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Abstract

Sonar utilizes underwater sound propagation to explore the presence, location or

nature of artifacts in the sea in order to navigate, communicate, or detect other

vessels or targets of interest. Acoustics is the best known modality to investigate

the water column and sea bed e�ciently and accurately. Sonar systems are used

for the generation of acoustic images and sea bottom pro�ling. The sonar image

is a low frequency image with less details and hard to be recognized. Owing to

the complexity of the channel and the manners of the sound spreading, the sonar

images are not easily interpreted by inexpert human operators, and applications

like automatic object detection and recognition can turn out to be rather di�cult

compared to the optical image. There are many disadvantages to a purely visual

interpretation of such images as it is subjective, qualitative and time consuming. Due

to the imaging sonar limitations, straight forward image processing is not enough

to detect the obstacles and computer-assisted information brings an objective and

quantitative assessment to help the interpreter. Computer-assisted interpretation of

sonar images aims at enhancing the visibility of objects, relations between objects

and in some cases, it can also bring information that was invisible to the human

eye for physiological reasons like texture-oriented analysis. In the study of acoustic

imaging, the need arises to classify objects located on or near the sea bottom. The

classi�cation process can be related to various areas of interest, such as sea-bottom

pro�ling, mine hunting, under sea navigation and target tracking.

Images formed with coherent energy, such as sonar images, su�er from speckle

noise, which reduces spatial resolution by giving a variance to the intensity of each

pixel. While Gaussian noise can be modeled by random values added to an image,

speckle noise can be modeled by random values multiplied by pixel values and hence

called as multiplicative noise. Because speckle is di�cult to distinguish from the

real signals at the limit of resolution of the sonar, it proves hard to remove without



xii

a�ecting signi�cantly the image. Prior to attempting to segmentation and feature

extraction in the image, the speckle noise must be removed.

The thesis entitled 'Blind Estimation of Sonar Images from Diverse Speckle-

Scene Models' proposes di�erent speckle-scene models for the sonar image estimation

and analyses the models in both the transform domain and spatial domain. The

report presents objectives of the research work, review of past works reported in

open literature related to various techniques used for denoising of sonar images for

computer assisted interpretations. Among the di�erent models investigated, the

work considers two di�erent speckle-scene models vis-a-vis the signal independent

additive noise model and the multiplicative noise model. For the signal-independent

additive model, in the transform domain a mutiresolution analysis method and the

sparsity of the natural sonar images are exploited for the denoising and in the spatial

domain a kalman �lter based estimation method is used to denoise the side scan sonar

image. For the mutiplicative noise model, in the transform domain a mixed noise

removal based on probabilistic patch based processing is employed and in the spatial

domain, the fractional integral mask based method and an unscented kalman �lter

based estimation method is adopted. The image enhancement done on a despeckled

sonar image emphasizes the importance of despeckling before further processing.

The non-refernce metric value comparisons and visual comparisons highlights the

superior performance of the di�erent proposed methods compared with the existing

ones.
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Chapter 1

Introduction

The study of underwater images, has gained considerable signi�cance due to its

strategic as well as commercial importance. Many regions of the ocean and the

sea�oor remain unexplored due to the limitations of underwater imaging. Being a

turbid medium, water scatters light leading to absorption by suspended sediments in

it. This severe attenuation as well as limitation in the distance of propagation makes

light an unsuitable entity in the underwater studies leading to the use of SONAR

for underwater imaging.

This chapter deals with the area of research work undertaken, and the reason for

and signi�cance of the work. It elaborates the image characteristics and the types

of noise a�ecting sonar images, as well as the characteristics of typical sonar images

a�ected with noise. The applications of sonar images, with an emphasis on the need

for denoising, are detailed. The chapter concludes with details of the organization

of the present thesis.

1.1 Sonar Imaging

The term "SONAR" is an acronym for "SOund NAvigation and Ranging". SONAR

uses sound propagation underwater, to navigate, communicate, and detect other

vessels or targets of interest. The operation of a sonar system is based on the propa-

gation of sound waves between a target and a receiver underwater. They are classi�ed

into passive sonars or active sonars. Passive sonars record the sounds emitted by

other underwater objects. Active sonars, the system of choice for sonar imaging, can

be modeled as an acoustic plane wave (with frequency typically in the 100kHz to
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2MHz range) emanating from a point source. SONAR then listens for the echoes of

these emitted sound signals returned by remote underwater objects. Electro-acoustic

transducers are used for the transmission and reception of these acoustic waves. As

the plane wave travels through a medium such as the ocean, many factors like tem-

perature, depth, pressure, salinity and surface weather conditions in�uence it. As it

strikes the target, part of the energy is re�ected back towards the sonar, whereas the

remaining energy passes through the target and strikes the seabed. Depending on

the nature of the seabed, part of the incident energy is re�ected, and the remaining

energy is transmitted into the bottom sediment layer. The energy transmitted within

the bottom sediment layer further undergoes transmission and re�ection, depending

on the characteristic impedance of the local material present. The local character-

istic impedance varies depending on whether the bottom is composed of mud, mud

and sand, or sand and rock.

Today, sonar systems provide near-photographic high-resolution images of under-

water areas, even in water with zero visibility to the human eye. The characterization

of these high-resolution sonar images is important for a number of practical appli-

cations such as marine geology, commercial �shing, o�shore oil prospecting, and

drilling.

1.2 Sonar Image Characteristics

In sonar images, there are fewer gray degree classes in the object, because of the

complexity of the underwater environment. The intensity is related to the changes

in acoustic pressure, as measured by the hydrophone arrays on the sonar system,

and can easily span several orders of magnitude and hence a logarithmic scale, in

decibels, is used.

The properties of acoustic transmission, and the subsequent method of generation

of sonar images, produces images that are of poor visual quality. These do not

provide a direct representation of the seabed. As a result of the relatively low

velocity of propagation, the time taken for the acoustic signal to travel from the

source to the seabed and return is signi�cant with respect to the capture time of the

signal; the sonar therefore displays the returned signal as echo intensity against time.

The images are further distorted because of this time-based display and the motion

of the transducer during the capture process. The actual resolution of features

on the seabed determinable from the images is dependent on the sonar operating
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characteristics, in particular the frequency, pulse length and directivity. In addition,

the images are not unique as completely di�erent features on the seabed can appear

similar on the sonar record.

Three types of regions [1] usually have to be identi�ed in high-resolution sonar

images such as highlight, shadow, and sea�oor reverberation as shown in Fig.1.1. Due

to the relatively high density of objects like rocks, or man-made items, the return

intensity from the front surface point A is much stronger than the background. There

are also multiple returns from points just in front of the object. The sonar shadow

points B − C after the object due to the majority of the energy being re�ected is a

very useful marker for the object.

Fig. 1.1: The formation of an object in side scan sonar images

The highlight area originates from re�ection of an acoustic wave from the object,

whereas the shadow zone is due to a lack of acoustic reverberation behind the object.

The region of interest is usually the highlight or the shadow area because the highlight

features are generally less discriminable than the shadow shapes for the classi�cation

of objects on the sea�oor. The sea�oor reverberation region is more di�cult to

di�erentiate as it contains a large amount of speckle noise. The gray values associated

with some substances, such as rocks, animals, and impurities, are close to those of

the highlight and shadow regions.

While sonars allow large portions of the seabed to be scanned at once, the ob-

jects of interest in these images are usually very di�cult to detect. These objects,

camou�aged by the sea �oor, are often di�cult to notice except for the faint trace
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of a characteristic shadow adjacent to a bright highlight region. Additionally sonar

images are very sensitive to the grazing angle, which can make the same underwater

object appear completely di�erent depending on its surroundings. The factors like

texture of the object and characteristics of the medium cause signi�cant di�erences

in patterns within the class.

1.2.1 Speckle E�ect on Sonar Images

Images formed with coherent imaging such as laser imaging, radar, and ultrasonic

imaging, su�er from high frequency speckle noise. This reduces spatial resolution

by giving a variance to the intensity of each pixel. In sonar imaging, the acoustic

waves are no longer in phase after interaction with the sea�oor, and constructive or

destructive interferences may occur, producing anomalously high or low returns.

Speckle is described as one of the more complex image noise models and it is

signal-dependent, non-Gaussian, and spatially-dependent. Each speckle image is an

image of the scene corrupted by some random phase-error. Speckle-noise appears as

a particularly strong multiplicative noise where the variance of a point is identical

to its mean. While Gaussian noise can be modeled by random values added to an

image, speckle noise can be modeled by random values multiplied by pixel value.

Hence, it is also called multiplicative noise.

Despite the large range advantage over the standard vision, sonar imaging suf-

fers from several drawbacks like having lower Signal-to-Noise Ratios (SNR), due to

acoustic wave interference, and containing almost homogeneous and textured regions

with relatively rare edges [2]. The acoustic waves re�ected from the sea-bottom can

have greater energy than the ones re�ected from the obstacles, leading to false obsta-

cle detection or to undetected ones. The other drawbacks include the limitation of

transducer size, resulting in a lower number of pixels, lower resolution, and the range-

resolution dependency i.e. using long sound waves results in larger range imaging,

but with limitations in detecting small objects.

1.2.2 Sonar Image Heterogeneity

The sonar image despeckling �lters can be adjusted to the heterogeneity of sonar

images [3]. The rationale is that in true sonar images at least three statistical classes

can be recognized: homogeneous, textured, and strong, or persistent, scatterer. The

�rst class is characterized by a spatially constant re�ectivity and in this case the
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best estimator is a plain average of intensity pixel values in a neighbourhood. Pixels

belonging to the third class should be detected and left unprocessed, as they are in-

trinsically noise-free and are used for calibration, registration, etc. The intermediate

class a�ected with speckle noise can be processed through the desired despeckling

�lter. In Lopeset.al. [4], the coe�cient of variation is used to discriminate among

the three classes.

1.2.3 Purpose of Noise Removal in Sonar Images

Sonar is a valuable tool for imaging the bottom of the sea to obtain information

for detecting and classifying targets or bottom types of interest [5]. Owing to the

complexity of the signal channel and the manners of the sound spreading, the char-

acteristics of the sonar image are di�erent from the optical. Sonar image of an object

will closely resemble the optical image of the same, but will have less resolution than

the optical image.

Some regions on the sonar images are analyzed by the experts by simple obser-

vations of such images. This observation process is disturbed by the speckle noise.

Speckle reduction �lters are very important in the initial phase to increase the de-

tection or classi�cation performances. Such a �lter must realize a great speckle

reduction in the regions where the re�ectivity is constant, while preserving the de-

tails in other regions. Also, Speckle removal is a pre-processing step required in

applications like segmentation or registration. The use of speckle reduction �lters is

necessary to optimize image exploitation procedures.

Speckle noise causes a fragmentation of objects, and poor spatial directivity and

resolution, which results in blurring e�ects around objects and hinders the interpre-

tation of the image content. As speckle is di�cult to distinguish from the real signals

at the limit of resolution of the sonar, it proves hard to remove without signi�cantly

a�ecting the image. Prior to attempting for segmentation and feature extraction in

the sonar image, the speckle noise must be removed.

1.2.4 Denoising of Sonar Images

Image restoration is the removal or reduction of degradations that are incurred while

the image is being obtained. If a speckle-scene model can be developed for the

degradation process, then the inverse process can be applied to the image to restore

it back to the original form. The basic idea behind this is the estimation of the
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uncorrupted image from the distorted or noisy image, and is also referred to as

image "denoising". Denoising methods tend to be problem speci�c. Selecting the

appropriate method plays a major role in getting the desired image.

Denoising is required in sonar images to distinguish di�erent regions by analyzing

the image. Two common approaches exist for despeckling of images.

The �rst approach is to average several images acquired from the same scene,

which is called multi-look processing or super-resolution and uses the local statistics

computed on several images. In that way the speckle noise will be reduced due to

its random nature, while the observed scene will not be degraded. The mean �lter

averages the speckle in the data but lowers the resolution. Local distributions of

gray levels are approximated by Gaussian or gamma statistics. Mean and variance

are computed on small moving windows, and pixels with mean and variance too far

from the image mean are considered as speckle, and averaged. The results vary from

one sensor and one wavelength to another, and no generic despeckling algorithm has

yet been found.

The second technique is based on �ltering the speckle noise based on a single

image using a two-dimensional �lter such as standard low-pass and median �lters

or adaptive ones. The non-linear median �lter was chosen since active sonar images

su�er from coherent speckle with a negative exponential probability distribution

function for the image magnitude. Linear �lters change only the speckle size but do

not remove the speckle.

1.3 Computer Assisted Interpretation of Sonar Images

Traditionally, the visual interpretation of sonar imagery, a skilled procedure, has

been performed by trained interpreters. Urick [6] presents the distinct advantage

of using the skill of the interpreter to the limits, often unattainable by computers.

Since purely visual interpretation of sonar image is subjective, qualitative, and time

consuming, a computer-assisted interpretation technique is the choice today. Com-

puter assisted interpretation include image enhancement, contour-oriented analyses,

texture-oriented analyses, data fusion and geographic information systems, neural

networks and genetic algorithms, and image compression. It aims at enhancing

the visibility of objects, relations between objects, and can also bring information

that was invisible to the human eye for physiological reasons. Most importantly,

computer-assisted information brings an objective and quantitative assessment to
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help the interpreter [7].

The human interpretation, the accuracy of computer-assisted methods, and the

e�ective application of automated computer aided analysis on sonar images are lim-

ited by the image degradation due to speckle. Speckle e�ect often makes feature

extraction, analysis, recognition, and quantitative measurements problematic and

unreliable on sonar images.

1.3.1 Signal Conditioning

The proliferation of sonar images produced by di�erent equipments: multibeam

echosounders, side scan sonar, forward looking imaging sonar [8], and the large

number of processing methods, created the necessity for expert systems for assisting

the decision making process. The basic functionality of such an expert system is

the representation and the analysis of sonar data, organized as a "multilayer" struc-

ture de�ned by its various attributes like bathymetry, image, angles, and raw data

from auxiliary sensors. These data can be represented and processed using various

techniques either classical signal and/or image processing or techniques speci�c to

sonar.

The goal of an expert system for sonar images is to achieve three main tasks:

quality control, data processing and data interpretation. There are two classes of

signal processing techniques used in an expert system for sonar images. The �rst

one represents the so-called image conditioning methods. The second class of signal

processing methods applied in sonar expert systems is represented by the so called

intelligent image processing techniques: segmentation, textures analysis, classi�ca-

tion.

For correction or alleviating the recorded sonar data �aws, a number of image

processing techniques, such as noise �ltering, radiometric corrections, contrast en-

hancement, deblurring through constrained iterative deconvolution, and navigation

corrections in computer mosaics of multiple swaths, have been implemented. Initial

signal conditioning include all the instruments and techniques that can improve the

signal before the sonar image formation.

The distinct stages in the transformation of raw sonar data into usable images

are as in Fig.1.2.
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Raw Sonar Data

Pre-Processing

Processing

Radiometric Corrections     

Geometric Corrections

Map Production

Post-Processing

Computer Assisted Interpretation

(mosaicking, stencilling, rubbersheeting)

(requantization, across-track + along-track)

across-track + along-track

Fig. 1.2: Typical data processing chain

1.3.2 Pre-processing

For the preparation of the raw sonar data for processing, �rst step is the conversion

between the format delivered by the data acquisition system and the format (.xtf

format) of the processing software, and further merging these disparate �les into a

consistent data set.

1.3.2.1 Navigation and Attitude

In order to accurately locate the di�erent sonar echoes on the seabed, knowledge

about the location of the sonar (navigation), the direction of imaging (attitude),

and the area of the sea�oor being ensoni�ed is required. The above said information

is provided by the combination of position information (latitude, longitude, altitude

above a reference datum), heading, speed, and attitude information. The features

on the sea�oor can be arbitrarily merged, distorted, or truncated if navigation pre-

processing and attitude pre-processing are not done.
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The attitude information which consists of the four types of movements heave,

roll, pitch, and yaw is shown in Fig.1.3. Heave corresponds to the small-scale vari-

ations in the altitude of the sonar platform (in the YZ plane). Roll is the lateral

movement of the tow�sh around its longitudinal axis (in the YZ plane). Pitch is

the side-to-side movement of the nose and tail of the tow�sh around its horizontal

axis (in the XZ plane). Yaw is the side-to-side movement of the tow�sh around its

vertical axis (in the XY Plane).

Fig. 1.3: The attitude variations of the surveying platform

1.3.3 Processing

The radiometrically and geometrically correct representation of the sea�oor is ob-

tained after the processing step, which transforms raw swath data to usable images

or grids. This step includes map production process like mosaicking/stencilling and

grid interpolation/rubbersheeting. Radiometric corrections include requantization,

across-track corrections, and along-track corrections. Geometric corrections include

slant range correction and anamorphosis.

1.3.3.1 The Along-track and Across-track Resolution

Resolution is decided by the acoustic beamwidth, and the pulse length, which de�ne

the size of the acoustic footprint. Limits on the range (swath width) are set by the
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intensity of the received signal, which must be signi�cantly above the system noise

level, together with insoni�cation geometry and time.

One of the factors in�uencing the across-track resolution of the sonar image is

the length of the pulse of acoustical energy emitted by the transducer. The pulse

has a physical extent in the water which is determined by the sound speed. By the

time the trailing edge of the sonar pulse has left the plate of the transducer the

leading edge travels a distance equal to the pulse length in seconds multiplied by

the sound speed. The outgoing pulse in the water is thus an expanding wavefront

of �nite extent. The length of the pulse a�ects the range resolution and determines

the theoretical minimum separation at which two objects on the seabed can be

detected. This minimum separation is half the physical length of the pulse. A longer

pulse length will encompass the two objects and the returning echo will resemble a

single target. A shorter pulse will correctly record the two targets separately. The

higher frequency 500kHz sonars with typical pulse lengths of 0.0lms therefore have

a theoretical resolution a factor of ten greater than the medium frequency 100kHz

systems with pulse lengths of 0.lms.

The along-track, or transverse, resolution of the sonar is in�uenced by the �nite

dimensions of the transducer directivity in the horizontal dimension. The resolution

of the images clearly degrades with increasing horizontal beam widths, and this can

result in the inability to distinguish two targets which are spaced closely together

in the along-track direction. The transverse resolution also degrades with increasing

range from the transducer due to the beam spreading. The along-track resolution

is a function not only of the horizontal beam width but also of the tow speed and

the pulse repetition rate. The latter two factors are operator controllable and their

e�ect on the image can be minimised or at least quanti�ed.

The directivity of the sonar will be a function of the shape and dimensions of

the transducer array, as well as the frequency used. The beam pattern needs to be

narrow along-track and wide across-track. Sidelobes are generally inevitable, but

use of the right frequency, or the right technology, should ensure they are pointing

in directions from which re�ections are unlikely to be recorded.

1.3.3.2 Mosaicking/Stencilling

The next processing involves placing each pixel in a geographic reference frame to

assemble a mosaic of the various survey segments considered. To this end, the
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acoustic backscatter data are merged with navigation data (time, latitude, longitude,

and heading), in real-time during data acquisition or in post-processing by matching

recording times. Pixels are then mapped from the rectangular frame used for �ltering

to a new rectangular grid of geographic coordinates computed according to standard

map projections. The choice of cell size for the geographic grid depends on the

spatial resolution of the sonar data available. However, depending on the resolution

and scale of the geographic grid, there might be gaps between these remapped pixels.

Between adjacent pings, such gaps form polygons that need to be �lled before the

image is displayed. Subsequent conversion from computer memory to a physical

image will alter this resolution depending on the plotting device and its internal

algorithm. The processed sonar imagery is composed of picture elements or pixels

located by relative coordinates.

In order to produce large-scale classi�ed maps of the seabed, it is necessary

to register the individual sonar images [9]. Given the position of the sensor in

the world for each side-scan beam, produce a geo-referenced image of the seabed.

Georeferencing, also known as geocoding, is the transformation of these relative

coordinates into absolute coordinates such as latitude and longitude and is the �rst

step toward the merging of images and the production of maps. The geo-referencing

process sometimes stretches or contracts pixels from the individual input images to

allow mosaics creation of the correct resolution.

The merging of di�erent images are decomposed into two parts: mosaicking and

stencilling [10] as shown in Fig.1.4 and Fig.1.5. When the boundary between two

overlapping images is linear, or when overlapping pixel values is averaged, mosaicking

merges them into a single data set. Stencilling happens when the border between

these images is more complex or when averaging of pixel value is to be avoided, the

boundary need to be de�ned by hand. Stencilling is used particularly when two side

scan swaths imaged with opposed directions are overlapping.

Map1

M
ap

 2

Fig. 1.4: Overlapping images merged by mosaicking
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Map 2

M
ap

 1

Fig. 1.5: Overlapping images merged by stencilling

1.3.3.3 Interpolation/Rubbersheeting

Simple interpolation schemes average overlapping pixels with the mean or median

values. More complex interpolation methods are available such as krigeing, poly-

nomial or spline-�tting, or �nite element techniques. The accuracy of interpolation

depends on the original spacings and trends of the points. The most elaborate inter-

polation schemes are used to "tie" an image with inaccurate or imprecise positioning

to another precisely located image or series of points. The last process, called rub-

bersheeting, is most often used to co-register a sonar image to a bathymetric map.

1.3.3.4 Range normalization

Range normalization is a signal amplitude correction designed to conserve the across-

track signal dynamic. Signal amplitudes decrease with time or distance from the

sonar because of attenuation in the water column. Range normalization using the

second order statistics of the signal like mean and standard deviation improve the

e�ciency of the process across the entire signal range.

A normalization process based on the average signal intensity for each grazing

angle [11] is used to correct the sonar beam pattern across the swath. The changes

in the attitude of the tow�sh cause a noise along the track. Assuming that the

total back-scattered energy from each ping is similar to that of adjacent pings in the

time series, this noise can be eliminated, following which smooth and clear waterfall

display can be produced.

1.3.4 Post-processing

Post processing includes the computation of statistics, histogram manipulations,

speckle removal, cosmetic operations like contrast enhancement, removal of the

survey-scale noise, and multiple re�ections.



1.3. Computer Assisted Interpretation of Sonar Images 13

1.3.4.1 Despeckling for Object Classi�cation

In the study of acoustic imaging, the need arises to classify objects located on or

near the sea bottom. The classi�cation process can be related to various areas of

interest, such as sea-bottom pro�ling, mine hunting, under sea navigation and target

tracking. Due to the imaging sonar limitations, straight forward image processing is

not enough to detect the obstacles, and therefore advanced approaches as in Fig.1.6

are used.

Noise SuppressionImaging Sonar Segmentation Feature Extraction Descriptors

Fig. 1.6: Sonar image processing

Although sonars display many features similar to an optical sensor from a purely

image processing point of view, the basics of the physics and formation of the im-

ages are crucial for understanding the di�culties found when detecting and classi-

fying mine like objects (MLO's) in sonar images. The classi�cation and detection

of MLO's is traditionally carried out by a skilled human operator. This analysis is

di�cult due to the large variability in the appearance of the sonar images as well as

the high levels of noise usually present in the images. With the advances of AUV au-

tomatic techniques, computer aided detection/classi�cation (CAD/CAC) of mines,

are required to replace a human operator.

The interpretation of the side scan sonar data is performed in two stages [12].

The �rst stage, pre-processing and target detection, uses an adaptive thresholding

algorithm coupled with an adaptive averaging technique to locate objects of interest

in the sonar image. The detection strategy incorporates two principal algorithms,

adaptive thresholding and shadow analysis on data smoothed by adaptive averag-

ing. The technique presented in [13] is based on the hypothesis that variations in

backscatter of sound energy from di�erent ocean bottoms may be described in terms

of changes in the texture and tone of sonar images. Measures of texture and tone

are derived from the �rst order statistics of the spatial variation of bottom returns.

This textured areas will be a�ected with speckle noise and will have to be despeckled

before shadow analysis.

The second stage, classi�cation, performs a binary classi�cation of whether each

detected object is, or is not, a mine. The classi�cation is achieved using an attribute-
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based decision tree. The input to this algorithm is a set of objects of interest de-

termined by the detection stage. Classi�cation is performed in four steps: locating

the downrange end of the shadow, computing the ratio of object to shadow average

intensity, computing the diameter of the object, and classifying based upon these

two measured attributes.

Langner et.al. [14] explains the required resolution for the detection, classi�cation

and identi�cation process of objects in side scan sonar images. It also describes the

preprocessing including normalization, height estimation plus slant range correction

and georeferencing need before applying di�erent detection algorithms.

The method applied to extract and investigate the power spectral density was de-

veloped by Pace et.al. [15], [16], [17] for the classi�cation of sediment types from side

scan sonar images. Their classi�cation technique involves the de�nition of features

to classify the spectral response of the sediments.

1.4 Computer Assisted Analysis - Applications

The sonar systems generate high resolution images using acoustic transducers, oper-

ating at sound or ultrasound frequencies. They exploit techniques developed in the

radar �eld and the capabilities of the high resolution imagery in a great number of

applications such as marine geology, commercial �shing, o�shore oil prospecting and

drilling, cable and pipeline laying and maintenance and underwater warfare. The

other applications of imaging sonars include remote sensing and classi�cation of the

seabed, inspection of �sheries and channel observation for dredging purposes, as well

as object detection.

The marine geology application includes the study of geological structures and

detection of sediment distribution. Sonars give scientists the ability to perform large

scale geological and biological surveys in search of the most interesting areas of the

seabed. During a typical mission, sending sonar images back to the surface ship,

rather than simply storing them on the autonomous underwater vehicles (AUV),

allows end-users to follow the progress of the survey and redirect the vehicle, if re-

quired. This gives rise to the question of e�ciently sending data from the sonar back

to the surface ship, over a low bandwidth (typically less than 10kbps) acoustic com-

munication channel. In such scenarios, compressing side scan sonar images become

an essential task.

The coastal engineering applications include the monitoring of sand transport,



1.5. Data Base 15

site inspection for gravity structures, pipe lines inspection and detection of man-made

objects. There are numerous applications of sonar image in addition to surveying

the topographic features of the sea�oor like to examine or search for objects on the

seabed or in the water column. Such applications include pipeline inspection, where

the pipeline on the seabed is examined for underlying spans due to erosion; or mine

counter measures applications where channels are surveyed to detect and classify

objects on the seabed. The objects in both these cases are man-made and as such

have a regular shape.

The hydrographic surveying applications include the detection of wrecks and of

other obstructions to navigation, and qualitative topographic information as guid-

ance to completeness of soundings coverage and to depth contouring from sounding

lines.

In military applications, due to mission speci�c time constraints, a computer

aided or even autonomous analysis of the huge amount of data is desired. Mines

placed on the sea �oor are a threat in civil and military shipping. It is suitable

for identifying regions of interest in sonar images, in particular the detection of

anomalies on the sea �oor with focus on proud ground mines.

1.5 Data Base

The techniques presented in the thesis have been developed mostly with the data

gathered by the EDGETECH bathymetric side scan sonar system. The methods

developed can be applied to di�erent sonar images from di�erent sources. The dy-

namic range of the recorded data is assumed to span 256 levels, i.e., 8 bits per datum.

In its normal mode of operation this sonar is usually towed at about 8− 9knots. It

transmits a 1ms pulse of 11kHz on port and 12kHz on starboard, and the sea�oor

echoes received are displayed to create an image whose width corresponds to a swath

about 10km wide. The tow speed and ping rate combination decides the along-track

spatial sampling interval and the width of this along-trackalong-track �lter is set

in relation to this. The spatial sampling interval is usually much larger along-track

than across-track, decided by the signal bandwidth. In the case of this system, there

is an average of 40m between pings under normal operating conditions of 8knots,

10s ping rate.

Other short range, high resolution sonars EGG272, Klein422S are dual fre-

quency and to improve the across-track resolution, it can be switched from frequen-
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cies around 100kHz to 500kHz in the vicinity of targets or areas of interest. With

the pulse repetition rate increased, the along-track resolution is simultaneously up-

graded. For imaging larger ranges, lower frequencies and longer pulse lengths are

used. The low frequency sonars like GLORTA produce lower resolution images of

larger areas of the seabed, with typical resolution cell dimensions of 50m by 500m

and are used to form images of large areas of the seabed or large scale topographic

features such as oceanic ridges and sea-mounts.

A shallow-towed side scan sonar system such as SeaMARC11, requires the relief

�uctuations be at least an order of magnitude smaller than the local water depth.

The backscatter images are made of contiguous across-track line segments, with each

segment constituting a quasi-continuous element of information. As side scan sonars

gather information on a ping by ping basis, to correct the erratic signal amplitude

variations between adjacent pings, make a 1-D spectral analysis of each line or ping

and then the spectral components are processed in the perpendicular direction along-

track. The signals from the vehicle are reconstituted and recorded onto magneto-

optical disk on board ship. The pulse repetition period is set to 4s. With a 1kHz

digital sampler, 4000 amplitude samples per side scan array are recorded per ping

and each sample is stored in two bytes i.e. 16bits. This arrangement therefore

produces over 16kb of data every 4s, equivalent to about 15Mb every hour.

1.6 Organization of the Thesis

The thesis is organized as an initial introduction section of the work, the detailed lit-

erature review of sonar imaging technology and the existing despeckling techniques,

and the methodology adopted for the sonar image estimation based on the di�er-

ent speckle-scene models. The next two chapters dealt with the denoising based on

two of the speckle-scene models chosen, the signal-independent additive noise model

and the multiplicative noise model. In the next chaper a sonar image enhancement

applied on a despeckled sonar image is illustrated. Finally, the thesis concludes by

compiling the overall work and their results along with a brief description on the

scope for the future study.
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1.7 Summary

This chapter presents a state-of-the-art literature in the characteristics of sonar im-

ages a�ected with noise, and the various data processing steps involved which help

in sonar data interpretations. A detailed explanation of the types of noise a�ecting

sonar images, the importance of the denoising in the computer assisted interpreta-

tions of sonar images, application of sonar images and the organization of the thesis

is also briefed.





Chapter 2

Review of Sonar Imaging and

Despeckling

This chapter surveys acoustic features of the sea, types of sonar imaging systems

and the imaging of the sea by sound. A detailed review of di�erent speckle-scene

models and the existing despeckling methods is also briefed.

2.1 Introduction

The cradle of the sonar imaging is the art of imaging the sea by sound. The recent

progress in technical sound imaging the ocean is due to the the high speed computer

and data storage capability, the highly re�ned sonar hardware and the precise global

positioning satellite (GPS) navigation. There are three fundamental solutions of

imaging the sea �oor: The �rst is the high resolution underwater photography which

reaches to some tens of meters but is indispensable for certain applications. Second

is the satellite radar echo imaging the sea surface which provides a coarse copy of

the sea �oor beneath through its gravity anomalies. Third is the echo-imaging by

sound which is the solution for range and resolution.

2.2 Acoustic Features of the Sea

The sea is an impermeable screen for the signals of the electromagnetic spectrum

with visible light as an exception. The path length in pure sea water in the visible

wavebands is limited to few tens of meters towards the blue part of the spectrum
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with most of the light traveling into water being absorbed and converted into heat.

Acoustic waves by contrast [18], can travel over long distances without attenuating

too much and can reach all depths in the ocean, from the deepest (≥ 11km) to the

most common (≈ 4km) and the shallowest (a few centimeters). Acoustic echoes give

the information about the depth i.e., the range travelled and the type of seabed or

obstacle, based on how the signals are being re�ected.

Di�erent modeling process need to be considered for light and sound waves that

transmit energy through the medium due to several fundamental di�erences in the

two types of energy. The two types of waves di�er in the speed of propagation and

the wavelength. Considering light as the medium in air and sound as the medium in

water, the propagation of light in air approximately �ve orders of magnitude faster

than that of sound underwater. Due to the fast propagation of light, the temporal

nature of the light is not perceived by the eye and so the optical images are presented

in the spatial domain. On the other hand, the sonar image is displayed in the time

domain as it is generated by the di�erences in the times of return of the acoustic

energy. As sound has a much longer wavelength than light, the resolution of optical

images is much greater than that of sonar images. It is also a�ected by the scattering

behavior and the relative roughness of surfaces.

The Sound Velocity Pro�le (SVP) gives the variation of sound speed with depth

of the ocean. For the horizontally strati�ed environment, the sound velocity pro�le

is independent of range. For simpli�ed calculations majority of the acoustic models

assume horizontal strati�cation, due to the weak horizontal variations in sound speed

as compared with the vertical changes. Oceans and lakes are nearly horizontally

strati�ed in local regions because of the �uidity of water and the stability of less

dense over more dense water. The dimensions of the strati�ed region may be several

hundred kilometers in the open ocean. In the presence of oceanic fronts and eddies,

where the environment is range dependent, the horizontal strati�cation assumption

breaks down.

The broad categorization of the ocean is as deep or shallow water areas, where the

velocity pro�les di�er. That part of the ocean lying over the continental shelf where

the water depth is less than 200m is arbitrarily de�ned as the shallow water. The

typical velocity pro�le of deep water is illustrated in Fig.2.1, where below the ocean

surface the temperature decreases sharply with depth causing the main thermocline.

Beneath the thermocline there is a region of constant temperature, which results in

an increasing velocity pro�le, as the speed of sound increases with increasing depth.
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A near isothermal water column which results in a linear sound velocity pro�le with a

positive gradient is produced in shallow water by wind induced mixing. Absorption of

sound waves occurs when they propagate through the water column and the sediment

layers. The absorption results in a loss of energy as the wave propagates and involves

the conversion of energy into heat due to the non-ideal nature of the medium. The

loss of energy is expressed in terms of the logarithmic absorption coe�cient, usually

with units of decibels per kilometer and is proportional to the distance traveled in the

medium. The three main e�ects which results in the absorption of acoustic energy

by sea water are the shear viscosity, volume viscosity and ionic relaxation.

Fig. 2.1: Typical sound speed pro�le of deep ocean

Under water acoustic transmitters are called projectors and receivers hydrophones.

For sonar imaging the narrow band transducers are most suited. At the highest fre-

quencies, the acoustic waves use piezoelectric ceramics or composite ceramics for

converting electricity into acoustic pressure for projectors and vice-versa for hy-

drophones. The frequency f of the wave is related to the wavelength λ, the spatial

distance between two points in the propagation medium with the same pressure is

in eq.2.1,
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f =
c

λ
(2.1)

where c is the velocity of sound in the medium. It ranges between 1, 450m/s and

1, 550m/s in sea water, depending on salinity, pressure, and temperature.

Frequencies typically used with sonars range from 1kHz to 1MHz. Comparison

of frequencies typically used in under water acoustics with other domains of acoustics

is shown in Fig.2.2. For an average sound speed of 1.0m/s in sea water, the associated

wavelengths range from 1.5m at 1kHz down to 1.5mm at 1MHz. The wavelength

gives the scale of features that can be detected on the seabed.

Fig. 2.2: Under water acoustic range

2.3 Types of Sonar Imaging Systems

Attempts are made during the recent years to achieve the best resolution of acoustic

imaging under the prevailing conditions at sea with the development of underwater

acoustic techniques. The successor to the classical echo sounder is the multi-beam

or Fan echo-sounder for imaging the sea �oor relief and other objects. For imaging

the small scale morphology of the sea �oor and the shape of structures, the side

scan echo sounder is used. The Sediment Penetrating Sonar for imaging the internal

structure of layers and to detect buried objects and the acoustic doppler current

pro�ler for monitoring ocean currents. An Autonomous Underwater Vehicle can be

equipped with two types of sonar, a side scan sonar that is mounted on the sides of

the AUV and enables sea-�oor exploration and bathymetry, and a Forward Looking

Sonar that covers a sector in front of the AUV and helps in detection of the obstacles
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and path planning.

The three broad categories of the sonar mapping systems are the single-beam

echo-sounder, the multi-beam echo-sounder and the side scan sonar system as in

Fig.2.3.

Fig. 2.3: Sonar mapping systems

The single-beam echo-sounder, aims straight below the survey vessel and a wide

portion of seabed and sub-seabed is imaged at once. Mostly the information on the

seabed immediately below the surveying vessel is provided by such single-beam echo-

sounders which look directly beneath the supporting vessel. Depending on the water

depth and the local slopes, the footprint on the seabed which is generally large varies

in size. The multi-beam echo-sounder, maps a wide swath of seabed across the track

of surveying vessel are made of narrower beams. They provide mainly bathymetry by

looking on both sides of the vessel and sometimes imagery transmits several beams,

covering a wide swath on each side of the ship's track. These beams produced by

the transducer arrays are narrower than single beams. The systems using the "split

aperture" method is able to resolve targets smaller than the footprint. The side

scan sonar imaging at grazing angles are often towed separately and close to the sea

bed. When side scan sonars are �own closer to the sea �oor, they provide mainly

imagery which are more detailed and complex and sometimes bathymetry. Tool

of choice for high resolution seabed mapping is the side scan sonar which covers a

much larger portion of the seabed away from the surveying vessel, from a few tens

of meters to 60km or more. The coverage is attained by transmitting one beam

on each side, broad in the vertical plane and narrow in the horizontal plane. With
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varying frequencies from 6.5kHz to 1MHz, side scan sonars achieve resolutions of

60m down to 1cm.

2.3.1 Sea Floor Mapping with Multi-beam Echo-sounders

Multi-beam echo-sounders are commonly used in mapping of the sea �oor. The

principle of mapping the sea �oor with multi-beam echo-sounders is as in Fig.2.4.

In the multi-beam echo-sounder a large number of beams are formed for each ping.

The beams are in di�erent directions, spanning a fan cross-track of the vehicle. The

range calculated from the time delay to the sea �oor is estimated along each beam or

direction which gives the relative depth of the sea �oor relative to the vehicle. This is

again transformed into a map of the sea�oor along the fan. When the vehicle moves

forward, consecutive pings gives a continuous map of the area surveyed. The map

resolution is determined by the 2D beam-width and the range resolution. Typical

frequencies used are from 12kHz for large scale hull mounted systems with full ocean

depth range, to 450kHz for short range high resolution mapping. The swath width

of a multi-beam echo-sounder is typically 4 to 10 times the sonar altitude.

Fig. 2.4: Multi-beam echo-sounder geometry

2.3.2 Sonar Imaging with Side Scan Sonar

Side scan sonar (SSS) is used to produce acoustic images of the sea�oor with high

resolution. The sonar geometry is sidelooking as illustrated in Fig.2.5. The acoustic

image formation principle is by moving the sonar forward and stacking the sonar

response from successive pings. The side scan sonar works best when operated fairly

close to the sea�oor, typically mounted on a tow�sh, a towed light weight vehicle,

or an autonomous underwater vehicle. When operated in shallow waters it can be
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mounted on a surface ship hull. The operational frequencies for side scan sonars

are typically from 100kHz to 1MHz, with an operational range from 500m down

to a few tens of metres. The best possible along-track resolution in side scan sonar

can be designed by choosing the highest possible frequency for a given range from

calculations of absorption.

Fig. 2.5: Side scan sonar geometry

A towed active sonar system with the tow vessel, tow cable and tow body is

shown in Fig.2.6. The piezo-electric transducers of a side scan sonar mounted onto

a separate body which is towed through the water behind the survey vessel provides

a more stable platform from which to operate the transducer. This allows the trans-

ducer to be decoupled from the motion of the ship. The towed body is called as the

tow�sh, or simply the �sh. The transducers when mounted on Remotely Operated

Towed Vehicles (ROTV) or Remote Operated Vehicles (ROV) or AUVs, which are

"�own" by operators aboard the ship, provides more accurate control of the position

and motion of the vehicle, as it is largely divorced from the motion of the survey

vessel.

Fig. 2.6: Towed active sonar system

The area covered by a side scan sonar is shown in Fig.2.7. The cross-track

coverage is the maximum range of the system, which is related to pulse repetition
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interval and the maximum range of the acoustic signals from absorption. The cross-

track resolution is the range resolution, given by the pulse length or the bandwidth

for coded pulses. The along-track coverage is given by the pulse repetition interval.

The along-track resolution is given by the directivity of the sonar antenna and the

range.

Fig. 2.7: Area coverage and resolution in side scan sonar

Each pulse of acoustic energy emitted causes echoes from an area of the sea bot-

tom perpendicular to the direction of travel of the tow�sh. The tow�sh is positioned

at an (XY Z) coordinate in space, where Z represents the height of the tow�sh, the

X axis is orientated in the direction of travel of the tow�sh and Y is the direction

perpendicular to the tow�sh as in Fig.2.8. At this position, the transducer emits

a pulse of acoustical energy and the time and intensities of the rays are recorded.

The transducer is then moved along the X axis to a new position, to represent the

motion of the tow�sh, and the process is repeated by the transmission of the next

pulse, to obtain the next line of the image. The successive lines are then displayed

next to one another, as with the real sonar process, to create the image. Each line

is displayed as a line of pixels across the image, with the gray scale value of each

pixel determined by the intensity returned for that ray, with black representing no

returned signal and white representing a high intensity return.
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Fig. 2.8: Position of tow�sh in 3D space

2.3.2.1 SSS Image Formation

For producing the side scan sonar images of the sea�oor a series of lines, one per

transmission-reception cycle are displayed perpendicularly to the survey track. If

the appropriate corrections for refraction and topography have been used, a single

line segment represents the echoes received from the sea�oor for a given ping as a

function of slant range or time, or horizontal range on each side of the track. The

formation of an image from a side scan sonar is shown in Fig.2.9.

Fig. 2.9: The formation of images from a SSS

The tow�sh height i.e. the depth of water below a side-scan sonar tow�sh, is an
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important parameter for the collection of side-scan sonar data. The best sea�oor

coverage can be obtained by having the tow�sh somewhere near midwater. The

sonar tow�sh too close to the sea-surface gets a�ected by waves and too close to the

sea�oor has the chance of striking a prominent object. The re�ections from seaweed

and other �oating objects and re�ections from the sea-surface are the interfering

echoes. The greatest di�culty is posed by the re�ections from the sea-surface since

they have a similar appearance to the echo from sea�oor below the tow�sh and when

operates in shallow waters these two echoes often intersect. The side scan survey [19]

Fig. 2.10: Three-phase diagram showing the process of generating images from a single
side-scan sonar ping

provides images which map a visible representation of the strength of acoustic back

scattering from the sea�oor onto a two-dimensional image medium as illustrated in

Fig.2.10 (a) the outgoing pulse from an individual ping is re�ected back from the

sea�oor directly under the �sh, and the internal side-scan clock (T=0) is started. (b)

The hatched region represents the outgoing pulse, and the low amplitude returns are

the time when the pulse is the two-way travel time in the water-column. After the
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return of the �rst bottom bounce, subsequent returns appear as peaks and valleys

in the transducer voltage. (c) Peaks and valleys are then integrated and translated

into pixels values.

2.3.2.2 SSS Image Interpretation

The acoustic shadow zones appear on the trace as a blank area when the objects

which re�ect the acoustic energy prevents the energy from ensonifying some part

of the sea�oor. The position and shape of shadows contain valuable information

for the accurate interpretation of the image and shadows are the primary features

which provide three dimensional information from the two dimensional sonar image.

The shadow zone Fig.2.11 is created by either an object relieved from, or depressed

into, the seabed, or by the self shadowing of the sea�oor. Depressions create a dark

shadow area on the trace succeeded by a lighter area, caused by the re�ections from

the face of the depression facing back towards the sonar.

Fig. 2.11: Depressions creating dark shadow zones

2.3.3 Synthetic Aperture sonar

The spatial resolution along-track or azimuth is the fundamental limitation of the

traditional side scan sonar. At far ranges, it is usually much worse than the range

or cross-track resolution. The array length measured in wavelengths gives the an-

gular resolution. The angular resolution is improved by decreasing the wavelength

or increasing the frequency. This limits the practical range, due to the frequency

dependent absorption is sea-water. The other approach is to increase the length of

the array which requires more hardware, more electronics and more space on the

vehicle. But a better approach is to synthesize a larger array by using consecutive

pings from the moving sonar which is the principle of Synthetic Aperture Sonar
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(SAS) as illustrated in Fig.2.12.

Fig. 2.12: Principle of synthetic aperture sonar

The resolution of a side scan sonar decreases with range away from the sensor

which can be increased by using a higher frequency subject to much higher attenu-

ation in water or by using a longer imaging array often far greater than physically

feasible. Synthetic Aperture sonar processing could increase the resolution without

unduly increasing the size of the transducers. In synthetic aperture technique, what-

ever the scanning method, the basic idea is to reduce the number of receiver or source

elements at the expense of an increased scanning time. However, the scanning rate

must be great enough to prevent motion blurring or a loss in signal to noise ratio.

2.4 Imaging the Sea by Sound

Imaging the sea involves transmitting a pulse of acoustical energy into the water

medium and receive any returned energy re�ected from objects or the seabed. The

operation of sonar involves an initial generation of an electrical pulse by the trans-

mitter, with the desired characteristics of frequency, length and energy, by the trans-

mitter. The electrical signal is then applied to the piezo-electric ceramic transducer,

which expands and contracts under the application of the electric �eld to generate an

acoustic pulse of oscillating pressure in the water. The seabed or targets re�ects and

scatters this pulse when the sound waves propagate through the water column. The

oscillating pressure vibration converted into an electrical signal by the transducer,

which got a portion of the scattered energy re�ected back is detected and ampli�ed

by the receiver. The control unit regularizes the entire process which synchronizes

the operations and controls the timing for the transmission and reception of the
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electrical signals. In sonars, it is the time that it takes for the transmitter sonar

pulse to travel from the transducer to the target and return is measured and not the

depth or distance.

2.4.1 Acoustic Pulses used with Sonars

The ultrasound pulse envelope used by the transducer, insonating a homogeneous

medium containing scatterers is approximately Gaussian as in Fig.2.13. If the pulse

has a Gaussian shape then so has its spectrum, and for a medium with linear atten-

uation coe�cient this Gaussian shape of the spectrum is maintained while the pulse

travels through the medium. A shift of this Gaussian spectrum to lower frequencies

occurs while the pulse travels through the medium, because the attenuation increases

with the frequency. Upon reception of the re�ected signal, the transducer produces

an electrical signal that is the algebraic sum of the instantaneous sound pressures

originating from the backscattered waves. The depth di�erences of the scatterers are

smaller than the axial size of the resolution volume of the transducer (i.e., the pulse

length). The formed pattern is the so-called speckle pattern.
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Fig. 2.13: Gaussian shaped sound pulse

Depending on the applications, the type and length of the acoustic pulse uses

di�ers, as it governs the range and resolution of the sonar image. The example pulses

like the bursts, chirp and ricker signals used with the sonar are shown in Fig.2.14.

Bursts are narrow band pulses i.e., continuous wave (CW) pulses. They are

formed by a sine wave of �xed frequency, transmitted during a limited time T (typ-

ically 0.1ms to 10ms). The duration directly impacts on the resolution: two CW

pulses of duration T can only be distinguished if they are separated by a time of at

least T . After re�ection from a target this corresponds to a spatial resolution of cT/2

(0.75m for a 1ms pulse). Chirp signals are linear swept frequency cosines, also of
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Fig. 2.14: Acoustic pulses used with sonars

limited duration, are used less frequently. They are more advantageous than bursts

in noisy environments; for example, to compensate for the very strong attenuation

of signal during propagation inside the sea bed, at the detriment of more complex

processing. Ricker signals are mostly used for the detection of small targets or for

high-resolution sediment pro�ling. They consists of a single pulse similar to the sec-

ond derivative of a Gaussian pulse. All side scan sonar surveys are conducted in the

far �eld, de�ned as given in eq.2.2,

R ≥ L2

4λ
(2.2)

Where R is the range. L the length of the array, and λ the wavelength of the signal

transmitted.

2.4.2 Frequencies of Acoustic Pulses

The sonar performance is its ability to detect and locate objects of interest on the

seabed, to a speci�c range and at a speci�c rate. The performance is a�ected by the

generation of the acoustic wave by the sonar transducer, its propagation throughout

the water column, its scattering on the seabed, its propagation back to the trans-
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ducer, and its subsequent processing. The role of the imaging frequency is extremely

important, as it de�nes both the maximum range achievable and the resolution at-

tainable.

Low frequencies (for e.g., 6.5kHz) will travel more distances (e.g., 30km on each

side of the sonar) but give worse resolution (e.g., 60m after processing) than high

frequency sonars (e.g., 120kHz) covering a small swath (e.g., 1km). Taking into

account the speed of the imaging platform, lower frequency sonars can be used to

map large areas of the seabed in relatively short time, whereas high-frequency sonars

will be more suited to detailed studies of smaller areas.

The �rst maps of the seabed mainly concerned with general areas like the map-

ping of exclusive economic zones. Covering large areas require large sonar coverage,

i.e. with low frequencies, little attenuated over the distances involved. Some sonars

prove ideal, yielding swath widths of 60km with a resolution of 60m after processing.

Higher resolution in sonar images was achieved by using higher frequencies which

comes with a cost. The �rst challenge is technological with the need for faster data

acquisition systems and faster processing speeds (high frequency sampling of the

backscatter echoes). The second challenge is acoustic: higher frequencies do not

propagate as far, and the swath widths achievable decrease quite rapidly. The third

challenge is physical: as the frequency decreases, the acoustic wavelength increases,

and the resolution of each pixel degrades visibly. The fourth and most important

challenge lies in the interpretation of these images, understanding which factor is

predominant in the backscattering from the seabed, for each speci�c wavelength.

2.4.3 Hydrophones and Arrays

Transducers are normally mounted on either side of the tow�sh for a side scan sonar.

It is a sideways looking device and each pulse of acoustic energy emitted causes

echoes from the seabed on either side of the tow�sh from an area of the sea bottom

perpendicular to the direction of travel of the tow�sh. The use of two channels

helps to gather information on two channels and allows scanning of a larger area

of the seabed at a time. The transducers for each emitted pulse produces a beam,

which is narrow in the horizontal direction and wide in the vertical direction. When

the transducers are towed along, for each emitted pulse they gather sequential lines

of data returned i.e. the returned energy is received from only a thin strip of the

sea�oor as the horizontal beam is a narrow one.
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Acoustic receivers, or hydrophones are organized as arrays and are character-

ized by their frequency range and directivity pattern. For detecting small range of

frequencies which limits the imaging to non-moving targets, or those with no signif-

icant doppler shift, narrow-band transducers are used. For detecting a wide range

of frequencies broad-band transducers can be used. During data acquisition or pro-

cessing, those not associated with acoustic backscattering from the seabed can be

�ltered out. For receiving all the returns from the points that have been imaged and

as few returns as possible from points not directly ensoni�ed, the directivity patterns

of the arrays should at least match the directivity patterns of the projectors. Due

to the internal noise of the receiver and the noise of any attached ampli�er electron-

ics called self noise, the receiving arrays record some very small pressure variations.

This happens even in the absence of an acoustic signal. The transmitter and receiver

need to be accurately synchronized, with an internal or external clock, to ensure the

transmitted signal has ample time to be received before the next pulse.

2.4.4 Attenuation

A two way e�ect will occur on the acoustic waves as they propagate in the water

column from the transducer to the target/seabed or from the seabed back to the

sonar. Spreading over a large volume will occur as the acoustic wave moves away

from the transmitter. After a certain distance in the far �eld, these waves can be

approximated as plane waves. The intensity decreases with a relation 1/R2 , where

R is the distance traveled from the source to the point of measurement which will

be the straight distance to the seabed and back for a sonar imaging the seabed.

The acoustic returns becomes weaker and often needs amplifying as the range

increases. Acoustic waves follow Snell-Descartes' laws of re�ection and refraction

at interfaces like the electromagnetic waves and can propagate in the seabed but

for shorter distances. The attenuation depends on the type of seabed of orders of

magnitude of 100dB/m are common at high frequencies.

The dissipation of the acoustic energy viscosity and chemical reactions in the

medium are the other factors contributing to the attenuation. The temperature of

the water, salinity, and heterogenities like bubbles or suspended sediments in water

causes variations in the velocity at which the acoustic waves travel. The in�uence

of sound velocity is more subtle but just as important. The sound speed will vary

widely, with values of 1500m/s to 2, 000m/s for some sediments underwater. The



2.4. Imaging the Sea by Sound 35

in�uence of attenuation on sonar imagery is perceived immediately.

The e�ects of absorption, spreading and scattering decreases the intensity of the

returned energy with range. A Time Varying Gain (TVG) is applied to the incoming

signal to compensate for the above e�ects and maintain an even intensity across the

image to aid in the correct interpretation as the gain is normally time dependent.

For transmission losses caused by spherical spreading and absorption of sound

waves in water, time-varying gain compensation can be used. The resulting images

again su�er from various forms of noise or external interferences caused by other

acoustic devices operated at the same time. Due to the non straight survey tracks,

the attitude of the tow�sh like roll, pitch and yaw changes with time. The sonar

beam patterns are not uniform in the angular sector of interest and their side or

back lobes may pick up echoes re�ected from the sea surface or may contribute to

cross-talk between the two sides. Also the produced sonar images lack contrast.

2.4.5 Sea Surface Re�ections

Sonar imagery is a�ected with the re�ections from the sea surface when the swath

width is less than the water depth. In shallow-water applications, the wide across-

track beam typically interacts with the surface as well as the bottom. The interfer-

ence from surface scattering or multipath signals that masks the sea�oor, adversely

a�ecting sonar images [20] are dependent on the sea state. For a glassy smooth sur-

face, the multipath signals are approximately delayed replicas of the bottom signal.

The multipath signals from a rough sea surface produce a grainy e�ect on the sonar

image. If the surface itself is a scatterer because of the presence of boat wake [21],

multipath signals gets attenuated and the masking e�ect is from direct surface scat-

tering. For target detection and bottom classi�cation, image properties like spatial

amplitude statistics, shadows, and highlights [22] are used which are obscured or

distorted by surface e�ects. To improve the probability of detection of mines and

to avoid any mis-classi�cations, it is necessary to eliminate surface e�ects from the

sonar image.

2.4.6 Acoustic Array Scattering

The range on both sides of the sonar gives the swath width. Slant range is the

distance from the sonar to a point on the seabed as in Fig.2.15. The angle of incidence

of the incoming acoustic wave gives information about the scatterring of the acoustic
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wave. Specular direction is the direction of maximum energy re�ection. Along the

scattering angles, distributed along the main re�ection angle some energy will be

re�ected. Loss of some energy in the seabed occur depending on the terrain type.

Backscatter i.e. re�ection back toward the imaging sonar might happen only for a

very small portion. The backscattered energy provides di�erent types of information

after the recording of the data. The time o�set between the transmission of the initial

ping and the reception has a direct dependence on the slant range. For deducing

the ground range to the echo, use the sonar's height above the seabed. The Doppler

e�ect i.e. the frequency shift indicates the speed of the target relative to the sensor.

The arrival angle of the beam is deduced from the phase shift. The phase di�erence

between neighbouring transducers helps some systems in extracting the bathymetry.

Some information about the nature of the point imaged seabed or target can be

obtained from the amplitude of the echo.

Fig. 2.15: Acoustic scattering

Scatterring will occur mostly along the specular direction and very low backscat-

ter for a surface smooth at the scale of acoustic wavelength. For e.g., 5cm for a

30kHz frequency. For a rougher surface it is more likely to have small facets facing

toward the sonar, this increases the backscatter and scattering in other direction.

Gravel patches will appear acoustically brighter than mud patches.

Due to attenuation with distance, the backscattered signals are often weak.

Backscatterred signals are very noisy because of the perturbations within the water
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column on the way from the sonar to the target and on the way back. Self noise

from the transducers themselves or noises from neighbouring instruments like the

other acoustic sensors working simultaneously are other additional noises.

2.5 Speckle-Scene Models

Under a statistical signal processing perspective, despeckling �lters aim at estimating

the noise-free sonar re�ectivity from the observed noisy sonar image. Speckle �lters'

performance depends strongly on the choice of the speckle-scene models used for

despeckling. Speckle is not truly a noise in the typical engineering sense, since its

texture often carries useful information about the image being viewed. The speckle

noise model for sonar images may be approximated as multiplicative.

Sonar is an active acquisition instrument that produces a radiation and captures

the signals backscattered from a small area of the imaged scene (resolution cell). The

received signal, as output from the in-phase and quadrature channels, is complex.

Assuming that the resolution cell contains several scatterers and that none yields

a re�ected signal much stronger than the others (distributed target), the received

signal can be viewed as the incoherent sum of several backscattered waves with

amplitudes Ai and phases φi, as shown in eq.2.3 and Fig. 2.16.

A exp(jφ) =
∑
i

Ai exp(jφi) (2.3)

Fig. 2.16: Scattering model for fully developed speckle
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Each individual component, cannot be resolved within a resolution cell. If the

phases of each path are highly di�erent, they may sum in a constructive or destructive

way, then the amplitude of the received signal varies randomly. So, even if the

underlying re�ectivity �eld is uniform, it appears as a�ected by a "granular" noise

after the imaging system. For visual inspection and for speci�c applications that

involve visual information retrieval, such as mapping and segmentation, the highly

varying nature of the signal may be considered as a disturbance and is commonly

denoted as "speckle".

The phases φi are highly varying since the wavelength is much shorter than

the resolution cell size and scatterers distances may be considered as uniformly

distributed in (−π, π) as well as independent of Ai. If the number of scatterers

is su�ciently high, the central limit theorem applies [23] and the resulting signal

A exp jφ = z1 + jz2 can be seen as a complex signal whose real and imaginary

parts (in-phase and quadrature components) are independent and identically dis-

tributed zero-mean Gaussian variables with variance σ/2. When this applies speckle

is termed as fully developed [24]. The joint probability density function (pdf) is

given by eq.2.4,

pz1z2(z1z2) =
1

πσ
e−

z21+z
2
2

σ (2.4)

whereas the amplitude A is distributed as a Rayleigh pdf, that is eq.2.5,

pA(A) =
2A

σ
e−

A2

σ (2.5)

and the power or intensity I = A2 is distributed according to an exponential pdf,

that is eq.2.6,

pI(I) =
1

σ
e−

I
σ (2.6)

so that the mean of the intensity is equal to σ. The received signal pdf can be

reformulated as eq.2.7 or eq.2.8,

pI|σ(I|σ) =
1

σ
e−

I
σ (2.7)

or

I = σu (2.8)
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where u is exponentially distributed, as in eq.2.9,

pu(u) = e−u (2.9)

is termed the multiplicative model of speckle.

The model shows that the brighter pixels are a�ected by stronger disturbances

than darker ones. A way to improve the estimation of σ is to average L independent

intensity values related to the same position. This processing, named "multilook-

ing", maintains the mean intensity σ but reduces the estimator variance to σ2/L

and a spatial resolution loss by a factor L. If the hypothesis of independent intensity

measurements holds, the L-look averaged intensity IL is Γ-distributed. In the pres-

ence of a scatterer much stronger than the others like the point target, the received

signal pdf becomes a Rice distribution.

The most used model in the literature on despeckling is the following eq.2.10,

g = fu (2.10)

where f is a possibly autocorrelated random process and represents the noise-free

re�ectivity, u is a possibly autocorrelated stationary random process, independent

of f , and represents the speckle fading term, g is the observed noisy image. All the

quantities in eq.2.10 may refer to either intensity or amplitude as well as single-look

or multilook images. The fully developed speckle of single-look amplitude has a

Rayleigh distribution. This model formulates speckle [25] as a multiplicative modu-

lation of the scene re�ectivity. Hence, the speckle e�ects are more pronounced in a

high intensity area than in a low intensity area.

The variable u may be assumed as spatially correlated [26]. The Lapini et.al

[27] has shown that a pre-processing step that makes speckle uncorrelated, that is

"whitens" the complex signal, allows despeckling algorithms designed for uncorre-

lated speckle to be successfully applied when speckle is autocorrelated.

2.5.1 Sonar Image Spectral Analysis

The presence of speckle noise in ultrasound images has been documented since the

early 1970s where researchers such as Burckhardt [28], described the fundamentals

and the statistical properties of the speckle noise. Sonar senses and displays the

amplitude of the signal re�ected from the seabed or objects in the water column.
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Although the direct display of the echo amplitude in image format provides a qual-

itative representation of the seabed, the signal can also be investigated statistically

to yield information on the sea�oor topography. The acoustic �eld scattered from

a random rough surface, such as the seabed, is the sum of many elementary waves

scattered by points along the surface. The �eld, which is a complex quantity, will

possess approximately Gaussian distributions in the limit as the number of scattering

events tends to in�nity [29]. An analytical study of Gaussian �elds arising from wave

scattering from random rough surfaces is provided by Beckmann [30]. If the real and

imaginary parts of the scattered �eld are uncorrelated and independent, the ampli-

tude of the �eld is reduced to a Rayleigh distribution and the phase to a uniform

distribution, as a result of the quadrature addition of the complex components.

The side scan sonar image displays the backscattered energy from the seabed.

The probability density functions of several side scan sonar images produced by side

scan sonar system with di�erent operating characteristics representing a range of

sediment types and sea�oor structures were observed to follow Rayleigh distributions

for isotropic regions of the seabed. A maximum likelihood estimator was employed

to determine the parameters of the Rayleigh distribution. The actual distributions

were then compared to the �tted Rayleigh distribution using a Chi-Square test. This

test is employed to determine the consistency of two distributions, and a low valued

result indicates a high probability that the two distributions are consistent.

Wagner [31] showed that the histogram of amplitudes within the resolution cells of

the envelope-detected RF-signal backscattered from a uniform area with a su�ciently

high scatterer density has a Rayleigh distribution with mean (µ) proportional to the

standard deviation (σ), with σ/µ = 1.91 which implies that speckle could be modeled

as a multiplicative noise.

The distribution of the sonar reverberation has been investigated by Stanton

[32] and Alexandrou et.al. [33]. Stanton related the probability density function

to scattering theory to estimate the sea�oor roughness, and noted that the shape

of the pdf of the echo amplitude was dependent on the sea�oor roughness. The

backscattered energy from the seabed will be modi�ed by the medium and transducer

characteristics but the signal is dominated by the seabed reverberation, provided the

sonar is operated in an environment with low noise and volume reverberation levels.

The signal is primarily composed of the di�use scattered energy, apart from the

regions of near normal incidence occurring from the seabed below the tow�sh. The

side scan sonar images can therefore be expected to be approximated by Rayleigh
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statistics.

Image histograms are useful for revealing the relative proportions of geological

components in a scene, but these proportions are commonly obscured by the vari-

ability caused by signal fading like image speckle. This variability can potentially be

reduced by deconvolution, because a scene's probability density function is related to

the Rayleigh log-pdf and pdf of backscatter strengths via a convolution integral. A

simple deconvolution algorithm is demonstrated in [34], by separating a submarine

lava �ow from its adjacent sediments in a side scan sonar image histogram.

2.5.2 Additive Noise Model

The nonlinear nature of the relationship between the observed and noise-free signals

in the model makes the �ltering procedure a nontrivial task. For this reason, some

manipulations have been introduced to make the observation model simpler. The

multiplicative model is often manipulated in order to obtain an additive one as in

eq.2.11,

g = f + (u− 1)f = f + v (2.11)

where v = (u−1)f accounts for speckle disturbance in an equivalent additive model,

in which v, depending on f , is a signal-dependent noise process.

A second way that allows the multiplicative noise to be transformed into an

additive one is using a homomorphic transformation [35], [36]. It consists of taking

the logarithm of the observed data, so that the eq.2.12 forms and can be written as

eq.2.13

logg = logf + logu (2.12)

g′ = f ′ + u′ (2.13)

Here the noise component u′ is a signal-independent additive noise. Logarithm

reduces the contrast in the image and introduces a bias [37] into the denoised image,

since an unbiased estimation in the log domain is mapped onto a biased estimation

in the spatial domain [38]. The nonlinear mapping of the logarithm introduces a

bias for the estimation of the parameters of the signal and noise.

Basic Additive Models of the Denoising Algorithms is shown in Fig 2.17. The

block estimator attempts to achieve a speckle free representation of the signal in

a speci�c domain; in the transform domain, as or in the homomorphic transform

domain, in which the noise free informative signal is contaminated with additive
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signal-dependent or signal-independent noise, respectively.
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Fig. 2.17: Additive models commonly used in despeckling algorithms

Speckle noise suppression techniques can be divided into two categories. The �rst

approach is to average several looks or images acquired of the same scene, which is

called multi-look processing or super-resolution. If several images are acquired from

the same scene and then averaged, the speckle noise will be reduced due to its random

nature, while the observed scene will not be degraded. The second technique is based

on �ltering the speckle noise after the images are formed. The simplest �lters that

can be applied on the speckled image are low-pass and median �lters. The low-

pass �lter locally averages the image and by doing so removes the speckle. It is

useful when the areas of interest in the image are homogeneous, but has very poor

performance at edges and with high frequency information textures. The mean �lter

averages the speckle in the data but lowers the resolution. The median �lter, on the

other hand, preserves the image edges, but can remove small area objects.

Standard �lters such as Low-Pass, Gaussian, and Median generally degrade the

observed scene. Contrary to the standard �lters, the adaptive �lters take local image

information into consideration while carrying out the �ltration process. Adaptive

�lters can reduce speckle noise in homogeneous areas while preserving texture and

high frequency information in heterogeneous areas. Among the best known adaptive



2.5. Speckle-Scene Models 43

classical speckle �lters are the Lee [39], the Frost [40] and the Kuan [41] �lters

designed primarily for additive noise suppression. These �lters use the second-order

sample statistics within a minimum mean squared error estimation approach.

An image processing �lter for speckle noise removal presented in [42] is a mean

�lter that numerically realizes a di�usion process. Linear �ltering using mean �lter

and Least Mean Square (LMS) adaptive �lter and nonlinear �ltering based on me-

dian �lter [43] does not produce considerable denoising for images corrupted with

Gaussian noise or speckle noise. Classical wiener �lter [44] is designed primarily for

additive noise suppression. The multiplicative speckle noise that disturbs the sonar

images can be transformed into an additive noise by obtaining the logarithm of the

image and consequently applying the wiener �lter. Adaptive weighted �lter [45] is

another non-linear order �lter that aims to smooth the noise and simultaneously

enhance edges and preserve thin structures.

2.5.2.1 Signal-Dependent Additive Noise Model

Jong-Sen Lee in 1980 introduced the local-statistics �lter, a model-based despeckling

�lter. The solutions for both additive signal-independent noise and speckle noise was

thoroughly developed in [46] and reviewed in [47] together with the sigma �lter. By

linearizing the multiplicative noise model around the mean of the noisy signal, an

Least Minimum Mean Square Error (LMMSE) solution was derived. To overcome

the drawback of edge boundaries that are left noisy by Lee �lter, the Lee Re�ned

Filter was designed. The algorithm uses the local gradient to estimate its orientation

after detecting an edge. Better �tting of the edge orientation is done by estimating

the local mean and of the local variance within the local window. Filtering results are

quite impressive, particularly on edges and high contrast areas. Some artifacts may

occur when the �lter processes textured areas that result to be overly segmented.

Lee approximated the multiplicative noise model with a linear one, followed by

applying a Minimum Mean Square Error (MMSE) criterion. Then an adaptive �lter

was formulated as eq.2.14,

R̂(x, y) = I(x, y)(1−W (x, y)) +W (x, y)I(x, y) (2.14)

where I is the acquired image, I is the average of an acquired image in a �lter
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window, and W is a weighting function given by eq.2.15,

W (x, y) = 1− (C2
u)

(C2
I (x, y))

(2.15)

where Cu = σ
u and CI(x, y) = σI(x,y)

I(x,y)
are the coe�cient of variation the noise and

the acquired image, respectively. The σ and u is noise standard deviation and

mean respectively, σI(x, y)and I(x, y) is the image standard deviation and mean

respectively in the �lter patch area around (x, y).

The Kuan �lter is based on a uni�ed approach to designing a noise smoothing

�lter for a class of signal-dependent observations such as multiplicative noise and

Poisson noise. In Kuan's approach the multiplicative noise model is �rst trans-

formed to a signal-dependent additive noise model, followed by applying the MMSE

criterion. Then the original scene estimation can be formulated eq.2.16,

R̂(x, y) = I(x, y)(1−W (x, y)) +W (x, y)I(x, y) (2.16)

where W is a weighting function de�ned by eq.2.17,

W (x, y) =
(1− C2

u/C
2
I (x, y))

(1 + C2
u)

(2.17)

It can be seen from the equation that the Kuan �lter provides more aggressive

smoothing than the Lee �lter.

Kuan et.al. [48] consider the restoration of images with signal-dependent noise.

The �lter is noise smoothing and adapts to local changes in image statistics based on

a nonstationary mean, Non Stationary Mean Variance (NMNV) image model. The

�lter is able to adapt itself to the non stationary local image statistics in the presence

of di�erent types of signal-dependent noise. For multiplicative noise, the adaptive

noise smoothing �lter is a systematic derivation of Lee's algorithm with some exten-

sions that allow di�erent estimators for the local image variance. The advantage of

the derivation is its easy extension to deal with various types of signal-dependent

noise. Kuan �lter LMMSE solution is referred to as local LMMSE (LLMMSE) to

indicate that it contains only local �rst order statistics, mean and variance.

Frost et.al. derived a model for the radar imaging process and a method for

smoothing noisy radar images. The imaging model shows that the radar image

is corrupted by multiplicative noise. The model leads to the functional form of
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an optimum (minimum MSE) �lter for smoothing radar images. By using locally

estimated parameter values the �lter is made adaptive so that it provides MMSE

estimates inside homogeneous areas of an image while preserving the edge structure.

It is shown that the �lter can be easily implemented in the spatial domain and is

computationally e�cient. The �ltered value is a linear combination of pixel values

within the local window with a Gaussian weighting function that depends on the

local coe�cient of variation of the noisy image g, namely Cg, de�ned as the ratio of

local standard deviation to local mean.

The Frost �lter is signi�cantly di�erent from the Lee and Kuan �lters. It es-

timates the observed scene by convolution of the acquired image with the impulse

response of the imaging system. The imaging system impulse response is obtained

by using the MMSE criterion. Then the resulting �ltering process can be de�ned by

a convolution of the acquired image with the �lter kernel eq.2.18,

R̂(x, y) = I(x, y) ∗m(x, y) (2.18)

where the �lter kernel m(x, y) is de�ned by eq.2.19,

m(x, y) = Ae(−KCI(x,y)|d|) (2.19)

where K is the dumping factor of the impulse response (with typical values between

0.1 and 1), CI is the same as in the Lee �lter, A is a normalization constant that

is the sum of the �lter kernel elements, and d is the distance of the pixel from the

kernel center de�ned as d = x+ y. This is the most computationally complex �lter.

Yan et.al. [49] proposed a noise �ltering scheme that is based on Higher-Order

statistics (HOS) for photographic images corrupted by signal-dependent �lm grain

noise. In addition, reliable estimation of the noise parameter using HOS is proposed.

This parameter estimation technique can be used to generate �lm grain noise which

has applications in motion picture and television productions.

Despeckling uses the multiresolution signal analysis [50], such as the Discrete

Wavelet Transform (DWT). In the non-homomorphic wavelet domain despeckling,

the absence of the bias due to the nonlinear mapping of the logarithm is an advan-

tage. The estimation of the signal parameters and the pdfs of noise are more complex

in such �lters. The noise term is signal-dependent for the non-homomorphic case

and the parameters are much more di�cult to be estimated. In the seminal paper by
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Foucher et.al. [51], undecimated wavelet was �rstly used for despeckling. Estimation

is based on the Maximum A Posteriori (MAP) criterion and the Pearson system of

distributions. The wavelet coe�cient of the re�ectivity is estimated with a Bayesian

model, maximizing the a posteriori probability density function. The di�erent prob-

ability density function is modeled with the Pearson system of distributions. The

resulting �lter combines the classical adaptive approach with wavelet decomposition

where the local variance of high-frequency images is used in order to segment and

�lter wavelet coe�cients.

The Meer's �lter [52] and the �lter based on the Rational Laplacian pyramid

(RLP) [53] employ multiresolution concepts without a formal multiresolution anal-

ysis. This work has demonstrated that multiresolution processing is the key to

adaptive �ltering of signal-dependent noise.

Two novel architectures for real-time and low-power Field-Programmable Gate

Array (FPGA) implementation of the Frost speckle �lter for underwater imaging

sonar are presented in [54]. The proposed architectures have superior performance

and power e�ciency compared to standard software implementation.

2.5.2.2 Signal-Independent Additive Noise Model

Sonar images are highly a�ected by speckle noise which reduces spatial resolu-

tion. A better denoising can be achieved by multi-resolution analysis utilizing the

wavelet transform [55]. In the wavelet domain, the additive noise is uniformly spread

throughout the coe�cients, while most of the image information is concentrated in

the few largest ones. The sparsity or the decorrelation capacity of the wavelet rep-

resentation of the images is exploited in speckle denoising. The most straightfor-

ward way of distinguishing information from noise in the wavelet domain consists

of thresholding the wavelet coe�cients. The di�erent wavelet denoising approaches

di�er in the selection of the threshold, time scale levels, and basic wavelet function.

The signal denoising via wavelet thresholding or shrinkage have shown that vari-

ous wavelet thresholding schemes for denoising have near-optimal properties in the

minimax sense. Denoising using wavelets is quite di�erent from traditional �ltering

approaches - it is nonlinear [56], due to a thresholding step.

Key problems concerning wavelet based denoising of images are choice of reason-

able wavelet function, proper time scale levels, accurate thresholds and thresholding

rules. Wavelet shrinkage methods frequently used are hard thresholding and soft
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thresholding, have been investigated for speckle reduction of images on a logarith-

mic scale. The basic shrinking is thresholding [57], where the wavelet coe�cient with

small magnitudes is set to zero ("hard-thresholding") while keeping or shrinking in

magnitude ("soft-thresholding") the remaining ones. The soft-thresholding rule is

chosen over hard-thresholding. Bayesshrink rule [58] using a Bayesian mathematical

frame work for images to derive subband dependent thresholds are merely optimal

for soft thresholding.

Filtering in the wavelet-homomorphic domain has potentially superior perfor-

mances over conventional spatial �lters [59], [60]. In these �lters each wavelet sub-

band associated to a speckle contribution can be exactly measured [61] and �ltered

out. In such cases, the spatially adaptive �ltering becomes scale-adaptive. In the

classical hard-thresholding and soft-thresholding methods were applied. Threshold-

ing based on nonlinear functions such as the sigmoid functions, adapted for each

sub-band, has been used in [62]. To estimate the noise variance σ2 from the noisy

wavelet coe�cients [63], a robust median estimator is used from the �nest scale

wavelet coe�cients. It is the Median Absolute Deviation (MAD) of the highest-

frequency subband coe�cients divided by 0.6745 as given in eq.2.20,

σ = MAD |wHH(x, y)|/0.6745 (2.20)

where wHH is wavelet sub-band HH.

The process estimation attempts to achieve a speckle free representation of the

signal in a speci�c domain. If a process having some prior information about the

signal to be estimated, a Bayesian estimator [64] tries to achieve an estimate f̂ of f .

The Bayesian implementation is based directly on Bayes'theorem, which can improve

the estimation accuracy compared to the classical approach.

In BayesShrink rule, the threshold is determined for each sub-band by assuming

a Generalized Gaussian Distribution (GGD). The threshold T is obtained by mini-

mizing the BayesianRisk, i.e, the expected value of the mean square error. Di�erent

Bayesian estimators can be de�ned according to the choice of the Bayesian "risk",

i.e., the function of the estimation error ε = f − f̂ which could be minimized.

The MMSE estimator minimizes the quantity [ε2 = E[(f − f̂)2]. The solution is

given by eq.2.21,

f̂MMSE = EF |G(f |g) (2.21)

which is the expectation of the noise-free signal f conditional to the noisy observation
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g. For the MAP estimator, choose f to maximize the posterior pdf, eq.2.22,

f̂MAP = arg max
f

pF |G(f |g) (2.22)

It is observed that the threshold value set by eq.2.23,

T = σ2/σX (2.23)

is very close to the optimum threshold. Here σX is the estimate of image information

of the sub-band. The Bayesian risk minimization is subband dependent.

When σ2/σX << 1, the signal is much stronger than the noise, the normalized

threshold is chosen to be small in order to preserve most of the signal and remove

some of the noise; when σ2/σX >> 1, the noise dominates and the normalized

threshold is chosen to be large to remove the noise which has overwhelmed the signal.

Thus, this threshold choice adapts to both the signal and the noise characteristics

as re�ected in the parameters σX and σ.

Detection and classi�cation of underwater mines with Synthetic Aperture Sonar

images is a challenge that can be performed in studying either the echoes or the

shadows of mines. However, SAS images present a strong speckle level due to the

construction or the image itself. To reduce this speckle level, �ltering methods are

generally used but all of them strongly deteriorate either the shadow or the echo of

the mine. Chaillan et al. [65] proposed a new speckle reduction method which allows

to enhance jointly mines echoes and shadows. This process is based on the marriage

between a multiresolution transformation and a �ltering method.

Yang et.al. [66] proposes an improved image denoising algorithm, which based

on wavelets thresholding and uses the Besov norm regularization. Since di�erent

parts of an image may have di�erent smoothness properties, and wavelet coe�cients

denote di�erent frequency sub-bands of an image, the sub images at each wavelets

scale level may have distinct smoothness properties. Experimental results show that

the method achieves better denoising e�ect than other methods.

Among the two kinds of WTs, the orthogonal non-redundant wavelet transform

used in denoising applications is the DWT. This transform is most commonly used

in its maximally decimated form as Mallat's dyadic �lter tree. The main disadvan-

tages like lack of shift invariance can be reduced using the Cycle Spinning and the

lack of symmetry of the mother wavelets can be eliminated using complex WT or
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biorthogonal WT. Unfortunately, the in�uence of poor directional selectivity where

the orthogonality is lost cannot be reduced. The undecimated form of the DWT

is named UDWT. This is a very redundant WT, having the last two disadvantages

already mentioned. The Dual Tree Complex Wavelet Transform (DTCWT) is a re-

dundant WT, with a redundancy of 4. Its architecture is based on two trees, each

implementing a DWT.

Due to the �nite support of the wavelet function, a strongly scattering target

which is concentrated in space will be spread out after wavelet analysis.In [67] the

wavelet analysis is performed after the targets are detected as upper percentiles of the

image histogram, removing from the image and storing it. The void pixels formed are

smoothly �lled by interpolating their neighbours. Point targets are reinserted in their

original places after synthesis of the despeckled image. To improve the performances

of the other two classes, homogeneous and textured, the multiresolution methods

was employed.

The sigma �lter [68] developed for additive signal-independent noise and extended

to speckle removal [69]. This �lter uses the sigma probability of the Gaussian dis-

tribution, and it smooths the image noise by averaging only those neighbourhood

pixels which have the intensities within a �xed sigma range of the center pixel. The

method preserves the image edges and subtle details and thin lines are retained.

An enhanced version of Lee's sigma �lter [70] is derived and proposed for unbiased

�ltering of images a�ected by multiplicative noise with speckle statistics. In [71] the

bias problem is solved by rede�ning the sigma range based on the speckle pdf.

In multiresolution analysis using wavelets [72], the objective was to eliminate the

low energy components of the wavelet transform of the image since it is where the

noise is contained. Sparsity of the wavelet representation of the images is exploited

in speckle denoising in sonar images.

Firoiu et.al. [73] presents a new denoising method in the wavelet domain, which

tends to reduce the speckle, preserving the structural features and the textural in-

formation of the scene. Shift invariance associated with good directional selectivity

is important for the use of a Wavelet Transform (WT) in denoising of sonar images.

The use of a variant of hyperanalytic WT, which is quasi-shift invariant and has

good directional selectivity in association with a maximum a posteriori �lter named

bishrink which makes a very good treatment of the contours. The corresponding

denoising algorithm is simple and fast.

Image denoising by the process of reducing or removing the noise from images
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while the inpainting procedure involves the reconstruction of missing pixels in sonar

images [74] in wavelet domain. Most of the literature available is for the removal of

additive noise. So a logarithmic operation on the noisy image which give an additive

equation. Then di�erent wavelet shrinkage approaches are employed. Three variants

of bishrink �lter and a diversi�ed denoising method that takes into consideration the

structural and textural features of the image under analysis is proposed in [75].

2.5.3 Multiplicative Noise Model

The multiplicative speckle noise model expresses the observed intensity as the prod-

uct of the scene signal intensity and speckle noise intensity. The model relates the

two entities at each pixel as a function of speckle noise.

A non-linear �lter Geometric �lter (GF) [76] was developed to reduce speckle

in SAR imagery while at the same time preserving spatial information. It is based

on geometric concepts. GF iteratively erases noise samples regarded as geometric

artifacts of the 3-D shape de�ned by the 2-D gray-level function. GF is a nonlinear

local operator that exploits a morphologic approach to smooth noise. Thicker objects

are just slightly smoothed and therefore fairly preserved as �ltering is iterated. A

decimated version of GF [77] is suitable for spatially correlated noise, including

speckle.

The prototype of MAP �lters in spatial domain is analyzed in [78]. Assuming a

Gamma distribution to both the radar re�ectivity and the speckle noise, the �lter is

designed to smooth out noise while retaining edges or shape features in the image. An

optimum �lter size selection is crucial in improving the performance. In the gamma

MAP �lter proposed by Lopes et.al., pure averaging is used when the local coe�cient

of variation is below a particular threshold and above a particular threshold a strict

all pass �ltering is performed.

Simulated Annealing (SA) was originally used for image despeckling and seg-

mentation by White [79]. SA is a stochastic optimization method used for �nding

the global maximum of an a posteriori multivariate distribution, or equivalently the

global minimum of the energy function. Finding the global maximum of the a poste-

riori distribution or equivalently the global minimum of the energy function is often

made di�cult by local maxima (minima), which can easily trap the optimization

algorithm. SA is iterative and the temperature controls the optimization, and it is

decreased throughout the optimization process. Despite its potentiality, the unlikely
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cartoon like smoothness produced by SA was noticed in [80].

The bilateral �lter (BF), originally introduced in [81] for gray scale images, has

been extended to despeckling as in [82]. Since bilateral �lters assume an explicit

notion of distance in the domain and in the range of the image function, they can

be applied to any function for which these two distances can be de�ned. Bilateral

�ltering smooths images while preserving edges, by means of a nonlinear combina-

tion of nearby image values. The method is non-iterative, local, and simple. In an

adaptive version of BF suitable for despeckling [83], the spatial weighting is a Gaus-

sian function, whose span depends on the local coe�cient of variation, analogously

to the enhanced Frost �lter. Despite its elegance and relatively low computational

cost, in the presence of strong noise, like for single look images, speckle-oriented BF

su�ers from limitations given by the �nite size spatial function, same as all local

spatial �lters. A way to overcome such a drawback is adopting a non local �ltering

approach.

In addition to the classical de-speckling �lters, more complex �lters developed

include the iterative Speckle Reducing Anisotropic Di�usion (SRAD) �lter [84],

Gamma MAP �lter and multi-scale wavelet decomposition [85] based �lters using an

adaptive soft-threshold of wavelet coe�cients, SRAD �ltration of wavelet coe�cients

and the Non Local Mean (NLM) �lter [86]. The nonlocal (NL) �ltering is a gen-

eralization of the concept of data-driven weighted averaging, in which each pixel is

weighted according to its similarity with the reference pixel, and is dependent on the

selection of reference pixel. The NLM �lter is based on the simple idea of estimating

the noise free image as a weighted average of noisy pixels given in eq.2.24,

f̂(y) =

∑
xw(y, x)g(x)∑
xw(y, x)

(2.24)

where the weights w(x, y) take into account the "similarity" between pixels g(x) and

g(y). The key idea of the NLM �lter is that the weights w(x, y) are based on the

Euclidean distance between local patches centered at g(y) and g(x), according to

eq.2.25,

w(y, x) = exp(−1

h

∑
k

αk|g(y + k)− g(x+ k)|2) (2.25)

where α′ks de�ne a Gaussian window and h controls the decay of the exponential

function.

In anisotropic di�usion [42], the di�usion coe�cient is allowed to vary spatially
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to encourage intra-region smoothing in preference to inter region smoothing and the

di�usion coe�cient is assumed to be a constant independent of the space location.

The derivation speckle reducing anisotropic di�usion (SRAD) is tailored to coherent

images [87]. SRAD is the edge-sensitive extension of the conventional adaptive �lters.

The SRAD exploits the instantaneous coe�cient of variation as the edge detector in

speckled imagery., SRAD overcomes traditional speckle removal �lters in terms of

mean preservation, variance reduction, and edge localization. However, the unreal-

istic smoothness introduced after iterated processing makes SRAD unsurpassed for

cartoon-like images.

Given an image I0(x, y) having �nite power and non-zero valued intensities over

the image domain, the output image I0(x, y; t) evolves according to the Partial Dif-

ferential Equation (PDE) as in eq.2.26 and eq.2.27,

∂(x, y, t) = div[c(q)∇I(x, y; t)] (2.26)

I(x, y; 0) = I0(x, y)
I(x, y; t)

∂η
|∂Ω=0 (2.27)

Where ∇ is the gradient operator, I(x, y; t) is the intensity image estimated at

position (u, v) at time t, ∂Ω denotes the border of the image support Ω, while ∂η is

the outer normal to ∂Ω; c(q) is the di�usivity function of SRAD de�ned by eq.2.28,

c(q) =

(
1 +

(q2(x, y; t)− q2
0(t))

(q2
0(t)(1 + q2

0(t)))

)−1

(2.28)

Where q(x, y; t) is the instantaneous coe�cient of variation (ICOV) that serves as

the edge detector in speckled images and q0(t) is the di�usion threshold called the

speckle scale function that is computed from a homogeneous region of fully developed

speckle as in eq.2.29.

q0(t) =
σIh(t)

Ih(t)
(2.29)

where σIh(t) and Ih(t) are the intensity standard deviation and mean over a homo-

geneous area at time t, respectively.

Another popular denoising approach is based on Total Variation (TV) regular-

ization [88]. The total variation of the image is minimized subject to constraints

involving the statistics of the noise. The constraints are imposed using Lagrange

multipliers. The solution is obtained using the gradient-projection method. The
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proper norm for images is the total variation (TV) norm and not the L2 norm. TV

norms are essentially L1 norms of derivatives, hence L1 estimation procedures are

more appropriate for the subject of image estimation (restoration). The space of

functions of bounded total variation plays an important role when accurate estima-

tion of discontinuities in solutions is required. Several solutions exist to apply TV

methods in the case of multiplicative noise [89]. In [90],the authors de�ne the op-

timization problem in the original intensity domain and apply a data �delity term

based on a maximum a posteriori approach, assuming a Gamma distributed speckle

and a Gibbs prior. When applying TV regularization in the logarithmic domain,

convex TV problems can be obtained by applying di�erent data �delity terms, in-

cluding the L2 norm [91]. Image denoising through TV regularization can be de�ned

as the solution of a minimization problem given in eq.2.30,

f̂ = argminfJ(f, g) (2.30)

where the cost function to be optimized can be expressed as eq.2.31,

J(f, g) = ϕ(f) + λψ(f, g) (2.31)

In the above equation, ϕ(f) denotes a regularization term including prior information

about the noise-free image f , whereas ψ(f, g) denotes a data �delity term. The

regularization term is usually de�ned as the TV norm of the noise-free image, i.e.

eq.2.32

ϕ(f) =
∑
y

|∇f(y)| (2.32)

where |∇f(y)| denotes the magnitude of the gradient of f and can be computed as

eq.2.33

|∇f(y)| =
√
fh(y)2 + fv(y)2 (2.33)

where fh(y) and fv(y) denote horizontal and vertical �rst order di�erences evaluated

at pixel y, respectively. The minimization of the TV norm tends to promote a

piecewise smooth image, which is usually a good prior for natural images, since it

preserves important structures like edges. The data �delity term can be de�ned

according to several di�erent approaches. A popular approach is to set the data

�delity term equal to the negative of the log-likelihood of f given the observed image
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g, that is eq.2.34

ψ(f, g) = − log p(f, g) (2.34)

Other �lters are multi-scale wavelet decomposition [92] based �lters, using an

adaptive soft-threshold of wavelet coe�cients and a 2D Kalman �lter implemented

on a causal prediction window, the so called Non Symmetric Half Plane (NSHP) for

elimination of speckle noise [93] in Synthetic Aperture Radar (SAR) imagery.

When the observation is linearly related to state, and the modeling errors are

Gaussian, then the Kalman �lter [94], provides an optimal estimate of the state.

But in practice, an image sensor as in sonar can possess nonlinear characteristics.

Julier et.al. [95] describe a new recursive linear estimator for �ltering systems with

nonlinear process and observation models. This method uses a parameterization of

the mean and covariance which can be transformed directly by the system equations

to give predictions of the transformed mean and covariance.

The Extended Kalman Filter (EKF) is probably the most widely used estimation

algorithm for nonlinear systems. Many of these di�culties arise from its use of

linearization. To overcome this limitation, the Unscented Transformation (UT) [96]

was developed as a method to propagate mean and covariance information through

nonlinear transformations. It is more accurate, easier to implement, and uses the

same order of calculations as linearization.

Subrahmanyam et.al. [97] presents a novel approach based on the Unscented

Kalman Filter (UKF) for image estimation in �lm-grain noise. The image prior is

modeled as non-Gaussian and is incorporated within the UKF frame work using

importance sampling. A small carefully chosen deterministic set of sigma points

isused to capture the prior and is propagated through �lm-grain nonlinearity to

compute image statistics.

In fact, natural images satisfy a sparse model, that is, the number of measure-

ments can be smaller than size. Sparse models are at the basis of compressed sens-

ing [98], which is the representation of signals with a number of samples at a sub-

Nyquist rate. Some despeckling methods based on the compressed sensing paradigm

and sparse representations [99], [100], [101] have appeared in literature.

The Non-Local (NL) �ltering [102], [103] uses non-local averaging of all pixels in

the image. NL �ltering is a generalization of the concept of data-driven weighted

averaging, in which each pixel is weighted according to its similarity with the refer-

ence pixel, as in the pioneering sigma �lter. The NL mean �lter [104] extends the
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above method. It sets the weights according to the probability of similarity which

provides an extension of the Euclidean distance between a local patch centered at

the reference pixel and a similar patch centered at a given neighbouring pixel.

The Block-Matching 3-D�lter (BM3D) [105] combines the advantages of the NL

principle and of the wavelet representation:3-D groups of pixels are formed by col-

lecting blocks of pixels drawn from di�erent image locations and chosen according to

their similarity with a reference block, and Wiener �ltering is applied to the wavelet

coe�cients of such 3-D groups. Following the NL approach, an improved similar-

ity measure has been proposed in [106]. Other approaches consider a Bayesian NL

framework [107], which has been applied to the despeckling of both ultrasound im-

ages and SAR images [108]. The NL principle has been successfully applied also to

despeckling in the wavelet domain [109].

A three-dimensional block matching [110] image de-noise algorithm was used to

suppress the speckle noise in SAS imaging processing. It usually adopts adjacent sub-

blocks of the image for 3D transformation, and attains image de-noise by processing

in the transform domain. [110]

2.6 Summary

This chapter gives a review about the salient operational and functional features of

sonar imaging systems, especially side scan sonar systems and various despeckling

techniques in the literature.





Chapter 3

Methodology

This chapter describes the methodology adopted for the blind estimation of sonar

images considering di�erent speckle-scene models. The literature review revealed

that signal-independent additive and multiplicative noise speckle-scene models can

be used to develop new despeckling techniques which can be e�ciently made use

of for the blind estimation of sonar images. A detailed account of the assessment

methods for evaluating the performance of the despeckling methods is also presented

in this chapter.

3.1 Introduction

Estimation, both blind and non-blind techniques, of sonar images is an important

�eld of study in the sonar image processing arena. Non-blind estimation techniques

are used, when the noise levels are known a priori or in simulation studies when

manually noise is added to the image. However, even with the knowledge of the true

noise level, the performance of the non-blind denoising method is not always the

best.

For blind estimation methods, the noise level is unknown and is usually estimated

along with the denoising process. Thus, the blind estimation is carried out �rst by

estimating the noise level using appropriate statistical methods, followed by the

application of a non-blind denoising process. To improve the performance of the

blind denoising, the statistical methods employed for noise level parameter estimated

should be �ne tuned before using the non-blind denoising process.

In the case of sonar images where the noise levels are unknown, blind denoising
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techniques yield satisfactory results. Sonar images are mostly a�ected by speckle

noise and thus need to be despeckled before further processing. Application of

suitable despeckling �lters, whose performance depends strongly on the speckle-scene

models, forms the basis for despeckling.

Prototypes using diverse speckle-scene models were developed for blind estima-

tion of the sonar images and performance studies have been carried out.

3.2 Speckle-Scene Models

Speckle-scene models available in literature are either additive models, which can

be signal independent or dependent or multiplicative noise models. Despeckling can

be done either in the observed spatial domain or transformed frequency domain.

E�cient despeckling �lters can be obtained in both spatial domain as well as in

transform domain using the signal-independent additive and multiplicative speckle-

scene models as depicted in Fig.3.1.

    
 Speckle-Scene Models

Additive Model Multiplicative Model

Signal Independent Signal Dependent Signal Independent

Transform Domain

Spatial DomainSpatial Domain

Transform Domain

Fig. 3.1: Speckle-scene models used

As understood from the literature study covered in the previous chapter, the

basic speckle-scene model for a sonar image can be multiplicative noise model. The

homomorphic transformation when applied to the basic model yields the signal-

independent additive noise model for the sonar image.
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3.3 Estimation using Additive Noise Model

Sonar images, mostly homogenous and textured regions with relatively rare edges, are

usually corrupted by multiplicative speckle noise. Homomorphic approach yields the

signal-independent speckle-scene additive model for further processing in transform

or spatial domain.

3.3.1 Transform Domain Estimation

The transform domain estimation method can be categorized into data adaptive or

non-adaptive depending on the type of transforms used. In the non-data adaptive

transform as in the multiresolution analysis method, a �xed basis is utilized while in

the data adaptive transform the singular value decomposition or the principal com-

ponent analysis method, a data adaptive basis is used. In addition, the computation

complexity of the data adaptive method can been reduced by the applying the basis

only on to the noisy image patches.

3.3.1.1 Multiresolution Method

In the multiresolution method, good denoising of sonar images can be achieved us-

ing the wavelet transform. The decomposition capability of the wavelet transform

converts the signal into several scales which represent spatial distribution structure

as well as di�erent frequency bands. While the scene power is concentrated into

a reduced number of wavelet transform coe�cients, the noise power is distributed

uniformly into all the wavelet transform coe�cients. For distinguishing the infor-

mation from noise, a threshold can be applied in the wavelet domain. Thus speckle

reduction of images can be achieved through the use of hard thresholding, where the

features are preserved or soft thresholding where smoothness is preserved.

The three steps in the wavelet denoising method are the computation of the

forward wavelet transform, the application of threshold to the wavelet coe�cients,

and the computation of the inverse wavelet transform of the obtained result. It can

be observed that the quality of the reconstructed image is a function of the threshold

value, threshold rules and the selected multiresolution level.
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3.3.1.2 Data Adaptive Transform Method

The Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

are decorrelation techniques which seek an orthogonal basis for the representation of

the sonar image. The decorrelation techniques basically rede�ne the data space, in

terms of a set of data variables optimizing the statistical parameters like variances

and singular values. These methods exploit the sparsity of the sonar images, as the

singular values and eigenvalues of sparse images tend to decay exponentially. For a

sparse matrix, even the assumption that the rank of the data matrix is lower than the

sensor variables will yield us good results. The singular values and eigenvalues are

arranged in the descending order and those values beyond the rank number will be set

to zero. Reconstruction of the denoised data matrix is carried out using the remaining

singular values and eigenvalues. The local principal components provide the best

local basis set and the largest eigenvector is in the direction of the local image edge.

Since the noise components are transformed into low eigenvalue feature components,

by eliminating the lowest eigenvalues, the noise components associated with the

sensors can be eliminated leading to dimensionality reduction. In comparison, the

SVD denoising eliminates noise components associated with both the sensors and the

pings. For blind denoising, the noise variance of the principal component coe�cients

for each patch is determined using the patch based estimation method and denoising

of the coe�cients is carried out using LMMSE estimator.

3.3.1.3 Noisy Image Patch Despeckling

The data adaptive method can be exercised on to the noisy image patches alone.

The proposed heterogeneous patch classi�er based on the naive homogeneity index

identi�ed is used for classi�cation to the di�erent statistical classes of patches vis-a-

vis homogeneous, textured and target patches. In order to calculate the homogeneity

index, the texture strength of each patch is calculated by taking the trace of the

gradient covariance matrix of each patch. Approximating a gamma distribution for

the texture strength and with the estimated noise variance, the homogeneity index

is calculated.

The homogeneous patch , basically homogenous in nature, implying a spatially

constant re�ectivity, can use plain intensity averaging of the neighbouring pixel val-

ues as the viable denoising technique. The pixels belonging to the target patch which

are intrinsically speckle-free, should be detected and left unprocessed. The interme-
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diate patch is a�ected by speckle noise and denoising is done by decomposing the

noisy image patches using principal components, estimating the clean coe�cients,

and reconstructing the �nal image.

3.3.2 Spatial Domain Estimation

SSS are used to produce high resolution acoustic images of the sea�oor by moving

the sonar forward and stacking the sonar response from successive pings with high

resolution. The spatial domain denoising technique is used in denoising sonar images

where each scan lines of the image is assumed to be unrelated in terms of speckle

noise. With the additive speckle-scene model, the well developed Kalman �lter based

linear state estimation method is used for denoising in the spatial domain.

3.3.2.1 SSS Image Linear Estimation

The estimation method for image restoration exploits the side scan imaging technol-

ogy, in which an independence exists in speckle characteristics of the each scan lines.

Each row of data can be modeled by a state space equation and a measurement

equation, with the current state being the current pixel value. The �rst stage of the

algorithm is to perform the homomorphic �ltering to transform the multiplicative

noise model into an additive one. When the homomorphic transform is applied on

to the sonar image, the observation becomes linearly related to state with Gaussian

modeling errors. In a linear observation model, the Kalman �lter provides an opti-

mal estimate of the state. The process noise and the measurement noise are assumed

to be white and independent of each other with normal probability distributions. In

the Kalman �ltering frame work, there are two occurrences to propagate the state

variable through the transformation. One is in predicting the new pixel value from

the past and the other is obtaining the observation from the predicted pixel value.

The time update equations are responsible for projecting forward in time, the current

pixel value and error covariance estimates to obtain the a priori estimates for the

next time step. The measurement update equations are responsible for the feedback,

i.e., for incorporating a new measurement into the a priori estimate to obtain an

improved a posteriori estimate. Thus the method uses a one step pixel prediction

for the sonar image estimation.
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3.4 Despeckling using Multiplicative Noise Model

Images formed with coherent imaging techniques such as sonar imaging su�er from

high frequency speckle noise, which reduces spatial resolution. While Gaussian noise

can be modeled by random values added to an image, speckle noise can be modeled by

multiplying random values with pixel values and hence it is also called multiplicative

noise. The speckle e�ect introduces a variance to the intensity of each pixel and

appears as a strong multiplicative noise where the variance of a point is identical to

its mean.

Yet another proposed approach for denoising the sonar image uses the multi-

plicative speckle-scene model which can also be done in both the transform domain

and in the spatial domain.

3.4.1 Transform Domain Despeckling

In the case of multiplicative noise model also, for denoising the sonar images, the

data adaptive transforms like the Principal Component Analysis or the Singular

Value Decomposition methods are used. A probabilistic patch based processing is

employed to improve the noise removal.

3.4.1.1 Mixed Noise Removal by Processing of Patches

In case of sonar images, not much work has been carried out to e�ectively eliminate

the mixed noise with additive and multiplicative components, due to the distinct

characteristics of the degradation process induced by each component. The methods

developed for additive Gaussian noise fail to suppress the speckle e�ect as they

interpret the noisy pixels as edges to be preserved. Similarly the approaches for

despeckling will retain most additive Gaussian noise in the restored images leading to

grainy, visually disappointing results. Thus a two phase patch based mixed denoising

algorithm has been proposed for additive Gaussian and multiplicative speckle noise

removal in sonar images. In the �rst phase, the additive white Gaussian noise is

removed by the sparse approximation of local image patches and in the second phase,

despeckling is done on non-local patches formed by exploiting the noise distribution

similarity between noisy patches. The Principal Component Analysis or the Singular

Value Decomposition can be used for local patch denoising and the non-local patches

by a weighted maximum likelihood denoising.
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3.4.2 Spatial Domain Despeckling

In contrast with the transform domain, where some data adaptive transform methods

are employed, the spatial domain approach works directly on the observed signal. In

the spatial domain, the fractional integral mask based method, exploiting the high

frequency noise removal property of the fractional mask can be used. In the case of

the side scan sonar image, the UKF based estimation can be utilized.

3.4.2.1 High Frequency Filtering Method

A fractional integral mask acting as a low pass �lter can be used to eliminate the high

frequency noise signals in sonar images. Fractional calculus has proven to be better

over integer calculus to analyze and model natural signals. Fractional order ν > 0

corresponds to fractional di�erentiation whereas fractional orders ν < 0 corresponds

to fractional integration. The Riemann-Liouville de�nition for fractional integral

calculus is used to create Fractional Integral Masks (FIM) in eight directions to be

convolved with the data. The method can be optimized with the use of a single mask

incorporated with the signi�cant coe�cients from all the eight directional masks and

a single convolution operation of this mask with the image helps in obtaining the

computational e�ciency. The computational complexity can be further reduced by

convolution of the mask only with the noisy patches.

3.4.2.2 Nonlinear Estimation Method

The Unscented Kalman �lter, is a nonlinear state estimation method which provides

an e�cient recursive means to estimate the state of a process, in a way that minimizes

the mean of the squared error. With the multiplicative speckle-scene model assumed,

the unscented transformation is used for calculating the statistics of the random

variable which undergoes a nonlinear transformation. The covariance of the process

noise and the measurement noise were estimated �rst. The �lter estimates the pixel

value at certain location and then obtains feedback in the form of measurements. The

predictor equations or the update equations are responsible for projecting forward

the current pixel value and the error covariance estimates to obtain the a priori

estimates for the next pixel value in the row. The measurement update equations or

the corrector equations incorporate a new measurement into the a priori estimate

to obtain an improved a posteriori estimate.
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3.5 Assessment of the Despeckling Methods

An immediate and subjective approach for quality assessment is represented by vi-

sual inspection of �ltered images. Visual inspection permits detection of the main

human-visible features that characterize the behavior of a despeckling �lter. Such

features include edge preservation capability, degree of blur, point target preser-

vation, as well as structural artifacts which are hardly detected by objective and

direct measurements. On the other hand, visual assessment neither allows quanti-

tative comparisons between the performances of di�erent despeckling �lters nor the

measurement of bias introduced by the �lter.

One of the most challenging tasks is the validation and quality assessment of

data processed for speckle reduction. The most evident problem is that the noise-

free re�ectivity is unknown, so that no comparison can be carried out between the

output of the despeckling process and the actual ground truth. Another important

issue is the relationship between quality and �delity of despeckled sonar data. Like

many other denoising frameworks, the quality of a processed sonar image is usually

evaluated in terms of blurring of homogeneous areas and detailed preservation in

heterogeneous areas. Consequently, the radiometric preservation of the signal is an

important requirement. A good despeckling �lter should not introduce bias on the

re�ectivity.

In order to overcome the limitations of the visual comparison, several objective

performance indexes have been proposed in the literature for the quality assessment

of despeckling �lters. They can be mainly divided into two classes: with-reference

and without-reference indexes.

3.5.1 With-Reference Indexes

With-reference indexes are commonly used in the image denoising �eld for synthe-

sized speckle noise, where reference image is known. A typical approach consists

of choosing a reference image, either original or synthetic, representing the actual

re�ectivity or ground truth, and creating a synthetically degraded version according

to a given signal model. The original speckle free image squared and multiplied by

an exponentially distributed fading term can generate a synthetically speckled image

which can be used as data for testing. This simulated data set will be a spatially

uncorrelated and fully developed speckle image.

These indexes permit a quantitative and objective comparison between the per-
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formances of di�erent �lters, which are expected to perform similarly on real sonar

images. Moreover, insights on �lters behavior on speci�c image features, like edge

preservation and homogeneous areas smoothing, can be easily highlighted by choos-

ing appropriate reference images. Unfortunately, experimental results carried out

on simulated sonar images are not su�cient for inferring the performances of de-

speckling �lters on real sonar images, since the synthetically speckled image may

not be consistent with the actual sonar image formation and acquisition processes.

Furthermore, the statistical properties of the chosen reference image and real ground

truth re�ectivity can substantially di�er.

The most used model in the literature on despeckling as mentioned before is

re�ected in the eq.2.10, g = fu. The ability of the �lter to preserve the texture is

measured by Mean Square Error (MSE) between the original and �ltered images.

Despite the suppression of noise from the image, the error between the images must

be as small as possible. The MSE, or Euclidean distance, between the ground truth

f and the despeckled image, f̂ and other measures derived from the MSE, like the

SNR, the Peak Signal-to-Noise Ratio (PSNR) and the Energy Signal-to-Noise Ratio

(ESNR), have been widely used for the quality assessment of both denoising and

despeckling, [111], [112]. The equation for the MSE is eq.3.1,

MSE = E[(f̂ − f)2] (3.1)

In the presence of signal-dependent noise, the MSE is strongly in�uenced by the

average signal level of the ground truth, unlike the case of additive signal-independent

noise. Consequently, a quantitative evaluation of despeckling �lters using this kind of

indexes is strongly dependent on the content of the ground truth image, even though

performance hierarchy is usually preserved across di�erent images. The MSE based

measurements are useful to obtain a global performance assessment on the whole

image, but usually they yield little information about the preservation of speci�c

features, for which other indexes as given in eq.3.2, eq.3.3 and eq.3.4 can be used.

SNR = 10 log10

[
var(f)

MSE

]
(3.2)

PSNR = 10 log10

[
f2
PEAK

MSE

]
(3.3)
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ESNR = 10 log10

[
E[f2]

MSE

]
(3.4)

3.5.2 Without-Reference Indexes

Without-reference indexes do not trust on the knowledge of the ground truth and

use speci�c statistical hypotheses on the signal model. Since the signal model is

strongly dependent on the degree of scene heterogeneity, a supervised selection of

the most appropriate areas for the computation of a speci�c index, e.g., homogeneous

areas, may be required. There are di�erent statistical indexes to assess the quality

of despeckling, without-reference image.

Typical measures can be computed from the ratio image r, de�ned as the point-

by-point ratio between the noisy and the �ltered image [113] as in eq.3.5.

r(n) =
g(n)

f̂(n)
(3.5)

The ratio image is a useful information in both homogeneous as well as heterogeneous

scenes, where the fully developed speckle model hold. An ideal �lter should result

in a pure random pattern, whereas poor speckle noise removal causes structural

information, such as borders and edges, to be clearly visible in the ratio image. The

mean and the variance of r, that is r = E[r] and var[r], should be as close as possible

to the respective theoretical statistical moments of the speckle noise process. For

this reason, they are often used as indexes of bias and speckle power suppression,

respectively.

Another index is a measure of bias which is given by B index, where a value close

to zero indicates an unbiased estimation given in eq.3.6.

B = E

[
[g − f̂ ]

g

]
(3.6)

Equivalent Number of Look (ENL) [114], [115] is one of the commonly used metric

to quantify the quality of despeckled sonar images. The ENL is an index suitable for

evaluating the level of smoothing in homogeneous areas, where the scene variation

is supposed to be negligible with respect to speckle noise �uctuations. The ENL

factor is related to the radiometric resolution of the image. ENL is the ratio of mean

and standard deviation of the despeckled image and is calculated by using following
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expression in eq.3.7,

ENL =

(
µf̂
σf̂

)2

(3.7)

where µf̂ and σf̂ are mean and standard deviation of homogeneous area, f̂ in de-

speckled image.

The ENL of the original sonar image is related to the nominal number of looks

through the autocorrelation function of the speckle, whereas it increases after the

despeckling stage according to the smoothing capability of the �lter. A smaller value

of ENL indicates more smoothing whereas a larger value indicates preservation of

image features. In sonar images, the speckle variance is proportional to the mean

intensity squared. Thus a large ENL indicates a small spread of values due to speckle.

The higher the value of ENL, better the performance of despeckling technique.

The ratio of standard deviation to mean otherwise referred as Coe�cient Of

Variance (COV) can be used to measure the speckle strength in an image. Let g and

f̂ be original and speckle reduced sonar images respectively. The Speckle Suppression

Index (SSI) [116] is denoted as the ratio of the coe�cient of variance of despeckled

image to the coe�cient of variance of the original image as given in eq.3.8.

SSI =

√
var(f̂)

mean(f̂)

mean(g)√
var(g)

(3.8)

SSI is always less than 1 and smaller values of SSI imply higher suppression of speckle

noise.

Another without-reference index is the Correlation coe�cient(CC). The CC for

original image, f and despeckled image, f̂ is calculated as in eq.3.9,

ρgf̂ =
E[(g − µg)(f̂ − µf̂ )

σgσf̂
(3.9)

where µg and µf̂ are mean values of original and despeckled sonar images respectively

and σg and σf̂ are standard deviations of original and despeckled images respectively.

Higher CC indicates better despeckling.

ENL and SSI are not considered as reliable measures when the despeckling algo-

rithm overestimates the mean value. Therefore another method, viz, Speckle Sup-

pression and Mean Preservation Index (SMPI) is used [117]. As the name suggests,
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this index quanti�es the speckle suppression and mean preservation capabilities of

despeckling technique. The lower the value of SMPI, better the despeckling capabil-

ity. The equations for SMPI is eq.3.10,

SMPI = Q

√
varf̂√
var(g)

(3.10)

where Q = K + |mean(x̂)−mean(x)|, with K given in eq.3.11,

K =
max(mean(f̂))−min(mean(f̂))

mean(g)
(3.11)

Under the hypothesis of multiplicative speckle noise, a measure of texture preser-

vation on heterogeneous areas is given by the comparison between the COV [118]

calculated on the despeckled image, Cf̂ as in eq.3.12, and the expected theoretical

value on the noise-free image, Cf as in eq.3.13.

Cf̂ =

√
V ar[f̂ ]

E[f̂ ]
(3.12)

Cf =

√
C2
g − C2

u

1 + C2
u

(3.13)

where Cg, the coe�cient of variation of the observed noisy image and Cu, the co-

e�cient of variation of the speckle noise. Intuitively, a poor preservation of details

yields Cf > Cf̂ , while the introduction of impairments leads to Cf < Cf̂ .

3.6 Summary

The methodology suggested to be adopted for denoising the sonar images using

di�erent noisy signal models of the sonar images has been presented in this chapter.

Di�erent methods for the assessment of the despeckling methods are elaborated.



Chapter 4

Additive Noise Model Analysis

In this chapter a signal-independent additive noise model is assumed and the sonar

image is estimated both in the transform domain and the spatial domain. For the

signal-independent additive model, in the transform domain a mutiresolution anal-

ysis method and the sparsity of the natural sonar images are exploited for the de-

noising. In the spatial domain, a kalman �lter based estimation method is used to

denoise the side scan sonar image.

4.1 Introduction

Among the most widely used signal models for despeckling, the multiplicative model

is often manipulated in order to obtain an additive one. In the additive signal mod-

els, the noise free informative signal is contaminated with either signal-dependent or

signal-independent noise.The homomorphic transformation approach, which trans-

forms the multiplicative noise into an additive one by taking the logarithm of the

observed data, has the noise free signal a�ected by signal independent noise. How-

ever, this operation may introduce a bias into the denoised image, since an unbiased

estimation in the log domain is mapped onto a biased estimation in the spatial do-

main. The processing can be done either in the homomorphic transform domain or

in the homomorphic spatial domain.
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4.2 Transform Domain

Bayesian thresholding method is proposed with a novel method for �nding optimum

multiresolution level based on PSNR values and visual quality, as an improvement

on the classical thresholding approaches. For all the thresolding methods and the

chosen wavelet function, the optimum multiresolution level for speckle reduction is

found to be the maximum level of decomposition possible for the sonar image of

size S to be despeckled. This method �ne tunes the existing despeckling methods

by optimizing the level of decomposition. The despeckling performance is further

improved by choosing the optimum wavelet shrinkage rule for the image.

An e�cient patch based and block based image despeckling algorithms, where

the noisy image patches are represented using Principal Components and Singular

Values, is also proposed. This work presents a framework for despeckling by learn-

ing a suitable basis to represent each image patch. The local basis functions are

determined adaptively from the local image patches as opposed to being �xed for

the entire image as in wavelet based technique and then being applied adaptively to

local image patches. The results emphasized the strengths of this new decomposition

approach for sonar image which are sparse and the details are of high frequency.

The data adaptive method is extended by applying to the noise a�ected patches

only. For the patch classi�cation, the proposed naive homogeneity index exploit-

ing the heterogeneous nature of the sonar image is used. The heterogeneous patch

classi�cation is based on the texture strength of the patches unlike the traditional

techniques which are based on the coe�cient of variation. The method is computa-

tionally e�cient, smoothens the uniform regions, preserving edges and features.

4.2.1 Multiresolution Method

Sonar images are highly a�ected by speckle noise which reduces spatial resolution.

Denoising is required in sonar images to distinguish a number of di�erent regions

by analyzing the image. The proposed technique enhances the denoising property

of the classical thresholding and the Bayes soft thresholding technique by proper

selection of time scale level. The optimum mutiresolution level for speckle reduction

is found to be the maximum level of decomposition possible for the image of size S

to be denoised and the chosen basic wavelet function. The method is compared and

evaluated based on the Peak Signal to Noise Ratio.

Sonar images [119] are highly unreliable due to the presence of speckle noise



4.2. Transform Domain 71

which reduces spatial resolution by giving a variance to the intensity of each pixel.

Sonar image of an object will closely resemble the optical image of the same but

has less resolution than the optical image. The signal to noise ratio of such signals

can be very low depending on the acquisition conditions and they contain almost

homogeneous and textured regions with relatively rare edges. The spatial resolution

of the side scan sonar image will be the constraining factor in its performance. The

nominal resolution corresponds to the minimum distance between two objects that

can still be distinguished on the sonar image.

Classical wiener �lter is designed primarily for additive noise suppression. A

homomorphic approach is suggested for addressing the multiplicative speckle noise.

The multiplicative speckle noise that disturbs the sonar images can be transformed

into an additive noise by obtaining the logarithm of the image and consequently

applying the wiener �lter. To obtain the denoised result, the logarithm inversion is

performed at the end of the process.

The method described uses a wavelet decomposition method to remove the

speckle noise from sonar images. The multiresolution analysis [120] represents the

signals in di�erent scales e�ciently and helps images to be approximated from coarse

to �ne resolution. The method gives the optimum multiresolution level for speckle

reduction. During the process, the sonar image quality is enhanced in terms of PSNR

and resolution.

4.2.1.1 Wavelet Thresholding Rules for Denoising

The speckle noise produced due to the coherent nature of scattering phenomenon

is of multiplicative nature. Most of the literature available is for the removal of

additive noise. The method is to perform a logarithmic transformation to convert

the multiplicative speckle noise into an additive noise, followed by a wavelet decom-

position on the input noisy sonar image to pack the energy of the image into a few

large coe�cients, then modify the noisy wavelet coe�cients using certain shrinkage

functions. Finally, the denoised image is reconstructed by performing an inverse

wavelet transform, followed by an exponential transformation.

First a logarithmic operation on the noisy sonar image with multiplicative model,

g(x, y) = f(x, y)u(x, y) is done which gives an additive equation. Then the observed

data, g′(x, y) = f ′(x, y) + u′(x, y), contains the true signal f ′(x, y) with the additive

noise u′(x, y), independent and identically distributed. Let W (.) and W−1(.) denote
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the forward and inverse wavelet transform operators. The ultimate aim to remove

the noise, or "denoise" g′(x, y), and obtain an estimate f̂ ′(x, y) of f ′(x, y) which

minimizes the mean squared error.

Let G = Dg′ denote the matrix of wavelet coe�cients of g′, where D is the two-

dimensional dyadic orthogonal wavelet transform operator, and similarly F = Df ′

and U = Du′.

The wavelet threshold denoising method �lters each coe�cient G from the detail

sub-bands with a threshold function to obtain F . The denoised estimate is then

D−1F̂ , whereD−1 is the inverse wavelet transform operator. DWT on 2-dimensional

data is shown in Fig.4.1.
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Fig. 4.1: DWT on 2-dimensional data

The sub-bands HHk, HLk, LHk, k = 1, 2, . . j are called the details, where k is

the scale and j denotes the largest or coarsest scale in decomposition and LLk is the

low resolution component. Thresholding is now applied to the detail components

of these sub-bands to remove the unwanted coe�cients, which contribute to noise.

Since speckle noise lies in the high spatial frequency region, it will reduce to near

zero after a �nite number of repeated smoothing operations. Reconstruction of the

denoised image can be achieved through performing the inverse WT and taking the

exponent.

When the image is in the wavelet domain, most of the image information is con-

centrated in the few largest coe�cients while the additive noise is uniformly spread

throughout the coe�cients. For sonar image despeckling, the sparsity or the decorre-

lation capacity of the wavelet representation of the images is used. For distinguishing
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information from noise in the wavelet domain, the most straightforward way is to

threshold the wavelet coe�cients.

The di�erent wavelet denoising approaches di�er in the selection of the thresh-

old, time scale levels, and basic wavelet function. The signal denoising via wavelet

thresholding or shrinkage have shown that various wavelet thresholding schemes for

denoising have near-optimal properties in the minimax sense. The proposed method

gives the optimum time scale level for the speckle reduction in sonar images for dif-

ferent wavelet shrinkage rules. Instead of blindly assuming a multiresolution level,

give the last level for which at least one coe�cient is correct for the image. This

maximum level decomposition of image varies with the size of the image and the

basic wavelet function chosen.

Key Problems Concerning Wavelet Denoising

1. Choice of Reasonable Wavelet Function

2. Choice of Proper Time Scale Levels

3. Determination of Accurate Thresholds

4. Choice of Suitable Thresholding Rules

Some of the experimental results obtained while dealing with the key problems

concerning wavelet denoising are:

1. Choice of Reasonable Wavelet Function

The �rst step in denoising is to select a wavelet for the forward and inverse transfor-

mation. They di�er in their support, symmetry and number of vanishing moments.

Two wavelet-based noise reduction methods exists, the traditional spatially selec-

tive noise �ltration technique and the threshold based denoising algorithm using the

undecimated discrete wavelet transform (UDWT). UDWT can suppress noise bet-

ter than discrete wavelet transform (DWT). Based on the direct spatial correlation

of wavelet transform at several adjacent scales, a high correlation is used to judge

whether there is a signi�cant edge. For these implementations the choice of noise

power reference is very important and a non-blind denoising approach is applied.

For improving the �ltering performance, edges can be extracted from coarse scales

to �ne scales.

Regarding the selection of a particular wavelet for the work, the optimal choice

depended on the image selected. The work used di�erent wavelets and compared
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the result using MSE or PSNR indexes. For the simulation, a sonar image was taken

and a speckle noise of variance 0.02 was added to it. The type of thresholding used is

hard thresholding and shrinkage rule is SureShrink. For the analysis, di�erent basic

wavelets like the haar, db4, and coif5 were applied separately for the restoration of

sonar image containing speckle noise as shown in Table.4.1.

Table 4.1: Choice of reasonable wavelet function

No. of Levels 2 2 3 3

Wavelet MSE PSNR MSE PSNR

Haar 357.66 22.5961 357.7102 22.5955
db4 355.4453 22.6231 356.6525 22.6084
coif5 356.9369 22.6049 353.1068 22.6517

2. Choice of Proper Time Scale Levels

Other than the choice of the wavelet, there can be a choice for the number of mutires-

olution levels to be used based on several boundary treatment rules. In simulation it

is seen that this optimum level calculation was optimum for the Bayes soft threshold

method. It has been observed that the PSNR values were getting reduced for both

the levels L = 7 and L = 9 compared to L = 8 which has been obtained as the

optimum level for the image of the given size. The threshold selection is based on

minmax method. The PSNR values were observed for di�erent levels of decomposi-

tion of the image. Maximum PSNR values for Haar, Daubechies, and Coi�ets were

obtained at levels of decomposition 8, 5, and 3 respectively as in Table4.2. This

is the maximum level of decomposition of the selected image for the chosen basic

wavelet function and is called the optimum multiresolution level.

3. Determination of Accurate Thresholds

Various shrinkage functions that determine how the threshold is applied are hard

thresholds, soft thresholds, garrote and semisoft thresholds. As the reconstructed

image quality will change with the change in threshold value, �nding the optimum

threshold value t is a key problem. A small threshold value will pass all the noisy

coe�cients, the variance will get too large and smoothening of the image will be less.

As the threshold value increases, more number of coe�cients becomes zero which

leads to smoother signal and destroys details and as a result image quality decreases.

An e�cient method for �nding the threshold value for denoising is by analyzing the

statistical parameters of the wavelet coe�cients [121].

The hard threshold function as given in eq.4.1 keeps the input if it is larger than
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Table 4.2: PSNR values of di�erent levels of decomposition

Level haar db4 coif5

2 25.7723 25.7885 26.1952
3 25.9035 25.8819 26.5427
4 25.8849 25.8995 26.345
5 25.8971 25.9432 26.5377
6 25.8648 25.7686 26.5289
7 25.8229 25.7746 26.4956
8 26.1932 25.7914 26.5075
9 25.8517 25.8526 26.4652

the threshold t; otherwise, it is set to zero.

TH = x.1 {|x| > t} (4.1)

The soft threshold function, as shown in eq.4.2 takes the argument and shrinks it

towards zero the threshold t.

TS = sgn(x).max(|x| − t, 0) (4.2)

The pictorial representation of the equation is shown in Fig.4.2.

tt-t-txx THTS Hard ThresholdingSoft Thresholding

Fig. 4.2: Thresholding

An advantage of soft thresholding is that it provides smoothness while hard

thresholding preserves features. The di�erent thresholding techniques applied on

given image with haar wavelet at a level of decomposition of 8 is shown in Ta-

ble.4.3.The importance of thresholding rule for the selected wavelet at a particular

chosen level of decomposition is depicted in the table.

4. Choice of Suitable Thresholding Rules

There exist various methods for wavelet thresholding, which rely on the choice of

a threshold value. Some typically used methods for image noise removal include

VisuShrink, SureShrink, and BayesShrink. For all these methods the image is �rst

subjected to a discrete wavelet transform, which decomposes the image into various

sub-bands.
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Table 4.3: Threshold choice

Optimum Level 8 8

Thresholding MSE PSNR

Soft 287.6347 23.5424
Hard 357.4313 22.5989
Bayes 167.4678 25.8915

VisuShrink uses a threshold value t that is proportional to the standard deviation

of the noise. It follows the hard thresholding rule and is also referred to as universal

threshold de�ned as in eq.4.3:

t = σ
√

2 log n (4.3)

with σ the noise variance present in the signal and n represents the signal size or

number of samples. To estimate the noise variance eq.2.20 is used. VisuShrink does

not deal with minimizing the mean squared error. It can be viewed as general-

purpose threshold selectors that exhibit near optimal minimax error properties and

ensures with high probability that the estimates are as smooth as the true underlying

functions. For image denoising, VisuShrink is known to yield overly smoothed images

as its threshold choice called the universal threshold and the noise variance, can be

unwarrantedly large due to its dependence on the number of samples, which is high

for a typical test image sizes.

A threshold selector based on Stein's Unbiased Risk Estimator (SURE) is called

as SureShrink. It is a combination of the universal threshold and the SURE thresh-

old. This method speci�es a threshold value tj for each resolution level j in the

wavelet transform which is referred to as level dependent thresholding. The goal

of SureShrink is to minimize the mean squared error. SureShrink suppresses noise

by thresholding the empirical wavelet coe�cients. The SureShrink threshold t∗S is

de�ned as in eq.4.4

t∗S = min(t, σ
√

2 log n) (4.4)

where t denotes the value that minimizes Stein's Unbiased Risk, σ is the noise

variance and n is the size of the image. SureShrink follows the soft thresholding

rule. A threshold level is assigned to each dyadic resolution level by the principle

of minimizing the Stein's Unbiased Risk Estimator for threshold estimates and so

it is an adaptive threshold method. It is smoothness adaptive, i.e. if the unknown

function contains abrupt changes or boundaries in the image, the reconstructed image
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also does.

In BayesShrink rule, the threshold is determined for each sub-band by assuming

a GGD and the goal of this method is to minimize the Bayesian risk. The threshold

t is obtained by minimizing the BayesianRisk, i.e, the expected value of the mean

square error. It uses soft thresholding and is sub-band-dependent, which means

that thresholding is done at each band of resolution in the wavelet decomposition

and is smoothness adaptive. For the noise model g = fu after the homomorphic

transformation with g′ = f ′ + u′, the Bayes threshold, tB is de�ned as in eq.4.5.

tB = σ2/σf ′ (4.5)

where σ2 is the noise variance and σf ′ is the signal variance without noise.

The determination of accurate thresholds and thresholding rules is shown in Ta-

ble4.4. Simulation results show that the Bayesian soft thresholding method has the

Table 4.4: Determination of accurate thresholds and thresholding rules

No: of Levels 2 2 3 3

Threholding Rule MSE PSNR MSE PSNR

Soft 987.2228 18.1867 987.7221 18.1845
Hard 355.8919 22.6176 359.3575 22.5755
Bayes 172.4229 25.7649 167.3647 25.8942

maximum PSNR compared to the other thresholding methods. It can be observed

that the quality of the reconstructed image is a function of the threshold value,

threshold rules and the selected multiresolution level. The Table4.4 shows the im-

portance of determination of accurate thresholds and thresholding rules as can be

noticed that the PSNR values have signi�cant di�erence between the soft, hard and

Bayes thresholding rules.

4.2.1.2 Optimum Multiresolution Level for Classical Approach

The wavelet thresholding procedure removes noise only by thresholding the wavelet

coe�cients of the detail sub-bands, while keeping the low resolution coe�cients

unaltered.

Fig.4.3 shows the PSNR values observed at di�erent levels of decomposition for
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three di�erent wavelets haar, db4, and coif5 using the hard thresholding method.

The maximum PSNR values were observed at the optimum multiresolution level for

three wavelets which were 8, 5, and 3 respectively as shown in Table4.5.

Fig. 4.3: Decomposition levels for di�erent wavelets using hard thresholding

Table 4.5: PSNR values for hard thresholding

n 2 3 4 5 6 7 8 9

haar 24.6674 24.6711 24.6768 24.6714 24.6626 24.672 24.6764 24.6637
db4 24.6721 24.6667 24.6584 24.6912 24.6653 24.6723 24.6669 24.6717
coif5 24.6626 24.6807 24.6717 24.6684 24.6611 24.6716 24.6544 24.6718

The Fig.4.4 shows the Performance at di�erent decomposition levels for three dif-

ferent wavelets haar, db4, and coif5 using soft thresholding method. The maximum

PSNR values were observed at the optimum multiresolution level for three wavelets

which were 8, 5, and 3 respectively as shown in Table4.6.

For the chosen image of size, S and the selected wavelet, the optimum multires-

olution levels for the hard thresholding and soft thresholding method is obtained as

the maximum level decomposition of image. As the level is decreased or increased,

the performance degradation is observed.
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Fig. 4.4: Decomposition levels for di�erent wavelets using soft thresholding

Table 4.6: PSNR values for soft thresholding

n 2 3 4 5 6 7 8 9

haar 21.1668 21.1654 21.164 21.1611 21.1591 21.1643 21.167 21.1596
db4 21.1627 21.1633 21.1617 21.1654 21.1607 21.1645 21.1594 21.1613
coif5 21.1584 21.1662 21.159 21.1637 21.1626 21.1616 21.1657 21.164

4.2.1.3 Optimum Multiresolution Level for Bayesian Approach

Bayes threshold choice adapts to both the signal and the noise characteristics. Sim-

ulation results show that the Bayesian soft thresholding method has the maximum

PSNR compared to the other thresholding methods. The PSNR for the noisy image

is found to be 24.6756. For the chosen image of size, S and the selected wavelet, the

optimum multiresolution levels for the Bayesian method is obtained as the maximum

level decomposition of image. The PSNR value for this method is 30.0954. As the

level is decreased or increased, the performance degradation is observed in Bayes

thresholding method also. Fig.4.5 depicts the results. The optimum multiresolution

level for three di�erent wavelets haar, db4, and coif5 using the Bayes thresholding

method were 8, 5, and 3 respectively as in Table4.7.

The results demonstrate the variation in denoising e�ectiveness with the choice
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Fig. 4.5: Decomposition levels for di�erent wavelets using Bayes thresholding

Table 4.7: PSNR values for Bayes thresholding

n 2 3 4 5 6 7 8 9

haar 27.5396 27.5642 27.5617 27.5591 27.5649 27.5593 27.5577 27.5727
db4 29.5658 29.5872 29.5917 29.604 29.5627 29.5927 29.5687 29.011
coif5 30.0146 30.095 30.096 29.8978 29.8274 29.812 29.7529 29.7363

of basic wavelet function, the wavelet shrinkage used and the multiresolution level.

The new approach can achieve fairly desired denoising e�ectiveness. The level of

decomposition is calculated based on the size of the selected image. Di�erent ba-

sic wavelets were chosen separately for the proposed denoising algorithm for the

restoration of image containing speckle noise.

The Fig.4.6 depicts a noisy image with speckle noise and the denoised image using

the coi�ets wavelet function using Bayes thresholding. A novel method for �nding op-

timum multiresolution level based on PSNR values and visual quality is proposed, as

an improvement over the classical thresholding approaches and the Bayesian thresh-

olding method. For all the thresolding methods, the optimum multiresolution level

for speckle reduction is the maximum level of decomposition possible for the image

of size S to be denoised and the chosen basic wavelet function. This method �ne
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tunes the existing denoising methods by optimizing the level of decomposition and

the optimum wavelet shrinkage rule for the image.

Fig. 4.6: Denoising using Bayes thresholding of Coi�ets wavelet function

The simulation results on di�erent size sonar images with their respective max-

imum level of decompositions for two di�erent types of wavelet functions coif5 and

dB4 are given in Table4.8 and Table4.9 respectively. The results show that the max-

imum level of decompositions possible on a sonar image vary with the size of the

image to be processed and the type of the wavelet function used.

Table 4.8: PSNR values for di�erent thresholding at maximum level of decomposition for
coif5 wavelet

Image size n Soft Hard Bayes

211x232 2 16.7135 24.5524 22.9158
279x332 3 11.957 23.2983 12.5648
201x100 1 13.6356 25.2645 25.3437
240x476 3 13.6469 21.6851 23.9731
473x476 4 18.2552 23.0926 31.1466
361x360 3 21.1684 24.6615 30.0944
400x340 3 9.9864 19.2699 28.4681

4.2.2 Data Adaptive Transform Method

The data adaptive transforms, Principal Component Analysis and Singular Value

Decomposition methods was used for denoising the noisy sonar image, image patches

and blocks of patches. All of these methods exploited the sparse characteristics
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Table 4.9: PSNR values for di�erent thresholding at maximum level of decomposition for
dB4 wavelet

Image size n Soft Hard Bayes

211x232 4 16.7141 24.4882 23.3047
279x332 5 11.9569 23.2753 12.8731
201x100 3 13.635 25.297 25.0581
240x476 5 13.6463 21.6756 24.0455
473x476 6 18.2577 23.1013 30.6008
361x360 5 21.162 24.6548 29.5957
400x340 5 9.9864 19.2688 28.369

of the sonar images. PCA and SVD are decorrelation techniques which seek an

orthogonal basis for representation of the data space assumed to be linear. They

rede�ne the data space in terms of a set of data variables which optimize certain

statistical measures such as variances or singular values. Majority of the existing

denoising algorithms are some form of a low pass �ltering, while edges in the sonar

images have high frequency components and noise removal can result in drastic loss

of information. Fixed basis as in wavelet method is inappropriate in dealing with

such sonar images. By generating 2-D basis sets, which have vectors lined up along

the edges, and not across them, the high frequency coe�cients caused by edges are

much smaller [122]. The data adaptive denoising algorithms using PCA and SVD

retains the edges.

Classical techniques of processing and analysis may fail since speckle noise in

sonar images manifests itself as multiplicative non-Gaussian noise in the intensity

domain. The degradation model g = fu is used to describe the multiplicative noise

a�ected sonar images where g is the observed image intensity, f is the noise-free

re�ectivity and u the multiplicative speckle fading term statistically independent of

f with Rayleigh distribution. The implemented work uses homomorphic approach to

convert the multiplicative noise to additive one and then local patches are processed

exploiting the sparsity of the real images. The homomorphic approach convert the

multiplicative signal model into a signal independent additive Gaussian noise model

as logg = logf + logu rewritten as g′ = f ′ + u′, where the noise component u′ is a

signal-independent additive noise.

The image to be denoised is assumed to be a�ected by additive white Gaussian

noise with zero mean and �xed, unknown standard deviation σ. For blind denois-
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ing the noise variance of the image is estimated using eq.2.20 and the problem of

despeckling is now modi�ed as rejecting the additive noise of the known variance.

Comparison of the di�erent methods is done using di�erent without-reference image

performance evaluation criteria.

For the sonar image, the unknown standard deviation σf ′ of the noisy image is

estimated using the the noise level estimation algorithm. For the blind denoising

of the image, σf ′ needs to be estimated together with the denoising process. Blind

denoising in images consists of two process, the estimation of the noise level in the

image and then the non-blind denoising.

The variance σ2
f ′ , is estimated using the maximum likelihood estimator eq.4.6.

σ2
f ′ = max

[
0,

1

M

∑
i

f ′i
2 − σ2

]
(4.6)

Then denoise the coe�cients using LMMSE estimator [123] given in eq.4.7

f ′i =

(
σ2
f ′

σ2
f ′ + σ2

)
× g′i (4.7)

where f ′i is the denoised image coe�cient or clean coe�cient after the additive noise

removal.

Denoising is done by decomposing the log transformed noisy image, image patches

and blocks of patches as Principal Components or SVD coe�cients, estimating the

clean coe�cients, and reconstructing the �nal image.

4.2.2.1 Despeckling by PCA and SVD

An M ×N data matrix is generated by a sonar sending out M pings and N sensors.

In linear matrix algebra, if X denotes the real value M ×N data matrix, the rank

r of X matrix represents the number of linearly independent vectors de�ned either

along rows or columns, and is always less than or equal to the smaller of the two, ie.

r < min(M,N).

Eigenvalues and singular values of natural images tend to decay exponentially.

The rank of the data matrix is assumed to be lower than the sensor variables and all

descending order arranged eigenvalues and singular values beyond the rank number

will be set to zero. Reconstruct the denoised data matrix by using the remaining
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eigenvalues and the singular values. The feature directions, eigenvectors of PCA and

singular values of SVD are usually referred to as the virtual sensors.

The local principal components provide the best local basis set and the largest

eigenvector is in the direction of the local image edge. The noise components are

transformed into low eigenvalue feature components. By eliminating the lowest eigen-

value components, not only dimensionality reduction but also elimination of some

noise associated with sensors is achieved.

In comparison, the SVD denoising eliminates noise components associated with

both the sensors and the pings. Working on the column covariance matrix, PCA

is almost identical to SVD except that the data matrices used in PCA requires

the mean of samples to be subtracted �rst or a mean-centered ones. However, in

the studies the mean estimated deviate signi�cantly from the true value due to the

existence of unmatched samples. It was observed that the result of PCA transform

was accurate as that of SVD and denoising e�ectiveness was slightly lower.

4.2.2.2 Adaptive Despeckling of Sonar Image Patches

The method uses the approach as in [124], where the entire image is divided into

patches and to denoise an entire image, all the patches that make up the image are

denoised separately. The entire image after division into non overlapping patches of

size N ×N is converted to 1-D training vectors which are arranged as columns so as

to form a matrix of training vectors, S. The size of matrix S is N2 ×M , where M

is the number of patches.

If X denotes the inverse of (SST ) i.e. (SST )−1. Then each column of X denotes

the principal components of the corresponding training vectors and the PC basis

functions are the eigenvectors of X. For i = 1 ... N2 and l = 1 ...M , the PC coe�-

cients y(i, l) are estimated by projecting the training vectors in S onto the PC basis

functions of X. The newly generated PC coe�cients helps to represent the noisy

image using fewer values. Reconstruction is the reverse of the entire decomposition

process. The denoised training vectors are converted back into patches, and the

patches are arranged properly to obtain the denoised image.

In adaptive SVD based denoising method, the image is represented using singular

values. The SVD of the covariance matrix is found out and denoising is performed

on it. A sliding window is incorporated in variance calculation. Sliding window

is used under the assumption that neighbouring patches will show some similarity
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in terms of intensity and other factors. For �nding the variance of a patch, the

variances of all patches lying within a sliding window of �xed size placed about

the particular patch was calculated. The size of the window was chosen in such

a way that there is a reduction in the error. When the size of the window was

too large, it contributed to approximation errors and when it was too small, the

e�ect of neighbouring patches onto the speci�c patch under consideration was not

accountable. Like the previous algorithm the entire image was divided into �xed

patch size and converted to form the S matrix. The SVD of X equal to (SST )−1 was

calculated. SVD converged the image information into fewer coe�cients with most

of the information residing in the higher singular values which helped in reducing

the need of large memory and complex calculations. The left singular vectors were

chosen as the basis function in the algorithm developed due to the nature of the X

matrix. SVD coe�cients are calculated by projecting the training vectors in S onto

corresponding basis function. After denoising, the denoised coe�cient matrix was

formed and image was reconstructed.

4.2.2.3 Block Adaptive Despeckling

In the block adaptive despeckling method, the noisy image was decomposed into

patches and converted to S matrix and the complete set of training vectors were

divided into blocks of �xed size. Exploiting the self-similarity of the images, the

training samples of the local patch was formed by selecting a group of similar patches

in its neighbourhood using block matching technique [125]. The block size was chosen

in such a way that a trade of between the number of similar patches and computation

speed is achieved. Too small block size resulted in complexity of computations

and too large block size resulted in dissimilar patches getting grouped together and

high calculation errors. After block formation, the principle components and the

singular value coe�cients were estimated and denoising was done at block level and

reconstruction was carried out to obtain the �nal denoised image.

4.2.2.4 Performance Evaluation of Data Adaptive Despeckling Methods

The proposed despeckling of sonar images gave better performance compared to

the existing methods available in literature. The performance of di�erent denoising

methods on real sonar image is as shown in Fig.4.7. Based on simulation analysis,

the size of the image patch is set as 8×8 and the local search window in SVD method
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as 8 × 8 and 8 adjacent patches are combined to form a block in the block based

processing. In the visual comparison, the block adaptive SVD method gave better

results.

Fig. 4.7: Denoising using data adaptive transforms

SMPI index was used for simultaneous estimation of speckle suppression and

mean preservation capabilities of despeckling technique and the performance evalua-

tion of the various methods was carried out. The denoising capabilty of the proposed

methods was revealed by looking at the ENL of the original and the denoised images.

For an image of ENL 5.8442 the simulations were carried out. From Table 4.10 ENL

is highest and SSI is lowest for the SVD denoising compared to PCA methods. This

is because SVD eliminates noise components associated with both the sensors and

the pings. Variance was maximum for the SVD method and so the suppression of

speckle power was highest in this method. The data matrices used in PCA requires

the mean of samples to be subtracted �rst and the mean estimated deviate signi�-

cantly from the true value due to the existence of the unmatched samples and so the

denoising e�ectiveness was slightly lower. By adaptively creating blocks of similar

patches rather than adjacent patches better despeckling can be achieved in the block

based method.
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Table 4.10: Metric values of di�erent despeckling methods for a sonar image of ENL 5.8442

Metric PCA SVD APCA ASVD BAPCA BASVD

Mean[r] 0.3492 0.33665 0.3492 0.3492 0.04134 0.04129
Var[r] 0.00965 0.00982 0.00965 0.00966 0.03964 0.03959
COV 0.1581 0.14189 0.1581 0.1581 0.15811 0.1581
ENL 40.007 49.668 40.008 40.009 40.004 40.005
SSI 0.38221 0.34302 0.3822 0.38219 0.38222 0.38221
CC 0.97535 0.98203 0.97535 0.97535 0.97535 0.97535
SMPI 103.29 102.33 103.29 103.29 103.29 103.29

A graphical comparison by metric values to grade the performance of di�erent

�ltering methods is as shown in Fig.4.8.

Fig. 4.8: Performance of data adaptive methods

4.2.3 Noisy Image Patch Despeckling

For all the sonar image processing like enhancement, segmentation and registration,

speckle removal needs to be a pre-processing step. The heterogeneous nature of sonar

images can be used for making this pre-processing stage computationally e�ective.

For that a frame work based on blind denoising of sonar images based on sonar
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image heterogeneity of the image patches is proposed. The homomorphic approach

was used to convert the multiplicative signal model into an additive one. The noise

level of the single noisy sonar image was estimated using a patch based algorithm

and then non-blind denoising was done.

Most adaptive speckle �lters are based on the local coe�cient of variation, which

serves to measure the heterogeneity of sonar images. However, the sensitivity of the

measurements to speckle and noise of sonar images would greatly deteriorate the

speckle reduction. The proposed method, presents a novel parameter for the hetero-

geneity measurement as a general index to quantify the sonar image heterogeneity.

The sonar image heterogeneous patch classi�cation was based on the naive homo-

geneity index proposed and the despeckling �lters were designed for these patches.

The patches are classi�ed into three classes, as mentioned in chapter 3 based on

their texture strength. The trace of the gradient covariance matrix of each patch

was calculated to obtain a naive homogeneity index τ de�ned for each patch and

was used for patch classi�cation. The naive homogeneity index was calculated by ap-

proximating a gamma distribution for the texture strength along with the estimated

noise variance, classi�es the patches into three classes and despeckling is applied on

to the noisy patches only.

4.2.3.1 Heterogeneous Patch Classi�cation using the Naive Index

The PCA estimation [126] included a patch-based noise level estimation algorithm

that includes a texture strength metric which is based on the local image gradient

matrix and its statistical properties to select low-rank patches without high frequency

components from a single noisy image. In the patch based approach, images are

decomposed into a number of patches from an input noisy image in a raster scan

form. The patch with the smallest standard deviation among decomposed patches

has the least change of intensity. The data model of the patches is eq.4.8

g′i = f ′i + u′i i = 1, 2, 3,M (4.8)

where M is the number of patches, f ′i is the i
th noise-free image patch with size

N ×N written in a vectorized format, and each patch is de�ned by its center pixel.

g′i is the observed vectorized patch corrupted by noise vector u′i with zero-mean and

variance σ2.

The minimum variance direction [127] is the eigenvector associated to the mini-
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mum eigenvalue of the covariance matrix de�ned by eq.4.9

Σg′ =
1

M
ΣM
i=1g

′
ig
′
i
T (4.9)

where Σ′g is the covariance matrix of the noisy patch g′ is in eq.4.10.

λmin(Σg′) = λmin(Σf ′) + σ2 (4.10)

where λmin(Σ) represents the minimum eigenvalue of the matrix Σ. The noise level

was estimated by taking advantage of the properties of natural image. Because of the

redundancy of natural images, the data of natural images span only low-dimensional

subspace. If the data of patches g′i ∈ N × N span a subspace whose dimension is

smaller than N ×N , it is a low-rank patch.

To analyze the image structure and to select suitable patches from the noisy

image, local variance of image patch is widely used. [128] proposed an algorithm in

which the patches with the smallest local variance are assumed to be homogenous

patches. In [129] a number of patches with largest variances are discarded. This

method is simple and fast, but tends to overestimate the amount of noise. The

reason is that for the rich textured images or images with high noise level, patches

with the smallest local variance are not always homogenous patches.

In [130], it is reported that image structure can be measured e�ectively by the

gradient covariance matrix. Assuming an image patch g′i, its N
2×2 gradient matrix

Gg′i can be expressed as eq.4.11

Gg′i =
[
Dhg

′
iDvg

′
i

]
(4.11)

where Dh and Dv represent the matrices of horizontal and vertical derivative oper-

ators, respectively. The N2 × N2 matrices Dh and Dv are Toeplitz matrices [131]

derived from gradient �lter. The gradient covariance matrix Cg′i for the image patch

g′i is de�ned as eq.4.12

Cg′i = GTg′i
Gg′i (4.12)

where T denotes the transpose operator. Much information about the image patch

can be re�ected by the gradient matrix Gg′i or the gradient covariance matrix Cg′i .

The dominant direction and its energy can be measured using the eigenvectors and

eigenvalues of Cg′i [132].
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The trace, sum of all eigenvalues of the covariance matrix re�ects the texture

strength of that patch. A larger trace re�ects a richer texture. De�ne the texture

strength ξi as eq.4.13

ξi = tr(Cg′i) (4.13)

where tr(∆) denotes the trace operator. It might be readily apparent that a smaller

trace value indicates a smoother or the weaker textured patch. The low-rank patches

without high frequency components in the noise-free images can be distinguished

easily by thresholding the texture strength. Unfortunately, the gradient matrix is

sensitive to noise, so the texture strength is a�ected easily by the noise. The texture

strength of the patch becomes as in eq.4.14

ξ(n) = tr(Cg′) (4.14)

To analyze the statistical properties of texture strength, approximate the distribution

of ξ(n) by the gamma distribution to simplify the problem. The pdf of ξ(n) can be

derived as in eq.4.15

ξ(n) ≈ Gamma
(
N2

2
,

2

N2
σ2tr(DT

hDh +DT
v Dv)

)
(4.15)

where Gamma(α, β) represents a gamma distribution with the shape parameter α

and scale parameter β. In addition, σ is the standard deviation of the Gaussian

noise, N2 represents the number of pixels in the patch, and Dh, Dv are matrices

derived from the gradient �lter. If the texture strength of that patch is less than the

threshold τ , then the null hypothesis is accepted and that patch can be regarded

as the weak textured patch. The threshold τ can be expressed as a function of the

given signi�cant level δ and noise level σ, as in eq.4.16,

τ = σ2F−1(δ,
2

N2
σ2tr(DT

hDh +DT
v Dv)) (4.16)

where F−1(δ, α, β) is the inverse Gamma cumulative distribution function and δ is

the con�dence level. If the points within the patch share a common intensity value,

the image patch is assumed to be pure �at patch. The natural image patches usually

contain some weak textures and �at patches can be selected and then the con�dence

level δ can be set very close to 1.

In the proposed work, a texture strength metric which was based on the local
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image gradient matrix and its statistical properties to select low-rank patches was

used. For estimating the noise variance of the sonar image the patches of size 7× 7

were used. Each patch is assumed to be corrupted by additive Gaussian noise vector

with zero-mean and a variance. The minimum variance direction is the eigenvector

associated to the minimum eigenvalue of the covariance matrix of the patch. The

minimum eigenvalue of the covariance matrix of the noisy patch λmin(Σg′) is the sum

of the minimum eigenvalue of the covariance matrix of the noise free patch λmin(Σf ′)

and the Gaussian noise variance σ2. Because of the redundancy of the sonar images,

minimum eigenvalue of the covariance matrix of the noise free patch was assumed

as zero. So the noise variance is equal to the minimum eigenvalue of the covariance

matrix of the noisy patch as in eq.4.17.

σ2 = λmin(Σg′) (4.17)

The small patches were extracted by sliding square windows. Naturally, ignoring

boundary e�ects arising from the �nite nature of the window, a �at patch remains

unchanged. When the texture strength value was less than τ calculated using eq.4.16,

it was classi�ed as homogeneous patch and a normal averaging �lter was applied

to these type of patches. The patches with texture strength
√

3τ is classi�ed as

belonging to the target patches and were left unprocessed. The patches having

texture strength lying between these two ranges were considered as the intermediate

patches and needs to be despeckled.

4.2.3.2 Denoising of the Selected Patches

To check whether to the given patch, the averaging �lter need to be applied or to

be despeckled or to be left unprocessed, the homogeneity index of each patch was

calculated. From the gradient covariance matrix of the particular patch, obtain

the trace of the square root of the eigenvalues of the covariance matrix. Then the

homogeneity index for each patch is the product of the above value with the number

of image patches. For despeckling the selected patches, the patch based method of

the data adaptive transform method was used.
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4.2.3.3 Results After Adoption of the Naive Index

The experimental results proved that introduction of the proposed index for de-

noising brought in an overall improvement in terms of visual quality. The proposed

technique not only produced smoother images in homogenous areas but also preserve

edges. In the existing despeckling �lters the contours were smoothed excessively and

the edges tended to blur while removing the speckle noise. The proposed technique

outperformed conventional despeckling techniques in terms of edge preservation as

well as undesired artifacts as can be found in the visual comparison of the method

with the existing methods.

The performance was evaluated for varying patch sizes and the optimum patch

size for despeckling was found to be image dependent and had a direct dependence on

the homogeneity index for patch classi�cation. Small patch size selection increases

the computational complexity, as more processing is required if the whole image

need to be processed by the patch based method. The di�erent without-reference

image performance evaluation criterion was used to evaluate the proposed method.

The qualitative results of Fig.4.9 shows that for the selected image, the better visual

results were for the patch of size 20. The numerical results in Table 4.11 and the

graphical comparison in Fig.4.10 substantiated the visual results.

Fig. 4.9: Denoising by varying patch size

Based on the conclusions from the above said results, with the patch size 20 the

proposed method can eliminate speckle without distorting useful image information
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Table 4.11: Metric values for varying patch size

Patch Size 5 10 15 20 30

Patches 864 216 96 54 24
LowTh 684.9246 1.63E+03 2.98E+03 4.63E+03 7.72E+03
HighTh 1.19E+03 2.82E+03 5.16E+03 8.03E+03 1.34E+04
ENL 138.2733 49.8751 50.2116 40.5414 30.4516
COV 0.085 0.1416 0.1411 0.1571 0.1812
BIAS 0.2799 0.1909 0.192 0.1913 0.2005
SSI 0.2056 0.3423 0.3412 0.3797 0.4381
CC 0.9629 0.9819 0.9803 0.9673 0.912

Fig. 4.10: Performance with varying patch size

and without destroying the important image edges as shown in the Fig.4.11. For

the selected image, the patch size 20 was giving better visual appearance. Also

with this patch size, the computations required is not much as that of other smaller

patches. The proposed �lter outperformed the conventional and non conventional

speckle reducing �lters in terms of ENL and SSI. The visual results are supported

by the quantitative results in Table 4.12 and the Fig. 4.12.

The presented method uses a novel parameter for the heterogeneity measurement

as a general index to quantify the sonar image heterogeneity. The performance of

the despeckling methods was sensitive to the noise level estimation methods used.
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Fig. 4.11: Existing despeckling methods compared with patch based for a patch size 20

Table 4.12: Metric values for existing despeckling techniques and the patch based method
of patch size 20

Filter Lee Kuan Frost Weiner Proposed

ENL 30.4345 7.6212 25.2995 35.4564 40.5414
COV 0.1813 0.3622 0.1988 0.1679 0.1571
BIAS 0.2008 0.2008 0.2301 0.1944 0.1913
SSI 0.4382 0.8757 0.4806 0.406 0.3797
CC 0.9086 0.8983 0.8449 0.9199 0.9673

The patch based noise level estimation method and a patch based homogeneity index

calculation used gave the add on advantage. The visual results as seen in Fig.4.12,

showed the e�ectiveness of the use of new speckle reduction algorithm. Experimental

results substantiate the e�ectiveness of using the new homogeneity index instead of

the classical one based on coe�cient of variation as in the Lee �lter. The SMPI

index is considered only when ENL and SSI are not considered as reliable measures

when the despeckling algorithm overestimates the mean value.

4.3 Spatial Domain

In the spatial domain, a linear state estimation method like the Kalman �lter based

method was used for side scan sonar image estimation. Side scan sonars are used
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Fig. 4.12: Performance of patch based despeckling for a patch size 20

to provide qualitative images representing large areas of the seabed and the objects

on it. The main characteristic features of side scan sonar are that it is a towed,

sideways looking device. As the tow�sh is towed through the water, the lateral

sound beams progressively scan a swath of the seabed, while the recorder produces

a line-by-line record of the backscattered signal [133]. The visual record produced

by a side-scan sonar is called a sonograph. The homomorphic approach was applied

on the re�ectivity domain relation to obtain the observation model for the Kalman

�lter.

Kalman estimation is used to estimate the original image from its degraded

observations. When the observation is linearly related to state, and the modeling

errors are Gaussian, then the Kalman �lter [134] provides an optimal estimate of

the state. But in practice, an image sensor can possess nonlinear characteristics.

The proposed Kalman �lter based speckle noise removal in sonar images exploits the

basic principle of sonar image formation in a side scan sonar image.

4.3.1 SSS Image Linear Estimation

The one dimensional Kalman state estimation was extended to the two dimensional

sonar image. The 2D Kalman state estimation complexity was avoided in the sonar
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image restoration method as it exploited the independence in the speckle characteris-

tics of each scan lines of the side scan imaging technology. Since Kalman estimation

of the images deals with 2D data, the computation and the memory requirements

increase drastically. In the proposed approach a one step pixel prediction for the

sonar image estimation is employed. The 2D image processing is done similar to a

1D signal processing manner considering each row as a 1D signal. This is possible

because of the line scanning characteristics of side scan sonar images. The assump-

tion that each scan lines are independent, they can be processed row by row. So the

dependency of the pixel elements in the single row is considered for the estimation.

Otherwise all the four pixel neighbors e�ects are required to be considered for the

estimation of the next pixel value which is a very tedious task.

4.3.1.1 SSS Image State Space Representation

The interpretation of side scan sonar images, or records, requires an understanding of

the phenomena which result in the generation of the images. Due to the line scanning

basis of the side scan sonar, the lines of the image are unrelated in terms of speckle

noise and can be treated separately. The images are scanned from left to right,

advance one line and then repeat. At any point in the image, some points represents

the past, one point represent the present, and the remaining points represent the

future. Due to the characteristics of side scan sonar image formation process, as the

speckle noise e�ect on each scan line is independent, only the observed pixel values

of the respective scan lines is used for estimating the true pixel value of the image.

Thus to compute the present output given the present input only the pixel values

of the respective row is used which greatly reduce the computation and memory

requirements. With a model for the degradation process, the inverse process can be

applied to the image for its restoration.

The proposed method assumed the signal-independent additive noise model,

where the modeling errors were Gaussian and the observation is linearly related to

the state. This model is obtained after applying a homomorphic �ltering to trans-

form the original multiplicative noise model into an additive one. The problem of

despeckling now gets modi�ed as rejection of an additive noise. The Kalman �lter

with the set of mathematical equations provided an e�cient computational recursive

means to estimate the state of a process, in a way that minimized the mean of the

squared error. The �lter supported the estimations of past, present, and even future
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states, even with an unknown precise nature of the modeled system.

The Kalman �lter achieves its optimal performance when the a priori measure-

ment noise is equal to the actual measurement noise. There are di�erent methods

for estimating the actual observation noise of the system. The estimate of the actual

observation noise is used to adapt the Kalman �lter to improve its performance [135].

The Kalman �lter addresses the general problem of trying to estimate the state

of a x ∈ Rn discrete-time controlled process that is governed by the linear stochastic

di�erence equation. In side scan sonar image case, model each row of data by a state

space equation as in eq.4.18,

xk+1 = Akxk +Bwk + uk (4.18)

with a measurement z ∈ Rm that is eq.4.19,

zk = Hkxk + vk (4.19)

where

xk is the true pixel intensity

zk is the measured pixel intensity

wk is a random forcing function

vk is random measurement noise.

The random variables uk and vk represent the process and measurement noise

respectively. They are assumed to be independent of each other, white, and with

normal probability distributions.

The process noise covariance Q and measurement noise covariance R matrices

were assumed to be constant. The matrices A and H were determined from the

piecewise constant assumption of the data and �rst order or second order models

were used.

4.3.1.2 Image Estimation based on Linear State Space Concept

In the Kalman �ltering frame work, there are two occurrences to propagate the state

variable through the transformation. One is while in predicting the new state from

the past and the other is while obtaining the observation from the predicted state.

The algorithm �ow is as follows:

De�ne all state de�nition �elds: A,B,H,Q,R
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De�ne initial state estimate: x,P

Obtain observation and control vectors: z,u

Call the �lter to obtain updated state estimate: x,P

Return to step to obtain z,u, and repeat.

Let x̂−k ∈ R
n to be the a priori state estimate at step k given knowledge of the

process prior to step k , and x̂k ∈ Rn be the a posteriori state estimate at step k

given measurement zk. Then the a priori and a posteriori estimate errors are as in

eq.4.20 and eq.4.21 respectively.

e−k ≡ xk − x̂
−
k (4.20)

ek ≡ xk − x̂k (4.21)

The a priori estimate error covariance is then eq.4.22,

P−k = E[e−k e
−T
k ] (4.22)

and the a posteriori estimate error covariance is eq.4.23,

Pk = E[eke
T
k ] (4.23)

In deriving the equations for the Kalman �lter, begin with the goal of �nding an

equation that computes an a posteriori state estimate x̂k as a linear combination of

an a priori estimate x̂−k and a weighted di�erence between an actual measurement

zk and a measurement prediction Hkx̂
−
k as in eq.4.24,

x̂k = x̂−k +K(zk −Hkx̂
−
k ) (4.24)

The di�erence (zk−Hkx̂
−
k ) is called the measurement innovation, or the residual.

The residual re�ects the discrepancy between the predicted measurement Hkx̂
−
k and

the actual measurement zk. A residual of zero means that the two are in complete

agreement. The n ×m matrix K is chosen to be the gain or blending factor that

minimizes the a posteriori error covariance.

The Kalman �lter estimates the pixel value at a location and obtains the feedback

in the form of noisy measurements. The time update equations also called the
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predictor equations are as in equations 4.25 and 4.26:

x̂−k+1 = Akx̂k +Buk (4.25)

P−k+1 = AkPkA
T
k +Qk (4.26)

The measurement update equations or the corrector equations are eq.4.27, eq.4.28

and eq.4.29:

Kk = P−KH
T
k (HkP

−
k H

T
k +Rk)

−1 (4.27)

x̂k = x̂−k +K(zk −Hkx̂
−
k ) (4.28)

Pk = (1−KkHk)P
−
k (4.29)

The n × n matrix A in the di�erence equation relates the state at the previous

time step k to the state at the current step k + 1, in the absence of either a driving

function or process noise. In practice A might change with each time step, but here

it is assumed to be a constant. The n× l matrix B relates the optional control input

u ∈ Rl to the state x. The m × n matrix H in the measurement equation relates

the state to the measurement zk. In practice H might change with each time step

or measurement, but here it is again assumed to be a constant. The estimated pixel

value of the �rst row of the real side scan sonar image is shown in Fig.4.13.

4.3.1.3 Despeckling Assessment

The despeckling results of the proposed technique and comparison methods for two

side scan sonar images are given in Fig.4.14 and Fig.4.15.

The assessment parameters ENL, SSI, CC and SMPI are applied to the whole

image. The quantitative results in Table4.13 and Table4.14 clearly reveal that the

proposed method can eliminate speckle without distorting useful image information

and without destroying the important image edges. An objective measure of the

homogeneity degree of a region is the enhancement of the ENL. It is de�ned by

the ratio of the square of the mean and the variance of the pixels situated in the

considered region. The index ENL is suitable for evaluating the level of smoothing

in homogeneous areas, where the scene variation is supposed to be negligible with

respect to speckle noise �uctuations. This has been achieved with the homomorphic

transformation and so ENL is preferred over the index SMPI in such cases.

When the log transformation is applied on the sonar image to obtain the signal-
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Fig. 4.13: Estimated pixel value of the �rst row of the side scan sonar image

independent additive noise model results in very high values of ENL and SMPI

compared to the other existing methods in the literature, which mostly uses the

signal-dependent noise models. The homomorphic approach introduces an undesired

bias. The unbiased estimate becomes a biased estimate after this transformation and

doing this transformation alone results in an increase in the ENL and SMPI. The

proposed �lter has a higher ENL than others because it always use all the pixels

in the �ltering window and outperformed the conventional and non conventional

speckle reducing �lters in terms of ENL and SSI. Without-reference indexes uses

speci�c statistical hypotheses on the signal model and is strongly dependent on the

degree of scene heterogeneity. So a supervised selection of the most appropriate

areas for the computation of a speci�c index, e.g., homogeneous areas, is required.

The numerical results are further supported by qualitative examination.

The quantitative results in Table4.15 and Table4.16 shows metric values consid-

ering a homogeneous area of 25× 25 of the two sonar images considered.
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Fig. 4.14: Visual comparison of despeckling techniques for a sonar image of ENL 1.3691

Fig. 4.15: Visual comparison of despeckling techniques for sonar image of ENL 6.5877

4.4 Results and Discussions

The despeckling of sonar images based on signal-independent additive models have

been implemented and compared with the existing ones. The despeckling results of

the di�erent methods proposed need to be analyzed and compared. This analysis is

performed by applying these methods to the same image.
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Table 4.13: Metric values for despeckling methods for sonar image of ENL 1.3691

Method Median Wiener Lee Kuan Frost SRAD Wavelet Proposed

ENL 1.5234 1.5499 1.7228 1.7053 1.8478 1.5609 1.3962 34.7682
SSI 0.948 0.93985 0.8914 0.89602 0.86078 0.93653 0.99031 0.1984
CC 0.91303 0.97265 0.9178 0.9145 0.90193 0.97309 0.99518 0.9344
SMPI 1.5177 0.16073 4.30E-04 0.12784 0.02845 0.91512 2.11E-07 80.9785

Table 4.14: Metric values for despeckling methods for sonar image of ENL 6.5877

Method Median Wiener Lee Kuan Frost SRAD Wavelet Proposed

ENL 7.5625 7.9319 8.4279 9.1911 9.5104 7.2474 6.7802 30.554
SSI 0.9333 0.91134 0.88412 0.84661 0.8323 0.9534 0.9857 0.46434
CC 0.9453 0.95838 0.9019 0.79183 0.8644 0.98209 0.9932 0.97012
SMPI 0.17 0.44382 0.40822 2.5344 0.4622 0.94577 0.00001 29.192

4.4.1 Analysis of Di�erent Additive Noise Model Methods

In order to get the additive noise model for the speckle a�ected sonar images, the

homomorphic approach is applied on the re�ectivity domain of the sonar image.

The model thus obtained for the �lter is a signal independent additive speckle scene-

model, which can be despeckled by transform domain or spatial domain methods.

In the transform domain, an image independent transform like the multiresolu-

tion method with the 2D wavelet transform is employed. The noise power reference

and an estimation of the standard deviation of original noise must be known for

the despeckling using the wavelet denoising. The wavelet transform method extract

edges from coarse scales to �ne scales and by applying the wavelet shrinkage tech-

niques despeckling of the sonar image is achieved. However such denoising in sonar

images tend to blur the edges while removing the speckle noise as depicted in the

results.

Most of the despeckling algorithms smooth excessively the contours when they

are not su�ciently contrasted as in the case of sonar images and remove the edges, re-

sulting in unreliable loss of information. Thus in the second method of the transform

domain, an image dependent transform which make uses the principal component

of the image for signal representation has been used. The PCA denoising algorithm

uses a 2-D basis sets having the vectors lined up along edges, and not across them.

In such cases unlike the �xed basis analysis, the high frequency coe�cients caused by
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Table 4.15: Metric values considering a homogeneous area of 25× 25 with an ENL 8.6558

Method Median Wiener Lee Kuan Frost SRAD Wavelet Proposed

ENL 23.993 30.019 29.88 29.88 58.48 21.196 9.6124 195.65
SSI 0.9480 0.9399 0.8914 0.8960 0.8608 0.9365 0.9903 0.1984
CC 0.9130 0.9727 0.9178 0.9145 0.9019 0.9731 0.9952 0.9344
SMPI 0.5414 0.0469 0.0056 0.0056 0.0137 0.319 2.51E-05 149.58

Table 4.16: Metric values considering a homogeneous area of 25× 25 with an ENL 54.649

Method Median Wiener Lee Kuan Frost SRAD Wavelet Proposed

ENL 177.66 246.91 246.2694 246.27 561.4 288.37 64.925 353.38
SSI 0.9333 0.91134 0.8841 0.8467 0.8323 0.9534 0.9857 0.46434
CC 0.9453 0.9584 0.9019 0.7918 0.8644 0.9821 0.9932 0.97012
SMPI 0.2222 0.2478 0.0956 0.0956 0.0731 0.4661 8.68E-05 24.368

the edges are much smaller and hence the edges are retained. This is the advantage

of using a data adaptive transform method over the data independent transform

methods. For the blind denoising, the noise variance of the principal component

coe�cients for each patch is determined using the patch based estimation method

and the coe�cients are denoised using the minimum mean square estimator. The

data adaptive transform method is extended on to the noisy image patch despeckling

by using the naive homogeneity index proposed. The method has the bene�t of ap-

plying the despeckling method on to the speci�ed region of interest, resulting in the

computational complexity reduction. Among the classi�ed patches the complicated

time consuming despeckling algorithms need to be applied to the textured patches,

while the simple averaging algorithm can be applied on the homgeneous patches

and can leave the target patches unprocessed justifying the computation reduction.

The speci�ed region can be the textured regions or can de�ne by a expert sonar

interpreter.

In spatial domain, the side scan sonar image with the signal-independent additive

noise model representation has the observation linearly related to pixel state and

Gaussian modeling errors. The noise variance of the image for the denoising is

estimated along with estimation process. Assuming the independence of the pixel

values of each scan lines of the sonar image, a linear state estimator like the Kalman

�lter can provide an optimal estimate for the next pixel state from the current state.
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The same linear state estimation concept is extended to the successive scan lines

of the sonar image. In this manner the well appreciated 1D Kalman estimation is

applied to estimate the original image from speckle degraded observations.

The comparison of the various despeckling methods using the signal independent

additive speckle-scene model has been applied and the resulting sonar images are

shown in Fig.4.16. The size of image patch is set to be 8 × 8 and the local search

window in SVD method is �xed as 8 × 8 and 8 adjacent patches are combined to

form a block in block based processing.

Variance is maximum for the SVD method and so the suppression of speckle

power is highest in this method. The small patches are extracted by sliding square

windows and is used under the assumption that neighbouring patches will show some

similarity in terms of intensity and other factors. The size of the window was chosen

in such a way that there is a reduction in the error. When the size of the window

was too large, it contributed to approximation errors and when it was too small, the

e�ect of neighbouring patches onto the speci�c patch under consideration was not

accountable. The patch classi�cation can be done by using the naive homogeneity

index introduced. The various non-reference metric value comparison is shown in

Table 4.17 and the graphical comparison is depicted in Fig.4.17.

Fig. 4.16: Visual comparison of methods using di�erent additive noise model

4.5 Summary

This chapter deals with di�erent despeckling methods in both transform and spatial

domains with the signal-independent additive noise model followed by the results and
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Table 4.17: Metric value comparison for the despeckling using di�erent additive noise
model

Method PCA SVD APCA ASVD BAPCA BASVD HomPCA KF

ENL 40.007 49.668 40.008 40.008 40.004 40.005 40.5414 36.939
SSI 0.38221 0.34302 0.3822 0.3822 0.38222 0.38221 0.3797 0.39776
CC 0.97535 0.98203 0.97535 0.97535 0.97535 0.97535 0.9673 0.95357
COV 0.1581 0.14189 0.1581 0.1581 0.15811 0.1581 0.1571 0.34352
SMPI 103.29 102.33 103.29 103.29 103.29 103.29 101.571 114.73

Fig. 4.17: Graphical comparison to grade the performance of despeckling using di�erent
additive noise model

discussions of the methodologies adopted. The result of PCA transform methods'

e�ectiveness is slightly lower compared to SVD denoising as SVD eliminates noise

components associated with both the sensors and the pings. The patch based �lter

outperformed the conventional and non conventional speckle reducing �lters in terms

of ENL and SSI. The one step pixel prediction method uses 1D Kalman estimation

e�ectively in estimating the row pixel values and thereby avoiding the complexity

of the estimation in 2D. The log transformation performed in the homomorphic

approach to obtain the signal-independent additive noise model leads to very high

values of ENL and SMPI compared to the other existing signal-dependent noise

models methods in literature.





Chapter 5

Multiplicative Noise Model

Analysis

In this chapter, a multiplicative noise model is assumed and the sonar image is esti-

mated in both the transform domain and the spatial domain. For the multiplicative

noise model, in the transform domain a mixed noise removal based on probabilistic

patch based processing is employed and in the spatial domain, the fractional integral

mask based method and an unscented kalman �lter estimation method is adopted.

5.1 Introduction

The model in the literature on despeckling is the multiplicative speckle noise model,

which expresses the observed intensity as the product of the scene signal intensity and

speckle noise intensity. The model relates the two entities, at each pixel, as a function

of speckle noise. The speckle fading term is independent of the noise free re�ectivity.

This model formulates speckle as a multiplicative modulation of the scene re�ectivity.

Hence, the speckle e�ects are more pronounced in a high intensity area than in a low

intensity area. The non-homomorphic approach followed avoids the undesired bias

a�ect occurring. The signal can be processed in the non-homomorphic transform

domain or in the non-homomorphic spatial domain.
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5.2 Transform Domain

In the transform domain, a data adaptive mixed noise removal in sonar images is

implemented. The additive Gaussian noise and multiplicative speckle removal is done

by exploiting the sonar image local sparsity and non local similarity in probability

distribution respectively, which e�ciently characterize the statistical properties of

sonar image.

5.2.1 Mixed Noise Removal by Processing of Patches

A frame work for mixed noise removal in sonar images was done assuming the sonar

images being degraded by multiple noises which has adverse impact on detection

and classi�cation performance. The multiple noise in sonar images are the addi-

tive Gaussian noise and the speckle noise. Classical �lters are primarily designed

for additive noise suppression. Some of the speckle suppression methods for sonar

image denoising takes a homomorphic approach which transform the multiplicative

noise model into an additive one by considering the logarithm of the image and

assumes the noise is Gaussian. However, not much work has been designed to ef-

fectively eliminate mixed noise due to the distinct characteristics of both types of

degradation processes. The methods developed for Gaussian noise cannot e�ectively

suppress speckle e�ect because they interpret the noisy pixels as edges to be pre-

served, whereas the approaches for despeckling will retain most Gaussian noise in

the restored images leading to grainy, visually disappointing results.

A methodology for patch based denoising and its application to additive Gaus-

sian and multiplicative speckle noises was adopted. The adaptive processing of local

patches was used to remove the additive Gaussian noise whereas the multiplicative

speckle noise which is normally Rayleigh distributed as gathered from the literature

review was removed by processing of non local patches. The PCA and SVD methods

were used for denoising the noisy image patches and blocks of patches. A weighted

maximum likelihood denoising of the non local patches reduced the speckle e�ect.

Simulations conducted on sonar images and the results substantiated the e�ective-

ness of mixed noise removal in sonar images. The di�erent methods were compared

by using di�erent without-reference image performance evaluation criteria.
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5.2.1.1 Sonar Image Noisy Signal Model

The degradation model to describe the multiple noise a�ected sonar images is y =

g + v , where y is the observed image intensity, g = fu denotes the multiplicative

noise model with f , the corresponding scene re�ectivity, u the multiplicative speckle

fading term statistically independent of f , and v denotes the additive white Gaussian

noise with mean zero and unknown variance σ2
v .

In the two phase patch based mixed denoising algorithm, the additive white

Gaussian noise is removed by the sparse approximation of local image patches in

the �rst phase and in the second phase, despeckling is done on non local patches

formed by exploiting the similarity between noisy patches de�ned from the noise

distribution.

5.2.1.2 Denoising by Processing of Local Patches

Because of the redundancy of sonar images, the data of natural images span only in

low-dimensional subspace. If the data of patches gi ∈ RN×N span a subspace whose

dimension is smaller than N ×N , then they are called low-rank patches. The noise

level of the additive Gaussian noise is estimated from the selected patches using PCA.

With the available sonar image, the noise level estimation algorithm estimates the

unknown standard deviation σv of the image. The PCA estimation includes a patch-

based noise level estimation algorithm that includes a texture strength metric which

is based on the local image gradient matrix and its statistical properties to select

low-rank patches without high frequency components from a single noisy image.

In patch-based approaches images are decomposed into a number of patches from

an input noisy image in a raster scan form. The patch with the smallest standard

deviation among decomposed patches has the least change of intensity. The data

model of the patches is in eq.5.1,

yi = gi + vi i = 1, 2, 3,M (5.1)

where M is the number of patches, gi is the ith noise-free image patch with size

N ×N written in a vectorized format, and each patch is de�ned by its center pixel.

yi is the observed vectorized patch corrupted by noise vector vi with zero-mean and

variance σ2
v.

The minimum variance direction is the eigenvector associated to the minimum
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eigenvalue of the covariance matrix de�ned by eq.5.2,

Σy =
1

M
ΣM
i=1yiy

T
i (5.2)

where Σy is the covariance matrix of the noisy patch yi. The λmin(Σ) represents the

minimum eigenvalue of the matrix Σ is in eq.5.3,

λmin(Σy) = λmin(Σg) + σ2
v (5.3)

where Σg is the covariance matrix of the additive noise removed patch gi.

Consequently, the minimum eigenvalue of the covariance matrix λmin(Σg) is as-

sumed as zero. Since Gaussian noise has the same power in every direction and

all eigenvalues are the same, it should be able to estimate the noise level from the

subspace spanned by the eigenvectors of the covariance matrix λmin(Σy) with zero

eigenvalues. For blind denoising, the eq.5.4 gives the additive noise variance σ2
v of

the image determined using the patch based estimation method .

σ2
v = λmin(Σy) (5.4)

Then the non-blind denoising is performed.

With the additive Gaussian noise model of the sonar image, denoising is done by

decomposing the noisy image patches and blocks of patches using Principal Compo-

nents or SVD coe�cients, estimating the clean coe�cients, and reconstructing the

�nal image. Estimate σ2
g using eq.5.5, the noise variance of the PC coe�cients for

each patch using the maximum likelihood estimator.

σ2
g = max

[
0,

1

M

∑
i

y2
i − σ2

v

]
(5.5)

Then denoise the coe�cients using LMMSE estimator eq.5.6

gi =

(
σ2
g

σ2
g + σ2

v

)
× yi (5.6)

where gi is the denoised image coe�cient or clean coe�cient after the additive noise
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removal.

For despeckling, the image is divided into non overlapping patches of size N×N .

The patches are converted into 1D training vectors, which are arranged as columns

so as to form a matrix of training vectors, S. The size of matrix S is N2 × M ,

where M is the number of patches. To denoise the image, the patches or the block

of patches, the data adaptive method like the Principal Component Analysis and

the SVD method is adopted.

5.2.1.3 Despeckling by Processing of Non Local Patches

In the second phase of denoising, the sonar image, the re�ectivity is considered to

be corrupted by the Rayleigh distributed speckle noise model as given in eq.5.7,

gs = usns (5.7)

where gs is the observed noisy value at site s and us its underlying noise-free value.

The denoising process is expressed as a Weighted Maximum Likelihood Estimation

(WMLE) problem with the estimate ûs de�ned by eq.5.8,

ûs = argmaxusΣtw(s, t) log p(gt|us) (5.8)

where t is a pixel index and w(s, t) is a data-driven weight depending on the similarity

between pixels with index s and t. This patch-based �lter can be considered non-

local as pixel values far apart can be averaged together, depending on the weight

values i.e., surrounding patch similarity and the new measure of similarity between

pixels will better re�ect the image content. For the non-additive noise model, the

weight w(s, t) is given in eq.5.9,

w(s, t) ∼= p(us = u∆t |v)(1/h) (5.9)

where u∆sand u∆t denote the sub-image extracts from the parameter image u in

the respective windows ∆s and ∆t, and h > 0 is a scalar parameter, that depends

on the noisy image parameter, search window size and width. The h parameter is

similar to that of the NL means algorithm and acts on the size of the fuzzy set i.e.,

the number signi�cant weights to control the amount of �ltering and it probably
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counter balances the invalidity of the patch independence assumption [136]. All the

parameter in this session are taken under the similar assumptions as done in the

reference [102].

The pixel amplitudes As are modeled as independent and identically distributed

according to the following a Rayleigh distribution eq.5.10,

p(As|R̂s) =
2LL

Γ(L)R̂Ls
A2L−1
s exp(−LA

2
s

R̂s
) (5.10)

where R̂ is the underlying re�ectivity image and L the equivalent number of looks,

calculated as the ratio of mean to standard deviation of the image and the underlying

noise-free amplitude image Â is the square root of the re�ectivity image R̂. From

the �rst order optimality condition, the following estimation eq.5.11,

R̂S =
Σtw(s, t)A2

t

Σtw(s, t)
(5.11)

must hold to maximize the WMLE and according to weights derivation for multi-

plicative noise eq.5.12,

p(As,k, At,k|R̂s,k − R̂t,k)α

(
As,k, At,

A2
s,k +A2

t,k

)2L−1

(5.12)

with the �nal weights as eq.5.13,

w(s, t) = exp

[
−Σk

(
2L− 1

h
log

(
As,k
At,k

+
At,k
As,k

))]
(5.13)

which can be used for processing.

5.2.1.4 Performance Evaluation

A methodology for patch based denoising and its application to additive Gaussian

and multiplicative speckle noises was proposed. A patch based blind denoising pro-

cedure is followed for estimating the noise level in the sonar images which results

in an improved denoising performance. Additive noise removal helps to smoothen

the image while speckle removal helps to get a better image with details preserved.

The method enforces smoothness while preserving edges. Fig.5.1 shows that the
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proposed method denoises without distorting useful image information as well as

the important image edges. The additive denoising is approached using sparse ap-

Sonar Image

SVD Ist Phase SVD 2nd Phase PCA 1st Phase PCA 2nd Phase

SRADWavelet FilterWiener Filter

Fig. 5.1: Visual comparison of despeckling techniques for sonar image. In Phase 1 the
additive Gaussian noise removed and in Phase 2 speckle noise also removed

proximation of local image patches which is a characteristic of sonar images. For the

multiplicative noise removal non-homomorphic approach was followed, so that the

unnecessary introduction of the bias in the image was avoided.

After a number of simulations, for the additive noise level estimation a patch of

size 8× 8 was used. Local patch based processing uses a patch size of 8× 8 the and

8 adjacent patches are combined to form a block in block based processing. For the

non local patch processing also a patch of 8× 8 is used.

The �lters are assessed in sonar images by means of visual inspection and quanti-

tative measures. As the major noise content is the speckle, the assessment parameters

ENL, SSI, CC, SMPI and COV were used. The improvement in the ENL is a clear

indication of the speckle reduction in the second stage. The Table5.1 and Fig.5.2

depicts the numerical comparison.

The metric value comparisons for the varying window width is depicted in the

Table 5.2 and the graphical comparison in Fig.5.3. The higher despeckling capability

at the lower window width is at the cost of increased computational complexity.
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Table 5.1: Metric values for di�erent methods for a sonar image of ENL 5.8422

Metric Wiener SRAD Wavelet SVD of PCA of SVD of PCA of
Patches Patches Block block

ENL 6.9486 6.1805 5.5116 7.3797 7.3781 7.3800 7.3845
SSI 0.9171 0.9724 1.0297 0.8899 0.8900 0.8899 0.8896
CC 0.9646 0.9898 0.9933 0.9467 0.9467 0.9466 0.9465
COV 0.3794 0.4022 0.4260 0.3681 0.3682 0.3681 0.3680
SMPI 0.2023 0.9552 3.0623 0.1093 0.1102 0.1143 0.1139

Fig. 5.2: Performance of the mixed noise removal method

5.3 Spatial Domain

In the spatial domain, a high frequency noise removal method employing the frac-

tional integral mask was applied on di�erent sonar images a�ected with high fre-

quency speckle noise. The fractional masks when compared with the integer order

masks can model the sonar image in a better way and has a good �ltering e�ect.

The results of the experiments prove that, noise removal using fractional integral

mask is better than traditional despeckling method. According to the observations,

mask extraction is possible for lower fractional orders and this helps in reducing the
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Table 5.2: Metric values for a sonar image of ENL 5.8422 for varying window width

Window 2 3 4 5 6 7 8

ENL 9.1561 9.1584 8.7726 8.257 7.9164 7.7095 7.5502
SSI 0.79893 0.79883 0.8162 0.8413 0.85921 0.87066 0.8798
CC 0.8989 0.89473 0.90658 0.92205 0.93147 0.93715 0.94143
COV 0.33048 0.33044 0.33763 0.34801 0.35542 0.36015 0.36393
SMPI 0.033575 0.00942 0.016907 0.046955 0.012042 0.025944 0.039381

Fig. 5.3: The metric values for varying window width

complexity of computation without a�ecting the despeckling performance adversely.

Again the despeckling �lters applied only on to the speckle a�ected class of sonar

image patches makes the algorithm computationally more e�cient.

In the subsequent method an unscented Kalman �lter estimation for side scan

sonar image was carried. The non linear state estimation method provides an e�cient

recursive means to estimate the state of a process, in a way that minimizes the mean

of the squared error. 1D UKF is applied on to the multiplicative noise model of the

side scan sonar image considering each row as a one dimensional signal.
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5.3.1 High Frequency Filtering Method

The classical denoising algorithms uses the integer order integration directly or in-

directly and this results in loss of image details. Fractional calculus has proven to

be better over integer calculus to analyze and model natural signals [137]. Riemann-

Liouville (RL), Grunwald- Letnikov(GL) and Caputo are widely used de�nitions of

fractional calculus. Fractional integral algorithm based on RL de�nition and GL

de�nition are used for image denoising [138] and the [139] uses Riesz fractional dif-

ferential operator for image enhancement.

Riemann-Liouville de�nition of fractional calculus was used to create the Frac-

tional integral masks (FIM) in eight directions. The use of a mask incorporated with

the signi�cant coe�cients from the eight directional masks and a single convolution

operation required in such case helped in obtaining the computational e�ciency. The

design of the despeckling �lter uses the naive homogeneity index for patch classi�-

cation. The application of the mask convolution only to the selected patches again

reduced the computational complexity. The non-homomorphic approach used in the

proposed method avoids the undesired bias occurring in the traditional homomorphic

approach. Experiments showed that the mask size required directly dependent on

the fractional order and so can be reduced for lower fractional orders thus ensuring

the computation complexity reduction for lower orders.

5.3.1.1 Fractional Integral Mask

The noise which exists as high frequency signals in image can be eliminated by low

pass �ltering [140]. The coe�cients of mask are calculated using Reimann-Lioville

de�nition for Fractional integral calculus [141]. Fractional order ν > 0 corresponds

to fractional di�erentiation whereas fractional orders ν < 0 corresponds to fractional

integration. The Reimann-Liouville de�nition for fractional calculus is as eq.5.14:

dν

dxν
s(x) =

1

Γ(−ν)

∫ x

0

s(ξ)

(x− ξ)ν+1
dξ

=
1

Γ(−ν)

∫ x

0

s(x− ξ)
ξν+1

dξ, ν < 0

(5.14)
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When dividing the signal s(x) to N equal parts and on changing the continuous

integral to discrete sum of products, the equation can be rewritten eq.5.15,

dν

dxν
s(x) ∼=

x−νNν

Γ(−ν)
ΣN−1
k=0

sk + sk+1 + 1

−2ν
× [(k + 1)−ν − k−ν ], ν < 0 (5.15)

The image is a two dimensional signal in which each pixel is represented using its x

and y coordinates. So partial di�erentiation is essential. The fractional di�erentia-

tion equation can be modi�ed as eq.5.16 and eq.5.17,

δνs(x, y)

δxν
∼=

1

Γ(−ν)(−2ν)
s(x, y)

+ 1
Γ(−ν)(−2ν) × Σn−1

k=1((k + 1)−ν − (k − 1)−ν)s(x− k, y)

+
1

Γ(−ν)(−2ν)
(n−ν − (n− 1)−ν)s(x− n, y)

(5.16)

δνs(x, y)

δyν
∼=

1

Γ(−ν)(−2ν)
s(x, y)

+ 1
Γ(−ν)(−2ν) × Σn−1

k=1((k + 1)−ν − (k − 1)−ν)s(x, y − k)

+
1

Γ(−ν)(−2ν)
(n−ν − (n− 1)−ν)s(x, y − n)

(5.17)

In the proposed work the above equation is used to estimate the coe�cients of

masks in eight directions according to the value of order, ν. As Derivative is the

left inverse of integration, and therefore, take negative decimal values for ν. For

di�erent fractional orders di�erent eight directional masks are obtained and the

signi�cant coe�cients in the masks has an inverse relation to the fractional order.

Mask coe�cients are estimated for the required order using eq.5.18.

CS0 =
1

Γ(−ν)(−2ν)

CS1 =
2−ν

Γ(−ν)(−2ν)

.

.

CSk =
(k + 1)−ν − (k − 1)−ν

Γ(−ν)(−2ν)

.

CSn =
(n)−ν − (n− 1)−ν

Γ(−ν)(−2ν)

(5.18)
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A 7 × 7 masks in eight directions is used in order to compare the performance

with existing �lters. The value k in eq.5.18 varies from 0 to n where the value of

n = N − 1 for a N masks. The method implemented uses the Reimann-Lioville

de�nition to create fractional integral masks in eight directions. For a 7 × 7 mask

take N = 7 and then n = 6. Then by giving the required fractional order −ν, the
seven non-zero coe�cients of the mask can be generated. These coe�cients can be

arranged in the 7 × 7 matrix with the orientations given as 0 degree, 45 degree, 90

degree, 135 degree, 180 degree, 225 degree, 270 degree and 315 degree to get the eight

directional masks with all other coe�cients being zeroes. The mask can be created

for any orders ranging from −0.0001 to −1.000. In simulations, the performance of

the mask is found good for the order range −0.0001 to −0.4. The Fig.5.4 shows the

eight directional masks obtained for the order ν = 0.0001.

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5003 0.5006 0.0005 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0005 0.5006 0.5003
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.5003 0 0 0 0 0 0 0.0002 0 0 0
0 0 0 0.5006 0 0 0 0 0 0 0.0002 0 0 0
0 0 0 0.0005 0 0 0 0 0 0 0.0003 0 0 0
0 0 0 0.0003 0 0 0 0 0 0 0.0003 0 0 0
0 0 0 0.0003 0 0 0 0 0 0 0.0005 0 0 0
0 0 0 0.0002 0 0 0 0 0 0 0.5006 0 0 0
0 0 0 0.0002 0 0 0 0 0 0 0.5003 0 0 0

0.5003 0 0 0 0 0 0 0 0 0 0 0 0 0.5003
0 0.5006 0 0 0 0 0 0 0 0 0 0 0.5006 0
0 0 0.0005 0 0 0 0 0 0 0 0 0.0005 0 0
0 0 0 0.0003 0 0 0 0 0 0 0.0003 0 0 0
0 0 0 0 0.0003 0 0 0 0 0.0003 0 0 0 0
0 0 0 0 0 0.0002 0 0 0.0002 0 0 0 0 0
0 0 0 0 0 0 0.0002 0.0002 0 0 0 0 0 0

0 0 0 0 0 0 0.0002 0.0002 0 0 0 0 0 0
0 0 0 0 0 0.0002 0 0 0.0002 0 0 0 0 0
0 0 0 0 0.0003 0 0 0 0 0.0003 0 0 0 0
0 0 0 0.0003 0 0 0 0 0 0 0.0003 0 0 0
0 0 0.0005 0 0 0 0 0 0 0 0 0.0005 0 0
0 0.5006 0 0 0 0 0 0 0 0 0 0 0.5006 0

0.5003 0 0 0 0 0 0 0 0 0 0 0 0 0.5003
45 degree 135 degree

0 degree 180 degree

270 degree

315 Degree

90 degree

225 degree

Fig. 5.4: Fractional integral masks in 8 directions
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5.3.1.2 Computation Complexity Reduction Methods

Two algorithms has been proposed for denoising using the eight directional masks

derived from the above equations. The block diagrams of the algorithms are depicted

in �gures Fig.5.5 and Fig.5.6.

Fig. 5.5: Block diagram of the �rst algorithm

In the �rst algorithm, the image is convoluted separately with eight directional
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Fig. 5.6: Block diagram of the second algorithm

fractional integral masks. These masks can be implemented for di�erent orders. The

convolution of the image with masks of eight directions assures better denoising as

it considers the relationship of the pixel of interest with all its neighbouring pixels of

every direction. The individual results of convolution are then combined by taking

the average of pixel values corresponding to the respective (x, y) coordinate positions.

Thus, the resultant image will carry the e�ect of adjacent pixels of eight directions.

This method ensures better denoising performance than the traditional noise removal

algorithms. Another advantage of the algorithm is that this technique can be very
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well utilized in applications which involve directional noise. Denoising of the image

can be done in the direction of interest. The performance of mask of each direction

over the image can be assessed separately if required and works well for the range of

fractional order 0.0001 to 0.4.

In the second algorithm, the eight fractional masks are arranged and combined

according to their directional characteristics. In the mask combining process, after

arranging the masks of size 7×7 with the correct orientation, the center value of the

mask will have the component from all the eight masks and the remaining positions

with the single values. The individual values of the 13×13 mask formed are divided

by N . The extreme values of the combined mask will then have values of the order

10−5, so approximated to fourth decimal digit to the show existence of the non zero

values in the respective positions. For individual directional masks of size 7 × 7

formed for the order ν = 0.0001 of Fig.5.4, this process resulted in the formation of

a single mask of size 13×13 as shown in Fig.5.7. The noisy sonar image is convolved

with the resultant mask. The usage of single mask reduces the computation com-

plexity. This method also reduces the computation time by eliminating the need for

multiple convolution operation. The algorithm gave good denosing results for the

fractional orders of range 0.0001 to 0.18. The denoising performance of second algo-

rithm is high when compared with that of the �rst and much higher than traditional

noise removal techniques.

0.0001 0 0 0 0 0 0.0001 0 0 0 0 0 0.0001
0 0.0001 0 0 0 0 0.0001 0 0 0 0 0.0001 0
0 0 0.0001 0 0 0 0.0001 0 0 0 0.0001 0 0
0 0 0 0.0001 0 0 0.0001 0 0 0.0001 0 0 0
0 0 0 0 0.0002 0 0.0002 0 0.0002 0 0 0 0
0 0 0 0 0 0.0717 0.0717 0.0717 0 0 0 0 0

0.0001 0.0001 0.0001 0.0001 0.0002 0.0717 0.5724 0.0717 0.0002 0.0001 0.0001 0.0001 0.0001
0 0 0 0 0 0.0717 0.0717 0.0717 0 0 0 0 0
0 0 0 0 0.0002 0 0.0002 0 0.0002 0 0 0 0
0 0 0 0.0001 0 0 0.0001 0 0 0.0001 0 0 0
0 0 0.0001 0 0 0 0.0001 0 0 0 0.0001 0 0
0 0.0001 0 0 0 0 0.0001 0 0 0 0 0.0001 0

0.0001 0 0 0 0 0 0.0001 0 0 0 0 0 0.0001

Fig. 5.7: 13×13 mask formed by combining the directional masks

Experiment shows that, for small orders, signi�cant mask coe�cients are found

only at the central part of the combined mask. This characteristic is observed with

fractional orders in the range 0.0001 to 0.0020. Fig.5.8 shows the 13 × 13 mask for

order 0.0008. Hence, for these orders the mask size for the second algorithm was

reduced by extracting the central portion where signi�cant coe�cients are actually
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available as 5 × 5 mask. By reducing the mask size, computation complexity was

again reduced.

0.00001 0 0 0 0 0 0.00001 0 0 0 0 0 0.00001

0 0.00001 0 0 0 0 0.00001 0 0 0 0 0.00001 0

0 0 0.00001 0 0 0 0.00001 0 0 0 0.00001 0 0

0 0 0 0.00001 0 0 0.00001 0 0 0.00001 0 0 0

0 0 0 0 0.0001 0 0.0001 0 0.0001 0 0 0 0

0 0 0 0 0 0.0715 0.0715 0.0715 0 0 0 0 0

0.00001 0.00001 0.00001 0.00001 0.0001 0.0715 0.5717 0.0715 0.0001 0.00001 0.00001 0.00001 0.00001

0 0 0 0 0 0.0715 0.0715 0.0715 0 0 0 0 0

0 0 0 0 0.0001 0 0.0001 0 0.0001 0 0 0 0

0 0 0 0.00001 0 0 0.00001 0 0 0.00001 0 0 0

0 0 0.00001 0 0 0 0.00001 0 0 0 0.00001 0 0

0 0.00001 0 0 0 0 0.00001 0 0 0 0 0.00001 0

0.00001 0 0 0 0 0 0.00001 0 0 0 0 0 0.00001

(a)

0.0001 0 0.0001 0 0.0001

0 0.0715 0.0715 0.0715 0

0.0001 0.0715 0.5717 0.0715 0.0001

0 0.0715 0.0715 0.0715 0

0.0001 0 0.0001 0 0.0001

(b)

Fig. 5.8: Fractional integral mask for order 0.0008 (a) Original 13×13 Mask (b) Extracted
5× 5 Mask

5.3.1.3 Denoising Results using Fractional Integral Mask

The Fig.5.9 shows the visual results of the fractional integral mask of size 13 × 13

convolved with the sonar image of ENL 6.8510, for di�erent fractional the order of

the mask. The Table 5.3 gives the parametric values for varying fractional orders

and the graphical comparison is shown in Fig.5.10. Denoising performance is mea-

sured based on visual perception and other without-reference measurement methods.

Fractional order can be selected based on the visual results and the quantitative as-

sessment, also considering the processing time.

Table 5.3: Metric values for di�erent fractional order

Order 0.001 0.003 0.005 0.007 0.01 0.03 0.05 0.07 0.1

ENL 8.6614 8.6821 8.703 8.7195 8.7517 8.946 9.1347 9.3206 9.5941
SSI 0.8894 0.8883 0.8872 0.8864 0.8848 0.8751 0.866 0.8573 0.845
CC 0.9662 0.9661 0.9658 0.9655 0.9652 0.9627 0.9599 0.957 0.9523
COV 0.3398 0.3394 0.339 0.3387 0.338 0.3343 0.3309 0.3275 0.3228
SMPI 11.771 12.2767 12.7913 13.3061 14.0937 19.6381 25.746 32.4686 43.7816
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Fig. 5.9: Visual comparison for varying fractional order

Experiments shows that the mask size required depends on the fractional order.

Mask size can be reduced for lower fractional orders thus ensuring the computation

complexity reduction for lower orders. For lower orders the mask size after mask

combining is reduced by extracting the central portion where signi�cant coe�cients

are actually available. By further reducing the mask size, instead of going with the

13× 13 mask, computation complexity is again reduced. The reduction in the mask

size of the combined mask to 11 × 11, 9 × 9, 7 × 7, or 5 × 5 can be based on the

signi�cant coe�cients which depends on the fractional order.

Performance of the algorithm is compared with that of traditional noise removal

method for the given sonar image by taking an order 0.01, which gives a better visual

results compared to the other orders as shown in Fig.5.9. The Fig.5.11 shows the

result of the comparison of the proposed method with the existing denoising and the

Table 5.4 and Fig.5.12 gives the parametric value comparison of the fractional order

�ltering with the di�erent existing despeckling methods.

5.3.1.4 Patch Despeckling using Fractional Integral Mask

Patch classi�cation based on the proposed naive homogeneity index was adopted

and only the intermediate patches which are assumed to be speckle a�ected are

despeckled using the fractional integral mask convolution method before further

processing. The patch size is selected as 10 and the convolution with the 13×13 mask
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Fig. 5.10: Despeckling performance of varying �lter order

Fig. 5.11: Visual comparison of the fractional mask method with the existing

is employed on the relevant patches. The computational e�ciency of the method

lies in the fact that, here also the combined fractional integral mask of size 13× 13

is used, but the convolution of the mask with only the selected patch is su�cient.

Table 5.5 depicts that as the fractional order increases there is a depreciation seen

in the despeckling performance. This shows that the despeckling can be e�ective

with further low fractional orders. When the fractional orders are reduced instead of
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Table 5.4: Metric values for despeckling techniques and FIM of order 0.01

Filter Mean Wiener Lee Frost Kuan Wavelet FIM order 0.01

ENL 11.018 7.6657 9.5421 10.545 9.4286 6.9838 8.7517
SSI 0.7885 0.9454 0.8473 0.806 0.8524 0.9904 0.8848
CC 0.8415 0.9356 0.8951 0.8636 0.8745 0.9906 0.9652
COV 0.3013 0.3612 0.3237 0.3079 0.3257 0.3784 0.338
SMPI 0.0099 0.3489 0.0022 0.1163 0.4067 3.7105 14.0937

Fig. 5.12: Performance of fractional order 0.01 �lter with other existing methods

going with a 13× 13 mask, a lower size combined mask, for example a 5× 5 may be

su�cient to give almost the similar performance. This is due to the fact that lower

fractional order directional mask in eight directions have less signi�cant coe�cients

themselves and so the combined mask. The denoising capability is slightly traded

o� for the computation reduction. Visual comparisons were shown in Fig.5.13 and

metric value comparison in Table5.5.

The Fig.5.14 gives the parametric values for the heterogeneous patch despeckling

for varying fractional order of the mask for a patch of size 10. The ENL enhance-

ment for the lower fractional order encourages to use the lower fractional orders for

despeckling and inturn helps in reducing the mask size from 13 × 13 to lower ones
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Fig. 5.13: Visual comparison for the heterogeneous patch despeckling for varying fractional
order of the mask

Table 5.5: Metric value for the heterogeneous patch despeckling for varying fractional order
of the mask for a patch of size 10

Order 0.0001 0.0005 0.001 0.005 0.007 0.01 0.05

ENL 6.8936 6.8872 6.8792 6.8147 6.7824 6.7338 6.0876
SSI 0.9969 0.9974 0.9979 1.0027 1.005 1.0087 1.0609
CC 0.9486 0.9484 0.9481 0.9459 0.9448 0.943 0.9165
COV 0.3809 0.381 0.3813 0.3831 0.384 0.3854 0.4053
SMPI 0.4639 0.4645 0.4651 0.4697 0.4706 0.4719 0.4903

as the signi�cant coe�cients in the periphery of the masks becomes less signi�cant.

The patch based denoising helps the sonar image interpreters in de�ning their

areas of interest to be despeckled without doing the convolution operation for the

entire image pixels.

5.3.2 Nonlinear Estimation Method

In the nonlinear state estimation method, the unscented Kalman �lter based ap-

proach is used for side scan sonar image estimation from the observation model of

the image. First the noise level in the side scan sonar image is estimated using a

patch based algorithm and then non-blind denoising is done. For the blind denoising

part, the heterogeneity of side scan sonar image patches is exploited.
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Fig. 5.14: Performance for varying order of the fractional order �lter

The application of one dimensional Kalman �lter to the two dimensions [142]

to smooth out the observation noise in image data does not preserve the optimality

of the linear state estimation �lter. For nonlinear systems, subject to Gaussian

noise, the EKF [143] is frequently applied for estimating the system state vector

from output measurements. The unscented Kalman �lter [144] (UKF) is a method

for nonlinear state estimation, which does not introduce linearization errors. The

unscented transformation helps to propagate mean and covariance through linear

transformation. Most of the Kalman estimation methods for image denoising uses

the 2D block adaptive �ltering. In the proposed method, the unscented Kalman

�ltering in one-dimension extended to the two-dimensional sonar image restoration

is done. The methodology is to deal with signal in the observed domain itself. Even

though the absence of the bias due to the nonlinear mapping of the logarithm is an

advantage, the estimation of the parameters of the signal and noise pdfs becomes

more complex.
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5.3.2.1 Noise Level Estimation for Blind Denoising

Blind denoising in images consists of two process, the estimation of the noise level

in the image and then the non-blind denoising. Sonar image heterogeneity helps

in a patch based noise level estimation. With the available sonar image, the noise

level estimation algorithm estimates the unknown standard deviation σ of the image.

Because of the redundancy of natural images, the data of natural images span only

low-dimensional subspace. If the data of patches gi ∈ RN×N span a subspace whose

dimension is smaller than N × N , then called as low-rank patches. The noise

level is estimated from the selected patches using Principal Component Analysis.

The Principal Component Analysis estimation includes a patch-based noise level

estimation algorithm that includes a texture strength metric which is based on the

local image gradient matrix and its statistical properties to select low-rank patches

without high frequency components from a single noisy image.

In patch-based approaches images are decomposed into a number of patches from

an input noisy image in a raster scan form. The patch with the smallest standard

deviation among decomposed patches has the least change of intensity. The data

model of the patches is shown in eq.5.19,

gi = fiui i = 1, 2, 3,M (5.19)

where M is the number of patches, fi is the ith noise-free image patch with size

N ×N written in a vectorized format, and each patch is de�ned by its center pixel.

gi is the observed vectorized patch corrupted by noise vector ui with zero-mean and

variance σ2. The minimum variance direction is the eigenvector associated to the

minimum eigenvalue of the covariance matrix de�ned by eq.5.20,

Σg =
1

M
ΣM
i=1gig

T
i (5.20)

where Σg is the covariance matrix of the noisy patch g, and λmin(Σ) represents the

minimum eigenvalue of the matrix Σ. The minimum eigenvalue of the covariance

matrix λmin(Σg) can be assumed as noise variance, given in eq.5.21,

σ2 = λmin(Σg) (5.21)

With the variance found out in the above said method, the non blind denoising is
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performed.

5.3.2.2 Image Estimation based on UKF Algorithm

Due to the line scanning basis of the side scan sonar, the lines of the image are

unrelated in terms of speckle noise and can be treated separately. This property is

used in the non linear state estimation method used.

Initialize the state estimate from the �rst observation. Assuming same number of

observable variables as state variables, the image row data of side scan sonar image

is modeled by a discrete-time nonlinear dynamic system as eq.5.22 and eq.5.23,

xk+1 = F (xk, vk) (5.22)

yk = H(xk, nk) (5.23)

where xk is the true pixel intensity and yk is the measured pixel intensity. The

process noise vk drives the dynamic system, and the observation noise is given by

nk.

Note that additivity of the noise sources is not assumed. The random variables

vk and nk represent the process as well as measurement noise respectively and are

assumed to be white, independent of each other and with normal probability distri-

butions. The noise means are denoted by v̄ = E[v] and n̄ = E[n] , and are usually

assumed to equal to zero. The system dynamic model F and H are assumed known.

The process noise covariance Q and measurement noise covariance R matrices might

change with each time step or measurement, and are obtained by estimating the

noise level in the image. The state transition matrix F in the di�erence equation re-

lates the pixel value at k+1 to the pixel value at k, in the absence of either a driving

function or process noise. The observation matrix H in the measurement equation

relates the state to the measurement yk and is taken by de�ning the observed pixel

value as the next state pixel value.

The unscented transformation is a method for calculating the statistics of a

random variable which undergoes a nonlinear transformation. Consider propagating

a random variable x (dimension L) through a nonlinear function, y = g(x). Assume

x has mean x̄ and covariance Px. To calculate the statistics of y , form a matrix X of

2L+ 1 sigma vectors Xi with corresponding weights Wi , according to the following
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eq.5.24,

X0 = x̄ (5.24)

Then calculate the sigma points using eq.5.25 − eq.5.29,

Xi = x̄+ (
√

(L+ λ)Px

)
i

i = 1, , L (5.25)

Xi = x̄− (
√

(L+ λ)Px

)
i−L

i = L+ 1, , 2L (5.26)

W
(m)
0 =

λ

L+ λ
(5.27)

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β) (5.28)

W
(m)
i = W

(c)
i =

1

2L+ 1
i = 1, , 2L (5.29)

where λ = α2(L + κ) − L is a scaling parameter. α determines the spread of the

sigma points around x̄ and is usually set to a small positive value (e.g., 1E−3). κ is

a secondary scaling parameter which is usually set to θ, and β is used to incorporate

prior knowledge of the distribution of x . (
√

(L+ λ)Px)i is the i
th row of the matrix

square root. These sigma vectors are propagated through the nonlinear function in

eq.5.30,

Υi = g(χi) i = 0, , 2L (5.30)

and the mean and covariance for y are approximated using a weighted sample mean

and covariance of the posterior sigma points using eq.5.31 and eq.5.32,

ȳ ≈ Σ2L
i=0W

(m)
i Υi (5.31)

Py ≈ Σ2L
i=0W

(c)
i (Υi − ȳ) (Υi − ȳ)T (5.32)

The process noise covariance and the measurement noise covariances were estimated

using the noise level estimation method described in the previous session.

The UKF is a straight forward application of the scaled UT to recursive minimum

mean square estimation. The Kalman �lter estimates the pixel value at some location

and then obtains feedback in the form of measurements. The pixel update equations

or the predictor equations are responsible for projecting forward the current pixel

value and the error covariance estimates to obtain the a priori estimates for the next
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pixel value in the row. The measurement update equations or corrector equations

are responsible for incorporating a new measurement into the a priori estimate to

obtain an improved a posteriori estimate.

The estimation applied to the some of the rows of the real side scan sonar image

for varying total dynamic steps of 100 for di�erent rows are shown in Fig.5.15. From

the �gure it is evident that from the observed pixel value the �lter tries to estimate

the next pixel value and the actual state and estimate are saved.

Fig. 5.15: Estimation of pixel values for total dynamic steps, N = 100 for some selected
rows

The quantitative assessment for a side scan sonar image of ENL 6.851 and COV

0.3821 of the proposed �lter for varying total dynamic steps are shown in Table 5.6

and Fig.5.16. The optimum total dynamic step is going to be image dependent and

can be found out by trial and error method. The enhancement of the ENL of the

denoising method applied to small homogeneous region with ENL 21.6586 is also

depicted for di�erent total dynamic steps.

5.3.2.3 Performance Comparison of Speckle Reduction Filters

The �lters are assessed using real input data by means of visual inspection and

quantitative measures. The experimental results exhibit that proposed despeckling

technique performs better than classical despeckling �lters and recent techniques in
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Table 5.6: Metric values for di�erent total dynamic steps, N

N 10 20 30 50 75 100 200

ENL 7.3394 7.8528 7.8767 7.7725 7.3504 8.1197 7.6009
SSI 0.9662 0.934 0.9326 0.9389 0.9654 0.9186 0.9494
CC 0.7191 0.7174 0.7188 0.7183 0.7192 0.7187 0.7187
COV 0.3691 0.3569 0.3563 0.3587 0.3688 0.3509 0.3627
SMPI 0.3574 0.3487 0.3514 0.35 0.3505 0.3511 0.3571
ENL(H) 23.637 24.8861 25.531 24.821 23.593 26.8334 24.6546

Fig. 5.16: Performance for di�erent dynamic steps, N

terms of visual quality. The proposed technique not only produces smoother images

in homogenous areas but also preserve edges. Fig.5.17 shows the visual quality

improvement of the method compared to the existing methods.

The quantitative results of Table 5.7 and Fig.5.18 shows the comparison of the

proposed method with existing despeckling methods. The visual comparison in terms

of edge preserving capability of only the wavelet method was as good as that of the

proposed method. So the analysis is done mainly by comparing the quantitative

metrices of these two methods. The parameters like ENL, SSI and SMPI are better

compared to the wavelet method which has similar performance in visual perfor-
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Fig. 5.17: Visual comparison of despeckling techniques with that of non-linear estimation
method

mance with the proposed method. The coe�cient of variation, a measure of texture

preservation on heterogeneous areas, shows a better edge preservation capability for

the proposed method.

Table 5.7: Metric values for di�erent despeckling techniques with the proposed

Filter Mean Wiener Lee Frost Kuan Wavelet Proposed

ENL 11.018 7.6657 9.5421 10.545 9.4286 6.9838 8.1197
SSI 0.7885 0.9454 0.8473 0.806 0.8524 0.9904 0.9186
CC 0.8415 0.9356 0.8951 0.8636 0.8745 0.9906 0.7187
COV 0.3013 0.3612 0.3237 0.3079 0.3257 0.3784 0.3509
SMPI 0.0099 0.3489 0.0022 0.1163 0.4067 3.7105 0.3511

5.4 Results and Discussions

The despeckling of sonar images based on multiplicative speckle-scene models have

been implemented and compared with the existing ones. The despeckling results of

the di�erent methods proposed need to be analyzed and compared. This analysis is

performed by applying these methods to the same image.

5.4.1 Analysis of Di�erent Multiplicative Noise Model Methods

In the non-homomorphic case, methodology is to deal with signal in the observed

domain itself and the speckle a�ected sonar image will have multiplicative speckle-
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Fig. 5.18: Performance of despeckling techniqued compared with the proposed

scene model representing it. Both the transform domain and spatial domain analysis

have been carried out using the blind denoising approach.

In the transform domain assuming a multiple noise a�ected sonar image, the

adaptive processing of local image patches is used to remove the additive Gaussian

noise whereas the multiplicative Rayleigh distributed speckle noise is removed by

processing of non local patches. The noise variance is estimated using patch based

method. The Principal Component Analysis and Singular Value Decomposition

methods can be used in the noisy local patches and blocks of patches for additive

Gaussian noise denoising. The weighted maximum likelihood denoising of the non

local patches is used to reduce the speckle e�ect.

In the spatial domain denoising, the noise level in the image is estimated using

a patch based algorithm and then non blind denoising is done.

The �rst method in the spatial domain makes use of the fractional order �ltering

method for denoising. The Fractional Integral Mask incorporated with the signi�-

cant coe�cients from the eight directional masks and a single convolution operation

required in such case helps in obtaining the computationally e�cient despeckling of

sonar images. The application of the mask convolution only to the selected patches
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again reduce the computational complexity. Experiments show that the mask size

required directly depends on the fractional order and can be reduced for lower frac-

tional orders thus ensuring the computation complexity reduction for lower orders.

Order adaptive fractional order mask based denoising can be employed to have im-

proved performance. The procedure is time consuming, but based on the algorithm

behaviour it could give better results.

The second method uses an unscented Kalman �lter based approach for the side

scan sonar image estimation from the observation model of the image. This nonlinear

state estimation method is applied on the sonar image by expanding the 1D state

estimation method to the 2D state estimation.

In the case of homomorphic transformation method which takes the logarithm

of the observed data, the multiplicative speckle noise is transformed into an additive

one. This operation may introduce a bias into the denoised image, since an unbiased

estimation in the log domain is mapped onto a biased estimation in the observed

domain. However the non-homomorphic approach used avoids this undesired bias

occurring with the traditional homomorphic approach. Even though the absence of

the bias is an advantage, the estimation of the parameters of the signal and noise

probabilty density function becomes more complex. The comparison of the various

methods using the multiplicative speckle-scene model is done for a real side scan

sonar image and has been presented in Fig.5.19. The various non reference metric

value comparison is shown in Table 5.8 and the graphical comparison in Fig.5.20,

where Mix PCA and Mix SVD is the additive noise removal from the local patches

using the PCA and SVD method and the NL PCA and NL SVD is the multiplicative

noise removal from the non local (NL) patches using the weighted ML denoising

applied to the additive noise removed images.

Table 5.8: Metric value comparison for the despeckling using di�erent multiplicative noise
model

Method MixPCA NL PCA Mix SVD NL SVD FIM UKF

ENL 6.3796 7.3784 6.3797 7.3831 7.5669 4.1911
SSI 0.95712 0.88999 0.95711 0.8897 0.87883 1.1809
CC 0.98701 0.94666 0.98701 0.94653 0.96684 0.80492
COV 0.39592 0.36815 0.39591 0.36803 0.36353 0.48847
SMPI 0.0053622 0.11438 0.0054508 0.11404 17.613 0.2606
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Fig. 5.19: Visual comparison of methods using di�erent multiplicative noise model

Fig. 5.20: Graphical comparison to grade the performance of despeckling using di�erent
multiplicative noise model

5.5 Summary

This chapter deals with di�erent despeckling methods in both transform and spatial

domains with the multiplicative noise model followed by the results and discussions of

the methodologies adopted in the chapter. The non-homomorphic approach avoids

the occurance of undesired bias e�ects. In the mixed noise removal method, the

processing of local and non local patches e�ectively removes the additive Gaussian

and multiplicative noises. While using Fractional Integral Mask denoising method,
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the reduction in size of the mask ensures computational reduction without much

performance degradation.





Chapter 6

Sonar Image Enhancement

This chapter considers the enhancement of the sonar image which is despeckled by

the Fractional Integral Mask algorithm. Image enhancement in sonar images enhance

the region of interest in the image by improving the intensity levels of each pixels.

This improves the visual appearance of the image and allows the extraction of spatial

features. Despeckling of sonar images prior to the enhancement, can generally result

in a strong enhancement. Any of the despeckling techniques previously dealt can be

a pre-processor for the sonar image enhancement.

6.1 Introduction

The choice of image processing �lter for speckle reduction is largely dependent on

the application as described in Chanussot et.al. [145]. For instance, a detection of

the mines based on the analysis of the shadows in sonar image may need an accurate

location of the shadows. Therefore a �lter with a strong enhancement e�ect using

which the segmentation of the shadow becomes easier is employed. In contrast if a

classi�cation of the mines based on the analysis of the echoes is considered, a �lter

preserving the highly energetic features, with a good resolution is to be preferred.

In such instances also enhancement of sonar image is required.

6.2 Processing using Fractional Masks

The algorithm described constitute of a sonar image enhancement section preceded

by a noise reduction section, both based on fractional masks. Noise in sonar image
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is reduced �rst by adopting the second method discussed in the fractional order de-

noising with the fractional integral mask. In the method, the mask size required for

lower fractional orders can be reduced and therefore ensures reduction in computa-

tion complexity. The enhancement section is based on fractional di�erential mask

which use image adaptive fractional order. The estimation of fractional order is

based on adaptive fractional di�erential function which is used to classify edges and

weak texture of the image. A modi�cation in the method for estimation of adaptive

order is also proposed. Results show that, the proposed modi�cation reduces the

complexity of sonar image enhancement by reducing the required number of masks

and thereby reducing the number of convolution operations. The proposed algorithm

is applied on raw sonar image and signi�cant enhancement is obtained.

6.3 Generation of Fractional Di�erential Mask

Fractional integration and di�erentiation uses fractional or non-integer orders unlike

normal calculus. All real objects can be accurately modeled using fractional calculus.

Natural signals are generally fractional but classical integer models were used because

of the absence of proper solution methods for fractional di�erential equations [138],

[146], [147]. Noise and edges exist as high frequency components in image signal,

whereas, the smooth texture exist as low frequency components. Fractional integral

mask which act as low pass �lter is proved to perform well in removing speckle noise

from sonar images. On the other hand, Fractional di�erential masks (FDM) perform

high pass �ltering and can be used for the enhancement of these images.

Fractional di�erential masks are constructed in eight directions and are used

to enhance the image. The coe�cients of these masks are estimated using the

Grunwald-Letnikov equation for fractional derivative. According to Grunwald-Letnikov

de�nition of fractional calculus, the general formula for fractional di�erentiation is

in eq.6.1,

dν

dxν
s(x) ≡ lim

h→0

1

hν

∝∑
k=0

(−1)k
(
ν

k

)
s(x− kh)

= lim
h→0

1

hν

∝∑
k=0

(−1)k
Γ(ν + 1)

Γ(k + 1)Γ(ν − k + 1)
s(x− kh)

(6.1)
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For large N the Grunwald-Letnikov equation is as follows eq.6.2,

dν

dxν
s(x) ∼=

x−νNν

Γ(−ν)

N−1∑
k=0

Γ(k − ν)

Γ(k + 1)
s(x− kx

N
)

=
x−νNν

Γ(−ν)

N−1∑
k=0

Γ(k − ν)

Γ(k + 1)
sk

(6.2)

For two dimensional signal such as image, partial di�erentiation will be of the form

eq.6.3 and eq.6.4,

dνs(x, y)

dxν
∼= s(x, y) + (−ν)s(x− 1, y)

+
(−ν)(−ν + 1)

2
s(x− 2, y)

+
(−ν)(−ν + 1)(−ν + 2)

6
s(x− 3, y)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
Γ(n− ν − 1)

(n− 1)!
s(x− n+ 1, y)

(6.3)

dνs(x, y)

dyν
∼= s(x, y) + (−ν)s(x, y − 1)

+
(−ν)(−ν + 1)

2
s(x, y − 2)

+
(−ν)(−ν + 1)(−ν + 2)

6
s(x, y − 3)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
Γ(n− ν − 1)

(n− 1)!
s(x, y − n+ 1)

(6.4)
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From the above equations, the coe�cients of di�erential mask can be estimated.

The generalized expression for the coe�cients of mask is given in eq.6.5. The coef-

�cient values depends on the fractional order. The fractional order can be selected

according to the level of enhancement required. For large sonar images, enhance-

ment is necessary only at the region of interest. The fractional di�erential mask in

8 directions is shown in Fig.6.1.

CS0 = 1

CS1 = −ν
.

.

.

CSk =
Γ(k − ν)

k!Γ(−ν)

.

.

CSn =
Γ(n− ν)

n!Γ(−ν)

(6.5)

6.4 Estimation of Image Adaptive Fractional Order

The visual improvement in sonar image after image enhancement should be such

that edges get highlighted without a�ecting the texture. The best e�ect of image

enhancement is to make edges clear and to preserve weak textures. Higher order

increases the amplitude of high frequency signals like strong edges at the expense of

low amplitude weak textures. Lower order enhances only the low frequency texture

areas. These problems can be avoided by adhering to an an image adaptive fractional

di�erential approach. Bo Li and Wei Xie [148] adopt image adaptive order for

enhancement using the dynamic gradient feature of the entire image.

The adaptive fractional order ν for each pixel of the image is estimated using the
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.1284 ‐0.661 ‐0.1087 ‐0.0563 ‐0.036 ‐0.0256 ‐0.0194 ‐0.0194 ‐0.0256 ‐0.036 ‐0.0563 ‐0.1087 ‐0.661 1.1284
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.1284 0 0 0 0 0 0 ‐0.0194 0 0 0
0 0 0 ‐0.661 0 0 0 0 0 0 ‐0.0256 0 0 0
0 0 0 ‐0.1087 0 0 0 0 0 0 ‐0.036 0 0 0
0 0 0 ‐0.0563 0 0 0 0 0 0 ‐0.0563 0 0 0
0 0 0 ‐0.036 0 0 0 0 0 0 ‐0.1087 0 0 0
0 0 0 ‐0.0256 0 0 0 0 0 0 ‐0.661 0 0 0
0 0 0 ‐0.0194 0 0 0 0 0 0 1.1284 0 0 0

1.1284 0 0 0 0 0 0 0 0 0 0 0 0 1.1284
0 ‐0.661 0 0 0 0 0 0 0 0 0 0 ‐0.661 0
0 0 ‐0.1087 0 0 0 0 0 0 0 0 ‐0.1087 0 0
0 0 0 ‐0.0563 0 0 0 0 0 0 ‐0.0563 0 0 0
0 0 0 0 ‐0.036 0 0 0 0 ‐0.036 0 0 0 0
0 0 0 0 0 ‐0.0256 0 0 ‐0.0256 0 0 0 0 0
0 0 0 0 0 0 ‐0.0194 ‐0.0194 0 0 0 0 0 0

0 0 0 0 0 0 ‐0.0194 ‐0.0194 0 0 0 0 0 0
0 0 0 0 0 ‐0.0256 0 0 ‐0.0256 0 0 0 0 0
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0 0 0 ‐0.0563 0 0 0 0 0 0 ‐0.0563 0 0 0
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0 ‐0.661 0 0 0 0 0 0 0 0 0 0 ‐0.661 0

1.1284 0 0 0 0 0 0 0 0 0 0 0 0 1.1284
45 degree 135 degree

0 degree 180 degree

270 degree 90 degree

315 Degree 225 degree

Fig. 6.1: Fractional di�erential masks in 8 directions

piecewise function as in eq.6.6,

ν =



M(i,j)−t
M(i,j) if M(i, j) ≥ t and M(i,j)−t

M(i,j) ≥ v1

v1 if M(i, j) ≥ t and M(i,j)−t
M(i,j) < v1

v2 if 2 < M(i, j) < t and M(i,j)
t ≥ v2

M(i,j)
t if 2 < M(i, j) < t and M(i,j)

t < v2

0 if 0 < M(i, j) < 2

(6.6)

For a digital image s(i, j), M(i, j) is the average gradient magnitude of each

pixel in eight directions. The parameter t is the optimal gradient threshold of image

edge obtained using the improved Otsu Algorithm [149]. v1 is the threshold of

adaptive fractional di�erential order of image edge, and v2 is the threshold of adaptive

fractional di�erential order of weak texture.
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Parameters v1 and v2 are de�ned in eq.6.7,

v1 =
Med−Mavg

Med

v2 =
Mavg−Mtex

Mavg

(6.7)

The parameter Mavg is the average gradient of the original image, Med and Mtex

are the average gradients of edge pixels and texture pixels respectively, segmented

by improved Otsu algorithm.

The variation of gradient magnitude near edges are relatively high. So for pixels,

if M(i,j) is larger than the optimal threshold t, then those pixels can be regarded

as edges. A larger gradient M(i, j) yields a larger ν and thus can achieve better

edge enhancement. The variation of gradient magnitude in weak texture regions are

relatively low and the variation of gradient magnitude in smooth areas are nearly

zero. A smaller gradient M(i, j) yields a smaller ν and thus more weak textures

can be preserved. In a similar way, adaptive orders are estimated for all pixels of

the image. Using these orders, fractional di�erential masks are constructed for each

pixel. These masks are then used for the enhancement of the sonar image.

The adaptive fractional di�erential algorithm uses an improved Otsu [150] al-

gorithm to di�erentiate smooth areas, textures and edges of the image. In that

algorithm, adaptive orders are obtained for each and every pixel of the image and

fractional di�erential masks are constructed for every obtained order. Even though

this method o�er considerable enhancement, computation complexity is really high.

As the number of pixels in sonar images is high, the number of computations will

be high. The proposed method is a modi�ed version of the method of estimation of

adaptive orders in the region of interest. The modi�cation assures reduction in the

number of computations without a�ecting the accuracy of enhancement. The noise

reduction method using fractional integral mask and the modi�ed image adaptive

enhancement technique based on fractional di�erential mask are jointly used.

Fractional di�erential masks were constructed in eight directions by using the

fractional order for each pixel. A convolution of the di�erent masks with each sub-

sequent pixel is conducted. The entire process is computationally complex. The

proposed method aims at reducing this computation complexity. In the Fig.6.2 the

portion included in the dashed lines depicts the modi�ed adaptive fractional di�eren-

tial algorithm. Using the piecewise function for fractional di�erential order, estimate

the adaptive order for each pixel. After specifying the region of interest (ROI), cal-
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Fig. 6.2: Flowchart of the modi�ed algorithm

culate the gradient of each pixel in the ROI and divide the image into appropriate

sections. For each section, �nd the maximum value of fractional order. Check the

number of occurrence of this maximum value in the corresponding section. If the

number of occurrence is greater than a desired limit, i.e., half the number of pixels

in the section, select this maximum fractional order for the construction of fractional

di�erential mask. On the other hand, if the number of occurrence of maximum frac-

tional order is less than the desired limit, then, �nd the maximum fractional order in

each column of the selected section and take the mean value of maximum fractional

orders obtained from each column for the construction of mask.
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6.5 Image Enhancement

Gradient Magnitude for each pixel of a 180 × 120 sonar image is generated. From

the generated result, the maximum value obtained for gradient is 31.8750. The

minimum value obtained is 0 and the average gradient obtained is 4.7540. The op-

timal gradient threshold is estimated using improved Otsu Algorithm. The gradient

threshold for which the maximum cluster variance occurs is regarded as optimal gra-

dient threshold. The maximum cluster variance is obtained for the gradient threshold

15 for the image. It is speci�c for the selected image. The gradient threshold for

which the maximum cluster variance occurs is regarded as optimal gradient thresh-

old. The maximum cluster variance is obtained for the gradient threshold 15 for the

image.Therefore, the Optimal gradient threshold, t is �xed as 15. After determining

the value of optimal gradient threshold t, the gradients are classi�ed into two classes.

The gradient values greater than t are regarded as edges. Whereas, the gradient val-

ues smaller than t are considered as weak texture and low frequency smooth areas.

The average gradient of edge pixels is Med = 22.6714 and the average gradient of

texture pixels is Mtex = 3.2307. From eq.6.7, v1 and v2 are estimated as 0.7903 and

0.3204, respectively.

The adaptive order for each pixel of the whole sonar image is estimated using

the piecewise function given in eq.6.6 for adaptive fractional di�erential order. The

whole image is then divided into some non overlapping sections. From each section,

maximum fractional order is found and recorded. The number of occurrence of

these maximum values in corresponding sections are also recorded. According to

the proposed modi�cation, adaptive orders for each section is estimated. Fractional

di�erential masks are constructed in 8 directions for each section using the estimated

adaptive fractional di�erential order of corresponding section.

For a real time processing system applicable in AUVs, a fast pre-segmentation of

ROI in sonar images reduces not only the amount of data for the human operator but

also for the consecutive classi�cation algorithms signi�cantly. Convolving fractional

di�erential mask only with the region of interest, better output images with reduced

computation complexity are obtained. The region of interest extracted from the

denoised image and enhanced using the proposed algorithm is shown in Fig.6.3.

Percentage reduction in the computation complexity is going to be directly dependent

on the ratio of the number of textured patches to the number of original patches in

the selected image.
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Fig. 6.3: Enhanced portion

6.6 Summary

This chapter deals with the application of a new method to enhance the denoised

image. A modi�ed algorithm for the estimation of image adaptive order proposed.

Results depicts that, the proposed modi�cation reduces computation complexity

required for enhancement of sonar images.





Chapter 7

Conclusions and Future Scope

This chapter sums up the conclusions of the research work carried out. It also

highlights the achievements followed by few suggestions for future work. The results

presented in the thesis have been published in di�erent international journals and

conferences.

7.1 Conclusions

The despeckling of sonar images based on di�erent speckle-scene models vis-a-vis

signal-independent additive noise model and multiplicative noise model have been

implemented and compared with the existing ones. The results and discussions

part compare and analyze the di�erent methods proposed based on the particular

model selected. For comparison and analysis of the di�erent methods proposed

same sonar image has been used. Since each proposed method has its own unique

speckle-scene model and denoising domain, deduction of a single conclusion becomes

di�cult, i.e patch based processing is good for ROI identi�ed images,whereas the

linear estimation method or non linear estimation method can be employed for SSS

image processing. Depending on the application for which the denoised image will

be put to use, an optimal methodology would have to be adopted. The patch based

denoising helps the sonar image interpreters in de�ning their areas of interest to be

despeckled without doing the convolution operation for the entire image pixels. The

sonar image enhancement chapter emphasizes the importance of despeckling before

any further processing in sonar images.
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7.1.1 Additive Speckle-Scene Model

The additive noise model analysis chapter deals with the despeckling assuming a

signal-independent additive noise model. The denoising was done both in the trans-

form domain and in the spatial domain. Four sonar image estimation methods were

analyzed in the chapter three of them in the transform domain and the last one in

the spatial domain. In all the methods, except the multiresolution method, a blind

denoising method was adopted.

In the �rst work a novel method for �nding optimum multiresolution level based

on PSNR values and visual quality, as an improvement on the classical thresholding

approaches and the Bayesian thresholding method is proposed. For all the thresol-

ding methods, the optimum multiresolution level for speckle reduction is the maxi-

mum level of decomposition possible for the image of size S to be denoised and the

chosen basic wavelet function. This method �ne tunes the existing denoising meth-

ods based on wavelet shrinkage in literature by optimizing the level of decomposition.

The above method can be applied to other denoising architecture with proper mod-

i�cations. The maximum level of decomposition possible for the particular image

and the chosen basic wavelet function is determined after a series of simulations.

The denoising performance is further improved by choosing the optimum wavelet

shrinkage rule for the image.

Next an e�cient patch based and block based image denoising algorithms, where

the noisy image patches are represented using Principal Components and Singular

Values is implemented. This work has presented a framework for denoising by learn-

ing a suitable basis to represent each image patch i.e, an image adaptive basis is

adopted. The local basis functions are determined adaptively from the local image

patches as opposed to being �xed for the entire image as in wavelet based technique

and then being applied adaptively to local image patches. The denoising results em-

phasized the strengths of this new decomposition approach for sonar images which

are sparse and the details are of high frequency.

The third work which is computationally e�cient version of the second work,

a blind denoising of sonar image based on a proposed naive homogeneity index is

employed. The noisy patches are selectively processed which increases the computa-

tional e�ciency. The assessment of the �lters is done on a real sonar data by means

of visual inspection and quantitative measures. The performance �gures obtained by

means of simulations reveal that the method provides superior performance in com-
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parison to the other speckle reducing �lters in terms of smoothing uniform regions

and preserving edges and features. Besides, the method can signi�cantly reduce the

speckle while preserving the resolution of the original image.

In the �nal work which is done in the spatial domain, a Kalman �lter based

method for sonar image estimation is employed. The homomorphic approach is

applied on the re�ectivity domain relation to obtain the observation model for the

Kalman �lter estimation proposed. The improvement obtained over existing �lters

is demonstrated with real examples. The e�ectiveness of the techniques encourages

the possibility of using the approach in a number of sonar applications. Also, cleaner

images suggest potential improvements for classi�cation and recognition.

7.1.2 Multiplicative Speckle-Scene Model

In multiplicative noise model analysis chapter a multiplicative speckle-scene model

is used for the despeckling. The results of the despeckling method is compared with

the existing methods in visual methods and in numerical way by using di�erent

assessment methods. Three methods using the above said model is analyzed, one in

the transform domain and the other two in the spatial domain.

The traditional sonar image �ltering method can only remove one kind of noise,

the speckle noise and the details of the image are blurred in various degrees. Mixed

noise removal from sonar images is a challenging task. In the �rst method of the

chapter, a novel algorithm for mixed additive Gaussian and multiplicative speckle

removal is done by exploiting image local sparsity and nonlocal similarity in proba-

bility distribution respectively. The performance can be further enhanced by going

for patch size adaptation.

In the second method described in the chapter, the popular Riemann-Liouville

de�nition of fractional calculus is used for the construction of eight directional in-

tegral masks and a high frequency �ltering using the masks is done. The denoising

algorithm can be applied on di�erent sonar images a�ected with speckle noise. The

results of the experiments prove that, noise removal using Fractional integral mask

is better than traditional despeckling method. The mask extraction is possible for

lower fractional orders and the application of the denoising �lter only on to the

speckle a�ected class of sonar image patches makes the algorithm computationally

e�ective.

The unscented Kalman �lter estimation for image restoration described in the
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�nal part of the chapter exploits the independence in the speckle characteristics of

each scan lines of the side scan imaging technology. The �lter provides an e�cient

recursive means to estimate the state of a process, in a way that minimizes the mean

of the squared error. On to the observation model of the side scan sonar image, one-

dimensional UKF is applied considering each row as one-dimensional signal and blind

denoising is done. The improvement obtained over existing �lters is demonstrated

with real examples.

7.2 Major Contributions

A detailed analysis of the literature available for despeckling of radar and sonar

images has been carried out. Literature Review brought out the various algorithms

based on signal dependent and independent, additive and multiplicative noise models

for speckle reduction. In the work carried out, signal-independent additive noise

models and multiplicative noise models were considered. A comparative study has

been carried out with signal dependent model studies available in the literature. The

blind and non blind denoising indexes to quantify the despeckling capability of the

methods were reviewed. Di�erent noise level estimation algorithms were reviewed

and were used in the blind denoising of sonar images.

A comparison of all the methods developed based on a particular speckle scene-

model is carried out at the summary portion of the working chapters. Application

of a data adaptive and non data adaptive transforms for sonar image despeckling

is explored. Another method like linear and non linear estimation methods were

introduced for sonar image estimation in spatial domain. A fractional integral and

di�erential mask based methods were applied for sonar image denoising and enhance-

ment respectively.

In the presence of signal-dependent noise, the with-reference indexes were strongly

in�uenced by the average signal level of the ground truth, unlike the case of addi-

tive signal-independent noise. For all the methods developed based on the signal-

independent additive noise model, a homomorphic approach is used to obtain the

additive model from the multiplicative model. This helps in the comparison of

the methods based on selected model. The result of PCA transform methods' ef-

fectiveness is slightly lower compared to SVD denoising as SVD eliminates noise

components associated with both the sensors and the pings. The patch based �lter

outperformed the conventional and non conventional speckle reducing �lters in terms
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of ENL and SSI. The one step pixel prediction method uses 1D Kalman estimation

e�ectively in estimating the row pixel values and thereby avoiding the complexity

of the estimation in 2D. The log transformation performed in the homomorphic

approach to obtain the signal-independent additive noise model leads to very high

values of ENL and SMPI compared to the other existing signal-dependent noise

models methods in literature.

The non-homomorphic approach avoids the occurrance of undesired bias e�ects

in the methods using the multiplicative noise model. In the mixed noise removal

method, the processing of local and non local patches e�ectively removes the additive

Gaussian and multiplicative noises. While using Fractional Integral Mask denoising

method, the reduction in size of the mask ensures computational reduction without

much performance degradation.

An immediate and subjective approach for quality assessment is represented by

visual inspection of �ltered images. Visual inspection permits detection of the main

human-visible features that characterize the behavior of a despeckling �lter. Such

features include edge preservation capability, degree of blur, point target preserva-

tion, as well as structural artifacts which are hardly detected by objective and direct

measurements. The skill of the sonar interpreter is often unattainable by computers.

A visual comparison of various proposed methods among themselves and with ex-

isting methods is performed for the choice of sonar image interpreters. Since purely

visual interpretation of sonar image is subjective, qualitative, and time consuming,

quantitative assessments is also made for the same.

7.3 Suggestions for Future Work

The following are some of the prospects for future work: Thesis work deals mainly

with the analysis of despeckling methods in transform and spatial domain for the

two di�erent speckle-scene model, the signal-independent additive noise model and

the multiplicative noise model. The signal-dependent additive and multiplicative

noise models can also be explored as future work. With the growing realization that

the �xed basis such as wavelet is inappropriate for handling images, e�orts have

been made towards building the locally or globally adaptive basis for image sparse

representations. Among that the thesis work deals with the locally adaptive basis.

Globally adaptive basis methods can be analyzed. In the block adaptive patch based

denoising, creating blocks of similar patches rather than adjacent patches as taken in
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the algorithm can give good improvement on a statistical basis. Also the adaptation

of the PCA and SVD for the selected similar patches or having them applied in a

non local means �ltered data, the despeckling e�ects can be better. Order adaptive

fractional order mask based denoising can be employed to have further improved

performance.

7.4 Summary

This chapter brings out the highlights of the work carried out, the general inferences

gathered along with enlisting the scope and direction for future work in this area.
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