.50;n = 100

Figure 3.1: Plots of baseline survival function (continuous curve) and its esti-
mate (dashed curve) under mild censoring.
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(a) λ = 0.1, θ = −0.50;n = 50 (b) λ = 0.1, θ = −0.50;n = 100
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(c) λ = 1, θ = 0.05;n = 50 (d) λ = 1, θ = 0.05;n = 100
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(e) λ = 3, θ = −0.05;n = 50 (f) λ = 3, θ = −0.05;n = 100
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(g) λ = 8, θ = −0.50;n = 50 (h) λ = 8, θ = −0.50;n = 100

Figure 3.2: Plots of baseline survival function (continuous curve) and its esti-
mate (dashed curve) under heavy censoring.
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(a) λ = 0.1, θ = 1.00;n = 50 (b) λ = 0.1, θ = 1.00;n = 100
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(c) λ = 1, θ = 0.80;n = 50 (d) λ = 1, θ = 0.80;n = 100
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(e) λ = 3, θ = 0.10;n = 50 (f) λ = 3, θ = 0.10;n = 100
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(g) λ = 8, θ = 0.07;n = 50 (h) λ = 8, θ = 0.07;n = 100

Figure 3.3: Plots of baseline survival function (continuous curve) and its esti-
mate (dashed curve) under mild censoring.



Semiparametric proportional hazards regression model 72

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Time

Su
rv

iv
al

cu
rv

e

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Time

Su
rv

iv
al

cu
rv

e

(a) λ = 0.1, θ = 1.00;n = 50 (b) λ = 0.1, θ = 1.00;n = 100
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Figure 3.4: Plots of baseline survival function (continuous curve) and its esti-
mate (dashed curve) under heavy censoring.
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Table 3.3: Estimates of parameters and their SE.

Estimate SE
θ1 0.0044 0.0081
θ2 0.1096 0.0703
c0 0.8806 0.1166
c1 −0.2218 0.0863
c2 −0.0023 0.0092
c3 7.8860× 10−7 1.9481× 10−8

survival functions depart more from their respective true survival functions.

3.4 An Application

In this section, we apply our model to a real life data set. We consider a data set

on survival times (in years) for 149 diabetic patients reported in Lee and Wang

(2003). We first consider all exact lifetimes for our study and then we impose arti-

ficial middle-censoring as we did in Chapter 2. For illustrative purpose we take two

covariates from the data set, namely age denoted by z1 and coronary heart disease

(CHD) denoted by z2, with respective regression parameters θ1 and θ2. The data

is middle-censoring by the following method. A random censoring interval (U, V ),

where U and Y = V −U are independent exponential variates with means λ−1
1 = 20

and λ−1
2 = 12.5 respectively is generated first. An individual with exact lifetime

is selected at random and if that lifetime happens to fall in the generated censor-

ing interval, it is assumed to be middle-censored and the corresponding censoring

interval is considered as the observation. Otherwise the lifetime is taken. This pro-

cess is repeated until around 25% of the observations are censored. We apply the

model given in Section 3.2 to this new data set consisting of both exact lifetimes

and censoring intervals and obtained the estimates of regression parameters as well
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Figure 3.5: Plot of estimated cumulative hazard rates against rj ’s.

as the coefficients of cubic polynomial form of baseline survival function and are

reported in Table 3.3. We also report the standard errors of these estimates based

on nonparametric bootstrap method with B=1000. The estimates of the regression

parameters indicate that the covariates have adverse effect on the lifetime. Further

the SE values are small. We now test the significance of regression parameter θ by

studentized bootstrap test. The test shows a P-value of 0.0271, indicating that the

covariates are significant at 5% level of significance.

We now check the overall fit of the model by using Cox-Snell residuals (Cox

and Snell (1968)). The method is similar to that given in Chapter 2, except that for

defining residuals we use θ̂(n) and the baseline cumulative hazard function obtained

from Ŝ0(n)(t). Figure 3.5 shows the Cox-Snell residuals plot obtained. The curve is

close to the straight line indicating data fits the model reasonably well.

3.5 Conclusion

In this chapter, we discussed a semiparametric proportional hazards regression prob-

lem for the analysis of middle-censored data. We obtained the SPMLE of regression

parameter as well as the NPMLE of baseline survival function by using an iterative
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algorithm. Moreover the consistency of these estimators were established. Simula-

tion studies indicated that the estimators are performing well in terms of bias, MSE,

and BCP. The model was applied to a real data set. Asymptotic normality of θ̂(n)

and weak convergence of Ŝ0(n)(t) do not appear to be easy to establish, although

one can perhaps extend the ideas used in Huang and Wellner (1995).





Chapter 4

Parametric Additive Hazards Regression

Model

4.1 Introduction

In the last two chapters, we examined regression models for survival data based on

proportional hazards model, where the effect of the covariates act multiplicatively

on the baseline hazard rate. There are situations where the proportional hazards

model is not suitable to associate covariate effect on lifetime. An alternative model

is the additive hazards model. In Chapter 1, we have discussed advantages of addi-

tive hazards model over proportional hazards model. For the two sample situation,

the additive hazards model addresses the risk difference, while the proportional haz-

ards model concerns the risk ratio. In tumorigenicity experiments that investigate

the dose effect on tumor risk, an additive hazards model may be more reasonable

since the excess risk is often the quantity of interest (see Breslow and Day (1980)).

Motivated by this, in this chapter, we introduce and study additive hazards model

for lifetime data subject to middle-censoring in parametric context.

1The results in this chapter are accepted for publication in Communications in Statistics -
Simulation and Computation (See Sankaran and Prasad (2017a)).

77
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The rest of the chapter is organized as follows. In Section 4.2, we discuss addi-

tive hazards model in a parametric context, where the baseline distribution of the

lifetime variate is assumed to be exponentiated exponential. We also provide in-

ference procedures, where we estimate the unknown parameters using Expectation-

Maximization algorithm (Dempster et al. (1977)). In Section 4.3, we present var-

ious conditional distributions and establish asymptotic normality property of the

estimator. Section 4.4 discusses simulation studies for assessing the finite sample

performance of the proposed estimator. In Section 4.5, the proposed method is il-

lustrated to show the utility in practical situations. Finally, Section 4.6 gives major

conclusions of this study.

4.2 The Model and Inference Procedure

Let T denote the lifetime of interest. We consider the additive hazards model

defined by

h(t|z) = h0(t) + z>θ, (4.1)

where h0(t) is the baseline survival function, z is the p× 1 vector of covariates and

θ is the corresponding p × 1 vector of regression parameters. We assume that the

baseline distribution of T is exponentiated exponential (EE) with scale parameter

λ and shape parameter α with distribution function given by

F0(t) = (1− exp(−λt))α, λ > 0, α > 0. (4.2)
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Thus h0(t) in the model (4.1) takes the form

h0(t) =
αλexp(−λt) (1− exp(−λt))α−1

1− (1− exp(−λt))α
. (4.3)

The distribution defined in (4.2) was introduced by Ahuja and Nash (1967) and

further studied by Gupta and Kundu (1999). This family of distributions can

be well used as an alternative to gamma and Weibull families of distributions in

analyzing lifetime data (Gupta and Kundu (2001)). Further, this distribution has

an advantage over Weibull distribution in modelling lifetime data as the model has

non-monotonic hazard rates which often suits a regular maintenance environment.

Using (4.3), the model formulation given in (4.1) can be written as

h(t|z) =
αλexp(−λt) (1− exp(−λt))α−1

1− (1− exp(−λt))α
+ z>θ. (4.4)

Therefore the survival function of T given z, is given by

S (t|z) = exp
(
−H0(t)− z>θt

)
, (4.5)

where H0(t) =
∫ t

0
h0(a)da. We thus obtain the probability density function of T

given on z, as

f(t|z) = − d

dt
S(t|z)

=
(
h0(t) + z>θ

)
exp{−H0(t)− z>θt}. (4.6)

We now assume that the lifetime T is middle-censored by the random censoring

interval (U, V ), and that given z, (U, V ) is independent of T , with P (U < V ) = 1.
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We also assume that the censoring mechanism is independent of covariates. Thus

one can observe the vector (X, δ, z), where X = T if δ = 1, and X = (U, V )

if δ = 0, with δ = I (X = T ) as the censoring indicator. Let (Xi, δi, zi) , i =

1, 2, ..., n be independent and identically distributed copies of (X, δ, z) corresponding

to n individuals under investigation. The likelihood function corresponding to the

observed data is given by

L(ψ) ∝
n∏
i=1

f(ti|zi)δi [S(ui|zi)− S(vi|zi)]1−δi , (4.7)

where ψ = (α, λ,θ>)> and ti or (ui, vi) is the realization corresponding to the i’th

individual, i = 1, 2, ..., n. Without loss of generality, arrange these observations in

such a way that the first n1 observations are exact lifetimes and remaining n2 are

censored intervals, with n1 +n2 = n. We can now rewrite the likelihood function in

(4.7) as

L(ψ) =

n1∏
i=1

f(ti|zi)
n∏

i=n1+1

[S(ui|zi)− S(vi|zi)]

=

n1∏
i=1

(
h0(ti) + z>i θ

)
exp{−H0(ti)− z>i θti}×

n∏
i=n1+1

[
exp{−H0(ui)− z>i θui} − exp{−H0(vi)− z>i θvi}

]
. (4.8)

Now we estimate ψ via the maximum likelihood method. To achieve this we adopt

the Expectation-Maximization(EM) algorithm. The complete-data log-likelihood

function corresponding to the censored data likelihood function in (4.7), excluding
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the normalizing constant, is given by

lc(ψ) =

n1∑
i=1

log f (ti|zi) +
n∑

i=n1+1

log f
(
ťi|zi

)
, (4.9)

where ťi’s are potentially observable, but unobserved realizations of T , such that

ťi ∈ (ui, vi), i = n1 + 1, ..., n.

Using (4.6), we can rewrite (4.9) as

lc(ψ) =

n1∑
i=1

(
− (H0(ti) + z>i θti) + log(H0(ti) + z>i θti)

)
+

n∑
i=n1+1

(
− (H0(ťi) + z>i θťi) + log(H0(ťi) + z>i θťi)

)
. (4.10)

For the E-step we consider the expectation of the complete-data log-likelihood func-

tion in (4.10) given by

φ(ψ) =

n1∑
i=1

(
− (H0(ti) + z>i θti) + log(H0(ti) + z>i θti)

)
+

n∑
i=n1+1

(ζ1i− ζ2i), (4.11)

where ζ1i and ζ2i are respectively the expected values of log(H0(ťi) + z>i θťi) and

(H0(ťi) + z>i θťi), conditional on the current update of the parameter and observed

data and are given by

ζ1i= (S(ui|ψ, zi)− S(vi|ψ, zi))−1
∫ vi
ui

log(H0(t) + z>i θt)f(t|ψ, zi)dt and

ζ2i= (S(ui|ψ, zi)− S(vi|ψ, zi))−1
∫ vi
ui

(H0(t) + z>i θt)f(t|ψ, zi)dt.

Closed form expressions for these quantities are not available. For the M-step, we

provide the following algorithm to find the MLE ψ̂ = (α̂, λ̂, θ̂
>

)> of ψ.
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Algorithm 4.1

Step 1. Choose an initial value ψ(0) =
(
α(0), λ(0),θ(0)>

)>
.

Step 2. At the j’th iteration, for (j ≥ 1), evaluate ζ
(j)
1 and ζ

(j)
2 using ψ(j−1) and

substitute in (4.11).

Step 3. With α(j−1) and λ(j−1) held fixed, express (4.11) as a function of θ and

solve ∂φ
∂θ

= 0 to get θ = θ(j).

Step 4. With θ = θ(j), express (4.11) as a function of α and λ and solve ∂φ
∂α

= 0

∂φ
∂λ

= 0 to get α(j) and λ(j) and thus obtain ψ(j) =
(
α(j), λ(j),θ(j)>

)>
.

Step 5. Repeat Step 2 to Step 4 till convergence in ψ is met, say when ‖ψ(k) −

ψ(k+1)‖ < 0.0001, for some finite positive integer k.

In survival analysis, one would often be interested to know whether the co-

variates have significant effect on the lifetime variate. We use the likelihood ratio

test to know such a significance. We set the null hypothesis H0 : θ = 0, and test

this against the alternative hypothesis H1 : θ 6= 0. The test statistic is given by

Λ = 2 logL
(
θ̂, α̂, λ̂

)
− 2 logL

(
0, α̃, λ̃

)
, where α̃ and λ̃ are the MLEs obtained un-

der the null hypothesis. For large samples, the null distribution of the test statistic

Λ is approximately chi-square with p degrees of freedom. The test rejects the null

hypothesis for small P-values.

4.3 Asymptotic Properties

In this section, we discuss the asymptotic normality of the MLE ψ̂ of the param-

eter ψ. We show that, under certain regularity conditions, the MLE is asymp-

totically normally distributed with mean ψ, the true mean value, and dispersion
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matrix I −1(ψ), where I (ψ) is the Fisher information matrix given by I (ψ) =

−E
( ∂2l(ψ)

∂ψ∂ψ>

)
. We provide explicit expressions of the second order derivatives of the

log-likelihood function in equations (4.12) to (4.17) below. First we define the fol-

lowing terms. Let ξ, ξ1 and ξ2 be arbitrary positive real numbers.

b(ξ) = 1− exp(−λξ), c(ξ) = αλ log (b(ξ)),

D1(u, v) = S(u|z)− S(v|z),

K1(ξ) = (exp(λξ)− 1))−1(S(ξ|z)F0(ξ)ξα((F0(ξ)− 1),

K2(ξ) = ((F0(ξ)− 1))−1(S(ξ|z)F0(ξ) log b(ξ)),

K3(ξ) = ((F0(ξ)−1))−1(S(ξ|z)b(ξ)α−1ξα log b(ξ))
(

1− ξ
α log b(ξ)

− F0(ξ)
F0(ξ)−1

+ F0(ξ)b(ξ)
(F0(ξ)−1)(−b(ξ))

)
,

K4(ξ) = ((F0(ξ)− 1))−1(exp(λξ)− 1)−2(S(ξ|z)F0(ξ)αξα),

K5(ξ) = (F0(ξ)−1)−2(exp(λξ)−1)−2S(ξ|z)F0(ξ)2αξ2α2
(

1−exp(λξ)b(ξ)−1(−b(ξ))+

(1− b(ξ))b(ξ)−α−1(F0(ξ)− 1)−1
)

.

∂2l(ψ)

∂α2
=

n1∑
i=1

(
− z>i θti −H0(ti)− h(ti|zi)−2

{
α−1h0(ti) + (1− b(ti))b(ti)2α−1c(ti)

S0(ti)
−2 + (1− b(ti))b(ti)α−1c(ti)S0(ti)

−1
}

+ h(ti|zi)−1(1− b(ti))b(ti)α−1c(ti)

S0(ti)
−2
{

2b(ti)
αc(ti)α

−1 + 2c(ti)α
−1S0(ti)

−1 + 4b(ti)
α + 6b(ti)

α + 2S0(ti)
−1
})

+
n∑

i=n1+1

(
−D1(ui, vi)

−2
[S(ui|zi)F0(ui) log b(ui)

F0(ui)− 1
− S(vi|zi)F0(vi) log b(vi)

F0(vi)− 1

]
+ 2D1(ui, vi)

−1
[S(ui|zi)F0(ui) log b(ui)

F0(ui)− 1
− S(vi|zi)F0(vi) log b(vi)

F0(vi)− 1

])
.

(4.12)
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For j, k = 1, 2, ..., p,

∂2l(ψ)

∂θj∂θk
=

n1∑
i=1

(
− z>i θti −H0(ti)− h(ti|zi)−2z2

ij

)
+

n∑
i=n1+1

(
−D1(ui, vi)

−2zij

(S(ui|zi)ui − S(vi|zi)vi) +D1(ui, vi)
−1z2

ij(S(ui|zi)u2
i − S(vi|zi)v2

i )

)
.

(4.13)

∂2l(ψ)

∂α∂λ
=

n1∑
i=1

(
− z>i θti −H0(ti)− h(ti|zi))−2

{
(1− b(ti))b(ti)α−1αλS0(ti)

−1)2

[λ−1 − ti + (1− b(ti))b(ti)−1(α− 1) + (1− b(ti))b(ti)α−1αtiS0(ti)
−1)]

[α−1 + b(ti)
α log b(ti)S0(ti)

−1) + log b(ti)]
}

+ h(ti|zi)−1
{

(1− b(ti))b(ti)α−1

S0(ti)
−1)
[
1− λti + (1− b(ti)b(ti)−1tiλ(α− 1)

]
2(1− b(ti)b(ti)α−1S0(ti)

−1+

(1− b(ti)b(ti)−1tiαλ+ b(ti)
αc(ti)λ

−1S0(ti)
−1 + c(ti)λ

−1b(ti)
αc(ti)tiS0(ti)

−1

− c(ti)tiS0(ti)
−1 + (1− b(ti))b(ti)−1c(ti)ti(α− 1) + 2(1− b(ti))b(ti)2α−1

c(ti)tiαS0(ti)
−2)2(1− b(ti))b(ti)α−1c(ti)ti(2α− 1)S0(ti)

−1)
})

+

n∑
i=n1+1

(
−D1(ui, vi)

−2(K1(ui)−K1(vi))(K2(ui)−K2(vi)) +D1(ui, vi)
−1

(K3(ui)−K3(vi))

)
. (4.14)
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∂2l(ψ)

∂θj∂λ
=

n1∑
i=1

(
− z>i θti −H0(ti)− h(ti|zi)−2zij

(
(1− b(ti))b(ti)α−1αλS0(ti)

−1

[
λ−1 − ti + (1− b(ti))b(ti)−1ti(α− 1) + (1− b(ti))b(ti)α−1tiαS0(ti)

−1
]))

+
n∑

i=n1+1

(
−D1(ui, vi)

−2zij(S(vi|zi)vi − S(ui|zi)ui)(K4(ui)−K4(vi))+

D1(ui, vi)
−1zij(viK4(vi)− uiK4(ui))

)
, (4.15)

for j = 1, 2, ..., p.

∂2l(ψ)

∂λ2
=

n1∑
i=1

(
− z>i θti − h(ti|zi)−2

(
(1− b(ti))b(ti)α−1αλS0(ti)

−1
[
λ−1 − ti+

(1− b(ti))b(ti)−1ti(α− 1) + (1− b(ti))b(ti)α−1tiαS0(ti)
−1
]2
)

+ h(ti|zi)−2

(
αtiS0(ti)

−1(1− b(ti))b(ti)α−1
[
− 2 + 2(1− b(ti))b(ti)α−1 + tiλ− 3(1− b(ti))

b(ti)
−1α(α− 1)λt−1

i + (1− b(ti))2b(ti)
−2(α− 1)(α− 2)λti

]
+ 2α3λtiS0(ti)

−3

(1− b(ti))3b(ti)
3α−3 + (1− b(ti))2b(ti)

2α−2α2tiS0(ti)
−2
[
2− 3λti + (1− b(ti))

b(ti)
−1tiλ(2α− 2)

]))
+

n∑
i=n1+1

(
−D1(ui, vi)

−2(K1(ui)−K1(vi))
2+

D1(ui, vi)
−1((K5(ui)−K5(vi)− (K4(ui)−K4(vi))

)
. (4.16)
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∂2l(ψ)

∂α∂θj
=

n1∑
i=1

(
− z>θti −H0(ti)− zij(1− b(ti))b(ti)α−1S0(ti)

−2h(ti|zi)−2

(
λS0(ti) + (b(ti)

α + S0(ti))c(t0)
))

+
n∑

i=n1+1

(
−D1(ui, vi)

−2(S(vi|zi)vizij−

S(ui|zi)uizij)
(S(ui|zi)F0(ui) log b(ui)

F0(ui)− 1
− S(vi|zi)F0(vi) log b(vi)

F0(vi)− 1

)
+D1(ui, vi)

−1

(S(vi|zi)F0(vi) log b(vi)

F0(vi)− 1
− S(ui|zi)F0(ui) log b(ui)

F0(ui)− 1

))
, (4.17)

for j = 1, 2, ..., p. For the evaluation of the Fisher information matrix, we need some

distributional assumptions on the random censoring interval (U, V ). We assume

that U is exponentially distributed with mean λ−1
1 and Y = V −U is exponentially

distributed with mean λ−1
2 and that T, U and Y are mutually independent. Now

the probability density function of T , conditional on the event that T /∈ (U, V ) and

z is given by

fT |(T /∈(U,V ),z)(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t|T /∈ (U, V ), z)

= lim
∆t→0

1

∆t

P (t ≤ T < t+ ∆t, T /∈ (U, V )|z)

P (T /∈ (U, V )|z)

= lim
∆t→0

1

∆t

1

ṕ(ψ)
P (t ≤ T < t+ ∆t|z)P (T /∈ (U, V )|t ≤ T < t+ ∆t, z)

=
1

ṕ(ψ)
f(t|z)P (T /∈ (U, V )|T = t, z).

where ṕ(ψ) = P (T /∈ (U, V )|z). Thus, for λ1 6= λ2, we reach at

fT |(T /∈(U,V ),z)(t) =
1

ṕ(ψ)

((
h0(t) + z>θ

)
exp
(
−H0(t)− z>θt

))
(
1− λ1

λ2 − λ1

e−λ2t
(
e−(λ1−λ2)t − 1

))
, (4.18)
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and for λ1 = λ2 = λ (say),

fT |(T /∈(U,V ),z)(t) =
1

ṕ(ψ)

((
h0(t) + z>θ

)
exp
(
−H0(t)− z>θt

))
(1− λte−λt). (4.19)

In a similar way we obtain the probability density function of U , conditional on the

event that T ∈ (U, V ) and z as

fU |(T∈(U,V ),z)(u) =
1

1− ṕ(ψ)
λ1exp(−λ1u)

∫ ∞
y=0

(
exp

(
−H0(u)− z>θu

)
−

exp
(
−H0(u+ y)− z>θ(u+ y)

) )
λ2exp(−λ2y)dy, (4.20)

and the probability density function of Y , conditional on the event that T ∈ (U, V )

and z is

fY |(T∈(U,V ),z)(y) =
1

1− ṕ(ψ)
λ2exp(−λ2y)

∫ ∞
u=0

(
exp

(
−H0(u)− z>θu

)
−

exp
(
−H0(u+ y)− z>θ(u+ y)

) )
λ1exp(−λ1u)du. (4.21)

Further, the joint distribution of (U, V ) is obtained as

g0(u, v) = λ1λ2e
−(λ2−λ1)ue−λ2v, u, v ∈ R+, u < v,

and using this we obtain the distribution of (U, V ), conditional on T ∈ (U, V ) and

z as

fUV |(T∈(U,V ),z)(u, v) =
1

1− ṕ(ψ)
g0((u, v))P (T ∈ (U, V )|(U, V ) = (u, v), z) ,
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which on simplification becomes

fUV |(T∈(U,V ),z)(u, v) =
1

1− ṕ(ψ)
λ1λ2e

−(λ2−λ1)ue−λ2v{S (u|z)− S (v|z)}. (4.22)

The conditional density functions given in (4.18) - (4.22) can be used to evaluate

the expected values of the second order partial derivatives given in (4.12) - (4.17),

and hence we can obtain the Fisher information matrix I (ψ). We now assume

that the covariate space is bounded. Then the likelihood function (4.8) satisfies the

standard regularity conditions (see Bain (1976)), and it follows that the asymptotic

distribution of ψ̂ is (p+2)-variate normal with mean vector ψ and dispersion matrix

I −1(ψ).

Thus,
√
n
(
ψ̂ −ψ

)> → Np+2

(
0, nI −1(ψ)

)
in distribution.

4.4 Simulation Studies

Simulation studies are carried out to assess the finite sample performance of the

estimator. We assume that the baseline distribution of the lifetime variable T is

exponentiated exponential with shape parameter α and scale parameter λ. We

consider a single covariate, say z, in the present study which is generated from

uniform distribution over [0, 10]. We generate observations on T , conditional on z

as follows. First we fix values for α, λ, θ and z. We generate lifetimes using (4.5)

for given values of α, λ, θ and z. A random interval is generated with (U, V ) where

U and Y = V −U are assumed to be independent exponential variates with means

λ−1
1 = 15 and λ−1

2 = 10 respectively. If we find T /∈ (U, V ) then T is selected as

the sample observation, otherwise we choose the interval (U, V ) as the observation.
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In the present study, we consider two sample sizes viz., n = 50 and n = 100. We

consider three different censoring percentages viz., mild (10% censoring), moderate

(20% censoring) and heavy (30% censoring) for analyzing the impact of censoring.

Further, different combinations of parameters are also considered. For any value of

scale parameter λ, the hazard rate given in (4.3) is increasing for α > 1, decreasing

for α < 1, both up to λ, and is a constant (= λ) for α = 1. These three cases

are considered for our simulation study. We compute the MLE of parameters using

Algorithm 4.1, where the initial values of the parameters are set in a similar manner

as in Chapter 2. The average absolute bias (Bias) and estimated mean squared error

(MSE) of the estimate of θ along with coverage probabilities (CP) are computed

using 1000 iterations. The results are reported in Tables 4.1 - 4.3. It is evident

that as the sample size n increases, the bias and MSE decrease. When censoring

percentage increases the bias and MSE increase and CP decreases. Figure 4.1 shows

Table 4.1: Bias, MSE and CP of the estimator of θ under mild censoring.

n = 50 n = 100

α λ θ Bias MSE CP Bias MSE CP
4 0.50 0.0079 0.0013 0.931 0.0015 0.0062 0.947

0.75 10 -0.10 0.0092 0.0011 0.931 0.0067 0.0004 0.953
14 -0.75 0.0098 0.0027 0.931 0.0041 0.0006 0.947
1.5 1 0.0122 0.0018 0.934 0.0063 0.0005 0.952

0.25 7 0.75 0.0088 0.0018 0.928 0.0037 0.0007 0.943
12 - 1.00 0.0086 0.0093 0.927 0.0026 0.0008 0.935
0.5 0.50 0.0069 0.0081 0.940 0.0035 0.0060 0.943

1.5 1 -0.75 0.0179 0.0022 0.910 0.0105 0.0005 0.928
2.5 -1.00 0.0178 0.0102 0.918 0.0046 0.0020 0.950
0.25 -0.25 0.0077 0.0060 0.917 0.0025 0.0006 0.924

7 1 1.00 0.0031 0.0036 0.920 0.0009 0.0015 0.932
3 -0.75 0.0069 0.0103 0.909 0.0024 0.0031 0.951

0.2 0.75 0.0206 0.0016 0.930 0.0071 0.0004 0.948
1.0 1 -0.50 0.0265 0.0174 0.896 0.0036 0.0011 0.944

4 1.00 0.0453 0.0127 0.950 0.0214 0.0071 0.955
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Table 4.2: Bias, MSE and CP of the estimator of θ under moderate censoring.

n = 50 n = 100

α λ θ Bias MSE CP Bias MSE CP

4 0.50 0.0196 0.0099 0.912 0.0053 0.0084 0.924
0.75 10 -0.10 0.0152 0.0048 0.918 0.0082 0.0011 0.941

14 -0.75 0.0107 0.0028 0.932 0.0078 0.0019 0.941
1.5 1.00 0.0195 0.0064 0.911 0.0082 0.0009 0.929

0.25 7 0.75 0.0088 0.0066 0.910 0.0064 0.0009 0.940
12 -1.00 0.0087 0.0244 0.904 0.0048 0.0078 0.931
0.5 0.50 0.0107 0.0189 0.901 0.0051 0.0102 0.921

1.5 1 -0.75 0.0264 0.0029 0.900 0.0132 0.0021 0.922
2.5 -1.00 0.0222 0.0168 0.909 0.0129 0.0067 0.929
0.25 -0.25 0.0111 0.0084 0.900 0.0085 0.0009 0.908

7 1 1.00 0.0247 0.0051 0.890 0.0010 0.0020 0.915
3 -0.75 0.0138 0.0107 0.893 0.0077 0.0062 0.933

0.2 0.75 0.0249 0.0019 0.930 0.0124 0.0009 0.930
1.0 1 -0.50 0.0373 0.0192 0.891 0.0064 0.0027 0.925

4 1.00 0.0475 0.0193 0.908 0.0275 0.0092 0.939

Table 4.3: Bias, MSE and CP of the estimator of θ under heavy censoring.

n = 50 n = 100

α λ θ Bias MSE CP Bias MSE CP

4 0.50 0.0205 0.0250 0.894 0.0152 0.0178 0.919
0.75 10 -0.10 0.0382 0.0074 0.888 0.0213 0.0019 0.913

14 -0.75 0.0463 0.0051 0.900 0.0178 0.0028 0.927
1.5 1.00 0.0202 0.0277 0.881 0.0171 0.0139 0.900

0.25 7 0.75 0.0126 0.0109 0.900 0.0087 0.0029 0.928
12 -1.00 0.0281 0.0350 0.890 0.0150 0.0218 0.903
0.5 0.50 0.0291 0.0205 0.887 0.0169 0.0164 0.894

1.5 1 -0.75 0.0297 0.0259 0.881 0.0168 0.0147 0.897
2.5 -1.00 0.0270 0.0183 0.890 0.0158 0.0119 0.905
0.25 -0.25 0.0197 0.0145 0.883 0.0111 0.0054 0.892

7 1 1.00 0.0292 0.0268 0.880 0.0219 0.0149 0.891
3 -0.75 0.0268 0.0233 0.884 0.0199 0.0163 0.904

0.2 0.75 0.0487 0.0281 0.887 0.0172 0.0129 0.917
1.0 1 -0.50 0.0478 0.0295 0.888 0.0287 0.0029 0.904

4 1.00 0.0632 0.0396 0.882 0.0341 0.0147 0.915
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Figure 4.1: Histogram of estimates obtained for θ = 0.50.

a histogram of the estimates of θ = 0.50 obtained for 1000 iterations with moderate

censoring. It is evident that the estimator is roughly normally distributed with

mean 0.50, giving evidence in favour of asymptotic normality of the estimator θ̂.

The other values of θ also show similar patterns.

4.5 Data Analysis

In this section, we apply our model to a real life data set. We consider the data

corresponding to larynx cancer patients studied by Karduan (1983). The data

set is described in Klein and Moeschberger (2005) and consists of time in years

from first treatment until death or end of study. Three covariates are recorded

namely patient’s age, year of diagnosis and the stage of patient’s cancer, which is

grouped into classes 1, 2, 3 and 4 according as early stage to worst stage. Following

Jammalamadaka and Mangalam (2003), and Iyer et al. (2008), we first selected all

50 exact lifetimes and fitted these uncensored lifetimes with the EE distribution.

The Kolmogorov-Smirnov goodness of fit statistic shows a P-value of 0.35. For the

same data set, we also considered a Weibull model with shape parameter a and scale
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Figure 4.2: Plot of F0(t; α̂0, λ̂0) against F̆0(t).

parameter b for a comparative study under the model (4.1). The Weibull model

assumption gives the P-value of 0.41 under the Kolmogorov-Smirnov goodness of

fit test. Therefore both these distribution assumptions cannot be ruled out. The

estimates of the shape and scale parameters of these distributions while fitting

are later used as their respective initial values in Algorithm 4.1. Motivated by

the method adopted by Jammalamadaka and Mangalam (2003), and Iyer et al.

(2008), we then artificially middle-censored 20% of the lifetimes using the method

described in previous section with λ−1
1 = 3 and λ−1

2 = 1.5. This resulted in 10

censored intervals. This new data set consisting of exact lifetimes as well as censored

intervals is further checked for its suitability under the EE model assumption as

described below. First we consider a likelihood function at baseline level, given

by L0(α, λ) =
∏n1

i=1 f0(ti)
∏n

i=n1+1(S0(ui) − S0(vi)), where f0(t) is the probability

density function corresponding to F0(t). The distribution parameters α and λ are

estimated via the EM algorithm, and denote the estimators so obtained as α̂0 and λ̂0.

Next we obtain the Nelson-Aalen-type estimator of the baseline cumulative hazard

function under middle-censoring setup, as we described in Chapter 2. Let F̆0(t)

be the distribution function corresponding to the Nelson-Aalen-type estimator thus
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Table 4.4: Estimates of parameters and their SE.

EE Weibull
Estimate SE Estimate SE

θ1 0.084 0.0108 0.071 0.0190
θ2 0.106 0.0541 0.122 0.0607
shape 0.95 0.2003 1.41 0.6530
scale 0.46 0.0863 2.82 0.7721

obtained. Now a PP-plot is drawn with the distribution function of EE distribution

with parameters as α̂0 and λ̂0, say F0(t; α̂0, λ̂0) along the Y-axis and the estimator

F̆0(t) along the X-axis. If the model assumption holds, then a straight line passing

through origin making an angle 45 degrees with the X-axis is expected. Figure 4.2

shows the graph thus obtained for the censored data set considered. The graph

seems to be close to the line, which supports the distribution assumption.

We consider two covariates viz., patient’s age (z1) and the disease stage (z2) for our

illustration. Let θ1 and θ2 respectively be their unknown regression parameters. We

apply the model given in Section 4.2 for both EE and Weibull distributions. The

estimates of shape, scale and regression parameters are found out using Algorithm

4.1 with initial values of parameters selected in a similar way as in Chapter 2. These

estimates are reported in Table 4.4. Moreover, the standard errors (SE) of these

estimates are computed using bootstrap method as discussed in Chapter 2 with

B = 1000, where the lifetimes T ∗i are generated from the fitted value of the survival

function given in (4.5). These are also given in Table 4.4. It can be observed that

the covariates have adverse effects on the lifetime under both model assumptions

and SE’s are small.

We now check the overall fit of the model by using Cox-Snell residuals (Cox

and Snell (1968)). The method is exactly the same as that defined in Chapter
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Figure 4.3: Plots of estimated cumulative hazard rates against rj ’s for
(i) EE distribution, (ii) Weibull distribution.

2, except that under model (4.1), the Cox-Snell residuals are defined to be the

fitted cumulative hazard function values given by r
(0)
j = Ĥ0(tj) + z>j θ̂ tj for j =

1, 2, ..., n1, and r
(1)
j = Ĥ0(uj)+z>j θ̂ uj and r

(2)
j = Ĥ0(vj)+z>j θ̂ vj for j = n1+1, ..., n.

Figure 4.3 shows the residuals plots obtained for the two distributions. The curves

are close to the straight line indicating that data fits both the models reasonably

well. It can be observed that both these model assumptions are justifiable. We now

employ the Akaike information criterion (Akaike (1974)), for identifying the model

that fits the data better. We obtain Akaike information measures as 235 and 287

respectively for EE distribution and Weibull distribution. Thus we conclude that

the EE distribution provides a better model for the data considered. We also carried

out the likelihood ratio test to test the hypothesis H0 : θ = 0 to assess whether the

covariate effect is significant or not. The P-value is obtained to be 0.018 and we

infer that the covariate effect is significant.
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4.6 Conclusion

In this chapter, we considered the parametric additive hazards regression problem

for the middle-censored survival data. We developed inference procedures for finding

the MLE of the parameters and for testing the significance of the regression param-

eters in Section 4.2. In Section 4.3, we established asymptotic normality of the

proposed estimator, and derived conditional probability density functions required

for the computation of Fisher information matrix. We then carried out extensive

simulation studies in Section 4.4, which indicated that the estimators perform satis-

factorily. We presented an illustration of the proposed method with a real life data

in Section 4.5.





Chapter 5

Semiparametric Additive Hazards Regres-

sion Model

5.1 Introduction

In Chapter 4, we assumed that the lifetime follows a parametric model viz. expo-

nentiated exponential distribution. We then estimated the parameters of the model

using the method of maximum likelihood. However, in practice, the exact form of

the underlying lifetime distribution is usually unknown and we may not be able

to find an appropriate model, as we discussed in Chapter 3. Thus, the parametric

methods in identifying significant prognostic factors may not be adequate in prac-

tice. In this chapter, we focus on the semiparametric additive hazards regression

model for the analysis of middle-censored survival data. The model is given by

h(t|z) = h0(t) + z>θ, (5.1)

where h0(t) is an arbitrary unspecified baseline hazard function.

For a comprehensive review on properties and inference procedures of model (5.1)

under right censoring, one may refer to Aranda-Ordaz (1983), Cox and Oakes (1984),

1The results in this chapter are accepted for publication in Statistics in Transition (see Sankaran
and Prasad (2017b))

97
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Thomas (1986), Breslow and Day (1980), and Lin and Ying (1994). The semipara-

metric treatment of the model (5.1) under right censoring is available in Aalen

(1989).

In the present work, we consider the model (5.1) with an unknown baseline survival

function S0(t) of a continuous type lifetime variate T , which is subject to middle-

censoring. We aim at estimating the regression parameters and baseline survival

function under model (5.1).

The rest of the chapter is organized as follows. We, in Section 5.2, propose two

different methods of estimation of parameters of the model (5.1). The asymptotic

properties of the estimators are also presented. Simulation studies to assess the per-

formance of these estimators under both methods are carried out and the results are

compared in Section 5.3. The utility of the methods are illustrated in Section 5.4.

Finally, Section 5.5 provides important conclusions of the study.

5.2 Inference Procedure

Let the lifetime variate T admit an absolutely continuous distribution function

F0(t). Assume that T is is middle-censored by the random censoring interval (U, V )

having absolutely continuous distribution function given by G0(·, ·). We further

assume that under model (5.1), T is independent of (U, V ), given the covariate z,

and that the censoring mechanism is independent of covariates. Thus we observe

the vector (X, δ, z), where

X =


T if δ = 1

(U, V ) if δ = 0,
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and δ = I (X = T ) is the censoring indicator. We now state an important assump-

tion regarding the identifiability of F0(t). Let [a, b], a ≤ b be any arbitrary interval

in the support of T . Define, for each r ∈ [a, b],

A0(r) = G0(r−,∞)−G0(r−, r) = P (U < r < V ). (5.2)

Now consider a situation where A0(r) = 1 for r ∈ [a, b] for which F0(b) > F0(a−).

That is, censoring occurs with probability one on this interval where F0(t) has a

positive mass. Consequently there will not be any exact observation in this interval,

making it impossible to distinguish between two distributions which are identical

outside [a, b] but differing only within [a, b]. To overcome this issue, we make the

following assumption.

A1: The probability defined in (5.2) is strictly less than one.

In the following, we describe two different estimation methods; one make use of the

classic martingale theory and the other by using an iterative method.

5.2.1 Martingale Method

We provide an inference procedure to estimate the baseline cumulative hazard

function and the regression parameter by mimicking the inference based on par-

tial likelihood method for the proportional hazards model (see Kalbfleisch and

Prentice (2011)). We assume that there are n individuals under investigation.

The observed data consists of n independent and identically distributed replicates

(Xi, δi, zi) of (X, δ, z), 1 ≤ i ≤ n. In Chapter 2 we defined the counting pro-

cess {Ni(t); t ≥ 0} and the at-risk process {Ri(t); t ≥ 0} for the middle-censored
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data as Ni(t) = I(X̄i ≤ t, δi = 1) and Ri(t) = I(X̄i ≥ t), where X̄ = T if

δ = 1, and X̄ = U if δ = 0 for i = 1, 2, ..., n. For these processes we denote

the filtration σ{Ni(u), Ri(u+), zi : i = 1, 2, ..., n; 0 ≤ u ≤ t} by Ft. Under model

(5.1), the cumulative hazard function for the i ’th individual given zi is given by

H(t|zi) = H0(t)+z>i θt, where H0(t) =
∫ t

0
h0(a)da is the baseline cumulative hazard

function. The model (5.1) assumes that

E[Ni(t)|Ft−] = (h0(t) + θ>zi)Ri(t)dt,

approximately and the intensity function corresponding to the counting process

Ni(t) can thus be written as Ri(t)dH(t|zi) = Ri(t){dH0(t) + z>i θdt}. With this,

the counting process can be uniquely decomposed, so that for every i = 1, 2, ..., n,

and t,

Ni(t) = Mi(t) +

∫ t

0

Ri(a) dH(a|zi), (5.3)

where Mi(·) is a local square integrable martingale (Andersen and Gill (1982))

approximately. From (5.3), we have the following relation approximately for i =

1, 2, ..., n,

dNi(t) = dMi(t) +Ri(t)dH(t|zi). (5.4)

Therefore we have

n∑
i=1

dMi(t) =
n∑
i=1

[dNi(t)−Ri(t)(dH0(t) + θ>zidt)] = 0, (5.5)
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approximately. Thus from (5.3), a Breslow type estimator (Breslow (1972)) for the

cumulative hazard function H0(t) is obtained as

Ĥ0(t, θ̂) =

∫ t

0

∑n
i=1{dNi(a)−Ri(a)z>i θ̂da}∑n

i=1Ri(a)
, (5.6)

where θ̂ is a consistent estimator of θ. Motivated by Lin and Ying (1994), we

propose the following estimating equation, which mimics the partial likelihood score

function in the case of proportional hazards model discussed in Cox (1975).

U (θ) =
n∑
i=1

∫ ∞
0

zi{dNi(t)−Ri(t)dĤ0(θ, t)−Ri(t)z
>
i θdt}. (5.7)

Using (5.6) the middle term on the right hand side of (5.7) can be written as

n∑
i=1

∫ ∞
0

ziRi(t)dĤ0(θ, t) =
n∑
i=1

∫ ∞
0

ziRi(t)(
n∑
j=1

Rj(t))
−1

n∑
k=1

dNk(t)−

n∑
i=1

∫ ∞
0

ziRi(t)(
n∑
j=1

Rj(t))
−1

n∑
k=1

Rk(t)z
>
k θdt. (5.8)

On interchanging the summation and integration operations on the right hand side

of (5.8), we obtain

n∑
i=1

∫ ∞
0

ziRi(t)dĤ0(θ, t) =

∫ ∞
0

z̄

n∑
k=1

dNk(t)−
∫ ∞

0

z̄
n∑
k=1

Rk(t)z
>
k θdt

=
n∑
i=1

∫ ∞
0

z̄dNi(t)−
n∑
i=1

∫ ∞
0

z̄Ri(t)z
>
i θdt, (5.9)
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where z̄ =
∑n

i=1 ziRi(t)/
∑n

i=1Ri(t) with the convention that 0
0

= 0. Using (5.9),

the score function in (5.7) takes the form

U (θ) =
n∑
i=1

∫ ∞
0

zidNi(t)−
n∑
i=1

∫ ∞
0

z̄dNi(t) +
n∑
i=1

∫ ∞
0

z̄Ri(t)z
>
i θdt−

n∑
i=1

∫ ∞
0

ziRi(t)z
>
i θdt. (5.10)

On rearrangement of terms of (5.10), we get

U (θ) =
n∑
i=1

∫ ∞
0

{zi − z̄}{dNi(t)−Ri(t)z
>
i θdt}. (5.11)

The identity (5.11) is based on a simple fact that when θ0 is the true parameter

value, U (θ0) has mean approximately zero. Note that (5.11) is linear in θ and the

resulting estimator takes an explicit form given by

θ̂ =
[ n∑
i=1

∫ ∞
0

[zi − z̄]⊗2Ri(t)dt
]−1

n∑
i=1

∫ ∞
0

[zi − z̄]dNi(t), (5.12)

where a⊗2 = aa>. This naturally leads to the following estimator of the survival

function S(t|z),

Ŝ(t|z) = exp{−Ĥ0(t, θ̂)− z>θ̂t}. (5.13)

To prove asymptotic properties of θ̂, an algebraic manipulation of (5.4) yields

U (θ) =
n∑
i=1

∫ ∞
0

(zi − z̄)dMi(t). (5.14)

It follows from standard counting process theory (Andersen and Gill (1982)) that

n−1/2U (θ0) converges weakly to p-variate normal distribution with mean zero and
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a covariance matrix which can be estimated consistently by

A0 =
1

n

n∑
i=1

∫ ∞
0

(zi − z̄)⊗2dNi(t). (5.15)

Thus the random vector n1/2(θ̂ − θ0) converges weakly to p-variate normal variate

with mean zero and a covariance matrix which can be consistently estimated by

B−1
0 A0B

−1
0 , where

B0 =
1

n

n∑
i=1

∫ ∞
0

Ri(t)(zi − z̄)⊗2dt. (5.16)

Specifically, (B−1
0 A0B

−1
0 )
− 1

2 (θ̂− θ0) converges in distribution to N(0, Ip), where Ip

is the identity matrix of order p. It can be observed that neither A0 nor B0 involves

the regression parameters. The estimator (5.6) provides the basis for estimating

survival probabilities. Using standard counting process techniques, it follows that

the process
√
n(Ĥ0(t, θ̂)−H0(t)) converges weakly to a zero-mean Gaussian process

whose covariance function at (t, s), t ≥ s can be estimated consistently by

∫ s

0

n
∑n

i=1 dNi(a)

(
∑n

1 Ri(a))2
+ C ′0(t)B−1

0 A0B
−1
0 C0(s)− C ′0(t)B−1

0 D0(s)− C ′0(s)B−1
0 D0(t),

where C0(t) = z̄t, D0(t) =
∫ t

0

∑n
1 (zi−z̄)dNi(a)∑n

1 Ri(a)
, and for any given function k(a), k′(a)

represents dk(a)
da

.

Using functional delta method (Andersen et al. (2012)), it follows that the pro-

cess
√
n(Ŝ(t|z)− S(t|z)) converges weakly to a zero-mean Gaussian process whose

covariance function at (t, s), t ≥ s can be estimated consistently by

Ŝ(t|z)Ŝ(s|z)
(∫ s

0

n
∑n

i=1 dNi(a)

(
∑n

1 Ri(a))2

+W ′
0(t, z)B−1

0 A0B
−1
0 W0(s, z) +W ′

0(t, z)B−1
0 D0(s) +W ′

0(s, z)B−1
0 D0(t)

)
,
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where W0(t, z) = (z − z̄)t.

5.2.2 The Iterative Method

In this section, an iterative method is proposed for estimating the unknown baseline

survival function S0(t) of the lifetime variate T and the regression parameter θ under

model (5.1). Let the observed data be as before. For convenience, we arrange the

observations in such a way that the first n1 observations are exact lifetimes, and

the remaining n2 are censored intervals, with n1 + n2 = n. Now the likelihood

function corresponding to the observed data, excluding the normalizing constant,

can be written as

L(θ) =

n1∏
i=1

f(ti|zi) ·
n∏

i=n1+1

(S(ui|zi)− S(vi|zi)) . (5.17)

Under the model assumption given in (5.1), the survival function of T given z is

obtained as

S(t|z) = S0(t)exp(−θ>zt), (5.18)

where S0(t) = exp(−H0(t)). Thus the probability density function of T given z is

given by

f(t|z) = exp(−θ>zt)
(
θ>zS0(t)− S ′0(t)

)
. (5.19)
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Therefore (5.17) becomes

L(θ) =

n1∏
i=1

exp(−θ>ziti)
(
θ>ziS0(ti)− S ′0(ti)

)
n∏

i=n1+1

(
S0(ui)exp(−θ>ziui)− S0(vi)exp(−θ>zivi)

)
. (5.20)

The log-likelihood function corresponding to (5.20) is given by

l(θ) =

n1∑
i=1

(
− θ>ziti + log(θ>ziS0(ti)− S ′0(ti))

)
+

n∑
i=n1+1

log
(
S0(ui)exp(−θ>ziui)− S0(vi)exp(−θ>zivi)

)
. (5.21)

To find the SPMLE of θ, we need to find out the derivative of (5.21) with respect

to θ and equate it with null vector. We carry out this process component-wise,

keeping S0(t) fixed in the forthcoming maximization algorithm. The derivative of

(5.21) with respect to θr, for r = 1, 2, ..., p is given by

∂l(θ)

∂θr
=

n1∑
i=1

zir(ti + (θ>ziS0(ti)− S ′0(ti))
−1S0(ti))+

n∑
i=n1+1

zir

(
S0(ui)exp(−θ>ziui)− S0(vi)exp(−θ>zivi)

)−1

(
viS0(vi)exp(−θ>zivi)− uiS0(ui)exp(−θ>ziui)

)
, (5.22)

where zir is the r’th component of the covariate vector zi. Note that (5.22) involves

both unknown quantities θ and S0(t). Thus an explicit solution for θ can not be

obtained directly from it. We provide an iterative algorithm to estimate the MLE

of these two quantities, where at each iteration a better update is obtained. To

begin with the algorithm, we consider the NPMLE of the baseline survival function
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as an initial approximation to the true baseline survival function.

In the case of middle-censored data, as mentioned in Chapter 3, Jammalamadaka

and Mangalam (2003) have shown that the NPMLE of F0(t) is always a SCE (Tarpey

and Flury (1996)) which satisfies

F̂0(t) =
1

n

n∑
i=1

{
δiI(Xi ≤ t) + (1− δi)I(Vi ≤ t)+

(1− δi)I(t ∈ (Ui, Vi))
F̂0(t)− F̂0(Ui)

F̂0(Vi−)− F̂0(Ui)

}
. (5.23)

We use the cubic polynomial estimate for the baseline survivor function S0(t) =

1 − F0(t) using (5.23) as we did in Chapter 3. The algorithm for the estimating θ

and S0(t) is given below.

Algorithm 5.1

Step 1. Set the vector θ = 0.

Step 2. At the first iteration, find the NPMLE S
(1)
0 (t) of S0(t) using (5.23) and

substitute this in (5.22) and solve ∂l(θ)/∂θr = 0, r = 1, 2, ..., p to get the estimator

θ(1) of θ.

Step 3. Find t̃i
(1)

= S
(1)−1

0

(
S

(1)
0 (ti)exp(−θ(1)>ziti)

)
, i = 1, ..., n1 and similarly

find ũ
(1)
i and ṽ

(1)
i , i = n1 + 1, ..., n as our updated observations at first iteration.

Step 4. At the j’th iteration (j > 1), use t̃i
(j−1)

, i = 1, 2, ..., n1 and (ũ
(j−1)
i , ṽ

(j−1)
i ), i =

n1 + 1, ..., n as our data points in (5.23) and obtain S
(j)
0 (t). Substitute S

(j)
0 (t) in

(5.22) and solve ∂l(θ)/∂θr = 0, r = 1, 2, ..., p to obtain the j’th iterated update θ(j)

of θ.

Step 5. Repeat Steps 3 and 4 until convergence is met, say when ‖θ(m)−θ(m+1)‖ <

0.0001 and sup
t

{∣∣∣S(m)
0 (t)− S(m+1)

0 (t)
∣∣∣} < 0.001, for some finite positive integer m.
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Note that Step 3 in the algorithm is justified because, if ai = S
(1)
0 (ti)exp(−θ(1)>ziti),

then the ai ’s have a uniform distribution over [0, 1], since under the model as-

sumption (5.1), ai is the survival function of continuous type random variable

T given zi. Therefore to scale these back to the baseline distribution we need

to find t̃i = inf {t : S
(1)
0 (t) ≤ ai}. Thus the correct choice is t̃i = S

(1)−1

0 (ai) =

S
(1)−1

0

(
S

(1)
0 (ti)exp(−θ(1)>ziti)

)
.

5.2.2.1 Asymptotic Properties

To derive the asymptotic properties, we define the parameter space to be (Θ,Φ),

where Θ, which is the parameter space for θ, is a bounded subset of Rp, and Φ,

which is the parameter space for S0(t), is defined as the class of all absolutely

continuous survival functions. Let us name the estimator obtained for θ as θ̂(n)

and that for S0(t) as Ŝ0(n)(t). Besides the identifiability condition A1, the following

conditions are also assumed to hold for establishing the consistency property.

A2: Conditional on z, T is independent of (U, V ) and the censoring distribution is

independent of covariates.

A3: The joint distribution of (U, V,z) does not depend on the true parameter value

(θ0, S0
0(t)).

A4: The covariate space is bounded. That is, there exist some finite M0 > 0 such

that P{‖z‖ ≤M0} = 1, where ‖ · ‖ is the usual metric on Rp.

A5: The distribution of z is not concentrated on any proper affine subspace of Rp.

Theorem 5.1. Suppose that Θ ∈ Rp is bounded and assumptions (A1) to (A5)

hold. Then the estimator (θ̂(n), Ŝ0(n)(t)) is consistent for the true parameter (θ0, S0
0(t))
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in the sense that if we define a metric d0 : Θ× Φ→ R by

d0

(
(θ1, S01(t)),(θ2, S02(t))

)
= ‖θ1 − θ2‖+

∫
|S01(t)− S02(t)|dF0(t)+[∫ (

(S01(u)− S02(u))2 + (S01(v)− S02(v))2
)
dG0(u, v)

] 1
2

, (5.24)

where θ1,θ2 ∈ Θ and S01(t), S02(t) ∈ Φ, then d0

(
(θ̂(n), Ŝ0(n)(t)), (θ

0, S0
0(t))

)
→ 0

almost surely (a.s.).

Proof. In the following discussion, we denote Di = (Xi, δi). Let the probability

function of D be given by

p(d;θ, S0(t)) =
n∏
i=1

f(ti|zi)δi [S0(ui)exp(−θ>ziui)−S0(vi)exp(−θ>zivi)]1−δi

g0(ui, vi)q(zi), (5.25)

where g0(u, v) is the joint density of (U, V ) and q(z) is the density of z. Using

(A2) and (A3), the log-likelihood function scaled by 1/n for the sample (di, zi), i =

1, 2, ..., n, up to terms not depending on (θ0, S0
0(t)), is

l(θ, S0(t)) =
1

n

n∑
i=1

{
δi log f(ti|zi) + (1− δi) log [S0(ui)exp(−θ>ziui)−

S0(vi)exp(−θ>zivi)]
}
. (5.26)

We write pn(d) = p(d; θ̂(n), Ŝ0(n)(t)) and p0(d) = p(d;θ0, S0
0(t)), where (θ̂(n), Ŝ0(n)(t))

is the MLE that maximizes the likelihood function over Θ × Φ and (θ0, S0
0(t)) ∈

Θ× Φ. Therefore
n∑
i=1

log pn(Di) ≥
n∑
i=1

log p0(Di),
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and hence
n∑
i=1

log
pn(Di)

p0(Di)
≥ 0.

By the concavity of the function x 7→ logx, for any real number α (0 < α < 1),

1

n

n∑
i=1

log

(
(1− α) + α

pn(Di)

p0(Di)

)
≥ 0. (5.27)

The left hand side can be written as

∫
log

(
(1− α) + α

pn(Di)

p0(Di)

)
d(Pn − P)(D) +

∫
log

(
(1− α) + α

pn(Di)

p0(Di)

)
dP(D),

(5.28)

where Pn is the empirical measure of D and P is the joint probability measure of D.

Let us assume that the sample space Ω consists of all infinite sequences {D1, D2, ...},

along with the usual sigma field generated by the product topology on
∏∞

1 (R3 ×

{0, 1}) and the product measure P. For p defined in (5.25), we define a class of

functions P =
{
p(d;θ, S0(t)) : (θ, S0(t)) ∈ (Θ × Φ)

}
and a class of functions

H =
{

log(1 − α + αp/p0) : p ∈ P
}

, where p0 = p(d;θ0, S0
0(t)). Then it follows

from Huang and Wellner (1995) that H is a Donsker class. Further, from Glivenko-

Cantelli theorem, there exists a set Ω0 ⊂ Ω with P(Ω0) = 1 such that for every

ω ∈ Ω0, the first term of (5.28) converges to zero. Now fix a point ω ∈ Ω0 and write

θ̂(n) = θ̂(n)(ω) and Ŝ0(n)(t) = Ŝ0(n)(t, ω). By our assumption Θ is bounded, and

hence for any subsequence of θ̂(n), we can find a subsequence converging to θ∗ ∈ ΘC ,

the closure of Θ. Also by Helly’s selection theorem, for any subsequence of Ŝ0(n)(t),

we can find a further subsequence converging to some nonincreasing function S0∗(t).

Choose the convergent subsequence of θ̂(n) and a convergent subsequence of Ŝ0(n)(t)
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so that they have the same indices, and without loss of generality, assume that θ̂(n)

converges to θ∗ and that Ŝ0(n)(t) converges to S0∗(t). Let p∗(d) = p(d;θ∗, S0∗(t)).

By the bounded convergence theorem, the second term of (5.28) converges to

A∗ =

∫
log

(
(1− α) + α

p∗(d)

p0(d)

)
dP(d), (5.29)

which is nonnegative by (5.27). However, by Jensen’s inequality, (5.29) must be

nonpositive. Therefore (5.29) must be zero and it follows that

p∗(d) = p0(d) P− almost surely,

which implies that

S0∗(t) = S0
0(t) F0 − almost surely.

Therefore by bounded convergence theorem,

∫
|Ŝ0(n)(t)− S0

0(t)|dF0(t)→ 0. (5.30)

Also

S0∗(u)exp(−θ>∗ zu) = S0
0(u)exp(−θ0>zu) P− almost surely,

and

S0∗(v)exp(−θ>∗ zv) = S0
0(v)exp(−θ0>zv) P− almost surely.

This together with (A5) imply that there exist z1 6= z2 such that for some interoir

point c > 0 in the support of T ,

S0∗(c)exp(−θ>∗ z1c) = S0
0(c)exp(−θ0>z1c),
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and

S0∗(c)exp(−θ>∗ z2c) = S0
0(c)exp(−θ0>z2c).

Since S0∗(c) > 0 and S0
0(c) > 0, this implies (θ∗ − θ0>)(z1 − z2) = 0. Again by

(A5), the collection of such z1 and z2 has positive probability and there exist at

least b such pairs that constitute a full rank b × b matrix, it follows that θ∗ = θ0,

This in turn implies that

S0∗(u) = S0
0(u) and S0∗(v) = S0

0(v) G0 − almost surely.

Therefore by bounded convergence theorem,

∫ (
(Ŝ0(n)(u)− S0

0(u))2 + (Ŝ0(n)(v)− S0
0(v))2

)
dG0(u, v)→ 0. (5.31)

Equations (5.30) and (5.31) together with θ∗ = θ0 hold for all ω ∈ Ω0 with P(Ω0) =

1. This completes the proof.

We can derive the studentized bootstrap confidence interval and can carry out

studentized bootstrap test for testing the significance of regression parameters as

we did in Chapter 3.

5.3 Simulation Studies

Simulation studies are conducted to assess the finite sample performance of the

estimators. We consider the exponential distribution with mean λ−1 as the baseline

distribution of lifetime variate T . We choose exponential distribution with mean
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Table 5.1: Bias, MSE and BCP of the estimator of θ for Method-1 and Method-2
under mild censoring.

n = 30 n = 75 n = 125
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0091 0.0067 0.898 0.0033 0.0008 0.903 0.0017 0.0004 0.958
2 0.0396 0.0073 0.934 0.0347 0.0011 0.940 0.0025 0.0009 0.961

1.0 0.50 1 0.0163 0.0069 0.889 0.0104 0.0009 0.895 0.0022 0.0004 0.963
2 0.0454 0.0078 0.920 0.0373 0.0018 0.928 0.0029 0.0007 0.970

2.5 -0.50 1 0.0108 0.0073 0.915 0.0077 0.0019 0.921 0.0034 0.0009 0.960
2 0.0307 0.0067 0.921 0.0247 0.0012 0.926 0.0041 0.0005 0.958

4.0 -0.01 1 0.0410 0.0055 0.918 0.0336 0.0017 0.924 0.0027 0.0008 0.956
2 0.0507 0.0106 0.929 0.0448 0.0013 0.934 0.0033 0.0009 0.963

Table 5.2: Bias, MSE and BCP of the estimator of θ for Method-1 and Method-2
under heavy censoring.

n = 30 n = 75 n = 125
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0151 0.0129 0.889 0.0057 0.0042 0.900 0.0020 0.0015 0.952
2 0.0441 0.0147 0.925 0.0384 0.0031 0.937 0.0114 0.0018 0.955

1.0 0.50 1 0.0222 0.0143 0.882 0.0141 0.0041 0.892 0.0088 0.0017 0.950
2 0.0539 0.0174 0.916 0.0405 0.0044 0.925 0.0144 0.0020 0.957

2.5 -0.50 1 0.0170 0.0151 0.904 0.0104 0.0050 0.918 0.0087 0.0028 0.954
2 0.0372 0.0156 0.915 0.0283 0.0038 0.923 0.0091 0.0020 0.949

4.0 -0.01 1 0.0462 0.0101 0.913 0.0361 0.0056 0.921 0.0127 0.0022 0.951
2 0.0561 0.0131 0.921 0.0484 0.0044 0.931 0.0166 0.0019 0.955

λ−1
1 as the distribution of U and exponential distribution with mean λ−1

2 as the

distribution of Y = V − U . Further, the variates T, U and Y are assumed to be

mutually independent. We consider a single covariate z in the present study which

is generated from uniform distribution over [0, 10] and let θ be the corresponding

regression parameter. Under the model assumption in (5.1), the survival function

of T given z may be written as

S(t|z) = S0(t) exp(−θzt), (5.32)
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where S0(t) = exp(−λt). It can be observed that (5.32) is the survival function

corresponding to an exponential random variable with mean (λ + θz)−1. Samples

of sizes n = 30, 75 and 125 are generated from (5.32) for fixed values of λ and θ.

Now corresponding to each observation on T , a random censoring interval (U, V ) is

generated, where the distribution parameters are fixed as λ−1
1 = 15 and λ−1

2 = 10. If

T /∈ (U, V ), then T is selected in the sample, otherwise we choose the interval as the

observation. We consider two different censoring rates viz., 10% (mild censoring)

and 30% (heavy censoring) for our inference.

The martingale based inference procedure, denoted as Method-1 and iterative

inference procedure, denoted as Method-2 are employed to obtain the estimates of

S0(t) and θ. We used 1000 iterations for various choices of λ and θ. The average

absolute bias (Bias) and estimated mean squared error (MSE) are computed and

are given in Tables 5.1 - 5.2. In each case, a 95% symmetric studentized boot-

strap confidence interval for regression parameter is computed. The proportion of

times the true parameter value lies in such intervals is called bootstrap coverage

probabilities (BCP). They are also reported in Tables 5.1 - 5.2. From the tables

we observe that both bias and MSE are small and they decrease as the sample

size increases. The bootstrap coverage probabilities are found fairly large, close to

0.95. Further, as the censoring rate increases, the bias and MSE increase, while the

BCP decreases. For each combination of parameter values of (λ, θ) considered, we

found out a cubic polynomial estimate of the form Ŝ0(t) = c0 + c1t + c2t
2 + c3t

3

with each of its coefficients being taken as the average of corresponding coefficient

estimates obtained for 1000 iterations. The estimated survival curves are compared

in Figures 5.1 - 5.4, where continuous curve represents the true baseline survival

function, dashed curve represents corresponding estimated survival function under



Semiparametric additive hazards regression model 114

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

Time

Su
rv

iv
al

cu
rv

e

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Time
Su

rv
iv

al
cu

rv
e

(a) n = 30 (b) n = 30

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

Su
rv

iv
al

cu
rv

e

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

Su
rv

iv
al

cu
rv

e

(c) n = 75 (d) n = 75

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Time

Su
rv

iv
al

cu
rv

e

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Time

Su
rv

iv
al

cu
rv

e

(e) n = 125 (f) n = 125

Mild censoring Heavy censoring

Figure 5.1: Plots of baseline survival function (continuous curve) and its esti-
mates for Method-1 (dashed curve) and Method-2 (dotted curve) for λ = 0.1, θ =

0.25.
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Figure 5.2: Plots of baseline survival function (continuous curve) and its esti-
mates for Method-1 (dashed curve) and Method-2 (dotted curve) for λ = 1, θ =

0.50.
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Figure 5.3: Plots of baseline survival function (continuous curve) and its esti-
mates for Method-1 (dashed curve) and Method-2 (dotted curve) for λ = 2.5, θ =

−0.50.
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Figure 5.4: Plots of baseline survival function (continuous curve) and its esti-
mates for Method-1 (dashed curve) and Method-2 (dotted curve) for λ = 4, θ =

−0.01.
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Table 5.3: Estimates of parameters and their SE.

Method - 1 Method - 2
Estimate SE Estimate SE

θ1 0.0112 0.0095 0.00895 0.0072
θ2 0.1006 0.0181 0.1760 0.0105
c0 0.9367 0.1011 0.9657 0.0914
c1 −0.0487 0.0560 −0.0599 0.0504
c2 0.0006 0.00029 0.00121 7.6824× 10−5

c3 −9.2230× 10−6 6.9851× 10−7 −9.2560× 10−6 1.4597× 10−7

Method-1 and dotted curve represents corresponding estimated survival function

under Method-2. We observe that both the estimated survival functions become

close to the true survival function when the sample size increases. Moreover, as the

censoring rate increases, they tend to depart more from the true survival curve.

5.4 Illustrative Data Analysis

In this section, the proposed methods are applied to a real life data studied by Ichida

et al. (1993). The data deal with an evaluation of a protocol change in disinfectant

practices in a medical center, where patients are suffering from burn wounds. The

major concern in burn management is the control of infection and the study aims at

comparing two different controlling methods namely routine bathing care method

and body cleansing method. The time (in days) until staphylococcus infection is

recorded and we consider it as the lifetime. We consider all exact lifetimes for our

study. We then artificially middle-censor a portion of these lifetimes. Though the

original study involves several covariates, for the illustration purpose we consider

two of them namely treatment (z1), which is coded as 1 for routine bathing and 2

for body cleansing, and percentage of total surface area burned (z2). Let θ1 and
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Figure 5.5: Plot of estimated cumulative hazard rates against rj ’s for (i)
Method-1 and (ii) Method-2.

θ2 respectively be the corresponding regression parameters. A random censoring

interval (U, V ), where U and Y = V −U are independent exponential variates with

respective means λ−1
1 = 20 and λ−1

2 = 10 is generated first. Then, if the lifetime

of a patient happens to fall in the generated censoring interval, that lifetime is

assumed to be middle-censored and the interval is considered as the observation.

Otherwise the exact lifetime is considered. This process is repeated until 25% of

the observations are censored. The resulted data set includes both exact observa-

tions and censoring intervals. We apply the two methods of estimation given in

Section 5.2 to this new data set consisting of both exact and censored observations

and we obtained the estimates of the baseline survival function and the regression

parameter θ. The estimated values of the coefficients of survival curves as well as

regression parameters are given in Table 5.3. The bootstrap based standard errors

(SE) of these estimates are computed with B = 1000 and they are also reported in

Table 5.3. It can be observed that both the covariates have adverse effect on life-

time and that SE’s are less. To test the significance of the regression parameters,

we apply the studentized bootstrap test. For the null hypothesis H0 : θ = 0 the

test gives a P-value of 0.0037, indicating that the covariate effects are significant.
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We now check the overall fit of the model using Cox-Snell residuals. The method of

defining the residuals is similar to that described in Chapter 4, except that instead

of fitted parametric model for the baseline cumulative hazards function, we use its

nonparametric counterpart obtained from Ŝ0(n). Figure 5.5 shows the plots so ob-

tained under both methods of estimation. The curves are close to the straight line

indicating that the model assumption given in (5.1) is reasonable.

5.5 Conclusion

The present chapter discussed the semiparametric additive hazards regression prob-

lem for middle-censored lifetime data. We have considered two different methods

of estimation of the regression parameter and baseline survival function; one uses

martingale based theory and other based on an iterative method for which a max-

imization procedure for finding the MLE is developed. Large sample properties

including consistency and weak convergence of the estimators were established un-

der the martingale based method. Consistency of the estimators was proved under

the iterative method, whereas the weak convergence do not appear easy to establish,

although one can perhaps extend the ideas used in Huang and Wellner (1995). Sim-

ulation studies were carried out in Section 5.3, which indicated that the inference

procedures are performing satisfactorily. An application of the proposed inference

procedures was illustrated using a real life data set in Section 5.4.



Chapter 6

The Quantile Regression Model

6.1 Introduction

In previous four chapters, we developed hazard based regression models for an-

alyzing middle-censored liftime data. As mentioned in Chapter 1, one may be

interested to associate the covariate effect directly on the survival time, rather than

on its hazard function. Such methods would be practically useful if the covariates

have non-constant effect across the support of lifetime variate. A quantile regression

model defined in (1.15) is more adequate in such situations. Motivated by this, we

develop a quantile regression model for the analysis of middle-censored lifetime data

subject to conditionally independent censoring. We exploit the martingale feature

associated with observed data to develop the inference procedure and to establish

the asymptotic properties of the estimator.

The rest of the chapter is organized in the following way. We define the data

structure and quantile regression model in Section 6.2. The estimation procedure

and the asymptotic properties of the estimator are presented. The testing of hy-

pothesis as well as model diagnostics are also discussed therein. Section 6.3 reports

1The results in this chapter have been communicated as entitled ”Quantile regression model
for the analysis of middle-censored lifetime data”(see Sankaran and Prasad (2017c))

121
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an extensive simulation study to assess the finite sample performance of the pro-

posed estimator. In Section 6.4, we apply the proposed model to a real data set

on survival times of acute leukemia patients undergoing bone marrow transplanta-

tion studied by Copelan et al. (1991). The chapter ends with major conclusions in

Section 6.5.

6.2 The Model and Inference Procedure

Let T be the lifetime of interest for an individual under investigation. We assume

that T is middle-censored by (U, V ) as before. Let z be a p× 1 vector of recorded

covariates and let Z = (1, z>)>. We denote the censoring indicator by δ = I(T /∈

(U, V )) and assume that given Z, T is independent of (U, V ). The observed vector

is (X,Z, δ), where X = T if δ = 1, and X = (U, V ) if δ = 0. We consider a quantile

regression model which takes the form

QT (τ |Z) = g(Z>β0(τ)), (6.1)

for each 0 < τ < 1, where g(·) is a known monotone link function and β0(τ) is

a vector of unknown parameters representing true covariate effects on QT (τ |Z).

Common choices for g(·) include g(x) = ex and the identity mapping. Our objec-

tive is to estimate the regression quantile β0(τ) when g(·) is known. The observed

data consists of n independent and identically distributed replicates (Xi,Zi, δi) of

(X,Z, δ), 1 ≤ i ≤ n. In Chapter 2 we defined the counting process {Ni(t); t ≥ 0}

and the at-risk process {Ri(t); t ≥ 0} for the i ’th subject (i = 1, 2, ..., n) under

middle-censoring scheme by Ni(t) = I(X̄i ≤ t, δi = 1) and Ri(t) = I(X̄i ≥ t), where
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X̄ = T if δ = 1, and X̄ = U if δ = 0. Note that {N(t); t ≥ 0} and {R(t); t ≥ 0}

reduce respectively to the counting process and at-risk process of randomly right

censored data when the right end point V of the censoring interval is extended to

infinity, and those of randomly left censored data when the left end point U of the

censoring interval is limited to zero.

We now construct a stochastic integral estimating equation for estimating the un-

known parameter β0(τ). We define Mi(t) = Ni(t) −
∫ t

0
Ri(u)dΛT (u|Zi), where

ΛT (u|Zi) denotes the cumulative hazard function of T given Zi. Denote the filtra-

tion σ{Ni(u), Ri(u+),Zi : i = 1, 2, ..., n; 0 ≤ u ≤ t} by Ft. We then obtain the

following relation approximately.

E[dNi(t)|Ft−] = P [t ≤ Ti < t+ dt, Ri(t) = 1|Ft−]

= Ri(t)P [t ≤ Ti < t+ dt, |Ti ≥ t, Ui ≥ t, Vi ≤ t,Zi]

= Ri(t)dΛT (t|Zi).

This shows that Mi(t) is a martingale (Andersen and Gill (1982)) approximately,

and hence we have

E{Mi(t)|Zi} = 0,∀ t ≥ 0, (6.2)

approximately. Under the model (6.1), we have

ΛT (g(Z>i β0(τ))|Zi) = −log[1− FT (g(Z>i β0(τ))|Zi)]

= −log(1− τ).
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Thus, it follows from the use of variable transformation within the integral, that

Mi[g(Z>i β0(τ))] = Ni[g(Z>i β0(τ))]−
∫ τ

0

I[X̄i ≥ g(Z>i β0(ν))]dH (ν), (6.3)

approximately, where H (x) = −log(1− x). We now define

Sn(β, τ) =
1

n

n∑
i=1

Zi

(
Ni[g(Z>i β(τ))]−

∫ τ

0

I[X̄i ≥ g(Z>i β(ν))]dH (ν)
)
. (6.4)

It is easy to see that E{Sn(β0, τ)} = 0 approximately by using (6.2) and (6.3).

Therefore we propose to estimate β0(·) by using the estimating equation

n1/2Sn(β, τ) = 0. (6.5)

A careful examination reveals that when the upper bounds Vi of the censoring

intervals become infinity, equation (6.5) reduces to the estimating equation for ran-

domly right censored data discussed by Peng and Huang (2008), and when the lower

bounds Ui of the censoring intervals become zero, equation (6.5) gives an estimating

equation for a randomly left censored data discussed by Ji et al. (2012).

The stochastic integral representation of Sn(β, τ) suggests a grid-based estimation

procedure to obtain an estimator of β0(τ), denoted by β̂(τ) based on equation (6.5)

as a right continuous piecewise-constant function that jumps only on a pre-specified

grid SLn = {0 = τ0 < τ1 < ... < τLn = τ ◦ < 1} , where τ ◦ is a pre-specified constant

subject to certain theoretical constraints discussed in Section 6.2.1. We define the

norm function for this grid by ‖SLn‖ =max {|τj − τj−1|, j = 1, 2, ..., Ln}. Since by

definition g(Z>β0(0)) = 0, we always set g(Z>β̂(0)) = 0.

We shall obtain β̂(τj) for j = 1, 2, ..., Ln by sequentially solving the estimating
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equation for β(τj) given by

n−1/2

n∑
i=1

Zi

(
Ni[g(Z>i β(τj))]−

j−1∑
k=0

I[X̄i ≥ g(Z>i β̂(τk))]{H (τk+1)−H (τk)}
)

= 0.

(6.6)

It can be observed that the estimating equation (6.6) is a monotone estimating

equation (Fygenson and Ritov (1994)), which is not continuous and therefore an

exact solution may not exist. At the same time its monotonic nature can be well

exploited to the benefit of computation, that all its generalized solutions belong to

a convex set and the left hand side of (6.6) equals 2−1n−1/2 times the gradient of

the following L1-type convex function.

lj(h) =
n∑
i=1

∣∣I(δi = 1)g−1(X̄i)− h>I(δi = 1)Zi

∣∣+

∣∣∣∣∣K − h>
n∑
l=1

−I(δi = 1)Zi

∣∣∣∣∣+∣∣∣∣∣K − h>
n∑
r=1

2Zr

j−1∑
k=0

I[X̄r ≥ g(Z>r β̂(τk))]{H (τk+1)−H (τk)}

∣∣∣∣∣, (6.7)

where K is a very large number chosen in such a way that it can bound the quantities∣∣h>∑n
l=1−I(δi = 1)Zi

∣∣ and
∣∣h>∑n

r=1 2Zr

∑j−1
k=0 I[X̄r ≥ g(Z>r β̂(τk))] {H (τk+1)−

H (τk)}
∣∣ for all values of the vector h in the compact parameter space for β0(τ)

and j = 1, 2, ..., Ln. The solutions of (6.6) turn out to be the minimizing values

(6.7). The equation (6.7) can be formulated as a linear programming problem and

can easily be solved by using simplex method which leads to β̂(τ).
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6.2.1 Asymptotic Results

We establish asymptotic properties of the proposed estimator whose derivation is

greatly facilitated by the stochastic integral representation of the estimating func-

tion (6.7). Strong consistency and weak convergence of the estimator are established

under certain regularity conditions. We first give following notations.

Define F̃X,δ(t|Z) = P{X̄ ≤ t, δ = 1|Z}. Let FΨ(t|Z) and F̄Ψ(t|Z) be the cumula-

tive distribution function and survival function respectively for Ψ given Z, where

Ψ = T if δ = 1, and Ψ = V if δ = 0. We denote F̄0(t|Z) = P{U < t < V |Z}.

Also let fT (·|Z), fΨ(·|Z), f̄Ψ(·|Z), f̃X,δ(·|Z), f̄0(·|Z) and g′(·) denote the first order

derivatives of FT (·|Z), FΨ|Z(·|Z), F̄Ψ|Z(·|Z), F̃X,δ(·|Z), F̄0(·|Z) and g(·) respectively.

We define the following quantities first.

µ(b) = E
(
ZN [g(Z>b)]

)
,

B(b) = E
[
Z⊗2f̃X,δ

(
g(Z>b)|Z

)
g′(Z>b))

]
,

υn(b) = n−1
∑n

i=1ZiNi[g(Z>i b)|Z]− µ(b),

µ̃(b) = E[ZI(X̄ ≥ g(Z>b)],

J(b) = E
[
Z⊗2

(
f̄Ψ(g(Z>b)|Z)− (1− δ)f̄0(g(Z>b)|Z)

)
g′(Z>b)

]
and

ῡn(b) = n−1
∑n

i=1ZiI(X̄i ≥ g(Z>i b)− µ̃(b).

We now establish asymptotic properties under the following regularity conditions.

C1. The covariate space Z is bounded, i.e., supi‖Z i‖ <∞.

C2. (i) Each component of E
(
ZN [g(Z>β0(τ))]

)
is a Lipschitz function of τ ;

(ii) f̃X,δ(t|Z) and fΨ(t|Z) are uniformly bounded in t and Z.

C3. (i) f̃X,δ(g(Z>b)|Z) > 0 for all b ∈ B(d0);

(ii) E(Z⊗2) > 0;

(iii) each component of J(b)B(b)−1 is uniformly bounded in b ∈ B(d0), where
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B(d0) is a neighborhood containing {β0(τ), τ ∈ (0, τ ◦)} defined as B(d0) = {b ∈

Rp : infτ∈(0,τ◦)‖µ(b)− µ(β0(τ))‖ ≤ d0}.

C4. infτ∈(h,τ◦)eigminB{β0(τ)} > 0 for any h ∈ (0, τ ◦), where eigmin(·) denotes the

minimal eigen value of a matrix.

Condition C1 specifies that the covariates are bounded. C2 (i) requires the smooth-

ness of the quantile process β0(·) and C2(ii) ensures boundedness of f̃X,δ(t|Z) and

fΨ(t|Z), while C3 (i) and (ii) respectively ensures the positive density and posi-

tive definiteness of E(Z⊗2). Condition C4 is a crucial assumption required for the

identifiability of the quantile process. Note that τ ◦; 0 < τ ◦ < 1 is a deterministic

constant subject to identifiability constraints. Motivated by the identifiability con-

dition proposed by Chang and Yang (1987), we set τ ◦ ≤ FT (T+), where T+ is the

upper bound of support of T . These assumptions guarantee that C3(iii) is satisfied

with b = β0(τ) and ensure the continuity of J(b)B(b)−1. With these assumptions,

it is reasonable to expect C3(iii) holds in B(d0). It can be noted that the distri-

bution law of the random censoring interval (U, V ) also plays an important role

in the foregoing assumptions. We now establish the strong consistency and weak

convergence of our proposed estimator β̂(τ) stated in the following theorems.

Theorem 6.1. Under the conditions C1 -C4, supτ∈[h,τ◦] ‖β̂(τ) − β0(τ)‖ →P 0,

where 0 < h < τ ◦, provided limn→∞‖SLn‖ = 0.

Proof. Define A (d) = {µ(b) : b ∈ B(d)} and denote α0(τ) = µ{β0(τ)} and

α̂0(τ) = µ{β̂(τ)}. It follows from Peng and Huang (2008) that the mapping µ(·)

is invertible from A (d0) to B(d0) with the inverse mapping being denoted by κ.

Taylor series expansion of κ{α̂(τ)} around α0(τ) for τ ∈ [h, τ ◦] along with the
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assumptions C1-C4 lead to the required result which follows directly from Peng and

Huang (2008).

Theorem 6.2. Under the conditions C1 -C4, the process n1/2{β̂(τ)− β0(τ)} con-

verges weakly to a Gaussian process, for τ ∈ [h, τ ◦], where 0 < h < τ ◦, provided

limn→∞n
1/2‖SLn‖ = 0.

Proof. Following the proof of Lemma B.1. given in Peng and Huang (2008), we can

show that

(i) supτ∈(0,τ◦]‖n−1/2

n∑
i=1

Zi

[
Ni(g(Z>i β̂(τ)))−Ni(g(Z>i β0(τ)))

]
− n−1/2

[
µ(β̂(τ))−

µ(β0(τ))
]
‖ converges in probability to zero,

and

(ii) supτ∈(0,τ◦]‖n−1/2

n∑
i=1

Zi

[
I[X̄i ≥ g(Z>i β̂(τ))]− I[X̄i ≥ g(Z>i β0(τ))]

]
− n−1/2

(
µ̃(β̂(τ))− µ̃(β0(τ))

)
‖ converges in probability to zero.

These two convergence properties along with the fact that µ(β̂(τ)) converges uni-

formly to µ(β0(τ)) for τ ∈ (0, τ ◦] enables us to write n1/2[µ(β̂(τ)) − µ(β0(τ))] =

φ{−n1/2Sn(β0, τ)}+ o(0,τ◦](1), where φ is a linear operator as defined in equation

B.3 of Peng and Huang (2008) and oI(an) denote a term that converges uniformly

to zero in probability where τ ∈ I, after being divided by an. The required result

follows by an application of Donsker theorem to this class whose derivation is similar

to that given in Peng and Huang (2008).
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6.2.2 Resampling and Hypothesis Testing

One important issue that occurs in inferences of the regression quantile process is

that the covariance matrix of the limiting process of n1/2{β̂(τ) − β0(τ)} involves

the unknown probability density functions fΨ(t|Z) and f̃X,δ(t|Z). Estimation of

these quantities by conventional methods may be time consuming and tedious or

even unstable with samples of small sizes. To overcome this difficulty, Jin et al.

(2001) introduced a simple resampling method by perturbing the objective func-

tion which is to be optimized repeatedly, and thereby facilitating the inferences of

the parameters based on a large collection of the resulting optimizers. This mini-

mand perturbing technique has been generalized by Peng and Huang (2008) with

functional estimands. To adopt this method, we choose independent observations

ζ1, ζ2, ..., ζn drawn from a known non-negative distribution with unit mean and unit

variance, for example exponential with mean unity. Using these variates, we perturb

the objective function given in (6.7) and the resulting objective function is given by

l̃j(h) =
n∑
i=1

∣∣ζiI(δi = 1)g−1(X̄i)− h>ζiI(δi = 1)Zi

∣∣+

∣∣∣∣∣K − h>
n∑
i=1

−ζiI(δi = 1)Zi

∣∣∣∣∣
+

∣∣∣∣∣K − h>
n∑
r=1

2ζrZr

j−1∑
k=0

I(X̄r ≥ g(Z>r β
∗(τk))){H (τk+1)−H (τk)}

∣∣∣∣∣, (6.8)

for j = 1, 2, ..., Ln, where β∗(τj) is defined as the minimizer of (6.8) and this can be

obtained sequentially with the same procedure employed for (6.7). For a fixed quan-

tile point τ , the variance of the quantile process estimator at τ can be approximated

by repeatedly generating variates set {ζ1, ζ2, ..., ζn} for a large number of times, say

B, and calculating the variance of the resulting sequence {β∗k(τ), k = 1, 2, ..., B}. A

normal approximation for the process at this specific quantile point is valid since B
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is taken to be large and therefore we can find out a 100(1−α)% confidence interval

for β0(τ∗), for a given level of significance α. Following the lines of Ji et al. (2012),

a 100(1 − α)% confidence band for {β0(τ) : τ ∈ [l1, l2], 0 < l1 < l2 < τ ◦} can

be constructed as {β̂(τ) ± ρ1−ασ̂(τ), τ ∈ [l1, l2]}, where ρ1−α is the 100(1 − α)%

empirical percentile of supτ∈[l1,l2]|β∗(τ)− β̂(τ)|/σ̂(τ) with σ̂(τ) being the empirical

standard deviation of β∗(τ) obtained from resampling.

It is often of interest in a regression analysis to assess whether the covariate, say

Z(r), the r’th component of covariate vector Z has significant effect over τ ∈ [l1, l2]

for 2 ≤ r ≤ p+ 1, where l1 < l2 ∈ (0, τ ◦). This can be posed as a hypothesis testing

problem by considering the general hypothesis H0 : Φ{β0(τ)} = γ0(τ), τ ∈ [l1, l2],

where Φ is a known function and γ0(τ) is a hypothesized value of Φ{β0(τ)}. It

follows that testing the covariate significance at τ ∈ [l1, l2] is equivalent to setting

Φ(s) = s(r), which is the r’th component of vector s and γ0(τ) = 0. One natural

test is given by Γ = n1/2
∫ l2
l1
{Φ{β̂(a)}− γ0(a)}Θ(a)da, where Θ(a) is a nonnegative

weight function and the distribution of Γ, being unknown, can be approximated by

the empirical distribution of Γ∗ = n1/2
∫ l2
l1
{Φ{β∗(a)} − Φ{β̂(a)}}Θ(a)da, given the

observed data. Further, it can be shown that Γ is a consistent test under certain

conditions (Peng and Huang (2008)). In practice, the weight function Θ(a) may be

appropriately chosen to accentuate the deviation from H0 by meeting the desired

power for an observed sample size. Under H0, the conditional distribution of Γ∗,

given the observed data, is equivalent to the unconditional distribution of Γ and for

a given size α, reject H0 if either Γ is greater than the (1−α/2)’th percentile of, or

less than the α/2’th percentile of the empirical distribution of Γ∗.

Another important hypothesis of interest is to verify whether the effect of a
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covariate is constant over τ ∈ [l1, l2]. This can be formulated by first considering

a general hypothesis H̃0 : Φ̃{β0(τ)} = η0, for τ ∈ [l1, l2], where Φ̃(·) is a known

function and η0 is an unspecified constant, and then by assigning Φ̃(s) = s(r),

the r’th component of the vector s. This hypothesis can be tested by using the

test statistic Γ̃ = n1/2
∫ l2
l1

[Φ̃{β̂(a)} − ρ̂]Θ̃(a)da, where Θ̃(·) is a nonconstant weight

function and ρ̂ = (l2− l1)−1
∫ l2
l1

Φ̃{β̂(a)}d(a). For a given level α, one may reject H̃0

when Γ̃ is greater than the (1−α/2)’th percentile or less than the (α/2)’th percentile

of empirical distribution Γ̃∗ = n1/2
∫ l2
l1

([Φ̃{β∗(a)} − Φ̃{β̂(a)}]− (ρ∗ − ρ̂))Θ̃(a)da.

6.2.3 Model Diagnostics

Model diagnostics is an important concern for all model-based inference procedures.

As our inference procedure largely exploits the martingale structure of the under-

lying quantile process, it is natural to employ martingale residuals or their trans-

formations, as discussed by Lin et al. (1993), for model diagnostics. We consider a

simple class of stochastic processes given by

K(τ) = n−1/2

n∑
i=1

q0(Zi)Mi(τ ; β̂),

where q0(·) is a known bounded function and

Mi(τ ;β) = Ni[g(Z>i β(τ))]−
∫ τ

0

I(X̄i ≥ g(Z>i β(ν)))dH (ν).

It follows from Peng and Huang (2008) that if the model (6.1) is specified correctly,

then the process K(τ) converges weakly to a zero-mean Gaussian process, and its
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distribution can be approximated by that of

K∗(τ) = n−1/2

n∑
i=1

q0(Zi)Mi(τ ; β̂)(1− ζi) + n−1/2

n∑
i=1

q0(Zi){Mi(τ ;β∗)−Mi(τ ; β̂)},

where ζi’s are defined as earlier and we consider the observed data as fixed for eval-

uating K∗(·). Also the null distribution of K(·) can be approximated by simulating

K∗(·) by repeatedly generating {ζ1, ζ2, ..., ζn}. A numerical measure for the lack of

fit may be taken to be the supremum statistic supτ∈[l1,l2]|K(τ)|, which is reasonable

since under model (6.1), K(τ) is expected to fluctuate around zero. It follows from

Lin et al. (1993) that for a properly chosen q0(·), this test is consistent against the

general alternative that the model assumption (6.1) is violated.

6.3 Simulation Studies

In this section, the finite sample performance of the proposed estimator is assessed

by means of Monte Carlo simulation studies. We first consider an accelerated failure

time (AFT) model with two independent covariates given by

T̃ = b1z1 + b2z2 + ε, (6.9)

where T̃ = logT , b1 and b2 are regression parameters, and ε is a random term

assumed to follow standard normal distribution. It then follows that the quantile

function of T given Z = (z0, z1, z2)>, where z0 = 1, is QT (τ) = g(z0β0(τ)+z1β1(τ)+

z2β2(τ)), where g(x) = ex, β0(τ) = Qε(τ), β1(τ) = b1, and β2(τ) = b2. Thus
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with β0(τ) = (β0(τ), β1(τ), β2(τ))>, the model (6.9) is a special case of the model

specified in (6.1).

The covariate z1 is generated from uniform distribution over the interval (0, 1)

and z2 is generated from the Bernoulli distribution with success probability 0.5. The

observations are generated using the model (6.9). We generate random censoring

interval (U, V ) in such a way that logU follows uniform(c1, c2) distribution and

logY = log (V −U) follows uniform distribution over (c3×z2, c4), where c1, c2, c3 and

c4 are appropriately chosen nonnegative constants. Clearly the censoring interval

is covariate dependent in this setting. We now give step-by-step procedure for

generating observations of required size.

(i) Randomly generate covariates z1 and z2, and using them generate logT from

the AFT model given in (6.9).

(ii) With z2 held fixed, generate U and V as described above.

(iii) Choose X = T as an observed value if T /∈ (U, V ), otherwise select (U, V ) as

the observation.

We consider two different censoring rates viz., 15% (mild censoring) and 30% (heavy

censoring), for comparing the impact of censoring on estimators. We choose two

different sample sizes viz., 50 and 100 and we fix b1 = 0 and b2 = −1 along with

c1 = 0.1, c2 = 4.5, c3 = 0.5 and c4 = 2.6 for generating mild censored data.

The heavy censored data is obtained using same values for c1, c2 and c3, but with

c4 = 3.5. Data sets are replicated in 1000 iterations and the resampling method is

carried out for B = 250 with {ξ1, ξ2, ..., ξB} generated from exponential distribution

with unit mean. An equally spaced grid with subintervals of length 0.01 is adopted

for τ ∈ (0.1, 0.7) for the estimation of β0(τ). Testing of hypotheses concerning

the overall significance of the covariates as well as the constancy of their effects
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are also performed using weight functions Θ(k) = 1 and Θ(k) = I[k ≥ (l1 + l2)/2]

respectively. One can also use a weight function putting unit weight on the first

half of the interval (l1, l2).

Table 6.1: Bias, AERSD, ESD and CP for the AFT model under mild censoring.

n = 50 n = 100
τ Bias AERSD ESD CP Bias AERSD ESD CP

0.1 β̂0 0.048 0.755 0.711 0.926 0.025 0.685 0.626 0.930

β̂1 0.024 0.178 0.180 0.901 0.010 0.100 0.170 0.904

β̂2 0.084 0.341 0.361 0.930 0.041 0.315 0.320 0.934

0.3 β̂0 0.074 0.790 0.807 0.895 0.031 0.724 0.726 0.900

β̂1 0.086 0.899 0.890 0.919 0.021 0.888 0.849 0.924

β̂2 0.045 0.533 0.553 0.899 0.040 0.469 0.490 0.901

0.5 β̂0 0.063 0.942 0.941 0.947 0.041 0.725 0.708 0.951

β̂1 0.045 0.557 0.514 0.894 0.044 0.311 0.329 0.898

β̂2 0.034 0.231 0.200 0.900 0.032 0.169 0.183 0.902

0.7 β̂0 0.063 0.414 0.438 0.920 0.030 0.198 0.211 0.923

β̂1 0.039 0.305 0.326 0.924 0.037 0.222 0.248 0.928

β̂2 0.077 0.479 0.500 0.946 0.034 0.309 0.299 0.950

Table 6.2: Bias, AERSD, ESD and CP for the AFT model under heavy cen-
soring.

n = 50 n = 100
τ Bias AERSD ESD CP Bias AERSD ESD CP

0.1 β̂0 0.054 0.905 0.821 0.919 0.043 0.885 0.802 0.928

β̂1 0.028 0.279 0.261 0.895 0.027 0.165 0.190 0.900

β̂2 0.091 0.453 0.441 0.925 0.086 0.379 0.381 0.928

0.3 β̂0 0.079 0.908 0.921 0.886 0.078 0.833 0.851 0.890

β̂1 0.088 0.916 0.901 0.915 0.058 0.900 0.885 0.916

β̂2 0.055 0.811 0.832 0.894 0.049 0.622 0.610 0.895

0.5 β̂0 0.070 0.980 0.963 0.941 0.057 0.743 0.800 0.946

β̂1 0.057 0.714 0.710 0.888 0.051 0.500 0.488 0.894

β̂2 0.040 0.411 0.418 0.894 0.037 0.305 0.290 0.895

0.7 β̂0 0.071 0.633 0.645 0.913 0.057 0.418 0.470 0.915

β̂1 0.047 0.609 0.584 0.915 0.045 0.411 0.444 0.919

β̂2 0.083 0.606 0.591 0.941 0.059 0.439 0.473 0.945
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Table 6.3: Bias, AERSD, ESD and CP for the heteroscedastic model under
mild censoring.

n = 50 n = 100
τ Bias AERSD ESD CP Bias AERSD ESD CP

0.1 β̂0 0.016 0.231 0.259 0.910 0.013 0.184 0.171 0.915

β̂1 0.018 0.705 0.699 0.918 0.017 0.588 0.600 0.920

β̂2 0.037 0.276 0.290 0.922 0.035 0.217 0.283 0.925

0.3 β̂0 0.079 0.169 0.200 0.943 0.047 0.122 0.154 0.945

β̂1 0.063 0.408 0.444 0.921 0.060 0.277 0.222 0.930

β̂2 0.064 0.355 0.311 0.942 0.040 0.189 0.200 0.944

0.5 β̂0 0.025 0.215 0.188 0.902 0.022 0.116 0.122 0.906

β̂1 0.043 0.515 0.500 0.944 0.040 0.368 0.390 0.948

β̂2 0.049 0.723 0.791 0.956 0.046 0.515 0.498 0.958

0.7 β̂0 0.065 0.444 0.410 0.930 0.063 0.188 0.201 0.950

β̂1 0.068 0.283 0.300 0.940 0.064 0.184 0.201 0.944

β̂2 0.030 0.614 0.621 0.925 0.028 0.583 0.600 0.929

Table 6.4: Bias, AERSD, ESD and CP for the heteroscedastic model under
heavy censoring.

n = 50 n = 100
τ Bias AERSD ESD CP Bias AERSD ESD CP

0.1 β̂0 0.019 0.301 0.321 0.901 0.017 0.212 0.242 0.904

β̂1 0.026 0.884 0.854 0.915 0.022 0.669 0.687 0.918

β̂2 0.044 0.317 0.298 0.919 0.041 0.276 0.286 0.920

0.3 β̂0 0.084 0.433 0.410 0.930 0.082 0.400 0.386 0.932

β̂1 0.071 0.631 0.624 0.890 0.067 0.400 0.391 0.901

β̂2 0.070 0.704 0.691 0.888 0.069 0.299 0.312 0.891

0.5 β̂0 0.035 0.408 0.395 0.895 0.031 0.209 0.230 0.899

β̂1 0.062 0.714 0.705 0.900 0.054 0.485 0.468 0.908

β̂2 0.066 0.803 0.860 0.911 0.059 0.719 0.720 0.912

0.7 β̂0 0.070 0.619 0.640 0.915 0.068 0.303 0.290 0.920

β̂1 0.082 0.505 0.489 0.931 0.080 0.308 0.300 0.938

β̂2 0.051 0.880 0.854 0.904 0.043 0.714 0.738 0.913
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These weight functions seem to be providing good powers during the simulation

study and therefore it is reasonable to consider them for our data analysis. We set

l1 = 0.1 and l2 = 0.7. Tables 6.1 - 6.2 present the results obtained by estimation

of the parameters of the AFT model (6.9). We give average absolute values of

biases (Bias), average estimated resampling-based standard deviations (AERSD),

empirical standard deviations (ESD) of β̂(τ) along with the coverage probabili-

ties (CP) of 95% confidence intervals of β0(τ) based on normal approximation for

τ = 0.1, 0.3, 0.5, 0.7. It can be observed that biases are small, the empirical stan-

dard deviations and resampling based standard deviations are small and are close

to each other. The coverage probabilities are pretty high. We can observe that the

bias, AERSD and ESD decrease when the sample size increases. Moreover, when

the censoring rate increases they increase, while the CP decreases. Tables 6.5 -

6.6 show the results of testing of hypotheses concerning significance of regression

quantile and constancy of covariate effects. The empirical rejection rates (ERR) for

both tests at significance level 0.05 are given. We also present estimated average

effects (EAE), empirical standard deviations (ESD) and average resampling-based

standard deviation (ARSD) of the average effects. It can be observed that the prob-

ability of type-I error is close to nominal value 0.05, the estimated average covariate

effects of z1 and z2 are close to the true values and the average resampling-based

standard deviation and empirical standard deviations agree well with each other.

It is evident that the ERR shows better results with increase in sample size, but

it worsens with increase in censoring rate. The average estimated effects obtained

from the proposed method (in dashed lines) along with the true coefficients (in con-

tinuous lines) are displayed in Figures 6.1 - 6.2. It can be observed that the true

values and their mean estimates are close to each other.
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Table 6.5: Hypothesis testing results for AFT model under mild censoring.

H0 : β(τ) = 0, l1 ≤ τ ≤ l2 H0 : β(τ) = η0, l1 ≤ τ ≤ l2
n1 = 50 n2 = 100 n1 = 50 n2 = 100

ERR EAE ESD ARSD ERR EAE ESD ARSD ERR ERR

β̂0 0.72 -0.265 0.50 0.47 0.81 -0.275 0.47 0.43 0.80 0.93

β̂1 0.06 0.005 0.02 0.05 0.04 0.003 0.01 0.04 0.08 0.06

β̂2 0.89 -0.968 0.03 0.05 0.91 -0.981 0.01 0.04 0.07 0.05

Table 6.6: Hypothesis testing results for AFT model under heavy censoring.

H0 : β(τ) = 0, l1 ≤ τ ≤ l2 H0 : β(τ) = η0, l1 ≤ τ ≤ l2
n1 = 50 n2 = 100 n1 = 50 n2 = 100

ERR EAE ESD ARSD ERR EAE ESD ARSD ERR ERR

β̂0 0.61 -0.255 0.53 0.56 0.72 -0.272 0.52 0.52 0.65 0.70

β̂1 0.09 0.010 0.05 0.08 0.07 0.007 0.04 0.05 0.09 0.08

β̂2 0.69 -0.944 0.06 0.09 0.78 -0.968 0.02 0.05 0.08 0.06

Table 6.7: Hypothesis testing results for heteroscedastic model under mild cen-
soring.

H0 : β(τ) = 0, l1 ≤ τ ≤ l2 H0 : β(τ) = η0, l1 ≤ τ ≤ l2
n1 = 50 n2 = 100 n1 = 50 n2 = 100

ERR EAE ESD ARSD ERR EAE ESD ARSD ERR ERR

β̂0 0.69 -0.303 0.53 0.49 0.70 -0.312 0.49 0.45 0.80 0.91

β̂1 0.07 0.005 0.08 0.09 0.06 0.002 0.06 0.06 0.08 0.06

β̂2 0.75 -1.471 0.39 0.39 0.85 -1.476 0.38 0.36 0.85 0.89

Table 6.8: Hypothesis testing results for heteroscedastic model under heavy
censoring.

H0 : β(τ) = 0, l1 ≤ τ ≤ l2 H0 : β(τ) = η0, l1 ≤ τ ≤ l2
n1 = 50 n2 = 100 n1 = 50 n2 = 100

ERR EAE ESD ARSD ERR EAE ESD ARSD ERR ERR

β̂0 0.65 -0.270 0.60 0.53 0.67 -0.262 0.55 0.48 0.71 0.80

β̂1 0.09 0.008 0.10 0.14 0.08 0.005 0.05 0.06 0.10 0.08

β̂2 0.72 -1.458 0.42 0.41 0.74 -1.468 0.40 0.38 0.80 0.85
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As we mentioned earlier, the ability to catch the τ - varying effect of the regres-

sors is a great advantage of the quantile regression model. To assess this, we now

consider a log-linear model with heteroscedastic errors. We generate lifetimes from

the model

T̃ = b1z1 + b2z2ξ + ε, (6.10)

where z1 and z2 are covariate values as before, ξ follows exponential distribution with

unit mean, and ε follows standard normal distribution. Note that the conditional

variance of T̃ is given by Var(T̃ |z1, z2) = I(z2 = 0)+(1+b2)2I(z2 = 1) and this is not

homoscedastic when b2 6= 0. We follow the same procedure for data generation for

model (6.10) as described for the AFT model setting and we choose the combination

c1 = 0.15, c2 = 5, c3 = 0.25 and c4 = 3 for mild censoring and same combination

except that c4 = 5 for heavy censoring. We fix b1 = 0 and b2 = −1.5. We see that

the model assumption given in (6.1) holds good for model (6.10) with g(x) = ex

and β0(τ) = (β0(τ), β1(τ), β2(τ))>, where β0(τ) = Qε(τ), β1(τ) = b1 = 0 and

β2(τ) = Qb2ξ+ε(τ)−Qε(τ). Tables 6.3 - 6.4 show the results obtained for regression

quantile estimation. It is evident from the tables that biases are small, the empirical

standard deviations and resampling based standard deviations are close with each

other and coverage probabilities are close to 1. Here also we can observe that the

bias, AERSD and ESD decrease when the sample size increases. Further, when

the censoring rate increases they increase, while the CP decreases, as in the case of

AFT model. Tables 6.7 - 6.8 present the results of testing of hypotheses concerning

significance of the regression quantile process and constancy of the covariate effects.

It is seen that the probability of type-I error is close to nominal value 0.05, the

estimated average covariate effects of z1 and z2 are close to the true values and the

average resampling-based standard deviation and empirical standard deviations are
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in agreement. Moreover, we can observe that the ERR shows better results with

increase in sample size, but it worsens with increase in censoring percentage, as we

observed in the case of AFT model. Further, the presence of heteroscedasticity is

well captured by our estimation procedure which is evident from plots of estimates

of coefficient b2 in Figures 6.3 - 6.4. The estimates of intercept term and b1 are

also displayed. The mean estimated effects obtained from the proposed method (in

dashed lines) and the true coefficients (in continuous lines) are close to each other,

suggesting a satisfactory performance under the finite sample setting.

6.4 Data Analysis

The proposed quantile regression method is applied to a real data set studied by

Copelan et al. (1991). The study assesses the impact of bone marrow transplanta-

tion, which is a standard treatment for acute leukemia patients in prolonging their

life lengths. A brief discussion about the study is given in Klein and Moeschberger

(2005) and a data set consisting of 137 leukemia patients who are treated with bone

marrow transplantation undergoing various treatment conditions and disease condi-

tions is provided therein. The original study is concerned over the recovery following

bone marrow transplantation, which is depending on several risk factors known at

the time of transplantation such as age at transplantation, patient’s gender, waiting

time from the diagnosis to transplantation etc. as well as the post-transplantation

history of the patients, like the possible development of acute graft-versus-host dis-

ease that typically occurs within the first 100 days following transplantation etc.

The study was carried out with allogeneic marrow transplants for 99 patients with

acute myeloctic leukemia (AML) and 38 patients with acute lymphoblastic leukemia
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Figure 6.1: Plots of true coefficients (in continuous lines) and their estimated
regression quantiles (in dashed lines) for AFT model under mild censoring.

(ALL). All these patients were treated in four different hospitals, two each in USA

and Australia. Among them, patients in Australia were given a graft-versus-host

prophylactic combining methotrexate (MTX) with cyclosporine whereas the other

two hospitals didn’t administer this prophylactic. Further, each patient was put in

one among three disease groups- ALL group with 38 patients, AML low-risk group

with 54 patients and AML high-risk group with 45 patients. For the illustration

purpose we consider six risk factors which are listed below.

(i) Development status of acute graft-versus-host disease, denoted by GVHD, coded

as 1 if developed and 0 if not developed,

(ii) Waiting time to transplant, denoted by WT, coded as 1 if waiting time is more

than 1 year and 2 otherwise,



The quantile regression model 141

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1.5

-1.0

-0.5

0.0

0.5

1.0

tau

In
te

rc
ep

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1.5

-1.0

-0.5

0.0

0.5

1.0

tau

In
te

rc
ep

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.2

-0.1

0.0

0.1

0.2

tau

b1

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.2

-0.1

0.0

0.1

0.2

tau

b1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-1.4

-1.2

-1.0

-0.8

-0.6

tau

b2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-1.4

-1.2

-1.0

-0.8

-0.6

tau

b2

(a) n = 50 (b) n = 100

Figure 6.2: Plots of true coefficients (in continuous lines) and their estimated
regression quantiles (in dashed lines) for AFT model under heavy censoring.

(iii) Age coded as 1 if age is less than 30 years and 2 otherwise,

(iv) Patient gender, coded as 1 for female, 0 for male,

(v) Disease group, in three categories labeled 0 if patient belonging to ALL group,

1 if in AML low-risk group and 2 if in AML high-risk group, and

(vi) The treatment strategy with prophylactic, coded as 1 if MTX is given and 0

otherwise.

We now generate censoring intervals using the method described in Section 6.3,

with c1 = 0.5, c2 = 4.8, c3 = 0.4 and c4 = 3.5. The resulting data set includes about

25% censored observations and the data is analyzed by the method discussed in Sec-

tion 6.2 with g(x) = x, x ∈ R.

Figure 6.5 displays the estimated regression quantiles for β0(τ) for τ ∈ [l, u]
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Figure 6.3: Plots of true coefficients (in continuous lines) and their estimated
regression quantiles (in dashed lines) for heteroscedastic model under mild cen-

soring.

where l = 0.1 and u = 0.65 (in continuous lines) along with their 95% confidence

intervals (in dashed lines) corresponding to model (6.1). The group of male patients

of age less than 30 years, belonging to ALL group, having not developed GVHD,

and not received prophylactic MTX is chosen as the reference comparison group.

Figure 6.5(i) shows that about 10% of those patients belonging to the reference

comparison group have died soon after 155 days from transplantation and 65% of

them died soon after 580 days from transplantation. Figure 6.5(ii) shows negative

values of coefficient corresponding to development of GVHD implying a life short-

ening effect of GVHD development. Similarly the longevity in waiting time from

diagnosis to transplantation also affects negatively as shown in Figure 6.5(iii) and
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Figure 6.4: Plots of true coefficients (in continuous lines) and their estimated
regression quantiles (in dashed lines) for heteroscedastic model under heavy cen-

soring.

this effect worsens rapidly towards the upper quartile range. From Figure 6.5(iv)

we observe that higher age is also a threat factor, but it behaves more or less similar

for some ranges, soon after a decline, and then worsens faster. It is evident from

Figure 6.5(v) that females tend to have shorter life as compared to males, as the

corresponding coefficient lie below zero towards higher τ values. However, this gen-

der difference is not prominent at an early stage. Figure 6.5(vi) conveys that the

AML-low risk group has possibly a constant effect in many subintervals, which need

to be tested for confirmation, but it is clear that this too has an adverse effect like

its high-risk counterpart as shown in Figure 6.5(vii), except that the AML-high risk

group tends to be more severe in regaining health after transplantation. Finally,
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(i) Intercept (ii) GVHD developed
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(iii) Waiting time more than one year (iv) Age more than 30 years

0.1 0.2 0.3 0.4 0.5 0.6
-1.0

-0.5

0.0

0.5

1.0

tau

co
ef

fi
ci

en
t

es
tim

at
e

0.1 0.2 0.3 0.4 0.5 0.6
-1.0

-0.5

0.0

0.5

1.0

tau

co
ef

fi
ci

en
t

es
tim

at
e

(v) Female (vi) AML low-risk
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(vii) AML high-risk (viii) MTX given

Figure 6.5: Plots of estimated regression quantiles (continuous lines) and their
95% confidence intervals (in dashed lines).
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it is evident from Figure 6.5(viii) that administration of MTX as a prophylactic is

useful in improving the post-transplantation condition of patients and therefore its

use can be advocated.

To validate these visual trends, we need to carry out formal statistical tests

on the significance of covariate effects based on the average quantile effects across

τ ∈ [0.1, 0.65] as described earlier. The adverse effects caused by GVHD and AML-

low risk are marginally significant with P-values respectively 0.073 and 0.08 but all

others are significant with P-values 0.032, 0.002, 0.007, < 0.001 and <0.001 respec-

tively for the cases of WT more than 1 year, age more than 30 years, females, AML

high-risk and MTX given. The constancy test is also performed with the weight

function Θ̃(t) = I(t < (l+ u)/2). All covariates except AML low-risk shows signifi-

cant non-constancy, whereas AML low-risk shows a P-value of 0.089 and this is con-

firmed by altering the weight function to Θ̃(t) = I(t > (l + u)/2). We also checked

the overall fit of the model (6.1) to our data set by using the martingale based diag-

nostic method discussed previously. Following Peng and Huang (2008), we choose

the q0(·) as a quadratic function of patients age, i.e., q0(Age) = ((Age−28.78)2/52)

where 28.78 and 52 are the mean and maximum ages of those patients with exact

lifetimes in the original dataset consisting of 137 patients. The supremum-norm

lack of fit test described in Section-6.2 is carried out and obtained a P-value of

0.727, suggesting a reasonable fit for the data. This is confirmed with a quadratic

weight function similarly defined for the covariate WT and the resulting P-value of

0.67 showing a reasonable model fit.
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6.5 Conclusions

In this chapter, we developed a quantile regression model for a general censoring

scheme called middle-censoring. The martingale feature of the observed data is

utilized to develop inference procedures and to establish the asymptotic properties

of the estimator of regression quantiles in Section 6.2. The proposed method made

use of monotone estimating equations for sequentially solving the regression quantile

process. Simulation studies in Section 6.3 indicated that the proposed methods work

well with finite samples. In Section 6.4, the model was applied to a real data set.

The regression quantile estimator β̂(τ) is found to have larger variability for

the values of τ close to zero. But this instability, as shown by Peng and Huang

(2008), has no serious impact on the estimation at larger values of τ . In simulation

studies, we have considered two models for the lifetime variable. One can also use

several other models for this purpose and accordingly different weight functions may

be used for hypotheses testing problems, provided such weight functions give higher

power values.



Chapter 7

Bayesian Analysis of Middle-censored Life-

time Data

7.1 Introduction

Bayesian inference has become increasingly popular due to recent developments in

computation, the ability to fit a wide range of models and to produce intuitive inter-

pretations of the results. It provides a convenient way of implementing the scientific

method for learning about the survival model, that the experimenter is interested

about. Bayesian approach provides a natural and effective way of incorporating

prior information with data, within a solid decision theoretical framework and we

utilize this prior information for future analysis. A concise description of basic con-

cepts involved in Bayesian analysis was given in Chapter 1. When we gather new

information about the unknown parameter, the posterior distribution is updated by

treating the existing posterior as prior and all inferences logically follow from Bayes

theorem. It provides inferences that are conditional on the data and are exact,

without reliance on asymptotic approximation. Moreover, small sample inference

procedures are developed as in the same manner as with a large sample. Another

1The results in this chapter have been communicated as entitled ”Bayesian analysis of middle-
censored lifetime data in the presence of covariates”(see Prasad and Sankaran (2017))
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useful feature of Bayesian procedure is that it obeys the likelihood principle. In

Chapter 2 we mentioned the advantage of using parametric models for analyzing

lifetime data and stated the features of Weibull distribution in modeling a lifetime

data. Several works appeared in literature on modeling and analysis of Weibull

lifetime data. Recently, Pradhan and Kundu (2014) used the Weibull distribution

to model lifetime data under the interval censoring scheme. Motivated by these,

in the present chapter, we propose a Bayesian analysis of middle-censored lifetime

data in the presence of covariates, where we assume that the lifetime variate follows

Weibull distribution.

The rest of the chapter is organized as follows. In Section 7.2, we introduce a

regression model for the lifetime variate T , whose baseline distribution is assumed

to be Weibull. We consider different prior distributions and the estimation of the

parameters is carried out. Section 7.3 reports simulation studies to evaluate the

performance of the estimators with finite sample size. An application of the pro-

posed method to a real life data is given in Section 7.4. The chapter ends with a

brief conclusion in Section 7.5.

7.2 The Model and Inference Procedure

Let the lifetime variate T be middle-censored by the random censoring interval

(U, V ) as before. We assume that given the covariate z , T is independent of

(U, V ). Thus we observe (X, δ, z), where X = T if δ = 1, and X = (U, V ) if δ = 0.

We assume that the baseline distribution of T is Weibull with shape parameter α
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and scale parameter γ with probability density function given by

f0(t) = αγtα−1exp(−γtα), t > 0; α, γ > 0. (7.1)

We introduce the covariate effect through the scale parameter by putting γ =

exp(z>θ), where θ is the unknown p × 1 vector of regression parameters. Thus

the probability density function of T given z is given by

f(t|z) = α exp(z>θ)tα−1exp(−exp(z>θ)tα), t > 0; α > 0,θ ∈ Rp. (7.2)

The observed data consists of n independent and identically distributed replicates

(Xi, δi, zi) for i = 1, 2, ..., n, of (X, δ, z). The likelihood function corresponding to

the observed data is given by

L(ψ|data) =
n∏
i=1

f(ti|zi)δi [S(ui|zi)− S(vi|zi)]1−δi , (7.3)

where ψ = (α,θ>)>. Using (7.2), the likelihood function in (7.3) can be rewritten

as

L(ψ|data) =

n1∏
i=1

α exp(z>i θ)tα−1
i exp(−exp(z>i θ)tαi )·

n∏
i=n1+1

[
exp(−exp(z>i θ)uαi )− exp(−exp(z>i θ)vαi )

]
, (7.4)

where we assumed that first n1 observations are exact lifetimes and remaining n2

are censored intervals, with n1 + n2 = n.

We now make appropriate prior specifications for the parameters α and θ. The

parameter α shall be assigned with the distribution of any nonnegative continuous
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valued random variable. Common choices include informative priors like gamma or

beta distributions or any non-informative prior like an improper density. There is

no range restriction for θ and hence we may choose, for example, p-variate normal

distribution as its prior distribution. Denote these distributions respectively by

π1(·) and π2(·). Then the joint posterior distribution may be written as

π(ψ|data) ∝ L(ψ|data)π1(α)π2(θ). (7.5)

We usually choose prior distributions in such a way that the resultant posterior

distribution is easy to analyze. For the estimation of a parametric function of

interest, say ϕ(ψ), the decision-theoretic approach to statistical inference requires

the specification of a loss function, which represents the loss incurred by estimating

ϕ(ψ) with a specified course of action, say %. The Bayesian version of this approach

leads to the minimization of the Bayes’ risk. The most commonly used loss function

is the quadratic loss function (ϕ(ψ)−%)2. For this loss function, the Bayes’ estimator

of ϕ(ψ) is the posterior mean given by

E(ϕ(ψ)|data) =

∫
X

ϕ(ψ)π(ψ|data)dψ, (7.6)

where X is the parameter space given by R+ × Rp. In general, the closed form

expression for the density given in (7.5) will not be available. This prompt us

to resort to Monte Carlo simulation methods to infer about characteristics of the

posterior distribution like the one given in (7.6).

In the present study, we exploit the importance sampling method (Robert

and Casella (2013)) to evaluate the integral given in (7.6). The method calls for

sampling from any arbitrary density g∗(·) whose support contains that of π(·). Then
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the integral in (7.6) can be rewritten as

E(ϕ(ψ)|data) =

∫
X

ϕ(ψ)
π(ψ|data)

g∗(ψ)
g∗(ψ)dψ. (7.7)

This method, therefore, attracts considerable interest since it permits much freedom

on the choice of the instrumental distribution g∗(·), which is usually chosen from

among a class of distributions which are easy to simulate with the help of modern

softwares. By applying the strong law of large numbers, the integral in (7.7) can be

approximated by using a weighted sum as follows

E(ϕ(ψ)|data) ≈
∑m

j=1 ϕ(ψj)π(ψj|data)/g∗(ψj)∑m
j=1 π(ψj|data)/g∗(ψj)

, (7.8)

where ψ1,ψ2, ...,ψm is a random sample drawn from g∗(ψ). Note that the di-

rect approximation 1
m

∑m
j=1 ϕ(ψj)π(ψj|data)/g∗(ψj) too converges almost surely

to (7.7). However, the probability density function g∗(·) need to have thicker tail

as compared to π(·) so as to have a finite posterior variance. The major advantage

of approximation given in (7.8) is that it does not require any such assumption.

7.3 Simulation Studies

Simulation studies are carried out to assess the finite sample behavior of the estima-

tor. In the present study, we consider a single covariate, say z, which is generated

from uniform distribution over [0, 10]. Let θ be the corresponding regression pa-

rameter. We generate lifetimes T given z from Weibull distribution with shape

parameter α and scale parameter exp(zθ), having probability density function as



Bayesian analysis of middle-censored lifetime data 152

Table 7.1: Bias, SD, MSE and Len(CR) of the estimates with prior parameters
µ0 = 0.5, σ2

0 = 100.

n = 50 n = 100
α θ Bias SD MSE Len(CR) Bias SD MSE Len(CR)

Mild censoring

1.10 -1.00 0.017 0.77 0.0033 0.084 (0.925) 0.015 0.69 0.0019 0.073 (0.926)
1.10 1.00 0.030 0.67 0.0053 0.096 (0.938) 0.025 0.64 0.0019 0.088 (0.941)
2.25 -0.50 0.036 0.59 0.0059 0.085 (0.957) 0.033 0.50 0.0016 0.081 (0.958)
2.25 0.05 0.034 0.37 0.0065 0.086 (0.894) 0.031 0.35 0.0017 0.081 (0.895)
3.00 1.50 0.031 0.93 0.0036 0.079 (0.947) 0.027 0.87 0.0009 0.072 (0.951)
3.00 0.30 0.003 0.40 0.0046 0.073 (0.936) 0.001 0.29 0.0015 0.069 (0.938)
0.85 -0.05 0.030 0.55 0.0024 0.093 (0.895) 0.027 0.53 0.0011 0.087 (0.899)
0.85 0.10 0.031 0.79 0.0062 0.079 (0.934) 0.027 0.63 0.0017 0.070 (0.938)
4.00 0.04 0.032 0.17 0.0042 0.115 (0.957) 0.030 0.11 0.0015 0.112 (0.958)
4.00 -0.20 0.043 0.27 0.0039 0.051 (0.932) 0.040 0.19 0.0009 0.041 (0.935)

Moderate censoring

1.10 -1.00 0.021 0.90 0.0050 0.085 (0.921) 0.016 0.88 0.0036 0.078 (0.925)
1.10 1.00 0.034 0.84 0.0084 0.098 (0.937) 0.026 0.80 0.0031 0.091 (0.940)
2.25 -0.50 0.039 0.71 0.0075 0.086 (0.954) 0.035 0.65 0.0029 0.083 (0.956)
2.25 0.05 0.037 0.64 0.0089 0.088 (0.891) 0.033 0.63 0.0030 0.082 (0.894)
3.00 1.50 0.036 1.05 0.0057 0.080 (0.944) 0.029 1.00 0.0020 0.075 (0.949)
3.00 0.30 0.008 0.66 0.0087 0.074 (0.933 ) 0.003 0.60 0.0032 0.073 (0.937)
0.85 -0.05 0.033 0.81 0.0069 0.094 (0.890) 0.028 0.72 0.0030 0.091 (0.898)
0.85 0.10 0.032 0.83 0.0077 0.080 (0.931) 0.029 0.74 0.0035 0.074 (0.936)
4.00 0.04 0.036 0.44 0.0056 0.117 (0.954) 0.032 0.37 0.0032 0.113 (0.956)
4.00 -0.20 0.046 0.61 0.0070 0.052 (0.927) 0.042 0.51 0.0025 0.045 (0.933)

Heavy censoring

1.10 -1.00 0.026 0.94 0.0088 0.086 (0.916) 0.018 0.90 0.0047 0.081 (0.923)
1.10 1.00 0.036 0.98 0.0118 0.099 (0.935) 0.028 0.94 0.0050 0.095 (0.939)
2.25 -0.50 0.042 1.05 0.0125 0.088 (0.953) 0.037 0.88 0.0041 0.087 (0.955)
2.25 0.05 0.041 0.79 0.0106 0.090 (0.887) 0.035 0.71 0.0043 0.087 (0.892)
3.00 1.50 0.038 1.21 0.0094 0.082 (0.942) 0.031 1.05 0.0031 0.078 (0.948)
3.00 0.30 0.011 0.78 0.0130 0.076 (0.929) 0.005 0.74 0.0046 0.075 (0.935)
0.85 -0.05 0.037 0.99 0.0081 0.096 (0.888) 0.029 0.85 0.0048 0.092 (0.896)
0.85 0.10 0.035 0.83 0.0089 0.082 (0.928) 0.030 0.80 0.0054 0.077 (0.935)
4.00 0.04 0.039 0.91 0.0088 0.118 (0.952) 0.033 0.78 0.0042 0.116 (0.954)
4.00 -0.20 0.050 0.92 0.0088 0.053 (0.923) 0.043 0.88 0.0040 0.049 (0.931)
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Table 7.2: Bias, SD, MSE and Len(CR) of the estimates with prior parameters
µ0 = −0.5, σ2

0 = 100.

n = 50 n = 100
α θ Bias SD MSE Len(CR) Bias SD MSE Len(CR)

Mild censoring

1.00 -0.500 0.013 0.44 0.0051 0.109 (0.907) 0.010 0.28 0.0014 0.099 (0.910)
1.00 1.000 0.041 0.51 0.0058 0.091 (0.889) 0.036 0.26 0.0009 0.085 (0.891)
2.00 -0.080 0.009 0.44 0.0030 0.077 (0.925) 0.004 0.25 0.0008 0.072 (0.929)
2.00 0.050 0.030 0.56 0.0039 0.108 (0.903) 0.028 0.30 0.0012 0.100 (0.907)
2.75 -0.010 0.026 0.49 0.0031 0.055 (0.928) 0.023 0.28 0.0012 0.047 (0.930)
2.75 0.300 0.029 0.51 0.0058 0.053 (0.949) 0.026 0.31 0.0019 0.048 (0.951)
3.50 0.025 0.029 0.47 0.0026 0.117 (0.922) 0.025 0.34 0.0010 0.107 (0.925)
3.50 -0.750 0.033 0.52 0.0025 0.053 (0.928) 0.031 0.32 0.0011 0.047 (0.930)
5.00 0.010 0.015 0.50 0.0052 0.079 (0.941) 0.011 0.42 0.0017 0.069 (0.943)
5.00 -0.250 0.018 0.47 0.0058 0.126 (0.932) 0.014 0.37 0.0016 0.120 (0.934)

Moderate censoring

1.00 -0.500 0.014 0.57 0.0075 0.110 (0.904) 0.012 0.39 0.0034 0.102 (0.909)
1.00 1.000 0.045 0.73 0.0094 0.093 (0.887) 0.037 0.36 0.0025 0.087 (0.890)
2.00 -0.080 0.013 0.56 0.0042 0.079 (0.923) 0.006 0.45 0.0023 0.075 (0.927)
2.00 0.050 0.033 0.65 0.0088 0.110 (0.901) 0.029 0.52 0.0023 0.105 (0.906)
2.75 -0.010 0.028 0.60 0.0057 0.056 (0.926) 0.025 0.42 0.0028 0.050 (0.928)
2.75 0.300 0.032 0.64 0.0088 0.055 (0.945) 0.028 0.47 0.0038 0.051 (0.949)
3.50 0.025 0.032 0.57 0.0046 0.119 (0.920) 0.026 0.44 0.0025 0.111 (0.924)
3.50 -0.750 0.034 0.63 0.0064 0.054 (0.927) 0.033 0.52 0.0024 0.048 (0.928)
5.00 0.010 0.016 0.57 0.0095 0.080 (0.939) 0.012 0.50 0.0033 0.073 (0.941)
5.00 -0.250 0.022 0.74 0.0079 0.127 (0.930) 0.015 0.61 0.0026 0.123 (0.932)

Heavy censoring

1.00 -0.500 0.018 0.67 0.0116 0.111 (0.900) 0.013 0.52 0.0049 0.107 (0.908)
1.00 1.000 0.049 0.83 0.0139 0.095 (0.883) 0.038 0.55 0.0042 0.091 (0.889)
2.00 -0.080 0.015 0.71 0.0067 0.081 (0.921) 0.007 0.49 0.0038 0.079 (0.925)
2.00 0.050 0.036 0.76 0.0111 0.112 (0.896) 0.031 0.49 0.0035 0.108 (0.904)
2.75 -0.010 0.029 0.74 0.0097 0.057 (0.922) 0.027 0.56 0.0047 0.052 (0.927)
2.75 0.300 0.033 0.81 0.0115 0.056 (0.943) 0.030 0.57 0.0057 0.054 (0.947)
3.50 0.025 0.036 0.76 0.0091 0.120 (0.915) 0.028 0.63 0.0041 0.115 (0.923)
3.50 -0.750 0.036 0.80 0.0086 0.056 (0.924) 0.034 0.78 0.0042 0.052 (0.927)
5.00 0.010 0.019 0.64 0.0120 0.081 (0.936) 0.014 0.61 0.0046 0.078 (0.939)
5.00 -0.250 0.026 0.86 0.0113 0.128 (0.928) 0.017 0.77 0.0044 0.127 (0.931)
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Table 7.3: Bias, SD, MSE and Len(CR) of the estimates with prior parameters
m0 = 0.75, p0 = 2, µ0 = −0.5, σ2

0 = 100.

n = 50 n = 100
α θ Bias SD MSE Len(CR) Bias SD MSE Len(CR)

Mild censoring

0.85 -1.00 0.049 0.46 0.0028 0.117 (0.917) 0.046 0.31 0.0015 0.108 (0.919)
0.85 1.00 0.048 0.56 0.0055 0.105 (0.908) 0.044 0.28 0.0020 0.099 (0.910)
1.10 -0.50 0.012 0.32 0.0038 0.121 (0.917) 0.009 0.26 0.0019 0.118 (0.918)
1.10 0.05 0.013 0.50 0.0031 0.086 (0.928) 0.009 0.42 0.0015 0.084 (0.929)
2.25 1.50 0.005 0.37 0.0055 0.076 (0.907) 0.002 0.24 0.0020 0.074 (0.911)
2.25 0.30 0.017 0.43 0.0039 0.114 (0.940) 0.013 0.38 0.0015 0.111 (0.942)
3.00 -0.05 0.036 0.51 0.0065 0.109 (0.929) 0.032 0.33 0.0019 0.109 (0.931)
3.00 0.10 0.045 0.46 0.0031 0.103 (0.914) 0.043 0.35 0.0019 0.097 (0.916)
4.00 0.04 0.036 0.52 0.0058 0.079 (0.925) 0.035 0.45 0.0010 0.071 (0.929)
4.00 -0.20 0.011 0.57 0.0063 0.077 (0.948) 0.007 0.50 0.0020 0.072 (0.951)

Moderate censoring

0.85 -1.00 0.050 0.69 0.0045 0.118 (0.913) 0.048 0.48 0.0026 0.111 (0.917)
0.85 1.00 0.050 0.64 0.0102 0.106 (0.904) 0.045 0.51 0.0032 0.102 (0.909)
1.10 -0.50 0.015 0.51 0.0088 0.123 (0.914) 0.011 0.73 0.0034 0.119 (0.917)
1.10 0.05 0.015 0.80 0.0080 0.088 (0.923) 0.010 0.69 0.0032 0.085 (0.928)
2.25 1.50 0.009 0.42 0.0101 0.078 (0.906) 0.003 0.61 0.0038 0.075 (0.909)
2.25 0.30 0.019 0.47 0.0068 0.115 (0.935) 0.014 0.42 0.0025 0.115 (0.941)
3.00 -0.05 0.037 0.67 0.0096 0.111 (0.926) 0.033 0.42 0.0030 0.110 (0.929)
3.00 0.10 0.050 0.57 0.0051 0.080 (0.911) 0.045 0.47 0.0039 0.074 (0.915)
4.00 0.04 0.042 0.74 0.0082 0.104 (0.922) 0.037 0.60 0.0023 0.100 (0.927)
4.00 -0.20 0.015 0.81 0.0076 0.078 (0.946) 0.009 0.63 0.0031 0.076 (0.949)

Heavy censoring

0.85 -1.00 0.054 0.81 0.0061 0.119 (0.909) 0.050 0.60 0.0039 0.115 (0.915)
0.85 1.00 0.053 0.93 0.0123 0.108 (0.899) 0.046 0.90 0.0050 0.105 (0.907)
1.10 -0.50 0.017 0.98 0.0137 0.125 (0.911) 0.012 0.72 0.0045 0.121 (0.916)
1.10 0.05 0.019 0.87 0.0114 0.090 (0.922) 0.012 0.84 0.0046 0.087 (0.926)
2.25 1.50 0.014 0.81 0.0140 0.080 (0.905) 0.005 0.73 0.0054 0.076 (0.908)
2.25 0.30 0.022 0.77 0.0113 0.117 (0.933) 0.016 0.62 0.0044 0.116 (0.940)
3.00 -0.05 0.041 0.87 0.0122 0.113 (0.921) 0.035 0.67 0.0043 0.112 (0.928)
3.00 0.10 0.053 0.82 0.0091 0.081 (0.909) 0.046 0.95 0.0059 0.078 (0.913)
4.00 0.04 0.046 0.98 0.0107 0.106 (0.921) 0.038 0.91 0.0035 0.103 (0.926)
4.00 -0.20 0.017 0.90 0.0097 0.080 (0.943) 0.010 0.77 0.0042 0.079 (0.947)
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Table 7.4: Bias, SD, MSE and Len(CR) of the estimates with prior parameters
m0 = 0.25, p0 = 1.5, µ0 = −0.5, σ2

0 = 100.

n = 50 n = 100
α θ Bias SD MSE Len(CR) Bias SD MSE Len(CR)

Mild censoring

1.00 -0.500 0.044 0.57 0.0032 0.078 (0.932) 0.040 0.42 0.0013 0.073 (0.933)
1.00 1.000 0.030 0.60 0.0059 0.057 (0.930) 0.026 0.33 0.0015 0.049 (0.931)
2.00 -0.080 0.017 0.46 0.0060 0.056 (0.955) 0.014 0.30 0.0018 0.049 (0.958)
2.00 0.050 0.026 0.67 0.0062 0.079 (0.890) 0.022 0.41 0.0019 0.074 (0.895)
2.75 -0.010 0.021 0.75 0.0058 0.047 (0.920) 0.017 0.52 0.0015 0.042 (0.921)
2.75 0.300 0.020 0.52 0.0037 0.092 (0.908) 0.018 0.27 0.0013 0.090 (0.912)
3.50 0.025 0.036 0.36 0.0030 0.077 (0.949) 0.032 0.29 0.0014 0.076 (0.950)
3.50 -0.750 0.013 0.49 0.0054 0.062 (0.947) 0.009 0.40 0.0017 0.058 (0.948)
5.00 0.010 0.012 0.78 0.0050 0.095 (0.958) 0.009 0.69 0.0010 0.090 (0.959)
5.00 -0.250 0.045 0.65 0.0052 0.121 (0.948) 0.041 0.51 0.0015 0.119 (0.952)

Moderate censoring

1.00 -0.500 0.049 0.68 0.0073 0.080 (0.929) 0.041 0.56 0.0024 0.074 (0.931)
1.00 1.000 0.033 0.85 0.0084 0.058 (0.927) 0.027 0.48 0.0029 0.054 (0.929)
2.00 -0.080 0.022 0.60 0.0095 0.057 (0.950) 0.015 0.49 0.0029 0.050 (0.957)
2.00 0.050 0.028 0.83 0.0096 0.081 (0.886) 0.024 0.61 0.0033 0.077 (0.893)
2.75 -0.010 0.025 0.87 0.0072 0.049 (0.917) 0.019 0.58 0.0029 0.046 (0.920)
2.75 0.300 0.024 0.64 0.0053 0.094 (0.903) 0.019 0.45 0.0029 0.091 (0.911)
3.50 0.025 0.040 0.58 0.0079 0.079 (0.946) 0.034 0.46 0.0029 0.077 (0.948)
3.50 -0.750 0.018 0.54 0.0085 0.063 (0.944) 0.011 0.50 0.0036 0.062 (0.947)
5.00 0.010 0.016 0.86 0.0095 0.097 (0.955) 0.010 0.72 0.0023 0.093 (0.958)
5.00 -0.250 0.049 0.73 0.0093 0.123 (0.947) 0.043 0.55 0.0029 0.120 (0.950)

Heavy censoring

1.00 -0.500 0.052 0.85 0.0115 0.081 (0.925) 0.042 0.69 0.0035 0.079 (0.930)
1.00 1.000 0.035 0.97 0.0124 0.060 (0.924) 0.029 0.66 0.0045 0.056 (0.928)
2.00 -0.080 0.023 0.89 0.0136 0.059 (0.947) 0.017 0.80 0.0044 0.055 (0.955)
2.00 0.050 0.032 0.88 0.0143 0.083 (0.885) 0.026 0.80 0.0050 0.080 (0.892)
2.75 -0.010 0.027 0.93 0.0119 0.051 (0.914) 0.020 0.77 0.0041 0.047 (0.918)
2.75 0.300 0.028 0.77 0.0070 0.096 (0.899) 0.021 0.65 0.0046 0.093 (0.910)
3.50 0.025 0.043 0.85 0.0125 0.081 (0.945) 0.035 0.61 0.0044 0.078 (0.946)
3.50 -0.750 0.021 0.91 0.0103 0.065 (0.940) 0.012 0.79 0.0050 0.064 (0.945)
5.00 0.010 0.019 0.91 0.0116 0.099 (0.952) 0.011 0.83 0.0034 0.098 (0.956)
5.00 -0.250 0.052 0.87 0.0124 0.124 (0.944) 0.045 0.75 0.0044 0.123 (0.949)
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defined in (7.1), with γ replaced by exp(zθ). Corresponding to each observation on

T given z, a random censoring interval (U, V ) is generated where U and Y = V −U

are assumed to be independent exponential variates with means λ−1
1 = 15 and

λ−1
2 = 10 respectively. If we find T /∈ (U, V ) then T is selected as the sample ob-

servation, otherwise we choose the interval (U, V ) as the observation. We consider

three different censoring rates viz., 10% (mild censoring), 20% (moderate censoring)

and 30% (heavy censoring) for comparison purpose. Our aim is to obtain the Bayes’

estimate of the regression parameter θ under the squared error loss function. The

prior distribution for the parameter α is first assumed to be noninformative having

density function given by π1(α) ∝ α−1, 0 < α <∞. The prior density π2(·) for θ is

selected as normal with mean µ0 and variance σ2
0. Using these priors we evaluate

the posterior mean and posterior standard deviation of the parameters by using

the importance sampling method described in previous section with sample sizes

n = 50 and n = 100. The pattern of results on simulation study seem to be similar

for different combinations of prior parameters and we show the results for two such

combinations in Tables 7.1 - 7.2. It is evident that the performance of the estimator

is quite satisfactory in terms of average absolute bias (Bias), posterior standard de-

viation (SD) and estimated mean squared error (MSE) for different combinations of

prior parameters. It can be observed that as the sample size increases, the bias, SD

and MSE decrease. Moreover, when the censoring percentage increases the estima-

tor becomes less efficient in terms of bias, SD and MSE, as expected. We also report

average length of 95% credible intervals (Len) along with their coverage rates (CR).

It is evident that as the sample size increases, the average length of the credible

intervals decrease for all the three censoring percentages, while as the censoring rate

increases, the average length of the credible intervals increase. In all these cases the
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coverage percentages seem to be fairly large. Next we consider gamma prior with

shape parameter m0 and scale parameter p0, having probability density function

given by π′1(α|m0, p0) ∝ αm0−1exp(−p0α) for the parameter α. The parameter θ

assumes the same normal prior specification as earlier. The results obtained while

analyzing the same data sets using these priors with two specific combinations of

the prior parameters are summarized in Tables 7.3 - 7.4. The analysis shows similar

results as that in the case with noninformative prior. Other combinations of prior

parameters also show similar inferences.

Selection of prior distributions are usually made in such a way that the resultant

posterior density is easy to analyze, as mentioned earlier. However, in practical

situations if they happen to depart much from target distribution, the convergence

to the latter becomes slow and computations involved will be tedious. Similarly

the selection of the candidate distribution requires careful attention. It is to be

ensured that its support contains that of the posterior density. Moreover it may

require enormous amount of computation to achieve an accurate approximations of

the quantities of interest, if some theoretical conditions are not met (see Robert and

Casella (2013), Section 3.3).

7.4 Illustrative Data Analysis

In this section, we apply our model to a real life data. We consider the data on sur-

vival times in months for 65 multiple myeloma patients studied by Krall et al. (1975).

The complete data set is given in Lawless (2003). Following Jammalamadaka and

Mangalam (2003), and Iyer et al. (2008), we first selected all exact lifetimes for our
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Table 7.5: Estimate, SD and CI of parameters.

Estimate SD CI

µ0 = (−0.5,−0.2)>,Σ0 = 100I2

α 1.102 0.302 (0.6174, 1.5986)
θ1 0.092 0.159 (0.0642, 0.1232)
θ2 0.102 0.288 (0.0281, 0.2165)

µ0 = (0.5,−0.1)>,Σ0 = 100I2

α 1.085 0.269 (0.6346, 1.6487)
θ1 0.106 0.200 (0.0727, 0.1618)
θ2 0.091 0.251 (0.0447, 0.1743)

µ0 = (1.0, 1.0)>,Σ0 = 100I2

α 0.991 0.238 (0.5813, 1.4908)
θ1 0.097 0.161 (0.0476, 0.1064)
θ2 0.094 0.270 (0.0207, 0.2281)

study. A Weibull model is fitted and the P-value is observed to be 0.8142 under the

Kolmogorov-Smirnov test. Therefore this model assumption can not be ruled out.

Motivated by the method adopted by Jammalamadaka and Mangalam (2003), and

Iyer et al. (2008), we then artificially middle-censored 25% of the lifetimes as de-

scribed in previous section with λ−1
1 = 12 and λ−1

2 = 7. This new data set consisting

of exact lifetimes as well as censored intervals is further checked for its suitability un-

der the Weibull model assumption as described below. We first consider a likelihood

function at baseline level, given by L0(α, γ) =
∏n1

i=1 f0(ti)
∏n

i=n1+1(S0(ui)− S0(vi)).

The distribution parameters α and γ are estimated using the EM algorithm. The

estimators thus obtained are denoted by α̂0 and γ̂0. We then obtain an estimator

of distribution function denoted by F̆0(t) from the Nelson-Aalen-type estimator of

baseline cumulative hazard function corresponding to the middle-censoring scheme

as we did in Chapter 2. A PP-plot is drawn with the distribution function of Weibull

distribution with parameters as α̂0 and γ̂0, say F0(t; α̂0, γ̂0) along the Y-axis and the

distribution function F̆0(t) along the X-axis. If the model assumption holds, then a

straight line passing through origin making an angle 45 degrees with the X-axis is
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expected. Figure 7.1 shows the graph obtained for the censored data set considered.

The plot seems to be close to the line, which validate the distribution assumption.

Although there are five covariates in the original data, we take only two covari-

ates viz., logarithm of blood urea nitrogen measurement, denoted by z1, and serum

calcium measurement at diagnosis, denoted by z2. By our model assumption, we in-

troduce the covariate effects through the scale parameter γi = exp(z>i θ), where zi =

(z1i, z2i)
> denotes the observed covariate for the i′th individual and θ = (θ1, θ2)>

is the corresponding vector of regression parameters. We set ϕ(ψ) = (θ1, θ2)> and

estimate this under the squared error loss function. The prior distribution of α is

assumed to be noninformative as described in Section 7.3 and the prior distribution

of θ is taken to be bivariate normal with mean vector µ0 and dispersion matrix

Σ0 = σ2I2, where σ2 is the prior variance of each regression parameter and I2 is

the identity matrix of order 2. For finding the Bayes’ estimate, we make use of the

importance sampling method as before. We find that sampling from the candidate

density g∗(·) becomes easy to implement if we let g∗(·) to be the product of two in-

dependent densities, say g1(·) and g2(·), where g1(·) is a gamma density with shape

parameter m and scale parameter p; and g2(·) is a bivariate normal density with

mean µ and dispersion matrix Σ. Various combinations of prior parameters are

considered. We compute the estimate of each parameter, its posterior standard de-

viation (SD) and 95% credible intervals (CI). Table 7.5 shows the results obtained

for few such combinations. The results show similarity among various choices of

prior parameters. The estimate of α is close to one and the estimates of the regres-

sion parameters have positive values which suggest that the covariates have adverse

effects on lifespan of individuals under study. Several other combinations of prior

distributions are also used and they all show similar impact of covariates.
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Figure 7.1: Plot of F0(t; α̂0, γ̂0) against F̆0(t).

7.5 Conclusion

In this chapter, we considered Bayesian analysis of lifetime data in the presence of

covariates under middle-censored setup. We assumed a Weibull baseline distribu-

tion for the lifetime variable in Section 7.2. Non-informative as well as informative

prior densities are considered for the shape parameter. Multivariate normal prior is

selected for the regression parameter. Since the resulting posterior density seems to

be difficult to sample from, we employed importance sampling method for obtaining

the posterior summary. Extensive simulation studies were carried out in Section 7.3

to assess the finite sample properties of the estimator under different sample sizes

with varying censoring rates. The simulation studies indicated satisfactory perfor-

mance of the proposed method. In Section 7.4, we applied the model to a real life

data concerned with lifetimes of multiple myeloma patients.



Chapter 8

Summary and Future Work

8.1 Summary

Middle-censored data arise naturally in many situations, where a random middle

part on the support of a lifetime variate is missed to observe. The existing literature

in middle-censored data analysis mainly focuses on the estimation of the distribution

function of the lifetime variate without the presence of covariates. There are many

situations where the lifetime data are observed along with covariates. The existing

statistical methods for various censoring schemes such as left, right, interval, and

double censoring are not appropriate in such contexts and therefore new regression

models along with advanced methodology are required for the analysis of such a

data. In view of this, in this study, we have proposed several parametric and

semiparametric regression models for middle-censored lifetime data.

In Chapter 2, we have introduced proportional hazards regression model in

parametric context and the regression parameters are estimated via the method

of maximum likelihood. Asymptotic normality of the estimator was established.

Extensive simulation studies were carried out to assess the performance of the es-

timator under finite sample setting. The procedure was applied to a real life data

set.

161
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In Chapter 3, we considered semiparametric approach for proportional hazards

regression problem, where we only assumed that the baseline distribution function is

absolutely continuous. We developed an iterative algorithm for estimating unknown

baseline survival function and the regression parameters. Large sample properties

of the estimators were established. Simulation studies were carried out, which indi-

cated that the proposed estimators are performing well. The estimation procedure

was illustrated through a real life dataset.

In Chapter 4, we presented a parametric estimation procedure for additive haz-

ards regression model, where the baseline distribution was assumed to be exponen-

tiated exponential. We proposed maximum likelihood estimator for the regression

parameter and established its asymptotic normality. We assessed the performance of

the estimator by conducting simulation studies. The proposed method was applied

to a real life data set.

In Chapter 5, we introduced a semiparametric version of additive hazards re-

gression problem. Two different methods of inference were proposed. Large sample

properties of the estimators were established. Simulation studies were carried out to

assess the finite sample performance of the estimators. The utility of the proposed

methods was demonstrated through a real data set.

In Chapter 6, we proposed a quantile regression model for analyzing middle-

censored lifetime data. A grid-based sequential estimation method for estimating

the regression quantiles was developed by using the martingale structure of the ob-

served data. Second stage inference procedures were developed using resampling

technique. Asymptotic properties of the estimator were established. The estimator
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possesses desirable properties such as consistency and asymptotic normality. A sim-

ulation study was conducted to examine the finite sample behavior of the estimator.

The proposed method was well demonstrated using a real data set.

Finally in Chapter 7, we have introduced and studied Bayesian approach for

analyzing middle-censored lifetime data, where we related the covariates with the

lifetime variate through the scale parameter. The estimation of parameters were

carried out via Monte Carlo simulation method. Simulation studies were carried

out and the proposed model was applied to a real life data set.

8.2 Future Work

In many occasions, there may arise multiple causes of failure, which can be observed

along with covariates or explanatory variables. Competing risks models can be

employed is such contexts. The proposed regression models can be extended to this

setup, which merits a future research.

The well known class of parametric models in survival analysis is log-location

scale family of distributions. The parametric regression models, which we have

considered in Chapter 2 and Chapter 4 can be generalized by choosing log-location

scale type distribution as the baseline lifetime model.

Frailty or random effect models are often employed in survival analysis to

model unobserved covariate, to incorporate the intra-class association, serial corre-

lation and other forms of dependence. Frailty models are derived under conditional

independence assumption, by specifying a latent variable that act multiplicatively



Summary and future work 164

on the baseline hazard (see Hougaard (2000)). Various parametric families of frailty

models may be generated by taking different distributional form for frailty random

variable. Inference procedure for such frailty models are complicated due to cen-

soring. The semiparametric regression models described here can be extended to

frailty setup under middle-censoring, which is another area yet to be studied.

Throughout this study, we assumed that the lifetime variate and censoring

interval are independently distributed, given covariates. In practice, this assumption

may seem to be restrictive and in such instances one can relax this requirement,

which leads to a dependent setup. The regression models for middle-censored data

under such a dependent setup is not yet discussed, and this can be explored in

future research.

In medical research, often our interest may be in inferring the remaining life

years of a patient, given the patient history. The remaining life years of a patient

could be prolonged by treating or preventing a disease by a medical intervention.

Existing statistical methods based on hazard function are not appropriate in such

contexts as these methods are often cumbersome and not straightforward, especially

when the remaining lifetimes need to be evaluated in the middle of an observation

period. Further, the remaining lifetimes at a specific time point estimated from such

semiparametric models may heavily depend on model assumptions that affect the

entire observation period. Motivated by this, researchers have developed regression

models based on mean remaining life in literature. For some fundamental works

on this topic, one could refer to Zahedi (1991), Oakes and Dasu (2003), Maguluri

and Zhang (1994), and Chen and Cheng (2005). These works can be extended to
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the case of lifetime data subject to middle-censoring, which will be reported in a

separate work.

For a right censored survival data, Jung et al. (2009) developed a quantile

remaining life regression model and studied its properties. In Chapter 6, we have

developed a quantile regression model for analyzing middle-censored survival data.

The method developed there can further be extended to accommodate quantile

remaining life, which is another area of interest for future research.
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Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modeling failure time data by

Lehman alternatives. Communications in Statistics - Theory and Methods ,

27 (4), 887-904.

Gupta, R. D., & Kundu, D. (1999). Theory and methods: Generalized exponential

distributions. Australian and New Zealand Journal of Statistics , 41 (2), 173–

188.

Gupta, R. D., & Kundu, D. (2001). Generalized exponential distribution: different

method of estimations. Journal of Statistical Computation and Simulation,

69 (4), 315–337.

Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer Verlag, New

York.

Huang, J., & Wellner, J. A. (1995). Efficient estimation for the proportional hazards

model with” case 2” interval censoring. Technical Report No. 290, Department

of Statistics, University of Washington, Seattle, USA.

Ichida, J., Wassell, J., Keller, M., & Ayers, L. (1993). Evaluation of protocol

change in burn-care management using the Cox proportional hazards model

with time-dependent covariates. Statistics in Medicine, 12 , 301–310.

Iyer, S. K., Jammalamadaka, S. R., & Kundu, D. (2008). Analysis of middle-

censored data with exponential lifetime distributions. Journal of Statistical



Bibliography 174

Planning and Inference, 138 (11), 3550–3560.

Jammalamadaka, S. R., & Iyer, S. K. (2004). Approximate self consistency for

middle-censored data. Journal of Statistical Planning and Inference, 124 (1),

75–86.

Jammalamadaka, S. R., & Leong, E. (2015). Analysis of discrete lifetime data

under middle-censoring and in the presence of covariates. Journal of Applied

Statistics , 42 (4), 905–913.

Jammalamadaka, S. R., & Mangalam, V. (2003). Nonparametric estimation for

middle-censored data. Journal of Nonparametric Statistics , 15 (2), 253–265.

Jammalamadaka, S. R., & Mangalam, V. (2009). A general censoring scheme for

circular data. Statistical Methodology , 6 (3), 280–289.

Jammalamadaka, S. R., Prasad, S., & Sankaran, P. G. (2016). A semiparametric

regression model for analysis of middle censored lifetime data. Statistica,

LXXVI (1), 27–40.

Ji, S., Peng, L., Cheng, Y., & Lai, H. (2012). Quantile regression for doubly

censored data. Biometrics , 68 (1), 101–112.

Jin, Z., Ying, Z., & Wei, L. (2001). A simple resampling method by perturbing the

minimand. Biometrika, 88 (2), 381–390.

Jung, S.-H., Jeong, J.-H., & Bandos, H. (2009). Regression on quantile residual

life. Biometrics , 65 (4), 1203–1212.

Kalbfleisch, J. D. (1978). Nonparametric Bayesian analysis of survival time data.

Journal of the Royal Statistical Society. Series B , 40 (2), 214–221.

Kalbfleisch, J. D., & Prentice, R. L. (2011). The Statistical Analysis of Failure

Time Data. John Wiley & Sons, New York.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete



Bibliography 175

observations. Journal of the American Statistical Association, 53 (282), 457–

481.

Karduan, O. (1983). Statistical analysis of male larynx-cancer patients - a case

study. Statistical Nederlandica, 37 , 103–126.

Kim, M. Y., De Gruttola, V. G., & Lagakos, S. W. (1993). Analyzing doubly

censored data with covariates, with application to AIDS. Biometrics , 49 ,

13–22.

Klein, J. P., & Moeschberger, M. L. (2005). Survival Analysis: Techniques for

Censored and Truncated Data. Springer Science & Business Media, New York.

Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46 , 33–50.

Krall, J. M., Uthoff, V. A., & Harley, J. B. (1975). A step-up procedure for selecting

variables associated with survival. Biometrics , 31 , 49–57.

Krishna, H., & Goel, N. (2017). Maximum likelihood and Bayes estimation in ran-

domly censored geometric distribution. Journal of Probability and Statistics,

Hindawi , 2017 .

Kundu, D., & Basu, A. (2004). Statistical Computing: Existing Methods and Recent

Developments. Narosa, New Delhi.

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. John

Wiley & Sons, New York.

Le, C. T. (1997). Applied Survival Analysis. John Wiley and Sons, New York.

Lee, E. T., & Wang, J. (2003). Statistical Methods for Survival Data Analysis. John

Wiley & Sons, New York.

Lee, K., & Cho, Y. (2017). Bayesian and maximum likelihood estimations of

the inverted exponentiated half logistic distribution under progressive type II

censoring. Journal of Applied Statistics , 44 (5), 811–832.



Bibliography 176

Li, P., & Ling, X.-l. (2012). The additive hazard mixing models. Acta Mathematicae

Applicatae Sinica, English Series , 28 (1), 139–148.

Lin, D. Y., Wei, L.-J., & Ying, Z. (1993). Checking the Cox model with cumulative

sums of martingale-based residuals. Biometrika, 80 (3), 557–572.

Lin, D. Y., & Ying, Z. (1994). Semiparametric analysis of the additive risk model.

Biometrika, 81 (1), 61–71.

Lin, D. Y., & Ying, Z. (1997). Additive hazards regression models for survival data.

Proceedings of the First Seattle Symposium in Biostatistics , 185–198.

Maguluri, G., & Zhang, C.-H. (1994). Estimation in the mean residual life regression

model. Journal of the Royal Statistical Society. Series B , 56 , 477–489.

Mangalam, V., Nair, G. M., & Zhao, Y. (2008). On computation of NPMLE for

middle-censored data. Statistics & Probability Letters , 78 (12), 1452–1458.

Martz, H. F., & Waller, R. (1982). Bayesian Reliability Analysis. John Wiley and

Sons, New York.

McKeague, I. W., & Utikal, K. J. (1991). Goodness-of-fit tests for additive hazards

and proportional hazards models. Scandinavian Journal of Statistics , 18 (3),

177–195.

McLachlan, G., & Krishnan, T. (2007). The EM Algorithm and Extensions. John

Wiley & Sons, New York.

Nair, N. U., Sankaran, P. G., & Balakrishnan, N. (2013). Quantile-based Reliability

Analysis. Springer-Birkhauser, New York.

Nash, T., Williams, J., & Machin, D. (1990). TENS: does the type of stimulus

really matter. Pain Clinic, 3 (3), 161–168.

Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality

Technology , 1 (1), 27–52.



Bibliography 177

Oakes, D., & Dasu, T. (2003). Inference for the proportional mean residual life

model. The Institute of Mathematical Statistics Lecture Notes-Monograph Se-

ries , 43 , 105–116.

Odell, P. M., Anderson, K. M., & D’Agostino, R. B. (1992). Maximum likelihood

estimation for interval-censored data using a Weibull-based accelerated failure

time model. Biometrics , 48 (3), 951–959.

Peng, L., & Huang, Y. (2008). Survival analysis with quantile regression models.

Journal of the American Statistical Association, 103 , 637–649.

Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statis-

tical Association, 98 (464), 1001–1012.

Portnoy, S., & Lin, G. (2010). Asymptotics for censored regression quantiles.

Journal of Nonparametric Statistics , 22 (1), 115–130.

Powell, J. L. (1984). Least absolute deviations estimation for the censored regression

model. Journal of Econometrics , 25 (3), 303–325.

Powell, J. L. (1986). Censored regression quantiles. Journal of Econometrics , 32 (1),

143–155.

Pradhan, B., & Kundu, D. (2014). Analysis of interval-censored data with Weibull

lifetime distribution. Sankhya B , 76 (1), 120–139.

Prasad, S., & Sankaran, P. G. (2017). Bayesian analysis of middle-censored lifetime

data in the presence of covariates. Communicated .

Prentice, R. L. (1973). Exponential survivals with censoring and explanatory vari-

ables. Biometrika, 60 (2), 279–288.

Qin, C. (2010). Estimations of parameter of exponential distribution for middle-

censored data. Journal of Hubei Normal University (Natural Science), 1 ,

012.



Bibliography 178

Ritov, Y. (1990). Estimation in a linear regression model with censored data. The

Annals of Statistics , 18 , 303–328.

Robert, C., & Casella, G. (2013). Monte Carlo Statistical Methods. Springer Science

& Business Media, New York.

Sankaran, P. G., & Prasad, S. (2014). Weibull regression model for analysis of

middle-censored lifetime data. Journal of Statistics and Management Systems ,

17 (5-6), 433–443.

Sankaran, P. G., & Prasad, S. (2017a). Additive risks regression model for mid-

dle censored exponentiated-exponential lifetime data. Communications in

Statistics-Simulation and Computation, 1–12.

Sankaran, P. G., & Prasad, S. (2017b). An additive risks regression model for the

analysis of middle-censored lifetime data. Statistics in Transition-new series ,

to appear.

Sankaran, P. G., & Prasad, S. (2017c). Quantile regression model for the analysis

of middle-censored lifetime data. Communicated .

Shang, K., & Reilly, C. (2017). Nonparametric Bayesian analysis of the 2 sample

problem with censoring. Communications in Statistics-Theory and Methods(to

appear).

Shen, P. (2010). An inverse-probability-weighted approach to the estimation of dis-

tribution function with middle-censored data. Journal of Statistical Planning

and Inference, 140 (7), 1844–1851.

Shen, P. (2011). The nonparametric maximum likelihood estimator for middle-

censored data. Journal of Statistical Planning and Inference, 141 (7), 2494–

2499.

Sinha, D., Chen, M.-H., & Ghosh, S. K. (1999). Bayesian analysis and model



Bibliography 179

selection for interval-censored survival data. Biometrics , 55 (2), 585–590.

Sinha, D., Ibrahim, J. G., & Chen, M.-H. (2003). A Bayesian justification of Cox’s

partial likelihood. Biometrika, 90 (3), 629–641.

Sinha, S. K. (1986). Reliability and Life Testing. Wiley Eastern Ltd, New Delhi.

Sun, J. (1995). Empirical estimation of a distribution function with truncated and

doubly interval-censored data and its application to AIDS studies. Biometrics ,

51 , 1096–1104.

Sun, J. (2004). Statistical analysis of doubly interval-censored failure time data.

Advances in Survival Analysis, Handbook of Statistics , 23 , 105–122.

Sun, J. (2006). The Statistical Analysis of Interval-censored Failure Time Data.

Springer Science & Business Media, New York.

Sun, L., Park, D., & Sun, J. (2006). The additive hazards model for recurrent gap

times. Statistica Sinica, 16 (3), 919–932.

Tarpey, T., & Flury, B. (1996). Self-consistency: a fundamental concept in statistics.

Statistical Science, 11 (3), 229–243.

Thomas, D. C. (1986). Use of auxiliary information in fitting nonproportional haz-

ards models. Modern Statistical Methods in Chronic Disease Epidemiology,Ed.

S. H. Moolgavkar and R. L. Prentice, 197–210.

Tsai, W.-Y., & Crowley, J. (1985). A large sample study of generalized maximum

likelihood estimators from incomplete data via self-consistency. The Annals

of Statistics , 13 , 1317–1334.

Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function

with doubly censored data. Journal of the American Statistical Association,

69 (345), 169–173.

Turnbull, B. W. (1976). The empirical distribution function with arbitrarily



Bibliography 180

grouped, censored and truncated data. Journal of the Royal Statistical Society.

Series B , 38 , 290–295.

Turnbull, B. W., Brown Jr, B. W., & Hu, M. (1974). Survivorship analysis of heart

transplant data. Journal of the American Statistical Association, 69 (345),

74–80.

Walker, S., & Mallick, B. K. (1999). A Bayesian semiparametric accelerated failure

time model. Biometrics , 55 (2), 477–483.

Wang, L. (2016). Estimation for exponential distribution based on competing risk

middle-censored data. Communications in Statistics-Theory and Methods ,

45 (8), 2378–2391.

Wei, L., & Gail, M. (1983). Nonparametric estimation for a scale-change with cen-

sored observations. Journal of the American Statistical Association, 78 (382),

382–388.

Yu, Q., Wong, G. Y., & Li, L. (2001). Asymptotic properties of self-consistent esti-

mators with mixed interval-censored data. Annals of the Institute of Statistical

Mathematics , 53 (3), 469–486.

Zahedi, H. (1991). Proportional mean remaining life model. Journal of Statistical

Planning and Inference, 29 (1-2), 221–228.

Zahl, P.-H., & Tretli, S. (1997). Long-term survival of breast cancer in Norway by

age and clinical stage. Statistics in Medicine, 16 (13), 1435–1449.

Zippin, C., & Armitage, P. (1966). Use of concomitant variables and incomplete

survival information in the estimation of an exponential survival parameter.

Biometrics , 22 (4), 665–672.


	List of Tables
	List of Figures
	1 Preliminaries
	1.1 Introduction
	1.2 Basic Concepts
	1.2.1 Survival Function
	1.2.2 Hazard Rate

	1.3 Censoring
	1.3.1 Right Censoring
	1.3.2 Left Censoring
	1.3.3 Interval Censoring
	1.3.4 Double Censoring
	1.3.5 Middle-censoring

	1.4 Truncation
	1.5 Inference Procedures
	1.5.1 Nonparametric Estimation Under Right Censoring
	1.5.1.1 Kaplan-Meier Estimator
	1.5.1.2 Nelson-Aalen Estimator

	1.5.2 Bayesian Analysis

	1.6 Regression Models
	1.6.1 Proportional Hazards Model
	1.6.2 Additive Hazards Model
	1.6.3 Quantile Regression Model

	1.7 Motivation and Present Study

	2 Parametric Proportional Hazards Regression Model
	2.1 Introduction
	2.2 The Model and Inference Procedure
	2.2.1 Bootstrap Method

	2.3 Asymptotic Properties
	2.4 Simulation Studies
	2.5 Data Analysis
	2.6 Conclusion

	3 Semiparametric Proportional Hazards Regression Model
	3.1 Introduction
	3.2 The Model and Inference Procedure
	3.2.1 Asymptotic Properties
	3.2.2 Nonparametric Bootstrap Method

	3.3 Simulation Studies
	3.4 An Application
	3.5 Conclusion

	4 Parametric Additive Hazards Regression Model
	4.1 Introduction
	4.2 The Model and Inference Procedure
	4.3 Asymptotic Properties
	4.4 Simulation Studies
	4.5 Data Analysis
	4.6 Conclusion

	5 Semiparametric Additive Hazards Regression Model
	5.1 Introduction
	5.2 Inference Procedure
	5.2.1 Martingale Method
	5.2.2 The Iterative Method
	5.2.2.1 Asymptotic Properties


	5.3 Simulation Studies
	5.4 Illustrative Data Analysis
	5.5 Conclusion

	6 The Quantile Regression Model 
	6.1 Introduction
	6.2 The Model and Inference Procedure
	6.2.1 Asymptotic Results
	6.2.2 Resampling and Hypothesis Testing
	6.2.3 Model Diagnostics

	6.3 Simulation Studies
	6.4 Data Analysis
	6.5 Conclusions

	7 Bayesian Analysis of Middle-censored Lifetime Data
	7.1 Introduction
	7.2 The Model and Inference Procedure
	7.3 Simulation Studies
	7.4 Illustrative Data Analysis
	7.5 Conclusion

	8 Summary and Future Work
	8.1 Summary
	8.2 Future Work

	References

