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Chapter 1

Introduction

The mathematical structures known as graphs are used to model

pair-wise relations between objects from a certain collection.

The study of graphs-Graph Theory-is the branch of mathematics

originated in 18th century. Leonhard Paul Euler (1707- 1783)-

was the pioneering Swiss mathematician who led the founda-

tion of very vast and important field of graph theory- created

the first graph and hence solved the first problem using graph

theory-The Königsberg bridge problem- which was considered

to be one of the toughest problems during that time.

The study of games and recreational mathematics have al-

ways motivated the development of graph theory and by the end

of 19-th century, a great deal of progress in this mathematical

discipline has made graph theory to be a branch of mathematics

1



2 Chapter 1. Introduction

which have applications in many areas-anthropology, architec-

ture, biology, chemistry, computer science, economics, physics,

psychology, sociology and telecommunications- to name a few.

Also, graph theory is considered to be the branch of math-

ematics which is ideally suited for the rigorous analysis of the

very large scale interconnection(VLSI) networks[56]. Applica-

tions of graphs in this information age also include the study of

real world networks such as WWW, social networks etc[7, 13].

The study on ‘Graph operators’ has been of interest, since

the pioneering work by O. Ore[36] in his book- The Theory

of Graphs- on the well known graph operator, the line graph

of a graph. The monograph entitled ‘Graph dynamics’ by E.

Prisner[43] and the survey paper[50] by J. L. Szwarcfiter con-

tain most of the progress made by the community working in

this area.

The study on Graph operators, operators defined on families

of graphs, deals with the notions such as convergence, diver-

gence, fixednes etc. A variety of graph classes can be obtained

by choosing suitable graph operators. The line graphs, the Gal-

lai graphs, the cycle graphs are some of the examples. On the

other hand, the images of the graphs in a graph class under an
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operator is also considered as another graph class. The squares

of trees, the line graphs of bipartite graphs are some examples

in this context. Under such a scenario, the following question is

being investigated: Given a graph operator T and a graph G,

can the graph G be an image of another graph? We raise more

related questions, but, after the following definition.

A graph H is a root graph of a graph G under an operator

T , if T (H) ∼= G. Thus the above question can be restated as;

(1) Does there exist a root graph of the given graph G under

an operator T? Now, in a generalised manner, the following

questions are also sensible.

2. Given a family of graphs G, find the family of all graphs H

such that for each H ∈ H, T (H) ∈ G.

3. If the graph G has a property P , find a root graph of G

that has also property P .

4. Let {Gi}i∈I be a collection of graphs and {Ti}i∈I be op-

erators, then find a (common) root graph H such that

Ti(H) ∼= Gi, ∀i ∈ I.

5. Find a subclass G of a graph class G such that the root

graphs of G can be found in polynomial time.

This thesis entitled ‘Studies on the root graphs of some



4 Chapter 1. Introduction

graph operators’ is a humble effort to answer some of these

problems raised in the literature on some graph operators.

We shall now consider some basic notions, useful in the thesis,

mainly from [6, 11, 12].

1.1 Notations

When G = (V,E) is a graph,

V (G) : vertex set of G

E(G) : edge set of G

|V | : order of G

|E| : size of G

deg(v) : degree of v

∆(G) : maximum degree in G

δ(G) : minimum degree in G

G ∼= H : G is isomorphic to H

Pn : path of length n

Cn : cycle of length n

Kn : complete graph on n vertices

Kn − e : an edge removed from Kn

dG(u, v) : distance between u and v in G

e(v) : eccentricity of v

r(G) = minv∈G e(v) : radius of G

d(G) = maxv∈G e(v) : diameter of G
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1.2 Definitions

Definition 1.2.1. A graph H is called an induced subgraph

of G if E ′ is the collection of all edges in G which has both its

end vertices in V ′. The induced subgraph with vertex set V ′ is

denoted by < V ′ >. A maximal complete subgraph is called a

clique.

Definition 1.2.2. A graph G is H-free if it does not contain H

as an induced subgraph. Given a nonempty class C of graphs, a

graph G is said to be C-free , if none of the induced subgraphs

of G belongs to C.

Definition 1.2.3. The join of two graphs G and H, denoted

by G ∨ H, is the graph obtained from the disjoint union of G

and H by adding the edges {uv : u ∈ V (G), v ∈ V (H)}.

Definition 1.2.4. A BFS tree from a root vertex of a graph

G is a spanning tree of G in which every path from a vertex to

the root vertex is a shortest path in G.

Definition 1.2.5. The center C(G) of a graph G is the sub-

graph induced by those vertices of G having minimum eccentric-

ity and the periphery P (G) is the subgraph induced by those

vertices of G having maximum eccentricity.

Definition 1.2.6. The status of a vertex S(u) =
∑

v∈V (G)

dG(u, v).



6 Chapter 1. Introduction

Figure 1.1: The status of the vertices in a graph G. Here the vertices u and
v induce M(G) and the vertices x, y and z induce AM(G).

When H is a subgraph of G, SG(u,H) =
∑

v∈V (H)

dG(u, v). The

maximum status difference in a graph G is SD(G) = max
u,v∈V (G)

|SG(u)− SG(v)|. The subgraph induced by the vertices of min-

imum (maximum) status in G is known as the median (anti-

median) of G, denoted by M(G)(AM(G)).

Definition 1.2.7. A graph G is k-partite if the vertex set can

be partitioned into k- non-empty sets X1, . . . Xk such that no

two vertices in Xi are adjacent for 1 ≤ i ≤ k. A k-partite graph

in which each vertex in Xi is adjacent to every vertex in Xj ,

j 6= i, is called a complete k-partite graph. If |Xi| = ni,

then the complete k-partite graph is denoted by Kn1,...,nk
. A
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2-partite graph is called a bipartite graph and its bipartition

is denoted by (X1, X2). A complete 2-partite graph is called a

complete bipartite graph. The complete bipartite graph K1,n is

called a n-star. The graph K1,3 is called a claw.

Definition 1.2.8. A bipartite graph G is a symmetric bi-

partite graph if for a bi-partition (X, Y ) of G, there is a

map f from X onto Y such that for every edge (u, f(v)) in

G, there is an edge (v, f(u)) in G, where u, v ∈ X. Such a

partition is called a symmetric bipartition of G denoted by

(X, Y )f . The ladder graph Ln = {xi, yi}
n
i=1 is obtained from

two paths x1, . . . , xn and y1, . . . , yn on n vertices and making xi

and yi adjacent for each i. It has a bipartition (XL, YL), where

XL = {xi : i is odd} ∪ {yi : i is even} and YL = V (Ln) \XL.

Figure 1.2: An L5 and a symmetric bi-partite representation of L5.

Definition 1.2.9. A graph G is chordal if each cycle of length

at least four in G has an edge between two non-consecutive

vertices in the cycle.
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Definition 1.2.10. Let G be a set of graphs. A graph oper-

ator T maps a graph in G to another. The family of graphs

G ∈ G such that T (G) = H are called the root graphs of H

under T .

Figure 1.3: A graph G and L(G).

Definition 1.2.11. The line graph L(G) of a graph G has as

its vertices, the edges of G, and any two vertices are adjacent in

L(G) if the corresponding edges are incident in G. A graph G

such that L(G) ∼= H is called a root line graph of H.

Definition 1.2.12. The Gallai graph Gal(G) of a graph G has

as its vertices, the edges of G, and any two vertices are adjacent

in Gal(G) if the corresponding edges are incident in G, but do

not span a triangle in G. The anti-Gallai graph antiGal(G)

of a graph G has as its vertices, the edges of G, and any two

vertices of G are adjacent in antiGal(G) if the corresponding

edges are incident in G and lie in a triangle in G.
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Figure 1.4: The Gal(G) and antiGal(G) for the graph G in Figure 1.3.

1.3 A survey of results and summary of the

thesis

In this section we will provide a survey of results on the three

operators we studied in this thesis and provide a chapter-wise

summary of the thesis. Unless otherwise specified, all graphs

are connected and all subgraphs mentioned in this thesis are

induced subgraphs.

1.3.1 The median and anti-median operators

The median of a graph is one of the centrality concepts, to-

gether with the notions such as center and centroid, is defined

using distance, which is one of the widely used concepts in graph
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theory[12]. In network theory these concepts are known as ‘fa-

cility locations’. The problems of finding facility locations nat-

urally arise in situations like placing post offices, warehouses or

emergency services such as hospitals or fire stations. For in-

stance, the median of a graph is a node in a graph or network

which minimizes the sum of the distances to other nodes in that

graph. In network theory, the problem of finding the median

is significant as it is related to the optimization problems in-

volving the placement of network servers, the core of the entire

networks, especially in very large interconnection networks.

The studies on the structure of facility locations started with

[25], where it is shown that the center and the centroid of a tree

consists of one vertex or two adjacent vertices. Study on the

centers of different classes of graphs can be seen in [44, 45, 33,

29, 58]. As described in [27, 12] Hedetniemi proved that any

graph G is isomorphic to the center of some graph H of diame-

ter 4 and radius 2.

‘Can any graph G be the median of another graph?’ is also

a natural problem raised in this context and it was solved by

Slater [48]. In [32], the number of vertices used for such a con-

struction was shown to be ≤ 2|V (G)|, and it was improved to

2|V (G)| − δ(G) + 1 in [21]. Followed by Hakimi[20] in 1964, in
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which the median location is shown to be the optimum location

for minimizing the transportation costs to a facility and center

to be the optimum location for an emergency response facil-

ity, studies and surveys on locations in graphs are presented in

[18, 19, 52]. The book by Buckley and Harary [12] had brought

together most of such results in the literature of that time.

When the graph operators under consideration maps a graph

into its subgraphs, the problem of finding a common root graph

is also referred to as a simultaneous embedding problem. For

instance, in [21] it is shown that given two graphs G1 and G2,

there exists a graph H with G1 as the median and G2 as the cen-

ter and still be disjoint. In another words, there is a common

root graph H such that M(H) ∼= G1 and C(H) ∼= G2. Later,

Hobart [22] extended this result by showing that dH(G1, G2) can

be any integer n in such a construction. The problems of finding

common roots for different operators such as center, periphery,

median, anti-median, centroid, etc., can be seen in[5, 10, 49, 55].

However, the median constructions for general graphs cannot

be directly applied to many networks as their underlying graph

belong to different classes of graphs. Hence, the study of the

median operator for different classes of graphs [46, 57] is also sig-

nificant. We note that the underlying graphs of many networks
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are bipartite. For example, most of the analysis in network com-

munities are done using preference networks [26] and they are

modeled using bipartite graphs. In Chapter 2, we present a

study on the root graphs of k-partite graphs and some related

sub-classes under median and anti-median operators. We also

provide some general solutions using the techniques developed

in this Chapter.

Security has become one of the most important area of con-

cern in networks, which deals with the sharing and transaction

of different forms of data. A convex structure in a subnetwork

allows a safe data transaction through the shortest paths avail-

able between any two nodes in it. Thus the term ‘convexity’

in graphs can equally be used in place of the word ‘security‘

in data transactions in networks. Consider the problem of si-

multaneous embedding of two graphs G1 and G2 in graph H

such that M(H) ∼= G1 and AM(H) ∼= G2. Also, consider an

additional requirement that any shortest path between the ver-

tices of G1 (and G2) is within these facility locations. This will

give these locations an advantage of transporting the materials

without affecting the outside regions. This requirement can be

made by keeping both G1 and G2 convex subgraphs of H. A

construction with M(H) = G and G is convex in H is in [15].

For a positive integer r, let H = (G1, G2, r) denote a graph with
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dH(G1, G2) = r, M(H) ∼= G1, AM(H) ∼= G2 and both G1 and

G2 are convex subgraphs of H. Such a construction is in [5] for

graphs which satisfy r ≥ ⌊d(G1)/2⌋+ ⌊d(G2)/2⌋+ 2.

In Chapter 3, the problems of embedding median and anti-

median subgraphs is explained and we have provided an optimal

solution to it by showing that (G1, G2, r) exists for every G1, G2

and r ≥ 1.

1.3.2 The line graph operator

The family of line graphs L(G)[28] is a class of graphs defined

by the operator Line graph of a graph. It is well known that

not every graph is a line graph. For, the line graphs admit a

forbidden subgraph characterization[9]. The existence of real

world networks modeled by line graphs can be seen in [34, 35].

The only root line graphs with isomorphic line graphs are K3

and K1,3 [54]. The algorithms presented in[31, 47] show that the

construction of root line graph from a line graph can be done in

polynomial time.

In Chapter 4, we present an algorithm to partition the edge

set of a line graph L(G) to the edge sets of the Gallai and anti-

Gallai graphs of G. The properties of the edges in a hanging of

a line graph is used to present an optimal algorithm for deter-
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mining the root line graph of a given line graph. We also present

it as a recognizing algorithm for a given line graph. Finally, the

root line graphs of the graph classes such as diameter-maximal,

distance-hereditary, Ptolemaic and chordal graphs are also ob-

tained.

1.3.3 The anti-Gallai operator

The class of Gallai graphs and anti-Gallai graphs also defined

based on the operators Gallai and anti-Gallai respectively. We

justify the importance of the study on this operator simply us-

ing [30], in which it is shown that the four color theorem can be

equivalently stated in terms of anti-Gallai graphs. In addition,

the problems of determining the clique number and the chro-

matic number of Gal(G) are NP-Complete[30].

We see, from the definitions, that the Gallai and the anti-

Gallai graphs are spanning subgraphs of a line graph. In fact,

they are complement to each other. However, we can see that

there are lots of results on this graph class, that are different

from the class of line graphs. As an example, both the Gallai

graphs and the anti-Gallai graphs cannot be characterized using

forbidden subgraphs. In [3] it is shown that there are infinitely

many pairs of non-isomorphic graphs of the same order having

isomorphic Gallai graphs and anti-Gallai graphs. In [2] it is
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shown that the complexity of recognizing anti-Gallai graphs is

NP-complete.

In Chapter 5, the root graphs of anti-Gallai graphs are in-

vestigated. We find a structural relation between the triangles

in an anti-Gallai graph and present an algorithm to find a root

graph of anti-Gallai graphs that are triangle irreducible.

In a Gallai graph, a triangle corresponds to a unique K1,3

in its root graph and any edge correspond to a unique K1,2.

Hence finding one root graph of a Gallai graph is not challenging,

however, we have kept the problem of finding all root graphs of a

given Gallai graph as a further study and therefore not included

in this thesis.
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Chapter 2

Median problem on

bipartite graphs

This chapter deals with the median problem on k-partite graphs

and some of its sub classes1. We prove the existence of k- partite

graphs as the root graphs of k-partite graphs, for some k, under

the median and anti-median operators. Similar results for some

subclasses of k-partite graphs are also presented in this chapter.

The commutative properties of the median and anti-median op-

erators with two graph operators, the bipartite graph of a graph

and the square of a graph, are also discussed.

1Some results in this chapter are in the following publications
1. K. Pravas, A. Vijayakumar, The median problem on k-partite graphs, Discuss. Math.
Graph Theory, 35 (2015), 439-446.
2 K. Pravas, A. Vijayakumar, On median problem on symmetric bipartite graphs, Lec-
ture Notes in Comput. Sci.(Proceedings of the International Conference on Theoretical
Computer Science and Discrete Mathematics, Kalasalingam University, Krishnankoil,
2016). (to appear).

17
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When presenting the results for k-partite graphs, we use dif-

ferent methods for the cases when k = 2 and k ≥ 3.

2.1 Bipartite graphs with prescribed median

and anti-median

Lemma 2.1.1. Given a bipartite graph G of n vertices, there

exists a connected bipartite graph H ′ such that G is an induced

subgraph of H ′ and all the vertices of G in H ′ have equal status

in H ′.

Proof. Let X, Y be a bipartition of V (G) and X ′, Y ′ be the copy

of X, Y such that v′ denote the copy of a vertex v ∈ V (G).

Consider two new vertices vx and vy. Make vy adjacent to all

vertices of X∪X ′ and vx adjacent to all vertices of Y ∪Y ′. Also,

for each v ∈ X (Y ) make v′ adjacent to Y \N(v) (X\N(v)).

Now, when v ∈ X, SH′(v) = 1 · |N(v) ∪ Y \ N(v) ∪ {vy}| + 2 ·

|X \ {v}∪X ′ ∪{vx}|+3 · |N(v)∪Y \N(v)| = 4n+1. A similar

calculation when v ∈ Y gives SH′(v) = 4n+1, for all v ∈ V (G).

Also, it follows from the construction that H ′ is bipartite.

Note 2.1.2. The graph H ′ is called the bipartite gadget graph

of G. Let |X| = n1 and |Y | = n2. Then we have, in H ′,

S(vx) = 4n + 1 − (2n1 − 2), S(vy) = 4n + 1 − (2n2 − 2) and

4n + 1 ≤ S(v′) ≤ 4n + 1 + 2∆(G) + 2 + 2max(n1, n2), for each
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v ∈ V (G).

Theorem 2.1.3. Given a bipartite graph G there exists a bipar-

tite graph H such that M(H)∼= G.

Proof. The proof is by construction. Let H ′ be the bipartite

gadget graph of the graph G. Choose a positive integer s >

max(n1, n2)− 1. Introduce s copies of K2 and make one end of

each K2 adjacent to all the vertices of X and the other end to

all the vertices of Y . Denote this graph by H. Then for each

vertex v ∈ V (G), SH(v) = SH′(v) + s+ 2s = 4n+ 1 + 3s. Also,

for each v ∈ V (H ′\G) the status is increased by 5s. Let x be an

arbitrary vertex from the newly added s copies of K2. It easy

to verify that SH(x) ≥ 4n + 1 + 5s. Hence SH(v) < SH(u), for

all v ∈ V (G), for all u ∈ V (H\G), hence M(H)∼= G.

Theorem 2.1.4. Given a bipartite graph G there exists a bipar-

tite graph H such that AM(H)∼= G.

Proof. The proof is by construction. Let H ′ be the bipartite

gadget graph of the graph G. Consider the complete bipartite

graph Ks,s, where s > max(n1, n2) + ∆(G) + 1. Make the s

vertices in one partition of Ks,s adjacent to vy ∪ Y ′ and the

other s vertices to vx ∪ X ′. Denote this graph by H. Then

SH(v) = 4n+ 1+ 5s for all the vertices in the subgraph G of H

and for each other vertex in the subgraph H ′ of H, the status

is increased by 3s. Let x be a vertex in Ks,s that is in the same
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Figure 2.1: A graph G with P4 as the median. Here, the subgraph in the
dotted box is the bipartite gadget graph of P4.

partition of X. Then, SH(x) = 1 ·(|X ′∪{vx}|+s)+2 ·(|Y ∪Y ′∪

{vy}|+s−1)+3·|X| = 4n+1+3s. Similar arguments show that

SH(x) = 4n+3s+1 for all x in Ks,s. Hence SH(v) > SH(u), for

all v ∈ V (G), for all u ∈ V (H\G), and AM(H)∼= G.

Remark 2.1.5. The number of vertices used in both construc-

tions in Theorems 2.1.3 and 2.1.4 is 2(n+s+1), where the value

of s depends on the corresponding construction rules.

2.2 k-partite graphs with prescribed median

and anti-median

In the following section we assume that k ≥ 3.
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Figure 2.2: A graph H with P4 as the anti-median. Here the dotted circles
represent a set of vertices and the dotted lines represent all possible edges
between its two ends.

Theorem 2.2.1. Given a k-partite graph G there exists a k-

partite graph H such that M(H)∼= G.

Proof. The proof is by construction. Consider two functions f

and g defined on an index set I = {1, 2, . . . , k} as

f(i) =







1, if i = k

i+ 1, if i 6= k
and g(i) =







k, if i = 1

i− 1, if i 6= 1.

Let {Xi}i∈I be a partition of V (G) with |Xi| = ni. For each

vertex v ∈ Xi, introduce three vertices v1 ∈ Xg(i), v2 ∈ Xf(i)

and v3 ∈ Xi such that v1 and v2 are adjacent to both v and v3.

We refer v1 and v2 as the ortho vertices of v, and v3 as the para
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vertex of v. Denote this graph as the k-partite gadget graph of

G.

Figure 2.3: Construction in Theorem 2.2.1. Here the dotted circles rep-
resent a set of vertices and the dotted lines represent all possible edges
between its two ends.

Make v1 adjacent to Xi ∪ Xf(i) \ NXf(i)
(v), v2 adjacent to

Xi ∪
g(i)
⋃

j=f(i)+1

Xj\NXj
(v) and v3 adjacent to

⋃

j 6=i

Xj. Denote this

graph by H (See Figure 2.3).
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Consider a vertex v in X1. Then, S(v) = 6
∑k

i=2 ni + 4n1 +

2(n1 − 1) = 6n− 2. Hence S(v) = 6n− 2, for all v ∈ V (G).

For each vertex v ∈ V (G) we get 7n + dX2(v) + 2
∑k

3 ni ≤

S(v1) ≤ 7n+ 3dX2(v) + 3
∑k

3 ni, 7n− 3 + n2 + d(v)− dX2(v) ≤

S(v2) ≤ 7n− 3+3n2+3d(v)− 3dX2(v) and 7n− 2−maxi(ni) ≤

S(v3) ≤ 8n− 4 + mini(ni). Hence M(H)∼= G.

The graph H so constructed has 4n vertices. An example is

given in Figure 2.4.

Figure 2.4: On left: a 3-partite graph G on 5 vertices. On right: a 3-partite
graph H with M(H) ∼= G.

Theorem 2.2.2. Given a k-partite graph G there exists a k-

partite graph H ′ such that AM(H ′)∼= G.

Proof. The proof is by construction. Let H be the graph ob-

tained using the construction in Theorem 2.2.1. Consider a com-
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plete k−partite graph Kr,r,...,r, where r > 2n+1
k

and let {Yi}i∈I

be its k-partition. For each vertex v ∈ Xi make v3 adjacent

to
⋃

j 6=i

Yj, v1 adjacent to
⋃

j 6=f(i)

Yj and v2 adjacent to
⋃

j 6=g(i)

Yj. In

the new graph H ′, SH′(v) = SH(v) + 2kr, for all v ∈ V (G)

and SH′(vs) = SH(vs) + (k + 1)r, for s = 1, 2, 3 and hence

AM(H ′)∼= G.

Figure 2.5: Construction in Theorem 2.2.2. Here the shaded graph in the
background is the graph in Figure 2.3.
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2.3 Embedding center with median construc-

tions

The constructions of a graph with prescribed median naturally

faces the following problem. The addition of a vertex in any part

of the graph changes the status of each vertex in that graph,

thus changing the median preferences in that graph. In this

section we embed another k-partite graph as the center of the

newly constructed graph keeping the median same in the graphs,

which are obtained using previous theorems.

Theorem 2.3.1. Given two bipartite graphs G and J there ex-

ists a bipartite graph H with M(H) ∼= G and C(H) ∼= J .

Proof. The proof is by construction. LetH ′ be the bipartite gad-

get graph of G. For k ≥ 3 introduce two paths x1, x2, . . . , xk−1

and y1, y2, . . . , yk−1 of length k − 2. Also, let u1, u2, . . . , uk+1

and v1, v2, . . . , vk+1 be two paths of length k. Let R and S be

the bi-partition of J such that |R| ≤ |S|. Make x1 adjacent to

X ∪{vx, y1}, y1 to Y ∪{vy}, xk−1 to R∪{yk−1}, yk−1 to S, u1 to

R∪{v1}, v1 to S and uk+1 to vk+1. Attach |S| − |R|+1 vertices

to x1 and a vertex w to y1. Denote this graph by H0. Introduce

s copies of K2, where s > SD(H0)/2, and make them adjacent

to X and Y of G, as in Theorem 2.1.3. Denote this new graph

by H. Clearly C(H) ∼= J with e(v) = k + 2, for all v ∈ V (J).



26 Chapter 2. Median problem on bipartite graphs

S(x) = S(y) = 4(n+k2)+k(|R|+|S|+6)+3|S|−2|R|+3s+8,

for all x ∈ X, y ∈ Y . For a vertex v ∈ V (H), let S∗(u) =

d(u, v′) + d(u, v′′), where v′ and v′′ are the end vertices of a K2

among the s copies of K2 in H. S∗(u) = 3, when u ∈ V (G) and

S∗(u) ≥ 5, when u ∈ V (H\G)\{v′, v′′}. Hence M(H)= G, when

s > SD(H0)/2.

S

Figure 2.6: Construction in Theorem 2.3.1. Here the white-black coloring
illustrates the bipartition of the graph. The dotted circles represent a set
of vertices and a line between them represent all possible edges between its
two ends.

Theorem 2.3.2. For k ≥ 3, given two k-partite graphs G and

J there exists a k-partite graph W such that M(W )∼= G and

C(W ) ∼= J .
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Proof. The proof is by construction. Let H be the graph ob-

tained from graph G as in Theorem 2.2.1. Introduce k paths

Pxi,yi of length r − 2 with end vertices xi and yi, where i ∈ I.

A vertex in Pxi,yi , at a distance t from xi is denoted by Pxi,yi [t].

For each t = 0, . . . , r − 3, make the vertices Pxi,yi [t], for all i,

adjacent so that they induce a complete graph. Similarly intro-

duce k paths Rx′

i,y
′

i
of length r with end vertices x′

i and y′i and

make adjacencies Rx′

i,y
′

i
[t] for each t and every i.

Let {Yi}i∈I be the k-partition of the graph J and let J ′ be the

k-partite gadget graph of J . Let P (Yi) and O(Yi) be respectively

the sets of para vertices and ortho vertices of Yi. For each i, j ∈ I

make xi adjacent to Xi, yi adjacent to O(Yi) ∪j 6=i Yj ∪j 6=i P (Yj)

and x′
i adjacent to Yi. Denote this graph by W0. Introduce

s copies of Kk, where s >SD(W0)/2, and let {Y ′
i }i∈I denote

their k-partition. For each i ∈ I, make all the vertices of Y ′
i

adjacent to Xi. Denote this graph by W . It can be verified that

C(W ) ∼= J , with e(v) = r + 1, for all v ∈ V (J). Also, for all

v ∈ V (G),

SW (v) = 6n+ |J |(4r− 2)+k(2r2− r− 1)+ s(2k− 1). (2.3.2.1)

Let S∗(u) =
∑

v∈K d(u, v), where K is one of the s copies of

Kk. We can see that S∗(u) = 2k − 1 when u ∈ V (G) and

S∗(u) ≥ 2k + 1 when u ∈ V (W\G\K). Hence M(W )∼= G.
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Example 2.3.3. An Illustration to Theorem 2.3.2

Let G and J be two 4-partite graphs as given in Figure 2.7.

Figure 2.7: The graphs G and J of Example 2.3.3

Figure 2.8: The graph H, constructed from G by Theorem 2.2.1, and J ′,
the k- partite gadget graph of J, of Example 2.3.3



2.3. Embedding center with median constructions 29

Figure 2.9: The subgraph labels and vertex labels in the graph W , Exam-
ple 2.3.3



30 Chapter 2. Median problem on bipartite graphs

1 2 3 4 5 6 7 8 9 10
445 445 445 445 445 445 445 445 516 541

11 12 13 14 15 16 17 18 19 20
518 515 572 517 541 516 518 537 521 518

21 22 23 24 25 26 27 28 29 30
537 540 518 541 519 515 520 543 514 519

31 32 33 34 35 36 37 38 39 40
543 514 450 448 449 451 470 468 469 471

41 42 43 44 45 46 47 48 49 50
498 496 497 499 568 570 569 571 568 570

51 52 53 54 55 56 57 58 59 60
569 571 568 568 570 570 569 569 571 571

61 62 63 64 65 66 67 68 69 70
545 620 620 576 620 620 545 576 622 622

71 72 73 74 75 76 77 78 79 80
542 572 623 623 544 573 623 623 543 573

81 82 83 84 85 86 87 88 89 90
621 621 546 576 621 621 546 576 621 621

91 92 93 94 95 96 97 98 99 100
549 576 640 639 634 636 748 747 742 744

101 102 103 104 105 106 107 108 109 110
864 863 858 860 988 987 982 984 1120 1119

111 112 113 114 115 116 117 118 119 120
1114 1116 568 568 570 570 569 569 571 571

121 122 123 124 125 126 127 128 129 130
568 570 569 571 568 568 570 570 569 569

131 132 133 134 135 136 137 138 139 140
571 571 568 568 570 570 569 569 571 571

Table 2.1: The labels and status of the vertices of the graph W , Exam-
ple 2.3.3
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Figure 2.9 gives the graph W so constructed. Here we have

chosen k = 4, n = 8, |J | = 4, s = 11 and r = 5. From Figure 2.9,

V (G) = {1, 2, 3, 4, 5, 6}, V (J) = {61, 67, 71, 75, 79, 83, 87, 91}

and the other vertex labels of the graph W can be identified.

The status of the vertices are given in the Table 2.1, which

shows that M(W ) = G (see Equation 2.3.2.1), with S(v) =

445 < S(u), ∀v ∈ V (G), u ∈ V (W \G).

The eccentricities of the vertices of W is given in Table 2.2,

which shows that C(W ) = J , with e(v) = 6, v ∈ V (J).
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1 2 3 4 5 6 7 8 9 10
10 10 10 10 10 10 10 10 10 10

11 12 13 14 15 16 17 18 19 20
10 10 11 10 10 10 10 10 10 10

21 22 23 24 25 26 27 28 29 30
10 10 10 10 10 10 10 10 10 10

31 32 33 34 35 36 37 38 39 40
10 10 9 9 9 9 8 8 8 8

41 42 43 44 45 46 47 48 49 50
7 7 7 7 11 11 11 11 11 11

51 52 53 54 55 56 57 58 59 60
11 11 11 11 11 11 11 11 11 11

61 62 63 64 65 66 67 68 69 70
6 7 7 7 7 7 6 7 7 7

71 72 73 74 75 76 77 78 79 80
6 7 7 7 6 7 7 7 6 7

81 82 83 84 85 86 87 88 89 90
7 7 6 7 7 7 6 7 7 7

91 92 93 94 95 96 97 98 99 100
6 7 7 7 7 7 8 8 8 8

101 102 103 104 105 106 107 108 109 110
9 9 9 9 10 10 10 10 11 11

111 112 113 114 115 116 117 118 119 120
11 11 11 11 11 11 11 11 11 11

121 122 123 124 125 126 127 128 129 130
11 11 11 11 11 11 11 11 11 11

131 132 133 134 135 136 137 138 139 140
11 11 11 11 11 11 11 11 11 11

Table 2.2: The labels and eccentricities of the vertices of the graph W ,
Example 2.3.3
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2.4 Embedding center with anti-median con-

structions

In this section we show how to embed a new graph as the center

in the anti-median constructions of k-partite graphs. We provide

separate constructions for k = 2 and k ≥ 3 cases.

Theorem 2.4.1. Given two bipartite graphs G and J there ex-

ists a bipartite graph W with AM(W ) ∼= G and C(W ) ∼= J .

Proof. Let H be the graph constructed in Theorem 2.1.4 with a

bi-partition (P,Q). Let (C,D) be the bi-partition of Ks,s in H,

where C ⊂ P and D ⊂ Q. Let (R, S) be the bi-partition of J

with |R| ≤ |S|.

For an integer k ≥ 3, introduce two ladder graphs {xi, yi}
k
i=1

and {ui, vi}
k+1
i=1 . Make x1 adjacent to P , y1 to Q, x2 to D and

y2 to C, xk to R, yk to S, u1 to R, v1 to S. Attach |S| − |R|+1

vertices to x2 and a vertex w to y2. Denote this graph by H0.

Introduce a complete bipartite graph Kt,t with a bi-partition

(E,F ). Make each vertex in E adjacent to R ∪ {u2} and

each vertex in F adjacent to S ∪ {v2}. Call this graph W .

See Figure 2.10 for an outline of the construction. Clearly

C(W ) ∼= J with e(v) = k + 2, for all v ∈ V (J) and S(x) =

4n + 5s + (k + 1)(4k + R + S + 6) + t(2k + 5) + 4S − 3R + 7,

∀x ∈ V (G). Calculations can be easily verified from Figure 2.11,

which provide the distances of a vertex in P to all other vertices
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Figure 2.10: An outline of construction in Theorem 2.4.1

in H.

For a vertex u ∈ V (W ), let S∗(u) = d(u, e) + d(u, f), where

ef is an edge in Kt,t. Then, S∗(u) = 2k + 5, u ∈ V (H) and

S∗(u) ≤ 2k+5, u ∈ V (W \H) \ {e, f}. Since ef is an arbitrary

edge in Ks,s and by Lemma 2.1.4, SW (x) < SW (y), for every

x ∈ V (G), y ∈ V (W \ G), for r > SD(H0)/2, it follows that

AM(W ) = G.

Theorem 2.4.2. For k ≥ 3, given two k-partite graphs G and

J there exists a k-partite graph W such that AM(W )∼= G and

C(W ) ∼= J .

Proof. We start the proof with the graph H ′ in Theorem 2.2.2.

Note that {Yi}i∈I is used to denote the partition of the complete
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Figure 2.11: Distances from a vertex in P , based on Figure 2.10

k-partite graph Kr,r,...,r in H ′.

Introduce k paths Pxi,yi of length d − 3 with end vertices xi

and yi, where i ∈ I. A vertex in Pxi,yi , at a distance t from xi

is denoted by Pxi,yi [t]. For each t = 0, . . . , d − 3, make the ver-

tices Pxi,yi [t], for all i, adjacent so that they induce a complete

graph. Similarly introduce k paths Rx′

i,y
′

i
of length d − 1 with

end vertices x′
i and y′i and make adjacencies Rx′

i,y
′

i
[t] for each t

and every i.

Let {Zi}i∈I be the k-partition of the graph J and let J ′ be the

k-partite gadget graph of J . Let P (Zi) andO(Zi) be respectively

the sets of para vertices and ortho vertices of Zi. For each i, j ∈ I

make xi adjacent to Yi, yi adjacent to O(Zi) ∪j 6=i Zj ∪j 6=i P (Zj)



36 Chapter 2. Median problem on bipartite graphs

and x′
i adjacent to Zi. Denote this graph by W0.

Introduce s copies ofKk, where s >SD(W0)/2, and let {Y ′
i }i∈I

denote their k-partition. For each i ∈ I, make all the vertices

of Y ′
i adjacent to O(Zi) ∪j 6=i Zj ∪j 6=i P (Zj). Denote this graph

by W . It can be verified that C(W ) ∼= J , with e(v) = r + 1, for

all v ∈ V (J) and SH(v) = 6n− 2 + 2kr + k|J |(d+ 1) + k(2d2 +

2d− 3) + sk(d+ 2), for all v ∈ V (G).

Let S∗(u) =
∑

v∈K d(u, v), where K is one of the s copies

of Kk. We can see that S∗(u) = k(d + 2) when u ∈ V (G) and

S∗(u) < k(d+ 2) when u ∈ V (W\G\K). Hence AM(W )∼= G.

2.5 Median problem on symmetric bipartite

graphs

Lemma 2.5.1. Given a symmetric bipartite graph G, there ex-

ists a connected symmetric bipartite graph G′ such that G is an

induced subgraph of G′ and all the vertices of G in G′ have equal

status in G′.

Proof. Let (X, Y )f be a symmetric bi-partition of G. Let X ′, Y ′

be the copy of X, Y such that v′ denote the copy of a vertex

v ∈ V (G). Consider two new vertices vx and vy. Let A =
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X ∪X ′∪{vx} and B = Y ∪Y ′∪{vy}. Define a map g from A to

B such that g(v) = f(v), g(v′) = f(v)′, ∀v ∈ X and g(vx) = vy.

Then, make vy adjacent to all the vertices in A and vx ad-

jacent to all vertices of B. Also, for each v ∈ X (Y ) make

v′ adjacent to Y \N(v)∪ {g(v)} (X\N(v)∪ {g−1(v)}). Call this

graph G′. It now follows that (A,B)g is a symmetric bi-partition

of G′ and SG′(v) = 4n+ 1, for all v ∈ V (G).

The graph G′ is called the symmetric bipartite gadget

graph of G.

Theorem 2.5.2. Given two symmetric bipartite graphs G and

J there exists a symmetric bipartite graph H with M(H) ∼= G

and C(H) ∼= J .

Proof. The proof is by construction. Let G′ be the symmetric

bipartite gadget graph of G with symmetric bi-partition (A,B)f

and (R, S)g be a symmetric bi-partition of J . For k ≥ 3, intro-

duce two ladder graphs {xi, yi}
k−1
i=1 and {ui, vi}

k+1
i=1 with symmet-

ric bi-partitions (X1, Y1)f1 and (X2, Y2)f2 respectively.

Make x1 adjacent to X ∪ {vx}, y1 to Y ∪ {vy}, xk−1 to R,

yk−1 to S, u1 to R and v1 to S. Denote this graph by H0. In-

troduce s copies of K2 and let aibi, i = 1, . . . , s be the edges in

sK2. Make {ai}
s
i=1 adjacent to all the vertices in X and {bi}

s
1

adjacent to to all the vertices in Y . Denote this new graph by
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H. Clearly C(H) ∼= J with e(v) = k + 2, for all v ∈ V (J) and

S(x) = S(y) = 4n+1+(2k+1)(2k+2+ |R|)+3s, for all x ∈ X,

y ∈ Y .

For a vertex u ∈ V (H), let S∗(u) = d(u, am) + d(u, bm),

where ambm be an edge in the s copies of K2 in H. Then,

S∗(u) = 3, u ∈ V (G) and S∗(u) ≥ 5, u ∈ V (H\G)\{am, bm}.

Hence M(H)= G, when s > SD(H0)/2.

When k is even, let A′ = A ∪ X1 ∪ X2 ∪ R ∪ {bi} and B′ =

H\A′. Let h be the function defined on A′ by h(x) = f(x), when

x ∈ A, h(x) = g(x), when x ∈ R, h(x) = fi(x), when x ∈ Xi,

i = 1, 2, and h(bi) = ai, 1 ≤ i ≤ s. It is clear that (A′, B′)h

is a symmetric bi-partition of H. When k is odd, the elements

in R and S are interchanged in the bi-partition (A′, B′). Re-

defining h(x) = g−1(x), for the vertices x ∈ S, (A′, B′)h becomes

a symmetric bi-partition of H.

Lemma 2.5.3. Given a symmetric bi-partite graph G, there ex-

ists a symmetric bipartite graph H such that AM(H) = G.

Proof. Let G′ be the symmetric bipartite gadget graph of G and

let (A,B)f be a symmetric bi-partition of G′. Introduce a com-

plete bipartite graph Kr,r with symmetric bi-partition (C,D)g.

Make each vertex in C adjacent to Y ′ ∪ {vy} and each vertex in
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Figure 2.12: A construction as in Theorem 2.5.2

D adjacent to X ′ ∪ {vx}. Call this graph H. We can see that

SH(u) = SG′(u) + 5r, when u ∈ V (G) and SH(u) = SG′(u) + 3r,

when u ∈ V (H \G). Choosing r > SD(G′)/2, we get AM(H) =

G.

Let P = A∪C and Q = H\P . Define h on P by h(x) = g(x),

when x ∈ A, and h(x) = g(x), when x ∈ C. Then, (P,Q)h is a

symmetric bi-partition of H.

Theorem 2.5.4. Given two symmetric bipartite graphs G and

J there exists a symmetric bipartite graph H with AM(H) ∼= G

and C(H) ∼= J .

Proof. The proof is by construction. Let H be the graph con-

structed in Lemma 2.5.3 with symmetric bi-partition (P,Q)h

and let (R, S)g be a symmetric bi-partition of J . For k ≥ 3, in-

troduce two ladder graphs {xi, yi}
k−1
i=1 and {ui, vi}

k+1
i=1 with sym-

metric bi-partitions (X1, Y1)f1 and (X2, Y2)f2 respectively.
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Make x1 adjacent to P , y1 to Q, x2 to D and y2 to C, xk−1

to R, yk−1 to S, u1 to R, v1 to S. Denote this graph by H0.

Introduce a complete bipartite graph Ks,s with symmetric bi-

partition (E,F )f . Make each vertex in E adjacent to R ∪ {u2}

and each vertex in F adjacent to S ∪ {v2}. Call this graph H.

Clearly C(H) ∼= J with e(v) = k + 2, for all v ∈ V (J) and

S(x) = S(y) = 4n+ 5r + (2k + 1)(2k +R + s) + 2s.

For a vertex u ∈ V (H), let S∗(u) = d(u, e) + d(u, f), where

ef is an edge in Ks,s. Then, S∗(u) = 13, u ∈ V (G′) and

S∗(u) ≤ 11, u ∈ V (H \ G′) \ {e, f}. Since ef is an arbitrary

edge in Ks,s and by Lemma 2.5.3, SG′(x) < SG′(y), for every

x ∈ V (G), y ∈ V (G′ \ G), for r > SD(H0)/2, it follows that

AM(H) = G.

When k is even, let A′ = P ∪X1∪X2∪R∪E and B′ = H \A′.

Let t be the function defined on A′ by t(x) = h(x), when x ∈ P ,

t(x) = g(x), when x ∈ R, t(x) = fi(x), when x ∈ Xi, i = 1, 2,

and t(x) = f(x), when x ∈ E . It is clear that (A′, B′)h is

a symmetric bi-partition of H. When k is odd, the elements

in R and S are interchanged in the bi-partition (A′, B′). Re-

defining h(x) = g−1(x), for the vertices x ∈ S, (A′, B′)h becomes

a symmetric bi-partition of H.
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Figure 2.13: A construction as in Theorem 2.5.4

2.6 Bipartite graph of a graph

The bipartite graph B(G) of a graph G can be constructed as

follows[6]. For each vertex v ∈ V , form v′ ∈ X and v′′ ∈ Y

and let N(v′) = {u′′ ∈ Y : u ∈ N [v]} and N(v′′) = {u′ ∈ X :

u ∈ N [v]}. Clearly B(G) is a symmetric bipartite graph. It is

not difficult to find a sufficient condition. Hence we state it as

a lemma without a proof.

Lemma 2.6.1. Let G be a connected symmetric bipartite graph.

Then G ∼= B(H) for some graph H if and only if there is a

symmetric bi-partition (X, Y )f of G such that uf(u) is an edge

for all u ∈ X.

Remark 2.6.2. Consider the graphs G and B(G). Let u, v ∈

V (G). If d(u, v) is odd, then d(u′, v′′) = d(u′′, v′) = d(u, v) and
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d(u′, v′) = d(u′′, v′′) = d(u, v) + 1. Also, if d(u, v) is even, then

d(u′, v′′) = d(u′′, v′) = d(u, v) + 1 and d(u′, v′) = d(u′′, v′′) =

d(u, v).

In the following theorem, we prove that, for a connected

graph, the operator B(·) commute with both M(·) and AM(·).

Theorem 2.6.3. For any connected graph G, B(·) commute

with both M(·) and AM(·). That is, B(M(G)) ∼= M(B(G)) and

B(AM(G)) ∼= AM(B(G)).

Proof. Let H = B(G). For a vertex v ∈ V (G), let Ov and Ev be

the set of vertices respectively at odd distance and even distance

from v. Then, by Remark 2.6.2,

∑

u∈Ov

dH(v
′, u′′) =

∑

u∈Ov

dG(v, u)

∑

u∈Ov

dH(v
′, u′) =

∑

u∈Ov

dG(v, u) + |Ov|

∑

u∈Ev

dH(v
′, u′) =

∑

u∈Ev

dG(v, u)

∑

u∈Ev

dH(v
′, u′′) =

∑

u∈Ev

dG(v, u) + |Ev|.

Thus SH(v
′) = 2SG(v) + n and, similarly, SH(v

′′) = 2SG(v) + n.

Now, for each vertex v of a graph G, the status of the vertices

v′ and v′′ in B(G) depends only on SG(v) so that the analogous

median properties are preserved. Hence M(B(G)) ∼= B(M(G))
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and AM(B(G)) ∼= B(AM(G)).

Corollary 2.6.4. For any connected graph G, B(·) commute

with C(·).

Proof. Since e(u) = maxv d(u, v), the result follows from the

definition of the center of a graph.

Corollary 2.6.5. Let G′ ∼= B(G) and J ′ ∼= B(J) be two con-

nected graphs. Then the following results hold.

1. There exist graphs H1 and H ′
1 such that M(H ′

1) = G′ and

C(H ′
1) = J ′ and H ′

1
∼= B(H ′

1).

2. There exist graphs H2 and H ′
2 such that AM(H ′

2) = G′ and

C(H ′
2) = J ′ and H ′

2
∼= B(H ′

2).

Proof. From Theorems 2.5.2 and 2.5.4, we can see that all the

symmetric bipartite graphs introduced in these constructions

satisfy the conditions of Lemma 2.6.1. Hence, starting with

symmetric bipartite graphs G′ and J ′ which are also bipartite

graphs of some graphs, we obtain H ′
1 and H ′

2 satisfying the re-

quired conditions in the assertion.

We now show that a general solution of median and anti-

median problems can be obtained from the results on symmetric

bi-partite graphs.

Theorem 2.6.6. Let G and J be two connected graphs. Then,
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Figure 2.14: Illustration of Theorem 2.6.6

1. There exist a graph H1 such that M(H1) ∼= G and C(H1) ∼=

J .

2. There exist a graph H2 such that AM(H2) ∼= G and C(H2) ∼=

J .

Proof. 1. Let G′ and J ′ are the graphs such that B(G) =

G′ and B(J) = J ′. From Corollary 2.6.5, we can see

that there exists a graph H1 such that H ′
1
∼= B(H1) with

M(H ′
1) = G′ and C(H ′

1) = J ′. Using Theorem 2.6.3,

M(H1) = B−1BM(H1) = B−1MB(H1) = B−1M(H ′
1) =

B−1(G′) = G. See Figure 2.14 for an illustration.

2. The proof can be obtained using the similar arguments as

in (1).
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2.7 The median problem on square of bipar-

tite graphs

Definition 2.7.1. The square G2 of a graph G has the same

vertex set as G and two vertices u, v ∈ V (G2) are adjacent if

dG(u, v) ≤ 2.

Lemma 2.7.2. For a vertex u ∈ V (G), SG2(u) = 1
2
(SG(u) +

|Ou|), where |Ou| is the number of vertices at odd distance from

u in G.

Proof. For a vertex u ∈ V (G), let Ou be the set of all vertices

at odd distance from u. Then,

SG2(u) =
∑

v∈Ou

dG2(u, v) +
∑

v/∈Ou

dG2(u, v)

=
∑

v∈Ou

1

2
dG(u, v) +

∑

v/∈Ou

1

2
(dG(u, v) + 1)

=
1

2
(SG(u) + |Ou|).

Remark 2.7.3. If |Ou| is a constant, for all the vertices in V (G),

then it is immediate that the median set of G and G2 are the

same.

Definition 2.7.4. A subgraph H of G is a square-subgraph

of G if H2 ∼= G2[V (H)].
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Figure 2.15: Illustration of Definition 2.7.4

Not all subgraphs of a graph are square-subgraphs. For, P4 is

not a square-subgraph of C5 since P
2
4
∼= K4−e is not induced in

C2
5
∼= K5. The following result characterises square-subgraphs

of graphs.

Lemma 2.7.5. H is square-subgraph of G if and only if for

every non-adjacent vertices u, v ∈ V (H) with dG(u, v) = 2,

N∗
H(u, v) 6= ∅.

Proof. LetH be a subgraph of G. Then, it is clear that E(H2) ⊆

E(G2[V (H)]). Let u, v be two non-adjacent vertices of H such

that dG(u, v) = 2. That is, uv ∈ E(G2[V (H)]). Then H is

square-subgraph of G if and only if uv is an edge in H2 if and

only if dH(u, v) = 2 if and only if N∗
H(u, v) 6= ∅.
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The following result is about the commutation of the operator

(·)2 with M(·) and AM(·).

Theorem 2.7.6. Let G be a graph such that |Ou| is a constant

for all u ∈ V (G). If M(G) and AM(G) are square-subgraphs of

G, then M(G2) = (M(G))2 and AM(G2) = (AM(G))2.

Proof. Since M(G) is a square-subgraph of G, M(G)2 is induced

in G2. By Remark 2.7.3, the median sets of G and G2 are the

same.

Remark 2.7.7. We can see that the earlier constructions on

symmetric bi-partite graphs are also valid for bipartite graphs

with bi-partition (X, Y ) and |X| = |Y |. Hence the following

results hold.

Corollary 2.7.8. Let G be a bipartite graph with bi-partition

(X, Y ) and |X| = |Y |, then there are bipartite graphs H1 and

H2 such that Median set of H2
1 is G2 and Anti-median set of H2

2

is G2.

Proof. The proof is by construction. By Remark 2.7.7, we ap-

ply the construction in Theorem 2.5.2 for symmetric bipartite

graphs to obtain a graphH1 such thatM(H1) = G. It is clear by

the construction that H1 is bi-partite with bi-partition (X ′, Y ′)

and |X ′| = |Y ′|. Now by Remark 2.7.3, Median set of H2
1 is G2.

Similarly using the construction in Theorem 2.5.4, the second

part of the assertion also follows.
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Figure 2.16: The graph of G2 of G in Figure 2.1. We have M(G2) ∼=
(M(G))2 ∼= K4 − e.

Example 2.7.9. Illustration for Corollary 2.7.8

Consider P 2
4
∼= K4 − e. Since P4 has a bi-partition (X, Y )

with |X| = |Y |, by Corollary 2.7.8, there exist a graph G such

that M(G2) ∼= P 2
4 . Consider the graph G with M(G) ∼= P4

in Figure 2.1. The construction of the graph G satisfies the con-

struction rules for symmetric bipartite graphs. Now, Figure 2.16

shows the graph of G2 and the status of the vertices in it. It is

not difficult to see that M(G2) ∼= P 2
4 .



Chapter 3

Convex Median and

Anti-Median at

Prescribed Distance

In this chapter, we provide an upper bound to the maximum

status difference in a graph. An optimal solution to the problem

of simultaneous embedding of two graphs as the median and

anti-median subgraphs of a graph is also given1.

1Some results in this chapter are in the publication ‘K. Pravas, A. Vijayakumar,
Convex median and anti-median at prescribed distance, J. Comb. Optim.(2016), 1-9.’

49
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3.1 An upper bound to maximum status dif-

ference in a graph

For any vertex v in a graph G on n vertices, n − 1 ≤ SG(v) ≤

n(n − 1)/2. Hence, an obvious upper bound for SD(G) is

(n−1)(n−2)
2

. However, this upper bound is sharp only when the

graph is Pn, n ≤ 3, where Pn is the path on n vertices. We

obtain a sharp upper bound for SD(G) through the following

results.

Remark 3.1.1. Let u and v be two vertices in a tree T on n

vertices and Tn1 be the component containing u in T \ v. Then

ST (u, T \ Tn1) − ST (v, T \ Tn1) = d(u, v)|V (T \ Tn1)|. This is

because, for any vertex x not in Tn1 , d(u, x) = d(u, v) + d(v, x).

Theorem 3.1.2. For a graph on n vertices, SD(G) ≤ n2−2n+1
4

,

when n is odd and SD(G) ≤ n2−2n
4

when n is even.

Proof. We first note that for any connected graph G, a BFS tree

T from a median vertex of G has SD(T ) ≥ SD(G). Thus the

problem of finding the maximum of SD(G) has been reduced to

the corresponding problem on trees.
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Let T be a tree on n vertices which has the maximum sta-

tus difference over all trees on n vertices. Let u be an anti-

median vertex and v be a median vertex in T . Let P be the

path connecting u and v in T . First, we show that the short-

est path from u to any vertex in T \ P must pass through v.

For, otherwise, we can find a vertex w of degree one such that

the shortest path from u to w is not through v. Let t be the

vertex in P such that it is in both the shortest paths from u to

w and v to w. Also, d(v, t) ≥ 1. Consider a tree T ′, formed

from T by deleting w and attaching a pendant vertex w′ to

v. Then SD(T ′) = SD(T ) + d(u, v) − d(u, t) + d(v, t). Since

d(u, t) < d(u, v), SD(T ′) > SD(T ) is a contradiction. Since u

is an anti-median vertex, it is a peripheral vertex in T [10].

Now form a tree T ′′ by deleting all the vertices of T in T \P

and attaching a path of length n − |V (T \ P )| to v. Clearly

T ′′ ∼= Pn and u is again an anti-median vertex. By Remark 3.1.1,

ST (u)−ST (v) = ST ′′(u)−ST ′′(v). If v is not a median vertex in

T ′′, then for some median vertex vm of T ′′, SD(T ) = ST ′′(u) −

ST ′′(v) < ST ′′(u) − ST ′′(vm) = SD(T ′′), which contradicts the

choice of T . Hence SD(T ) = SD(T ′′) = SD(Pn). Now, the

assertion follows.
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3.2 Embedding convex subgraphs at prescribed

distance

Let G1 and G2 be any two connected graphs and r ≥ 1. The

following constructions will provide a graph H0 with the prop-

erty that both G1 and G2 are convex subgraphs of H0 and

dH0(G1, G2) = r.

Observation 3.2.1. Let f be an isomorphism between two graphs

C1 and C2, of order k, with f(xi) = yi, xi ∈ V (C1), yi ∈ V (C2),

i = 1, . . . k. Let H be a graph obtained by joining C1 and C2

with k disjoint paths of length r, each with one end at xi and

other end at yi. Then C1 and C2 are convex subgraphs of H and

dH(C1, C2) = r.

Let D > max{r, d(G1)/2, d(G2)/2} and D ∈ Z+. Now, in-

troduce four vertices ai, for i = 1, 2, 3 and 4, and make the

connections as follows.

Step 1:

(1-a) For each vertex x in G1, introduce disjoint paths Pxai with

one end at x and the other end at ai, for each i, of length

D. Also, for each vertex y in G2, introduce paths Pya1 and

Pya2 of length D + 1.
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(1-b) Introduce paths Pa1a2 , Pa1a4 , Pa2a3 and Pa3a4 of length 2D;

Pa1a3 and Pa2a4 of length r + 1. The subgraph induced

by the vertices in these six paths is denoted by ⊠. (See

Figures 3.1 and 3.2).

In Step 1, we introduced 4n1 + 2n2 + 6 vertex disjoint paths

and in Step 2 we make some vertices in them adjacent. To

identify the vertices in such paths, we use the following termi-

nologies. Let Puv be a path from u to v introduced in Step 1 of

the construction of H0. Then the vertex, in Puv, which is at a

distance of i from u is denoted by Puv[i]. Thus Puv[0] represents

the vertex u itself and Puv[1] is the vertex, in Puv, which is ad-

jacent to u.

Step 2: For each y ∈ V (G2), construct the edges {Pya1 [1], Pya2 [1]},

{Pya1 [D], Pa3a1 [r − 1]} and {Pya2 [D], Pa4a2 [r − 1]}.

Step 3:

(3-a) Choose two non-negative integers p and q such that p =

q = r/2 when r is even and p = q + 1 = (r + 1)/2 when r

is odd. In both the cases p− q ≤ 1 and p+ q = r.

(3-b) Let C1 and C2 be two isomorphic convex subgraphs of k

vertices, of G1 and G2 respectively. Such subgraphs always
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exist as K1 is always a convex subgraph of a graph. Let f

be an isomorphism from C1 to C2, defined by f(xi) = yi,

where xi ∈ V (C1) and yi ∈ V (C2) for i = 1, 2, . . . , k. Now

for each xi, i = 1, 2, . . . , k, construct the edges {Pxia1 [p−

1], Pyia1 [q]}.

Call the graph as H0 (Fig. 3.1). Now, we have the following

remark.

Figure 3.1: The graph H0. Here the solid lines are of length 2D and dashed
lines are of length D. The solid line paths and the paths of length r + 1
induce the subgraph denoted by ⊠, given in Step 1(b). Here the numbers
p− 1 and q are chosen as per Step (3-a) of the construction.

Remark 3.2.2. In the graph H0, for each vertex x ∈ V (G1),

y ∈ V (G2) and ai, for i = 1, 2, 3 and 4,
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1. d(x, ai) = D.

2. d(y, a1) = d(y, a2) = D+1 and d(y, a3) = d(y, a4) = D+ r.

3. d(G1, G2) = r.

Theorem 3.2.3. The graphs G1 and G2 are convex subgraphs

of H0.

Proof. Assume that G1 is not a convex subgraph of H0. Then

there exists a shortest path P between two vertices x1 and x2

of G1 such that P contains a vertex not in G1. If P includes

any of the vertices ai, which are at a distance D from G1, then

d(x1, x2) ≥ 2D > d(G1), is a contradiction. So, let P does not

include any of the ai’s. Then P must include edges of the form

{Pxkai [q], Pykai [p− 1]}, where xk ∈ V (C1), f(xk) = yk ∈ V (C2),

i = 1, 2, 3 or 4. But in this case P includes two vertices x′ and x′′

∈ V (C1), and such edges, which are not in C1, are included in the

shortest path between x′ and x′′. This contradicts the convexity

of C1. Hence such a path P does not exist and the proof follows.

Similar arguments prove that G2 is also a convex subgraph

of H0.

3.3 Construction of the graph HN

Step 4: Introduce the vertices a∗i , for i = 1, 2, 3 and 4, in H0,

and construct the edges {a∗i , ai}, for all i, and {a∗1, Pa1a4 [1]},
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{a∗2, Pa2a1 [1]}, {a∗3, Pa3a2 [1]} and {a∗4, Pa4a3 [1]}(Fig. 3.2). The

graph so constructed is denoted by H1.

Figure 3.2: The subgraph ⊠, given by step 1(b), and the edges from a∗i as
per step 4 of the construction.

Lemma 3.3.1. In the graph H1, the sum of the distances to

the vertices a∗i is the minimum for all the vertices in G1 and is

maximum for all the vertices in G2.

Proof. For a vertex u in H1, consider SH1(u,A), where A =

{a∗1, a
∗
2, a

∗
3, a

∗
4}. Now, we have the following cases.

Case 1 x ∈ V (G1). By Lemma 3.2.2, SH1(x,A) = 4D + 4.

Case 2 y ∈ V (G2). Again by Lemma 3.2.2, SH1(y, A) = 4D +

2r + 6.

Case 3 u ∈ V (Pxa1). Let d(a1, u) = k, where 0 < k < D. Now,

there are two sub cases.
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Case 3.1 When k ≤ D−( r+1
2
), we have d(u, a1) = k, d(u, a2) =

2D − k, d(u, a3) = k + r + 1, d(u, a4) = 2D − k and hence

SH1(u,A) = 4D + r + 5.

Case 3.2 When k > D − ( r+1
2
), d(u, a1) = k and d(u, ai) =

2D − k for i = 2, 3, 4. So that SH1(u,A) = 6D − 2k + 4.

The cases when u ∈ V (Pxai) for i = 2, 3 and 4 are similar

as above.

Case 4 u ∈ V (Pa1a3).

Let d(a1, u) = k, where 0 < k < 2D. If K < r
2
then

d(u, a1) = k, d(u, a2) = k + 2D, d(u, a3) = r − k + 1 and

d(u, a4) = k + 2D so that SH1(u,A) = 4D + r + k + 4.

When k ≥ r
2
, all the measures are as above except with

d(u, a4) = r − k + 2D and hence SH1(u,A) = 4D + 2r + 3.

The case when u ∈ V (Pa2a4) is similar as above.

Case 5 u ∈ V (Pa1a2).

Let d(a1, u) = k, where 0 < k < 2D. Then d(u, a1) = k,

d(u, a2) = 2D − k, d(u, a3) = k + r + 1 (or 4D − k when

k > 2D − r+1
2
) and d(u, a4) = 2D − k + r + 1 (or k + 2D

when k < r+1
2
).

The case when u ∈ V (Pa3a4) is similar as above.

Case 6 When u is ai or a
∗
i , for i = 1, 2, 3 and 4, it can be verified

that SH1(u,A) = 4D + r + 4.
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Thus SH1(x,A) < SH1(u,A) < SH1(y, A) for any vertex u /∈

V (G1) ∪ V (G2), where x ∈ V (G1) and y ∈ V (G2).

Step 5: For a positive integer N , the graph HN is obtained

from H1 as follows.

(5-a) Replace the vertex a∗i with a complete graph KN . Let A
∗
i

denote the set of vertices in KN .

(5-b) Each vertex in A∗
i is made adjacent to the neighbors of a∗i ,

in H1.

See Fig.3.3 for an example.

Remark 3.3.2. Since any vertex in A∗
i , for all i, is a simplicial

vertex in HN , no shortest path between the vertices in HN−1

include a vertex in HN\HN−1. In effect, dHk
(x, y) = dHN

(x, y),

∀x, y ∈ V (Hk), 0 ≤ k ≤ N .

Then, SHN
(x) =







SH0(x) +NSH1(x,A) when x ∈ V (H0)

SH1(a
∗
i , H0) +NSH1(a

∗
i , A) when x ∈ A∗

i , ∀i

and, for k ≥ 0,

SHN+k
(x)−SHN

(x) =







kSH1(x,A) when x ∈ V (H0)

kSH1(a1, A) when x ∈ V (HN+k\H0)
.

3.4 Convex subgraphs with equal status

Let xm be a vertex in V (G1) such that SHN
(xm) = min

xi∈V (G1)
SHN

(xi).
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Figure 3.3: A graph HN in the construction of (P3, P3, 1), in which
|V (H0)| = 100. Here the black vertices represent complete graphs of size
N and solid edges denote all possible edges between the nodes.

Step 6:

(6-a) For each vertex xi ∈ V (G1), choose integers ci1, ci2, ci3 and

ci4 such that
4

∑

j=1

cij = SHN
(xi)−SHN

(xm) and |cij−cik| ≤
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1, where j, k ∈ {1, 2, 3, 4}.

(6-b) For each xi ∈ V (G1) and j, j = 1, 2, 3, 4, join Paj ,xi
[1] to

cij vertices of A∗
j . The newly obtained graph from HN is

referred to as JN .

Remark 3.4.1. As per step 6, for each xi ∈ V (G1) and j,

j = 1, 2, 3, 4, Paj ,xi
[1] is joined to cij vertices of A∗

j . Thus the

size of A∗
j should be at least max cij. Since the size of A

∗
j is N in

HN , and step 7 also has a similar requirement, we assume that

N is large enough to apply the requirements in step 6 and 7.

Theorem 3.4.2. In JN , all the vertices of V (G1) have equal

status.

Proof. Let xi be a vertex in G1. If we join the vertex Pa1,xi
[1]

to one of the vertices in A∗
1, in HN , then in the new graph the

sum of the distances from xi to A∗
1 becomes one less than that

in HN . Therefore joining Pa1,xi
[1] to ci1 vertices of A

∗
1 decreases

the status of xi by ci1. Hence, for each vertex xi ∈ V (G1),

SJN (xi) = SHN
(xi)−

∑4
j=1 cij

= SHN
(xi)− (SHN

(xi)− SHN
(xm))

= SHN
(xm).
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Remark 3.4.3. Since d(f(xi), xi) = r, for each xi in C1, the

status of the corresponding vertices f(xi) also get reduced by
∑4

j=1 cij.

Let ym be a vertex in V (G2) such that SJN (ym) = min
yi∈V (G2)

SJN (yi).

Step 7:

(7-a) For each vertex yi ∈ V (G2), choose integers ci5 and ci6

such that ci5+ ci6 = SJN (yi)−SJN (ym) and |ci5 − ci6| ≤ 1.

(7-b) For each yi ∈ V (G2) join Pa1,yi [1] to ci5 vertices of A
∗
1 and

Pa2,yi [1] to ci6 vertices of A∗
2. Call this modified graph as

J ′
N .

Theorem 3.4.4. In J ′
N , all the vertices of V (G2) have equal

status.

Proof. The proof is similar to that of Theorem 3.4.2.

Lemma 3.4.5. When N ≥ |V (H0)|
4/4, M(J ′

N)
∼= G1, AM(J ′

N)
∼=

G2 and d(G1, G2) = r.

Proof. The steps 6 and 7 in the construction of J ′
N from HN also

ensure that Lemma 3.3.1 is valid in J ′
N . For k ≥ 0, a similar

calculation as in Remark 3.3.2 leads to

SJ ′

N+k
(x)− SJ ′

N
(x) =







kSH1(x,A) when x ∈ V (H0)

kSH1(a1, A) when x ∈ V (J ′
N+k\H0)

.
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Now, for large N(the value of N is discussed in the next section),

the assertion follows.

3.5 The value of N

In this section we discuss the value ofN so that J ′
N is a (G1, G2, r)

graph. Let n1 and n2 be the sizes of G1 and G2 respectively.

Then,

|V (H0)| = n1 + n2 + 4 + 4n1(D − 1) + 2n2D + 2r + 4(2D − 1)

= n1(4D − 3) + n2(2D + 1) + 8D + 2r. (3.5.0.1)

By Theorem 3.1.2 and Remark 3.3.2, SDHN
(Gi) = SDH0(Gi) ≤

|V (H0)|
2/4, for i = 1, 2. Thus in the construction of JN , N is at

most |V (H0)|
2/4. By Remark 3.4.3, SDJN (G2) ≤ SDHN

(G2) +

SDHN
(G1) and hence, for J ′

N , N is at most |V (H0)|
2/2.

Let N1 be the minimum value such that the vertices in G1

have the minimum status and the vertices in G2 have the max-

imum status in J ′
N1
. Since |V (J ′

N)| ≤ |V (H0)|
2/2, we have

SD(J ′
N) ≤ |V (H0)|

4/4. By Lemma 3.3.1, we needN1 ≥ |V (H0)|
4/4.

Remark 3.5.1. The number of vertices used in the construction

can be reduced using a suitable choice of convex isomorphic

subgraphs in G1 and G2. The larger the convex graphs, the

smaller the value of SD(J ′
N), as there will be more paths of
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length r between G1 and G2. Also, when the diameters of the

graphs are too large, more than one convex isomorphic graphs

may be selected from each of G1 and G2.

For instance, when G1 or G2 is disconnected, choose isomor-

phic convex subgraphs from each component of G1 and G2 in

the construction of H0. Let fij be the isomorphism between the

convex subgraphs Ci in G1 and Cj in G2. Modify step 3 of the

construction of H0 for each isomorphism fij and thus making

more paths of length r between G1 and G2.

Thus our construction works even when G1 and G2 are dis-

connected. Also, with this modification, G1 ∪ G2 is convex in

(G1, G2, 1).

Example 3.5.2. An illustration to the construction of (P3, P3, 1)

is given below.

Let G1
∼= G2

∼= P3 with V (G1) = {1, 2, 3} and V (G2) =

{4, 5, 6}. Choose r = 1, D = 4. By, Equation 3.5.0.1, |H0| =

100. The constructed ⊠ graph is given in Figure 3.4. The labels

of the ai vertices are a1 = 97, a2 = 98, a3 = 99 and a4 = 100.

Now, the graph H1 contains 104 vertices with vertex labels

for a∗i from 101 to 104, for i=1 to 4, respectively. In the con-

struction of H2, the sets A∗
i are appended with the vertices 105

to 108, for i=1 to 4, respectively.

The graph H2 so constructed is given in Figure 3.5. For each
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Figure 3.4: The ⊠ graph for Example 3.5.2. Here the vertex labels are
assigned as per the graph H2 given in Figure 3.5

vertex v ∈ V (H1), the status values SH1(v) and SH2(v) and their

difference d = SH2(v)− SH1(v) are given in Table 3.1. It shows

that the increase in the status is the minimum for the vertices in

G1 and is maximum for the vertices in G2. However, the status

values of each of the vertices in V (G1) and V (G2) are different.

We now apply Step (6) of the construction. SHN
(2) ≤ SHN

(v)

for all v ∈ V (G1) and SHN
(i) − SHN

(2) = 20, for i = 1 and 3,

implies that cij = 5 for each j = 1 to 4. That is N should be at

least 5 to apply Step 6− b. Now, the graph J5 so constructed is

given in Figure 3.6. On calculation, we can see that the status

of all the vertices in V (G1) are equal. Similarly, using Step 7,
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the graph J ′
N can also obtained.

We saw that, as N increases, the increase in the status is

the minimum for the vertices in G1 and is maximum for the

vertices in G2. That is, G1 and G2 become the median and the

anti-median when N is large.
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Figure 3.5: The vertex labels of graph H2 of Example 3.5.2
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v 1 2 3 4 5 6 7 8 9 10 11
SH1

(v) 441 421 441 497 475 497 519 529 487 519 538
SH2

(v) 461 441 461 521 499 521 541 551 509 541 560
d 20 20 20 24 24 24 22 22 22 22 22
12 13 14 15 16 17 18 19 20 21 22 23
534 505 529 534 505 505 538 538 534 665 682 626
556 527 551 556 527 527 560 560 556 688 705 649
22 22 22 22 22 22 22 22 22 23 23 23
24 25 26 27 28 29 30 31 32 33 34 35
626 565 565 665 626 626 665 538 564 538 505 505
649 588 588 688 649 649 688 560 586 560 527 527
23 23 23 23 23 23 23 22 22 22 22 22
36 37 38 39 40 41 42 43 44 45 46 47
534 505 534 534 538 518 545 550 517 517 550 545
556 527 556 556 560 540 567 572 539 539 572 567
22 22 22 22 22 22 22 22 22 22 22 22
48 49 50 51 52 53 54 55 56 57 58 59
518 518 519 505 534 538 505 545 550 517 487 534
540 540 541 527 556 560 527 567 572 539 509 556
22 22 22 22 22 22 22 22 22 22 22 22
60 61 62 63 64 65 66 67 68 69 70 71
538 564 626 532 540 529 502 532 502 516 540 518
560 586 649 554 562 551 524 554 524 538 562 540
22 22 23 22 22 22 22 22 22 22 22 22
72 73 74 75 76 77 78 79 80 81 82 83
487 550 545 565 517 626 564 665 564 529 519 565
509 572 567 588 539 649 586 688 586 551 541 588
22 22 22 23 22 23 22 23 22 22 22 23
84 85 86 87 88 89 90 91 92 93 94 95
626 665 682 487 516 537 537 682 665 626 665 682
649 688 705 509 538 559 559 705 688 649 688 705
23 23 23 22 22 22 22 23 23 23 23 23
96 97 98 99 100 101 102 103 104
665 486 486 486 486 577 577 577 577
688 507 507 507 507 600 600 600 600
23 21 21 21 21 23 23 23 23

Table 3.1: The difference in the status of the vertices in V (H1) in the graphs
H1 and H2.



68 Chapter 3. Convex Median and Anti-Median at Prescribed Distance

Figure 3.6: The graph J5 of Example 3.5.2
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1 2 3 4 5 6 7 8 9 10
501 501 501 573 571 573 607 617 575 607
11 12 13 14 15 16 17 18 19 20
611 607 573 617 607 573 573 611 611 607
21 22 23 24 25 26 27 28 29 30
757 774 718 718 652 652 757 718 718 757
31 32 33 34 35 36 37 38 39 40
611 652 611 573 573 607 573 607 607 611
41 42 43 44 45 46 47 48 49 50
606 633 638 605 605 638 633 606 606 607
51 52 53 54 55 56 57 58 59 60
573 607 611 573 633 638 605 575 607 611
61 62 63 64 65 66 67 68 69 70
652 718 620 628 617 590 620 590 604 628
71 72 73 74 75 76 77 78 79 80
606 575 638 633 652 605 718 652 757 652
81 82 83 84 85 86 87 88 89 90
617 607 652 718 757 774 575 604 625 625
91 92 93 94 95 96 97 98 99 100
774 757 718 757 774 757 565 565 565 565
101 102 103 104 105 106 107 108 109 110
633 633 633 633 633 633 633 633 633 633
111 112 113 114 115 116 117 118 119 120
633 633 633 633 633 633 633 633 633 633

Table 3.2: The status of the vertices in J5.
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Chapter 4

Root line graphs of some

graph classes

In this chapter, some properties of the edges in a hanging of

a line graph is obtained, using which we present an algorithm

to partition the edge set of a line graph L(G) to the edge sets

of the Gallai and anti-Gallai graphs of G. We then obtain an

optimal algorithm for determining the root line graph of a given

line graph. We also show that it is a recognizing algorithm for a

given graph to be a line graph. Finally, the root line graphs of

the graph classes such as diameter-maximal, distance-hereditary,

Ptolemaic and chordal graphs are also obtained.

71
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4.1 Adjacency properties of edges of L(G)

The hanging[14] of a graph H = (V,E), with |V | = n and

|E| = m, by a vertex z is the function hz that assigns to each

vertex x of H the value d(z, x). The i-th level of H in a hanging

hz is defined as Li = {x ∈ H : hz(x) = i}. A hanging can be

obtained using a breadth first search(BFS) [1], which has a time

complexity of O(m+ n).

For a vertex v in Li, a supporter of v is a vertex in Li−1,

which is adjacent to v. A vertex in Li is an ending vertex if it

has no neighbors in Li+1. An arbitrary supporter of v is denoted

by S(v). It is clear that any vertex v in the level Li for i ≥ 1

has at least one supporter.

We use the following, well known, forbidden subgraph char-

acterization of a line graph.

Theorem 4.1.1. [9] A graph H is a line graph if and only if

the nine graphs in Fig 4.1 are forbidden subgraphs for H.

Theorem 4.1.2. Consider a hanging of a line graph H by an

arbitrary vertex in H and let uv denote the edge joining u and

v in the same level Li. Then, the following statements hold
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Figure 4.1: Forbidden Subgraphs of line graph.

1. All common neighbors of uv in Li−1 are adjacent to each

other.

2. All common neighbors of uv in Li+1 are adjacent to each

other.
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3. If uv has no common neighbor in Li−1, then all the com-

mon neighbors of uv in Li which are adjacent to all other

neighbors of uv are adjacent to each other.

4. There is at most one common neighbor of uv in Li, which

is adjacent to all the neighbors of uv but not adjacent to the

common neighbors of uv in Li−1 and Li.

Proof.

1. Let x and x′ be two (distinct) common neighbors of an edge

uv in Li−1, then i ≥ 2. Assume that x and x′ are not adja-

cent. Now, if x and x′ have a common neighbor w in Li−2,

then <w, x, x′, u, v>∼= F2 in Fig 4.1 which contradicts the

fact that H is a line graph. So, let w and w′ be any two

vertices in Li−2 adjacent to x and x′ respectively. Then

<w,w′, x, x′, u, v >∼= F7 or F4 according as, w and w′ are

adjacent or not.

2. Let w and x be two common neighbors of an edge uv in

Li+1. Assume that x and w are not adjacent. Now, if z is

a supporter of u in Li−1, then < z, u, w, x >∼= K1,3, which

is a contradiction.

3. Let uv has no common neighbor in the level Li−1 and hence

i ≥ 2. Let x and w be two common neighbors of uv in Li
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which are adjacent to all the neighbors of uv. Assume that

x and w are not adjacent. Now u and v cannot have a com-

mon supporter. So let z1 and z2 be two supporters of u and

v respectively. Since z1 and z2 are neighbors of uv, both x

and w are adjacent to them. Now, the vertices z1, x, w and

S(z1) induce a K1,3 which is a contradiction.

4. Assume that x and w are two nonadjacent common neigh-

bors of uv in Li which are not adjacent to the common

neighbors of uv but adjacent to all the other neighbors of

uv in Li−1 and Li. So, it is clear that i ≥ 2. Let z be a com-

mon neighbor of uv in Li−1. Now u must have at least one

neighbor in Li−1 other than the common neighbors of uv in

Li−1, for otherwise, the vertices u, x, w and z induce a K1,3

which is a contradiction. Similar is the case for the vertex

v. So let z1 and z2 be two neighbors (but not common

neighbors) of u and v in Li−1 respectively. But, we have,

<S(z1), z1, x, w>∼= K1,3, which is also a contradiction.

Remark 4.1.3. In fact the above theorem is applicable to a

larger class of graphs than line graphs as only some of the for-

bidden sub graphs of line graphs are used in the proof.
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4.2 Anti-Gallai triangles in L(G)

Let uvw be a triangle in L(G) and let ū, v̄ and w̄ be the edges

in G representing the vertices u, v and w respectively in L(G).

If the edges ū, v̄ and w̄ induce a triangle in G then the triangle

uvw in L(G) is referred to as an anti-Gallai triangle. All the

triangles in antiGal(G) need not be an anti-Gallai triangle and

the number of anti-Gallai triangles in L(G) is equal to the num-

ber of triangles in G. Since each edge of an anti-Gallai graph

belongs to some anti-Gallai triangle, the set of all anti-Gallai

triangles in L(G) induces antiGal(G).

We observe that it is possible to suitably re-label the edges

in the root graph of K4− e so that any triangle in K4− e can be

made an anti-Gallai triangle. It can be seen that C4 ∨ 2K1 and

C4 ∨ K1, see Figure 4.2, also have this property. Later on we

prove that these are the only graphs with these property. Hence,

these graphs are not considered in the following discussions.

Figure 4.2: Two possible labellings of K4 − e and its line graph C4 ∨K1.
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Remark 4.2.1. When a triangle uvw in L(G) is not an anti-

Gallai triangle, the edges ū, v̄ and w̄ in G have a vertex in com-

mon.

Lemma 4.2.2. Consider a line graph H ≇ K3. If a triangle

uvw in H is an anti-Gallai triangle, then <u, v, w, x>∼= K4− e

or disconnected for all x ∈ V (H) \ {u, v, w}.

Proof. Let G be the graph such that L(G) ∼= H and assume that

the triangle uvw is an anti-Gallai triangle in H. Then the edges

ū, v̄ and w̄ in G induce a triangle in G. Now corresponding to

any vertex x in H, there is an edge x̄ in G. If x̄ is adjacent to the

triangle ūv̄w̄, then x̄ is adjacent to exactly two of the edges of

ūv̄w̄ and hence <u, v, w, x>∼= K4 − e in H. If x̄ is not adjacent

to the triangle ūv̄w̄, then <u, v, w, x> is disconnected.

Lemma 4.2.3. If a triangle uvw is not an anti-Gallai triangle

in a line graph H ∼= L(G), then there is at most one common

neighbor z for an edge of uvw in H such that < u, v, w, z >∼=

K4 − e.

Proof. Let ū, v̄ and w̄ be the edges in G, representing the vertices

u, v and w respectively in H. Let z be such that <u, v, w, z>∼=

K4 − e in L(G) and let it be a common neighbor of uv. Then

the edge z̄ in G is adjacent to both the edges ū and v̄ and not

adjacent to w̄. clearly ū, v̄ and z̄ induce a triangle in G and hence

uvz is an anti-Gallai triangle in L(G). Now assume that z′ is a



78 Chapter 4. Root line graphs of some graph classes

vertex different from z such that it is a common neighbor of uv

and <u, v, w, z′>∼= K4 − e. Then the vertices z and z′ cannot

be adjacent, otherwise <u, v, z, z′ >∼= K4 and by Lemma 4.2.2

it will contradict the fact that u, v, z is an anti-Gallai triangle.

But, we have, <u,w, z, z′>∼= K1,3 and hence H cannot be a line

graph by Theorem 4.1.1.

Theorem 4.2.4. Consider a line graph H ≇ K3, K4−e, C4∨K1

and C4 ∨ 2K1. A triangle uvw in H is an anti-Gallai triangle

if and only if < u, v, w, x >∼= K4 − e or disconnected for all

x ∈ V (H) \ {u, v, w}.

Proof. Let G be the graph such that L(G) ∼= H. The necessary

part of the theorem follows from Lemma 4.2.2.

Conversely, assume that uvw is a triangle in H such that

<u, v, w, x>∼= K4−e or disconnected for all x ∈ V (H) and that

uvw is not an anti-Gallai triangle. Then the edges ū, v̄ and w̄

induce a K1,3 in G. Note that any vertex which induces a K4−e

with the triangle uvw is adjacent to exactly two vertices among

u, v and w. Now, since H is connected and not a K3, there is a

vertex x adjacent to the triangle uvw. Assume that x is adjacent

to u and w. Then in G, ū, v̄ and x̄ induce a triangle so that uwx

is an anti-Gallai triangle. Since H ≇ K4− e and also connected,

there is a vertex y adjacent to at least one of the vertices u, v, w

and x. If there is no vertex adjacent to the triangle uvw, then it

must be adjacent to x alone, which is a contradiction to the fact
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that uwx is anti-Gallai triangle. So let y be adjacent to uvw.

By Lemma 4.2.3 y cannot be adjacent to u and w. So let y be

adjacent to v and w. Now we have vwy is also an anti-Gallai

triangle. But, since H ≇ C4∨K1 and connected, using the same

arguments as before, we have a vertex z adjacent to the triangle

uvw again. The only possibility then is that z is adjacent to the

vertices u and v. Now we show that there are no more vertices

possible in H. If not, let p be a vertex in H different from

u, v, w, x, y and z. But, by Lemma 4.2.3, the vertex p cannot be

adjacent to uvw. Now if p is adjacent to x, it must be adjacent

to u or w as uwx is an anti-Gallai triangle, which again is not

possible. Similarly, p cannot be adjacent to y and z. Hence no

such vertex p can be adjacent to any of the vertices u, v, w, x, y

and z. So such a vertex does not exist in H, as H is a connected

graph. Now we have H ∼=<u, v, w, x, y, z>∼= C4 ∨ 2K1, which is

a contradiction.

Definition 4.2.5. A triangle in a hanging of a line graph is an

L△ (M△, R△) if it is an anti-Gallai triangle and it is induced

by two vertices in one level and one vertex from the lower (same,

higher) level of the ordering.

We can see that any anti-Gallai triangle is either an L△, M△

or R△ in a hanging of L(G).

Theorem 4.2.6. Let uv be an edge in any level of a hanging of
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Figure 4.3: A graph and the hanging of its line graph by vertex f . The
dotted lines show an L△ fgh,R△ hij and an M△ abc.

H ∼= L(G) by an arbitrary vertex in H, then

1. uv cannot be an edge of an L△ in any level Li for i > 1.

2. uv cannot be an edge of an M△ in L1.

3. If uv is an edge in an M△ then uv cannot be an edge of

an L△.

4. If uv is an edge in an M△ then uv cannot be an edge of

an R△.

5. If uv is an edge in an L△ then uv cannot be an edge of an

R△.

6. uv can be an edge of at most one L△ or R△ or M△.

Proof.

1. Let uv be an edge in an Li for i > 1 and let it belong

to an L△ uvx, where x ∈ Li−1. Let w be the vertex in
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Li−2 which is adjacent to x. Then <w, x, u, v > induces a

subgraph which is neither a K4−e nor disconnected, which

is a contradiction.

2. Let uvx be an M△ in L1 and z be the vertex, from where

the hanging of H being considered. Then d(z) ≥ 3 and

<z, x, u, v> induce a K4 and hence uvx cannot be an anti-

Gallai triangle, which is a contradiction.

3. Let uv be an edge in L∆ then uv is in L1 by (1) and hence

uv cannot be an edge of an M∆ by (2).

From (3) and Theorem 4.2.4, it follows that anti-Gallai tri-

angles of a graph cannot share an edge in a line graph.

Hence the proof of (4) to (6) follows.

Now, Lemma 4.2.7 follows.

Lemma 4.2.7. Exactly one triangle of a K4 − e in a line graph

is an anti-Gallai triangle.

From Theorems 4.1.2 and 4.2.4, we have the following propo-

sitions.

Proposition 4.2.8. The edge uv is in an L△, with both its ends

in the same level of a hanging of a line graph if and only if it

satisfies the following conditions.
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1. Each vertex in L1 is either adjacent to u or v but not to

both.

2. Each neighbor of uv in L2 is a common neighbor of uv.

Proposition 4.2.9. The edge uv is in an M△ in a hanging of

a line graph if and only if it satisfies the following conditions.

1. The edge uv has a common neighbor x in Li which is not

adjacent to the other common neighbors of uv in Li−1 and

Li.

2. Either u or v is adjacent to each neighbor of x.

3. Each non neighbor of x is either a common neighbor of uv

or not a neighbor of uv.

Proposition 4.2.10. The edge uv is in an R△ with both its

ends in the ith level of a hanging of a line graph if and only if it

satisfies the following conditions.

1. The edge uv has exactly one common neighbor x in Li+1.

2. The vertex x is an ending vertex.

3. Either u or v is adjacent to each neighbor of x.

4. Each non neighbor of x in Li−1 ∪ Li is either a common

neighbor of uv or not a neighbor of uv.
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4.3 Partitioning the edges of a line graph

We now provide an algorithm to partition the edge set of a line

graph into edge sets of its Gallai and anti-Gallai graphs. The

three tests for an edge uv ∈ Li are described as follows.

Algorithm 4.3.1. L△ test.

1. If i 6= 1 go to step 7.

2. Find N(u) and N(v).

3. If NLi
(u) ∪NLi

(v) 6= Li then go to step 7.

4. If NLi
(u) ∩NLi

(v) 6= ∅ then go to step 7.

5. If NLi+1
(u) 6= NLi+1

(v) then go to step 7.

6. Triangle uvz is an L△.

7. The edge uv is not in L△.

Algorithm 4.3.2. M△ test.

1. If i = 1 go to step 9.

2. Find the set C of common neighbors wj of uv in Li. If

C = ∅, go to step 9.

3. Find the set B of common neighbors xj of uv in Li−1 and

Li+1.
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4. For each xj ∈ B, delete the members of the set NC(xj)

from C. If C = ∅ go to step 9.

5. For each wj, if |NC [wj]| > 1, delete the members of the set

NC [wj]. If |C| 6= 1 go to step 9.

6. Find the set N(uv) in H.

7. If |NC(yj)| = 1, for each yj ∈ N(uv) \ (B ∪ C), go to step

8. Else go to step 9.

8. Triangle uvx is an M△.

9. The edge uv is not in M△.

Algorithm 4.3.3. R△ test.

1. Find the set CR of common neighbors of uv in Li+1.

2. If |CR| 6= 1 go to step 7. Else choose the common neighbor

of uv in Li+1 as x.

3. If the vertex x is not an ending vertex, go to step 7.

4. Either u or v is adjacent to each neighbor of x. Else go to

step 7.

5. Each non neighbor of x is either a common neighbor of uv

or not a neighbor of uv. Else go to step 7.

6. Triangle uvx is an R△.

7. The edge uv is not in R△.
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Given a line graph H ∼= L(G), obtain a hanging hz by an

arbitrary vertex z. Consider all the edges starting from a vertex

u in L1. For each edge of the form uv for some v ∈ L1, apply

tests 4.3.1, 4.3.2 and 4.3.3 one by one. Choose another edge

whenever an anti-Gallai triangle is found or when all the tests

fail. When all the edges in a level are considered, go to the next

level and repeat the procedure. This algorithm ends when all

the edges in the last level of the hanging are considered and uses

a time complexity of O(m).

We now observe that in a line graph L(G), any edge that is in

the edge set of antiGal(G) belongs to some anti-Gallai triangle.

Hence the set of all the edges of the anti-Gallai triangles gives

the edge set of antiGal(G) and the remaining edges of the L(G)

corresponds to the edge set of Gal(G).

4.4 An algorithm to find the root graph of a

line graph

An optimal algorithm to recognize a line graph and out put its

root graph can be seen in [31], the time complexity of which is

O(n) +m. Using the above edge partition, an algorithm, which

uses a time complexity of O(m) + O(n), is provided to find the
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root graph of a line graph H. The same algorithm can be used as

a recognition algorithm for line graphs. For this, applying the

above tests for an arbitrary graph, we call a triangle type A if

it belongs to the category of anti-Gallai triangles, in the above

algorithm, and type B otherwise.

Algorithm 4.4.1. Root graph of a line graph

Consider the graph H = (V,E) with |V | = n, |E| = m and

its hanging hz, by an arbitrary vertex z.

Let M = {z, u}, where u is a neighbor of z. Let G be a path

on three vertices with V (G) = {{z}, {z, u}, {u}} and E(G) =

{({z}, {z, u}), ({z, u}, {u})}. Here the labels of vertices of G are

represented as sets which can be re-labeled, in the steps of the

following algorithm, using set operations.

1. Choose a vertex v from V (H) \M with NM(v) 6= ∅.

2. If v induces a clique in NM(v) and does not induce a type

A triangle, go to step 3. Else go to step 4.

3. Make V (G) = V (G) ∪ {v}, and join {v} with a vertex

C ∈ V (G), where C = NM(v), and make M = M ∪ {v}

and C = C ∪ {v}. If no such vertex C exists, go to step 4.

4. Find two vertices A and B in V (G) such that A ∪ B =

NM(v) and make M = M ∪ {v}, A = A ∪ {v} and B =

B ∪ {v}. Go to step 1.
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The algorithm ends whenever M = V (H) or there does not

exist C or A and B as required. Here the graph G represents

the root graph of the line graph H and in the latter case it can

be concluded that the graph H is not a line graph of any graph.

The correctness of the algorithm can be verified with the help

of the following theorem due to Krausz [28].

Theorem 4.4.2. A graph H is a line graph if and only if it has

an edge clique cover E such that both the following conditions

hold:

1. Every vertex of H is in exactly two members of E .

2. Every edge of H is in exactly one member of E .

Since the vertex labels of G are represented as sets, a vertex

in <M> is an element of some vertex label(set), of G. Here the

elements of each vertex label in V (G) induce a clique in <M>

of H, since x, y are in a vertex label of G if and only if x and

y are adjacent in <M> of H. Now from the construction of G,

each vertex of <M> is an element of exactly two vertex labels

of G and also any adjacent vertices in <M> belong to a vertex

label of G. Now V (G) gives an edge clique cover of <M> which

satisfies the two conditions given in Krausz’s theorem. Hence

the algorithm obtains a graph G with L(G) ∼= H if and only if

M = V (H).
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We now provide the difference between our algorithm and the

algorithm in [31].

Given a graph H, the algorithm in [31] assumes that H is

a line graph and defines a graph G such that H is necessarily

the line graph of G. A comparison of L(G) and H is then made

to check whether the given graph is actually a line graph. The

algorithm starts with two adjacent basic nodes, labeled 1-2 and

2-3, and labels the vertices in H, on the go, depending on their

adjacency. The algorithm proceeds to determine all connections

in G corresponding to a clique, containing the basic nodes in H,

simultaneously finding an anti-Gallai triangle {1-2, 2-3, 1-3}, if

it exists. In each step, the cliques sharing the vertices, which

are already worked out, are considered and the algorithm finally

outputs a labeled graph G.

In our algorithm, the types of triangles are found using the

first three algorithms, the time complexity of which is calculated

as follows. We can see that a hanging of the graph H can be

obtained in O(m+ n) steps. In each of the algorithms 1, 2 and

3 only a subset of E(H) are considered (as edges between the

levels are not included) and the algorithm 4, which assumes that

algorithms 1, 2 and 3 are already done, finishes in O(n) steps.



4.5. Root graphs of diameter-maximal line graphs 89

Hence using these algorithms the root graph of a line graph can

be obtained in O(m) +O(n) steps.

We can see that the edges of a line graph can be partitioned

into the edge sets of Gallai and anti-Gallai graphs using the first

three algorithms. That is, it can be done without knowing the

root graph of the given line graph. It can also be noted, as a

consequence of Theorem 4.2.4, that irrespective of the starting

set M of nodes, any pre-labeled line graph H with more than

four vertices gives a uniquely labeled root graph G.

4.5 Root graphs of diameter-maximal line graphs

A graph G is diameter-maximal [12], if for any edge e ∈ E(G),

d(G + e) < d(G). An example of a diameter-maximal graph is

K4 − e. We can see that C4 is not diameter maximal.

Theorem 4.5.1. [12] A connected graph G is diameter-maximal

if and only if

1. G has a unique pair of vertices u and v such that d(u, v) =

d(G).

2. The set of nodes at distance k from u induce a complete

sub graph.
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3. Every node at distance k from u is adjacent to every node

at distance k + 1 from u.

Let G be a diameter maximal line graph with diameter d.

Consider the hanging of G with respect to u as in Theorem 4.5.1.

Let L∗ = (|L0|, |L1|, . . . , |Ld|) be the sequence thus generated

from the hanging hu.

Lemma 4.5.2. In L∗, |Li| ≤ 2 for i = 0, 1, ..., d.

Proof. Clearly |L0| = |Ld| = 1 in L∗. If possible, let u, v and

w be three vertices in Li for some i for 0 < i < d. By The-

orem 4.5.1, < u, v, w >∼= K3 and there exist vertices x in Li−1

and y in Li+1 such that u, v and w are adjacent to both x and

y. But, then, <x, u, v, w, y>∼= F3 which is a contradiction.

A sequence S is forbidden in L∗ if the consecutive terms of S

do not appear consecutively in L∗.

Theorem 4.5.3. For every d ≥ 3, there exists three diameter-

maximal line graphs with diameter d.

Proof. First, we show that the sequence (a1, a2, 2, a3, a4), where

ai ∈ {1, 2}, is forbidden in L∗. For, assuming the contrary, let

|Li| = 2 for some i, 2 ≤ i ≤ d−2, and Li = {v1, v2}. Let v3, v4, v5

and v6 be arbitrary vertices in Lj, for j = i−2, i−1, i+1 and i+2

respectively. But <v1, . . . , v6>∼= F4 which is a contradiction.

With similar arguments, we see that the sequences (a1, a2, 2, 2),

(2, 2, a1, a2) and (2, 2, 2) are also forbidden in L∗, so that the
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integer two appears at most twice in L∗ and hence either (i)

|L1| = |Ld−1| = 2, (ii) |L1| = 2 or (iii) all the entries of L∗ are

1. Note that the case when L∗ has |Ld−1| = 2 is not consid-

ered, as it is similar to (ii). Hence there are only three possible

sequences of L∗ when d ≥ 3. As the three sequences are differ-

ent and the pair (u, v) in Theorem 4.5.1 is unique, there exist

exactly three diameter-maximal line graphs.

Corollary 4.5.4. The root graphs of diameter-maximal line

graphs with diameter d are of the form G in Table 4.1.

Diameter d < 3 d ≥ 3
G

Table 4.1: Graph G, for Corollary 4.5.4

4.6 Root graphs of DHL graphs

A graph G is distance-hereditary if for any induced subgraph

H, dH(u, v) = dG(u, v), for any u, v ∈ V (H). A detailed study

can be seen in [8]. A graph G is chordal if every cycle of length

at least four in G has an edge(chord) joining two non-adjacent

vertices of the cycle [6]. A graph is Ptolemaic if it is both
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distance-hereditary and chordal [23].

In this section, the family of root graphs of distance-hereditary

line (DHL) graphs is obtained. The root graphs of chordal and

Ptolemaic graphs are also discussed.

Theorem 4.6.1. [8] Let G be a connected graph. Then G is

distance-hereditary if and only if the graphs of Fig 4.4 and the

cycles Cn with n ≥ 5 are forbidden subgraphs of G.

Figure 4.4: The graphs for Theorem 4.6.1: house, domino and gem graphs.

Theorem 4.6.2. [23] Let G be a graph. The following condi-

tions are equivalent

1. G is Ptolemaic.

2. G is distance-hereditary and chordal.

3. G is chordal and does not contain an induced gem.

A vertex v is simplicial if N(v) is a clique. The ordering

{v1, . . . , vn} of the vertices of H is a perfect elimination ordering

if, for all i ∈ {1, . . . n}, the vertex vi is simplicial in Hi =<

vi, . . . , vn >.
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Theorem 4.6.3. [16] Let G be a graph. The following state-

ments are equivalent:

1. G is a chordal graph.

2. G has a perfect elimination ordering. Moreover, any sim-

plicial vertex can start a perfect elimination ordering.

Theorem 4.6.4. In a DHL graph if a vertex is adjacent to at

least one vertex in a C4 then it must be adjacent to all the vertices

of that C4 and to no other vertices in the graph.

Proof. Let H be a DHL graph which contains a C4 and let a

vertex u be adjacent to at least one vertex of the C4. If u is

adjacent to exactly one vertex of C4 then a K1,3 is formed in

H, which is a contradiction. Let u be adjacent to exactly two

vertices of C4 . Then either a house, when u is adjacent to two

adjacent vertices of C4, or a K1,3, when u adjacent to two non-

adjacent vertices of C4 is formed, which is also a contradiction.

Since an F2 is obtained when u is adjacent to three vertices of

a C4, u must be adjacent to all the four vertices of the C4.

Next we show that two adjacent vertices can not be made ad-

jacent to a C4 in H. For, otherwise each of the two vertices must

be adjacent to all the vertices of C4 and hence induces C4 ∨K2.

But a copy of F3 is induced in C4∨K2, which is a contradiction.

If only one vertex of two adjacent vertices is adjacent to C4, a

K1,3 is induced in H which is also a contradiction.
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Corollary 4.6.5. A DHL graph contains at most one C4.

Corollary 4.6.6. The root graphs of DHL graphs which contain

a C4 are K4, K4 − e and C4.

Proof. The proof is complete as we see from Corollary 4.6.5 that

the only DHL graphs which contain a C4 are C4 ∨ 2K1, C4 ∨K1

and itself.

As there are only three DHL graphs containing a C4, we

restrict our discussion in the following sections to DHL graphs

not containing C4’s.

If H is a DHL graph containing no anti-Gallai triangle then

its root graph contains no triangles. Also, a DHL graph is Cn-

free, n ≥ 5. Now, together with Corollary 4.6.6, we have the

following result.

Theorem 4.6.7. Let H ≇ C4 be a DHL graph not containing

an anti-Gallai triangle, then H is a line graph of a tree.

Lemma 4.6.8. An anti-Gallai triangle in a DHL graph has a

vertex of degree two.

Proof. Let uvx be an anti-Gallai triangle in a DHL graph H ≇

K3. Then uvx is in some K4−e in H. Let uvy be a triangle such

that u, x, y, w ∼= K4− e. We now show that degree of the vertex

x is two. Consider hx, we just need to show that L1 contains no

vertices other than u and v. For, let w be a vertex in L1. Then
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wx is an edge and, by Theorem 4.2.4, either u or v is adjacent

to w. Then y cannot be adjacent to w as N(w) ∩ {u, v, x, y}

together with w induce C4 ∨K1. But, <u, v, w, x, y> is a gem,

a contradiction.

By Lemma 4.6.8, it now follows that each triangle in the root

graph of a DHL graph is attached to the graph by sharing at the

most one vertex. Let T be the family of trees. Let T△ be the

family of graphs obtained by attaching some triangles to some

vertices in a tree T , for each T ∈ T .

Figure 4.5: A graph G ∈ T△.

Theorem 4.6.9. A graph G is a root graph of a C4-free DHL

graph if and only if G ∈ T△.

Proof. The proof is by induction on the number of edges in a

T ∈ T△. It can be verified that the root graphs of distance-

hereditary graphs of size ≤ 3 are in T△ and hence the theorem

is true for all m ≤ 3.

Let T ∈ T△ has m edges and T is a root graph of a DHL
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graph. Let T ′ be a graph in T△ with E(T ′) = E(T )∪{e}. Since

T ′ must be connected, there can be two cases: either (i) the edge

e is added as a pendent edge to T or (ii) the edge e is formed

by joining two vertices in T .

Let le be the vertex in L(T ′) corresponding to the edge e in

T ′. In case(i), since e is a pendant edge in T ′, le is simplicial

in L(T ′). We can now show that L(T ′) is gem-free. If possible

let a gem is there in L(T ′). Since L(T ) is distance-hereditary

and C4-free, it is chordal. By Theorem 4.6.2 L(T ) is gem-free,

le must be a vertex in the induced gem. But, N(le) is complete

so that le is one of the degree two vertices in the gem. Now

le is in a K4 − e. By Lemma 4.6.8, one of the two triangles in

the K4 − e must be an anti-Gallai triangle. But the triangle

containing le cannot be so, as e is a pendant edge in T ′. But

the other triangle has no vertex of degree 2 in the induced gem.

This is a contradiction, by Lemma 4.6.8, to the assumption that

L(T ′) contains a gem.

In case(ii), as T is connected, adding an edge e joining two

vertices of T makes a cycle in T ′. But T ∈ T△ is Cn-free, n ≥ 4,

and contains no K4−e. Hence e joins two pendant vertices of T ,

forming a triangle and has end vertices of degree two. Therefore

in L(T ′), the corresponding vertex le is in an anti-Gallai triangle
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and has degree two. It now follows that le is simplicial. If L(T ′)

contains a gem, le must be one of the degree two vertices in

the induced gem. But in this case the anti-Gallai triangle con-

taining le does not satisfy Theorem 4.2.4 with the other vertex

of degree two in the induced gem, which is again a contradiction.

In both the cases we have now a one-vertex extension L(T ′) of

a gem-free chordal graph L(T ) and hence L(T ′) is a DHL graph.

Conversely, let L(G) ∼= H be a C4-free DHL graph. We need

to prove that G ∈ T△. It is clear that G is {K4, K4 − e, C4}-

free, otherwise H would contain a C4. Since H is Cn-free, for

n ≥ 4, it follows that G is {K4 − e,Kn, Cn}-free, for n ≥ 4.

Now, triangles are the only possible cycles in H and G. Thus,

if H does not contain an anti-Gallai triangle, then G is a tree.

If H contains an anti-Gallai triangle, then by Lemma 4.6.8, the

corresponding triangle in G must have at least two vertices of

degree 2. Hence the proof.

Corollary 4.6.10. A graph L(G) is Ptolemaic if and only if

G ∈ T△.

Corollary 4.6.11. Let T c
△ be the family of graphs obtained by

attaching some triangles to some vertices in a tree T and identi-

fying each edge of T by an edge of at most one triangle, for each

T ∈ T . Then L(G) is a chordal graph if and only if G ∈ T c
△.
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Figure 4.6: A {C4,K4,K4 − e}-free graph G. Clearly G ∈ T c
△
.



Chapter 5

Root graphs of anti-Gallai

graphs

In this chapter we find a structural relation among the triangles

of an anti-Gallai graph. Using this, we find the root graphs of

anti-Gallai graphs, which are triangle-irreducible.

5.1 Basic definitions

The following definitions are exclusively for this chapter.

Definition 5.1.1. Let G = (V,E) be a graph. For a vertex

u ∈ V , N(u) denotes the set of all neighbors of u and NM(u) =

N(u) ∩M , where M ⊆ V . Define N(u1u2 . . . uk) = ∪k
i=1N(ui),

N∗(u1u2 . . . uk) = ∩k
i=1N(ui) and N ′(uvw) = N∗(uv)∪N∗(vw)∪

N∗(uw) \N∗(uvw) \ {u, v, w}.

99
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Definition 5.1.2. The corona G1 ⊙ G2 of graphs G1 and G2

is the graph obtained by taking one copy of G1, which has n1

vertices, and n1 copies of G2, and then joining the ith vertex of

G1 by an edge to every vertex in the ith copy of G2.

Definition 5.1.3. A graph G is triangle-reducible if there is

a partition E(G) = ∪iEi such that for any triangle uvw in G, the

edges uv, uw, vw ∈ Ei, for some i. G is triangle-irreducible if

G is not triangle-reducible. A subgraph J is maximal triangle-

irreducible (MTI) if there are no triangle-irreducible graphs con-

taining J as a proper subgraph.

Figure 5.1: A triangle reducible graph G and a triangle irreducible graphH.

5.2 Anti-Gallai triangles in an anti-Gallai graph

From this section we consider the graph H as the anti-Gallai

graph of a graph G. Let uvw be a triangle in H and ū, v̄ and

w̄ be the edges in G representing the vertices u, v and w respec-

tively in H. If the edges ū, v̄ and w̄ induces a triangle in G then

the triangle uvw in H is referred to as an anti-Gallai triangle or
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a type I triangle. A triangle inH which is not of type I is type II.

Remark 5.2.1. Any edge of a type II triangle belongs to some

type I triangle. Since any two edges of a triangle uniquely de-

termines the third edge, any edge uv in a triangle of H has

exactly one vertex w such that uvw is a type I triangle. Also,

N∗(uvw) = ∅ for any type I triangle in H.

Remark 5.2.2. When uvw is a type II triangle in H, the edges

ū, v̄ and w̄ cannot induce a triangle in G. But any pair of these

edges must belong to a triangle, hence the edges ū, v̄ and w̄ have

a common end point. Choosing x̄, ȳ and z̄ as the edges uniquely

determined by these pairs, we get < x̄ȳz̄ūv̄w̄ >∼= K4.

Lemma 5.2.3. If uvw is a type II triangle then there exist a

unique type I triangle which is induced in < N ′(uvw) >.

Proof. From remark 5.2.2, the edges ū, v̄ and w̄ in G uniquely

determine the edges x̄, ȳ and z̄ and hence x, y and z ∈ N ′(uvw).

Also, since x̄, ȳ and z̄ induces a triangle, xyz is a type I triangle

induced in < N ′(uvw) >.

In order to complete the proof we need to show that any

induced triangle in < N ′(uvw) > is type II. Let pqr be a triangle

induced in < N ′(uvw) >. By the uniqueness of x̄, ȳ and z̄, the

edges p̄, q̄ and r̄ have a common end point same as that of ū, v̄

and w̄. So < p̄q̄r̄ > cannot induce a triangle in G and Hence
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pqr is a type II triangle in H.

(a) (b) (c)

Figure 5.2: Graphs K4, antigal(K4) and antigal2(K4).

Lemma 5.2.4. If uvw is a type I triangle in H then < N ′(uvw) >

is a disjoint union of type II triangles of H.

Proof. Assume that there is a vertex x in N ′(uvw) adjacent to

u and v. Since x 6= w, there are two triangles x̄ūȳ and x̄v̄z̄,

uniquely determined, with ȳ 6= z̄.

Here < ū, v̄, w̄, x̄, ȳ, z̄ >∼= K4 and also y ∈ N∗(uw) and

z ∈ N∗(vw), both nonadjacent to v and u respectively. Hence y

and z are in N ′(uvw) and the triangle xyz is a type II triangle

in H.

Let x1, x2, ...xk be the vertices in N ′(uvw) which are not ad-

jacent to w in H. For each xi there exist unique vertices yi ∈

N∗(uw) and zi ∈ N∗(vw) such that < xi, yi, zi > is a type II tri-

angle. In order to complete the proof, we now need to show that

yi 6= zj, whenever i 6= j. Assuming the contrary, let yi = zj = p



5.3. Relations between triangles 103

for some i 6= j. Then p ∈ N∗(uw) ∩ N∗(vw) ∩ N∗(uw), or

p ∈ N∗(uvw). But, N∗(uvw) = ∅ for a type I triangle, this is a

contradiction.

From the previous lemma the number of common neighbors

of any edge in a type I triangle uvw is the same, and is equal to

the number of type II triangles in N ′(uvw).

5.3 Relations between triangles

Definition 5.3.1. Two triangles △t1 = uvw and △t2 = xyz in

H are in relation R , denoted by △t1 R△t2, if △t1 ∈ N ′(△t2)

and vice versa.

Notation: We write uvwR xyz if z ∈ N∗(uv), y ∈ N∗(uw) and

x ∈ N∗(vw).

Remark 5.3.2. It can be seen from Figure 5.2(b) that the tri-

angle with black colored vertices and the triangle with white

colored vertices are in relation R , precisely which we mean by

the Definition 5.3.1 of R . Thus antigal2(K4), in Figure 5.2(c),

can also be viewed as the anti-Gallai graph of two triangles in

relation R .

Lemma 5.3.3. If uvwR xyz then uyzR xvw, vxzR yuw and

wyxR zvu. Moreover if uvw is a type I triangle then the first

one in each pair is type I triangle and the other is type II.
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Lemma 5.3.4. If two type II triangles uvwR xyz in H then

the edges in G corresponding to these vertices have a vertex in

common.

Proof. In G, let v1 be the vertex in common for the edges ū, v̄

and w̄ and let v2 be that for the edges x̄, ȳ and z̄. If v1 and

v2 are different, then at least one of the edges of ū, v̄ and w̄

can be made non-adjacent with at least two edges of x̄, ȳ and z̄.

Without lose of generality let ū be such an edge. That is ū is

adjacent to at most one of the edges in x̄, ȳ and z̄. Then in H,

u /∈ N ′(x, y, z), which is a contradiction.

Theorem 5.3.5. If △t and △s are two type II triangles in H

and △tR△s, then there exist type I triangles △p and △q and a

C6 in H such that △tR△p, △sR△q and < △p,△q, C6 >H
∼=

antiGal2(K4).

Proof. Let △t = t1t2t3 and △s = sasbsc be two type II trian-

gles such that t1t2t3R sasbsc. By Lemma 5.2.3, there are type I

triangles △p = p1p2p3 and △q = qaqbqc such that △tR△p and

△sR△q.

In H, t1 ∈ N∗(sbsc). Then, in G, there are edges ū1b and ū1c

such that < t̄1ū1bs̄b > and < t̄1ū1cs̄c > are triangles. Now, using

a set of similar arguments, there are vertices u1b, u1c, u2a, u2c, u3a

and u3b in H. We can see that uij and ukl are adjacent if and
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only if either i = k or j = l. Hence these six vertices induce a

C6 in H. Also, △̄pR△̄q in G. Then by Remark 5.3.2, we have

< △p,△q, C6 >∼= antigal2(K4).

Figure 5.3: Illustration of Theorem 5.3.5. Here H ∼= antigal(G), △t =
t1t2t3 and △s = sasbsc are type II and △tR△s.

The base graph BH of anti-Gallai graph H is a graph with

vertex set as the set of triangles in H. Two vertices t and s in
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BH are adjacent if △tR△s in H. A vertex t in BH is type I,

if △t is a type I triangle in H and t is type II otherwise. A

cycle C6 in BH is denoted by C∗
6 if it contains at least one type

I vertex.

Figure 5.4: A graph G, H ∼= antiGal(G) and BH .

Lemma 5.3.6. In BH , we have

1. If a Cn contains a type I vertex, then there are at least two

type I vertices and n ≥ 6.

2. All the vertices in a cycle Cn of length n < 6 are type II.

3. In a C∗
6 , exactly two vertices are type I.

4. Any vertex adjacent to C∗
6 is type II.
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5. In a component K1,n, n > 1, all the pendant vertices are

type II and the central vertex is type I.

6. Any subgraph B1 of BH , with V (B1) are all type II, is an

induced subgraph of B1 ⊙K1.

Proof. (1) Let C = t1, t2, . . . , tn be a cycle of length n. Assume

that t1 is a type I vertex. If all the vertices ti, 1 < i ≤ n are

type II, by Lemma 5.3.4, they should share a common vertex.

Since t2, tn ∈ N(t1), by Lemma 5.2.4, t2 and tn are type II

triangles and they do not share a common vertex in H, which is

a contradiction. Hence there are at least two type I vertices in

C. Let tj, j 6= 1 be another type I vertex in C. By Lemma 5.2.3,

tj is neither adjacent with t2 nor with tn and hence n ≥ 6. The

proof of (2) and (3) follows from (1).

(4) Let t be a vertex adjacent a vertex s in C∗
6 . If s is type I,

then by lemma 5.2.4 t is type II. If s is type II, then the unique

type I vertex adjacent to s is also in C∗
6 , hence t is type II again.

(5) The proof follows from Lemma 5.2.4.

(6) Since any vertex of B1 corresponds to a type II triangle in

H, for each ti ∈ V (B1), i ∈ I, by Lemma 5.2.3, there are unique

type I triangles △si, such that △ti R△si, ∀i. It is then clear

that the resulting induced graph in BH is B1 ⊙K1.

Thus it follows that identifying a type I vertex, in a C∗
6 , im-
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plies that the types of all the vertices in that C∗
6 can be identified.

Also, if a cycle is a C∗
6 then < ti, tj, C >H

∼= antiGal2(K4), where

ti, tj ∈ V (C6) with dC6(ti, tj) = 3 and C is a cycle of length six

in H.

Observation 5.3.7. If u, v ∈ V (H) are such that ū and v̄

are independent in G, then corresponding to any vertex w ∈

N∗(u, v), the edge w̄ in G is adjacent to both ū and v̄ and hence

|N∗(u, v)| ≤ 4.

We now discuss a part of the converse of Theorem 5.3.5.

Theorem 5.3.8. If t1t2t3t4 is a path in BH , neither induced in

a C∗
6 nor in a P4⊙K1, with < △t1,△t4, C6 >H

∼= antiGal2(K4),

for some C6 in H, then △t2 and △t3 are type II triangles in

H and △t1, △t4 are the unique type I triangles of △t2,△t3,

respectively.

Proof. Assume the conditions in the assertion. If △t2 and △t3

are not type II triangles, they must be triangles of different

types. Assume without loss of generality that △t2 is type I and

△t3 is type II. Then △t1 and △t4 are type II triangles. Let

u1 be a vertex common to the edges in △̄t1 in G. Also, by

Lemma 5.3.4, there is a vertex u2 in G common to the edges in

△̄t3 and △̄t4. By Theorem 5.3.5, there is a type I triangle △t5

with △t4R△t5 in H and △̄t2R△̄t5 in G.
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Now consider the vertices ci in C6, where< △t1,△t4, C6 >H
∼=

antiGal2(K4). We have the edges in △̄t1 and △̄t2 are indepen-

dent and hence c̄i must be the edges adjacent to both △̄t1 and

△̄t2. Now, the only edges possible, denoted by w̄i, which are

adjacent to both △̄t1 and △̄t2 are from u1 to both the ends of

the edges in △̄t4. It can be seen that {w̄i}i \ {u1u2} forms the

edges of a type II triangle △t6 in H such that △t6R△t1 and

△t6 R△t5. But it then turns out that < t1, . . . , t6 >BH
∼= C∗

6 ,

which is a contradiction. Hence △t2 and △t3 are of type II.

We now show that △t1 and △t4 are the unique type I tri-

angles of △t2 and △t3 respectively. If all the vertices in the

path t1t2t3t4 are type II, then, by (6) of Lemma 5.3.6, t1t2t3t4

is induced in an P4 ⊙K1, which is a contradiction and hence at

least one of the triangles △t1 and △t4 is type I. If they are of

different types, then assume without loss of generality that △t1

is type I and △t4 is type II. Now △t1R△t2 and Lemma 5.2.3

imply that △t1 is the unique type I triangle of △t2.

Let △t1 = x1x2x3, △t2 = y4y5y6 and △t4 = z7z8z9. Since

△t2 is type II, there is a vertex u common to the edges ȳ4, ȳ5

and ȳ6 in G. Since △t2R△t3 R△t4, by Lemma 5.3.4, u is also

common to the edges z̄7, z̄8 and z̄9.
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Figure 5.5: When an edge yk coincide with an edge zj .

We claim that the vertices in △t1 and △t4 are different. For

otherwise, assume that some vertices of these triangles coincide.

But, in G, this would imply that u is an end vertex of x̄i, for

some i, which is a contradiction to the definition of u. Also, the

edges {x̄i}i, ∀i and the edges {zj}j, ∀j are independent. For

other wise, assume that, an edge x̄i is adjacent to an edge z̄j for

some i and j. It then becomes that the edge z̄j should coincide

with an edge yk for some k. But if z̄j, ∀j and ȳk, ∀k are coin-

cided, then △t2 and △t4 are the same in H, which contradicts

t1t2t3t4 to be a path. Thus there is at least one non-adjacent

pair (z̄j, ȳk), for some i and k, (see Figure 5.5). In this case we

can see that < x1, x2, x3, zj >H
∼= K4 − e. But this is a contra-

diction to < △t1,△t4, C6 >H
∼= antiGal2(K4), as K4 − e is not

an induced subgraph of antiGal2(K4). Thus x̄i is non-adjacent

to z̄j, ∀i, j.
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Consider the C6 inH such that< △t1,△t4, C6 >H
∼= antiGal2(K4).

Since the edges corresponding △t1 and △t4 are independent in

G, each edge v̄ corresponding to a vertex in C6 must be adjacent

to an edge in each of the sets {x̄i}i and {ȳj}j. Let ab ∈ E(C6) in

H. Then there is a triangle < āb̄x̄ > in G, for some x ∈ V (H).

Let w be a vertex common to the edges ā and b̄ in G. Then, we

have the following cases(See Figure 5.6).

Figure 5.6: Proof of Theorem 5.3.8. Case 1 and 2.

Case 1. w is a common vertex to ā, b̄ and z̄j. Then, there

is at most one edge z̄j that has w as the end vertex. Without

loss of generality, let j = 8. But, then < x1, a, b, z8 >∼= K4 − e,

which is a contradiction.

Case 2. w is a common vertex to ā, b̄ and x̄i. Then, there is

exactly two edges in {x̄i}i has w as the end vertex. Without loss
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of generality assume the adjacency to be as in the Figure 5.6(b).

Here when all the dotted lines are absent, < x1, x2, a, b, z7, z8 >

is isomorphic to a domino, which is a contradiction. When some

or all the dotted edges are present, < a, b, x1, x2 > would be a

K4 − e or K4 respectively, each of which is a contradiction as

all such graphs are forbidden in an antiGal2(K4). Thus all the

possible cases when △t4 to be type II is contradicted. Hence

△t4 is type I, and it is unique as per Lemma 5.2.3.

We now combine Theorem 5.3.5 and Theorem 5.3.8.

Theorem 5.3.9. If t1t2t3t4 is a path in BH , neither induced in

a C∗
6 nor in a P4⊙K1, then t1, t4 are type I and t2, t3 are type II

if and only if there is a C6 in H such that < △t1,△t4, C6 >H
∼=

antiGal2(K4).

We see that, in the above theorem, when < t1, . . . , t6 >BH
∼=

C∗
6 , the subgraph < t̄1, . . . , t̄6 >G

∼= antiGal(K4) ∨ 2K1. When

BH
∼= K2, its end vertices can be type I or type II. Also, it is

possible to relabel the edges of antiGal(K4) ∨ 2K1 such that

the types of vertices in a C∗
6 are different in BH , as given in

Figure 5.7.

Lemma 5.3.10. If an edge, which is not in a C∗
6 , is adjacent

to a C∗
6 , then all the vertices in that C∗

6 can be identified.
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Figure 5.7: A relabelling obtained by interchanging the labels of the thick
and dotted edges give the same C∗

6
in BH .

Proof. Let t be a vertex in a C∗
6 and ts be an edge not in any

C∗
6 . Now, by Lemma 5.3.6, s is type II. Since s has exactly one

type I vertex as neighbor, if deg(s) = 1 then t is type I and we

are done. So let deg(s) > 1. Also, let t1 and t2 are the vertices

adjacent to t in the same C∗
6 . Now, there are two cases as follows.

When t is type II, either t1 or t2 is type I. Since s is also type

II, there must be a type I neighbor r of s such that titsr is a

sequence of I − II − II − I for i = 1 or 2 and hence satisfying

< ti, r >∼= antigal2(K4).

When t is type I, both t1 and t2 are type II and any vertex r in

N(s)−{t} is also type II. Hence titsr is a sequence II−I−II−II
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and do not satisfy < ti, r >∼= antigal2(K4), for any i, since ts

is not an edge in any C∗
6 . Thus the case of t being type I can be

distinguished and hence the proof.

Let F be the family of graphs with each edge is in some

C∗
6 . For n ≥ 1, let HC

4n+4 be a graph defined by taking two

copies of C4n+4, that is, x1 . . . x4n+4 and y1 . . . y4n+4 and making

the adjacencies {xiyi/i ≡ 1 mod(2)}. Also, define HP
2n+1 by

taking two copies of P2n+1, that is, x1 . . . x2n+1 and y1 . . . y2n+1

and making the adjacencies {xiyi/i ≡ 1 mod(2)}. If each C6

in these graphs are a C∗
6 , the graphs are denoted by HC∗

4n+4 and

HP∗
2n+1. It can be seen that HP∗

3
∼= C∗

6 .

It is not difficult to see that F can be obtained by including

all HC∗
4n+4, H

P∗
2n+1 and the graphs obtained by identifying any two

edges of the form xiyi, when i is odd.

Theorem 5.3.11. When a component of BH is HC∗
4n+4 , there are

exactly two labelling for the edges in G corresponding to HC∗
4n+4

in BH .

Proof. Let G be a graph such that a connected component of

BH be HC∗
4n+4, for some n. From Lemma 5.3.6, it follows that

xi, yi, for i ≡ 0 mod(4) are type II. If xi is type I (type II)for

some i, then the only remaining type I (type II)triangles are xp,

p ≡ i mod(4) and yq, q ≡ i + 1 mod(4) and all the remaining

triangles are type II (type I). Since xi is type I or type II in a
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Figure 5.8: On top: a graph HP∗
11

with one copy of P11 is labelled. On
bottom: a graph HC∗

8
. In this the right most C∗

6
, with dotted lines, coincide

with left most C∗
6
, thus making a cycle of C∗

6
’s.

labelling, there are exactly two possible labelling in G.

Corollary 5.3.12. For any graph in F , there are at least two

labellings possible in its corresponding graph G.

Theorem 5.3.13. If F ≇ K2 and F /∈ F , then all the vertices

in any component F in BH can be identified as type I or type II.

Proof. Consider F ≇ K2 and F /∈ F . If F does not contain a C∗
6

then it can be identified by Theorem 5.3.8. So let P be a C∗
6 in

F . If an edge adjacent to P is not in a C∗
6 , it can be identified

by Lemma 5.3.10. So let all the edges adjacent to P is in some

C6. Let F
′ be a maximal graph containing P which is in F .

Case A: P is the only C∗
6 in F ′.
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Figure 5.9: A graph G and H ∼= antiGal(G). Here BH is a graph with 96
vertices containg 16 components of C∗

6
’s.

If there are no C∗
6 are adjacent to P then there is nothing

to be proved. Let Q be another C∗
6 adjacent to P .

Case A− I: P and Q share vertices but no edges.

Case A− I(1): P and Q share exactly one vertex.

Let u be the vertex in common to P and Q. By

Lemma 5.3.6, N(u) in P and Q are type II. Now,

u is type I and hence all the vertices in P and Q

are identified.

Case A− I(2): P and Q share more than one vertex.

Note that P and Q can not share two consecutive

vertices of either as this would lead to the case of

sharing an edge between these two. So, let non-

consecutive vertices of Q be shared with P . But it

can be seen that each vertex of Q is in some cycle

of length less than 6. Now by Lemma 5.3.6, all the
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vertices are type II. But this contradicts Q being a

C∗
6 . Hence no such component is possible in BH .

Case A− II: P and Q share edges.

Case A− II(1): P and Q share exactly one edge.

Since F ′ ∼= C∗
6 , F

′ together with Q is again a graph

in F , which contradicts the maximality of F ′ and

thus this case is not possible.

Case A− II(2): P and Q share more than one edge.

It can be seen that when P andQ share non-consecutive

edges, any vertex in P or Q is in some cycle of

length less than 6, which is a contradiction as in

Case I(2). When P and Q share consecutive 4 or 5

edges, such graphs do not exist as, with Lemma 5.3.6,

it will contradict P or Q being a C∗
6 . Now, when 2

or 3 consecutive edges are shared, the vertices of P

and Q can be uniquely labelled using Lemma 5.3.6.

Case B: F ′ contain more than one C∗
6 .

Again let P be a C∗
6 in F ′ and Q be another C∗

6 , which is

not in F ′, adjacent to P .

Case B − (I): F ′ and Q share vertices but no edges.

If Q share exactly one vertex with F ′, that is with any

of the C∗
6 in F ′, then the vertices can be identified as in

Case AI(1). Similarly the case of sharing of more than
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one non-consecutive vertices is same as Case A−(I)(2).

Case B − (II): F ′ and Q share edges.

Case B − (II)(1): F ′ and Q share exactly one edge.

Let R be a C∗
6 adjacent to P in F ′ and Q share an

edge with P . The only two possibilities, keeping

the maximality of F ′, are as in Figure 5.10. Now,

all the type II vertices of P can be identified using

Lemma 5.3.6 and hence all the vertices in F ′.

Case B − (II)(2): F ′ andQ share more than one edge.

Let Q share its edges to more than one C∗
6 in F ′,

otherwise it can be treated as in Case A− II(1).

Let Q share its edges to P and R. Since xi, yi, for

i ≡ 0 mod(4) are type II in F ′, and Q share con-

secutive edges of it, two vertices at distance 2 can

be identified to be type II and hence the vertex in

common to these vertices is type I and thus all the

other vertices in P,Q and F ′ are identified. Since

P is an arbitrary C∗
6 in F , all the vertices in F can

be identified.
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Figure 5.10: Illustration of Case B − (II)(1) in Theorem 5.3.13.

5.4 Identifying the types of triangles in H

Two triangles uvw and xyz in H are in relation N , denoted by

uvwNxyz, if they share an edge, that is if |{u, v, w}∩{x, y, z}| =

2. Two triangles uvw and pqr in H are in relation θ, denoted

by uvwθpqr, if there is a triangle xyz in H such that uvwNxyz

and xyzR pqr, provided both xyz and pqr are not type II. Thus

when uvw is type I, xyz is type II and pqr is type I. Also, uvw

and pqr can be identified as the disjoint triangles induced in a

subgraph 2K1 ∨ C4 of H.

Lemma 5.4.1. Let uvw be a type I triangle in H and let H ∼=

antiGal(K4). Then, the triangle uvw is in relation θ with all

the type I triangles in H.

Proof. Let x̄, ȳ and z̄ be the edges other than ū, v̄ and w̄ in G ∼=
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K4 and x̄ȳū be a triangle in G. Without loss of generality let

x̄ adjacent to ū and v̄. Then uvwNuvz and uvzR xyu implies

uvwθxyu. Now, a similar set of arguments prove the assertion.

Lemma 5.4.2. If uvwθpqr, then pqrθuvw.

Proof. Let xyz be the triangle such that uvwNxyz and xyzR pqr.

Assume without loss of generality that u = y, v = z and x 6= w.

Then we have uvxR pqr. Also, assuming p ∈ N∗(uv), p cannot

be adjacent to x and hence p = w. Here uvw, xyz and pqr are

triangles and u = y, v = z and p = w, hence q ∈ N∗(uw), r ∈

N∗(vw) together with x ∈ N∗(uv) and |{u, v, w, x, q, r}| = 6

implies that xqr ∈ N ′(xqr) or xqrRuvw. since x 6= w, we have

pqrNxqr and xqrRuvw and hence pqrθuvw.

Two triangles t and s in H are in relation θ∗, denoted by tθ∗s,

if there is a sequence of triangles t1, t2, ...tk such that tθt1θt2θ...tkθs.

In this case we say that s is θ-reachable from t. It follows from

Lemma 5.4.2 that the relation θ∗ is also symmetric in the set of

type I triangles in H.

We now label the vertices in BH in the following way. Con-

sider each MTI subgraph S in H. Note that when |V (S)| = 6,

all the components of BS are K2 and the vertices of which can

be labelled by giving a label type I to a vertex and then applying
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θ.

(1) Give an initial labelling to the vertices using Lemma 5.3.6

and Theorem 5.3.13 and relation N . Now, consider the non-

labelled vertices in BS.

(2)Then each of the remaining vertices are either in a K2 or

a graph in F . In this case at least one end vertex of any K2 is

in relation N with a vertex in a component, which is in F .

(3)Consider a component which is in F . Give a labelling to

the vertices in that component as in Theorem 5.3.11. Now using

N , type II vertices in one end of eachK2 are identified and hence

the other end.

We can see that the statement (2) holds if there are non-

labelled vertices remaining in BS. Hence it is possible to repeat

(3) until all the vertices in BS, and hence in BH , are labelled.

Theorem 5.4.3. Let uvw be a type I triangle in a MTI subgraph

S of an anti-Gallai graph H. Then the set of all type I triangles

in S are θ-reachable from uvw.

Proof. The result is true when |S| ≤ 6, by Lemma 5.4.1. Let

|S| > 6 and K be the set of all vertices of the θ- reachable tri-

angles from uvw. It suffice to show that any type I triangle in

< K > is θ- reachable from the triangle uvw and K induces the

MTI subgraph containing uvw.

To prove the first part, let xyz be a triangle in < K > which
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is θ reachable from uvw. Now x is vertex in some θ-reachable

triangle from uvw. Let xpq be the triangle such that uvwθ∗xpq.

Since p is a neighbor of xyz, a type I triangle, it must be a

common neighbor of an edge of xyz. Let p be adjacent to x

and y and hence xpy is a triangle. Since no two type I triangles

share an edge, xpy is a type II triangle.

With similar arguments we can show that xqz is also a type

II triangle. Since z and q are adjacent, we have z̄ and q̄ uniquely

determine a triangle z̄q̄r̄ in G. Now we have p is a neighbor of q

but not to z, adjacent to r, since xqr is a type I triangle. With

the same argument since xyz is a type I triangle, r must be

adjacent to x or y. If r is adjacent to x, then r ∈ N∗(xpq) is

a contradiction to the assumption that xpq is a type I triangle.

So r is adjacent to y.

Now we have zqr ∈ N ′(pxy) and is unique. Since pxy is in re-

lation N with both xyz and xpq, we have xyzθzqr and xpqθzqr.

Since uvwθ∗xpq and θ is symmetric, uvwθ∗xyz.

< K > is triangle-irreducible from the definition of K. We

just need to show that < K > is maximal. For, let < K ′ > be a

triangle-irreducible subgraph, where K ′ contains K as a proper

subset. Let t be a vertex in K ′ \K such that t is adjacent to a

vertex in K. Since any vertex in K is in some type I triangle,
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we have t is adjacent to a triangle, xyz in K. But t must be

a common neighbor of an edge of xyz. Let t be a common

neighbor of the edge xz. Now as in Lemma 5.2.4, there exist

vertices t′ and t′′ uniquely determined by t such that tt′t′′ is a

type II triangle. Without loss of generality assume that t′ is

adjacent to z. So xyzN yzt′ and yzt′ R xtt′′ and that xyzθxtt′′.

By the transitivity of θ∗, uvwθ∗xtt′, which is a contradiction to

the assumption that t /∈ K. Hence we have < K > is MTI.

Corollary 5.4.4. Let uvw be a type I triangle in H. A triangle

in the same MTI subgraph containing uvw is a type I triangle if

and only if it is θ-reachable from uvw.

5.5 Root graphs of anti-Gallai graphs

In this section we discuss the root graphs of anti-Gallai graphs

which are triangle-irreducible. Recall from Section 4.4 that, a

triangle uvw in L(G) is type A if its corresponding edges ū,

v̄ and w̄ induce a triangle in G and uvw is type B otherwise.

Thus all type I triangles in antiGal(G) is type A in L(G) and

vice versa.

Given a graph H, give a type I or type II label to the triangles

in H. The following algorithm checks the necessary conditions,

given in Theorem 4.2.4, for a triangle to be type A and thus
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provide adjacencies for a type I triangle in H to be a type A

triangle in L(G).

Let M = {z, u}, where zu is an edge in H. Let J be a graph

with V (J) = V (H) and G be a path on three vertices with

V (G) = {{z}, {z, u}, {u}} and E(G) = {({z}, {z, u}), ({z, u}, {u})}.

Here the vertices of G are represented as sets which changes un-

der set operations.

1. Choose a vertex v from V (H) \M with NM(v) 6= ∅.

2. If v induces a clique in NM(v) and do not induce a type

I triangle, then find a vertex C ∈ V (G) with NM(v) ⊆

C. Choose one at random if more than one such vertex is

available.

(a) In G, join {v} with C and make V (G) = V (G) ∪ {v},

M = M ∪ {v} and C = C ∪ {v}.

(b) In J , make the vertex v adjacent to the set of all ver-

tices in C \NM(v).

3. Else find two vertices A and B in V (G) such that NM(v) ⊆

A ∪ B. Choose one pair of A and B if more than one such

pair are available.

(a) In G, make M = M ∪ {v}, A = A ∪ {v} and B =

B ∪ {v}.
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(b) In J , make the vertex v adjacent to the set of all ver-

tices in (A ∪ B) \NM(v).

4. If M = V (H), then stop. Else, go to step 1.

The algorithm ends whenever M = V (H) or there does not

exist C or A and B as required. In the former case, the graph G

obtained at the end of the algorithm is such that antiGal(G) ∼=

H. Also, if we start with J ∼= H then we obtain J ∼= L(G) at

the end of the algorithm. In the latter case it can be concluded

that the graph H is not an anti-Gallai graph of any graph. Thus

the above algorithm can also be used as a recognition algorithm

for triangle irreducible anti-Gallai graphs.



126



Concluding Remarks

In this thesis the root graphs of some graph operators are stud-

ied. We have shown the existence of root graphs of different

graph classes and provided solutions to some of the existing

problems in graph theory. The solutions to the problems of

finding common root graphs of median, anti-median, center op-

erators are also given. An algorithm to find the root line graph

based on a partition on the edge set of a line graph is provided.

This algorithm is extended to find the root graphs of a triangle

irreducible anti-Gallai graph, the triangles of which have a par-

tition to two types depending on it’s structure.

We list below some problems which we found are interesting,

but could not be attempted for various reasons.

1. Given three k- partite graphs G1, G2 and G3, find a k-

partite graph H such that M(H) ∼= G1, AM(H) ∼= G2

and C(H) ∼= G3.
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2. Check the existence of the graph of the form (G1, G2, r)

with a prescribed center, for r ≥ 1.

3. Find the relation between M(Gk) and M(G)k. Similarly

for AM operator.

4. Find upper bounds of SD(G) in different graph classes.

5. Find root line graphs of some more graph classes.
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