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PREFACE 
 

The goal of systems biology is to characterize the network components completely 

and to find quantitative estimates for the interactions of the components. Advances 

in high-throughput biotechnologies have led to increasing volumes of biochemical 

data. Data mining techniques and design-driven systems modeling approaches have 

led to the concept of reverse engineering biological systems. Biological systems can 

be reverse engineered by experimentation and computational modeling. The 

knowledge thus gained can be used to re-engineer a similar system or its variants 

under different conditions. 

A modeling architecture has been developed that learns from the data given 

by reverse engineering, and uses it for re-engineering the system. Essentially, it is a 

pipeline architecture that takes the data and available knowledge through an 

analytics process to provide insights into complex cellular phenomena. For the 

purpose of demonstration, signal transduction by biomolecules inside the cell has 

been taken. The ErbB signaling pathway has been chosen as it is one of the most 

intensely studied networks and its success mainly due to the fact that there was 

prolific activity in both experiments and modeling for the past two decades.   

The ErbB pathway is characterized by multiple extracellular ligands, the four 

trans-membrane ErbB receptors (ErbB1 or EGFR; and ErbB 2–4). These receptors 

are also known as HER (1–4). The other important members of the pathway are 

cytoplasmic adapters, scaffolds, enzymes and small molecules. Human epidermal 

growth factor receptors (HER) are essential receptor tyrosine kinases that mediate 

cell proliferation, differentiation, migration, adhesion, apoptosis and embryogenesis. 

This pathway has been intensely studied both experimentally and computationally, 

to understand the mechanisms underlying their oncogenic potential and to also 

exploit them as therapeutic targets. Binding of a ligand to the receptor initiates the 

signaling, leading to homo or hetero-dimerization of receptors, followed by the 

activation of signaling pathways like Erk and Akt. Reverse engineering of these 

pathways are generally supported by mathematical models which quantitatively 

estimate the parameters of the system by fitting the model to the experimental data. 

These parameters, together with the established knowledge about the pathway, have 
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been encapsulated into a set of if-then rules to re-engineer the system by the bottom-

up approach of agent-based modeling (ABM). The ABM is a spatio-temporal 

simulation of the experiment where the actions and interactions between agents, 

result in the occurrence of various cellular events. 

The mathematical model that predicts receptor (EGFR and HER2) activation 

and trafficking patterns to fit the experimental data, is taken as the reverse 

engineered system. Ligands and receptors (monomers and dimers) are considered as 

agents that reside indifferent cellular compartments. These agents interact 

quantitatively leading to receptor activation, trafficking and receptor dimerization 

which are validated with the results of the experiment. As agents undergo state 

change, it is also possible to calculate rate constants from the changing species 

concentration. 

The model was expanded by including the HER3 receptors and HRG ligands 

linking receptor expression levels to dimerization and activation. The importance of 

HER3 expression in drug resistance and tumorigenesis has increased its focus as a 

potential drug target. The model quantitatively predicts the relative contributions of 

the HER dimers in four distinct cell lines and how the changes in the receptor 

phosphorylation levels alter activation patterns in the downstream cascades, mainly 

Erk and Akt kinases. 

As a potential application, the model was extended to study the therapeutic 

efficacy that can be achieved from combining drugs. The potential of "Combine and 

Conquer" is a new challenge in the design of targeted therapies. However, the 

underlying molecular mechanisms on action of these drugs have remained enigmatic. 

The antitumor activity of two drugs-Trastuzumab and Pertuzumab, both humanized 

monoclonal antibodies, alone and in combination on cell lines, is investigated. Using 

the ABM model, by including Trastuzumab and Pertuzumab as drug agents, 

hypothesis-testing studies were done to rationalize the underlying mechanism of 

action and their observed synergetic effects. The model serves as a powerful 

technique for in silico clinical trials which can drastically reduce the lead time in the 

drug discovery pipeline. 
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The proposed modeling architecture can give new insights using the existing 

knowledge found in experimental literature and mathematical/ computational 

models. Re-engineering models, built using the results of reverse engineering, open 

up the possibility of harnessing the power pack of data which now lies scattered in 

literature. Virtual experiments could then become more realistic when empowered 

with the findings of empirical cell biology and modeling studies. The reverse-

engineering-re-engineering pipeline architecture is a promising tool for deep data 

analytics in integrative systems biology. 
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Introduction 
 

Scientists, have spent much time, looking through the lens of reductionism to 

decipher the working of complex systems. This is achieved by breaking the problem 

into component parts, and then studying the behaviour of each part. A major 

limitation of reductionism is the assumption that the parts are independent and can 

be studied in isolation. This assumption fails when the inter-connections between the 

parts are significant and cannot be ignored. For e.g., each gene in an organism can be 

sequenced separately, but gene expression is the result of complex regulatory 

networks of genes and the interactions of their protein products. This fostered the 

development of the systems theory where the focus of the lens shifted to the 

connections and the information/energy/material flow between the parts. Contrary 

to the reductionist approach, the emergent system behaviour (the whole) need not 

be the sum of the parts. 

However, the system-level approach also has its drawbacks as it requires 

reasonable understanding of the parts, to succeed. The inter-connections within the 

system may be too many, too complex or too transient to measure and generation of 

such data is an unwieldy exercise. This is especially true of biological systems where 

emergent properties cannot be predicted without some knowledge of the parts to 

begin with. The theme of this thesis is to use a data driven approach to bring together 

the complementary paradigms of reductionism and holism in the field of systems 

biology. The key idea is generic and so can be applied to other areas as well. 

Systems biology has mainly pursued the reductionistic path relying on well-

designed experiments and computational tools like mathematical models. In such 

endeavours, large volumes of biochemical data are being generated due to the 

advances in high-throughput bio-technologies. This data which is assuming the 

proportions of "big data", offers a great challenge for data scientists to predict the 

dynamics of biological processes. 
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1.1 Objectives  

The objective of this work is to create a platform for the study of emergent behaviour 

of complex biological networks by drawing upon the outcomes of reductionistic 

techniques. 

The specific objectives are: 

1. Design of a reverse engineering - re-engineering pipeline architecture for 

systems biology data analytics. 

Data mining and design-driven systems modeling approaches have been used 

for reverse engineering biological systems by the reductionist principle. 

Reverse engineering attempts to derive mechanistic insights into the complex 

processes involved in signaling, gene regulatory and metabolic networks by 

the interplay of data generated from wet lab experiments and modeling 

studies. The knowledge thus gained can be used to re-engineer a similar 

system or its variants.  

2. Implementation of the modeling architecture on a simple model of signal 

transduction in the cell by activation and trafficking of EGFR and HER2 

receptors. 

A mathematical model that predicts receptor (EGFR and HER2) activation and 

trafficking is chosen from literature. This is an effort of reverse engineering by 

which the parameters for dimer formation affinities and trafficking rates were 

estimated so that they fit to the experimental data. The data from this model-

based analysis is used to re-engineer the system by emergent modeling.  

3. Modeling the EGFR, HER2 and HER3 dynamics and their effect on the 

downstream Erk and Akt pathways. 

The starting point is again, a reverse engineered system by the same authors 

as in 2 above. The model is extended to include the third receptor of the ErbB 

family, namely, ErbB3 in cells co-expressing EGFR, HER2 and HER3. As a 

consequence, Erk and Akt pathways are activated. The experiment measures 

the additional effects of the HER3 receptor and its partnering ligand on 

activation of dimers and downstream proteins that lead to proliferative 
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outcomes. The kinetic model takes into account the interactions of the 

additional receptor, giving rise to almost a three-fold increase in the number 

of parameters to be estimated.  

4. Application: Modeling the effect of combination drugs on HER targeted 

therapies for cancer. 

Two or more drugs that individually produce overtly similar effects can 

display greatly enhanced effects when given in combination. Drug 

combinations are now being used in cancer therapy and there is growing 

interest in them being used for cancer prevention. Rigorous trials are required 

to prove the efficacy of such drugs. The mechanism of action of the drugs and 

their dose combinations are important in determining the existence of 

synergy. The modeling pipeline takes the current state of knowledge on the 

mechanism of action of two popular drugs used for ErbB2 positive cancers, to 

investigate the emergent behaviour of the drug-receptor interactions in a 

system. This application can be of great value to Systems Pharmacology where 

in silico experimentation may be the best way to evaluate the effect of such 

therapies in real time. 

1.2 Outline of the thesis 

A modeling pipeline has been developed, combining two formalisms of 

systems modeling, where the outcomes of reverse engineering can drive a re-

engineering model. The pipeline architecture serves as a generic paradigm as there is 

no ‘one size fits all’ modeling solution. Combining modeling formalisms in this 

manner for data analytics can prove to be a powerful tool for new insights and 

predictive modeling in systems biology. 

Chapters 2 and 3 familiarize the reader with the concepts and terminology 

related to the research presented in later chapters. Being an interdisciplinary work, 

basic understanding of the biology of signal transduction and also computing 

methodologies used for modeling, are required. Chapter2 is about the reverse 

engineering paradigm and how it has been applied to study the ErbB signal 

transduction pathway. The basic biology of the ErbB signal transduction and the 
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computational modeling schemes for studying the pathway have been introduced. 

The link between ErbB network dysregulation and cancer has been reviewed.  

Chapter 3 introduces the concept of re-engineering and how it can benefit 

from the efforts of reverse engineering with the emergent principles of Agent-Based 

Modeling (ABM). This is followed by an overview of ABM and their applications in 

diverse fields ranging from economics to ecology. The online software tools available 

for the design and development of ABMs have also been enumerated. 

The objectives listed in Section 1.1 are the subject of Chapters 4-6. Chapter 4 

covers objectives 1 and 2. The first objective, namely, the modeling pipeline 

connecting reverse engineering with re-engineering, is the main focus of Chapter 4. 

The re-engineering part is implemented using an ABM. For the purpose of 

demonstration, the reverse engineered model for EGFR-HER2 receptor activation 

and trafficking in signal transduction has been re-engineered by an ABM (objective 

2).  

In Chapter 5, the model is further expanded to study the receptor dynamics 

and downstream signaling (objective 3).  

Chapter 6 is a practical application of the computational pipeline (objective 4). 

The ABM for ErbB signal transduction has been used for predictive modeling of the 

effect of drug combinations on HER targeted therapies for cancer.  

Chapter 7 concludes with a discussion of the research pipeline developed – its 

applications, issues, computational challenges, future perspectives and how it fares 

as a data analytics tool to bring new life to old data generated from biological 

experiments and models.  

1.3 Contributions of the thesis 

The major contributions of this thesis are: 

1) The conceptual model of a data-driven pipeline architecture that makes the 

outcomes of reverse engineering, available for re-engineering. 

2) To develop models that can simulate virtual experiments designed using the 

findings of empirical cell biology and modeling studies. 
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3) A modeling framework for in silico drug studies that can test the molecular 

mechanisms involved in the action of drugs, with specific application to 

synergy effects of combination drugs in cancer therapy. 

4) Applications can be developed for complex systems. 

5) A paradigm for data science - Deriving emergence from reductionism. 
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Reverse engineering the ErbB signaling pathway 
 

Reductionism is the practice of describing and analyzing a complex phenomenon in 

terms of its simple or fundamental constituents. Reducing the problem to sub-

problems and integrating their solutions, can help understand the working of the 

system as a whole. At this point, it is important to understand the difference between 

complicated and complex systems. Simple problems can be solved by following a 

protocol or mastering a technique and ensures repeatablity. Complicated problems 

are large in scale, requiring coordination and specialized skills but once mastered, 

complicated systems have a high degree of predictability and repeatability. These 

systems can be understood by taking them apart and analyzing the sub-systems. 

Complex systems are based on relationships, their properties of self-organisation, 

interconnections and evolution. Biological systems are complex and non-linear, 

operating at a wide range of scales, starting from molecular to systems level. 

Modeling such systems was possible only by classical reductionist-analytical 

strategies. 

 Reverse engineering, basically, employs the reductionist principle. Section 2.1 

introduces the applications of reverse engineering with special reference to ErbB 

signaling pathway. Sections 2.2 and 2.3 describe the basic biology of ErbB and 

reviews the computational modeling attempts, made to reverse engineer various 

aspects of its signaling dynamics. Section 2.4 throws light on the cancer connection of 

the ErbB network. 

2.1 Reverse Engineering 

Reverse engineering, is the technique of extracting knowledge or design information 

from a system or a man-made product and reproducing it or creating a new product, 

based on the extracted information.  

https://en.wikipedia.org/wiki/Process_(engineering)
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Design
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2.1.1 Reverse engineering of hardware and software 

While reverse engineering, an engineer works backwards from a product, 

disassembling it, in order to understand the processes involved in making it. It is 

generally used to get the know-how and copy a competitor’s product. With the 

knowledge thus gained, one can, not only re-engineer the product, but can also make 

alterations and adaptations or even design new products. 

Hardware reverse engineering involves, taking apart a device to see how it 

works. For example, if a processor manufacturer wants to see how a competitor's 

processor works, they can purchase it, disassemble and then make a processor 

similar to it. When machine parts fail and replacements are no longer available, 

reverse engineering is used to reproduce the part from a sample of the broken part. 

Using 3D scanning technologies, the 3D model of the part can be created for casting 

the part. 

Software reverse engineering involves reversing a program's machine code to 

get back the source code when a bug has to be fixed, the performance has to be 

improved or to identify a virus in the program. 

2.1.2 Reverse engineering of biological systems 

Biological systems are extremely complex and have emergent properties that cannot 

be explained, or predicted, by studying their individual parts. The reductionist 

approach, although successful in the early days of molecular biology, underestimates 

this complexity and therefore has an increasingly detrimental influence on many 

areas of biomedical research, including drug discovery and vaccine development 

(Van Regenmortel, 2004). 

Complexity in biological systems is due to many reasons. The cross-talk that 

exists among system components, and between these components and their (micro) 

environments is untractable. It is further augmented by the heterogeneity of system 

components and how macroscopic behaviour in biological systems is an outcome of a 

vast range of interactions at multiple scales, operating in the absence of a central 

organizing structure (Kaul and Ventikos, 2015).  
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   The large volume of biochemical data from high-throughput biotechnologies 

have impacted the progress in reverse engineering biological systems (Quo, et al., 

2012). Taking the biological data as input, these algorithms, when simulated 

recapitulates the dynamics of experimental in vivo outcomes (Lobo, et al., 2016). 

Reverse engineering has been successfully used for systems analysis in many 

contexts, from discovering transcriptional control in largely uncharacterized 

organisms (Bonneau, et al., 2007) to understanding the complex regulatory networks 

underlying development and evolution of multi-cellular organisms (Crombach, et al., 

2012). They are also studied in microbial metabolics, signaling and regulatory 

networks and pattern-forming developmental processes in animals (Becker, et al., 

2013). Sahin, et al. (2009) constructed a literature-based protein network and 

combined computational simulations and experimental testing of simulation results 

to define potential therapeutic strategies for de novo Trastuzumab resistant breast 

cancer. A combination of reverse and forward engineering was used to reconstruct 

ErbB network and simulate perturbations to study drug responses. The deregulated 

protein interactions in ErbB network was reverse engineered using Boolean models 

and forward engineering allowed to analyze the stable states of the reconstructed 

system (von der Heyde, et al., 2014). 

In systems biology,  reverse-engineering is characterized by the tight coupling 

of experiments and computational modeling, where dynamical models of regulatory 

or biochemical reaction networks are fit to quantitative data (Villaverde and Banga, 

2014). A model-based analysis incorporates the basic assumptions and hypotheses of 

the system under study. The model is tested by repeatedly altering its parameters 

and fitting to experimental data. A successful fit will yield a unique set of parameter 

estimates that cause the model to reproduce the data accurately (Becker, et al., 

2013).  

Some of the tools for reverse engineering in systems biology are bayesian 

statistics, inverse problems, machine learning, nonlinear physics, (bio) chemical 

kinetics, control theory and optimization (Villaverde and Banga, 2014). 
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2.2 Basic Biology of the ErbB Signaling Pathway 

Cellular signaling is the process of transmission of molecular signals initiated by cell-

surface receptors to the interior of the cell. Signal transduction cascades are 

molecular circuits that detect, amplify and integrate external signals to generate 

responses such as changes in gene expression, enzyme activity or ion-channel 

activity. Signaling is effected by a network of chemical reactions between molecular 

species. ErbB, Wnt, notch and hedgehog are examples of signal transduction 

pathways in cells. 

A receptor is a protein molecule that receives chemical signals from outside a 

cell. When such chemical signals bind to a receptor, they cause some form of 

response, e.g. a change in the electrical activity of a cell. In this sense, a receptor is a 

protein-molecule that recognizes and responds to endogenous chemical signals. 

The ErbB/HER receptor tyrosine kinase family consisting of four receptors 

are activated following ligand binding (Zhang, et al., 2009). HER family receptors are 

expressed in epithelial, mesenchymal, neuronal lineages, endothelial and cardiac 

cells. The receptors activate a multi-layered network, mediating crucial pathways 

that lead to cell proliferation, differentiation, migration and altered metabolism. 

Furthermore, HER family receptors help in development and maintenance of various 

integrative body systems such as cardiovascular and nervous system (Mujoo, et al., 

2014). Increased expression and mutation of members of ErbB family is associated 

with several types of cancers (Roskoski, 2014). 

 A ligand is a substance that forms a complex with a biomolecule to serve a 

biological purpose. In protein-ligand binding, the ligand is usually a molecule which 

produces a signal by binding to a site on a target protein. The binding typically 

results in a change of conformation of the target protein. Early signaling involves 

binding of an extracellular ligand that promotes homo- or hetero-dimerization 

between the ErbB family receptors. Receptor dimerization activates the intracellular 

tyrosine kinase domain of the receptors by auto and trans-tyrosine phosphorylation. 

On phosphorylation of multiple tyrosine residues, these domains act as binding sites 

for adaptor proteins that initiates the downstream signal transduction pathways 

(Yarden and Shilo, 2007). The ErbB signaling network consists of several 

https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Endogeny
https://en.wikipedia.org/wiki/Complex_(chemistry)
https://en.wikipedia.org/wiki/Biomolecule
https://en.wikipedia.org/wiki/Binding_site
https://en.wikipedia.org/wiki/Protein
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interconnected cascades like PI3K/Akt, MAPK, PLCγ1/PKC, Src and STAT which 

result in various biological responses, including apoptosis, migration, cellular 

proliferation, maturation, survival, adhesion, differentiation and angiogenesis. 

While ligand binding and dimerization are taking place, regulation of receptor 

activity plays a crucial mechanism in cell signaling. Trafficking/endocytosis process 

remove receptors from the cell surface or shunting them to the degradative fates 

(Hendriks, et al., 2006). The trafficking process can be subdivided into receptor 

synthesis, internalisation, recycling and degradation. Endocytosis regulates cell 

signalling most simply by controlling the number of receptors available for activation 

in the plasma membrane (Section 2.2.3). 

 

 

Figure 2.1 The ErbB Signalling Pathway (Reproduced from Yarden and Sliwkowski (2001)) 

 

2.2.1 Early Signaling: Receptor activation 

The input layer (Figure 2.1) consisting of receptors and ligands constitutes early 

signaling. 
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2.2.1.1 Receptors 

The EGFR family consists of four members that belong to the ErbB lineage of proteins 

(ErbB1-4). ErbB derives its name from avail viral erythroblastosis oncogene to which 

these receptors are related. The receptors are:  

a) EGFR(Epidermal Growth Factor receptor)/ErbB1/HER1 

b) ErbB2/HER2/Neu- Neu is an oncogene related to rat ErbB2 gene 

c) ErbB3/HER3, and 

d) ErbB4/HER4. 

The ErbB family of protein kinases consist of (Figure 2.2): 

a) An extracellular domain which is divided into 4 parts: Leucine rich domains I 

and III that participate in ligand binding, domains II and IV which contain 

cysteine residues that participate in disulphide bond formation. Domain II is 

involved in the formation of homo and heterodimers. 

b) Single transmembrane segment of 19-25 amino acids. 

c) An intracellular portion of about 550 amino acids containing a 

juxtamembrane segment, protein kinase domain and a carboxy terminal tail. 
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Figure 2.2 Organisation of Human ErbB/HER receptor. Courtesy Roskoski (2014)  

 

The ErbB1/3/4 receptors employ only a ligand mediated dimerization 

mechanism. These receptors resemble each other and possess a tethered 

conformation with the dimerization arms buried within, restricting their movements, 

thus, auto inhibiting ligand binding and dimerization. In contrast, ErbB2 exist in open 

conformation making it a preferred dimerization partner for other ErbB family 

receptors. Upon binding of the ligand, the receptors are activated by exposing their 

dimerization interface by promoting a large domain rearrangement(Ferguson, et al., 

2003). The active dimeric form thereby juxtaposes the intracellular kinase domain 

for mutual transphorylation on several tyrosine residues (Orton, et al., 2008). These 

sites act as docking sites for a plethora of cytoplasmic adaptor proteins, typically 

containing SH2 or PTB domain, which further stimulates the downstream cascades. 

The inactive EGFR is usually present as a monomer in normal cells, but at 

higher levels of expression they form inactive pre-formed dimers. These dimers are 

primed to bind to ligands (Chung, et al., 2010). It is reported that a single ligand can 
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induce ErbB1 or ErbB4 homodimer formation and activation(Liu, et al., 2007). In 

spite of extended conformation of ErbB2, it does not form active dimers unless 

overexpressed. All receptors possess similar protein kinase domains. ErbB1/2/4 

possess protein kinase activity while ErbB3 is catalytically impaired. Experimental 

studies suggest that ErbB3 is not kinase dead but undergoes autophosphorylation at 

a rate that is 1/1000th that of EGFR. In ErbB2-ErbB3 heterodimer, both receptors get 

phosphorylated by ErbB2 catalysing the phosphorylation of ErbB3 (Roskoski, 2014). 

2.2.1.2 Ligands 

Ligands of the HER family receptors are divided into three groups based on the 

receptors they bind to: 

1. HER1: Epidermal growth factor (EGF), amphiregulin (AR), and transforming growth 

factor-α (TGF-α).  

2. HER1 and HER4: Betacellulin (BTC), heparin-binding EGF (HB-EGF), and epiregulin 

(EPR).  

3. HER3 and HER4: Neuregulins (NRG, also known as Neu differentiation factors, NDFs, 

or heregulins, HRG) which include two subgroups based on their capacity to bind 

HER3 and HER4 (NRG1 and NRG2) or only HER4 (NRG3 and NRG4). 

2.2.2 Receptor Trafficking 

Endocytosis regulates cell signalling by controlling the number of receptors available 

on the plasma membrane for activation. Clathrin–dependent and independent 

endocytosis of EGFR represents the first step in receptor downregulation. Many 

signalling receptors are also modified by ubiquitylation thus serving as clathrin-

coated pit targeting signals. Endocytosis in some receptors is stimulated by ligand-

induced activation. The nature of ligands also play significant role in fate of EGFR 

following endocytosis, ubiquitylation, and degradation. EGF has high affinity for 

EGFR by remaining persistently bound to the receptor, efficiently inducing its 

degradation. Expression of new receptor requires RNA and protein synthesis. 

Internalised receptors are sorted to recycling and endosomal degradation pathways 

(Figure2.3). An important feature of the endosomal sorting is its efficiency in 

targeting these receptors to late endosomes and lysosomes for degradation. Ligand-
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induced ubiquitylation has a key role in the lysosomal targeting and downregulation 

of receptors (Sorkin and Goh, 2009). 

 

Figure 2.3  Receptor trafficking. A. The biological model B. A Simplistic view 

 

2.2.3 Downstream Signaling 

The ErbB signaling comprises several cascades that are interconnected and 

overlapping. These cascades integrate signals from external stimuli translating them 

into intracellular signals. These includes PI3K/Akt, Ras/MEK/ERK1/2, STAT and 

phospholipase C (PLCɣ). Our focus in this study is on pathways PI3K/Akt and 

Ras/MEK/ERK1/2 (Figure 2.4). 

2.2.3.1 PI3K/Akt 

PI3K/Akt pathway plays a major role in cell survival. PI3K binds mostly to the 

phosphotyrosine sites of ErbB3 receptor, leading to its activation (Thorpe, et al., 

2015)  Following receptor activation, membrane-bound phosphatidylinositol 4,5-

bisphosphate (PI(4,5)P2) gets phosphorylated to generate phosphatidylinositol 

3,4,5-trisphosphate (PI(3,4,5)P3). PIP3 translocates the serine/threonine kinase Akt 

(also known as Protein kinase B, PKB) to the membrane by binding to it with a higher 

affinity. Activated Akt catalyses the activation of serine/threonine kinase mTOR 

(mammalian target of rapamycin) which acts as a substrate for many cellular 

processes for cell survival. Akt also inhibits Bcl2-associated death promoter (BAD); 
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which helps in pro-apoptosis. PTEN negatively regulates PI3K/Akt pathway by 

hydrolysing PIP3 to PIP2. The ErbB3/PI3K/Akt pathway is a major cause of 

treatment failure in cancer therapy because of its role in therapeutic resistance. 

HER3 is frequently co-expressed with other receptors promoting tumor initiation 

and progression through PI3K/Akt signalling. 

 

Figure 2.4 Receptor activation, trafficking and downstream signalling. PM-Plasma Membrane. 

 

2.2.3.2 MAPK pathway 

On activation of receptors by phosphorylation on tyrosine residues, these residues 

act as docking sites for large number of adaptor proteins such as Shc and Grb2 which 

subsequently recruit Ras-guanosine nucleotide exchange factor SOS. This 

recruitment brings it closer to small G-Protein Ras which gets activated by loading of 

Guanosine Tri phosphate (GTP). Ras then binds to Raf -1, translocating it from 

cytoplasm to PM. Active Raf dual phosphorylates to activate MEK, which in turn dual 

phosphorylate to activate Erk. Phosphorylated Erk can phosphorylate over 160 

substrates in cytoplasm and nucleus which regulates gene expression by 

phosphorylating transcription factors like elk, myc and ets promoting cell 
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division(Orton, et al., 2008). Ras-GTP is converted back to Ras-GDP by the GTPase-

activating proteins (GAP). 

2.2.3.3 Phospholipase C pathway (PLCɣ1) 

ErbB1, ErbB2 and ErbB4 possess several PLCɣ1 phosphotyrosine binding site. 

Activated PLCɣ catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to 

form inositol1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 releases Ca2+ 

from the endoplasmic reticulum and DAG activates the protein serine/threonine 

kinase C (PKC). PKC catalyzes the phosphorylation of dozens of proteins that effects 

angiogenesis, cell proliferation, cell death, increased gene transcription and 

translation, cell migration, cell adhesion activation and several transcription factors 

that lead to cell proliferation and survival. One of the downstream effectors is the 

Raf/MEK/ERK1/2 pathway bypassing Ras. 

2.2.3.4 STAT (Signal Transducer and Activator of Transcription) 

STATs are cytoplasmic transcription factors that translocate to nucleus to activate 

target genes (Chung, et al., 1997). STAT family which consist of 7 proteins- STAT 1, 

STAT 2, STAT 3, STAT 4, STAT 5a, STAT 5b and STAT 6, plays a significant role in 

signal transduction and activation of transcription (Zhong, et al., 1994). STAT3 plays 

an important role in cell differentiation, proliferation, migration, apoptosis, and cell 

survival, depending on the signal, tissue, and cellular context 

STAT1, STAT3, and STAT5, were constitutively complexed with ErbB1 and 

rapidly phosphorylated on tyrosine in response to EGF. The Phosphorylation of 

tyrosine residues on the receptor acts as a docking site for STATs (via their SH2 

domain). This activates STAT by phosphorylation on its tyrosine residue, inducing it 

to dimerise and translocate to the nucleus. EGF ligand activates STAT1 and STAT3 

which either forms homodimers of itself or STAT1-STAT3 heterodimers (Chung, et 

al., 1997). 

2.3 Computational Modeling 

The study of ErbB signaling pathway over the years have employed a combination of 

experimentation and computational modeling strategies. Being a constantly 

improving and evolving pathway, models help to suggest interesting new hypotheses 
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and explanations for the observed data (Orton, et al., 2008). Computational tools 

utilized to model biological phenomena can be categorized, broadly, as continuum or 

discrete. Whereas the former describe the numerical changes of the variables that 

represent the system, the latter can indicate how and why the dynamics involving 

system components operate. Continuum approaches employ classical differential 

equation-based models that may have numerical or approximate solutions. However, 

mathematical equations representing either a collection of cells or organisms or their 

(micro) environment, do not lend themselves as the most precise form of ontologies 

for biological systems. Their shortcoming is even more pronounced when simulating 

emergent behaviour that arises through "self-organization" which cannot be 

characterized "a priori". 

During the past two decades, most computational models have been focusing 

on ErbB binding, internalization, dimerization and degradation. Kholodenko, et al. 

(1999) model served as the starting point for combining both experimental kinetic 

analysis and computational models of EGFR signaling. Kinetic models based on ODE 

predict time dependent profiles and steady state levels of species in a biological 

system where experimental data is not available (Hasdemir, et al., 2015). All species 

are uniformly distributed throughout the cell and are defined by differential 

equations whose solutions determine the concentration of the species as a function 

of time. 

Mathematical models of varying degrees of complexity have been constructed 

to describe ErbB phosphorylation, trafficking and downstream signaling. Rate 

parameters for these models are usually set based on the literature for related 

systems, or are obtained by fitting to a limited set of experimental data. A critical 

criterion for model development is the chosen level of complexity: the model should 

capture the fundamental biophysical/biochemical reactions in the system, and 

should be detailed enough to address the mechanisms. At the same time, the 

availability of model parameters, and the ability to identify parameters from the 

available experimental data should be taken into account. Models that are too simple 

may be devoid of the necessary details for addressing relevant questions, while too 

complex models may incorporate many unknown parameters. Ideally, model scope 

and complexity should be addressed by integrating model construction and 
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experimental design at the outset, and refined through a systematic experiment-

modeling iteration cycle. 

Several groups, developed ordinary differential equation (ODE) models which 

focused primarily on dynamics of receptor activation and trafficking (Hendriks, et al., 

2003; Shankaran, et al., 2008) and on understanding the transmission of signals to 

the downstream elements of the pathway (Birtwistle, et al., 2007; Chen, et al., 2009; 

Schoeberl, et al., 2002). Chen, et al. (2009)modelled one of the largest differential 

equation model to analyze immediate-early signaling involving ErbB1–4 receptors 

(EGFR, HER2/Neu2, ErbB3 and ErbB4), and the MAPK and PI3K/Akt cascades. These 

models consist of rate equations, describing how signaling molecules change as a 

function of each other and rate constants that are calibrated to the experimental data 

(Janes and Lauffenburger, 2013). Shankaran, et al. (2013)established a quantitative 

link between receptor expression level and downstream signalling by constructing 

an integrated mathematical model of HER activation and trafficking.  

 Complementary to mathematical models are the stochastic ABMs and the 

Gillespie algorithm (Gillespie, 1977; Hsieh, et al., 2010; Resat, et al., 2003). ABMs 

predict emergent phenomena that may reveal patterns which are not obtained by the 

aggregate stochasticity of Gillespie simulations. Agents have the advantage of 

modeling interactive behaviour and retain memory of past events (Figueredo, et al., 

2014). Integrating experiments with model-based analysis have helped to 

understand these complex cellular systems(Wiley, et al., 2003).  

Creamer, et al. (2012) modeled the ErbB signaling pathway by giving 

importance to its site specific molecular interactions. The novelty of their study lay 

the use of rule based methodology to understand lower scale systems. Rule-based 

modeling of biochemical systems involves, representation of molecules as objects 

and molecular interactions as rules. BioNetGen is an open-source software for 

specification and simulation of rule-based models (Faeder, et al., 2009). The model 

specification is done in BioNetGen language (BNGL). The network generation engine 

generates the reaction network, by iteratively applying rules to an initial set of 

species. The model can then be simulated in BioNetGen by ODE solvers or by 

Gillespie's Stochastic Simulation Algorithm (SSA). The particle-based, Network-Free 

Stochastic Simulator (NF-Sim), attempts to overcome the combinatorial challenge 
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posed by multiple molecular states and their myriad interactions (Sneddon, et al., 

2011) by coarse-graining of reaction mechanisms. BioNetGen has the capability to 

model signal transduction systems (Blinov, et al., 2004). NFSim has been used to 

simulate a large model for ErbB receptor signaling, incorporating site-specific details 

of protein interactions (Creamer, et al., 2012).  

The number of components and their interactions yields a large number of 

distinct combinations which lead to combinatorial complexities (Blinov, et al., 2004). 

In a hybrid particle/population approach, the problem of combinatorial complexity is 

dealt with, by treating rare, complex species as particles and plentiful species as 

population variables. Hogg, et al. (2014) introduced rule based models that uses 

hybrid particle/population approaches to model biological systems. Though 

simulators like NFSim use both rule based and agent based Monte Carlo simulations, 

they obtain predefined parameters and rate constants from the input file. A partial 

network expansion is implemented in BioNetGen and the hybrid model is simulated 

using NFsim. Walker, et al. (2008) designed an ODE model of EGFR-MAPK signaling 

at cellular level and scaled it up to a multi-agent rule-based model considering each 

cell as an agent. The Table 2.1 shows various models for ErbB signaling.  

Table 2.1 Models for ErbB signalling 

NAME YEAR DESCRIPTION 

Boris 
N.Kholodenko 

1999 Kinetic model of short term response of cell to EGF ligand 

Haluk Resat 2003 Probability weighted dynamic Monte Carlo simulation of 
trafficking and signalling pathway 

Birgit 
Schoeberl 

2002 ODE based mathematical model for MAPK activated surface 
and internalised EGF receptor 

Salim Khan 2003 Java-based multi-agent toolkit DECAF to simulate EGF 
pathway 

B. S. Hendrik 2006 ODE based model for ErbB1-3 dimerization, trafficking and 
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activation 

M.R. Birtwistle 2007 ODE based model relating EGF and HRG stimulation on 
receptor stimulation and Erk and Akt activation 

Zhihui Wang 2007 Multi-scale ODE based model to study expansion dynamics 
EGF-ERK signal transduction 

M.Y. Hsieh 2008 SPS platform-Agent–based stochastic approach to study 
receptor density and spatial organisation 

D. C. Walker 2008 Multiscale ODE model of EGFR-ligand activation of MAPK 
coupled with agent-based representation of individual 
cells. 

William W. 
Chen 

2009 ODE based model of immediate early signalling of ErbB1-4 
analyzing parameter sensitivity, uncertainty and 
exploration factors controlling input-output parameter.  

Samaga R. 2009 Large –scale logical model of signalling through 4 ErbB 
receptors including the Erk, JNK, p38 MAPK cascade, Akt 
signalling ,STAT’s and PLCɣ pathway. 

Matthew S 
Creamer 

2012 Rule-based modeling ERBB receptor signalling for site-
specific details of protein-protein interactions 

Harish 
Shankaran 

2013 Mathematical model of HER activation, trafficking, and 
phosphorylation 

Toma´ sˇ 
Helikar 

2013 Multiscale dynamical model of ErbB receptor signal 
transduction 

Shannon E. 
Telesco 

2013 Molecular and network model of ErbB4 activation and 
signalling 

Justin S. Hogg 2014 Exact hybrid particle/population simulation of rule –based 
model from ligand binding to nuclear ERK activity 
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2.4 ErbB network and cancer 

Loss of regulation of the ErbB receptors underlies many human diseases, most 

notably cancer (Wieduwilt and Moasser, 2008). EGFR overexpression plays a key 

role in pathogenesis of many types of cancers. Amplification and overexpression of 

ErbB2 is a leading cause for most of the breast and gastric cancers. HER3 is 

frequently co-expressed with other receptors promoting tumor initiation and 

progression through PI3K/Akt signalling, aiding in development of breast, castration 

resistant prostate cancer, platinum resistant/refractory ovarian cancer and EGFR 

tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC)(Ma, et 

al., 2014). The deregulation of HER4 has shown anti-carcinogenic roles in certain 

tumors unlike the other HER receptors which are associated with several cancers. 

Overexpression of HER4 has led to increased survival of cancer (Shankaran, et al., 

2013). HER4 may be only member in the ErbB family to play anticancer role in 

certain tumor context.  

Generally, cancers are treated with a combination of surgery, radiation 

therapy and/or drug treatment. The mechanism of action of ErbB receptors depends 

heavily on their interaction with the ligands and their dimerization partners. 

Understanding the function and complex regulation of these receptors fuelled the 

development of targeted therapies for human cancer. Monoclonal antibodies (mAbs) 

are capable of interfering with ligand activation and in disabling heterodimeric 

kinase complexes by binding to the extracellular domain regions of the receptors 

(Wieduwilt and Moasser, 2008). The first mAb to enter clinical use was the ErbB2-

targeting mAb Trastuzumab (Herceptin) by binding to the domain IV, followed by 

Pertuzumab which interferes with dimerization domain II region of the ErbB2 

receptor. Cetuximab (Erbitux) and panitumumab (Vectibix) are other antibodies 

which target EGFR receptor. Inhibition of the kinase domains to block the activation 

downstream signaling of ErbB receptors opened doors to another class of targeted 

therapies, tyrosine kinase inhibitors (TKIs). Gefitinib (Iressa), erlotinib (Tarceva), 

and lapatinib (Tykerb) bind within the kinase domain of ErbB receptors, with 

gefitinib and erlotinib most active against EGFR and lapatinib equally active against 

EGFR and HER2 (Stamos, et al., 2002; Wood, et al., 2004). The impressive response of 

these drugs when used as a single agent are unfortunately balanced by the resistance 
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developed by the cancer cells. Combinations of targeted agents which simultaneously 

inhibit multiple pathways, suppressing feedback reactivation of compensatory 

signaling networks can therefore prevent recurrence from resistance in cancer cells 

(Yan, et al., 2011). Combination studies on Trastuzumab and Pertuzumab with 

Docetaxel has shown significant antitumor effect in an HER2-positive metastatic 

breast cancer compared to each antibody when used as an individual agent (Baselga, 

et al., 2012; Harbeck, et al., 2013; Swain, et al., 2015). Understanding the lethal 

mechanisms within drug combinations, the use of intermittent dosing, immuno-

therapy without increasing toxicity and adaptive trial designs can greatly accelerate 

the development of more effective therapy combinations to improve patient care (Al-

Lazikani, et al., 2012; Lopez and Banerji, 2017). 

2.5 Summary 

The biology of ErbB signaling and efforts at reverse engineering the pathway have 

been reviewed. As the reductionist approach has well reached its limit, “emergence" 

paradigm which complements "reduction", needs to be explored. Can the bottom-up 

approach inherit the legacy of reverse engineering? This is the subject of the 

forthcoming chapters. 
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Re-engineering ErbB signaling using Agent-based modeling 
 

Re-engineering is closely related to reverse engineering and often used 

interchangeably.   While both refer to the further investigation or engineering of 

products and systems, the methods of doing so, and the desired outcomes, are vastly 

different. Reverse engineering attempts to discover how something works, while re-

engineering seeks to improve a current design by investigating particular aspects of 

it. In the computational architecture proposed here, re-engineering begins from the 

point where reverse engineering exits. Re-engineering with ABMs, banking on the 

results of reverse engineering is the main contribution of this work.  

Sections 3.1 and 3.2 explain re-engineering in general and its ABM 

implementation. The characteristics and applications of ABM are discussed in 

Sections 3.3 and 3.4. The large number of software tools available for quick design 

and development of ABMs are listed. 

3.1 Re-engineering products, processes and systems 

Re-engineering refers to redesigning or restructuring by exploiting the existing 

information available. Business analysts have, for several years, preached about the 

concept of  ‘re-engineering’ or, ‘business process re-engineering’ leaving its mark on 

the pharmaceutical industry, especially in the  area of research and development 

(Scypinski, et al., 1996). Re-engineering has also been leveraging the design and 

business processes of manufacturing companies (Kusiak, et al., 1994; Strandhagen 

and Skarlo, 1995) and robotics (Kim, et al., 2005). 

Complexities in drugs targeting diseases such as cancer and autoimmune 

disorders, global warming, food shortages have shifted the thinking to the field of 

synthetic biology opening limitless potential to redesign biological systems (Way, et 

al., 2014). Koide, et al. (2009) focusses on converging the two disciplines, systems 

biology and synthetic biology for rational biological systems re-engineering. By 

rewiring regulatory circuits to couple new enzymes, sensors and transporters, a cell 
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can be re-engineered to possess control, robustness, reliability and predictability 

over natural organisms. 

The emergence of systems re-engineering will bring a dramatic shift in the 

way one understands and responsibly uses biology, be it on individual cells, 

communities, ecologies or infectious diseases (Koide, et al., 2009). Here, the 

knowledge gained from reverse engineering is used to re-engineer a similar system 

or its variants using an Agent Based Model (ABM) offering opportunities to answer 

fundamentally new biological questions. 

3.2  Re-engineering with Agent-based modeling 

The history of ABMS has been a rich one for at least 40 years. Traditional 

mathematical approaches assume systems to be population-based, relating 

observables to each other via equations that may either be algebraic, or capture 

variability temporally (ODE) or spatiotemporally (PDE). Even though they are 

accurate while simulating, they fail to provide detailed solutions when applied on a 

heterogeneous system. Agent-based modeling is a class of algorithmic computational 

approaches that recognises the heterogeneity condition and being inherently 

hierarchical, are quite amenable to coupling with other computational paradigms. 

The agent-based paradigms can model multi-scale complexities and trace the 

emergent characteristics of the system (Kaul and Ventikos, 2015). 

3.2.1 Structure of Agent Based Model 

Before construction of an agent model, it is necessary to define the building blocks or 

primitives of the model and how they operate to simulate the system. A typical ABM 

has three elements (Figure 3.1): 

1. Agents: A set of entities comprising the system, their attributes and goals. 

2. Relationships: A set of rules that define agent behaviour for achievement of 

goals. 

3. Environment: Agents dynamically interact with their environment and with 

other agents. 
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Figure 3.1 Structure of an agent 

3.2.1.1 Agents 

Agents are autonomous entities that interact with other agents and its environment. 

Autonomy refers to the agent behaviour and actions without any direct external 

control. Agents, though a discrete, diverse and heterogeneous entity, share an ability 

to adapt and modify their behaviour based on their environment (Politopoulos, 

2007). 

An agent is defined by its attributes which distinguishes it from other agents. 

Attributes can either be static or dynamic. Static refers to attributes which are not 

changeable, whereas dynamic attributes are changeable. 

The following are the essential characteristics of an Agent (Macal and North, 

2010): 

• Self-contained: Agents are modular having attributes which helps to distinguish 

them from other fellow agents. 
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• Autonomous: Agents can function independently by interacting with other agents 

and its environment. An agent has behaviours, a set of rules that can relate 

information to agents decision and action. 

• State: An agent has a state which consist of a set of attributes that are associated 

with its current situation. The behaviour of an agent is conditioned on its state. 

The state varies over time. In an agent-based simulation, the state at any time 

plays a pivotal role in providing the information needed to move the system 

forward. 

• Social: Agents can have dynamic interaction with other agents based on a protocol 

which influence its behaviour. 

• Adaptive: An agent can learn and adapt by modifying its behaviour based on 

accumulated experiences. 

• Goal directed: Agents in the system are goal directed and capable of evolving by 

interacting repetitively, allowing unanticipated behaviours to emerge. Goals 

allows an agent to compare the outcome of its behaviours relative to its goals and 

adjust its responses for its future behaviour. 

• Heterogeneous: Agent simulations often consider full range of agent diversity 

across the population. Agent characteristics and behaviours vary further 

differentiating the agents. 

• Flexible: ABM can be considered more flexible by including new agents or 

attributes into the system. 

• Stochastic: Most of the biological systems behave randomly. ABM enables to 

simulate the system similar to a biological system as each agent decides on its own 

fate. 

3.2.1.2 Relationships 

Agents interact with other agents termed neighbours, just as in real world systems. 

How agents are connected to one another is termed as the ABM topology. The typical 

topologies can be classified as spatial grid, network of nodes, links and mixed models. 

Originally, spatial ABMs were implemented in the form of cellular automata (CA) 
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where each agent interacts in a grid or lattice environment. Agents roam in two, 

three or higher dimensional spaces in the Euclidean space model. Network topology 

allows an agent’s neighbourhood to be defined more generally with pre-specified 

static networks or dynamic networks that change according to the programs. In the 

geographic information system (GIS) topology, agents move from patch to patch over 

a realistic geo-spatial landscape. Locations are not important in an aspatial or “soup” 

model. Many ABMs also include agents interacting in multiple topologies. In rule-

based models, agents interact based on the set of rules they are provided with.  

3.2.1.3 Environment 

An environment provides information on the spatial location of an agent relative to 

other agents. It can be included as a dynamic attribute which can track the 

movements of an agent. Compartmental models define agents as present in various 

compartments or moving across these compartments. The environment can also 

constrain agent actions (Macal and North, 2010). 

3.2.2 How ABMs work 

Agent-based modeling is one amongst the most powerful spatio-temporal simulation 

techniques; where the system modelled comprises of autonomous decision-making 

entities called agents. Agents interact with their fellow agents and environment 

based on a certain set of rules (Bonabeau, 2002). Based on these set of rules, the 

individual behaviour of the agents with one another and their shared environment 

are formalised by the model (Perez-Rodriguez, et al., 2015). Behaviours affect the 

agent’s own actions, the actions of other agents and the environment. Rules which 

govern these behaviours are constructed by the investigator consistent with either 

theory or observed data of the system they represent (Griffin, 2006). 

 Figure 3.2 summarizes the concepts involved in the working of a typical ABM. 

ABMs are not inductive models that start with a set of data and make inferences with 

respect to the mechanisms that might lead to that data. Rather, they start with a set 

of rules that seek to reconstruct the observed pattern of data (An, et al., 2009). By 

modeling systems as individual agents, the full effect of heterogeneity that exists 

among agents in their attributes and behaviours can be observed. Interactions among 

these agents give rise to the behaviour of the system as a whole. Patterns, structures, 
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and behaviours emerge by self-organization of systems ‘ground up’—agent by-agent 

and interaction-by-interaction (Macal and North, 2010). The two distinguishing 

features of agent-based simulation as compared to other simulation techniques such 

as discrete event simulation and system dynamics is its emphasis on heterogeneity of 

agents across a population and the emergence of self-organization. Therefore, 

modeling has the potential to replicate cellular systems at its minimum components 

and thus understanding the linkage from molecular level events to the emerging 

behaviour of the system (Perez-Rodriguez, et al., 2015) 

 

Figure 3.2 Working of a typical ABM 

3.3 Characteristics of an ABM  

The ABM offers an alternative to traditional equation-based modeling with ordinary 

or partial differential equations, Discrete event simulation (DES), Monte Carlo 

simulation, system dynamics, continuous simulation and combined DES/continuous 

simulation (Macal and North, 2010).  
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In traditional simulation methods (e.g., equation-based models), the 

investigator constructs equations whose outcomes vary, based on the variable 

parameters embedded in the formulae. DES (such Petri Nets or Neural Networks) 

lays emphasis on models that focus on process or activity as the fundamental 

simulation element. Individual variability cannot be handled easily in these models. 

Markov models assume that the probability distribution of future states depends 

only on the present state and, thus, these models have significant limitations when 

risk factors and outcomes of the system exhibit complex properties (Li, et al., 2016). 

‘Top-down’ view is often taken in System Dynamics modeling in which a system is 

broken down into its constituent level components. On the contrary, ABM systems 

are built ‘bottom-up’ and system properties emerge from individual autonomous 

entities (agents) and their interactions. 

The agent actions and interactions in ABMs are driven by rules. However, 

ABM differs from other rule-based systems in the following ways (An, et al., 2009): 

 

• ABM incorporates space: Allows spatial representation of the structural 

relationships within a system thus supporting to model agents with “bounded 

knowledge”. As a result, it is easier for non-mathematicians to model fairly 

complex topologies. 

• Parallelism: Heterogeneous behaviour of an individual agent within a population 

of agents that interact in parallel processing environment results in aggregated 

system dynamics. This can lead to sophisticated level of system behaviour. 

• Stochasticity: Behaviour of a single agent depends on the probability function 

which is incorporated into the agent’s rules. This enables in producing system 

behavioural spaces consistent with population-level biological observation. 

• Modularity: New information can be added to a system either through 

introduction of new agent-types or by the modification of the existing agent rules 

without having to re-engineer the entire simulation. 
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• Emergence: ABM generates system dynamics that could not have been reasonably 

inferred from examination of the rules of the agents alone. 

• Incomplete knowledge: ABMs can be constructed even in the absence of complete 

knowledge, keeping the rules as simple and verifiable as possible, even at the 

expense of some detail. 

Biological systems include multiple levels of organization (gene → 

protein/enzyme → cell → tissue → organ → organism) with specialized research 

domains having evolved with focus on the processes at each level (An, et al., 2009). 

ABM reaches out to reproducing the multi-scales realistically by integrating the 

mechanistic information generated at one level with concurrent parallel processes to 

produce recognizable phenomenological behaviours of the greater system as a 

whole. An approach proposed to represent multiple scales is to view sequential 

levels from an anatomic standpoint like the Basic Immune Simulator (BIS). BIS is an 

agent-based model created to study the interactions between the cells of the innate 

and adaptive immune system (Folcik, et al., 2007). 

In addition, ABMs can incorporate phenomena occurring at different 

timescales. Population-level ordinary or partial differential equations can be used to 

represent soluble factors or small-scale molecules, and these can be solved on a per-

agent basis within an ABM. Modeling these small-scale factors through population 

approaches instead of explicit agents can save considerable computational power. 

Furthermore, such multiscale modeling reduces the computational expense incurred 

if the highest resolution timescale were to be used for each phenomenon (Cosgrove, 

et al., 2015). 

3.4 Applications 

Agent-based modeling  applications span a broad range of areas and disciplines 

spanning physical, biological, social and management sciences. The broad range of 

applications  in ABM have been made possible by advances in the development of 

specialized agent-based modeling software, the availability of data at increasing 

levels of granularity, and advancements in computer performance.  
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Sugarscape model by Epstein and Axtell (1996) consists of agents that wander 

around in harvesting the greatest amount of sugar they can find. The environment 

where the agents are present is represented by a two-dimensional grid which 

contains sugar in some of its cells, hence the name Sugarscape. 

An ABM model based on simple rules could successfully reproduce the 

behaviour of a real biological system. In biological sciences, agent-based modeling is 

used to model cell behaviour and interaction, the workings of the immune system, 

tissue growth, and disease processes. Walker, et al. (2004) developed The 

“Epitheliome”, is probably one of the earliest applications, representing a rule-based 

model for growth and repair characteristics of epithelial tissue. Here, each cell acts as 

an agent and executes a set of rules according to its differentiation state, position in 

the cell cycle, and the immediate environment. 

Applications that relate to cancer development are spatio-temporal 3D 

computational models of tumor growth dynamics; where each agent is a tumor cell 

and its environment being EGFR gene-protein interaction network and cell cycle 

subsystem (Zhang, et al., 2008). Wang, et al. (2013) proposed a 3D multi-scale agent-

based cancer model by integrating a novel angiogenesis module into a melanoma 

tumor growth module. ABMs that incorporate different conditions that give rise to 

cancer stem cells, helps physicians to predict optimal dosage and frequency of 

chemotherapy that will be effective (Wang, et al., 2015). 

 BSim, a customisable ABM tool has been employed for building and 

characterizing bacterial populations (Gorochowski, et al., 2012) and their chemotaxis 

processes (Emonet, et al., 2005). Agent-based modeling applications are much more 

common in the study of infectious diseases as they have a clear path of disease 

transmission characterized by nonlinear, stochastic, and dynamic interactions 

between human beings and the environment.  

(Lee, et al., 2010) developed an ABM using C++ for the Washington DC 

metropolitan region to design vaccination allocation strategies of the H1N1 influenza. 

Perez and Dragicevic (2009) proposed a model which realistically represents 

spatiotemporal spread of a communicable disease in an urban environment by 

integrating geographic information systems (GIS).  
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Agent based approaches have helped to predict the prevention and treatment 

of chronic disorders such as diabetics, cardiovascular diseases and obesity to 

improve population health management and medical decision-making (Li, et al., 

2016). Immune Simulator is built on a general agent based framework to model the 

interactions between the cells of the innate and adaptive immune system (Folcik, et 

al., 2007).  

ABM ideally provides valuable insights into the mechanisms for crowd 

behaviour; panic and jamming during a crisis like a fire or stampede. This suggests 

practical ways for minimizing the causalities of such events and the existence of an 

optimal escape strategy. TRANSIMS, ResortScape and SIMSTORE are ABM software 

packages for Traffic simulation, customer behaviour in a theme market and 

supermarket respectively. ABMS also offers a promising area for markets and 

economy by constructing real-world systems, for example shopbots; automated 

internet agents that compare price and quality of goods and services based on the 

interest of the buyer. NASDAQ simulates impact of regulations on financial markets 

under various conditions (Bonabeau, 2002).  

(Troisi, et al., 2005) applied agent-based simulation to model molecular self-

assembly which shows its applications in the field of physical sciences. Such agent-

based modeling approaches have found use in investigating pattern formation in the 

self-assembly of nano-materials, in explaining self-organized patterns formed in 

granular materials. 

Issues 

• Simulating the behaviour of agents can be computation intensive and time 

consuming when it comes to modeling large systems (Bonabeau, 2002). 

• The development of ABM generally requires a large amount of individual-level 

data for parameterization, calibration, and validation; such data are sometimes 

not always available to researchers (Li, et al., 2016). 

• It is sometimes extremely difficult to systematically analyze how each part ABM 

simulation affects the output or behavior of the ABM. 

• There is a high computational cost associated with running ABM as each discrete 

event is carried out iteratively and as the agent attribute demands large memory 
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space. This bottleneck can be solved by implementing high performance 

supercomputers and other distributed computing platforms such as using 

Graphical Processing Units (GPUs) that can significantly reduce simulation run 

times by parallelising the algorithms. 

• Applications of ABM in a social, economic and political background involve issues 

as they most often involve human agents, with potentially irrational behaviour, 

subjective choices, and complex psychology (Bonabeau, 2002). 

3.5  Software Tools for ABM 

A number of different platforms have been developed, in order to assist in the 

development of ABM. They mainly vary in how much support they provide. Among 

the most popular ABM toolkits are listed (Berryman and Angus, 2010; North, et al., 

2013): 

Most of the prior agent-based models were developed using the Swarm 

(http://www.swarm.org/index.php/Swarmmainpage) modeling software designed 

by Langton and others to model ALife (Macal and North, 2010). Swarm is a free and 

open source toolkit with both Objective-C and Java bindings. 

Mason (http://cs.gmu.edu/∼eclab/projects/mason/) is a Java based, open 

source, ABM framework that serves as basis for a wide range of multi-agent 

simulation tasks ranging from swarm robotics to machine learning to social 

complexity environments (Luke, et al., 2005; Perez-Rodriguez, et al., 2015). Swarm 

and Mason, offer a set of software libraries that helps to program an ABM model. 

RePast3(RecursivePorusAgentSimulationToolkit)(http://repast.sourceforge.n

et/)is a family of three free and open source agent-based modeling libraries (North, 

et al., 2013). The three libraries are Java-based Repast J, C#-based Repast .NET, and 

NQP (Not Quite Python)-based Repast Py. They offers tools for quick construction of 

agent-based models. 

NetLogo (http://ccl.northwestern.edu/netlogo/) is a free and open source 

agent-based simulation environment that uses a modified version of the Logo 

programming language. They provide a set of libraries and has a graphical tool for 

quickly constructing interfaces for ABM.  

http://www.swarm.org/index.php/Swarmmainpage
http://repast.sourceforge.net/
http://repast.sourceforge.net/
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StarLogo (http://education.mit.edu/starlogo/) is a free, open source library 

and environment that uses a Java interpreter and interface.  

SPARK (Simple Platform for Agent-based Representation of Knowledge) 

developed by University of Pittsburgh is specifically designed as a biomedical ABM 

toolkit. 

Most ABMs tools available are blackbox packages, as they provide fixed set of 

rules and are often too restricted to capture the wide range of phenomena that one 

might want to model (Berryman and Angus, 2010). 

ABM is increasingly popular in biology due to its ability to represent multiple 

scales of system decomposition, intertwine complicated behaviours, and its spatial-

temporal implementation. ABM has the potential to replicate cellular systems at its 

minimum components and to understand the linkage of the molecular events that 

lead to an emergent behaviour of the system. The spatial nature of ABM emphasizes 

on the behaviours driven by local interactions that match closely with the 

mechanisms of stimulus and response observed (Perez-Rodriguez, et al., 2015). 

Modeling ErbB networks involve agents at micro-scale, where agents are bio-

molecules inside the cell. The spatial-temporal agent interactions refer to 

biochemical reactions that occur within the cell. 

3.6 Summary 

The characteristics and working of an ABM have been explained. The applications 

and software tools available to build ABMs have been reviewed. The code for the 

models developed here, are independent programs which gives the freedom to 

design algorithms and modify them in future. 

  

http://education.mit.edu/starlogo/
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The Modeling Architecture 
 

Life Sciences has turned into a data intensive science with advancement in 

sophisticated experimental technologies coupled with increasing capabilities of 

computing hardware and software. Reverse engineering has worked very well at this 

data-rich first level. At the second level, this data has to be integrated by re-

engineering into a working model. The modeling architecture developed here is more 

of a paradigm than a methodology, for analytics of the biological big data generated 

by sophisticated instrumentation and computational power. 

Section 4.1 introduces the working principle of the Pipeline Architecture. 

Section 4.2 illustrates the algorithmic details agent-based re-engineering model 

which forms the latter part of the pipeline. As a proof-of-concept, an implementation 

has been carried out on HER1-HER2 receptor activation and trafficking dynamics 

(Section 4.3). The results of the in silico experiments are shown in Section 4.4, 

followed by the summary of the chapter. 

4.1 The Pipeline Architecture 

The two main concepts that define the pipeline architecture are reverse engineering 

and re-engineering. While reverse engineering, an engineer works backwards from a 

product, disassembling it, in order to understand the processes involved in making it. 

It is generally used to get the know-how and copy a competitor’s product. With the 

knowledge thus gained, one can, not only re-engineer the product, but can also make 

alterations and adaptations or even design new products. In systems biology 

parlance, this translates to reverse engineering by a model-based analysis of the 

system which generates molecular level data on the biochemical reactions. This data 
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can be pipelined to create the system in silico with an ABM which can be used to 

study new scenarios and test hypotheses under different cellular conditions. 

Two modeling formalisms have been used in sequence to create an 

implementation of the pipeline architecture. It begins with reverse engineering a 

biological system using mathematical modeling. The parameters estimated by the 

mathematical model, along with the factual knowledge available, are used to re-

engineer the system by the bottom-up approach of agent-based modeling. 

Information and process flow through the pipeline architecture is shown in Figure 

4.1. 
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Figure 4.1 Information and process flow through the modeling pipeline 

Integration of experimental measurements with computational predictions is 

a proven way to arrive at the mechanistic details of the system. The reverse 

engineering step estimates the rate constant parameters of the biochemical 

reactions, by fitting a kinetic model to the experimental data. These parameters, 
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together with the established knowledge about the pathway, have been encapsulated 

into a set of if-then rules for the ABM.  

 The ABM is a spatio-temporal simulation of the experiment where the system 

is represented as a set of agents (biomolecules), whose actions and interactions 

result in the occurrence of various cellular events. The data from reverse 

engineering, namely, the rate parameters are the primary source of input piped to 

the agent-based re-engineering model. The agent modeling formalism draws upon 

this information to drive the local behavior of the biomolecular entities of the system. 

The decision-making rules capture the course of events that occur during the 

experiment.  

The agent model for re-engineering was developed on a user-friendly 

framework that provides a template for defining molecular species (agents) and 

user-defined functions to implement the decision-making logic. The C++ code runs on 

both Windows (VC.NET) and Linux with R interface for visualization. 

4.2 The Agent-based re-engineering model 

An ABM contains three main components: 1) agents; 2) the environment or the 

spatial domain within which the agents exist; 3) a rule-set governing relationships 

and means of interaction between agents and their environment. The system 

behavior emerges from the collective interactions of these components over time. A 

summary of the terminology relating to ABM are illustrated in Appendix I. 

4.2.1 Creating the agent world 

4.2.1.1 Agents 

The system is represented as autonomous, interacting molecular agents, residing in 

cellular compartments. These agents interact with their fellow agents and 

environment based on the rules provided by the investigator. Each agent is defined 

by a set of attributes which include unique id generated for the agent, name of the 

agent, location, check variable etc. It is then possible to create many agents of the 

same type, each with different values for its attributes, thus producing a population 

of individual agents. The agents, characterized by their attributes are stored in a 
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vector. It is assumed that, in one time step, a maximum of only one event can occur to 

an agent that can lead to a state change.  

4.2.1.2 Compartments 

The agents are positioned in compartments, which are determined by the agent 

attribute–location. The agents are allowed to freely interact within a compartment 

and to also move from one compartment to the other based on their behavior. As the 

agent leaves the confines of one compartment, their location is set to the new 

compartment. 

4.2.1.3 Rules: Decision makers 

The rules are obtained from literature, experimental and computational knowledge. 

Rules fire events so as to maintain the relative number of molecular species. 

The rules are of two types: 

i) Macro Rules which represent the factual knowledge from various 

experimental and modeling studies. These rules are general in nature. 

ii) Micro Rules focus on the fine details. For e.g., where experimental data is 

available, rules can be formulated from the reaction rates. 

The total time over which the biological system is being simulated is divided 

into discrete time-steps. At each time-step, an agent must determine how to respond 

to factors in its environment, using its associated rule-set and current state. 

 

4.2.2 The Algorithm 

Input: NTotal agents, Rules, Ttime, t time step=1 unit 

Output: Mechanistic insights, Estimated rate values, Quantitative estimations 

 

Main Algorithm 

Initialization of Agents in compartments; t=0 

for each t until T do 

for each Agent until N do 

Find location, type, and state of Agent  

Call Decision Engine () 

end for 
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Re-calculate reaction rates based on Agent species concentration 

Calculate quantitative estimates 

Increment t 

end for 

 

Decision Engine () 

find the rule subset applicable to the agent 

apply all rules in the subset 

if all rate rules favour an event then 

event occurs, update agent state  

// events such as Binding, Dimerization, Internalization, Dissociation and 

Degradation 

else if there is a conflict condition then 

randomly choose one event  

 event occurs, update agent state 

else 

 no event or state change occurs 

end if 

 

An algorithm is developed for a time course that agrees with the experiment. 

For each time step, an agent is selected randomly. The selected agents are free to 

interact within a compartment. The decision engine drives the simulation by 

selecting the rules applicable to an agent and deciding which rule to apply so that the 

rate rules are satisfied. If the rules favor a particular event, an agent is made to 

update its state. On conflict conditions, an event is chosen randomly. Reaction rates 

are calculated from actual quantities of species undergoing a state change during the 

simulation. Average rates are calculated at the end of each time step and local rates 

are updated within each time step. 

The agents, characterized by their attributes are stored in a vector data 

structure. An agent of type ‘a’ has n agents (a1, a2,….an). A Virtual Agent Vector stores 

the new state of the agents and the original vector gets updated at the end of each 

timestep (Figure 4.2). It is assumed that, in one time step, a maximum of only one 

event can occur to an agent that can lead to a state change. An action on one agent 

may trigger an event on another, leading to a state change for both, e.g. if agent A 

dimerizes with agent B, then dimer AB is formed. Therefore, asynchronous updation 

is required, which is achieved by a flag that is set for both agents A and B, so that, B is 

not examined further during that time step. 
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 During a time step, all agents interact with each other in parallel, but in a 

computational implementation the agents can be drawn from the agent vector in 

sequential order only. The order in which agents are processed can introduce bias. A 

randomized schedule is implemented so that one agent does not get priority over 

another.   

 

Figure 4.2 ABM Implementation Data Structure 
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4.3 Implementation:  HER1-HER2 receptor activation and trafficking 

To demonstrate the pipeline architecture, we focus on signal transduction, in 

particular, the ErbB signaling pathway. This pathway is one of the most characterized 

networks with its success largely accredited to the fact that there was prolific activity 

in both experiments and computational models. The major reason for this being the 

fact that over-expression of EGFR and HER2 receptors of the ErbB family, have been 

attributed to the development of many types of human cancers making it an 

attractive molecular target for therapeutic interventions (Ahmad, et al., 2011; Yarden 

and Sliwkowski, 2001).  

4.3.1 Reverse Engineering with cell line experiments 

A mathematical model developed by Shankaran et al. (2008) for activation and 

trafficking of ErbB receptors, is considered as the reverse engineered system. The 

model, which will henceforth be referred to as 12Model, predicts receptor (EGFR and 

HER2) activation and trafficking by fitting to experimental data. The independent 

parameters for dimer formation affinities, trafficking rates and relative 

phosphorylation levels were estimated by the 12Model. The experimental system 

considered was that of the HME (Human Mammary Epithelial Cells) parental cell line 

transduced with HER2 gene to clone other cell lines-expressing low (17L), medium 

(24H) and high levels (A11H) of HER2 (Table 4.1). 

Table 4.1 Receptor abundance in cell lines (Courtesy Shankaran et al. (2008)) 

List of cell lines 
Abundance of EGFR and HER2 

(molecules/cell) 

Notation Description EGFR HER2 

Par Parental cell line 2.0×105 3.0×104 

17L Low HER2 expresser 1.8×105 1.1×105 

24H 
Medium HER2 

expresser 
1.6×105 6.0×105 

A11H High HER2 expresser 3.0×105 1.5×106 
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These cells were activated by adding 100 ng/ml EGF to the culture medium 

and incubating for 5 to 120 min. ELISA assays were done to quantify the receptor 

mass and phosphorylation levels. 

The kinetic network model addresses two processes: (i) ligand binding, 

receptor dimer formation and phosphorylation, and (ii) receptor trafficking events: 

internalization and degradation. The system has ten species: receptor monomers 

(R1: EGFR and R2: HER2) which dimerize and phosphorylate to form active homo 

and heterodimers (R11, R12, and R22) present, both at the cell surface (s) and 

internal compartments (i). For example, R1s and R1i are EGFR monomer present on 

surface and the internal compartment respectively. Monomers interact to form active 

dimers with a forward rate kfs and dissociate with a reverse rate krs. Internalized 

dimers dissociate at a rate kri. Monomers interact to form active dimers with a 

forward rate kfs and dissociate with a reverse rate krs. Internalized dimers dissociate 

at a rate kri. Monomers and dimers internalize at a rate kt and ke respectively. VR1 and 

VR2 are the zero order synthesis rates of EGFR and HER2. The following rate 

equations describe how the molecular abundances of the ten modeled species change 

with time in the kinetic model:  

dR1s/dt = −kfsR1s
2 + 2kr11sR11s* − kfsR1sR2s + kr12sR12s* − kt1R1s + VR1 

dR2s/dt = −kfsR2s
2 + 2kr22sR22s* − kfsR1sR2s + kr12sR12s* − kt2R2s + VR2  

dR11s*/dt = ½kfsR1s
2 − kr11sR11s*− ke11R11s*  

dR22s*/dt = ½kfsR2s
2 − kr22sR22s*− ke22R22s*  

dR12s*/dt = kfsR1sR2s − kr12sR12s*− ke12R12s*       

dR1i/dt = 2kr11iR11i* + kr12iR12i*  + kt1R1s – kd1R1i 

dR2i/dt = 2kr22iR22i* + kr12iR12i*  + kt2R2s – kd2R2i  

dR11i*/dt = −kr11iR11i* + ke11R11s* – kd11R11i*  

dR22i*/dt = −kr22iR22i* + ke22R22s* – kd22R22i*  

dR12i*/dt = −kr12iR12i* + ke12R12s* – kd12R12i* 

The symbols with star (*) are used to denote phosphorylated (active) 

molecules. The mathematical model estimates values of 20 unknown parameters for 
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active receptor dimer formation affinities, trafficking rates and relative 

phosphorylation levels using non-linear least square regression to simultaneously fit 

the experimental data collected from the four cell lines.  

4.3.2 Agent-based Re-Engineering 

The output from the experimental and mathematical model of 12Model is the input 

for the Agent-based model. 

4.3.2.1 Initialization 

The model consists of two types of agents:  ligands (EGF) and receptors (ErbB1 and 

ErbB2). The monomer receptors, on ligand binding interact to form various dimers 

as shown in Figure 4.3.  

 

Figure 4.3 Ligand, Monomer and dimer agents. E- EGF, R1-ErbB1 monomer, R1E-EGF bound ErbB1 
monomer,  R2-ErbB2 monomer, R11E-Single EGF bound ErbB1 homodimer, R11EE-Double EGF 
bound ErbB1 homodimer, R12E-Single EGF bound ErbB1–ErbB2 heterodimer, R22-ErbB2 
homodimer. 
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Every simulation is a virtual experiment conducted on a cell line. The number 

and type of agents are initialized to the same value as given in Table 4.1. An agent is 

defined by attributes like (Figure 4.4): 

 

Figure 4.4 Attributes of Receptor and ligand agent 

 

The 3D spatial domain is divided into five compartments: (1) an extracellular 

domain (Outside), (2) plasma membrane (PM), (3) early endosome (EE), (4) late 

endosome (LE) and (5) lysosome. In Figure 4.5, the Outside compartment refers to 

the exterior part of the cell where the ligand is present. The receptors present on the 

PM can be in ligand-bound, monomeric or dimeric forms. On internalization, 

receptors move to the EE compartment from where they are either recycled to PM or 

sent to LE for degradation in the lysosome. In the course of signal activation, 

monomers change to dimers and vice versa. This can result in mobility between 

compartments. The events that bring about these changes are ligand binding, 

dimerization, internalization, recycling, dissociation and degradation. The input 

parameters for the simulation are given in Appendix II. 



46 
 

 

Figure 4.5 Schematic for receptor activation and trafficking 

 

4.3.2.2 Decision Engine 

The dynamics of receptor activation and trafficking are determined by the behavior 

of agents and the interactions between them (Refer flow chart in Appendix III). The 

behavioral rules have been formulated from i) the established facts about the ErbB 

pathway and ii) parameters estimated from reverse engineering. Macro rules are 

derived from the factual knowledge from the experimental and modeling studies. The 

micro rules are derived from the reaction rates given by the mathematical model 

fitted to the experimental data. When agents undergo dimerization, internalization, 

dissociation or degradation, the rates at which they do so, should comply with the 

micro rules. In our case, micro rules are experiment-specific. These rules, together, 

simulate the conditions in an actual experiment. Some typical rules are listed in Table 

4.2.  
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Table 4.2 Macro and micro rules for EGFR, HER2 model. 

Macro Rules Micro Rules 

 

(1) Phosphorylation increases with higher 

receptor expression level. 

 

(2) The peak EGFR phosphorylation levels are 

similar for Parental, 17L, and 24H, whereas 

it is ~4 times greater in A11H. 

 

 

(3) Dissociation on PM is the highest for HER2-

HER2, and the least for HER1-HER1 

 

(4) EGFR monomers are internalized and 

degraded slightly faster than HER2. 

 

 

(5) EGFR homodimers are internalized much 

rapidly compared to EGFR-HER2 

heterodimers and HER2 homo-dimers. 

 

(6) EGFR has comparable phosphorylation 

levels in homodimers and heterodimers. 

 

 

(7) HER2 phosphorylation is significantly 

higher in heterodimers than in its 

homodimers. 

 

(8) Dissociation rates in the internalized 

complexes (EE)  is the highest for HER2-

HER2,followed by HER1-HER2 and the 

least for HER1-HER1 

 

(1) The ratio of ligand dissociation rate in the 

internal compartment (EE) to the surface (PM) 

is in the range 7 to 31. 

(2) The EGFR degradation rate is in the range 

0.008-0.33/min. 

(3) Ratio of pf11/pf12 =1.05, Ratio of pf21/pf22 

=1.05  

(4) HER2 monomer: degradation is faster than its 

internalization. 

(5) EGFR homodimer: 

a. Internalization rate is four times the 

dissociation rate on the PM. 

b. Dissociation on EE is seven times the 

dissociation on the PM. 

(6) HER2 homodimer: 

a. Internalization rate is 12 times faster than 

the HER2 monomer. 

b. Dissociation rate on PM is nearly 80 times 

its internalization rate. 

c. The ratio of dissociation in EE to 

dissociation in the PM is 11. 

d. Degrades at the same rate as HER2 

monomer . 

(7) EGFR-HER2 heterodimer: 

a. Internalizes 8 times faster than HER2 

monomer and 3 times faster than EGFR 

monomer.  

b. Dissociation rate on PM is 10 times its 

internalization rate. 

c. Dissociation on the PM is 4 times faster 

than on EE. 

d. The degradation rate is equal to HER2 

monomer degradation rate. 

 

The rules are framed based on the dependency map (Figure 4.6), e.g. 

internalization of EGFR homodimer (ke11) depends on the internalization of other 

species (ke12, ke22 and kt1) whereas its dissociation in EE (kr11i) depends only on 

its dissociation rate at the surface (kr11s). As the number of rules increases, the map 

becomes complex but, if the dependencies are intuitively defined, the decision engine 

will need to work only on a small set of rules for each species. 
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Figure 4.6 Dependency map of rate constants: kr – dissociation rate, kd – degradation rate, kt – 
internalization rate for monomers, ke-internalization rate for dimers. ‘s’ – surface (PM), ‘i’ –internal 
compartment (EE), 1 – EGFR, 2 – HER2, e.g. kr12i is the heterodimer dissociation rate in EE 

 

Examples for implementation of micro and macro rules for the model are 

given below. 

rules_v[] is the rule vector for rate constants; for e.g., rules_v[3] and rules_v[4] 

are for rule vector EFGR homodimer internalization rate. The following enumerates 

how the rule vectors are used in our model. 

Initial values rules_v[] = 0, it can take the value 1 or -1. 

Set value to 1 if rate rule is satisfied or -1 if it shows a reverse trend. 

Macro Rule 5 implementation: 

Rule (5): EGFR homodimers are internalized much rapidly than EGFR-HER2 

heterodimers and HER2 homodimers. 

if (ke11_avt > ke12_avt) rules_v[3]=1; 

if (ke11_avt <= ke12_avt) rules_v[3]=-1; 
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if (ke11_avt > ke22_avt) rules_v[4]=1; 

if (ke11_avt <= ke22_avt) rules_v[4]=-1; 

ke11_avt, ke22_avt, ke12_avt, and kr11s_avt variables refer to average values of 

EGFR and HER2 internalization and dissociation rate calculated after each time step. 

Micro Rule 5a implementation: 

Rule: (5) a. EGFR homodimer Internalization rate is four times the dissociation rate 

on the PM. 

if (ke11_avt > (4.0*kr11s_avt)) rules_v[9]=1; 

else rules_v[9]=-1; 

The pseudocode for the events of activation and trafficking are given in Appendix IV. 

4.3.2.3 Parameter Estimation 

Reaction rates are calculated from actual quantities of species undergoing a state 

change during the simulation. The rates are calculated at each time step using the 

following calculations: 

Dimerization rate (kf) on PM and EE 

 

kf1s=c_1_11_p/c_1_p 

kf2s=c_2_22_p/c_2_p 

kf12s=c_1_12_p/min_c1_c2_p 

kf21s=c_2_12_p/min_c1_c2_p 

kf1i=c_1_11_e/c_1_e 

kf2i=c_2_22_e/c_2_e 

kf12i=c_1_12_e/min_c1_c2_e 

kf21i=c_2_12_e/min_c1_c2_e 

 

’s’-surface (PM) and ’i’-internal compartment (EE) 

c_1_p, c_2_p – Monomers of ErbB1 and ErbB2 on PM (p) and EE (e). 
c_1_e, c_2_e 
 
min_c1_c2_p – min(EGFR and HER2 monomer) on PM and EE  
min_c1_c2_e 
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c_1_11_p, c_2_22_p – Monomers of ErbB1 and ErbB2 on PM (p) and EE (e) 
c_1_11_e, c_2_22_e  
 
c_1_12_p, c_2_12_p – Monomers of ErbB1 and ErbB2 on PM (p) and EE (e) 
c_1_12_e, c_2_12_e  

 

Dissociation rate (kr) on PM and EE 

 

kr11s=c_11_1_p/c_11_p 

kr22s=c_22_2_p/c_22_p 

kr12s=c_12_1_2_p/c_12_p 

kr11i=c_11_1_e/c_11_e 

kr22i=c_22_2_e/c_22_e 

kr12i=c_12_1_2_e/c_12_e 

 

c_11_1_p, c_22_2_p  – Homodimers dissociated to monomers on PM (p) and EE (e) 
c_11_1_e, c_22_2_e  
 

   c_12_1_2_p –  EGFR-HER2 heterodimers dissociated to EGFR and HER2 
c_12_1_2_e      monomers on PM (p) and EE (e) 
 
 
c_12_p,c_12_e  – EGFR-HER2 heterodimers on PM (p) and EE (e) 

 

c_11_p,c_22_p  – Homodimers on PM (p) and EE (e) 
c_11_e,c_22_e  
 
Internalization rate (kt,ke)  

 

kt1=c_1_int/c_1_p 

kt2=c_2_int/c_2_p 

ke11=c_11_int/c_11_p 

ke12=c_12_int/c_12_p 

ke22=c_22_int/c_22_p 

 

c_1_int,c_2_int –Monomers internalised 

c_11_int,c_22_int –Homodimers internalised 

c_12_int   –EGFR-HER2 heterodimers internalised 
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Degradation rate (kt,ke)  

 

kd1=c_1_deg/c_1_e 

kd2=c_2_deg/c_2_e 

kd11=c_11_deg/c_11_e 

kd12=c_12_deg/c_12_e 

kd22=c_22_deg/c_22_e 

 

c_1_deg, c_2_deg  - Monomers degraded 

c_11_deg, c_22_deg  - Homodimers degraded 

c_12_deg   - EGFR-HER2 heterodimers degraded 

4.4 Simulation Results 

To demonstrate the re-engineering process, the biological experiment is simulated 

using ABM. We investigate, if the knowledge built into the ABM rules can reproduce 

the experimental results. Assumptions made for the cell environment are: 

(1) EGF binding rate and dissociation rates were 0.83/min and 0.12/min 

respectively. 

(2) Average dimerization rate (kfs) was assumed to be 0.2/min for all cell lines. 

(3) At the start of simulation, 52% of EGFR and 55% of HER2 are at the cell 

surface. 

(4) Internalization and degradation rates for monomers (kt1, kt2, kd1, and kd2) 

are initialized to the values obtained from the mathematical model assuming 

that these events occur even before ligand addition. All other parameters are 

estimated by the ABM. 

(5) Agents are recycled during dissociation in EE, internalization, and 

degradation. The recycling fractions were taken from literature (Shankaran, et 

al., 2013). 

(6) Only dimerization and degradation occur after 40 minutes. 

Given the abundance of EGFR and HER2 in the 4 HME cell lines (Table 4.1), 

twenty simulation runs were made for each cell line, and the parameter values were 
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averaged. The simulations were run for 100 min with each time step equal to one 

minute. 

4.4.1 Receptor Activation Patterns 

Receptor mass values and phosphorylation levels were quantified by multiplying 

receptor/dimer abundances with constant factors derived from the measurements in 

the ELISA assays. The total receptor count determined by the ABM model was 

translated to quantities (no units), using the following equations obtained from 

(Shankaran, et al., 2008). 

Total receptor mass of EGFR and HER2 monomers on PM (Plasma Membrane) and 

EE (Early Endosome). 

mR1t=R1t*m1 

mR2t=R2t*m2  

 

Total mass of phosphorylated EGFR and HER2 dimers on PM and EE. 

mRP1t= (R11s+R11i+R12s+R12i)*m1 

mRP2t= (R22s+R22i+R21s+R21i)*m2 

 

Mass of phosphorylated EGFR and HER2 dimers on EE. 

mRP1i= (R11i+R12i)*m1 

mRP2i= (R22i+R12i)*m2 

 

 ‘t’-Total present on PM and EE 

‘i’-Total present on EE (internal compartment). 

R1t, R2t - Total monomer abundance 

R11s, R22s, R11i, R22i - Total number of homodimers on the PM and EE 

R12s, R21s, R12i, R21i - Total number of EGFR- HER2 heterodimers on the PM and 

             EE 

m1 and m2 are the normalization factors used to convert the receptor abundances 

expressed in number of molecules to mass values mR measured in their ELISA 

experiments; m1=0.0000032, m2=0.00000435. 
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pRP1t= (pf11*(R11s+R11i)) + (pf12*(R12s+R12i)) 

pRP2t= (pf22*(R22s+R22i)) + (pf21*(R21s+R21i)) 

pRP1i= (pf11*R11i) + (pf12*R12i) 

pRP2i= (pf22*R22i) + (pf21*R21i) 

 

The total receptor phosphorylation of EGFR and HER2 on PM and EE is referred as 

pRP1t and pRP2t. The phosphorylated receptor levels in EE is given as pRP1i and 

pRP2i. The 4 pf (phosphorylation factors) values are the dimer-specific 

phosphorylation multipliers used to convert abundance of activated receptors to 

extent of phosphorylation measured in their ELISA experiment; pf11=0.00043, 

pf12=0.00041, pf22=0.000051, and pf21=0.00023. 

The percentage phosphorylation contribution of EGFR homodimer and HER2 

homodimer is calculated by homo1_percent and homo2_percent. 

homo1_percent= (100*pf11*R11t)/pRP1t 

homo2_percent= (100*pf22*R22t)/pRP2t 

 

The peak phosphorylation levels are attained at about 5 min after ligand 

addition. The peak EGFR phosphorylation values are similar for Par, 17L and 24H, 

while it is ~3 times higher for A11H (Figure 4.7). The HER2 phosphorylation levels 

also increase with receptor expression levels in the cell lines (Figure 4.8). 
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Figure 4.7 Total receptor phosphorylation levels of EGFR in Par, 17L, 24H and A11H cell lines: 
A- total receptor phosphorylation in the cell obtained from ABM model. B, C, D, E- obtained from 
mathematical model for total receptor phosphorylation in the cell (solid line) and in the internal 
compartments (dotted line) fitted to the experimental data points (circles for total cell and squares for 
internal compartments).Multiple biological replicates are denoted by distinct colors. 
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Figure 4.8 Total receptor phosphorylation level of HER2 in Par, 17L, 24H and A11H cell line: A- 
total receptor phosphorylation in the cell obtained from ABM model. B, C, D - for 17L, 24H and A11H 
obtained from mathematical model for total receptor phosphorylation in the cell (solid line) and in the 
internal compartments (dotted line) fitted to the experimental data points (circles for total cell and 
squares for internal compartments). 
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The error plots were plotted for EGFR and HER2 phosphorylation for the four 

cell lines (Figure 4.9 and 4.10). Error bars indicate the standard deviation over 20 

simulations. 

 

 

Figure 4.9 Total receptor phosphorylation levels of EGFR in Par, 17L, 24H, A11H with error 
bars.  
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Figure 4.10 Total receptor phosphorylation level of HER2 in Par, 17L, 24H, A11H with error 
bars.  

The HER dimerization pattern is difficult to measure experimentally, but this 

is not a limitation in the agent scenario, where absolute quantities of each dimer are 

available throughout the simulation. Figure 4.11A shows that EGFR homodimers 

account for more than 90% of the total EGFR phosphorylation in the parental cell 

line. This decreases with increasing HER2 expression in other cell lines due to the 

formation of heterodimers. In A11H, the hetero-dimer contributions are ~ 70%. 

HER2 dimers are allowed to form a minute before the beginning of the simulation. 

The rate at which they are formed is proportional to the fraction of HER2 monomers 

present in the cell line. With the addition of ligand, HER2 homodimers decrease due 

to the formation of heterodimers. The contribution of HER2 homodimers increases 

from 0 in Par to 38% in A11H (Figure 4.12A). 
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Figure 4.11 Dimer contributions to receptor phosphorylation. A, B fractional contribution of 
EGFR homodimers towards total EGFR phosphorylation signal using ABM model and mathematical 
model respectively. 
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Figure 4.12 Dimer contributions to receptor phosphorylation. A, B- fractional contribution of 
HER2 homodimers towards total HER2 phosphorylation signal using ABM model and mathematical 
model respectively. 
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Comparison of the slopes of the receptor mass curves show HER2 gets 

degraded at a slower rate than EGFR (Figure 4.13 and Figure 4.14).  

 

 

Figure 4.13 Total receptor mass of EGFR in Par, 17L, 24H and A11H cell lines: A, B, C, D - total 
receptor mass of EGFR in the cell obtained from the ABM model. E, F, G, H - total receptor mass of 
EGFR in the cell obtained from the mathematical model where the model fits (lines) to the 
experimental data (points).Multiple biological replicates are denoted by distinct colors. 

 

It is evident that the phosphorylation and dimerization patterns obtained 

from the ABM in the simulated system of cell lines co-expressing EGFR and HER2 are 

found to be in agreement with the results of the mathematical model. 
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Figure 4.14 Total receptor mass of HER2 in Par, 17L, 24H and A11H cell lines: A, B, C, D - total 
receptor mass of HER2 in the cell obtained from the ABM model. E, F, G - total receptor mass of HER2 
obtained from the mathematical model where the model fits (lines) to the experimental data (points). 
Multiple biological replicates are denoted by distinct colors 

 

4.4.2 Prediction of Parameter Estimates 

The individual-based representation of the system offers a simple way to predict the 

rates of activation and trafficking events. At the end of each time interval, the 

quantities of the ten species, namely, two monomers and three dimers located at the 

surface and in the internal compartment, are re-calculated and values of the rate 

parameters for activation and trafficking are obtained from actual concentrations of 

species undergoing state change. 

The decision engine calculates the local rates within the time step and updates 

average rates at the end of a time step. The local rates are set to zero at the start of 
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each time step. The rates are calculated for dimerization, internalization, dissociation 

and degradation (Section 4.3.2.3). The rate constants evolve as the simulation 

progresses (Figure 4.15-4.18).  
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Figure 4.15 Plot showing the values of internalization rate constants (Ke) calculated using ABM 
at intervals of 10 (min) as the simulation progresses. The rate constant values, increase and 
become steady after 30-40 minutes. 
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Figure 4.16 Plot showing the values of dissociation rate constants on PM (Krs) calculated using 
ABM at intervals of 10 (min) as the simulation progresses. The rate constant values, increase and 
become steady after 30-40 minutes. 
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Figure 4.17 Plot showing the values of dissociation rate constants on EE (Kri) calculated using 
ABM at intervals of 10 (min) as the simulation progresses.  
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Figure 4.18 Plot showing the values of degradation rate (Kd) calculated using ABM at intervals 
of 10 (min) as the simulation progresses. 
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Table 4.3 shows values of rate constants for each cell line, averaged over the 

20 simulations. Parameters generated by the ABM are compared with best fit 

parameters and confidence intervals from the mathematical model.  

 

Table 4.3 Average values for rate constants obtained from ABM model for Par, 17L, 24H and 
A11H cell lines. 

The cell line dependent rates are in the range predicted by the mathematical 

model. Estimated average values for parameters using ABM, compared with best fit 

parameters and confidence intervals from the mathematical model. 

The simulation space has been populated with as many agents as the number 

of receptors, ligands and proteins expressed in the cell lines. However, as the number 

of agents increases, the computational limit and processing time become a bottleneck 

for realistic simulations. The model will then have to be run on a reduced system 

(75%, 50% abundance) and a warning message given, when the quantities of species 

fall below the minimum threshold value needed for satisfying the rates of reactions. 

4.5 Summary 

As proof-of-concept, two complementary modeling formalisms have been pipelined 

to study the dynamics of ErbB receptor activation and trafficking. The first formalism 

is a mathematical model which solves rate equations to track molecular abundances 

over time. The aggregate characteristics of equation-based modeling, drives the 

individual-based agent model. The rules were designed so as to account for all the 

significant events leading to the state changes of the molecular species. Reverse 

engineering with computational models generates metadata that is currently used 

Parameter(/min) 
Average value from simulation 

Parameter(/min) 
Average value from simulation 

Parental 17L 24H A11H Parental 17L 24H A11H 

kfs 0.027 0.021 0.014 0.017 kd1 0.019 0.019 0.019 0.018 

kr11s 0.032 0.032 0.033 0.032 kd2 0.008 0.008 0.008 0.008 

kr12s 0.491 0.495 0.479 0.478 ke11 0.139 0.139 0.139 0.139 

kr22s 5.425 5.312 5.126 5.123 ke12 0.05 0.05 0.049 0.049 

kr11i 0.164 0.162 0.173 0.161 ke22 0.078 0.076 0.073 0.073 

kr12i 0.102 0.098 0.096 0.095 kd11 0.268 0.263 0.255 0.263 

kr22i 24.72 47.07 45.17 45.152 kd12 0.007 0.013 0.022 0.006 

kt1 0.018 0.018 0.018 0.018 kd22 0.012 0.007 0.007 0.007 

kt2 0.007 0.007 0.007 0.007      
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only to make first-level inferences. The macro and micro rules are information 

structures that plough back the knowledge gained from research, to conduct in silico 

experiments for validation, predictions and testing hypotheses. The model predicts 

phosphorylated dimer levels for any given receptor expression profile and the 

emerging characteristics were validated with the original reverse-engineered results 

of the experiment. ABM also offers a novel method for calculating rate constants from 

the changing species concentration.  
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Application: Prediction of ErbB signal activation using the data 

analytics pipeline 

 

In the previous chapter, we proposed an architecture for a modeling pipeline where 

the agent-based approach was used for re-engineering the system by learning from 

data generated by reverse engineering. This work is an application of the data-driven 

modeling pipeline. The model has been extended to study the activation kinetics in 

HME cells co-expressing ErbB1-3 receptors and their trafficking in the presence of 

ligands EGF and HRG. Activation patterns of Erk and Akt, triggered by 

phosphorylated dimers, is investigated by adding Erk and Akt as agents in the 

system. The effect of an ErbB2 blocking drug (Pertuzumab) on HER2 expressing cell 

lines was also carried out. 

5.1 Model Description  

5.1.1 Reverse engineering of ErbB signaling 

The integrated mathematical model of HER activation, and trafficking parameterized 

with a comprehensive set of HER phosphorylation and abundance data collected in a 

panel of HME cells expressing varying levels of HER1-3 by Shankaran, et al. (2013) is 

taken as the reverse engineered system for this study, henceforth referred to as 

123Model. In their experiment, the HME parental cell line (low level of HER2 and 

HER3; designated as HER2-HER3-) was transduced with HER2 gene and HER3 gene 

to clone 24H (HER2+HER3-) and B5 (HER2-HER3+) cell lines, respectively. Further, 

24H cell line was inserted with the HER3 gene to obtain the D20 (HER2+HER3+) cell 

line that expressed all the three receptors. These cells were activated by the addition 

of known concentration of EGF and HRG to the culture medium and incubated for 5 

to 120 min. ELISA assays were done to quantify the receptor mass and 

phosphorylation levels. 
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The 123Model takes into account, different types of ligands, monomers, 

dimers and signaling molecules that exist in three distinct compartments – the cell 

surface or plasma membrane (PM), early endosomes (EE) and late endosomes (LE). 

The model estimates values of 47 unknown parameters for active receptor dimer 

formation affinities, trafficking rates and relative phosphorylation levels using 

nonlinear least square regression to simultaneously fit the experimental data 

collected from the four cell lines. Overall root-mean-squared error (RMSE) between 

the experimental data and model predictions were used to assess the goodness of the 

fit. 

The output data from the reverse engineered model forms the input for the 

agent-based re-engineering model.  

5.1.2 Agent-based Re-engineering of ErbB signaling 

5.1.2.1 Initialization 

The key molecular entities in the system are represented as agents. Agents are of 

four types: ligands (EGF/HRG), receptors (ErbB1/ErbB2/ErbB3) (Figure 5.1) and 

signaling proteins (Erk and Akt). The 3D spatial domain is divided into six 

compartments: (1) an extracellular domain (Outside), (2) plasma membrane (PM), 

(3) early endosome (EE), (4) late endosome (LE) (5) lysosome and (6) cytoplasm. 

 

Figure 5.1 Ligand and receptor entities: E- EGF, H – HRG, R1-ErbB1 monomer, R1E-EGF bound 
ErbB1 monomer,  R2-ErbB2 monomer, R3-ErbB3 monomer, R3H-HRG bound ErbB3 monomer, R11E-
Single EGF bound ErbB1 homodimer, R11EE-Double EGF bound ErbB1 homodimer, R12E-Single EGF 
bound ErbB1–ErbB2 heterodimer, R22- ErbB2 homodimer, R13E-Single EGF bound ErbB1–ErbB3 
heterodimer, R13H-Single HRG bound ErbB1–ErbB3 heterodimer, R23H-Single HRG bound ErbB2–
ErbB3 heterodimer. 
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Initially, ligands, EGF and HRG, are present in the outside compartment, which 

on binding to receptors move to the plasma membrane (PM) (Figure 5.2). 

Bound/unbound monomers and dimers are internalised to the early endosome (EE). 

From EE, they are destined to accumulate in the late endosome (LE) for degradation 

or are recycled to return to the PM. Once degraded they move to the lysosome. Erk 

and Akt are sentinel proteins present in the compartment designated as cytoplasm. 

Synthesis of agents occurs at regular intervals from the external compartment which 

supplies new ligand and receptor agents to the Outside and PM respectively. The 

number and type of agents are initialized to their abundance in the cell lines (Table 

5.1). Ligand agent and receptor agents are defined same as in Chapter 4. The sentinel 

protein agents-Erk and Akt are defined by a set of attributes (Figure 5.2). 

 

Figure 5.2 Attributes of Erk/Akt agent. 

Table 5.1 HER expression levels in cell lines (Courtesy (Shankaran Harish et al. 2013).  

List of cell lines 
Abundance of EGFR, HER2 and 

HER3 (molecules/cell) 

Notation EGFR HER2 HER3 

Par (HER2-3-) 200000 30000 973 

24H (HER2+3-) 136938 600000 2000 

B5 (HER2-3+) 189126 30000 28000 

D20 (HER2+3+) 85896 643777 28770 
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The cellular events that lead to signal activation are ligand binding, 

dimerization, phosphorylation, internalization, recycling, dimer dissociation and 

degradation (Figure 5.3). 

 

Figure 5.3 Schematic of signalling events in the cellular compartments. 

 

5.1.2.2 Action rules 

The agent interactions leading to signaling events are determined by macro and 

micro rules (Table 5.2). The rules are defined based on the dependency map as 

shown in Figure 5.4. The additional rate constants in the 123Model due to the 

presence of ErbB3 and its ligand HRG, are marked in red. The dependencies are 

intuitively defined and are converted into rules using the values of reaction rates. 
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Table 5.2 Macro and Micro rules for EGFR, HER2 and HER3 model 

Macro Rules Micro Rules 

 

1. EGFR monomer internalization rate is higher 

than internalization rate of HER2 and HER3 

monomer. 

2. EGFR homodimers undergo dissociation more 

than internalization. 

3. EGFR-HER2 and HER2 homodimer 

dissociates faster on PM than EE. 

4. Erk correlated with HER1 signaling from 

HER1 homodimer and HER1-HER2 

heterodimer 

5. AKT activation correlates more with HER3 

phosphorylation and signaling from HER3-

HER1 and HER2-HER3 dimers. 

6. EGFR- HER2  heterodimer internalises faster 

than HER2 monomer  

7. Internalization rate of EGFR homodimer is 

greater than its degradation rate 

8. HER2 heterodimers dissociation rate is greater 

than its degradation rate 

9. HER2 homodimer degrades at a slower rate 

compared to its dissociation rate 

10. EGFR-HER2 dissociates faster compared to its 

internalization. 

11. HER2 homodimer dissociates faster compared 

to its internalization. 

 

1. EGFR-HER2 internalization rate is  10 

times more than HER2 monomer 

internalization rate 

2. EGFR-HER2 dissociation rate on PM is 

more than 100 times its internalization rate 

3. EGFR-HER3 heterodimer internalization 

rate is 2 times more than HER3 monomer 

internalization rate 

4. EGFR homodimers on EE dissociates 4 

times slower compared to them on PM 

5. The probability of dimerization for single 

EGF bound EGFR homodimer, double 

EGF bound EGFR homodimer, EGFR-

HER2 heterodimer and EGFR-HER3 

heterodimer are 0.053, 0.22, 0.46 and 

0.0074 respectively for 24H cell line. 

6. The probability of dimerization for EGFR-

HER2 heterodimer, HER2 homodimer and 

HER3-HER2 heterodimer are 0.19, 0.02 

and 0.15 respectively for D20 cell line. 

7. The probability of dimerization for EGF 

bound EGFR-HER3 heterodimer, HRG 

bound EGFR-HER3 heterodimer and 

HER3-HER2 heterodimer are 0.0018, 

0.0047 and 0.07 respectively for B5 cell 

line. 



74 
 

 

Figure 5.4 Dependency map of rate constants: kr – dissociation rate, kd – degradation rate, kt – 
internalization rate for monomers, ke-internalization rate for dimers. ‘s’ – surface (PM), ‘i’ –internal 
compartment (EE), 1 – EGFR, 2 –HER2, 3-HER3 .e.g. kr23s is the heterodimer HER2-HER3 dissociation 
rate on PM 

The constructed receptor activation model has been used to quantitatively 

predict the relative contributions of the HER receptor types and their dimers to the 

activations of Erk and Akt kinases. Erk and Akt undergoes dimer-specific activation 

(macro rules 4 and 5 derived from (Gong, et al., 2015)) during the time course of the 

simulation.  

5.2  Results 

In silico experiments replicate the signaling behaviour in cell lines. The activation of 

ErbB1-3 receptors, on binding with ligands EGF and HRG, their trafficking and 

stimulation of Akt and Erk pathways have been simulated. Given the abundance of 

EGFR, HER2 and HER3 in the 4 HME cell lines (Table 5.1), twenty simulation runs 

were made for each cell line, and the parameter values were averaged. The 

simulations were run for 120 min with each time step equal to 1 min. The major 

assumptions made for the experiments are: 
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(1) EGF binding rate and dissociation rates were 0.63/min and 0.12/min, respectively. 

(2) HRG binding rate and dissociation rates were 0.73/min and 0.34/min, respectively. 

(3) Dimerization probabilities are calculated for each cell line from dimer 

contributions to HER phosphorylation predicted by (Shankaran, et al., 2013). 

(4) Ligand quantities were calculated by increasing the numbers till they reach 

saturating levels. The numbers were fixed at -  EGF =200000,  HRG = 30000. 

(5) At the start of simulation, 2% of EGFR, 1% of HER2 and 0.05% of HER3 are 

present in the early endosome (EE). 

(6) Since HER3 lacks kinase activity, the phosphorylation effect of HER3 

homodimers is not considered. 

(7) Internalization and degradation rates for monomers (kt1, kt2, kt3, kd1, kd2 and 

kd3) are initialized to the values obtained from the mathematical model assuming 

that these events occur even before ligand addition. All other parameters are 

estimated by the ABM. 

(8) Agents are recycled during dissociation in EE, internalization and degradation. The 

recycling fractions were taken from literature (Shankaran, et al., 2013). 

(9) Newly synthesized receptors and ligands are added to the cell surface and outside 

respectively. 

(10) The number of Erk and Akt agents are fixed at 20000 in all cell lines. 

(11) Drug is introduced, 20 min after the beginning of the simulation. Its action is 

immediate and continues till the end. 

5.2.1 Prediction of receptor activation and signaling 

The receptor phosphorylation levels were quantified by multiplying receptor/dimer 

abundances with constant phosphorylation efficiency factors derived from the 

measurements in the ELISA assays. The timecourse measurements of levels of 

phosphorylated HER1-3 for the four cell lines, Par, 24H, B5 and D20 in response to 

addition of ligands EGF and HRG are shown in Figure 5.5. The phosphorylation values 

were calculated by considering the contribution from activated dimers in the 



76 
 

external (PM) as well as internal compartments (EE). The peak values for 

phosphorylation are attained at 5-10 min after ligand addition.  

The EGFR phosphorylation is found to be high in all four cell lines with highest 

level in 24H (HER2+3-) cells followed by D20, B5 and Par (Figure 5.5A). HER2 

activation levels are much higher in the HER2+ cell lines (24H and D20) compared to 

the HER2- cell lines (Figure 5.5B). HER3 phosphorylation peaks slowly and is 

maximum for the HER2+3+ cell line (D20) (Figure 5.5C). 
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Figure 5.5 Phosphorylation levels for (A) EGFR (B) HER2 and (C) HER3 receptors in Par (HER2-
/3-), 24H(HER2+/3-), B5(HER2-/3+) and D20 (HER2+/3+) cell lines in response to activation 
by ligands EGF and HRG. 
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The HER expression levels determine the dimerization pattern which in turn 

govern the activation levels of signaling molecules Erk and Akt (Figure 5.6 and Figure 

5.7). The model predictions for dimer contributions were considered at 100 min 

following ligand addition, after which the phosphorylation levels were found to be 

relatively steady. An Erk agent is activated if it finds dimers EGFR-EGFR or EGFR-

HER2. The Erk agents are activated most in 24H and D20 cells and this is accredited 

to the formation of heterodimers between EGFR and HER2. In the HER2- cells of B5 

and Par, the activation is due to the homodimers of EGFR (Figure 5.6). Figure 5.5.1 

shows the error plots for total receptor phosphorylation. 

 

Figure 5.5.1. Error plots for total receptor phosphorylation in Par, 24H, B5 and D20 cell lines. 
Error bars indicate the standard error over 20 simulations. 
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Figure 5.6  Model predictions on dimer contribution to Erk activation dynamics. (A) Dimer 
contribution from EGFR-EGFR, HER2-HER2and EGFR-HER2 as stacked bars for Par(HER2-/3-), 
24H(HER2+/3-), B5(HER2-/3+) and D20 (HER2+/3+) cell lines at time=60 min. (B) Erk activation in 
the cell lines. 
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An Akt agent is activated, if it finds dimers of EGFR-HER3 or HER2-HER3. The 

Akt agents are activated most in D20 cells and this is due to the formation of large 

numbers of HER2-HER3 heterodimers. In the B5 (HER2-3+) cells, the EGFR-HER3 

contribution is maximum relative to other cell lines. Akt activation is less for 24H and 

Par due to the absence of HER3 (Figure 5.7). Error bars for Erk and Akt activation are 

plotted in Figure 5.6.1. 

Figure 5.6.1 Error plots for Erk and Akt activation in Par, 24H, B5 and D20 cell lines. Error bars 

indicate the standard error over 20 simulations. 
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Figure 5.7  Model predictions on dimer contribution to Akt activation dynamics. (A) Dimer 
contribution from EGFR-HER3 andHER2-HER3 as stacked bars for Par(HER2-/3-), 24H(HER2+/3-), 
B5(HER2-/3+) and D20 (HER2+/3+) cell lines at time=60 min. (B) Akt activation in the cell lines. 
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5.2.2 Parameter Estimation 

The rate constants are calculated for activation and trafficking events from the 

changing species concentration. At the end of each time interval (1 min), the 

quantities of species were re-calculated and values of the rate parameters were 

obtained from actual concentrations of species undergoing dimerization, 

dissociation, internalization, recycling and degradation. 

Table 5.3  Average value for rate parameters in Par, 24H, B5 and D20 cell lines 

 

Table 5.3 shows values of rate constants for each cell line, averaged over the 

20 simulations. Rate constants for some of the species that do not form at all, are left 

blank. In Par (HER2-3-) cells, homodimers of HER2 and heterodimers of HER3, do 

not form. Similarly, in B5, homodimers of HER2 are insignificant. 

5.2.3 Receptor blocking experiments 

Studies on receptor blocking were done by determining the receptor 

phosphorylation in various cell lines in the presence of the drug 2C4 (Pertuzumab) 

(Figure 5.8-10). Pertuzumab is a HER2 dimerization inhibitor, a monoclonal antibody 

that binds to domain 2 of HER2 blocking its dimerization. Model simulations assume 

that the addition of drug renders 80% of the cellular HER2 unavailable for receptor 

dimerization.  

Parameters Average value from 

simulations 

Parameters Average value from 

simulations 

Par 24H B5 D20 Par 24H B5 D20 
kr11s 2.04 1.06 2.71 0.87 ke11 0.27 0.27 0.48 0.34 

kr22s - 10.90 - 11.11 ke12 0.27 0.32 0.27 0.32 

kr23s - 8.20 20.52 39.97 ke22 - 0.07 - 0.08 

kr12s 5.31 5.84 5.37 5.83 ke13 - 0.31 0.07 0.27 

kr13s - 0.42 10.28 0.57 ke23 - 0.21 1.04 0.76 

kr11i 8.66 2.43 8.26 1.79 kd1 0.08 0.08 0.07 0.07 

kr22i - 0.51 - 0.51 kd2 0.03 0.007 0.01 0.008 

kr12i 0.30 0.33 0.30 0.33 kd3 0.07 0.08 0.07 0.08 

kr23i - 0.92 2.49 11.72 kd11 0.03 0.02 0.03 0.02 

kr13i - 0.46 6.30 0.92 kd12 0.03 0.03 0.03 0.03 

kt1 0.07 0.07 0.07 0.07 kd22 - 0.007 - 0.008 

kt2 0.01 0.01 0.01 0.02 kd13 - 0.05 0.04 0.05 

kt3 0.01 0.05 0.01 0.01 kd23 - 0.08 0.07 0.07 
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Figure 5.8 HER receptor phosphorylation pattern of 24H on inhibition of HER2 by Pertuzumab. 
(A) HER1 and (B) HER2 phosphorylation in the absence and presence of Pertuzumab. 
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Figure 5.9 HER receptor phosphorylation pattern in B5 on inhibition of HER2 by Pertuzumab. 
(A) HER1, (B) HER2 and (C) HER3 phosphorylation in the absence and presence of Pertuzumab. 

 

A 

B 

C 
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Figure 5.10 HER receptor phosphorylation pattern in D20 on inhibition of HER2 by 
Pertuzumab. (A) HER1, (B) HER2 and (C) HER3 phosphorylation in the absence and presence of 
Pertuzumab. 
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In 24H, EGFR and HER2, phosphorylation falls by about 15% due to less 

formation of EGFR-HER2 and HER2-HER2 dimers and HER3 expression being very 

less, there is no impact of the drug on HER3 phosphorylation (Figure 5.8 A-B). In B5, 

there is a steep fall in HER2 and HER3 phosphorylation levels on drug addition 

(Figure 5.9 A-C). This is due to HER2-HER3 hetero dimers not being formed. In the 

D20 cells, HER1 and HER2 activation show a sharp decline because blocking of HER2 

affects formation of HER1-HER2 dimers whereas HER3 activation is held by more of 

HER1-HER3 dimers forming (Figure 5.10 A-C). 

When the drug blocks the formation of HER1-HER2, Erk activation shows 

sharp decline in 24H (Figure 5.11A). In D20, Erk activation dips only by a small 

amount because of more EGFR homodimer formation due to the absence of HER2 

(Figure 5.11B). Akt activation, being linked to the HER3 dimers, shows a gradual rise 

in the HER3+ cells of B5 and D20 peaking at lower values than the level achieved by 

the original system before treatment with drug (Figure 5.11 C-D). 
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Figure 5.11 Effect of Pertuzumab on Erk and Akt activation. Erk activation in the presence and 
absence of drug in (A) 24H (HER2+3-) and (B) D20 cell lines. Akt activation in the presence and 
absence of drug in B5 (C) and D20 (D) cell lines. 

 

A key aspect of receptor signaling is the prediction of how the changes in 

receptor phosphorylation levels alter the activation patterns of the downstream 

elements of the involved signaling pathways. The role of HER receptors seems to be 

different in different cell lines and under different conditions. Dimers formed and 

pathways that are activated depend upon the specifics of the cell system and 

treatment conditions. In order to make in silico predictions of ErbB signal activation 

and HER-initiated cellular responses from receptor expression profiles, it becomes 

necessary to strengthen the data analytics pipeline from more data generated from 

cell lines and computational models. 
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5.3 Summary 

The results of the 123Model are taken as the reverse engineered system that predicts 

receptor (EGFR, HER2 and HER3) activation by ligands (EGF and HRG) and their 

trafficking within the cell. The data from the model-based study is passed to the 

agent-based re-engineering model completing the analytics pipeline. The model 

predicts the relative contributions of the HER receptor in four distinct cell lines and 

how the changes in the receptor phosphorylation levels alter activation patterns in 

the downstream cascades of Erk and Akt pathways. Though the absolute values of 

quantitative estimates cannot be used directly, they provide the key link to correlate 

receptor expression and signaling outcomes. 

By establishing the link between receptor expression, dimer concentrations 

and their translation to signaling outcomes, the re-engineering model can stand in, 

for in silico clinical  trials to study the action mechanisms of  HER-targeting drugs and 

provide insights into the problem of acquired resistance. 
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Application: Effect of combination drugs on HER2 targeted 

therapies for cancer 
 

6.1 Introduction 

Clinical trials in oncology are known to have the highest failure rate compared to 

other therapeutic areas due to the adaptability of cancer cells at multi-scales to 

survive any changing environment. Developing treatments involving synergistic drug 

combinations against cancer has enhanced therapeutic efficiencies. However, 

analyzing the large number of compound combinations experimentally, is infeasible. 

The ability of in silico methods in combing the innumerably large search space to 

derive multidrug combinations have enabled model-based analysis to gain traction in 

the pharmaceutical industries. This chapter is an application of the modeling 

architecture to develop a model for in silico trials for combination drug therapy in 

HER2 over-expressed breast cancer cell lines. 

In recent years, the mechanisms of action and the effect of these drugs have 

been reverse engineered by in vitro and clinical studies. With the existing state of 

knowledge relating to disease state and effect of drug-treatment, an agent-based 

model for re-engineering the action of drugs in combination, can consolidate the 

efforts of the past while giving the opportunity to simulate new scenarios. We use the 

re-engineered ABM based on the 123Model developed in Chapter 5 as the platform 

for studying the effect of drugs on activation of receptors, their downstream 

signaling, and effect on cancer progression. The drugs taken for this study are 

Pertuzumab and Trastuzumab as they have shown improved anti-tumor activity in 

comparison to single-agent therapy in various breast cancer related studies. 

Section 6.2 reviews the current state-of-the-art in the field of drug 

combination studies both in vitro and in silico. The mechanism of action of 

Pertuzumab and Trastuzumab on HER2 are described in Section 6.3. Section 6.4 

describes the implementation of the model and Section 6.5 illustrates the simulation 
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results. Section 6.6 summarizes the significance of the model and its future 

applications. 

6.2 Background Literature 

Cancer initiation, invasion and metastasis span multiple length and time scales. The 

combinatorial interplay of molecular pathways acts in concert to deregulate the 

cellular function complicating the reprogramming of signal flow and interpretation of 

experimental studies (Chakrabarti, et al., 2012). ABMs in Systems Pharmacology is a 

fledgling area promising novel insights into complex systems and engineering 

challenges. ABM captures the systematic organization of data across distinct spatio-

temporal scales, enabling the understanding of the effect of disease prognosis and 

response to treatment. In designing ABMs, hypotheses can be developed  as to how 

individual components or pathways contribute to tissue- or organism-level effects 

which can be further examined with experimental or clinical studies (Cosgrove, et al., 

2015). ABMs assist in identifying key features of a mechanistic target by scaling and 

extrapolating observations from in vitro and in vivo studies on animals into possible 

outcomes in vivo in humans (Viceconti, 2016). 

Breast cancer has been the most frequently diagnosed life-threatening cancer 

among women worldwide. Based on the genes expressed, there are five intrinsic 

subtypes of breast cancer: luminal A, luminal B, HER2 over-expression, basal and 

normal-like tumors (Dai, et al., 2015). HER2 subtype of breast cancer is associated 

with over-expression of Human HER2 (ErbB2), a member of transmembrane 

tyrosine kinase receptor in EGFR (epidermal growth factor receptor) family.  

The reduced response of standard therapies for effective inhibition of HER2 

signaling in cancer cells have led to the design of targeted therapies. The anti-HER2 

treatment strategies have improved over the past few decades and increased the 

survival median of patients from 1.5 years to 5 years (Araki, et al., 2017). Drugs like 

humanized therapeutic monoclonal antibodies Trastuzumab & Pertuzumab, taxane 

based chemotherapy, antibody drug conjugate T-DM1 and dual EGFR/HER2 tyrosine 

kinase inhibitor lapatinib have shown improved prognosis (Shah and Osipo, 2016). 

Despite the availability of new drugs, their success is largely hindered by the 
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resistance that cancerous cells develop towards the drug or due to the lack of 

improvement when used as a single agent.  

Devising combinations of targeted treatments can circumvent some 

mechanisms of resistance to yield clinical benefits (Lopez and Banerji, 2017). Drugs 

when used in combination can be additive, superadditive (synergistic) or subadditive 

(antagonistic). When the combination effect is consistent with the individual drug 

potencies it is said to be additive. In contrast, antagonism reduces the effect in 

combination. Drug synergy refers to administering different drugs to enhance the 

effects, with significant reduction in the dosage of the individual drugs thus reducing 

its toxicity. The combined effect is greater than their predicted individual potencies 

(Tallarida, 2011) and are highly efficacious and therapeutically more specific. The 

Chou-Talalay method quantifies the synergy of drug combinations based on the 

median-effect equation derived from the mass action law principle. The combination 

index (CI) offers a quantitative definition for the additive effect (CI=1), synergism 

(CI<1), and antagonism (CI>1) in drug combinations (Chou, 2010). Isobolograms are 

graphical constructions based on the assumption of constant relative potency. The 

coordinate systems comprise of individual drug dosages and commonly a “line of 

additivity” that distinguishes additive from synergetic and antagonistic interactions 

(Tallarida, 2011). 

As a result of their medicinal potential, combinatorial drug pairs are 

researched both experimentally and computationally. Current efforts to identify 

combinatorial anti-cancer therapies rely on experimental methods (Oak, et al., 2012) 

and clinical trials to assess their safety and efficacy (Mayer, 2015). However 

researchers face a tremendous challenge in the large search space required for 

higher-order combinations, multiple drug dosages, temporal optimization of drug 

administration, costly experimental screening approaches and diversity in cancer cell 

types and patients.  

Computational models have also been developed, with the aim to rationalize 

and economize the experimental bottlenecks, to concomitantly predict drug 

responses and efficient anticancer drug combinations (Flobak, et al., 2015). 

Computational systems biology enable to explore and understand the behaviour of 

cancer cells under different therapeutic conditions that would otherwise be 
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impossible with experimental studies. Even though ABM is sparingly used in 

pharmaceutical context, adopting an ABM approach permits the integration of 

existing knowledge into a software platform capable of hypothesis testing and 

designing of new experiments. They are also advantageous in incorporating 

heterogeneity and to model phenomena occurring across different temporal and 

spatial scales (Cosgrove, et al., 2015). 

In this study, the 123Model (Chapter 5) is used to explore the effect of drugs 

Pertuzumab and Trastuzumab and their combinations on breast cancer cell lines so 

as to effectively analyze drug synergies for effective treatments. 

6.3 Biology of action mechanism of drugs 

Trastuzumab and Pertuzumab are humanized anti-HER2 monoclonal antibodies 

designed to potently inhibit HER2-mediated signaling pathways.  

Trastuzumab targets the extracellular domain IV of HER2 by the mechanism 

of antibody-dependent cellular cytotoxicity (ADCC), internalization and degradation, 

and interfering with dimerization of HER2 (Figure 6.1) (Vu and Claret, 2012). 

Pertuzumab blocks the dimerization domain II of HER2. Pertuzumab efficiently 

inhibits ligand-induced dimerization, whereas Trastuzumab inhibits ligand-

independent dimerization. Trastuzumab binds tighter than Pertuzumab to HER2 

(Lua, et al., 2015). Clinical studies on the combination of Trastuzumab and 

Pertuzumab has shown significant antitumor effect in an HER2-positive metastatic 

breast cancer compared to each antibody as a single agent (Baselga, et al., 2012; 

Harbeck, et al., 2013; Swain, et al., 2015). Although, both show synergistic results in 

tumor inhibition, the mechanisms underlying the synergy of Trastuzumab and 

Pertuzumab remains enigmatic. Molecular modeling  (Fuentes, et al., 2011) and 

experimental studies (Lua, et al., 2015) have suggested the colocalization of the two 

antibodies on to the extracellular domain of HER2 for its synergism. Another 

proposed mechanism is the inhibition of ligand-independent HER3-HER2 

heterodimerization by Trastuzumab on truncation of the extracellular region of 

HER2, which produces active truncated p95 HER2 and the ligand dependent inhibition 

of HER2 by Pertuzumab (Goltsov, et al., 2014).  
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Figure 6.1 Mechanisms of action of Pertuzumab and Trastuzumab (Courtesy Harbeck, et al. 
(2013)) 

 

6.4 The Model 

Studies were done by adding drugs Trastuzumab and Pertuzumab individually, and 

in combination to the D20 and artificial cell line (denoted as A1). This model has 

been extended to simulate the response kinetics of the signaling network, on addition 

of HER2 inhibitor drugs and their effect on receptor and Akt activation, 

tumorigenesis and evolution. 

6.4.1 Agents and cell compartments 

The elegance of the ABM based on the 123Model is that it can be easily extended to 

include drug studies by considering the drug molecules as yet another type of agent 

with its own set of attributes and actions. The model in addition to HER receptor 

activation, trafficking, downstream signaling, simulates inhibition of HER2 by 

Pertuzumab (P) and Trastuzumab (T) separately, and in combination (P+T). This 

takes the number of agent types to four - ligands (EGF/HRG), receptors 

(ErbB1/ErbB2/ErbB3), signaling proteins (Erk and Akt) and drugs (Trastuzumab 

and Pertuzumab).The 3D spatial domain is divided into seven compartments: (1) an 

extracellular domain (Outside), (2) plasma membrane (PM), (3) early endosome 

(EE), (4) late endosome (LE) (5) lysosome and (6) cytoplasm. 
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Similar to the events mentioned in the previous chapter, ligands EGF and HRG 

bind to receptors on plasma membrane (PM) from the outside compartment to 

initiate signaling. The bound/unbound monomers and dimers are internalised to the 

early endosome (EE) from where they either accumulate in the late endosome (LE) 

for degradation or recycle back to the PM. On being flagged for degradation, they 

move to the lysosome. Sentinel proteins, Erk and Akt, present in the cytoplasm, are 

activated by signaling through receptor activation. Drugs, Trastuzumab and 

Pertuzumab, are present in the "Outside" compartment and bind to ErbB2 on 

different domains and inactivate it through various mechanisms. Drug and receptor 

agent attributes are defined in Figure 6.2.  

 

Figure 6.2 Linkages of Drug and Receptor Agent attributes 

The drug studies were done on two cell lines where HER2 is overexpressed- 

D20 and an artificial cell line A1 (Table 6.1). These cell lines were studied on three 

scenarios - P, T and P+T for various doses.  

Table 6.1 HER expression levels in artificial (A1) and D20 cell lines  

List of cell lines Abundance of EGFR, HER2 and 
HER3 (molecules/cell) 

Notation EGFR HER2 HER3 

A1 80000 300000 40000 

D20  85896 643777 28770 
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6.4.2 Rules 

The drug action is based on the outcomes of drug studies conducted in animal 

models, clinical trials and computational studies. These are encapsulated as a set of 

macro rules as shown in Table 6.2. It may be noted that there are no micro rules 

because, only the action mechanism is being tested to observe the ErbB2-targeted 

inhibition activity of the drugs. There are no experiment specific rules, like the data 

of a drug trial. 

 

Table 6.2 Macro Rules for Drug action 

Macro Rules 

 

(1) Pertuzumab binds to domain II and Trastuzumab binds to domain IV of HER2 

(2) Pertuzumab blocks ligand dependent receptor heterodimerisation of HER2 and HER3  

(3) Trastuzumab blocks ligand independent dimerization of HER2 

(4) Trastuzumab inhibits the shedding of the extracellular domain (ECD) of HER2 

(5) Trastuzumab and Pertuzumab can cause different inhibitory effects on PI3K and MAPK 

pathways despite targeting the same receptor HER2 

(6) Pertuzumab blocks the association of HER2 with HER3 when cells are stimulated with HER3 

ligand, HRG 

(7) Trastuzumab  and Pertuzumab attract immune cells to tumor sites that overexpress HER2 by 

antibody-dependent cellular cytotoxicity (ADCC)  

(8) Trastuzumab and Pertuzumab inhibits HER2 activation and suppresses Akt phosphorylation  

 

 

As in Figure 6.1, a drug agent can bind to domain II or/and IV of the receptor 

agent. Domain II attribute of a receptor agent is set to “bound” on binding of drug 

agent Pertuzumab. Whereas, domain IV is set to “bound” on binding of Trastuzumab. 

In case of combination, both domains are set to “bound” on binding of the drug agent. 
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Mechanism of action of drugs P and T 

i. P binds to Domain II 

 Inhibits formation of ligand-dependent 

HER2 heterodimers 

 Activates ADCC 

ii. T binds to Domain IV 

 Inhibits mutation of HER2 to p95 HER2 

 Blocks ligand-independent HER2 signaling 

 Flags cells for ADCC 

iii. P+T binds to Domain 

II and IV 

 Inhibits formation of  ligand dependent and 

independent HER2 dimers 

 Activates ADCC 

 Inhibits mutation of HER2 to p95 HER2 

 

In drug combinations, (i), (ii) and (iii) events can occur depending on whether 

P, T or P+T is bound to the receptor. 

 

ADCC and Tumor size 

 When drug bound HER2 (denoted as E2D) crosses a threshold value, 

ADCC occurs. A fixed number of E2D are removed from the system. 

 Tumor size (Tsize) is a global variable that is incremented based on the 

activation value of Akt. When ADCC occurs, Tsize shrinks proportional to 

the amount of ADCC. 

 

6.5 Simulation Results 

In silico drug experiments were carried out 20 times for each cell line and parameter 

values averaged. The major assumptions in the simulation are the following: 

(1) Drug is introduced at the beginning of the simulation.  

(2) Agents including drugs are recycled during dissociation in EE, internalization and 

degradation.  
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(3) Drugs bind to the receptor at the rate of 0.1/min. 

(4) Drug dosage is translated to corresponding numbers of 25000/50000/75000/ 

100000 drug agents. Actual relationship between dosage and the number of agents 

in the system has to be worked out in real trials. 

(5) The T+P combination is in the ratio 40-60%.   

Each timestep is a period in which the agents can interact with each other and 

the drugs to carry out a unit action. The timecourse continues to trace the system. 

Drug agents are replenished when their numbers fall below a critical number. In 

actual trials this can vary from 2-3 weeks. 

6.5.1 Simulation on Artificial cell line 

As Pertuzumab and Trastuzumab bind to different domains of HER2  and 

suppress different aspects of HER2 signaling, their combination is expected to inhibit 

HER2 more effectively.  A1 was treated with Pertuzumab and Trastuzumab, both 

alone, and in combination to study their effect on Akt activation (Figure 6.3). Akt 

showed a markedly decreased activation in combination compared to either drug 

alone. The curve (in red) is the control before introduction of any drug into the 

system. The phosphorylation values for Akt ( responsible for proliferative activity of 

cells) were determined as a function of HER2-HER3 and HER3-HER1 dimer 

activation. 
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Figure 6.3 Akt activation plotted in A1 cell line on addition of Pertuzumab (P), Trastuzumab (T) 
and both (P+T) along with the Control(C).  

 

Figure 6.4 demonstrates the enhancement of ADCC when both the drugs are 

added in combination. Trastuzumab exhibits slightly higher ADCC compared to 

Pertuzumab. This holds consistent with the hypothesis that ADCC can be a 

mechanism for the decrease in signal activation. 
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Figure 6.4 ADCC of A1 cells on treatment with Pertuzumab (P), Trastuzumab (T) and both 
(P+T). ADCC measured for P-50000, T-50000, P+T- 75000; Bars represent standard error for 20 
simulations. 

 

Drugs exhibited significant anti-tumor activity in comparison with the control. 

Out of the three simulations, T+P combination therapy showed a significantly  

stronger anti-tumor activity  compared to their monotherapy (Figure 6.5). T+P 

showed ~25% decreased anti-tumor activity compared to T and P alone. However, 

Pertuzumab and Trastuzumab did not show substantial difference in their anti-

tumor activity. 



100 
 

 

Figure 6.5 Tumor size in A1 cell line treated with P-50000, T-5000 and T+P-75000. 

To examine the changes in Akt activation on treatment with different dosages, 

A1 cell line was treated with Trastuzumab, Pertuzumab, and both drugs 

simultaneously for doses (represented as agents in the model) ranging from 25000-

100000 agents. P+T proved to be saturated after a dose of 75000 agents (Figure 6.6 

C). Whereas, Akt activation decreases on increasing the dose of Pertuzumab (Figure 

6.6 A) and Trastuzumab (Figure 6.6 B). The anti-proliferative activity of pAkt is more 

sensitive to P than to T. 
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Figure 6.6 Activation of Akt for various doses of drug. A. A1 cell line treated with Pertuzumab at 
various doses (or number of agents used for simulation); 25000 (P-25), 50000 (P-50), 75000 (P-75), 
100000 (P-100). B. A1 cell line treated with Trastuzumab at various doses (or number of agents used 
for simulation); 25000 (T-25), 50000 (T-50), 75000 (T-75), 100000 (T-100). C. A1 cell line treated 
with Pertuzumab and Trastuzumab at various doses (or number of agents used for simulation); 25000 
(P+T-25), 50000 (P+T-50), 75000 (P+T-75), 100000 (P+T-100). 



102 
 

6.5.2 Simulation on D20 cell line 

Given the importance of downstream signaling in tumorigenesis, the timecourse 

activation of Akt was examined in D20 cell line. Akt activation in D20 cell line also 

showed decreased activation in combination compared to monotherapy (Figure 6.7). 

A1 cell line is different from D20 in the expression of HER1 and HER3 resulting in the 

formation of more HER2-HER3 heterodimers that lead to a higher Akt activation 

level. This proves that receptor concentration and affinity plays a significant role in 

target therapies. 

 

Figure 6.7  Akt activation plotted in D20 cell line on addition of Pertuzumab (P), Trastuzumab 
(T) and both (P+T) along with the Control(C). 

ADCC was also assessed to determine the role of drugs in the inhibition of Akt 

signaling. ADCC in D20 cell lines treated with dual drug were strongly inhibited 

compared to Trastuzumab and Pertuzumab treatment alone (Figure 6.8). 

 

 



103 
 

 

 

 

Figure 6.8 ADCC of D20 cells on treatment with Pertuzumab (P), Trastuzumab (T) and both 
(P+T). ADCC measured for P-50000, T-50000, P+T- 75000; Bars represent standard error for 20 
simulations. 

 

Tumor size of P+T decrease by ~16.7% from P and T alone (Figure 6.9). T and 

P shows a slight difference in their anti-tumor activity. Figure 6.10 shows the various 

doses of P, T and P+T used to determine the Akt activation. P+T showed tendency of 

saturation even at a lower dose of 50000 agents. 
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Figure 6.9 Tumor size in D20 cell line treated with P-50000, T-5000 and T+P-75000. 
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Figure 6.10 Activation of Akt for various doses of drug. A. D20 cell line treated with Pertuzumab at 
various doses (or number of agents used for simulation); 25000 (P-25), 50000 (P-50), 75000 (P-75), 
100000 (P-100). B. D20 cell line treated with Trastuzumab at various doses (or number of agents used 
for simulation); 25000 (T-25), 50000 (T-50), 75000 (T-75), 100000 (T-100). C. D20 cell line treated 
with Pertuzumab and Trastuzumab at various doses (or number of agents used for simulation); 25000 
(P+T-25), 50000 (P+T-50), 75000 (P+T-75), 100000 (P+T-100). 
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Even though, combination drugs show enhanced effects than each drug given 

alone, they do not necessarily indicate synergism (Chou, 2010). The determination of 

synergism requires quantitative analysis like isobolographic analysis, combination 

index (CI) (Tallarida, 2011) which is beyond the scope of this study. The aim of this 

simulation is to showcase how the agent-based model of the data analytics pipeline 

can be used for in silico drug trials (simulations) by defining the drug molecules as 

agents and following their action in the system.  

6.6  Summary 

Co-expression of the different receptors, the diversity in their ligand-independent 

and ligand-dependent activation, variation in their preference towards dimerization 

partners, and receptor-dependent specificity in cells play a major role in both 

redundancy in the HER network interaction and effective drug target identification 

(Goltsov, et al., 2014). We have demonstrated the effect of using drugs in 

combination than either of them alone, using the modeling pipeline architecture. The 

complementary action mechanisms of Trastuzumab and Pertuzumab provides 

complete blockade of HER2 compared to using them individually. Application of the 

modeling pipeline for combination studies reduces the number of costly experiments 

and test "what if" hypotheses that may not even be possible to achieve in the lab. 
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Conclusion 
 

7.1 Summary 

The remarkable achievements in molecular and cellular biology over the past two 

decades have resulted in the generation of huge amounts of experimental data.  To 

understand precisely the nature of biological systems requires supplementing the 

empirical with the quantifiable, and hence, a synergistic collaboration of 

experimental and computational methods. Most of the successes in biological 

research have come from the reductionist agenda - by reverse engineering biological 

processes in terms of the smallest entities. Each such exercise is only a partial 

representation of the system. However, the agenda of integration of these parts has 

to be addressed, in order to complete the story. This is the main objective which has 

been achieved by the reverse engineering - re-engineering pipeline architecture. 

The popular reductionist approach of reverse engineering with equation-

based modeling has succeeded in throwing light on the process of signal 

transduction, in parts and patches, generating repositories of unconnected data. Re-

engineering by analytics and learning models can probe into these databases to help 

piece together a system level understanding of signaling networks. The data 

generated by the top-down approach of mathematical modeling connects to the 

bottom up model of agents by encoding the mechanistic and parametric information 

into data-enriched rules. 

 ‘Act local to discover global’ is the basis for the agent-based re-engineering 

model for ErbB signal transduction (Chapter 4). Particularly, in an agent-based 

representation, patterns, structures, and system behaviours emerge by self-

organization of interacting heterogeneous agents. Integrating disparate sources of 

information and data on ErbB signaling by a data analytics pipeline, can provide new 

directions in translational research in ErbB network biology.  
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By establishing the link between receptor expression, dimer concentrations 

and their translation to signaling outcomes (Chapter 5), the agent-based re-

engineering model can be used to conduct in silico experiments for validation, 

predictions and testing hypotheses. Translation of basic mechanistic knowledge into 

clinically effective therapeutics is another application of interest (Chapter 6). The 

HER-targeting drugs act in many ways - by inhibition of dimerization, prevention of 

receptor formation, blocking ligand binding or blocking dimer complexes. By 

introducing drugs as agents all the above action mechanisms were studied for drugs 

Pertuzumab and Trastuzumab both alone and in combination. 

7.2 Future Perspectives 

The time scale of events varies from minutes to days for in silico drug trials. While 

signaling events at the molecular level take place in minutes, the life of the drug in 

the system is of the order of days. The current implementation does not take the 

granularity into consideration. As the rules to decide the fate of molecular species, 

depends on a comparison of rates and not the rates themselves, a coarse-grained 

time interval is used for each iteration. A timestep (time of an iteration) is the 

interval for agent interactions leading to the occurrence of an event. A scheme for 

taking care of fine to coarse-grained time resolution will be implemented in the next 

version. 

The ABM for ErbB signal transduction is built with parameter values taken 

from models in literature. The rates are formed from the dependency map in such a 

way that all major cellular events are represented. An elaborate sensitivity analysis 

needs to be carried out by perturbing the rates and by changing the choice of rules. 

ABMs have been used to model biological complexity across multiple scales 

from molecules to cells to societies.  However, mathematical and statistical tools for 

analysis are lacking and conclusions have to be derived from simulations alone. This 

is true of many of the open source tools also. Plugins for postprocessing of simulation 

data would go a long way in making ABMs more meaningful and attractive.  The 

framework on which this work was carried out, takes input from data files and logs 

output data that has to be analyzed offline. Building tools for visualization, graphing, 

and analysis, embedded in a GUI would make it user-friendly.  
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Ideally, an agent model simulates a system by creating its digital replica.  But, 

in practice, it is only possible to build a microcosm of the system.  The size of the 

model, initial conditions and parameters must be chosen with discretion so that the 

effects of miniaturization are minimized. Nevertheless, models still get too large 

which calls for research on two mathematical aspects of ABM, namely, optimization 

and control. 

7.3 Concluding Remarks 

Modeling complex systems with millions of agents, needs high computational 

requirements. Problem decomposition is one way to get around this problem. In the 

context of signaling pathways, early signaling events and the downstream cascade 

can be separated and modeled separately. The output of the former can be passed to 

the latter. High performance computing, code parallelization and cloud migration are 

other options available for large scale systems. 

The action of drugs on the ErbB target has been studied by in vitro and in vivo 

experiments on cells having a wide range of ErbB co-expression. In silico experiments 

can be conducted to investigate the action mechanisms of drugs on receptor-

mediated signaling, dose-response modeling, efficacy of drugs and the problem of 

drug resistance. Apart from guiding the in vitro and in vivo, the data generated from 

the wet lab can dynamically modify the model in a feedback loop. As big data is 

generated by high-throughput bio-technologies and computing hardware and 

software become more powerful and cheaper, the trilogy of in silico, in vitro and in 

vivo can lighten the burden on animal studies and shorten the lead time for drug 

development. 

Towards an integrated approach for a better understanding of a complex 

phenomena, one needs to begin at the level where there is maximum information and 

understanding, and move from the known to the unknown.  In a more general sense, 

this work can be summarized as an effort to drive reductionism towards emergence 

using the power of data and deep data analytics. This is a philosophy that can have a 

far-reaching impact on the way data science works to elucidate the dynamics of 

complex systems. 
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APPENDIX I 

TABLE OF ABM TERMINOLOGY 

 

Entity An independent element of the model, such as a cell 

or protein. 

Agent Autonomous set of entities comprising the system, 

their attributes and goals 

Compartment/Environment Computational representation of the physical space 

within which agents are contained 

Neighbour An agent that exists within the neighbourhood of 

another agent. 

Model A non-executable description of a system, which may 

be described in an abstract manner, or for a 

platform-specific implementation as a simulation. 

Simulation An executable implementation of a model 

specification 

Step An iteration in time 

Multiscale A model combining processes occurring at different 

orders of magnitude of time and length. 
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APPENDIX II 

Input parameters for the simulation 

 

egf_num Number of EGF 50000 

hrg_num Number of HRG 30000 

Erbb1_num Number of ErbB1 80000 

Erbb2_num Number of ErbB2 300000 

Erbb3_num Number of ErbB3 40000 

erk_num Number of Erk 25000 

akt_num Number of Akt 20000 

Trast_num Number of Trastuzumab 50000 

Pert_num Number of Pertuzumab 50000 

MaxSize Total number of agents 645000 

egf_binding_rate Rate at which EGF binds to the receptor 0.63 

hrg_binding_rate Rate at which HRG binds to the receptor 0.73 

egf_disso_rate Rate at which EGF dissociates the receptor 0.12 

hrg_disso_rate Rate at which HRG dissociates the receptor 0.34 

trast_binding_rate Rate at which Trastuzumab binds to the receptor 0.1 

pert_binding_rate Rate at which Pertuzumab binds to the receptor 0.1 

trast_disso_rate Rate at which Trastuzumab dissociates the 

receptor 

0.12 
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pert_disso_rate Rate at which Pertuzumab dissociates the receptor 0.34 

dimerization_rate Rate at which monomers form dimers 0.2 

Threshold Threshold for ADCC 5000 

timestep A period in which the agents can interact with each 

other and the drugs to carry out a unit action. 

1 

 
*Units for rates are in /min 
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APPENDIX III 

Flow chart for ligand and receptor action 

 

 

  



121 
 

APPENDIX IV 

Pseudocode 

 

Main Algorithm 

 

Initialise the agents in the compartments PM and EE 

Initialise rule vector 

repeat for every time step=1minute until 100 minute 

repeat for every agent 

 if agent has undergone a state change in this time step 

 then go to the next agent  

  else 

   if agent is a ligand then Call function Ligand_Action 

   if agent is a receptor then 

if agent is a monomer on PM then Call function 

Monomer_PM 

if agent is a monomer on EE then Call function 

Monomer_EE 

   if agent is a dimer on PM then Call function Dimer_PM 

   if agent is a dimer on EE then Call function Dimer_EE 

if agent is a Erk then Call function Erk_Action 

if agent is a Akt then Call function Akt_Action 

if agent is a Drug then Call function Drug_Action 

   end if 

   end for 

  write output file 

  calculate average rate values 

  determine new rule vector 

  initialise all local rates to zero 

end for 
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Ligand_Action, Receptor_Action (which includes Monomer_PM, Monomer_EE, 

Dimer_PM, Dimer_EE ), Erk_Action , Akt_Action, Drug_Action are functions of the 

decision engine. 

 

Ligand_Action()  

if ligand agent is located Outside 

 if random value is lesser than EGF/HRG binding rate 

 then bind to unbound EFGR/HER3 monomer agent 

end if 

if ligand agent is located in PM and bound to EGFR/HER3 monomer agent 

 if random value is lesser than EGF/HRG dissociation rate 

 then dissociate the ligand from receptor 

end if 

 

Receptor_Action()  

 

Monomer_PM() // receptor agent is a monomer located in PM 

Identify the rule subset pertaining to monomer in PM 

if rate rules favour Internalisation or Dimerization 

Change state/location of agent 

else if rate rules favour Internalisation and Dimerization  

 Randomly select one event 

 Change state/location of agent 

else 

 No change in state/location of agent 

 

Monomer_EE() // receptor agent is a monomer located in EE 

Identify the rule subset pertaining to monomer in EE 

if rate rules favour Degradation or Dimerization 

 Change state/location of agent 

else if rate rules favour Degradation and Dimerization 

 Randomly select one event 

 Change state/location of agent 



123 
 

else 

 No change in state/location 

  

Dimer_PM()// receptor agent is a dimer located in PM 

Identify the rule subset pertaining to dimer in PM 

if rate rules favour Internalisation or Dissociation 

 Change state/location of agent 

else if rate rules favour Internalisation and Dissociation 

 Randomly select one event 

 Change state/location of agent 

else 

 No change in state/location 

 

Dimer_EE()// receptor agent is a dimer located in EE 

Identify the rule subset pertaining to dimer in EE 

if rate rules favour Degradation or Dissociation 

 Change state/location of agent 

else if rate rules favour Degradation and Dissociation 

 Randomly select one event 

 Change state/location of agent 

else 

 No change in state/location 

 

 

Erk_Action()  

if Erk agent is located Cytoplasm and not phosphorylated 

 Randomly choose a receptor 

 if receptor is HER1-HER1/HER1-HER2 and  random value is lesser than Erk 

binding rate  

then phosphorylate the agent 

end if 

if Erk agent is phosphorylated 
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then dephosphorylate the agent 

end if 

 

 

Akt_Action()  

if Akt agent is located Cytoplasm and not phosphorylated 

 Randomly choose a receptor 

 if receptor is HER2-HER3/HER1-HER3 and  random value is lesser than Akt 

binding rate  

 then phosphorylate the agent 

end if 

if Akt agent is phosphorylated 

then dephosphorylate the agent 

end if 

 

 

Drug_Action()  

if drug agent is located Outside 

 if random value is lesser than Pertuzumab/Trastuzumab binding rate 

 then bind to unbound and non-mutated HER2 monomer agent  

 set domain II/IV to bound 

end if 
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