CONTROL POLICIES IN REPAIR OF k-out-of-n SYSTEMS

THESIS SUBMITTED TO THE
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNDER THE FACULTY OF SCIENCE

BY

SATHIAN M K
Research Scholar ( Reg. No. 3387)
Department of Mathematics
Cochin University of Science and Technology

Kochi-682022, INDIA
February 2016






CERTIFICATE

This is to certify that the thesis entitedlCONTROL POLICIES IN
REPAIR OF k-out-of-n SYSTEMS is a bona de record of the research work
carried out byMr. Sathian M K under my supervision in the department of Mathemat-
ics, Cochin University of Science and Technology. The results embodied in the thesis
have not been included in any other thesis submitted previously for the award of any

degree or diploma.

Dr. A. Krishnamoorthy
(Supervising Guide)
Emeritus Professor
Department of Mathematics,
Kochi-682022 Cochin university of Science and Technology
26" February 2016 Kochi-682022






DECLARATION

|, Sathian M K hereby declare that this thesis entitte@CONTROL
POLICIES IN REPAIR OF k-out-of-n SYSTEMS contains no material
which had been accepted for any other Degree or Diploma in any University or Institu-
tion and that to the best of my knowledge and belief, it contains no material previously

published by any person except where due reference are made.

Sathian M K
Research Scholar ( Reg. No. 3387)
Department of Mathematics
Kochi-682022 Cochin university of Science and Technology
26" February 2016 Kochi-682022, Kerala






ACKNOWLEDGMENT

It is my pleasant duty to express gratitiude to all who instilled in me the desire to
pursue mathematical research.

I would like to express my heartfelt gratitude to my supervisor, Dr. A. KRISH-
NAMOORTHY, Emeritus Professor, Department of Mathematics, Cochin University of
Science and Technology for his guidance during my research. He has been a constant
source of inspiration and always looked into the progress of my work, corrected and
guided me with immense care and patience.

A special thanks to. Dr. Viswanath C Narayanan for his support to this project from
the very beginning. His remarkable knowledge and response with characteristic warmth
bene ted a lot. He is the co-author of all my papers | owe a special debt to him.

| thank Dr.B. Lakshmy, Head of the Department of Mathematics, for the encour-
agement and help she had given during my research. | am also grateful to Prof. M.N.
Nampoothiri, Prof. P.G. Romeo, Dr. R.S. Chakravarthy and Prof. A. Vijayakumar for
their encouraging words. | also thank thice stdf and librarian of the Department
of Mathematics for their support and help of various kinds. My gratitude also goes to
the authorities of Cochin University of Science and Technology for the facilities they
provided.

| also thank the various fellow researchers from whom I bene ted immensely. Among

them Mr. B Gopakumar, Mr. Sajeev S Nair, Mr. Varghese Jacob, Mr. C Sreenivasan,



Dr. P.K. Pramod, Mr. R. Manikandan, Mr Ajayakumar, Ms. C.P. Deepthi, Ms T.Resmi,
Mr. Kirankumar, Mr. K.B. Tony, Mr. Manjunath and Mr. Pravas need special mention.

| express my feeling of gratitude to my colleagues, Mrs. Jeepamol J Palathingal,
Mr. Shajeeb, Mr. Albert Antony, Mr. Sajeevkrishna, Dr. Vijayalakshmy R Menon, Mr.
Krishna Das K and Mrs. Magy for the interest they showed in my work.

| express my heartfelt gratitude to all my friends and well wishers whose support
and encouragement were always a source of inspiration for my achievement. Mr. M.P.
Rajan, Dr.V.K. Krishnan, Mr. Raju S, Mr. Lal M.C. and several others are among them.

Over and above | would like to mention witlfaction about the moral support and

encouragement given all throughout my work by my Mother.

SATHIAN M K

vi



To
My

Parents and Teachers

Vii






Contents

Chapter 1. Introduction

1.1. Queueing theory
Arrival pattern of customers
Service Pattern
Queue discipline
System capacity
Number of service channels
Number of service stages

1.2. Basic Concepts
1.2.1. Stochastic process
1.2.2. Markov Process
1.2.3. Exponential distribution
1.2.4. Renewal Process
1.2.5. Poisson Process
1.2.6. Continuous-time Phase type (PH) distributions
1.2.7. PH-renewal process

1.3.

1.3.1. Level Independent Quasi-Birth Death (LIQBD) process

viii



1.3.2. Matrix Analytic Method

1.3.3. Level Dependent Quasi Birth Death (LDQBD) Process

1.3.4. Neuts-Rao Truncation method
1.4. Review of related works

1.5. An Outline of the Present Work

Chapter 2. Reliability of &-out-ofn system with repair by a single server

extending service to external customers with pre-emption

Abstract
2.1. Introduction
2.2. Modeling and Analysis
The arrival process
The service process
Objective
The Markov Chain
2.3. Steady State Analysis
2.3.1. Stability condition
2.3.2. Steady State Vector
2.4. A Special Case
2.4.1. The Markov Chain Model
2.4.2. Steady State Analysis
2.4.3. Performance Measures

2.4.4. Other Performance measures

ix

10

10

11

15

20

20

21

23

23

23

24

24

27

27

29

31

32

33

38

43



2.4.5. Another Special case 46
Performance Measures for the cd$e 1 48
2.5. Numerical illustrations 50

2.5.1. Hfect of theN-policy on the probability that server is busy with

external customers 50
2.5.2. Hfect of theN-policy on the system reliability 52
2.5.3. Cost analysis 56

2.5.4. Comparison with B-out-n system where no external customers

are serviced 57

Chapter 3. Reliability of &-out-of-n system with a single server extending

non-preemptive service to external customers 60

3.1. Introduction 60
3.2. The queueing model 61

3.2.1. The Markov Chain 62
3.3. Steady state analysis 65

3.3.1. Stability condition 65

3.3.2. Computation of steady state vector 67
3.4. Performance measures 71

3.4.1. Busy period of the server with the failed components of the main
system 71
3.4.2. Other performance measures 73

3.5.  Numerical Study of the Performance of the System 75

X



3.5.1. The Hect of N Policy on the Server Busy Probability 75

3.5.2. The #ect of N policy on system reliability 75
3.5.3. Analysis of a Cost function 76
3.6. The retrial model 83
3.7. Steady state analysis of the retrial model 85
3.7.1. Stability condition 85
3.7.2. Computation of Steady State Vector 91
3.7.3. Computation of the matrRy 93
3.8. System Performance Measures 97
3.9. Numerical study of the performance of the system 99
3.9.1. The #ect of N policy on the server busy probability 99
3.9.2. Cost Analysis 101

Chapter 4. Reliability of &-out-of-n system with a repair facility extending

service to external customers THepolicy 103
4.1. Introduction 103
4.2. The queueing model 105
Notations 106
4.2.1. The Markov Chain 106
4.3. Steady state analysis 109
4.3.1. Stability condition 109
4.3.2. The steady state probability vector 111

4.4. Performance measures 113

Xi



4.4.1. Busy period of the server with the failed components of the main
system 113

4.4.2. Probability that the main system goes to the down state before the

random timeT is materialized 115
4.4.3. Other performance measures 117
4.5. Numerical study of the performance of the system 119

Chapter 5. Reliability analysis of leout-of-n system with repair facility

extending service to external customers in a pool of in nite

capacity 125

5.1. The queueing model 125

5.1.1. The Markov Chain 126
5.2. Steady state analysis 131

5.2.1. Stability condition 131

5.2.2. The steady state probability vector 134
5.3. Performance measures 135
5.4. Numerical study of the performance of the system 137

Chapter 6. Reliabiity of &-out-of-n System with a repair facility rendering
service to external customers in a retrial set up and orbital search
underN-policy 142
6.1. The queueing model 142

6.1.1. The Markov Chain 143

Xii



6.2. Steady state analysis 147

6.2.1. Stability condition 147
6.2.2. The steady state vector 154
6.2.3. Computation of the matriR,, 155
6.3. Performance measures 159
6.4. Numerical study of the performance of the system 162

Chapter 7. Reliability of &-out-of-n system with a repair Facility- Essential and

Inessential services 169
7.1. Introduction 169
7.2. The Markov Chain 170
7.3. System performance measures 177
Numerical study of the system performance measures 178
Conclusion 185

Bibliography 189

Xii



Chapter 1

Introduction

1.1. Queueing theory

All of us have experienced the annoyance of having to wait in line. Queueing is
quite common in many elds, as there is more demand for service than availability
of facility for service. Over the years, the subject found its applications in areas like
telecommunications, Tfac ow, Computer systems, ATM facilities, Computing etc.
and forced researchers study Queueing models extensively. Queueing theory was de-
veloped to provide models to predict the behaviour of systems that attempt to provide
service for randomly arising demands in a natural way. The rst problem of queueing
theory arose in telephone calls and Erlang was the rst who treated congestion problems
in the beginning of 20 century.

The basic characterics of a queueing system are the following:



Arrival pattern of customers.

It describes the way customers arrive and join a queuing system. Arrival pattern is
often random with two adjacent arrivals generally spaced by random intervals called the
inter-arrival time. The arrival pattern is described by means of a probability distribution
of the inter-arrival time. Arrival may also occur in batches instead of one at a time.

If the queue is too long a customer may decide not to enter it upon arrival. This
customer behaviour is called balking. A customer may enter the queue, but after some
time lose patience and decide to leave. This is known as reneging. Another case is,
when there is more than one queue, customers have the tendency to switch from one to

another which is called jockeying.

Service Pattern.
This describes the manner in which the service is rendered. As in case of arrivals,
the service also is provided in single or in batches. The probability distribution of the

service time describes the service pattern.

Queue discipline.

Queue discipline refers to the rule in which customers are selected for service when
a queue has formed. Some of the most commonly used disciplines are rst come rst
served (FCFS), last come rst served (LCFS), random service selection (RSS) i.e., se-
lection for service in random order independent of the time of arrival; there are cases in
which customers are given priorities upon entering the system, those with higher priority

are selected rst.



System capacity.

A queuing system can be nite or in nite. In certain queuing process there is a
limitation on the length of the queue i.e., customers are not allowed to enter if the queue
has reached a certain length. These are called nite queuing systems. If there is no

restriction on the length of the queue then it is called an in nite capacity queuing system.

Number of service channels.
A queuing system can be single or a multiserver system. In a multiserver queuing

system there are several parallel servers to serve a singlesveeal waiting lines.

Number of service stages.

A gqueuing system may have only a single stage of service. But as an example of
a service with several stages of service, consider the physical examination procedure,
where each patient proceeds through various stages of medical examination, like throat

check up, eye test, blood test etc.

1.2. Basic Concepts

Here we give a brief description of the modelling tgtdshniques applied in the
thesis. For more details on these topics one can refer Karlin and Ta@larLatouche

and Ramaswamil).

1.2.1. Stochastic processA family of random variable$X(t),t € T}, whereT
is an index set, is called a stochastic process. The ihdewften referred to as time.
WhenT is a countable se{X(t),t € T} is said to be a discrete-time process, whereas

if T is an interval of the real line, it is called a continuous-time process. For instance,
3



{X,,n=0,1,...} is a discrete time stochastic process indexed by the set of non negative
integers, whilg{X(t), t > 0} is a continuous time process indexed by non negative real

numbers.

1.2.2. Markov Process.
A Markov process is a stochastic proc¢ift),t € T} that satis es the condition
PriX(t,) < X/X(th-1) = Xn1, ..., X(t1) = X1} = Pr{X(t,) < X0/ X(th-1) = Xn-1},
for any set ofn time pointst; < t, < ... < t, in the index set or the time range of the
process andy, X, ..., X, are elements of the state space. That is the stochastic process
{X(t), t € T} that changes states according to a transition rule that only depends on the

current state but not the past is called a Markov process.

1.2.3. Exponential distribution.
A continuous random variabl¥ is said to follow exponential distribution with pa-

rameteiu if its probability density function is given by

uer* x>0
f(xu) =
0 Xx<0

andu > 0. One of the most important properties of the exponential distribution is the
memoryless propertyPr(X > x+y/X > x) = P(X > y) for x,y > 0. In making a
mathematical model for a real life phenomenon we often assume that certain random

variables associated with the problem under study are exponentially distributed.

1.2.4. Renewal Process.
A counting procesé&N(t), t > 0} with independently and identically distributed inter-

arrival times is called a renewal process. Consider a renewal prgd¢gss > 0} having
4



n
inter arrival timesXy, Xo, ... with distribution functionF. LetS, = Y X;,n>1; Sy = 0.
i=1

Then we haveN(t) = maxn : S, < t} and the distribution oN(t) is given byPr{N(t) =

n} = Fy(t) — Fn.1(t) whereF, is then-fold convolution of F with itself. The Poisson

process is a renewal process WhEris an exponential distribution.

1.2.5. Poisson Process.

A Poisson proces(t), t > 0} is a renewal process having ratée

(i) X(0)=0.
(i) The process has stationary and independent increments.
(iii)y P{X(h) = 1} = Ah + o(h).

(iv) P{X(h) > 2} = o(h).

It follows from the de nition that for alls,t > 0O,
n
P{(X(t+9) - X(9) =n} = e‘“%, n=0,1,....

For a Poisson process having paramatdre inter arrival time has an exponential dis-

tribution with mean 1.

1.2.6. Continuous-time Phase type (PH) distributions.

Consider a Markov process on the stdte®, . . ., m+1} with in nitesimal generator

T 71O
matrix Q = where themx mmatrix T satis esT; < Ofor1<i <mandT;; >0

0O O
fori # j; T%is anmx 1 column matrix such thafe + T° = 0, wheree is a column

matrix of 1’s of appropriate order. Let the initial probability vector@fe @, am:1),
5



wherea is a 1x mdimensional row vector ang,,, is a scalar such thate + a1 = 1.
Also assume that the state2]. .., mare all transient so that absorption in to the state
m+ 1 from any initial state is certain. For eventual absorption into the absorbing state,
starting from every initial state, it is necessary anflisient thatT is non singular.

The probability distributior=(-) of time until absorption in the stat@ + 1 corre-

sponding to the initial probability vectow(am,1) is given byF(x) = 1 — «€™e, x > 0.

De nition 1.2.1. A probability distributionF(-) is a distribution of phase typeH-
distribution) if and only if it is the distribution of time until absorption of a nite Markov

process described above. The pairf) is called a representation B{-).

For PH-distributionF(-) with representationa(, T),

(i) The distributionF(-) has a jump ak = 0 of magnitudey, 1.
(i) The corresponding probability density functid@) is givenbyf (x) = a exp(T X)TC.

(i) The Laplace-Stieltjes transforrf(¥ of F(-) is given by

F(S) = ame1 + a(sl - T)T, for Rgs) > 0.

(iv) The moments about origin are given py= (-1)k!(aT%e) for k > 0.
W

Whenm = 1 andT = [-}], the underlyingPH-distribution is exponential.

1.2.7. PH-renewal process.
A renewal process whose inter-renewal times haweHadistribution is called a

PH-renewal process. To constructPH-renewal process we consider a continuous
6



time Markov chain with state spadd,2,...,m + 1} having in nitesimal generator

T T°
Q = . Them x m matrix T is taken to be nonsingular so that absorption to

0 O
the statem + 1 occurs with probability 1 from any initial state. Let,(0) be the initial

probability vector. When absorption occurs in the above chain we say a renewal has
occurred. Then the process immediately starts anew in one of the{dtdtes., m} ac-
cording to the probability vectar. Continuation of this process gives a non terminating

stochastic process call&H-renewal process.

1.3.

1.3.1. Level Independent Quasi-Birth Death (LIQBD) process.
A level independent quasi birth and death process is a Markov process on the state
spaceS ={(i,]) :1>0,j=1,2,...,mand with in nitesimal generator matri§Q given

by
Bo Ao

Bi Ai Ao
A A A

Q= A A A (1.3.1)

The above matrix is obtained by partitioning the state sga@sS = (J; A where

A =1{(,])/] =1,2,...,m}. The states im\; are said to be in leval The states within
7



the levels are called phases. The maBixdenotes the transition rates within level 0,
matrix B; denotes the transition rates from level 1 to level &, A; and Ay denote

transition rates from levelto (i — 1),i and { + 1) respectively.

1.3.2. Matrix Analytic Method.

Even though the Queueing models suchMygM/1, M/M/co and G/G1 are well
studied and are well tractable using the methods like Method of generating functions,
Laplace Transforms etc., they fail to provide numerical tractability analysis of such
gueueing models especially when we assume the distribution of inter-arrival time or
service time is to be not non-exponential.

Matrix analytic approach to stochastic models was introduced by M.F Neuts to pro-
vide an algorithmic analysis for queueing models. The following brief discussion gives
an account of the method of solving an LIQBD using the matrix geometric method. For
a detailed description, we refer to Neuis], Latouche and Ramaswandiq].

Let x = (Xo, X1, X2, . . .), be the steady state vector, wheys are partitioned ag; =
(x(i, 0), x(i, 1), x(i, 2), . . ., x(i,m)), m being the number of phases with in levels.

Letx = %R, i > 1. Then fromxQ = 0 we get

XoAQ + X]_Al + X2A2 = 0
XoAo + XoRA + XoR2A, = 0

Xo(Ag + RA + R2A) = 0.

ChooseR such thaR?A, + RA + Ay = 0.



Also we havexgBy + x;B; = 0, which gives

XoBo + XoRB, = 0

ie., Xo(Bo+RBy)=0.

First we takex, as the steady state vector®Bf + RB,. Thenx;, fori > 1 can be found
using the formulaey = xR fori > 1. Now the steady state probability distribution of
the system is obtained by dividing eaghwith the normalizing constank{+x; +. . .]e =
Xo(l = R)te.

The above discussion leads to the following theorem.

Theorem 1.3.1.The process represented by matrix Q is positive recurrent if and only if

the minimal non negative solution R of the matrix quadratic equation

RPA; + RAL + Ag=0 (1.3.2)

has spectral radius less than 1 and the nite system of equations

Xo(Bo + RBy) =0,

X(l -R)le=1

has a unique solutionyx If the matrix A= Ag + A; + Az is irreducible, then s(R) < 1if
and only iftAqe < nA.e, wherer is the stationary probability vector of A Ag+ A; + As.
The stationary probability vector % (Xo, X1, . ..) of Q is given by x= xR fori > 1.

To nd the solution R of equatiofi.3.2) we use the iterative procedure.
9



1.3.3. Level Dependent Quasi Birth Death (LDQBD) Process.
A level dependent Quasi-Birth Death process is a Markov process on a state space

S={(@,]),i>0,J=1,2,...,n} with in nitesimal generator matrixQ given by

A10 AOO
A21 All AOl

A22 A12 AOZ

P= Az Az Aoz : (1.3.3)

The state spac8 is partitioned in to dierent leveld where leveli is given byA; =
{(G,))/i = 0,j =1,2,...,n}. Here the transitions take place only to the adjacent levels
for i > 1. But the transition rate depends on the leivalinlike in the LIQBD, and
therefore the spatial homogeneity of the associated process is lost.

A special class of LDQBD’s is those which arise in retrial queueing models (when

the retrial rate at any instant depends on the number of customers in the orbit).

1.3.4. Neuts-Rao Truncation method.

Since the repeating structure is lost in LDQBD, its analysis is much more involved.
However Neuts and Rad 9] suggested a truncation procedure using which certain class
of LDQBD’s which include retrial models can be made to have a repeating structure

from a certain leveN", whereN is stfficiently large. For giving a brief idea of their
10



method, we assume that= mfor everyi > N so that each levet N contains the same
number of states. Note that this is the case in most of the retrial queueing models. To
apply Nuets-Rao Truncation, we takg = A, Ao = Aoy andAg = Agy for all i > N.
In the case of the retrial queues this is equivalent to assuming that retrial rate remains
constant whenever the number of orbital customers exceeds a certaiN limit

De ne Ay = Aoy + Al + Aoy andrry = (in(0, 0), n(0, 1), 7n(0, 2), . . ., mn(0, m))
be the steady state vector of the mathix. Then the relationsyAy = 0 together with
mne = 1 when solved give the various componentsef The truncated system is stable
if and only if 7y Aone > mnAone and the original system is stablenilii;’rlﬁ%: <1

Having described the tools for analysis, we move on to provide a review of the work

done in the theme of the present thesis.

1.4. Review of related works

An n component system is calledkeout-of-n system if at leask components are
in operational state. Application of such systems can be seen in many real-world phe-
nomena. For instance almost all our machines, fiétent complexity, are subjected to
failure. One would expect a machine to work as a whole, even if some of its components
have failed. The best example is that of an aircraft engine. A thorough reliability check is
required to ensure the safety of passengers even in some unforeseen situations. Consid-
ering another example, once can’'t expect to run a good emergency service like a hospital
meeting minimum requirements. We would expect a hospital to run even if some of its

doctorgnursegother st& is on leave. However, keeping these extra resources could be
11



costly and not even feasible in some cases: it may not be possible to keep an extra engine
in an aircraft. A probabilistic study of a real world system kasut-of-n system, often
helps to develop an optimal strategy for maintaining high system reliability.

A k-out-of-n system further be classi ed as follows:

The system is called ‘COLD’ if the operational components do not fail while the
system is in down state. It is called ‘HOT’ if operational components continue to dete-
riorate at the same rate while the system is down as when it is up. The system is called
‘WARM'’ if the deterioration rate while the system is upfi@girs from that when it is
down. An extensive study d-out-of-n systems can be seen in Krishnamooréhyal.

[15], Chakravarthy, Krishnamoorthy and Ushakuméii [

In today’s world, due to collaboration betweelffdrent companies in fierent coun-
tries and also due to some government policies for reducing unnecessary additional use
of global resources for a better tomorrow, sharing of resources between ryatioltial
national companies have become more common. For example, a mobile tower may be
shared by dterent telecom companies. A transporting system may choose deliver goods
along with passengers for additional income. A car service station may choose to serve
customers other than those of its main dealer. However, a system entertaining customers
other than its main customers may lead to dissatisfaction of its own customers, which
may be very costly in some situations. For example, it is hard to imagine an aircraft
overloaded with goods in addition to the passengers. For this reason, studiesibn
of-n systems where external customers are also entertained, have gained attention in the

literature. Dudiret al. [9], Krishnamoorthyet al. [12, 13 are among such studies. In

12



[9], the external customers are sent to an orbit and where there they can try to access
the idle server. Once selected for service, an external customer is assumed to get a non-
preemptive service. Numerically, they show that providing service to external customers
in this fashion is economical to the system in comparison with the decrease in the reli-
ability caused due to external service. ItZ] it is assumed that the external customers,
nding the service station busy on arrival, are directed to a pool of in nite capacity. They
also assume that if the size of theffan of internal customers is less thiaja pooled cus-

tomer is selected for service with some probabiptyin [13], a nite pool and an orbit

of in nite capacity accommodate the external customers in such a manner that external
customers join the orbit with some probability and from there try to enter the pool. The
external customers are selected for service from the pool. The internal customers (failed
components) are served based or\apolicy in the sense that the repair of the failed
components start only on the accumulatiolNa€omponents. In addition they assume
that the on-going service of an external customer is not pre-empted on accumulation of
N-failed components. As irf] and [12, 13 also indicates a decrease in the server idle
probability, and an increase in the overall system revenue.

The rst paper that introduced the concept of orbital customers in to reliability is by
Krishnamoorthy and Ushakumad{]. In that paper, the authors assumed that a failed
component is sent to an orbit, if it nds the server busy. The authors studied the COLD,
HOT, WARM variants of the problem. Ushakumari and Krishnamoorly §eneral-

ized the above model by assuming arbitrarily distributed service time. Boclkaaly

13



[5] discuss a retrial queueing system with a nite waiting space, where the customers in
the waiting space have priority over customers in the orbit.

A T-policy refers to calling the server to the system after the elapse of a random time
T. Queueing systems where the service is accordindgtgalicy have been extensively
studied. We refer to Artalejd?] for some references on such studies. Krishnamoorthy
and Rekhal1l], Ushakumari and Krishnamoorth22] are among the studies &fout-
of-n systems where the repair is undepolicy. In [11], it was assumed that the server
is called to the system either when the random tifnexpires or when the number of
failed components reaches- k, whichever event occurs rst. Ii2p)], it was assumed
that the server is called whenever the maximum of an exponentially distributed duration
T and the sum oN(1 < N < n - k) random variables is realized.

Queues with postponed work was introduced in Deegtal [8]; the Doctoral thesis
of Ajayakumar [] exclusively deals with queues with postponed work. We refer to the
paper Chitra Devet al. [7] for some references of queues with postponed demand.
The idea of search for customers was introduced by Neuts and Ramallghtorhe
concept of orbital search was introduced by Artalejal. [4], where for utilizing the
server idle time in a retrial queueing system, the server makes a search at a service
completion epoch with some probability and picks a customer randomly from the orbit
for the next service. Because of the importance of this notion, this work was followed
by several other contributions. We refer to the paper ArtalgjoFhung-Duc Q] for

more references on such studies.

14



Postponement of work is a common phenomena. This may be to attend a more
important job than the one being processed at present or for a break or due to lack of
quorum (in case of bulk service, or whé#policy for service is applied) and so on.
Queueing systems with postponed work is investigated in Deepak, Joshua and Krish-

namoorthy §].

1.5. An Outline of the Present Work

This thesis is divided into seven chapters including the present introductory chapter.

In second chapter we study reliability ofkeout-of-n system with a single repair-
man, who also renders service to external customers. We introdubkpaticy, in
which repair of internal customers (failed components) is started only on accumulation
of N failed components. The service to external customers is of pre-emptive nature, in
the sense that their service can be interrupted in between on accumulabbfaitéd
components. It is assumed that an external customer, who on arrival nds the server
busy with an external customer, joins a queue of in nite capacity; where as an external
customer who nds the server busy with an internal customer leaves the system forever.
The failure times of the components follow an exponential distribution; the arrival of ex-
ternal customers is according to a Poisson process and service times of the internal and
external customers follow non-identical phase type distributions. Using matrix-analytic
methods we discuss system stability and steady state distribution. A special case of the
model where the underlying distributions are all exponential has been considered. Ex-

plicit expression for the stability condition and a product form solution for the steady
15



state have been obtained for this case. Several system performance measures have been
obtained explicitly. Analysis of a cost function indicates tihapolicy does help to
optimize the system revenue maintaining high system reliability.

In the third chapter we consider tvkeout-of-n systems with single server who pro-
vides service to external customers also. Both models assuhgalticy that the repair
of failed components (main customers) start only on the accumulatidh aff them.
When not repairing failed components, the server attends external customers (if there is
any) who arrive according to a Poisson process. Once started, the repair of failed com-
ponents is continued until all the components become operational. Service of external
customers is non pre-emptive in nature. When there are atNetastied components in
the system and or when the server is busy with failed components, external customers
are not allowed to join the system. Otherwise, in the rst model they are assumed to
join an in nite capacity queue of external customers; whereas in the retrial model, they
join an orbit of in nite capacity. Life time distribution of components, service time
distribution of main and external customers and the inter retrial time distribution of or-
bital customers in the second model are all assumed to follow exponential distributions.
Steady state analysis has been carried out for both models and several important system
performance measures based on the steady state distribution derived. A numerical study
comparing the current models with those in which external customers are not considered
has been carried out. This suggests that rendering service to external customers helps to

utilize the server idle time pro tably, withoutfBecting the system reliability.
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In the fourth chapter we studykaout-of-n system with a single server whdters
service also to external customers accordind tpolicy. The server attends external
customers only (if there is any) until the realization of the timdf there is at least one
failed component present at the moment of realization of fim#he external customer
in service will get pre-empted and the server is switched on to the service of main cus-
tomers; otherwise the server continues at his present status and thé& ckstlarts. The
failure times of the components and realization times follow exponential distribution; the
arrival of external customers is according to a Poisson process and service times of the
internal and external customers follow non-identical exponential distributions. Explicit
expression for stability condition has been obtained and steady state analysis has been
carried out. A numerical study of several important performance measures and a com-
parison of the current model with the one in which no external customers are allowed
has been carried out.

The fth chapter describes lk-out-of-n system with single server extending service
to external customers also. It has a niteffar of capacityn — k + 1 where the failed
components of the main system wait for service in the order of their arrival and a pool
of external customers with in nite capacity. At the end of a service if there are external
customers in the pool, the system operates as follows: if the queue infieeiblempty
an external customer from the pool is transferred to th&buwvith probability 1 and
immediately starts its service; if the queue size in th&dsutransition level) is less
thanL, a pre-assigned number & L < n- k + 1), then again an external customer

from the pool is transferred to the head of the queue in tiebwith probabilityp and
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immediately starts service; if there are betwéeandn — k + 1 failed components in

the bufer, the customer at the head of the queue in thféebenters in to the service
process. We assume that if an external customer on arrival nds a busy server with main
customers, he joins the pool with probabilityO < y < 1. When no external customers

are present, the server attends main customers if there is any. Inter arrival times of failed
components of the main system and external customers follow exponential distribution
with different parameters. The service process of main customers and external customers
has the same phase type distribution. Explicit expression for stability condition has been
obtained and the steady state distribution and several important performance measures
have been studied numerically. A numerical comparison of the current model with those
in which no external customers are allowed has been carried out.

In Chapter 6 we study a retrial model discussed in chapter 2 with the assumption that
at service completion epochs of external customers or at the moment of service comple-
tion of last main customer from the time of start of service of main customers, the server
makes a search and selects an external customer (if any) randomly from the orbit for the
next service with a given probability. Arrival process of failed components has inter-
arrival times exponentially distributed and that of external customers is according to a
Poisson process. Service time of both main and external customers are exponentially
distributed with diferent parameters and are also independent. Stability of this model
has been discussed and the analysis of the steady state distribution and several perfor-

mance measures has been carried out numerically. Also the current model is compared

18



numerically with ak-out-ofn system with repair in which no external customers are
allowed.

In the seventh chapter we study reliability df-aut-of-n system with a single server
which provides an essential and several inessential (by mistake) service with given prob-
abilities. Contrary to assumptions on models in previous chapters, here no external cus-
tomers are provided service. The essential service time and the components life time
follow exponential distribution of dierent parameters and the duration of service in the
inessential states has a phase type distribution. Tieeteof inessential service to the
failed components on the system reliability has been studied. Several important perfor-

mance measures have been studied numerically.
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Chapter 2

Reliability of a k-out-of-n system with repair by
a single server extending service to external

customers with pre-emption

Abstract

In this chapter we study the reliability oflaout-of-n system, with a single techni-
cian, who also renders service to external customers besides repairing the failed com-
ponents in the system. For optimizing the revenue from external service without com-

promising the system reliability, we introduce tNepolicy, in which the repair of the

OThis Chapter is published in Electronic Journal Reliability:Theory and Applications (Gnedenko fo-
rum, Volume 11, June 2016,pp 61-93)
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internal customers (failed components) starts only on accumulatibinfaited compo-

nents. The service to external customers is of preemptive nature, in the sense that their
service can be interrupted on accumulatioriNofiailed components. It is assumed that

an external customer, who nds the server busy with an external customer /berhis
arrival, joins a queue of in nite capacity; whereas an external customer who nds the
server busy with an internal customer leaves the system forever. The failure times of
the components follow an exponential distribution; the arrival of external customers is
according to a Poisson process and the service times of the internal and external cus-
tomers follow non-identical phase-type distributions. Using matrix-analytic methods,
we discuss the system stability and steady state distribution. A special case of the model
where the underlying distributions are all exponential has been considered for studying
the dfect of the service to external customers andNkgolicy on the system reliability.
Explicit expression for the stability condition and a product form solution for the steady
state have been obtained for this case. Also several system performance measures have
been obtained explicitly. Analysis of a cost function indicates ablicy does help to

optimize the system revenue maintaining high system reliability.

2.1. Introduction

In the present chapter, we studk-sut-of-n system, where the sevefters service
to external customers for additional income. For optimizing the revenue by way of pro-

viding external service, maintaining a high system reliability, we introdudd-golicy
21



in which the service of the failed components starts on accumulatidbhfafled com-
ponents. The service to the external customers is of preemptive nature in the sense that
their service may be interrupted in between on accumulatidd #iled components.

The external customers join a queue of in nite capacity on nding a busy server. The
current study dters from that in 13] in that, here the pool (waiting space) of external
customers is of in nite capacity and here there is no orbit of retrying customers. Also
in contrast to 13], the service of external customers is of preemptive in nature here.
It may seem that the model under discussion has stronger assumptiong 3hawuf

the objective here is to check whether we can get more details of the system, like its
stability condition, steady state probability distribution etc. by strengthening some as-
sumptions. It turns out that, our objective is achieved, in the sense that an explicit steady
state distribution of the underlying Markov chain has been obtained.

This chapter is arranged as follows: In section 2.2, we perform the Stochastic Mod-
eling of the above problem and in section 2.3, we perform the steady state analysis of
the underlying Markov chain after nding a necessary anffisient condition for the
stability of the system. Section 2.4, discusses a special case of the model discussed in
Section 2.2, where the service time distributions are assumed to follow exponential dis-
tribution. In section 2.5 we conduct a numerical study of the model discussed in Section
2.4 and compares it with a model in which no external customers are allowed. Section

7.3 concludes the discussion.
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2.2. Modeling and Analysis

In this chapter we study the reliability ofk@aout-of-n system with repair by a single
repair facility which also provides service to external customers. The system consists of

two parts.

(1) A main queue consisting of customers (failed components d¢-the-of-n system)
and

(2) A gueue of external customers.

A k-out-of-n system is in the up state (working state) as long as atkeasnhponents

are in operational state. Otherwise the system is in the down state.

The arrival process.

Arrival of main customers have inter-occurrence time exponentially distributed with
parametei; when the number of operational components ofkiwait-of-n system ig.
By taking; = % we notice that the failure rate is a constantArrival of external cus-
tomers have inter-occurrence time exponentially distributed with pararetrrival
of external customers is temporarily halted while serving the main customers (the failed

components of thk-out -of-n system).

The service process.
Commencement of service to the failed components of the main system is governed
by the N-policy, that is at the epoch the system starts with all components operational,

the server starts attending one by one the customers from the queue of external customers
23



(if there is any waiting). At the epoch when the accumulated number of failed compo-
nents of the main system reach¢she external customer in service will get pre-empted
and the server is switched on to the service of main customers. Service times of main
customers and external customers follow phase-type distributions with representations

(a, S) and B, T) of ordersm, andmy respectively.

Objective.
To maximize the reliability of &-out-of-n system with repair by a single server, who

provides service to external customers also, basdd-policy.

The Markov Chain.
Let X,(t) denotes at timénumber of external customers in the system including the
one getting service (if any) ,

Xo(t) denotes the server status at titrie ned as;

0, ifthe serverisidle or serving an external customer
Xao(t) =

1, ifthe server is busy with a failed component
X3(t) denotes number of main customers in the system atttineduding the one getting
service (if any).X,(t) denotes the phase of the service process.

Let X(t) = (Xa(t), Xa(t), X3(t), X4(t)) then{X(t), t > 0} is a continuous time Markov chain
24



on the state space whose levels are designated

1(0) =1{(0,0,j1)/0< j1<N-1JU{(0, L, j1, j2)/1< ji<n—-k+ 1 1< jo<my},
I(i) = 1(i,0) U (i, 1),
[(1,0) = {(i,0, j1,j2)/0< 1 < N-=-1,1< j, <my}

1(,1)={(,1, j1,j2)/1< j1<n—-K+1,1< jp, <my}.

In the sequel,

(i) 1, denotes the identity matrix of ordar
(ii) 1 denotes an identity matrix of appropriate size;
(i) e, denotes an x 1 column matrix of 1's
(iv) edenotes a column matrix of 1’s of appropriate order;

(v) E, denotes a square matrix of ordede ned as

-1, ifi=j;l<i<n
En(i.1) =91, ifj=i+1;1<i<n-1

0, otherwise

(vi) E; = Transpose oE,
(vii) r,(i) denotes a k nrow matrix whosé" entry is 1 and all other entries are zeros
(viil) Cy(i) = Transpose of (i)

(iX) ® denotes Kronecker product of matrices
25



(x) S°=-SeT’°=-Te . o
The in nitesimal generator matrix diX(t)} is given by

A A
A A A

Ao AL Ag _ |Aw Ax
Q= ,where A; =

Klo Kll

Ao = AEn — My, Aoy = [Cn(N) ® rnki1(N)] ® A, A = [Croier(1) @ rn(1)] ® S°,
A1 =l ® S+ (E) g + Inkin) ® (S%)

+ [Enckir + Crokst(n— K+ 1)@ rpyr1(N— K+ 1)] @ My ;

Ao Aoz
A = ;

A10 All
Aoo = En ® My + Iy ® (T = A, ). Aoz = [Ch(N) @ M1 (N)] ® (heiny);

Ao = [Crwi(D) @ rn(D] © (S°B), Au= Au;

_ |ne(B) ol _ |[In®T? 0 In® (M) O
AO: 7A2: aAO: 5
0 0 0 o0 0 0
In®(T%) 0
A =
0 0
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2.3. Steady State Analysis

2.3.1. Stability condition.
Let A = Ay + A + A, andr be the steady state vector Af That isn satis es the

equations

n#A=0 and (2.3.1)

me=1 (2.3.2)
Partitioningr asz = (mp, 1), €quation (2.3.1) gives

70| En ® Mimy + In® (T + T9B)| + mAp = 0 (2.3.3)

moPo1 + Mg = 0. (2.3.4)

From equation (2.3.4); = -moAo1 AL}

Substituting in equation (2.3.3), we get
7o | En ® M, + In® (T + T9)| - moA01 A1 A = 0 (2.3.5)
We notice thato = (—A11€)('n(1) ® B) and therefore-AL1 Ao = e(rn(1) ® B)

—Ao1A11A10 = (Cn(N) ® hemy) (Tn(1) ® B)

= (Cn(N) @ rn(1)) © (hemy B).- (2.3.6)
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Thus equation (2.3.5) reduce to
7o | En ® A, + (Cn(N) @ (1)) ® (hemyf) + In @ (T + T%B)| = 0. (2.3.7)

Further partitioningro = (70,0, 701, - - - » Ton-1), €Quation (2.3.7) give rise to the follow-

ing set equations

700 (T + T = Mum,) + mon_1h€my8 = 0 (2.3.8)

7oiMmy + 7011 (T + T = M) =0,0<i <N -1 (2.3.9)

Postmultiply both sides of equation (2.3.8) and (2.3.9) by the column vectar get

700 (T + T = M, + hem, ) = 0 (2.3.10)
ﬂ'o’ie = 7T0)i+le, 0< i <N-1 (2311)

And equation (2.3.10) gives
o0 = an (2.3.12)

wheren is the steady state vector of the generator matrxT s — A, + Aey8 and ‘@
IS a constant.

Now equation (2.3.9) gives

ro = (~1)@in(T + T~ M) 0<i <N -1 (2.3.13)
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Equation (2.3.13) determines the vecigup to the multiplicative constant.

It follows from equations (2.3.11) and (2.3.13) that

AL = Mg e

=\aN
N-1
nAe = Z ﬂo,iTo
i=0
N-1 .
=a ) (-1)An(T+T%B—hlm,) T°.
i=0

HerexrAse < rA,e becomes

N-1 .
N& < > (-D)Nn (T + T% = Mmy) T,
i=0

This leads to the following theorem for the stability of the system.

Theorem 2.3.1.The Markov chair{X(t)} is stable if and only if

N-1

NT < 3 (1) (T + T8 — M) ' T°.
i=0

2.3.2. Steady State Vector.

The steady state vectmris partitioned ax = (Xo, X1, X2, . . .) Satis es the equations

XoKl + XlAiz =0
X()Avo + X]_Al + X2A2 =0

XiAg + Xis1A1 + Xiu2Ap = 0,1 > 1.
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Matrix theoretic approach (See Neuls]) gives
x=xR1ix>1 (2.3.14)
whereR is the minimal non negative solution of the matrix quadratic equation
R2A; + RA + Ag = 0. (2.3.15)

It then follows that

X = —XoPo(Ar + RA) ™ (2.3.16)

and thatx, satis es the system of equations
Xo (AL = Ao (Ar + RA) ™ Ay) = 0. (2.3.17)

From the structure of the matri, it follows that theR matrix has the form

R R
R= (2.3.18)

0 O

whereR; is a square matrix of ordétm, andR; is a matrix of ordeNnyx (n—k+1)m;.

o R RR,

0O O
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Equation (2.3.15) then reduces to the following equations

R (In® T°B) + RiAgo + RoAsg + Iy ® M, = 0 (2.3.19)
RiAor + ReA1 =0 (2.3.20)
Equation (2.3.20) gives R, = —RjAg1 AL} (2.3.21)

which when substituted in Equation (2.3.19) gives

RE (In ® T%) + RiAgo — RiAo1AAgg + My, = 0

e, R (IN ® TO,B) + Ry (Aoo - A01AIiA10) + XIij =0.
Using equation (2.3.6), the above equation can be rewritten as
RE (In ® T°B8) + Ry [Ago + (Cn(N) ® rn(1)) ® (AemyB)] + M, = 0. (2.3.22)

Solving equation (2.3.22), we g& and hence the steady state vectofXft)}. For
Solving equation (2.3.22) we use Logarithmic reduction algorithm (refer Latouche and

Ramaswami16]).

2.4. A Special Case

We now concentrate on a special case of the problem discussed in Section 2.2 where
the service time distributions of main and external customers follow exponential dis-

tributions with parameterg andu respectively. As expected, this resulted in arriving
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at explicit expression for the stability condition, steady state distribution and several

performance measures.

2.4.1. The Markov Chain Model.
With X (), Xo(t) andXs(t) having same de nition as in section 22(t) = (X1 (t), Xz(t), X5(t))

is a continuous time Markov chain on the state space
{(J1,0,)2)j120;0< o< N-1JU{(j1, L, j2)lj1 2 0;0< jo < n—k + 1}.

Arranging the states lexicographically and then partitioning the state space into levels
i, where each level corresponds to the collection of states with number of external
customers in the system including the one getting service (if any) atttase We get

the in nitesimal generator of the above chain as

Fio Fo
Fo F1 Fo

F, Fi Fo (2.4.1)

Q|
I

The entries of the matrix are described below.

The transition from level to leveli + 1 is represented by the matrix

XI N 0N><n—k+l
Fo =

On—k+)xN Ok 1)x(n—k+1)
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The transition from levei to leveli — 1 is represented by the matrix

tln ONxn—k+1
F, =

On—k+1)xN Ok 1)x(n—k+1)

The transition within level O to level 0 is represented by the matrix

B: B
Fio=

Bs By

where B; = AEy — Ml

B, is aN x (n - k + 1) matrix whose I{, N)" entry is\ and all other entries are zeroes.
Bsis a (h— k + 1) x N matrix whose (11)"" entry isu and all other entries are zeroes.
Bs = AEn ki1 + HE] 1 + AChir1(N =K+ 1) @ rpoger(n— k+ 1).
The transitions within level i > 1, is represented by matrix

D: B
Fl =

Bs By

WherEDl = AEN — (X +ﬁ)IN-

2.4.2. Steady State Analysis.

First we derive the condition for stability of the system.

2.4.2.1. Stability condition.

Consider the generator matrix
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Hi H;
F:F0+F1+F2:

Hs By

whereH; = AEy.

H, is aNx (n—k+ 1) matrix whose i, N)" entry isk and all other entries are zeroes.
Hsis a (h— k + 1) x N matrix whose (11)"" entry isu and all other entries are zeroes.

The stationary probability vectdl = (0,00, T(O1)s "~ * > TON=1)s T2 " * > TLN) """ »
T1n-k+1)) Of the generator matriA satis es the equationﬁF = 0 andlle = 1.

IF =0 gives the following equations

M) =0, 1<1<N-1 and

i )
(Ziﬂﬁ(o,o), Whereai = Z ()x//.l)l, i=12,...N

— j=1
T =

i :
Bimoo, Wheregi= > (Mw),i=N+1...n-k+1
j=1-N+1

The normalizing conditiofile = 1 gives7g) = (P%W, where

N-2 _ 3 N-2 —k+1-N _ 4 n-k+1-N
(,Ll 7\’ ))\' N + )\'('un + }\n + )

=N
R PR PN = 1)

and

e e A A R A

Y =)

Thus we arrive at the following
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Theorem 2.4.1.The proces$X(t), t > 0} is positive recurrent if and only i < .

Proof. Itis well known (see Neutsl7]) that the Markov chain with in nitesimal
generato is stable if and only iftFoe < TF,e, that is if and only if the left drift rate
exceeds that to the right.

We haverFoe = N\7o0) andzF,e = Nimog). Thus{X(t),t > 0} is positive recurrent if

and only ifA < . O

2.4.2.2. Steady State Distribution.

Here using the steady state vedibof the generator matrik, we proceed construct
the steady state vectdt = (X(0), X(1), X(2),...) of the Markov chainX(t),t > 0} by
de ning, X(i) = n(%)i I1, for i > 0, wheren is a positive constant to be found out.

First we will prove thafX satis es the equatioXQ = 0. For this, notice that we can

decompose the in nitesimal generator mat@asQ = Q; + Q,, where
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and

~Fo Fo

F: Fi Fo
62: Fz Fl Fo s

where each entry is a square matrix of ortler n — k + 1 listed as:

— _(X + l_l)l N 0N><n—k+1
Fl =

O-krxN Ok 1yx(n-k+1)

SincellF = 0 andX(i) = 7 ( )I 11, we have

k]l

XQ, = 0. (2.4.2)
Now,
XQ, = [X(0)(=Fo) + X(1)F2, X(0)Fo + X(1)Fy1 + X(2)F2, X(1)Fo + X(2)F1 + X(3)F2.---|.

Notice that £Fo) + %Fz =0and
n nY n iy
F0+(:)F_1+(:] F2=Fo+(:)(|:_1+ :Fz)
H U H U
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which leads us tX(0)(-Fo) + X(1)F, = 0 and

— —\2
F0+ §F1+(2) Fz
T T

=0,i=0123,....

X(i)Fo + X(i + 1)F1 + X(i + 1)F, = (;) X(0)

Hence XQ, =0. (2.4.3)

From (2.4.2) and (2.4.3), we ha¥®; + XQ, = 0, which implies thaXQ = 0.
Finally, Xe= 1 gives the unknown constant (1 - %)
Hence, X = (X(0). X(1). X(2)---), whereX(i) = (L-£)(Z) Tl is the steady state

vector for the matrixQ and we have the following theorem;

Theorem 2.4.2.LetIl = (7o), To1), " - > AON-1) A1) s TAN)s * * - A(1n-ke1)) DE the

steady state vector for the matrix F, where

7oy = oo, l<i<N-1 and

a’ifﬁ'{(o’o), with aj = Z O\/,u)j, i = 1,2,...N

Fﬁ(l’i) = J:.l
| .

Bimoo, forgi= ¥ (Mw),i=N+1..n-k+1

j=1-N+1

Furthero) = CP_LW, where
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,uN_Z _ )\N—Z A A 'un—k+1—N _ )\n—k+l—N
¢=N+ ( (,u_;\)MN) {N+ ( RN ) )} and
(= 1) (1 = (N = IN) o+ g (2 = AN2)
V= .

PN = 1)

ThenX = (X(0), X(1), X(2)- - - ), whereX(i) = (1 - %)( )i?r'is the steady state probabil-

==

ity vector for the Markov chaifX(t),t > 0}.

2.4.3. Performance Measures.

Here we derive certain important performance measures of the system under study.

2.4.3.1. Busy period of the server with the failed components of the
main system.

The busy period of the server with failed components starts the instantM/feeled
components accumulate and it ends when no failed components are left in the system.
Let Tn(i), fori > O, denote the server busy period with failed components, which starts
with i external customers in the system. Note that, the number of external customers
does not fect the busy period of the server with the failed components. Ha8Rr¢H,=
Tn, fori > 0. For analyzing the tim&y, we consider the Markov cha{iY(t)} with state
spac€0,1,2,...,N,N+1,...,n—-k+ 1} and in nitesimal generator given by:

0 0
By = R L where
-Bye By
By = AEn_ke1 + LE/ 1.
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Note thatY(t) denotes the number of failed components of the main systerv@ne 0

is considered as an absorbing state; so that the busy plerisdhe time until absorption
in the Markov chainY(t)}, assuming that it starts at the stdteHence, the busy period
Tn has a phase type distribution with representaﬂmrﬁ@), where the probability vector
w=(0,...,0,1,0,...,0), with 1 appearing in th&l" position. The expected value of
Ty is therefore given bETy = —w(By})e wheree is a column vector wit — k + 1
elements all equal to 1. Now for ndingTy, let us partition the column vectoE(,l)e as

(t. to, ..., taks1)". Then the identityBy(Byh)e = e leads us to the following equations:

M+t + A, =1

uti_l—(k+y)ti+kti+1:1, for2<i<n-k

Mthk — ptner = 1

The above equations give

n—k—i

1 .
ti_ti+:_§ j =0(\/p)!,1<i<n-k
1= j=0@/p)

1 n-k _
thk =t =— and —put; = Z(M,U)J-
M =0
Hence
1 n—k—N+1 _ n-k _
ETy = -ty = =[N Z O /) + Z (h—k+1-j)/wi. (2.4.4)
H j=0 j=n—k—-N+2
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The expected value of the busy period of the server with failed components, which starts

with an arbitrary number of external customers is given by

(9]

Es = ETyn ) X(j1,ON-1)

j1=0
1 1 n—k—N+1 _ n—k _
_ =N /) + (n—k+1- /|, (2.4.5)
(p-y)u ,Z:(; j:n—zk—lN+2

We sum up the above results in

Theorem 2.4.3.The busy period of the server with the repair of the components of the
k-out-of-n system has phase type distribution with represent(itipﬁN). The expected

length of the busy period is given (8.4.5)

2.4.3.2. Expected number of pre-emptions of an external customer
who is taken for service.

Consider the Markov proces§,(t) = (Ny(t), J(t)), whereN(t) is the number of
pre-emptions occurred upto tinigmeasured from the time he is taken for service) of
a particular external customer who is taken for service Htdis the number of failed

components of the main system. Theég(t) has the state space
{(inj2) [l1=0.12....,0< < N- 1 U {A}
whereA is an absorbing state which denotes the service completion of the external cus-

tomer. The in nitesimal generator of this process is
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Q: TO 0 T AO "',where -I’fo:ﬁeN

-F: )“EN _ﬁlN

andA, is anN x N matrix whose K, 1) entry isA.
If py is the probability fork pre-emptions of an external customer who starts service

with i failed components, thep, = (—'T‘lfo) =1- (i)N_i, 0<i<N-1and for

[ A+

k>1,

o= (TR (77
el e )
) (-6

Expected number of pre-emptions of an external customer, starting servicefaidu

components
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2.4.3.3. Expected waiting time of an external customer.

For computing the expected waiting time of an external customer who joins as
the r'" customer in the queue of external customers, we consider the Markov process
Xw(t) = (d1(t), S(1), Io(1)), where Jy(t) is the rank of the external custom@&i(t) = O
if the server is busy with external customers &) = 1 if the server is busy with
a main customer. J,(t) is the number of main customers in the system. The rank
J:(t) of an external customer is assumed to Bef‘it nds | — 1 external customers
ahead of it. The rank of an external customer may decrease by 1 if an external cus-
tomer ahead of it leaves the system after completing the service. Now consider the
Markov processX,(t) for a tagged external customer who ndls- 1 external cus-
tomers ahead of it while joining the system. The state space for this process is given
by {x} U {{1,2,...,1} x ({0} x{0,1,...,N-1} U {1} x{1,2,...,n—k+ 1})}, wherex is

an absorbing state, which denotes the service completion of the tagged customer. The

. . . 0O O
in nitesimal generatorQ,, of this process i€, = , Where
W W

W11
Woo  Wio

W = W23 Wi3

Wy Wy
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with w;j =F +Fg1l<i<l|
Wy = Fo;1<i<l|

W = Ci(1) ® (F2€)

The waiting time of the tagged customer is the time until absorption in the Markov
processX,(t). Let E\(,iv)(l) denote the expected waiting time of a tagged customer who
joins the system with rank who nds ‘i’ failed components. De ning the row vectér
ast = (1) ® rninkea(i + 1), 0<i < N—1. ThenE{() = -6W e, 0<i < N-1.

Let Ew(l) be theN x 1 column matrix whosei (1) entry isE{, ?(1). Taking the proba-
bility that an external customer seexternal customerg,failed components and server
busy with external customers on its arrival(as— %) (%)I (P%W, the expected waiting time
of an arbitrary external customers is given by

0 =\ /T N-1
Z(l—%)[%] CP_LWZEW(HQ.

i= j=0
2.4.4. Other Performance measures.

(1) Fraction of time the system is down is given by,

00 An—k+2-N ('uN _ )\N)
P = lL,Ln—-k+1)= .
down MZ:;) X(Jl’ ) n + ) /,ln_k+l(/l _ )M)((P _ W)

(2) System reliability de ned as the probability that at lekstomponents are opera-

tional

)\n—k+2—N('uN _ XN)
A=) - w)
43
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(3) Average number of external units waiting in the queue is given by,

00 n—k+1

Ng = Z 1 Z X(iwLia) + Z(Jl - 1)Zx(110]3)

j1=0  js=1 j1=2 ja=1

- 1 N
_xlﬁ—i_ﬁ(w—\v)]

(4) Average number of failed components of the main system,

Nfail = ZJ3[ZX(110]3)] Z (Zx(h,l,js))

js=0 j1=0 j1=0

_ 1 [NN-1) (< A AN - Ny (R
= (CP_W){ 5 Z [Z(?»/u)‘]+—ﬂN(ﬂ_ 5 (ZN (/1) N}}

=1

(5) Average number of failed components waiting when the server is busy with external

customers

N-1 )
=, is(z X(jl,o,ja))

j3=0 j1=1
_N(N-1)a
~ Zu(p - )

(6) Expected number of external customers joining the system,

o (N-1
03 =1 ) (Z X(jl,o,ja))
j1=0\j3=0

»
_N@—W'
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(7) Expected number of external customers, on arrival, getting service directly

pd
=

=HU ) X00,js)
ja=0

_ (ﬂ )
@ V)

(8) Fraction of time the server is busy with external customers,

Pexbusy: Z [Z X(j1,0, 13)] ’u((l;l )\‘\V)

j1=1\js=0

(9) Probability that the server is found idle,

N-1
(- 1)

Pidie = Z X00js) = No———~
= a(e—w)

(10) Probability that the server is found busy,

TEEN
I:)busy: 1-Pige=1- N_(ﬂ—)~
A —v)

(11) Expected loss rate of external customers,

oo (n-k+1
94_XZ[Z X(111]3)J (1_(cplil\lf)).

j1=0\ js=1

(12) Expected service completion rate of external customers,
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(13) Expected number of external customers in the system when the server is busy with

external customers

N
QG_Z“[ZX(“"‘”] E-e-w

j1=0 j3=0

2.4.5. Another Special case.
Next we consider second special case of the problem discussed in section 4.1, where
we takeN = 1; that is the case where no special policy has been applied for providing
service to external customers. Notice that in this case, at most importance is given to
the failed components and an external customer can get service only when there are no
failed components in the system. Further, an ongoing external customer’s service may
be pre-empted if a component of the system fails during the service of the former. Since
in this case, knowing the number of external as well as the failed components is enough
for determining the server status, the Markov chain becoXf®s= (X (t), Xs(t)), with
state spac8 = {(j1, j»)lj1 > 0,0 < j, < n—k + 1} and in nitesimal generator
Ao Ao

A A

pd

,wWhere

>
>

Q= A,
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At = AEnks2 + ACoksa(N = K+ 2) ® Iy_ya(n — K + 2)

+ E] oo + (1 = N)Chis2(1) ® Fii2(L);

Asis a h — k + 2) x (n — k + 2) matrix whose (11) entry isk and all other entries are
zeroes;
Asisa -k + 2) x (n - k + 2) matrix whose (11) entry is and all other entries are
zeroes;

A; = Ago — iCh ks2(1) ® T is2(2).

LetA = A, + A, + Ay then
A= AEn k2 + AChoks2(N = K+ 2) ® nksa(N — K+ 2) + UEn k2 + #Choki2(1) ® Mnokea(L)

The stationary probability vectdt = (g0), 7(0,1)s - - - T(ON-1)> T(L1)> - - - TAN)s - - - T(Ln—k+1))

of the generator matriA is given bymq ) = (%)I ooy, =1,2,...n=k+ 1, where

Iun—k+1(,u _ 7\)
0,0 = (#n_k+2 _ )\n—k+2) ’

Here again, from the conditighAqe < 7A€, it can be easily veri ed that the necessary
and sdficient condition for the stability of the Markov cha¥{t) is A < 7.

Applying the same technique as in section 4.2.2, we can easily prove that the vector
X = (X(0). X(1). X(2).....), with X(i) = (1- %)(%) T, is the steady state probability

vector for the matrixQ.
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Performance Measures for the casé&l = 1

(1) Fraction of time the system is down,

® . )\n—k+1 (,u _ )\)
PdOWI‘] = Z X(Jla 1’ n- k + 1) = (/1”‘k+2 _ )\'I’l—k+2)'
j1=0

(2) System reliability,

L ('un—k+1 _ )Ln—k+1)

(un—k+2 _ kn—k+2) '

Pret = 1= Poown=1- > X(ji, L,n—k+1) =
j1=0

(3) Average number of customers waiting in the queue,

© 0 n—-k+1
Ny = Z X(jr01) + Z jl[ Z X(J1, 1, js)]

j1=2 j1=0 ja=1

B ﬁ Iun—k+1(’u _ )\‘)
- (,l_l _ X) (’un—k+2 —_ )\‘n—k+2)

) BT TR

(4) Average number of failed components,

nil [i )Wn—k+2
Ntail = Js WE “ki2 K2y
=1 =0 (k= ) (i = )

(5) Expected number of external customers joining the system in unit time,

> X’un—k+l('u _ )\)
03 = A Z X(j1,00) = (unkr2 — pnke2y”

j1=0
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(6) Expected number of external customers, on arrival, getting service directly

= UX(0,0,0)

C @ =)
- (ﬂn—k+2 _ kn—k+2) :

(7) Fraction of time the server is busy with external customers,

(e8]
I:)exbusy: Z X(j1,0,0)

j1=0

Xlun—k+1(lJ 1)
= (’un—k+2 — kn—k+2)'

(8) Probability that the server is idle,

D) )
Pidie = X(0,0,j3) = T (02— k)’

(9) Probability that the server is found busy,

@1 -

Pousy=1 - Pigie = 1 - T (U2 — pnke2y’

(10) Expected loss rate of external customers,

04 = )\'Z Z XisLlis) | = M ('un—k+2 _ kn—k+2) :

j1=0\ js=1

00 (n—k+l ] _u ('un—k+l _ )\‘n—k+1)
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(11) Expected service completion rate of external customers,

0 /Jn—k+1(/J _ }\)
05 = X(1,00) = H n—k+2 _ ) n—k+2)"
j1=0 (/l - )

(12) Expected number of external customers in the system when the server is busy with

external customers

*© ) _ n-k+1 -\
O = Z 1X15.00) = Ao w-1

(ﬂn—k+2 _ )\n—k+2) '
j1=0

2.5. Numerical illustrations

Here, we perform a numerical study on thieet of theN-policy on the system
performance. Unless otherwise stated, the parameter values for the numerical study are

the following: A = 3.2, u = 5.5,71 = 8.

2.5.1. Hfect of the N-policy on the probability that server is busy
with external customers.

While studying ak-out-of-n system, where the server provides service to external
customers also, the main purposd\policy is to provide improved attention to exter-
nal customers for optimizing the system revenue. According tiNtpelicy considered
here, the moment the number of failed components of the main system reéctines
external customer’s service (‘if there is any’) is pre-empted to attend the failed compo-
nents. Hence, an increase in the valuéo#ill extend the time during which external

customers can get service and so it is expected that the probability that the server is
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busy with external customers increases with an increase in the vaNieTie column

wise increase in Table 2.1 supports this intuition. The high service rate for the external
customers, as compared to their arrival rate can be considered as the reason for the slow
increase in the above probability. The row wise decrease in Table 2.1 points to the de-
crease in the probability that the server is busy with external customers with an increase
in the total number of components in the system. We have the following reasoning for
this behavior: With an increase in the total number of componemishe system, there

can be more number of failed components in the system for a Neadahich leads to an
increase in the probability that the server is attending failed components, resulting in a
decrease in the probabiliBexnusy A closer scrutiny of Table 2.1 shows that, by increas-
ing the policy levelN with an increase in the number of componemtthe same value

for the fractionPeypusy Can be achieved as that whemas a lesser value. For example,
whenn = 45 andN = 7, Peypusy= 0.10915 andPeypysy = 0.10909, whem = 60 with the
sameN. Now withn = 60 and wherN is increased to 25, we see tht sy = 0.10915.

This suggests that, whanincreases, th&l-policy level can be adjusted in favor of the
external customers, which was our objective while introducing\hmolicy. However,
whenN increases, it is probable that the server spends more time for failed components,
once he starts attending them, which leads to a loss of the external customers who nds
the server busy with internal customers. In Table 2.1, one can see that the probability
Pexbusy Nas a lesser value when= 60, N = 30 than in the case when= 45,N = 15,

which points to the loss of external customers. Another challenge here is that, while

increasing theN-policy level, the system reliability is nottected signi cantly.

51



Table 2.1. Dependence of the probabiliBexpusy0n theN -policy level

N n=45 n=50 n=55 n==60

1 0.10910 0.10909 0.10909  0.10909 | o

2 0.10910 0.10910 0.10909 0.10909 | °us

3 0.10912 0.10910 0.10909 0.10909 @ **

6 010914 0.10910 010909 0.10909 .
7 010915 0.10910 0.10909 0.10909 = . s
10 0.10922 0.10912 0.10910 0.10909 = o
11 0.10925 0.10912 0.10910 0.10909 @

12 0.10929 0.10913 0.10910 0.10910 | ;.

15 0.10952 0.10918 0.10911 0.10910 | o1

18 0.11002 0.10928 0.10913 0.10910 o ow

21 0.11118 0.10952 0.10918 0.10911

22 0.11185 0.10965 0.10921 0.10912

23 0.11275 0.10982 0.10925 0.10913

24 0.11397 0.11006 0.10929  0.10914

25 0.11562 0.11037 0.10935 0.10915

26 0.11078 0.10944  0.10917
27 0.11134 0.10955 0.10919
28 0.11209 0.10970 0.10922
29 0.11310 0.10989  0.10926
30 0.11448 0.11016  0.10932
31 0.11638 0.11051 0.10939

2.5.2. Hfect of the N-policy on the system reliability.
In the previous section, we discussed héwpolicy helps in longer duration of atten-
tion to external customers and the challenge there is the possibility of a decrease in the
system reliability. Here we discuss how tNepolicy level dfects the system reliability
Prei. We study two cases with < 1 and% > 1 respectively, results of which are given

in Table 2.2(a) and (b) respectively. While studying the impact ofNkolicy on the
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system reliability, a decrease i, is expected with an increase in valuelf Hence,

the purpose of the Tables 2.2(a) and (b) is to show the magnitude of this impact. Table
2.2(a) shows that Wheﬁl < 1, n = 45 and wherN increased from 3 to 25, there is a
decrease in reliability of magnitude equal t®®. As the total number of components

n increases, the magnitude of decrease in reliability reduces. This is becausey when
increasesk being xed, n — k + 1 increases; as a result, once the server starts attend-
ing the failed components on accumulationNobf them, he spends more time for the
failed components, which maintains a high system reliability even vihémcreases.

In Table 2.1 we have seen thataBicreases, the probabilifye.,,sy decreases and that
increasing thé-policy level can remedy this to some extent; Table 2.2(a) shows that the
reliability of the system is not mucHtacted by increasing thd-policy level. However,

the magnitude of drop in the system reliability increases with the increadepolicy

level. Table 2.2(b) studies the system reliability when the failure rate of the components
A is larger than their repair raje As expected, there is a drop in the system reliability
compared to the cage< u. Other behaviour of the system reliability are similar to that

in Table 2.2(a).
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Table 2.2. (a) Dependence of the system reliability on tNepolicy

level in thelh < u casel = 4
N n=45 n=>50 n=>55 n=60 n=65
1 0.999930799 0.999985933 0.999997139 0.999999404 0.999999881
3 0.999901652 0.999979973 0.999995947 0.999999166 0.999999821
5 0.999855518 0.999970615 0.999994040 0.999998808 0.999999762
9 0.999660194 0.999930918 0.999985933 0.999997139 0.999999404
13 0.999121249 0.999821544 0.999963701 0.999992609 0.999998510
17 0.997560024 0.999506116 0.999899626 0.999979556 0.999995828
21 0.992828071 0.998562694 0.999708474 0.999940693 0.999987960
25 0.977587163 0.995647013 0.999122441 0.999821782 0.999963760
26 0.994222760 0.998838782 0.999764323 0.999952078
29 0.986251056 0.997281969 0.999450147 0.999888241
31 0.974976659 0.995165646 0.999026358 0.999802291
34 0.984254420 0.996900022 0.999531090
35 0.978649259 0.995844364 0.999373376
38 0.989870846 0.998496175
39 0.986294508 0.979825020
40 0.981382251 0.972903130
41 0.996356070
45 0.987866700
46 0.983495116
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Table 2.2. (b) Dependence of the system reliability on tNepolicy

level in thelh > u casel = 6
N n=45 n=>50 n=>55 n=60 n=65
1 0.907874525 0.911180377 0.913196325 0.914452970 0.915247083
3 0.907009840 0.910661936 0.912876606 0.914252222 0.915119767
5 0.906079888 0.910108566 0.912536800 0.914039671 0.914985061
9 0.904014528 0.908894181 0.911796451 0.913578153 0.914693415
11 0.902873158 0.908231616 0.911395609 0.913329482 0.914536774
13 0.901655436 0.907531500 0.910974264 0.913069129 0.914373279
17 0.898979187 0.906016290 0.910070777 0.912513614 0.914025128
21 0.895960152 0.904344857 0.909087002 0.911913455 0.913650930
25 0.892570674 0.902514517 0.908024848 0.911270797 0.913252294
26 0.902032018 0.907747209 0.911103785 0.913149118
29 0.900522947 0.906886399 0.910588324 0.912831187
31 0.89946568 0.906289339 0.910232842 0.912612915
34 0.905359924 0.909682870 0.912276387
35 0.905041218 0.909495234 0.912169460
38 0.908919990 0.911812007
39 0.908724248 0.911693335
40 0.908526540 0.911573648
41 0.908326924 0.911453009
45 0.910961330
46 0.910836279
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2.5.3. Cost analysis.

In sections 1.5.1 and 1.5.2, we have seen that by incre&king can provide unin-
terrupted service over a long duration to more external customers and without compro-
mising the system reliability signi cantly. However, the magnitude of decrease in the
system reliability increases witN. Hence, it is worth nding whether there exists an
optimal value for theN-policy level. For this, we construct the following cost function.

Let C; be the cost per unit time incurred if the system is do@p, the holding cost
per unit time per external customer in the queDgijs the cost incurred towards set up
(instantaneous) of the server to serve main custon@rbe the cost due to loss of an
external customefs, be the holding cost per unit time of one failed component@ind

be the cost per unit idle time.
o Cs
Expected Cost per unit time= C; - Pgown+ C2-Ng+Cs-04+Cs- Nty + = +Cs - Pigle.
B

Table 2.3 studies the variation of cost functionNagaries. We study the cost function

for different failure rates of the components. In all the 4 cases studied, for the various
costs assumed, we get a concave nature for the cost curve, which gives an optimal value
for N. Table 2.3 shows that when< y, the optimal values foN are 5,6 and 6 wheh

equal to 4, 6 and 5 respectively; whereas wher 6 > 5.5 = u, we get a much higher
optimal value 18 folN. This is as expected, since whers greater thap, there will be

a heavier trffic of failed components so that the server has to spend more time attending
the failed components. Hence, the policy leMaheeds to be increased to a much higher

value than in the. < u situation, for the system to earn maximum pro t. Also note that
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the optimal value of the cost function is much higher inthe u case, when compared

to the opposite situation.

Table 2.3. Variation in the cost functiom = 50, k = 20, C; = 2000,
C, = 1000,C; = 1600,C4 = 1000,Cs = 500,Cs = 100

o ~No oag b~ ownN 2

NNNRN R R R R R R
2 WO Oow~NOOA™N

N
(6]

L=4

L=45

A=5

L=06

10139.47 10923.82 12783.28 19330.75
8910.199 9663.817 11496.69 17827.49
8489.626 9199.57 10981.16 17095.61
8370.844 9038.382 10764.71 16671.58
8396.2 9024.268 10694.516401.28

8500.631
8652.372
9474.447
9939.594
10416.93
10657.6
10898.62
11139.36
11379.19
12085.88
12313.97
12536.01

9092.232
9210.307
9919.942
10337.5
10769
10986.45
11203.53
11419.23
11632.57
12248.03
12441.01
12625.49

10706.09
10767.47
11245.17
11542.35
11849.9

12003.95

16218.57
16090.46
15847.97
15805.31
15786.79
15783.35

12156.7115782.6

12307.2
12454.51
12868.57
12994.22
13111.97

15783.87
15786.61
15799.16
15803.64
15807.79

25000

20000

15000

10000

5000

.
—

10

20

30

—c4

A=5
—D)z6

2.5.4. Comparison with ak-out-n system where no external customers
are serviced.

Here we compare the model discussed above with another model where no ex-
ternal customers are allowed bNtpolicy is maintained. Notice that because of the
assumption of the preemption of service of an external customer on accumulation of
N failed components, the two systems will have the same reliability. The nature of

the steady state distribution obtained in Theorem 2.4.2 further substantiates this claim.
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Hence, it can be concluded that the external customers when allowed as in this study,
utilizes the server idle time withoutfacting the performance of theout-of-n system.

In Table 2.4, we present the results of the numerical study conducted for comparing the
increase in the server busy probability, when external customers are allowed. In that Ta-
ble, case 1 refers to the model discussed above and case 2 stakdsifayf-n system

where no external customers are allowed. Table 2.4 shows that when external customers

are allowed, there is an increase, of magnitudd Oin the server busy probability.
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Chapter 3

Reliability of a k-out-of-n system with a single
server extending non-preemptive service to

external customers

3.1. Introduction

In the previous chapter we analyseklaut-of-n system with repair of failed compo-
nents undeN-policy. The repair facility is also extended to external customers. How-
ever, we assumed pre-emption of service to external customers as sdbfadsd
components of th&-out-of-n system accumulated in a new cycle. In this chapter the

pre-emption part is done away with. As a consequence the reliability &-thg-ofn

0This Chapter is to be published as two papers titled: 1.Reliabilitylebat-of-n system with a single
server extending non-preemptive service to external customers-Part | and 2. Reliabilkyoot-af-n

system with a single server extending non-preemptive service to external customers-Part Il in Electronic
Journal Reliability:Theory and Applications (Gnedenko forum, September 2016)
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system decreases if we retain the saxhealue that provided high system reliability in
the previous chapter.

In this chapter, we consider two variants of the model in section 2.4 of chapter 2.
In both models, we assuni-policy for starting repair of failed components. However,
the priority given to main customers is reduced by assuming that an ongoing service of
an external customer is not preempted when the number of failed components reaches
N. This can be a serious compromise on the reliability ofitmait-of-n system. As in
section 2.4 of chapter 2, it has been assumed that an external customer, arriving when
the server is busy with service of main customergandghen there are at lealstfailed
components in the system, is not allowed to join the system. In the rst model the
external customer joins a queue of in nite capacity; where as in the second model it

joins an orbit of in nite capacity and retries for service from there.

3.2. The queueing model

Here we consider k-out-of-n system with a single serverffering service to exter-
nal customers also. Commencement of service to failed components of the main system
is governed byN-policy. That is at the epoch the system starts with all components
operational, the server starts attending one by one the external customers (if there is
any).When the number of failed components in the systemNs the server in service
of external customer (if there is any) is switched on to the service of the main cus-
tomers after completing the ongoing service of the external customer. Arrival of main
customers and external customers have inter occurrence times exponentially distributed
with parameterst and fl respectively. External customers are not allowed to join the
system when the server is busy with main customers or when ther&ifailed com-

ponents. An external customer, who on arrival nds an idle server is directly taken for
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service. Service times of main and external customers follow exponential distribution

with parameterg andflrespectively.

3.2.1. The Markov Chain. Let X,(t) = number of external customers in the sys-
tem including the one getting service (if any) at tilme

Xo(t) = number of main customers in the system including the one getting service (if
any) at timet,

0, ifthe server isidle or is busy with external customers
S() =

1, ifthe serverisidle or is busy with main customers.
Let X(t) = (Xy(t), S(t), Xx(t)) then X = {X(t),t > O} is a continuous time Markov

chain on the state space

S={(0,0,j2)/0< j2<N-1}U{(j1,0,]2)/j1 2 L,0< j<n-k+1}
U{(j1.1,j2)/j120,1< j<n-k+1}.

Arranging the states lexicographically and partitioning the state space intoilevbksre
each level corresponds to the collection of the states with number of external customers
in the system at any timeequal tai, we get an in nitesimal generator of the above chain

as »
Ao Ao

A A Ao
Ao A A

A A A
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In order to describe the entries in the above matrix we introduce some notations below.

() 1, denotes an identity matrix of orderandl denotes an identity matrix of appro-
priate order.

(i) en denotes anx 1 column matrix of 1s ane denotes a column matrix of 1s of
appropriate order.

(i) E,, denotes a square matrix of order m de ned as

~1 ifj=i1<i<m
En(,)) =41 ifj=i+1,1<i<m-1

0 otherwise

(iv) E;, = Transposek.,)
(V) rm(i) denotes a Xk nrow matrix whosath entry is 1 and all other entries are zeros
(Vi) cm(i) = Transposerg(i))

(vii) ® denotes Kronecker product of matrices.

The transition within level O is represented by the matrix

B]_ = /IEN - /_“N
B, is aN x (n—k+ 1) matrix whosel, N)" entry isA and all other entries are zeroes.

Bs is aN x (n—k+ 1) matrix whose (11)" entry isu and all other entries are zeroes.
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By = AEq ki1 + /lCn_k+1(N -k+ 1) ® rn_k+1(n -k+ 1) + /’tEI/’l—k+l'

The transition from level O to level 1 is represented by the matrix

Aly Onix(2n-2k+3-N)
Ago =

On-ks)xN  O(n-k+1)x(2n-2k+3-N)-

Transition from level 1 to O is represented by the matrix

gy O

Az = @) H| whereH =10, .o nxne1) 1l nkszn)-

|Op-ksn - O]

Transition within level 1 is represented by the matrix

Hll H12 0

Ai=| 0 H, 0] Wwhere

Hzz O By
Hi; = By — sy, Hiz = ACN(N) ® rpoieo-n(1),
H2z = AEn ki2-N + AChk2-N(N =K+ 2= N) ® 2. n(N = K+ 2= N) = il 2 N

Hsp is an f— k + 1) x N matrix whose (11)" entry ispu.

Al Onx(2n-2k+3-N

Opn-2k+3-N)xN  O2n—2k+3-Nyx(2n—2k+3-N)
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7l o) o)

A = o) On-ks2-Nyx(n-ks2-N) H |-

| Ofn-ks1)xN O O]

whereH = | Op o nn-t)  Hlnokeo-ny |

3.3. Steady state analysis

3.3.1. Stability condition. Consider the generator matux= A + Ay + Ay

AEN Hiz O

A= 0 Hy Fas

Fsi1 0 Bs

F23 =

O(n-ks+2-Nyx(N-1) Hln-k+2-N]>

Fa1 = uCnoir1(1) ® rn(l).

Let ¢ = (Lo, (1, &) be the steady state vector of the generator métriwhere

Zo = (€00 {©0.1): - - - » LoN-1))5 {1 = (LoN) {ON+1)s - - - > {(On—k+1))»

& =L {12 - - - {an-ke1))-

The Markov chair{X(t),t > 0} is stable if and only it Ase < A.e

(see Neuts17)).
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It follows that{ Age = Ape andlAse = ({oe+1€). Therefore the stability condition

becomes
ﬁ goe
—— <1 3.3.1
7 (Ge+ (9 (83
It follows from the relation” A = 0 that
JoAEN + {oF31 =0, (3.3.2)
foHi2+ {1H22 = 0, (3.3.3)
{iF23+ 5By = 0. (3.3.4)
From (3.3.4), it follows that
L = —61F 3B, (3.3.5)
Substituting this in (3.3.2) we get
LoAEN — {1F23B; Fa1 = 0. (3.3.6)
ALoe = (-(1F23B; ' Far)(—Ey'e). (3.3.7)

Notice that the rst column of the matriks; is —Bse and all other columns of it are
zero columns. This implies that the rst column of the matﬁgéFgl is —e and its all
other columns are zero columns. Hence the rst column of the maffixB;'F3; is e
and all other columns are zero columns. The rst entry of the row mam)FBB;ngl

is thusul,e and its all other entries are zeros. It can be seen that the rst entry of the
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column matrix-E'eis N. These two facts together tell us that(F»3B; Fs1)(—E'€)
is Nus,e. Thus, equation (3.3.7) becomes
Adoe = Nudse.

Adding Nuoe on both sides of the above equation, we get

(A + Np)doe = Niu(loe + £1€),

which implies

e __Ng
({oe+41€)  (1+Np)

Hence the stability condition (3.3.1) becomes

1N

—— < 1L
p (4 + Np)

3.3.2. Computation of steady state vectorLet z = ((0), n(1), 7(2),...) the

steady state vector of the Markov chatnwheren(0) = (700, 7(0.1), With mgg) =
( (0,0,0> 7T(0,0,1) - - - 5 T, (0,0,N—l))

andng1) = (T@©11) - - - » T 1nk+1))- FOr
i > 1,7(i) = (7 0), 7,00 7G.1)
7o) = (M(i.0.0) (i.01)s - - - » TGON-1))5

7.0y = (7G.0N) TTGON+1)s - - - TT(,0.0-k1))»

i1 = (7T(i,1,1), Ti,1,2)5 « + +» 7T(i,1,n—k+1))-
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Now from 7Q = 0, we can write

70,0)B1 + m01)Bs + mrouln = 0, (3.3.8)
m00)B2 + 70.1)Bs + mao)H = 0, (3.3.9)
Fori > 1,
microAn + mioH1 + mayHa1 + w10y = 0, (3.3.10)
mioH12 + mioH2 =0, (3.3.11)
7i,1)Ba + mir0H = 0. (3.3.12)

From (3.3.11), we get, far> 1

7.0 = —maoyH12(H5)- (3.3.13)

From (3.3.12), we get

i = —mi+1oH (B Y. (3.3.14)

Substituting (3.3.13) in (3.3.14), we get

i) = misnoH12(Ho)H(BL Y. (3.3.15)

Substituting (3.3.15) in (3.3.10), we get

mi10n + mi.oHi1 + w10y H12(Hoa ) H (BaY)Hay + mgiaoln = O. (3.3.16)
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We notice that the rst column of the matrids; is —B,se and all other columns dflz;

are zero columns. Hence the rst column of the matB;{lngl is —e and its all other
columns are zero columns. This tells us that the rst column of the m&t(l&;l)Hgl

is —ue and all other columns are zeros. Btjie is H,,e and hence the rst column of
the matrix H,;)H(B,*)Hs; is e and all other columns are zeros. This fact leads us to
conclude that the rst column of the matrle(Hgg)H(Bgl)Hgl is Hyze = Acy(N) and

all other columns are zeros. In other words

H1a(H52)H(B;)Ha1 = Acn(N) ® ry().

Now equation (3.3.16) becomes

i-10An + 7. 0H11 + 7sroden(N) @ In(L) + mgpopfiln = O.

That is

i-10)AIn + 7i.0H11 + wr1.0)(ACn(N) ® (1) + Eln) = O. (3.3.17)

Now from equation (3.3.9), we can write

mo1) = —m00)BAB;Y) — mwoyH(BLY). (3.3.18)

However, from equation (3.3.13), we have

mwo) = —mroH12(H3)). (3.3.19)
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Hence equation (3.3.18) becomes
mo1) = —m00)B2(By") + muoH12(H22)H(B,Y). (3.3.20)
Substituting (3.3.20) in (3.3.8), we get
T00)B1 + (=70.0)B2(B; 1) + mu.oyH12(Ho2)H(B; 1) Bs + maopfily = O. (3.3.21)

Since the rst column of the matriB; is —Bse, a similar reasoning as for equation

(3.3.16) leads us to write:

— By(B;H)Bs = Acn(N) @ ry(2).
H12(H2)H(B,")Bs = Acn(N) & rn(1).

Hence equation (3.3.21) becomes
77(0,0)(81 + /lCN(N) ® rN(l)) + ﬂ(l,o)(/lCN(N) ® rN(l) + ,l_l| N) =0. (3322)

Equations (3.3.17) and (3.3.22) shows that the vectel(r (o), 7(1,0), T(20). - - -) Satis es

the relationtQ = 0, whereQ is a generator matrix de ned as

A Ao
A A A

Q= A A A
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In the above A = By + Acn(N) @ ry(1), Ao = flin, Ar = Hyp and Ay = acy(N) ®
rn(1) + fly. Hence the vector is a constant multiple of the steady state veetos
(r(0), 7(2),...) of the generator matriQ. The vectorr can be obtained by applying the

matrix analytic methods (see Neuts]) as
(i) =7(0)R, >0, (3.3.23)
where the matrixR is the minimal non-negative solution of the matrix quadratic equa-

tion:

Ao+ RA + RPA, = 0. (3.3.24)

Equation (3.3.23) implies

7(0,0) = K7(0),

#(i,0) = 7(0,0)R, i>0.

Now the vectotr is obtained up to a constait asz = K, the other component vectors
mionl > 1,mi1),1 > 0 of 7 can be obtained from the equations (3.3.13), (3.3.14) and
(3.3.20), up to the constafif, which is nally obtained from the normalizing condition

me=1.

3.4. Performance measures

3.4.1. Busy period of the server with the failed components of the
main system. Let T; denote the server busy period with failed components which
starts withi failed components and withexternal customers in the system. Consider the

absorbing Markov chaii = {Y(t),t > 0}, whereY(t) is the number of failed components
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of the main system, with the state sp48gl,2,...,N,N+ 1,...,n—k+ 1} and having

in nitesimal matrix given by

0 0

Hgr = ,
—Hgre Hgr

where Hgr = AEn ki1 + ACh1(N— K+ 1) ® Inoper + UE/ g

Note thatY(t) = O is an absorbing statd; is the time until absorption in the Markov
chain{Y(t)} assuming that it starts at the stat&he expected valugT; of T; is therefore

theith entry of the column matrixHzle as given by Krishnamoorthyet al. [13]):

1 n—k+1-i 1. n-k 1.
ET==[i >, )+ > (-k+1-j)
H j=0 H j=n—k+2-i H

We notice that once the service of failed components starts, the external customers has

no dfect on it. De ne

Pf(N) = TT(0,0,N-1) + Z T(j,0N) and
=1

Pi() = > mjoy forN<is<n-k+1
=1

P (i) will then denote the system steady state probability just before starting service to
failed components withnumber of failed components. The expected length of the busy
period of the server with failed components is then given by

n-k+1

2. P:()ET
N

n—k+1

> Pr(i)
i=N

EH:
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3.4.2. Other performance measures.

(1) Fraction of time the system is down,

o0 (o)
Pdown = Z T(j1,0nk+1) T Z TT(j1,1,n—k+1)-
j1=0 j1=0

(2) System reliabilityPre; = 1 — Pgown
(3) Average number of external customers waiting in the queue,

) n—k+1 o0 n-k+1
Ng= i [ >, ﬂ(jl,1,13>] + ) (- 1){ D ”(jl,o,js))-

ji=0 j3=0 j1=1 j3=0

(4) Average number of failed components of the main system,

n-k+1 ) n-k+1 )
Nrtail = Z js[z n(jl,o,j3)J + Z ja[z ”(jl,l,js)J-

ja=0 j1=0 ja=1 j1=0

(5) Average number of failed components waiting when server is busy with exter-

nal customers
n-k+1 0
= Z I3 Zﬂ(jl,o,ja) :
j3=0 j1=1

(6) Expected number of external customers joining the system,
co (N-1 N-1
03 = ﬂ{z [Z ﬂ(jl,o,js)} + Z ﬂ(o,o,js)} :
j1=1\jz=0 j1=0

(7) Expected number of external customers on its arrival gets service directly

N-1
= Z 7(0,0,j3)-

j3=0
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(8) Fraction of time the server is busy with external customers,

oo (n-k+1
Pextbusy: Z Z T(j1,0,j3) | -
ja=1\ j3=0

(9) Probability that server is found idle,

N-1

Pidle = Z 70,0,js) = N7(0,0,0)-
ja=0

(10) Probability that the server is found busy,

N-1

Pousy=1- Zﬂ(o,o,js) =1- Nmo0).
ja=0

(11) Expected loss rate of external customers,

oo (n—k+1 oo [(n—k+1

02 = ﬂ{z [ Z ﬂ(jl,l,js)] + Z [ Z ”(jl,o,ja))}
j1=0\ jz=1 j1=1\ j3=N

(12) Expected service completion rate of external customers,

oo (n-k+1
05 =i ) ( D ﬂ(jl,o,jg)]-

j1=0\ j3=0

(13) Expected number of external customers when server is busy with external cus-

tomers,

) n—-k+1
Os= . J'l( >, ﬂ(jl,o,je,)]-

j1=0 j3=0

74



3.5. Numerical Study of the Performance of the System

3.5.1. The Hfect of N Policy on the Server Busy Probability. The main
purpose of introducing)l-policy while studying &-out-of-n system with a single server
offering service to external customers, in a non pre-emptive nature, was optimization of
the system revenue, by utilizing the server idle time, without compromising the reliabil-
ity of the system much. From Tables 3.1 and 3.2, it follows that there is an increase in
the server busy probability, when external customers are allowed. 3.3 tells that there is
an increase in the fraction of time that the server is busy with external customers with
an increase imN. Hence, it can be concluded that tNepolicy has helped in improving

the attention towards external customers slightly. Now, we want to check whether the

introduction of theN-policy has badly fiected the system reliability.

3.5.2. The #ect of N policy on system reliability. We study two cases

A < panda > u . We expected a decreaseRp, with an increase imN. This is because

asN increases, the server spends more time for external customers, which we thought
might cause a decrease in the system reliability. This was veri ed from Table 3.4, where
we assumedl < u. However, Table 3.4 shows very high system reliability over 95
%. The magnitude of decrease in reliability was found lesser when the total number
of components was high. In short Table 3.4 shows that reliability of the system is
not much #&ected by increasingN-policy level. In Table 3.5 where it was assumed
that the component failure rafeis greater than their service raieit was again found

that P,e) decreases with increase W and that the magnitude of decrease is not high.
More importantly, the reliability of the system was found less than 91.5 %. To check

whether this was actually due to the introduction of external customers, we compared the
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system reliability of the current model with that okaut-of-n system where no external
customers are entertained. Table 6 shows that allowing external customers in the system
has only a narrowféect on the system reliability and the decrease in reliability is actually

due to the assumptioh> u .

3.5.3. Analysis of a Cost function.Table 3.1 shows that d% increases, even
though the server busy probability increases rst, it decreasés@ssses some value.
Note that the overall server busy probability is the sum of the server busy probability
with external customers and the server busy probability with main customers. Table 3.3
shows that the fraction of time server remaining busy with external customers is ever
increasing with N. Now aBl increases, there is a decrease in the server busy probability
with main customers. Hence, the above said behavior of the overall server busy proba-
bility can be concluded to be due to the con icting nature of the two entities constituting
it. This behavior of the server busy probability lead us to construct a cost function in the

hope of nding an optimal value for thB-policy level de ned as follows:

L C
Expected cost per unit time = C;-Pgown + C2-Ng + C4-64 + Cs-Niai + E—3 + Cs-Pigie
H

In the above(C, denote the cost per unit time incurred if the system is d@yrdenote

the holding cost per unit time per external customer in the queydenote the cost in-
curred for starting failed components serviCg denote the cost due to loss of 1 external
customerCs denote the holding cost per unit time of one failed compor@égtenote

the cost per unit time if the server is idle. We study the cost function for various failure
rates of the components, which is presented in Table 3.7. In all the 4 cases studied, we

obtained an optimal value for N.
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Table 3.1. Variation in the server busy probability when external cus-
tomers are alloweld = 20,A=4,A=32,u=55u=8

n=45

n=>50

n=55

n=60 n=65

0.823494
0.829935
0.832187
0.833255
0.833839
0.834162
0.834295
0.834239
0.833936
0.833252
0.831922
0.829445
0.824871

0.823522
0.829973
0.832243
0.833338
0.833968
0.834367
0.834627
0.834789
0.834861
0.834829
0.834652
0.834239
0.833426

0.823528
0.829981
0.832254
0.833355
0.833994
0.834408
0.834695
0.8349
0.835047
0.835146
0.835196
0.835184
0.83508

0.823529
0.829983
0.832256
0.833358
0.834
0.834417
0.834708
0.834923
0.835085
0.835211
0.835306
0.835375
0.835412

0.8313
0.8328
0.8337
0.83423 o83
0.8345[7 (3,6
0.834827
0.8350
0.835224
0.835329
0.835413
0.83548
0.83553

0.823529

3%,838
9 P36

834 i
1-2.832 —

0.828

0.822

93",

—— =45
——n=50

n=55
e =60

n=65

Table 3.2. Variation in the server busy probability when external cus-
tomers are not allowekl= 20, = 4,u =55

n=45

n=>50

n=55

n=:60

n=65

0.72722
0.7272
0.72717
0.72711
0.72703
0.72688
0.72663
0.72622
0.7255
0.72425
0.72206
0.71814

0.72726
0.72726
0.72725
0.72724
0.72722
0.72719
0.72714
0.72706
0.72691
0.72666
0.72623
0.72546

0.72727
0.72727
0.72727
0.72727
0.72726
0.72726
0.72725
0.72723
0.7272
0.72715
0.72706
0.72691

0.72727 0.72727

0.72727 0.7272707s
0.72727 0.7272
0.72727 0.72772
0.72727 0.7272
0.72727 0.72727°7
0.72727 0.727277*
0.72726 0.727277*
0.72726 0.72727

o726
Jo724

70.722

\

v

——n=45

== n=50

n=55

i =60

n=65

0 10 20 30

0.72725 0.72727
0.72723 0.72726
0.7272 0.72726
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Table 3.3. Effect of theN-policy level on the fraction of time server is
busy with external customers wikh= 20,4 =4, i = 3.2,4 = 5.5,fi= 8

n=40

n=45

n=50

n=55

n=60

© 00 NO Ol WDN PP |Z

W WWNNNNNRRRRRR R R
O WkrR O N0 Wk O©o~NUOOMWNIERO

0.096351
0.100557
0.102853
0.104255
0.105198
0.105882
0.106413
0.106853
0.107241
0.107605
0.107968
0.108354
0.108786
0.109291
0.109905
0.111651
0.114606

0.096276
0.100464
0.10274

0.104117
0.105028
0.105672
0.106153
0.106528
0.106832
0.107088
0.107313
0.107517
0.107711
0.107904
0.108106
0.108581
0.109249
0.110301
0.112079
0.115216

0.096261
0.100445
0.102717
0.104089
0.104993
0.105629
0.1061
0.106462
0.106749
0.106984
0.10718
0.107348
0.107495
0.107626
0.107747
0.107976
0.108092
0.108216
0.10851
0.108928
0.110699
0.112652
0.116153

0.096257
0.100441
0.102712
0.104083
0.104986
0.105621
0.106089
0.106449
0.106733
0.106963
0.107153
0.107314
0.107451
0.10757
0.107675
0.107854
0.108008
0.108153
0.108308
0.1085
0.108771
0.109196
0.10991
0.111158
0.113399

0.096257
0.10044

0.102711
0.104082
0.104985
0.105619
0.106087
0.106446
0.106729
0.106958
0.107148
0.107307
0.107442
0.107559
0.10766

0.107829
0.107966
0.10808

0.108182
0.108281
0.108387
0.108516
0.108697
0.108978
0.109446
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Table 3.4. Variation in the system reliability with increase i (1 < u

casek=20,1=40=32,u=55/f=8

n=40

n=45

n=50

Il
(o))
o

I
o
ol

© O ~NO U AN WNR|Z

AW WWWWNNNNNRRRERRREPRPR
P O N WPFPR O~NUOWRFPR O~NUONWNLEPRO

0.99963
0.99957
0.99948
0.99937
0.99924
0.99907
0.99885
0.99856
0.9982

0.99778
0.99712
0.99633
0.9953

0.99395
0.99217
0.98668
0.97689
0.95915

0.99993
0.99991
0.99989
0.99987
0.99985
0.99981
0.99977
0.99971
0.99964
0.99954
0.99942
0.99926
0.99905
0.99878
0.99843
0.99736
0.9955

0.99223
0.98638
0.97578

0.99998
0.99998
0.99998
0.99997
0.99997
0.99996
0.99995
0.99994
0.99993
0.99991
0.99988
0.99985
0.99981
0.99975
0.99968
0.99947
0.99909
0.99844
0.9973

0.99528
0.99165
0.98509
0.97315

P P PR RRPRRPRRRR|D

1
0.99999
0.99999
0.99999
0.99999
0.99998
0.99996
0.99994
0.99989
0.99981
0.99966
0.9994
0.99894
0.99862

P R R RPRRRPRRPRRRRPRRRER|S

1

0.99999
0.99999
0.99998
0.99996
0.99993
0.99988
0.99979
0.99962
0.99932
0.99878
0.99781
0.99604

1.005
.

0.995
0.99
0.985

0.98 -
0.975 -

0.97
0.965
0.96
0.955

1 g—

——n=40
=fl=n=45

n=50
=55
=—t=n=60

n=65
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Table 3.5. Variation in the system reliability with increase k(1 > u

caseM =6,u=550=32,1=8

n=40

n=50

n=55

n=60

© 0O ~NOoO U WNPR|Z

B W WWWWNNNNNRRRERRRRRERPRR
P O N0 WR ONUOWERk, ©o~NOUMWNIEREO

0.90191
0.90118
0.90041
0.89961
0.89876
0.89758
0.89696
0.896
0.895
0.89396
0.89287
0.89174
0.89055
0.88932
0.88804
0.8867
0.88531
0.88386
0.88235
0.88079
0.87916

0.91106
0.91081
0.91055
0.91028
0.91
0.90971
0.90941
0.9091
0.90878
0.90845
0.90812
0.90777
0.90741
0.90705
0.90667
0.90628
0.90589
0.90548
0.90507
0.90464
0.90421
0.90331
0.90237
0.90139
0.90036
0.8993

0.91312
0.91297
0.91281
0.91264
0.91247
0.91229
0.91211
0.91192
0.91173
0.91153
0.91133
0.91112
0.9109
0.91068
0.91046
0.91
0.90951
0.90901
0.90848
0.90794
0.90738
0.90679
0.9062
0.90558
0.90494
0.90462

0.91441
0.91431
0.91421
0.91411
0.914

0.91389
0.91377
0.91366
0.91354
0.91341
0.91329
0.91316
0.91303
0.91289
0.91275
0.91261
0.91247
0.91232
0.91217
0.91186
0.91155
0.91122
0.91088
0.91053
0.91018
0.90981
0.90944
0.90905
0.90866
0.90827
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Table 3.6. Variation in the system reliability with increase M (case
when no external customers are allowkd) 20,4 = 6,u = 5.5

N | n=40 n=45 n=50 n=55 n=60 n=65

1 |0.902225375 0.907874465 0.911180377 0.913196206 0.914452851 0.915246844
3 10.900740206 0.90700978 | 0.910661995 0.912876785 0.914252281 0.915119886
5 10.899092674 0.906079888 0.910108447 0.912536681 0.914039791 0.914984941
7 10.897301137 0.905082345 0.909519434 0.91217649 | 0.913814664 0.914842606
9 |0.895354867 0.904014587 0.908894181 0.911796391 0.913578033 0.914693356
11| 0.893241525 0.902873158 0.908231676 0.911395431 0.913329422 0.914536655
13| 0.890948415 0.901655376 0.907531381 0.910974264 0.913069129 0.914373219
15| 0.888461053 0.900358438 0.906793237 0.910532713 0.912796974 0.914202273
17| 0.885763168 0.898979008 0.906016231 0.910070777 0.912513793 0.914025187
19| 0.882836878 0.897513986 0.905200183 0.909588754 0.912219048 0.913841009
21 0.895959914 0.904344797 0.909087062 0.911913395 0.91365093
23 0.894313395 0.903449655 0.908565581 0.911597252 0.913454473
25 0.892570376 0.902514458 0.908024669 0.911270797 0.913252354
27 0.901538968 0.907464802 0.910934329 0.913044453
29 0.900522768 0.90688622 | 0.910588205 0.912831426
31 0.899465442 0.90628922 | 0.910232782 0.912613034
33 0.905673981 0.90986824 | 0.912389634
35 0.905041099 0.909495115 0.912161767
37 0.909113765 0.911929727
39 0.908724129 0.911693275
41 0.908326745 0.911452949
43 0.911208868

0.910961211
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Table 3.7. Analysis of a cost function for nding optimaN valuen =
50,k = 20,4 = 55, = 3.2,fl = 8, C, = 2000,C, = 20, C; = 800,
C4 =1000,Cs = 10,C¢ = 200

) =4

A=45

A=5

L=6

4925.877
4710.059
4630.354
4591.702
4571.3

4563.915
4588.216
4605.19
4624.185
4670.646
4735.585
4837.829
5032.125
5546.901
8780.95

4937.695 5079.029 5226.181
4856.852 5057.425 5221.212
4825.835 5050.332 5218.775
4812.1515048.243 5216.965

4806.745 5048.411 5215.31
4561.086 4806.248 5049.849 5213.713
4558.217 4809.556 5052.345 5212.268
5056.578211.373

4817.604
4835.444
4846.938
4859.68
4890.628
4934.206
5004.721
5144.138
5525.659
7911.995

5064.896
5070.21
5076.196
5091.4
5114.597
5155.522
5241.815
5482.957
6932.789

5211.922
5212.65
5213.701

510000

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

j

——\=d

A=5

—— \=5.5

0 10 20 30 40

5217.3
5224.719
5240.069
5274.736
5371.341
5918.758
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3.6. The retrial model

Here we consider a variant of the model discussed in section 3.2 by assuming that
an arriving external customer either gets immediate service if it nds the server is idle at
that time or joins an orbit of in nite capacity, if the server is busy with external customers
with < N — 1 failed components of thke-out-of-n system. As in the model discussed
in section 3.2, the external customers are not allowed to join the orbit when the server
is busy with failed components of the system. An orbital customer retries for service
with inter-retrial time following an exponential distribution with parameteAll other
assumptions and parameters remain the same as in model discussed in section 3.2. In
this situation the system can be modeled as follows. X&) = the number of external
customers in the orbit at tinteand
Xo(t) = the number of failed components of theout-of-n system, including the one

getting service (if any) at time

0, |Ifthe serverisidle
De ne S(t) =11, Ifthe server is busy with an external customer

2, Ifthe server is busy with a main customer

Now, X(t) = (Xy(t), S(t), X»(t)) forms a continuous time Markov chain on the state space

S=1{(j1,0,j2)/j120,0< > < N—l}U{(jl,l,jz)/jlzo,Os jo<n—k+1)

Jiin202)/i12 0,1 < jp <n—k+ 1},
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Arranging the states lexicographically and partitioning the state space intoilevbksre
each level corresponds to the collection of states with number of external customers in

the orbit at any timé equal toi, we get an in nitesimal generator of the above chain as

AlO AO
A21 All AO

A22 A12 AO

The entries ofQ are described as below: Foe 0, the transition within level is
represented by the matrix
Df}y Do O Dy
D21 D22 D23 0

O O Ds Dau

Dsi O O Dug

where
D) = AE\ — Ay — i6ly, D12 = Ay,

D14 = ACN(N) ® rn_i1(N), D21 = uln,
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Dz, = DY} - Hln,
D23 = ACn(N) ® rn-ks2-n(1),
D33 = AE_kio-n + /1C(n -k+2- N) ® r(n_k+2_N)(n -k+2- N) - ,L_lln—k+2—N,

D34 = | Onksz-nxn-1) [ (nksz-ny |

’

Dasa = AEn k41 + ACh i 1(N =K+ 1) ® My gea(N =K+ 1) + puE[ .4,
Da1 = pChk1(1) ® ().
Fori > O the transition from levealtoi + 1 is represented by the matrix

Onve O 0 O

Ao=| 0 Ay o O]

O O 00

Fori > 1, the transition from levaltoi — 1 is represented by the matrix

0 igly 0O
AZi: .

0O 0 O

3.7. Steady state analysis of the retrial model

3.7.1. Stability condition. For nding the stability condition for the system study
,we apply Neuts Rao truncation by assumfg = Ay andAy = Ay for all i > M.

Then the generator matrix of the truncated system will look like:
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A Ao
Axr A1n Ao

A A Ag

AZM AlM AO

Aov Amv Ao

De ne Ay = Ag+ Av + Aoy ; then

[ V)
D11 D12 0D 14
Doy Dy Dy O

0 O Dz Das

(D O 0 Dus
where D{Y) = (1 + Mo)ly,
D2, = AEN — uln.

Let 7w = (7m(0), 7m(1), 7m(1), 7m(2)), Where

7TM(0) = (ﬂM(0,0),ﬂ'M(O, 1), .. .,ﬂ'M(O, N - l)),

am(1) = (7m(1,0),...,mm(1, N - 1)),
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(L) = (rn(LN), ..., (L, n = K+ 1)),

(2 = (2, 1), ..., a2 n - k+ 1)).

be the steady state vector of the generator matyjx Then the relatiomry Ay = 0 gives

rise to the following equations:

am(0)DYY + 71m(1)D21 + 7m(2)Das = O, (3.7.1)
(0D + w(1)D22 = O, (3.7.2)
mm(1)D2s + mm(1)D33 = 0, (3.7.3)

7m(0)D1g + m(1)D3g + v (2)Dasg = 0. (3.7.4)

It follows from equation (3.7.4) that

mm(2) = —7tm(0)D14(Dag) ™ — mm(1)D3a(Das) ™. (3.7.5)

Substituting forry (2) in equation (3.7.1), we get

NM(O)D(lT) + 7tm(L)D21 — 7m(0)D14(Dag) *Dag — m(1)D34(Das) 'Daz = 0. (3.7.6)

It follows from equation (3.7.3) that

mm(1) = —mm(1)D2s(D33). (3.7.7)
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Substituting forry (1) in equation (3.7.6), we get

am(0)DYY + 7 (1)D21 — 7 (0)D14(Das) *Das
(3.7.8)
+ 7tm(1)D23(D33) "D3a(Daa) 'Das = 0.

We notice that the rst column of the matriR4; is —Dass€ and its all other columns
are zero columns. Hence the rst column of the mati{)1D,; is —e and its all other
columns are zero columns. This implies that the rst column of the matdiyy(D4s) D4y
is D1se = Acy(N) and its all other columns are zero columns. In other wedg,(Das) !
D41 = Acn(N) ® ry(1). Also, the rst column of the matri¥z4(Das) 1Da; is —Dzse and
its all other columns are zero columns. SineBs.e = Dsse, the rst column of the
matrix (Dz3) *D34(Da4s)*D41 is e and its all other columns are zero columns. Hence it
follows thatD,3(D33) 1D3a(Das) *D41 is Daze = Acy(N) @ ry(1). Thus equation (3.7.8)

becomes

am(0)(O + Acn(N) ® ry(1)) + mm(L)(D21 + Acn(N) ® ry(1)) = O. (3.7.9)

Adding equations (3.7.2) and (3.7.9), we get

am(0)(D™ + Acy(N) @ ry(1) + D) + 71 (1)(D 2z + D2y + Acn(N) @1y (1)) = 0. (3.7.10)

SinceD!}? + DY = D,, + Dy = AEy, equation (3.7.10) reduces to

(mm(0) + m(1))(AEN + Acn(N) ® ry(2)) = 0. (3.7.11)
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which implies thatry (0) + 7y (1) is a constant multiple of the steady state veﬁtem of

the generator matrixEy + Acy(N) ® ry(1) and hence,
1,
7T|\/|(0) + 7T|V|(1) = VNeN.

wherev is a constant. Equation (3.7.2) implies that

am(0) = —mwm(1)D2(DSY) .

Since PY)! = = i 'N(3.7.13) gives
I\IIIILnoo v(0) = 0.
and hence
lim 1) = vle’
M—)ooﬂ-M( )_ N N>
and

lim Anp(l)e = va.

Again from (3.7.13),
M6z (0)e = —M6mw(1)Dax(D{3)) e,

Since, limy_ e MH(D(M)) le=limy_e me,\. en, (3.7.17) implies that
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(3.7.12)

(3.7.13)

(3.7.14)

(3.7.15)

(3.7.16)

(3.7.17)



l\llllm M@ﬂM(O)e = - '\lﬂlm ﬂM(l)Dzze
1
= —vNe(N(—/lCN(N) — file)

= V(% + ). (3.7.18)

The truncated system is stable if and only if

mAe < TmAME, (3719)
awAse = fru(Le, (3.7.20)
amAME = MQJTM(O)G. (3721)

Making use of equations (3.7.16), (3.7.18), (3.7.20) and (3.7.21), the stability condition

for the truncated system & — oo is given by
A
vil < V(N + M),

which can be re-arranged as

R NA

(A + Nf)

<1.

Hence, we conclude that the retrial problem discussed in section 3.6 has the same sta-

bility condition as the queueing problem, which was obtained in section 3.3.1.
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3.7.2. Computation of Steady State Vectorwe nd the steady state vector
of {X(t),t > 0}, by approximating it with the steady state vector of the truncated sys-
tem.Letr = (7o, 11, 7o, ...) Where eachr; = (7(0, 0), 7;(0, 1),... ,7(0O,N — 1), 7;(1, 1),
ri(L,n=k+1),7(2,0), 7i(2,1),...,7(2,n—k+ 1)) be the steady state vector of the
Markov chain{X(t), t > 0}.
SupposeAs; = Ay andAy = Ay for alli > M. Letmy,, = my_1R*Lr > 0, then

from 7Q = 0 we get

m-1A0 + TmAIMm + Tms1Pom = O,
mm-1A0 + m-1RAM + 7TM—1R2A2M =0,

mm_1(Ao + RAm + ReAm) = 0.

ChooseR such thatd, + RAw + R?Axm = 0. We call thisR asRy. Also we have

m—2R0 + Tm—1Am-1 + TwAom = 0,
m-2A0 + tm-1(Am-1 + RmAom) = 0,
-1 = —7m-2A0(Am-1 + RmAom) ™t

= m-2Rm-1 .

where

Ru-1 = —Ao(Aim-1 + RuAom) .
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Next,

m=3Ao + Tm—2A1m—2 + Tm-1Pom-1 = 0,

m-3A0 + Tv—2(Atm-2 + Tm-1Aom-1) = 0,
1

vm-2 = —7m-3A0(Arm-2 + Ru-1(Aom-1)

= nm-3Rv-2.

Where
Rv_2 = —Ao(Aim_2 + Ru_1Aom_1) .
and so on.
Finally
7oA+ 1A =0
becomes

mo(Aso + RiAz1) = 0.

For nding n, rst we takeng as the steady state vector &y + Ry Ax1. Thenrn; for
i > 1 can be found using the recursive formutaz= 7i_1R for1 <i < M.
Now the steady state probability distribution of the truncated system is obtained by

dividing eachr; with the normalizing constant

[mo+m+..]e= [7‘1’0 +m+ ..+ AN+ ay-a(l - RM)_l] e.
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3.7.3. Computation of the matrixRy;. Consider the matrix quadratic equation
Ao + RyAIMm + R%AAZM =0. (3722)
which implies
Ry = —Ao(Aim + RuAom) L. (3.7.23)

The structure of théy matrix implies that the matriRy has the form:

0 0 0 0

RMl RMZ RM3 RM4
Ry = . (3.7.24)

0 0 0 0

| O 0 0 0|

In other words, the non-zero rows of tRg, matrix are those, where th& matrix has

at least one nonzero entry. Now,

0 0 0 0
RvzRvi R, Ru2Rwz Ruvz2Rwa
R, = M2 . (3.7.25)
0 0 0 0
0 0 0 0

Equation (3.7.22) gives rise to the following equations:
RM]_DS_'\J/_I) + Ry2D21 + RyaDay = 0, (3726)

RMZRMlMelN + RM1D12 + RM2D22 +Z|N =0, (3727)
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RwmzD23 + RuzDs3 = 0, (3.7.28)
Rwm1D14 + RuzD3s + RvaDas = 0. (3.7.29)

From equation (3.7.28), we can write
Ruis = —Ru2D23(D23)) ™ (3.7.30)
From equation(3.7.29), we can write
Rua = —Rwi1D14(Das) ™" — RuzD3a(Dag) " (3.7.31)
Substituting forlRyz from (3.7.30) in equation (3.7.31), we get
Rua = —~Rw1D14(Ds) ™ + Ry2D23(D33) 'D3a(Das) ™. (3.7.32)

Substituting forlRy4 from (3.7.32) in equation (3.7.26), we get

Ru1DY}’ + Ru2D21 — RwiD14(Das) "Dy

+ Ru2D23(D33) *D34(Dag) *Das = 0. (3.7.33)
Using the same reasoning, that lead us to equation (3.7.9), equation (3.7.33) becomes

Rw2(D{Y? + Acn(N) ® ry(1)) + Rua(Da1 + A¢h(N) ® ry(1)) = O. (3.7.34)
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From (3.7.34), it follows that
Rw1 = —Rua(Da1dcn(N) @ ry(1))(O + acn(N) ® ry(1))™.

Substituting folRy; in (3.7.27), we get

— R,,(D21 + Acn(N) ® ry(1)) (DY + den(N) ® ry(2)) M6l

— Ru2(Da1 + Acn(N) ® (1)) (DY + Acn(N) @ rn(1)) ™ Diz

+ Ru2D22 + Aly = 0.

That is

Rz (~(Dza + Au(N)(DL + Acu(N) © (L) *Mel)

+ Rw2 (—(D21 + ACn(N) ® rN(l))(D(l'\f) + Acn(N) ® rn(1) ™Dy + Dzz)

(3.7.35)

+Aly =0. (3.7.36)

We notice that-(D{¥” + Acy(N) ® ry(1))e = (D12 + Mély)e. and therefore

— (D21 + Acn(N) @ ry(1))(DS + Acn(N) @ rn(1)) (D12 + Mély)e =

(D212cn(N) @ rn(2))e.

Also,

D,e + (D21 + /lCN(N) ® rN(l))e + Ze =0.
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and hence
(~(Daz + Acy(N) ® (1)) + Acn(N) @ rn(1)) *Mély ) e+
(~(Da1 + Aen(N) @ (1)) + Acy(N) ® ry(1)'Dip + Dao) e (3.7.38)
+fle=0.

Equation (3.7.38) shows that the matRy, is the minimal non-negative solution of
the matrix quadratic equation (3.7.36). Once obtairig, the matricefRy1, Ruz, Ruz,
andRy4 can be found using equations (3.7.35), (3.7.30) and (3.7.31) respectively. Hence

the matrixRy can be found. From the form of the mat[DﬁM), we notice that,

— (DY + Acn(N) @ ry(1))
= M0l — (AEx — iy + Acy(N) ® ry(1)

= MQ('N - Mig(/lEN - ﬂ'N + /lCN(N) ® rN(l))) .

and hence
-1
— (DI + acy(N) @ (1))
1 1 B

- = (|N _ M_Q(AEN My + Acn(N) ® rN(l)))

_ 1 +i(/1E = g+ acu(N) @ ry (1)) +

M|V Mg N T AN A )
Therefore

lim (=(D + acn(N) @ rn(1))*Mély) = In.
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and

lim (~(Of + Acn(N) @ ry(1)) D) = O.

Hence asvl — oo equation (3.7.36) becomes
Rﬁ/IZ(DZJ- + /lCN(N) ® rN(l)) + RyoDoo + ﬂlN =0. (3739)

We identify Dy; + Acn(N) ® ry(1) asAy, Doy asA; andflly asAg, which were de ned
in section 3.3.2. Hence equation (3.7.39) is the same as equation (3.3.24) of section
3.3.2. That is the matriRy tends to the matriR, the minimal non-negative solution of

(3.3.24), adM — 0. This fact can be utilized in determining the truncation leMel

3.8. System Performance Measures

The following system performance measures were calculated numerically.
(1) Fraction of time the system is down,

(o)

Pdown = Z (n,-l(l, n-k+1)+nm,(2,n-k+ 1)).

j1=0
(2) System reliabilityPe; = 1 — Pgown
=1- ) (r(@n-k+1)+m,2n-k+1)).
j1=0
(3) Average number of external customers in the orbit,

S n—-k+1 00 n-k+1
Nortit = jl[ D md, 13)) + jl( D (2, 13)].

j1=0 ja=1 j1=0 ja=0
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(4) Average number of failed components in the system,
n—-k+1 00 n-k+1( oo
Nfail = Z js(zﬂjl((),js)]"r Z [2”11(2,13)]-
j3=0 j1=0 ja=1 \j1=0

(5) Average number of failed components waiting when server is busy with exter-

nal customers

n—k+1 00
= > js[Zn,-l(o,Js)].

j3=0 j1=1

(6) Expected rate at which external customers joining the system
oo [(n—k+1 N-1
= fi{z [ PEAC 13>] + > 70(0, 13)}.
j1=1\ j3=0 ja=0
(7) Expected number of external customers on its arrival gets service directly,
N-1
= > 70(0, ja).
j3=0
(8) Fraction of time server is busy with external customers,
oo (n-k+1
I:)exi;busy: Z [ Z 7Tj1(0, J3)] .
ja=1\ j3=0
(9) Probability that the server is found idle,
N-1
Pidle = Z mo(0, j3) = Nmo(0, 0).
j3=0
(10) Probability that the server is found busy,
N-1

Pousy= 1 - Z 70(0, j3) = 1 = Nmo(0, 0).

j3=0
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(11) Expected loss rate of external customers

o (n-k+1 o (n-k+1
04 = ﬂ{z [ D mull, 13)] £ { PR 13)}}.

j1=0\ js=1 j1=1\ js=N

(12) Expected service completion rate of external customers,

oo (n—k+1
05 =i ) [ > ™, 13)}

j1-0\ j3=0

(13) Expected number of external customers when server is busy with external cus-

tomers

00 n—k+1
06 = Z 11[ Z n;, (O, js))-

j2-0 j3=0

(14) Expected successful retrial rate

6.y [Z 730, 13)].

j1=1\j3=0

3.9. Numerical study of the performance of the system

3.9.1. The #ect of N policy on the server busy probability. A compar-

ison of Tables 3.1 and 3.8 shows that the models discussed in section 3.2 and its variant
where external customers are sent to the orbit, which was discussed in section 3.6 have
similar behavior as far as the server busy probability is considered. Comparison of Ta-
bles 3.3 and 3.9 also points to the same for the fraction of time server remains busy
with external customers. Tables 3.4 and 3.10 indicate that the two models have similar

reliability.
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Table 3.8. Variation in the server busy probability when external cus-
tomers are alloweld = 20,A =4,. =32,y =55,u=8,0=5.

n=45 n=50 n=55 n=60 n=65

0.82349 0.82352 0.82353 0.82353 0.82353
0.82995 0.82999 0.83 0.83 0.83

0.83222 0.83228 0.83229 0.83229 0.83229'%*
0.83328 0.83336 0.83338 0.83338 0.83338,.,,
0.83385 0.83398 0.83401 0.83401 0.834QLsn  f-
0.83417 0.83437 0.83442 0.83442 0.83443°% | s
0.8343 0.83463 0.8347 0.83471 0.83472°°" 1] s
0.83424 0.83479 0.8349 0.83493 0.83493:, || e
0.83394 0.83486 0.83505 0.83509 0.835[losx

0.83325 0.83483 0.83515 0.83521 0.83523 ° * 0 %

== n=45
n=50

0.83192 0.83465 0.8352 0.83531 0.83533
0.82945 0.83424 0.83518 0.83538 0.83541

NNBRE PR RE PR
ROV WREONOWwRZ

Table 3.9. Effect of theN-policy level on the fraction of time server is
busy with external customets= 20,4 = 4,1 = 32,4 = 3.2,f1 = 8,
0=5

n=40 n=45 n=50 n=55 n=60

N

1 | 0.09635| 0.09628| 0.09626| 0.09626| 0.09626

3 | 0.10287| 0.10276| 0.10273| 0.10273| 0.10273

5 | 0.10523| 0.10506| 0.10503| 0.10502| 0.10502| | c.a
7

9

11

0.10644| 0.10618| 0.10612| 0.10611| 0.10611| | ., ,

0.10725| 0.10685| 0.10676| 0.10675| 0.10674| | ,, sweiosifie

0.10798| 0.10732| 0.10719| 0.10716| 0.10716 —ne
13| 0.10879| 0.10772 0.1075 | 0.10746| 0.10745| | -
15| 0.10991| 0.10811| 0.10775| 0.10768| 0.10766 -
17 | 0.11461| 0.10858| 0.10798| 0.10786| 0.10783| |
19| 0.11983| 0.10925| 0.10822| 0.10801/ 0.10797| | °
21 0.1103 | 0.10851| 0.10815| 0.10808| | °
23 0.11208| 0.10893| 0.10831| 0.10818
25 0.11522| 0.10959| 0.1085 | 0.10828
27 0.1107 | 0.10877| 0.10839
29 0.11265| 0.1092 | 0.10852
31 0.11615| 0.10991| 0.1087
33 0.11116| 0.10898
35 0.1134 | 0.10945
37 0.11026
39 0.11172
41 0.11435
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Table 3.10. Variation in the system reliability with increase b k =
2001=48=32,,=55f=8,0=5

n=40

n=45

n=50

n=55

0.99963
0.99948
0.99924
0.99885
0.9982
0.99712
0.9953
0.99217
0.9769

0.99993
0.99989
0.99985
0.99977
0.99964
0.99942
0.99905
0.99843
0.99736
0.9955

0.99223
0.98638
0.97578

0.99998
0.99998
0.99997
0.99995
0.99993
0.99988
0.99981
0.99968
0.99947
0.99909
0.99844
0.9973

0.99528
0.99165
0.98509
0.97315

1

1

0.99999
0.99999
0.99998
0.99998
0.99996
0.99994
0.99989
0.99982
0.99968
0.99945
0.99905
0.99833
0.99705
0.99475
0.99058
0.98297

0.99999
0.99999
0.99998
0.99996
0.99994
0.99989
0.99981
0.99966
0.9994
0.99894
0.99812
0.99663
0.99393
0.989

0.985

0.98

0.975

0.97

0.965

—4—n=40
—fli—n=45

n=50
=—=n=55

n=60

3.9.2. Cost Analysis.As in the case of the queueing model discussed in section
3.2, for nding an optimal value for théN-policy level, we analyzed a cost function
for the retrial model also. For de ning the cost function, &t be the cost per unit
time incurred if the system is dowi, be the holding cost per unit time per external
customer in the orbiC; is the cost incurred for starting failed components service after
accumulation ol of them,C, be the cost due to loss of 1 external custor@grhe the
holding cost per unit time of one failed compone@g, be the cost per unit time if the

server is idle. We de ne the cost function as:
101



_y C .
Expected cost per unit time = C;-Pgown+ Co-Norit + C4-04 + Cs-Ns i + E—3 + Ce-Pidle.
H

whereE,, is found exactly in the same lines as in section 3.4.1.

Our numerical study, as presented in Table 3.11, show that an optimal valiNe for
can be found for dierent parameter choices and also that this optimal value happens
to be a much smaller value likd = 6. This shows the care needed in selecting the
N-policy level.

Table 3.11. Analysis of a cost functiom = 50,1 = 3.2, = 55, =
8,0 =5C; =200QC, = 100QC; = 800, C, = 100QC5 = 10,Cs

200,06 =5

A1=4

A=45

A=5

OoOO~NO O WNPRPZ

6235.23047
6137.3877
6109.98389
6102.75391
6102.27734
6104.71094
6108.70947
6113.67188
6119.2749
6125.32666
6131.69824
6138.31006
6145.10449
6152.044972
6159.104
6173.53564
6188.386772
6203.78809
6220.13477
6238.73828
6266.49854
6356.05566
7073.24658

6440.20947
6343.84668
6317.7207
6311.82178
6312.30327
6315.28613
6319.521
6324.50439
6329.98047
6335.80176
6341.87891
6348.14307
6354.557672
6361.09961
6367.74854
6381.33594
6395.33936
6409.88037
6417.44531
6443.09375
6471.54688
6571.71631
7340.11523

6671.65918
6576.75928
6551.88965
6547.305664
6548.71434
6552.17674
6556.51709
6561.33057
6566.44873
6571.76465
6577.22021
6582.78711
6588.43018
6594.13084
6599.88428
6611.51611
6623.31689
6635.37354
6647.98535
6662.8042

6690.0752

6799.886772
7618.78223
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Chapter 4

Reliability of a k-out-of-n system with a repair
facility extending service to external customers

The T-policy

4.1. Introduction

In the previous chapers we concentrated elaboratel-pslicy, both under pre-
emptive and non pre-emptive priority basis. The pre-emptive priority to serve the failed
components produced quite high reliability. There was a mild reduction in this under
nonpre-emptive nature set up. We also considered the case of providing service only to
the main system. Of course, under this policy the reliability can be brought to as high
as .9999.... Neverthless, the server stays idle for a long time. The utilization of this idle

time is equally important. This leads us to wonder the intension of the repair facility
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to external customers. As a consequence revenue could be generated without serious
compromise in the main system reliability.

In this chapter, we study leout-of-n system where servelffers service to external
customers on a time-based policy, namely Thpolicy. Under this policy, the server
starts attending the failed components, if any present (main customers), only on the re-
alization of a random tim&. Priority is given to the main customers in the sense that, if
the realization ol happens in the middle of an external customer’s service, the ongoing
service is preempted to start serving the main customers. Also, once the server starts
attending the main customers, it continues to do so that until every component becomes
operational. At the end of a cycle (the epoch at which no component of the main system
is in breakdown state), a clock starts ticking. This clock has a random duf&tion
realisation of which the repair facility is turned to repair of failed components, if any, of
the main syatem. The pre-emptive rule is adopted.

The motivation for the present study comes from the real world scenarios of time-
based resources sharing like those of spectrum-sharing, inventory-sharing etc.

This chapter is arranged as follows. In section 4.2 a queueing model is described
for studying the problem discussed. In section 4.3, we conduct the steady state analysis
of the system and give a product form solution for the steady state distribution. Several
important system performance measures have been derived in section 4.4. In section 4.5
we present results from a numerical study on the behavior of the system performance

measures as fllerent system parameters are varied.
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4.2. The queueing model

We consider &-out-of-n system with a single serverffering service to external
customers also. Commencement of service to failed components of the main system is
governed byl -policy. ie, at the epoch the system starts with all components operational,
the server starts attending external customers (if any present). The server starts the ser-
vice of the failed components of the main system only at the moment of the realization
of the random timd (if there is at least one failed component). If the timés real-
ized in the middle of an external customer’s service and if there exists at least one failed
component, the external customer in service is pre-empted and the server is switched on
to the service of main customers. The preempted external customer goes to the queue of
external customers. If there are no main customers present at the moment of realization
of the timeT, the server continues at his present status and theltinestarts. The ran-
dom timeT is assumed to follow an exponential distribution with paramétdrhe life
time of a component of thk-out-of-n system follows an exponential distribution with
parameter’il wheni components are operational. This assumption ensures decreasing
failure rate of the entire system with increase in number of oprational units. Hence the
inter-arrival time of failed components follows an exponential distribution with param-
eter). Arrival of external customers has inter-occurrence time exponentially distributed
with parametei.. External customers, arriving when the server is busy with main cus-
tomers, are not allowed to join the system. Only those external customers who arrive
during the service of an external customer, join the queue of such customers (of in nite

capacity). An external customer, who nds the server idle on its arrival, is directly taken
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for service. Service times of main customers and external customers follow exponential

distributions with parametegsandy, respectively.

Notations. In the following sequel,

(i) I, denotes identity matrix of order,
(ii) 1 denotes an identity matrix of appropriate size;
(iif) e, denotes & x 1 column matrix of 1’s;
(iv) edenotes a column matrix of 1’s of appropriate order;

(v) E, denotes a square matrix of ordede ned as

-1; ifi=j,1<i<n

En(.))=11; ifj=i+1 1<i<n-1

0; otherwise.

(vi) E; = Transpose oE,

(vii) rp(i) denotes a k nrow matrix whosa™ entry is 1 and all other entries are zeroes
(vii) cy(i) = Transposen(i)

(ix) ® denotes Kronecker product of matrices.

(x) O stands for zero matrix of appropriate order.

4.2.1. The Markov Chain. Let X,(t) = number of external customers in the sys-
tem including the one getting service (if any) at time
Xo(t) = number of main customers in the system including the one getting service (if

any) at timet.
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If X1(t) = Xo(t) = 0, then an external customer arriving at titie taken for service.
De ne

0, ifthe serveris idle or the server is busy with external customers
S() =

1, if the server is busy with main customers.
Let X(t) = (Xu(t), S(t), Xx(t)); then{X(t), t > O} is a continuous time Markov chain on

the state space

S={(0,0,j2),0< jo<n-k+ 1 U{(j1,0, j2), 1 21,0< jo <n-k+ LU

{(jlsla j2)9 jl > 0,1S j2 < n—k+ 1}

Arranging the states lexicographically and partitioning the state space intoilevbksre
each level corresponding to the collection of states with number of external customers

in the system at any timieasi, we get an in nitesimal generator of the above chain as

A Ao
A A A
A At Ao

A A A

The entries of which are described below.
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The transition within level O is represented by the matrix

where

Bl = 7‘4En—k+2 + }\Cn—k+2(n - k+ 2) ® I'n—k+2(n -k + 2) - (X + 5)|n—k+2 + 5Cn—k+2(1) ® rn—k+2(1)

O1x(n-k+1)
B, =

6|n—k+1

Bsisa (- k+ 1) x (n -k + 2) matrix whose (11)" entry isu and all other entries are

Zeroes.

Bs = MEn ki1 + AChpr1(N =K+ 1)@ ya(N— K+ 1) — uEL g

The transition from levei to leveli + 1,i > 0O is represented by the matrix

Mn—ks2)xn-k+2)  O(n-k+2)x(n—k+1)

Opn-k+1)x(n—k+2)  O(n-ke+ 1)x(nk+1)

Transition from level toi — 1,1 > 1 is represented by the matrix

Hl(nke2)x(n-k+2)  O(n—kr2)x(n-k+1)
A =

O(n-ks+1)x(n-k+2) Ok 1)x(n-k+1)
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Transition within level is represented by the matrix

4.3. Steady state analysis

4.3.1. Stability condition.

Consider the generator matix= Aq + Ay + Ax

F B,
ThenA = , where

B; Bs

F = AEn k2 + ACnks2(N = K+ 2) ® I_gs2(N = K+ 2) = 6l p_ks2 + 0Chks2(1) ® Mokr2(1).

Let # = (7(0), (1)), wherer(0) = (7(0,0), 7(0, 1),...,7(0,n -k + 1)), n(1) = (n(1,1),
n(1,2),...,7(1,n—k+ 1)) be the steady state vector of the generator matrix

The Markov chair{X(t),t > 0} is stable if and only ift Aje < m Ace. It follows that
7t Age = hr(0)e and r Ase = fir(O)e.

Therefore the stability condition becomes

<1 (4.3.1)

=l >

Though we have the stability condition as given by (4.3.1), for future reference, we

evaluate the steady state vecioias follows:
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The relationzr A = 0 gives

7(O)F + n(1)B3 =0 (4.3.2)

7(0)B, + n(1)B4 = 0. (4.3.3)
From (4.3.3), it follows that

n(1) = -n(0)B,B;. (4.3.4)

Substituting (4.3.4) in (4.3.2), we get

n(0)F — (0)B;B;'B3 = 0

7(0)(F — BB;"Bs) = 0. (4.3.5)

We notice that the rst column of the matri®; is —B, e and all other columns oBs;

are columns zero. Hence the rst column of the matri;(@l) B; which is—e and its

all other columns are zero columns. This tells us that the rst column of the matrix

-B> (B;ll) Bs;is B,e = 0 and its all other columns are columns of zeros. Hence
0€n—k+1
-\ A
6 —-(A+6) A
F-B;B;'Bs=| . . . . (4.3.6)
1) —(A+06) A
0 -0

4(n—-k+2)x(n-k+2)

110



Then equation (4.3.5) gives:

(0,i) = (ﬁ)l 7(0,0), i=12,...n—k 4.3.7)
2(0,n—K+1) = 5(L)n_kn(o 0) (4.3.8)
’ BEAVET) e -

Equations (4.3.7) and (4.3.8) gives the component ved@y up to a constant(0, 0).
Hence from (4.3.4), the vectoar(1l) is also obtained up to the constar{0,0). The

constantr(0, 0) can be found using the normalizing conditime = 1.

4.3.2. The steady state probability vector.
Letg = (¢(0), #(1), #(2),...) be the steady state probability vector of the Markov

chain{X(t),t > 0} where

(i) = (¢(i,0,0), (i, 0,1), ..., (0, 0,n—k+ 1), (i, 1, 1),..., (1, 1,n—k+1)),i > 0.

The relationp Q = 0 then gives rise to:

#(0)Ag0 + #(1)A2 = 0 (4.3.9)
o — DA+ ()AL + (i + DA = 0,i > 1. (4.3.10)

We notice that
A = %Az (4.3.11)

and therefore

111



Ao+ iAl-i-(i) A2 = ﬁAz-i—iAl-l-(é)Ao

H u H u M

iy

= Z(A0+ As + Ao) (4.3.12)
o

_ta
7

Also

A=A A (4.3.13)

. A
implies that Ajg+ =A; = Ajp + Ao
u

= Al + A2 + Ao
=A (4.3.14)
Now, if we take
#(0) = n[i) 7,20 (4.3.15)
M

wherer is the steady state vector of the generator mariwhich was found in section

3.1 andy a constant, equations (4.3.14) and (4.3.15) helps us to write:

A
#(0)A10 + ¢(1)A2 = nm (Alo + ﬁAz]
=nmA

=0 (4.3.16)
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= 0. (4.3.17)

Hence, equations (4.3.16) and (4.3.17) show that if we gake(0), ¢(1), #(2),...) as

in (4.3.15), equations (4.3.9) and (4.3.10) are satis ed. Smee= 1, it follows from

RII>I

the normalizing conditionre = 1 that the unknown constant= 1 — p, wherep =

We state the above discussion in the following theorem.

Theorem 4.3.1. The steady state probability vecter = (¢(0), (1), #(2),...) of the

Markov chain{X(t),t > 0} is given in product form as:
—\I
_ A :
(i) = (1—p)(:) m,i>0,
M

wheren is the steady state probability vector of the generator matrix Ay + A; + A,.

4.4. Performance measures

4.4.1. Busy period of the server with the failed components of the
main system.

Let T,, denote the server busy period with failed components of the main system
which starts withmfailed components anicexternal customers in the system. We notice

that external customers have no in uenceTgnsince our repair policy is pre-emptive.
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For analyzingT,, let Y(t) be the number of failed components of tk@ut-of-n
system. Whel, starts,Y(t) = m; thenY(t) may increase by 1 at the rateand may
decrease by 1 at the rate
WhenY(t) = 0, T, gets realized.{Y(t),t > O} is a Markov chain with state space
{0,1,2,...,n—k+ 1}, where 0 is an absorbing state. The in nitesimal generator matrix

f{Y(t)} is given by

0O O
Sy = , Where S =MAE, 1+ ACk1(N—K+1)

s S

® 1N —K+1)+uE, ., andS® = -Se

n—k+

Busy periodT,, is the time until absorption in the Markov chdi¥i(t)}, assuming that it
starts at the staten. HenceT, has a phase type distribution with representatiarsj

wherea = r,_y.1(m). The expected value df, is therefore given by

(aS 1e)
1 n—-k—m+1 n-k N j
ETm_;(m 2, ( ) Jn;mz(n—k+1—1)(l—l)}

We recall that the busy period of failed components starts when at least 1 failed compo-
nent is present at the realization epoch of the random Tim&he state of the Markov
chain{X(t),t > 0} just before start of busy perioth, is (i,0, j),i >0,1<j<n-k+1.

We take the probability of ndingn failed components just before the start of a busy
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period T, with an arbitrary number of external customers)é®) = > #(i,0,m). The

i=0
expected value of busy period with failed components, which start with an arbitrary
number of failed components and an arbitrary number of external customers, is then

given by
n—k+1

mgl $(METn

n-k+1

2 ¢(m)
m=1

Es =

4.4.2. Probability that the main system goes to the down state before
the random time T is materialized.

Here we derivéP1(i) the probability of ndingi, 0 <i < n—k+1 failed components
at the realization epoch of the random tifeFor this purpose, we consider the Markov
chain{Y(t),t > 0}, whereY(t) represents the number of failed components. Besides the
states 01,...,n — k+ 1, we considen — k + 2 absorbing states for(t) denoted by
Ao, A4, ..., An_ks1, Where absorption to the statigemeans that at the realization epoch of
T, there wera failed components in the system. Hence the state spa¥g)as given
by {Ao, A1, ..., Ank1,0,1,...,n—k+ 1}. LetV denote the collection of non-absorbing

stateq0,1,...,n -k + 1}. The in nitesimal generator matrix of (t) is given by

Ao -+ Ankr V

Ao o --- 0 0
U= ,

Anxs1 | O 0 0

v U -+ Upya U
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whereU; = 6Chxi2(i +1), 0 < i < n—-k+ 1is the column matrix, which governs
absorption fron¥ to Aj andU = A En_i42 + AChois2(N— K+ 2) @ i o(N— K+ 2) = 81 nis2
is the matrix, which governs transitions between the various stafés Mow P+ (i) is
the probability that absorption occurs to the stata Y(t) and henceP; (i) = -sU1U;,
wheres = 1, y,2(1). ThereforepPs(i) is the rst entry of the column matrixU-1U; =
Z=(21,2,...,Zk2) - ThatisPr(i) = z. To compute this for X i < n—k, we notice

thatUZ = —U; = —=6¢,_«.2(i + 1), which gives rise to the following equations:

-A+0)zj + 2z =0,1< j<i (4.4.1)
—()\, + 5)Zi+1 + )\.Z|'+2 =-0 (442)
~-A+0)zj+ Az =0,i+2<j<n-k+1

—8Zn k2 = O. (4.4.3)

It follows from equations (4.4.3) thaf = O fori+2 < j < n—k+2 and equation (4.4.2)

gives

(4.4.4)

Iterating backwards, equation (4.4.1) gives

0
M +06)’

1<i<n-k

Pr(i) =2 = (Fké)
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A similar computation gives

5 A n—-k+1
PT(O): T and PT(n—k+ 1): (m) .

4.4.3. Other performance measures.

The measures that are described below refer to system condition in a cycle.

(1) Fraction of time the system is down,

Pdown:Z¢(j1,0,n—k+ 1)+Z¢(j1,1,n—k+ 1)

j1=0 j1=0

(2) System reliability,

=1- Pdown

(3) Average number of external customers waiting in the queue,

o0 n—-k+1 00 n—-k+1
Ng= > (i1=1) > ¢(i.0,ja) + > j1 Y #(is. L Ja).
j1=2 jz=0 j1=0  js=1
(4) Average number of failed components of the main system,
n-k+1 o0 n—-k+1 S
Nfqil = Z 332¢(j1, 0, j3) + Z j12¢(jl’ 1, ja)
j3=0 j1=0 ja=1 j1=0
(5) Average number of failed components waiting when the server is busy with external
customers
n—k+1 00
= > is ) ¢(j10, ja)
j3=0  j1=1
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(6) Expected number of external customers joining the system,

oo n-k+1

63 :XZ Z #(j1.0, ja).

j1=0 j3=0

(7) Expected number of external customers on its arrival gets service directly

n-k+1
=F ), $(0.0,]3)

j3=0

(8) Fraction of time the server is busy with external customers,

o (n-k+1
I:)exbusy: Z ( Z ¢(j1’ O, JS)]

ja=1\ j3=0
(9) Probability that the server is idle,

n—k+1

Pidle = Z ¢(O, O, n-k+ 1)

j3=0

(10) Probability that the server is busy,
I:)busy: 1- Pidle

(11) Expected loss rate of external customers,

o (n-k+1
04 = XZ{ D s L, 13))

j1=0\ js=1
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(12) Expected service completion rate of external customers,

o (n-k+1
5 =ﬁZ[Z #(j1, 0, 13)]

j1=0\ j3=0

(13) Expected number of external customers when server is busy with external customers,

S n-k+1
0o =) jl[z 9(i1,0, 13))

ji=1 j3=0

4.5. Numerical study of the performance of the system

We notice that under th&-policy discussed in this chapter, the priority of failed
components begins only on the realization of the random Timé T is not realized,
there is possibility of system being found in the down state. Table 4.1 shows that as
the realization rate of the random tinfedecreases, the reliability of the system also
decreases. Due to the preemptive nature of the service to external customers, allowing
them doesn't fiect the reliability further. This fact also follows from the nature of the
steady state distribution given in Theorem 4.3.1, wixeiethe steady state probability
vector of ak-out-of-n system withT-policy and no external customers. Irk#@ut-ofn
system withT -policy, the server remains idle if the random tifhés not realized. Table
4.2 shows that the server idle probability is 0.27 even wéen 2. Hence rendering
service to external customers during this idle period might be a good idea for generating
additional income to the system. Table 4.3 justi es this intuition. If the realization rate
is small, for exampl& = 0.005 , Table 4.2 shows that server idle probability is 0.93

(whenn = 45), in a system where external customers are not allowed; however when
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external customers are allowed, it follows from Table 4.3 that the server idle probability
is reduced to 0.56. At the same time Table 4.1 show that the system reliability is just
0.1, whens = 0.005. Hence nding an optimal value f@r seems to be an interesting
problem. For the same, we constructed and analyzed a cost function as follows:

Let C; be the cost per unit time incurred if the system is do@npe the holding
cost per unit time per external customer in the quéyes the cost incurred for starting
failed components servic€, be the cost due to loss of 1 external custorerbe the
holding cost per unit time of one failed compone@, be the cost per unit time if the
server is idle. Now, consider the cost function,

L C
Expected cost per unit time= C; - Pyown+ C2- Ng+Cy - 64+ E—3 + Cs - Ntail + Cs - Pidie-
S

Table 4.4 shows that an optimal value tbcan be obtained for ffierent component

failure rates\ = 4,4.5,5, 6.
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Table 4.1. Effect of T-policy on the system reliability

A=4,1=32,u=55mu=8

o n=45 n=>50 n=>55 n =60 n =65
2 0.99999279 0.99999905 0.99999988 1 1
1.9 0.99998885 0.99999839 0.99999976 0.99999994 1 12
1.7 0.99997264 0.99999535 0.99999923 0.99999988 R
1.5 0.99993074 0.99998593 0.99999714 0.9999994 1 N
1.3 0.99981839 0.9999556 0.99998915 0.99999732 0.99999%45\ —4n=45
1.1 0.99950525 0.99985361 0.99995661 0.99998713 0.99999]:@2# +”i50
0.9 0.99859357 0.99949306 0.9998166 0.9999336 0.99997%942# _”:55
0.7 0.99579561 0.99814415 0.99917561 0.99963278 0.99983621!‘t n=60
0.5 0.98655808 0.99271452 0.99600875 0.99780077 0.99878436§ e
0.3 0.95170438 0.96792483 0.9783597 0.98524916 0.98987627
0.1 0.75673604 0.8010478 0.83504582 0.86177111 0.88318461, 1 )
0.09 0.72990203 0.77637798 0.81244963 0.84109616 0.86426902
0.07 0.66210544 0.71273649 0.75308931 0.78589147 0.81298745
0.05 0.56635225 0.61985165 0.66396767 0.7009027 0.73222154
0.03 0.42258197 0.47405708 0.51860726 0.55751562 0.59176707
0.01 0.18571174 0.21704859 0.24641669 0.27399105 0.29992962
0.009 0.16983104 0.19904071 0.22656441 0.25254005 0.27709335
0.007 0.1364851 0.1608994 0.18416959 0.20637238 0.22757864
0.005 0.1008448 0.11963266 0.1377635 0.15526974 0.17218304
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Table 4.2. Server idle probability when external customers are not allowed

h=4,u=55

0

n=45

n=>50

n=>55

n =60

n==65

2
1.9
1.7
15
1.3
1.1
0.9
0.7
0.5
0.3
0.1

0.09
0.07
0.05
0.03
0.01

0.272913
0.272936
0.273006
0.273136
0.27339
0.273938
0.275209
0.278417
0.287366
0.31662
0.462284
0.481702
0.530501
0.598988
0.701245
0.868924

0.009 0.880143
0.007 0.903695
0.005 0.928859

0.272767
0.272772
0.272789
0.272825
0.272903
0.273099
0.273634
0.27525
0.280672
0.301886
0.42776
0.445748
0.49188
0.558741
0.66305
0.845983
0.858773
0.885858
0.915152

0.272736
0.272738
0.272741
0.272751
0.272774
0.272841
0.273058
0.27385
0.277082
0.292402
0.401269
0.41784
0.461096
0.525551
0.62999
0.824482
0.838636
0.868857
0.901924

0.27273
0.27273
0.272731
0.272734
0.27274
0.272762
0.272848
0.273228
0.275128
0.286139
0.380445
0.395673
0.436072
0.497763
0.601116
0.804295
0.819633
0.852636
0.889152

0.272729
0.2727 1
0.27279
0.27279¢
0.2727&;
02727%%
0.2727¢2,
0.27295,
0.2740%5
0.281933;
0.363758)
0.377745
0.415402
0.474201
0.575699
0.785306
0.801669
0.837142
0.876812

== N=45
== n=50
n=55

== n=60

n=65
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Table 4.3.

Server busy probability = 4, . = 3.2,u = 55,7 =8

0

n=55

n:60

n:65

2
1.9
1.7
15
1.3
11
0.9
0.7
0.5
0.3
0.1

0.09
0.07
0.05
0.03
0.01

0.83625174
0.83623791
0.83619607
0.83611846
0.83596551
0.83563685
0.83487439
0.83294982
0.82757992
0.81002748
0.72262919
0.71097857
0.6816991
0.6406064
0.57925224
0.47864473

0.009 0.4719137
0.007 0.45778227
0.005 0.44268376

0.83633959
0.83633637
0.83632624
0.83630478
0.83625788
0.83614051
0.83581924
0.83485001
0.83159673
0.81886792
0.74334335
0.73255086
0.70487189
0.66475487
0.60216975
0.49240989
0.48473579
0.45090812

0.83635795
0.83635724
0.83635497
0.83634913
0.83633566
0.83629549
0.83616483
0.83568978
0.83375055
0.82455844
0.75923824
0.74929571
0.72334206
0.68466902
0.62200582
0.50531
0.49681765
0.47868532
0.45884484

0.83636183
0.83636159
0.83636123
0.83635932
0.83635581
0.83634257
0.8362909
0.83606309
0.83492297
0.82831609
0.77173293
0.76259595
0.73835635
0.70134163
0.63932979

0.5174222

0.50822002
0.4884181

0.46650821

0.8363626

0.836360.9

0.83636248 Tg;:v-.-v—__,.

08363626 |
0.83636087 |

|
0.83635658 |

0.83633664 -
0.83622938

0.83556664

0.83084Q14L |
0.78174466
0.7733531
0.75075841
0.7154789
0.65458047
0.52881599
0.51899797
0.49771422
0.47391206

0

—4—n=45
——n=50

n=55
——=n=60

—+—=n=65




Table 4.4. Variation in costn = 45,1 = 3.2, u = 5.5, 1 = 8, C; = 2000,

C, = 1000,C; = 1600,C4 = 1000,Cs = 500,Cs = 100,k = 20

0

r=4

A=45

A=5

L=06

0.005
0.007
0.009
0.01
0.03
0.05
0.07
0.09
0.1
0.3
0.5
0.7
0.9
11
1.3
15
1.7
1.9

2812.05054
2735.31641
2663.59082
2629.45825
2123.09912
1820.06433
1621.95947
1484.99597
1431.97754
1122.22144
1166.1283
1264.1792
1371.0564
1475.37793
1574.04211
1666.43896
1752.74353
1833.38123
1871.72095

2734.50244
2643.51587
2559.8562
2520.50146
1969.05518
1665.29358
1475.9408
1348.74854
1300.20605
1012.10541
1028.01672
1090.52588
1162.78784
1235.22021
1304.87305
1370.8844
1433.12891
1491.73572
1519.74512

2608.92358
2492.33667
2388.50049
2340.71875
1735.47485
1446.2063
1279.27649
1172.36658
1132.58997
905.285889
911.207886
950.656372
997.501831
1045.06689
1091.26477
1135.39673
1177.30688
1217.02124
1236.07495

1932.0752
1740.06384
1597.9194%
1539.83276°
1051.33716
912.2227780 |
848.36834%0
812.769226, |
800.651184,
751.959412 o
770.260803
795.817017
822.161316
847.852661

872.51886
895.990112
918.267517
939.585693
949.794006

——\=4

——-\=4.5
A=5

=6

1 2 3
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Chapter 5

Reliability analysis of a k-out-of-n system with
repair facility extending service to external

customers in a pool of in nite capacity

5.1. The queueing model

We consider &-out-of-n system with a single server, rendering service to external
customers also. It has a nite Her of capacityn—k+ 1 in which the failed components
of the main system wait for service in the order of their arrival. Also it has a pool of
external customers with in nite capacity.

When no external customers are present, the system behavesjietdy1/n—k+1
gueue. At the end of a service if there are external customers in the pool, the system

operates as follows: (i) if the Ifier is empty an external customer from the pool is
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transferred to the bter with probability 1 and immediately starts its service (ii) if the
queue size in the bier is less thah (1 < L < n-k+ 1), a pre-assigned number called
the transition level, an external customer from the pool is transferred to the head of the
gueue in the bffier with probability o’ and immediately enters for service (iii) if there

are betweer. andn — k + 1 failed components in the Her, the customer at the head

of the queue in the bter enters in to the service process. We assume that an external
customer who on arrival nds the server busy with main customers, joins the pool with
probabilityy, 0 <y < 1.

Failure time of components of the main system is assumed to follow an exponential
distribution with paramete{E wheni components are operational. External customers
arrive according to a Poisson process with paraniet€he service process of main cus-
tomers and external customers has the same phase type distribution with representation
(S, @) of orderm.

In the sequele denote a column vector of 1's of appropriate ordgrdenotes an
identity matrix of ordem, ® stands for Kronecker product of matrices &ftis given

byS?=-Se

5.1.1. The Markov Chain.

Let J,(t) = number of external customers in the pool including the one getting ser-
vice (if any) at timet,
Jo(t) = number of main customers in thefber including the one getting service (if any)

at timet,
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0, ifthe server isidle or the server is busy with external customers

S(t) =

1, ifthe server is busy with main customers

Js(t) = phase of the service process at time

ThenX(t) = (J1(t), S(t), Jx(1), J5(t)) is a continuous time Markov chain on the state space

G [(i) wherel(0) = {(0,0,0)} U{(0,1, j2,j3)/1 < jo<n-k+1,1< j3 <m}and for
i=0

>1

1(i) = {(i,0, j2, j3)/0< ja<n—k+11< jz<mu

{(IL1, j2,J3) /1< jo<n-k+1,1< j3<m}.

The in nitesimal generator of this process,

By Bi
B Ai Ao
A A A

Q= A A A
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where the matrixB is a square matrix of order4dm(n — k + 1); the matrice®; andB,

are of orders ( m(n—k+1))x (m(2n-2k+3)) and (M(2n— 2k + 3))x (1+ m(n—k+ 1))

respectivelyAq, A; andA; are square matrices of orden(@n—2k+3))x (m(2n—2k+3))
Transition from level from 0 to 1 is represented by the matrix

M Opnkstym 0
Bl =

0 0 lnks1 ® YA

The transition from leveltoi + 1,1 > 1, is represented by

Mks2)m 0

0 YM (nks 1ym
Transition from level 1 to O is represented by
s 0

BZ = 0 In_k+1 &® Soa

Ok nymx1  Ofn—ks ymx(n—k+1)m

The transition from leveltoi — 1,i > 2 is represented by

S 0 0 0 0
A L1 ® pSa 0 L1 ® (1 - p)Sa 0
0 0 Gk 2-Lymx(n—k+2-L)m 0 l(n-ks2-1) ® S
| On-keymem Onkspyme(-nm— Onks mc(n-kr2-Lym

O-keyme(-vm Ok me(n-ks2-Lym)
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The transition within level 0 is represented by the square maBgxof order

1+ (n—k+ 1)m), where

Bo =

—(A+ 1) A
SO S—(h+yNIn

SO

Mm

S—(+yM)lm Mm
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0€T

The transition from leveltoi, i > 1 is represented by the mati.

For easy understanding, the structures of the matifor n = 10,k =6 andL = 3 is

S-Q+Dm Alm
S—(+Mn AMm
S—(+Mln Alm
S—(h+ M) Am
S—(A+Mlm  Mpy
A = S—Mln 0

S% S—(+yNIn
pSPa (1 - p)SCa

pSPa

Mm
S—(+yW)In Mm
1-pS%2  S—(+yW)n

S

AMm
S—(h+yW)In

SO

Mm

S—yhlInm
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5.2. Steady state analysis

5.2.1. Stability condition. Consider the generator matx= A; + A; + Aq.

Forn =10,k = 6 andL = 3, the structure of the matriX is

S+ S% — Ay, Mm 0

S + pSa - M, Mm (1- p)Sa
S+ pSPa-Ap Ay (1- p)Sa

S—Ayn  Mnp SCa

S—Apm AMn SO
S 0
S% S —Aly Mm

pSla (1-pSPa S-Aln Mm

PSP 1-pS% S-Aln Al

S% S-Mpy

SO

Mm




Letm = (7o) @), - - -» Tn-ke1), T(1) T(2), - - - Tn-k+1)) D€ the steady state vector of the
generator matri\, whererg = (7i1), 7G2), - .- Tim), | = 0, 1...,n—k+ 1 andr; =
(T2 7G2)s - - - Timy)s 1 = 1,2,...,n—k+1, then the equationsA = 0 andre = 1 gives

the equations

m0)(S + S% — My) + 7yS%@ = 0

JT(i)Mm + 7T(i+1)(S + psoa - Mm) +7r'(i+2)p80a =0,0<i<L-2

(5.2.1)
7T(i)7n|m + 7T(i+1)(S -Mpn=0L-1<i<n-k+1
7T(n_k)7n|m + 7T(n_k+1)S =0.
ﬂ(i)(l - p)SOa +ﬁ(1)(s - Mm) +ﬁ(2)(1 - p)SOa/ =0
miy(L = P)SPa + T_nyM m + 7y (S — M) + 7sny(1 - p)S°@ = 0,2<i<L-1
(5.2.2)

716y SCe + TgnyMm + Ty (S — M) + TsSP@ = 0, L <i < n—k
Tinks1)S°@ + TntgM m + Tnoks1)S = 0.
On simpli cation, we can express the equations represented by equ (5.2.1) as
mo)(S + SPa — My +hea =0
miyM(Im — €2) + ms1)(S + SPa — M+ Ae) =0,0<i<n-k-1 (5.2.3)
T M(Im — €2) + Troks1)(S + Sa) = 0.
Adding these equations we get

(m) + Ty + - - - + Tnkey) (S + S%) = 0. (5.2.4)
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This shows that the vectayg) + 71y + . .. + T(n-k+1) IS @ constant multiple of the steady

state vector of the generator matri® + Sla. Let

oy + T .- T Tn-k+1) = 577. (5.2.5)

Similarly, on simpli cation of the equations represented by (5.2.2), we obtain
(71"(1) +E(2) +... +ﬁ(n—k+1)) (S + Soa) = 0. This implies thaﬁ(l) + ﬁ(z) + ...+ ﬁ(n—k+1)

is a constant multiple of the steady state vegtoBincere = 1, we have

ﬁ(l) + ﬁ(z) + ...+ E(n—k+1) = (1 - 5)77. (5.2.6)

The stability conditionrAse < wAze, that is
(7T(0) taa +... 7T(n—k+1)) Xe + (ﬁ(l) + Fﬁ(z) +...+ Fﬁ(n—k+1))
)/XG < (ﬂ(o) +ryy+...+ 7T(n—k+1)) SO,

thus becomes

Sh+ (1= 8)yh < 6nS°. (5.2.7)

If y = 0, that is if the arrival of external customers is blocked while the server is busy

with main customers, the stability condition (5.2.7) becomes

L < nSC. (5.2.8)
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5.2.2. The steady state probability vectorLetxr = (x(0),n(1),#(2),...) be

the steady state vector of the Markov chgXt),t > o} where

7(0) = (7(0,0), T(0.2)» T(02)s - - - » T(O.n-k+1)) » AN
m(i) = (700 (.2, TG.2)s - -+ » Wik 1) T(02)> T(02)s - - - » M(On-ks1)) » NEIE

i) = (ﬂ(i,j’l),ﬂ'(i,j,z),...,ﬂ'(i’j,m)),i =12,... andj =0,1,...,n— k+1

and'ﬁ(i,j) = (Fﬁ(i’j’l),pﬁ(i,j,z), ... ,Fﬁ(i’j,m)), i = 0, 1, 2, A andj = 1, 2, R k+1.
Let

ai+1)=mx()R,i>1,....

Then fromnQ = 0, we get

m(0)A; + m(1)A; + m(2)A; = 0, (5.2.9)

(0) (Ao + RA + RPA) = 0.

ChooseR as the minimal non negative solution A§ + RA, + R?A, = 0. Then from

(5.2.9), we have

n(1) = -n(0)B; (A1 + RA)™

(1) = 7(0)w (5.2.10)

wherew = —B;(A; + RA) ™.

Also
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ﬂ(O)BQ + ﬂ’(l)Bz =0

7(0)(Bo + wBy) =

First taker(0) as the steady state vectorBf + wB,, thenm(1) can be obtained using
(5.2.10).i > 2,n(i) can be found using the recursive formmfa+ 1) = ()R, i > 1.
The steady state probability distribution of the system is obtained by dividing each

(i) with the normalising constant(0) + (1) + ...) e = n(0)e + n(1)(1 - R)e.

5.3. Performance measures

(1) Fraction of time the system is down,

0o m (o] m
Paown= Y > a(ju,n =K+ 1L ja)+ > > a(jr.n—k+1,0,]a)
j1=0 js=1 j1=0 js=1
(2) System reliability,

I:)rel =1- I:)down

(3) Average number of external customers waiting in the pool,

n-k+l m n-k+l m
Ng = 2(11_1)[2 > a(is. j2. 0, J4)] Z Jl[z D alin jo 1, J4)]

j1=2 j2=0 js=1 j1=0 j2=1 ja=1

(4) Average number of failed components in the main system,

n-k+1 n—k+1
Ngil = Z Jz[zzﬂ(h j20, J4)] Z JZ(ZZ”(JLJZ 1, J4)]

j2=0 1=1 ja=1 j2=1 1=0 ja=1
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(5) Average number of failed components waiting when the server is busy with external

customers

n—k+1 - m
- Z jz{ZZﬂ(jl,jz,O, j4))
j2=0 j1=1 j4=1

(6) Fraction of time the server is busy with external customers,

o n-k+l1 m

IDexbusy: Z Z Zﬂ'(jl, j2,0, ja)

j1=1 j2=0 j4=1

(7) Probability that the server is found idle,

Pigie = 7(0,0,0)
(8) Probability that the server is busy,

Pousy= 1 — Pidie

(9) Expected loss rate of external customers,

o n-k+l m

=2, p, D alis izl i)

j1=1 j2=0 js=1

(10) Expected number of external customers in the system when server is busy with ex-

ternal customers,

) n-k+1 m
962211 Z Zﬂ(jl’ 12,0, ja)
j1=1 j2=0 ja=1
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5.4. Numerical study of the performance of the system

Here, since the service to external customers is of non-preemptive nature, there is a
possibility of system going to the down status while external customers are getting ser-
vice. Hence, we studied théect of the transition level on the reliability of the system.
However, Table 5.1 shows that a very high reliability is maintained in the system. The
decrease in reliability ak increases is expected, since the increade leads to more
external customers being selected for service. However, Table 5.1 shows that the rate
of decrease in reliability is very slow. We have compared the reliability of the current
system with that of a system, where external customers are not allowed and had found
that they agree up to rst 7 decimal places foffdient values ofi. The server busy
probability was found to be 0.4, for a system where no external customers are allowed.
Table 5.2 shows that the server busy probability is above 0.57, when external customers
are allowed. Table 5.3 shows that the fraction of time the server remains busy with ex-
ternal customer®eyinusy is > 0.24. The increase iReypusy asL increases, as shown
by Table 5.3 is expected, since lasncreases, external customers obtain service more
frequently. The same reasoning can be attributed to a decrease in the server busy prob-
ability with main customers, which is re ected in the decreaspyin, with an increase
in L, is noticed in Table 5.2. Though the entire system reliability may be satisfactory,
with external customers getting more frequent service, whilecreases, the possible
dissatisfaction caused to the main customers forced us to investigate a cost function in
hope of nding an optimal value fok.

Let C, be the cost per unit time incurred if the system is do@ppe the holding
cost per unit time per external customer in the p@ljs the cost incurred for starting
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service of failed component§, be the cost due to loss of 1 external custor@ghe the
holding cost per unit time of one failed componed§, be the cost per unit time when
the server is idle.
Now, consider the cost function,
Expected Cost per unittime= C; - Pyown+ Cz - Ng+ Cs - 04 + E—g + Cs - Nty + Cg - idle.
Table 5.4 shows that an optimal value focan be obtained for fferent component

failure rates\ = 4,4.5,5.

Table 5.1. Effect of the Transition level on the system reliability < u case

A=4,u=55M1=32,1=8,y=055m=3

L n=45 n=>50 n=>55
1 1 1 1
3 1 1 1
5 1 1 1
7 1 1 1
9 1 1 1
11 1 1 1
13 1 1 1
15 1 1 1
17 1 1 1
19 1 1 1
21 1 1 1
23 0.99999994 1 1
25 0.99999994 1 1
27 1 1
29 1 1
31 1 1
33 1
35 1
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Table 5.2. Effect ofL on the server busy probability

A=4,u=55M1=32,1=8,y=055m=3

n=45

n=50

n=>55

L
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35

0.60810256 0.60810256 0.608102
0.586476922
0.576753855
0.573665261
0.572723%67

0.586476922
0.576753855
0.573665261
0.572723567
0.57243067
0.572336793
0.572305799
0.572295308
0.572291672
0.572290421
0.572290003
0.572289705

0.586476922
0.576753855
0.573665261
0.572723567
0.572430611
0.572336733
0.572305799
0.572295308
0.572291672
0.572290421
0.572290003
0.572289824

0.572430
0.572336
0.572305
0.572295
0.572291
0.572290
0.572290
0.572289

0.572289705 0.5722897
0.572289705 0.5722897
0.572289467 0.5722897
0.57228970
0.57228964

93
99
08
72
21
03
24

(62}
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Table 5.3. Effect ofL on the probability that server is busy with external

customers

A=4,u=55L1=32,1=8,y=055m=3

n=45

n=>50

n=55

0.244336635
0.250016034
0.252569616
0.253380775
0.253628808
0.253704965
0.253729612
0.253737718
0.253740489
0.253741443
0.253741801

0.25374189

0.244336635
0.250016123
0.252569586
0.253380775
0.253628045
0.253704935
0.253729612
0.253737718
0.253740489
0.253741443
0.253741771

0.25374192
0.25374195
0.25374195

0.253741831 0.25374195

0.244336635
0.250016034
0.252569616
0.253380775
0.253628075
0.253704965
0.253729613
0.253737718
0.253740489
0.253741443
0.253741801
0.25374189 0.25374186 0.253741

0.253741
0.2537419
0.2537419

0.25374198
0.25374192
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Table 5.4. Cost analysis

n=45k=20,,=32,u=557%=8,y=055m=3,C; = 900000,

C, = 1000,C; = 2000,C4 = 200,Cs = 500,Cg = 100

r=4

A=4.5

A=5

1781.65845
1398.34412
1217.66528
1157.48804
1138.29138
1132.05823
1129.97559
1129.26135
1129.01233
1128.92676
1128.90308
1128.90906
1128.9364

2097.99414
1631.46753
1371.07092
1269.76624
1232.53027
1218.68481
1213.39905
1211.33142
1210.51465
1210.20691
1210.13
1210.19128
1210.3645

2493.99146
1935.72974
1572.30933
1409.78735
1342.26868
1314.16382
1302.21362
1297.0354

1294.7998

1293.92249
1293.76453
1294.10291
1294.83313

3000
2500 -
2000 —
1500 -
1000 -

500

—2=4
—\=4 5
A=5
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Chapter 6

Reliabiity of a k-out-of-n System with a repair
facility rendering service to external customers
In a retrial set up and orbital search under

N-policy

6.1. The queueing model

We consider &-out-of-n system with a single sever extending service also to ex-
ternal customers according kb-policy. An external customer, who nds an idle server
on its arrival, is immediately taken for service and who nds the server busy with an-
other external customer, joins an orbit of external customers with in nite capacity and

from there retries for service. The service to failed components starts only on the epoch
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of accumulation oiN of them. If such an epoch happens in the middle of an external
customer’s service, the external customer in service will get pre-empted and the server
will be switched over to the service of the failed components. The external customer
whose service got preempted is sent back to the orbit. For decreasing the waiting of
the external customers in the orbit and also fide&ively utilizing the server idle time,

we apply a search mechanism for selecting customers from the orbit. This works as
follows: at the epoch of service completion of an external customer or at the epoch of
service completion of the last main customer, the server makes a search with probabil-
ity p and selects a customer (if any) randomly from the orbit for the next service. The
search time is assumed to be negligible. Also we assumed that the arrival of external
customers is completely blocked while serving main customers. Arrival of main and
external customers has inter-occurrence times exponentially distributed with parameters
A andA respectively. Service times of main customers and external customers are inde-
pendent exponentially distributed with paramejeesdu respectively. The inter-retrial

times are independent exponentially distributed random variables with parameter

6.1.1. The Markov Chain.

Let X;(t) = number of external customers in the orbit including the one getting
service (if any) at time.
Xo(t) = number of main customers in the system including the one getting service (if
any) at timet.

If Xy(t) = Xo(t) = 0, then an arriving external customer is taken for service.
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De ne
0, ifthe serverisidle

S(t) =41, if the server is busy with main customers

2, ifthe server is busy with external customers.

Let X(t) = (Xy(t), S(t), Xa(t)); then{X(t), t > 0} is a continuous time Markov chain on

the state space

S=1{(j1,0,j2),j]1>20,0< jo < N-1} U{(j1, L J2), ]1 = O,

0<jo<n-K+1U{(j1,2 J2),j1>200< jo<N-1}.

Arranging the states lexicographically and partitioning the state space intoilevbksre
each level corresponds to the collection of the states with number of external customers
in the system at any timeasi, we get the in nitesimal generator matrix of the above

chain as )
A Ao
Az Au Ao
Az A1 Ao
Az A Ao

Are Am Ao

whereAqo, Ao, Aiz andAip, | = 1,2, 3,... mare square matrices of ordeMN2- n — k +

Dx@N+n-k+1).
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In the sequel,

(i) I, denotes identity matrix of order,
(ii) 1 denotes an identity matrix of appropriate size;
(i) e, denotes a x 1 column matrix of 1's;
(iv) edenotes a column matrix of 1’s of appropriate order;

(v) E, denotes a square matrix of ordede ned as

~1; ifi=j, 1<i<n

En(.))=41; ifj=i+1 1<i<n-1

0; otherwise.

(vi) E; =Transpose oE,
(vii) rn(i) denotes a k nrow matrix whosé™ entry is 1 and all other entries are zeroes
(viil) cy(i) = Transpose of (i)
(iX) ® denotes Kronecker product of matrices.
The structures of these matrices for 10,k = 6 andN = 3 are as follows.

The transition from level ‘0’ to level ‘0’ is represented by the matrix

Hll H12 H13

Ago = Hy,y Hy, O

[Ha1 0 Hag
Hll = )\'EN —)_\,lN

Hiz2 = Aen(N) ® rnoke1(N)
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Hiz = My

Ha1 = ki1 (1) ® rn(1)

H22 = AEq ki1 + Aot (N = K+ 1) ® Myea(N— K+ 1) + pEf 4,
Ha1 = uln

Hiz = MEN — (X+/j) IN-
The transition leveli* to level ‘i + 1', i > 0 is represented by the matrix

0 0 0

Ao=10 0 0

0 Acn(N) ® Fnoia(N) XlN‘

The transition from leveli* to level ‘i — 1', i > 1 is represented by the matrix

00 161y

A2=10 0 pucrk:1(l)®rn(l)]|-

00 PN

The transition within level, i > 1, is represented by the matrix

H) Hi His

Ap = Hy Ho, O

[Hs1 0 Has
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HY = Hy; —i6ly
Ha1 = (1- p)Ha

I:|v31 =(1- p)Hs;

6.2. Steady state analysis

6.2.1. Stability condition.
We apply Neuts-Rao truncation for nding the stability condition of the system. For
this we assume thaj; = Ay andA; = Ay for all i > m. Then the generator matrix of

the truncated system will look like this

Aw Ao

A, A Ao
A, A Ao
Az, Aszr Ao
Qm:
A Am Ao
A Am Ao
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De ne An= Ao+ At + Ano.

(m) (m)
H 11 Hio H 13

An=|Hy Hzp Ha

|Ha1 Ha; Has)|
H = (b + mo)ly
Has = pucn-is1(1) ® rn()
Haz = An(N) ® M1 (N)
Haz = AEn — (1~ Pl
Let 7y = (mn(0), mm(1), 71n(2)) , where
7m(0) = (rm(0, 0), 71m(0, 1), ... 7m(0, N — 1))
(L) = (L 1), .. . (L, N — K + 1))

m(2) = (mm(2,0), 1(2,0), ..., mm(2, N = 1))

be the steady state vector of the generator makgix Then the relatiom,A, = 0

implies:

Am(O)HY + (L)H21 + mn(2)Ha1 = 0 (6.2.1)
ﬂm(O)le + ﬂm(l)sz + 7Tm(2)H32 =0 (622)
Am(O)HD + (1) Has + mn(2)Has = O. (6.2.3)
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From (6.2.2), it follows that,
(1) = —7m(0)H12(H22) ™ — mm(2)Hz2(H22) ™ (6.2.4)
Substituting forry,(1) from (6.2.4) in (6.2.1), we obtain,
Am(OH{Y — mm(0)H12(Hz2) Ha1 — mm(2)Hao(Hzo) *Har + 7m(2)Ha1 = 0. (6.2.5)

We notice that the rst column of the matrid,; is —(1 - p)H22e and all other columns
are zero columns. Hence the rst column of the mattited)*H,; is —(1 — p)e and
all other columns are zero columns. This in turn tells that the rst column of the matrix

—H12(H22)‘1ﬁ21 is (1- p)Acy(N) and all other columns are zero columns. In other words,
~Hya(Ha2) " Hay = (1 - p)hen(N) @ r(d). (6.2.6)
SinceHs, = Hy,, it follows that
—Haz(Hz2) *Hz1 = (1 - p)hen(N) @ ry(1). (6.2.7)

In the light of equations (6.2.6) and (6.2.7), equation (6.2.5) becomes

7m(0) (HIY + (1 = pAcn(N) @ (1)) + 7m(2)

(Fa1+ (1 - pron(N) @ 1(1)) = 0. (6.2.8)
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Substituting forrm(1) from (6.2.4) in (6.2.3) and noticing that the rst column of the

matrix H.3 is —pH,» €, reasoning as for equation (6.2.8), we can write
7m(0) (HE + phon(N) ® rn(1)) + mm(2) (Has + phen(N) @ 1y(1)) = 0. (6.2.9)

We notice thatH{? + H'Y = Hz3 + Ha; = AEn. Hence adding equations (6.2.8) and
(6.2.9), we get

(mm(0) + mm(2)) (MEn + Aen(N) ® rn(1)) = 0. (6.2.10)

Equation (6.2.10) implies that the vectoy(0) + 7m(2) is a constant multiple of the

steady state vectq%r €|, of the generator matrikxEy + Acn(N) ® ry(1) and hence,

m(0) + mm(2) = n%e'N (6.2.11)

wheren is a constant.

SinceHs, = Hyy, it follows from equation (6.2.2) that,
(7m(0) + mm(2)) Hiz + mm(1)H22 = 0. (6.2.12)
Post multiplying equation (6.2.12) with the column veapwe get
(mm(0) + mm(2)) Hiz@ + mm(1)H e = 0. (6.2.13)

We notice that

Hqe= )\CN(N) and Ho.e = —,LlCn_k+1(1). (6214)
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In the light of equations (6.2.11) and (6.2.14), equation (6.2.13) becomes

% = (L, D). (6.2.15)

Now, from equations (6.2.11) and (6.2.12), it follows that
(1) = — oMz (Hz) . (6.2.16)
Post multiplying with the column matrie, equation (6.2.16) gives
tm(l)e = —%e’Nle (Hyo) e (6.2.17)

SinceH:, = Acy(N) ® rn_ii1(N), we get e Hiz = Zry i1 (N). Now,

n-k—-N+1 n-k j
_rn_k+1(N)(H22)—le:/%[N D (5)J+ > (n—k+1—j)(§)JJ. (6.2.18)

A j=n—k—N+2

For details on the derivation of equation (6.2.18), one may refer to Krishnamoorthy, see
section 2.4.3 of chapter 2.

Thus equation (6.2.17) becomes

a1 n—k—N+1 A j n—k A ]
(Le = "——(N (—) + (N—k+1- j)(—) ] (6.2.19)

Now, from the normalizing condition,,e = 1, we can write

(1m(0) + 1m(2))e + mm(L)e = 1
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that is

)7)\1 n—-k—=N+1 A i n-k A j
n+-——|N (—) + (n—k+ 1—j)(—) =1 (6.2.20)

which gives the constamtas
-1

n-k—-N+1 j n-k j
n=[1+%£[|\| . (%)J+ Z (n—k+1—j)(%)l]] : (6.2.21)

j=n—k—N+2

Equation (6.2.21) shows that the constaig independent of the retrial rafe

Now, from equation (6.2.9) it follows that,
—_ m -1
7m(0) = —7n(2) (Haa + phen(N) @ rn(1)) (HEF + pren(N) @ rn(1)) ~.  (6.2.22)

From the structure of the matri)df;’) + piAcn(N) ® ry(1), it follows that the non zero

entries of its inverse are given by

_ 1 .
(HE + PewN (), = == 1<i <N
6.2.23
(m) -1 p}\‘ ( )
(H13 +prev(N) ® rN(l))m - _m'

It then follows from (6.2.23) that as1 — oo, the matrix(H{7 + prcn(N) ® rN(l))_1
tends to the zero matrix and the matmiﬁ(Hfg) + pien(N) ® rN(l))_l tends to the iden-

tity matrix ly. Hence equation (6.2.22) gives
nI~|im mm(0)=0 (6.2.24)

and hence equation (6.2.11) implies that
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. 1
lim 7w(2) = 06 (6.2.25)

Therefore,

. 1, ~
lim mhrn(0) = —n € (Has + phen(N) @ ry(1)). (6.2.26)

Since(Hss + pron(N) @ rn(1)) e = —(1- p)ze— (1 - p)ien(N), it follows from (6.2.26)

that,
lim momm(0)e = (1 — p)i + n(t - it (6.2.27)
m—oo N
Now from the structure of thé, andA,, matrices, it follows that
TP € = mm(2)(Aen(N) + 1) (6.2.28)
TmAmz € = MOrm(0)e + pumm(1)Cnks1(1) + pumm(2)e. (6.2.29)

Hence the stability condition,A¢se < m/Anp€ for the truncated system becomes

Am(2)(hen(N) + 26) < Mrm(0)e + Pumm(1)Cn-ir1(1) + Prmm(2)e. (6.2.30)

As m — oo, equations (6.2.25), (6.2.27), (6.2.15), implies that inequality (6.2.30) be-

comes
@ + nX <n(l-pu+ n(— P + 1P + npu. (6.2.31)
N N N
On simpli cation, inequality (6.2.31) reduces to
h<H (6.2.32)
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which leads to the following theorem
Theorem 6.2.1.The Markov chaifX(t), t > 0} is stable, if and only if. < L.

6.2.2. The steady state vector.
We nd the steady state vector ¢X(t),t > 0}, by approximating it with the steady

state vector of the truncated system. ket (7o, 71, 12, ...) Where each

T = (ﬂi(o, O),Tl’i(o, 1), . .,m(O, N — 1),7Ti(1, 1), ey

7ri(1,n —k+ 1),7Ti(2, 0),7Ti(2, 1), e ,7Ti(2, N — 1))

be the steady state vector of ), t > 0}.

Supposéd; = Ap andA; = A foralli > m.

Let tmr = mmea R, 1 > 0, then fromrQ = 0 we get
Tm-1A0 + TmAm + T1Ame = 0
7tm-1 (Ao + RAw + RAR) = 0.

ChooseR as the minimal non negative solutionAf + RAy + R?A = 0. We call this
R asR.

Also we have
Tm-2P0 + T-1Am-11 + A = 0
Tm-1 = _”m—ZAO(Am—ll + RmAmZ)_:L

= Tm-2Rm-1,
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whereRy, 1 = —Ag(Am-11 + RnAm) .

Further

Tm-3A0 + Tm-2Am-21 + Tm-1Am-12 =0
-1
Tm-2 = _”m—BAO(Am—Zl + FQm—lAm—lZ)
= Tm-3Rm-2,

where  Rn2 = —Ao(Am-21 + Rn-1An-12)

And so on. FinallyrgAgg + m1A12 = 0 = 7m0(Ago + RiAg2) = 0.

First we taker, as the steady state vector &§ + RiA12). Thenxn; fori > 1 can be
found using the recursive formula, = 7R for 1 <i <m-1.

Now the steady state probability distribution of the truncated system is obtained by di-

viding eachr; with the normalizing constant

[7T0 + T+, .]e: [7T0 +mT+ ...+ T2+ 7Tm_1(| — Rm)_l]e

6.2.3. Computation of the matrix Rp,.

Consider the matrix quadratic equation

Ay + RpAm, + RRA,, =0, (6.2.33)
which implies
Rin = —Ao (Am, + RnAn,) . (6.2.34)

The structure of thé, matrix implies that the matrik,, has the form:
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Rn=l0 0 ol (6.2.35)

Rn, Rr, Ru|

In other words, the non-zero rows of tRg matrix are those, where thg matrix has at

least one nonzero entry. Now

0 o o
Ro=1 0 o ol (6.2.36)
[Rn,R, RegRm, R |

Equation (6.2.33) gives rise to the following equations:

leHiT) + R, Ha1 + R Hay = 0. (6.2.37)
R Hi2 + RyH22 + Aen(N) @ 1y 1(N) = 0. (6.2.38)

RugRoy MOl + Ry Ry, Hoz + R2, izl + Ry His + RpgHaz + Ay = 0. (6.2.39)
From equation (6.2.38), we can write
R, = =R Hi2 (H22) ™ = Aen(N) ® riera(N) (Hao) ™ (6.2.40)
Substituting forRy, in equation (6.2.37), we get
Ry H{Y = Ry Hi2 (Hz2) ™ Hat = Aen(N) @ Pkt (N) (H22) ™ Has + Ry Har = 0. (6.2.41)

From the discussion that has lead us to equations (6.2.6) and (6.2.7), it follows that

156



—hen(N) ® ke 1(N) (H22) ™ Hap = (1 - p)ren(N) @ r(l). (6.2.42)

Equations (6.2.6), (6.2.7) and (6.2.42) transform equation (6.2.41) as
Rey (HT + (1 phon(N) ® (1)) + Rey (Fa) + (1 pren(N) @ r(1) = 0. (6.2.43)

Denoting the matrixH{} + (1 - p)icy(N) ® rN(l))_l asW, andicy(N) ® ry(1) aswe

from equation (6.2.43), it follows that

Ry = —Rmg (ﬁsl) Wi — (1= p)WO Wi, (6.2.44)

Using equation (6.2.40), it follows that

Ri,Ha3 = =Ry Hi2 (Hz2) ™ Hag — AN (N) ® i1 (N) (Haz) ™2 Hos. (6.2.45)

We notice thatH,; = (1 — p)Hy1, Where aH,; = pH,. Hence replacing & p by pin

equations (6.2.6), (6.2.7) and (6.2.42), we can write the equations

~Hia(H22)*Haz3 = phen(N) ® ry(l). (6.2.46)
~Haz(H22) Haz = phen(N) ® rn(L). (6.2.47)
~Men(N) ® ki1 (N) (H22) ™ Has = phen(N) @ ry(l). (6.2.48)

Equations (6.2.46) to (6.2.48) transform equation (6.2.45) as

Rin,Hz3 = R, PACn(N) @ (1) + phen(N) @ r(2). (6.2.49)

Substituting forRy, from equation (6.2.44), the above equation becomes
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R Fl23 = (~Rmy (Fiaz) Win — (1~ )WOWir) pWP + pWP. (6.2.50)

Substituting forR,, from (6.2.44), forRmZI:I'23 from (6.2.50), in equation (6.2.39), it

reduces to,

Rrs( = Ry (Hiaz) Wi = (1 = p)WWin) 8l
+ Ry ((=Rems () Win = (1 = p)W*Wir) pWP + pWP)
+ Re Pl + (—Ren, (Haz) Win — (1 = p)W'Win) Hys
+RpHas+ My =0 (6.2.51)
that isRE, (= (Haz) W1y — (Haz) WmnpWP + pizly)
+ Ry (—(1 = D)WOWrmBly = (1= p)WOWirpWP + pWP — (Hay) WinHys + Hag)

+ (~(1 - PWOWiHiz+ Aly) = 0 (6.2.52)
Which is a matrix quadratic equation of the form

R Am, + RgAm, + Ary = 0, (6.2.53)

which can be solved for obtaininB,,. The matrixR;, can then be obtained from
(6.2.44) andR, from (6.2.40).

We notice that

— lim Wy = - lim (H + (1- p)hen(N) @ ry(1) = 0.
m—oo m—oo

~ lim Wembly = = lim (S +(1- phhev(N) @ (D) Mol = Iy

m—oo
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and hence A; = mﬂmz = lim (= (Haz) W8y — (Haz) WinpWP + pizly)
= Ha1 + paln
= (1- puln + puln
= il (6.2.54)
A = mﬂml = rg_rgo( — (1= p)WWymBly — (1 — p)WOWirpWP
+ PWP = HygWiHys + Has)
= (1- p)W° + pWP + Has
= Haz + WP (6.2.55)
Ao = r!jinmx"b = lim (—(1 - PYWOWinHys + Al

Y (6.2.56)

Hence asn — oo, equation (6.2.53) becomé&&A; + RA; + Ay = 0, whose minimal

non-negative solutioR satis es the relation
m R = R (6.2.57)
The relation (6.2.57) can be made use of selecting the truncatiomhevel

6.3. Performance measures

We now turn to deriving a few important characteristics of the system

159



(1) Fraction of time the system is down:

Paown= ) mj,(L,n—k+1).

j1=0

(2) System reliability de ned as the probability that at lekstomponents are opera-
tional: Pre; = 1 — Pyown

(3) Average number of external units in the orbit is given by:

0 n-k+1 00 N-1 N-1
No= > j1 ), m(Lja)+ ), jl{z 73,0, o) + ) | 7, (2, js)}~

j1=0  js=1 j1=2 ja=0 j3=0
(4) Average number of failed components of the main system:
N-1 ) co n—k+1 )
Nrai = 13[2 73,0, Jo) + ) | mi(2, 13)] + ) 13[2 7 (L, 13)).
j3=0 j1=0 j1=0 ja=1 j1=0

(5) Average number of failed components waiting when the server is busy with external

customers:
N-1 00
EFSBE = ) jg[z (2, jg)].
j3=0 j1=1

(6) Expected number of external customers joining the system:
o N-1 N-1
05=10 ) [Z 7,0, ja) + ) 7 (2, m).
j1=0\js=0 ja=0
(7) Expected number of external customers on arrival getting service directly:
N-—

00 1
STDIPWACHE!
j1=0 j3=0

J3=
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(8) Fraction of time the server is busy with external customers:

oo (N-1
I:)exbusy: Z {Z 7Tj1(2’ J3)] .

j1=1\j3=0
(9) Probability that the server is found idle:

o N-1

Pidie = Z Zﬂjl(oa j3)-

j1=0 j3=0
(10) Probability that the server is found busy:

oo N-1

Pousy=1— Pigle = 1 - Z Z 7, (0, ja).

j1=0 j3=0

(11) Expected loss rate of external customers:

oo (n-k+1
0s = XZ[Z 7i.(L, jg)).

ji=0\ js=1
(12) Expected service completion rate of external customers:

oo N-1

05 = /_’lZ Z ﬂj1(29 J3)

j1=0j3=0

(13) Expected number of external customers when the server is busy with external cus-

tomers:
00 N-1
0= jl[Z 7,2 jg)J.
j1=0 ja=0

(14) Expected number of successful retrials:

oo N-1

ESR=46- Z Zn,-l(o, ja).

j1=1j3=0
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(15) The dfective search rate is given by:

oo N-1 o0
EFSR =P ) > 7,(2 Ja) + pu ) m3,(L 1),
j1=0 ja=0 j2=0

6.4. Numerical study of the performance of the system

According to theN-policy considered here, at the epoch when the number of failed
components in the main system reachisxternal customer’s (if any) service is pre-
empted in order to attend the failed components. Due to the pre-emptive nature of ser-
vice to external customers, allowing them does rftga the reliability of the system
further. Table 6.2 shows that, system reliability decreases as the vaNiegncfeases.

We want to notice that this is not due to the presence of the external customers; rather
this is because dd increases, it gets late for the server to start attending the failed com-
ponents and also it takes more time for the server to repair all the failed components
accumulated, and in the mean time the system can reach the down status. We have
compared the server busy probability of the system discussed here with that of a system
where external customers are not allowed. Table 6.4 shows that the server busy probabil-
ity is between 0.71 and 0.73, for a system where no external customers are not allowed,;
where as the same is between 0.84 and 0.86 when external customers are allowed as can
be found in Table 6.3. Table 6.1 shows that the fraction of the time the server remains
busy with external customersis,usygreater than 0.094 and itis increases as the value

of N increases. This is because, as the valud ofcreases, the external customers gets
more attention from the server. In table 6.3, it can be seen that the server busy probabil-

ity increases initially adN increases and then it begins to decrease aftexceed some
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value. For explaining this behavior, we notice that the server busy probailityis
the sum of two probabilities namely the server busy probability with external customers
Pextbusy @nd the server busy probability with failed componeis,s, Among these,
Pextbusy iNCreases abl increases, whil®,,,sy decreases ad increases. AN exceeds
some value, which depends on the choice of the other parameters also, the magnitude of
decrease ifPmpusy €XCeeding the magnitude of increasePipusy could be the reason
behind the decrease Bf,s. This points to whileN increases, even though the system
reliability maintained as very high with external customers getting frequent service, a
possible dissatisfaction of the main customers forced us to nd an optimal valisé for
For this we constructed a cost function as follows

Let C; be the cost per unit time incurred if the system is do@j), be the holding
cost per unit time per external customer in the oi@itjs the cost incurred towards set
up (instantaneous) of the server to serve main custor@grse the cost due to loss of
an external customegs be the holding cost per unit time of one failed componé€gt,

be the cost per unit idle time.
o Cs
Expected cost per unit time= C; - Pgouwn+ Co- No + Cy4- 04+ Cs - Nigj) + E + Cs - Pigle-
B

Table 6.5 gives the variation of the cost function as fpolicy level increases. Ac-
cording to the cost values and the other parameters assumed for Table 6.5, an optimum
value forN happens to be a much smaller vaNe= 3, which points to the care needed

for selectingN.
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Table 6.1. Effect of N-policy on server busy probability with external customers

A=4,,=32,u=557u=8,p=06

n=45 n=>50

n=>55 n =60

n =65

0.09514951 0.095134187
0.09431535 0.095429464

0.095131874 0.095131271
0.09429042 0.094289564

0.094264291
0.094269626
0.094294891
0.094344407
0.094431661
0.09458229
0.094842531
0.095295467
0.096093215
0.097520299
0.100133777

0.094233871
0.094223641
0.094223373
0.094230562
0.094246693
0.094276384
0.094328441
0.09441901
0.094577178
0.094854973
0.095347486

0.094227701
0.094214283
0.094208852
0.094207436
0.094209157
0.09421435
0.094224438
0.094242677
0.094274521
0.094330438
0.094429068

0.094226435
0.094212391
0.094205901
0.094202712
0.094201528
0.094201744
0.09420336
0.094206855
0.09421321
0.094224364
0.094244376

0.095131151
0.09428¢ 0.102
0.0942260821 -
0.0942119961 -
0.09420585
0.09420175ds
0.094200915, |
0.094199158,
0.094199084 g
0.094199538 W48
0.094200688°

0.094202787 | |
0.09420681

0.096229687 0.094603822 0.094279647 0.094213978
0.097834721 0.094915159 0.094342321 0.094226636
0.100827694 0.095474646 0.094454207 0.094249271
0.096490197 0.094654784 0.094289944
0.098364212 0.095016219 0.094362795
0.095672056 0.094493702
0.096875757 0.094730146
0.099126294 0.095160082
0.095947176
0.097406671

——n=45
=l—n=50

n=55
=60

—+—n=65




Table 6.2. Effect of N-policy on system reliability

A=4,1=32,u=55u=8,p=06

n=45

n=>50

n=>55

n==60

n=65

0.999927512
0.999896646
0.999848127
0.999770224
0.999642789
0.999431372
0.999076188
0.998472273
0.997434139
0.995629668
0.992453277
0.986771345
0.976366401

0.999985278
0.99997896
0.999969125
0.99995327
0.999927402
0.999884427
0.999812424
0.999690175
0.999480784
0.999118984
0.998488724
0.997382045
0.99542129

0.98551929

0.99999702
0.999995708
0.999993742
0.999990463
0.999985218
0.999976516
0.999961853
0.999936998

0.9998945
0.999821067
0.999693513
0.999470294

0.99907738

0.9971416

0.999999404
0.999999106
0.999998748
0.999998093
0.99999702
0.999995232
0.999992251
0.999987185
0.999978542
0.999963582
0.999937654
0.999892354
0.999812663

0.999999881
0.999999821
0.999999762
0.999999583
0.999999404
0.999999046
0.99999845
0.999997377
0.999995649
0.999992609
0.999987304
0.999978125
0.999961913

0.991909087 0.998381615 0.999671817 0.999933302
0.999421954 0.999882519
0.973603964 0.994914472 0.99897635 0.999792159

0.990871668 0.998178065 0.999630749
0.98341167 0.996739745 0.999341249
0.994129002 0.998820186
0.989336848 0.997878492
0.980377853 0.996167362
0.99303767
0.987223387
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Table 6.3. Effect of N-policy on server busy probability

A=4,.=32,u=55mu=8,p=06

n=45

n=>50 n=>55

n=60

n=65

0.857275724
0.858526945
0.858603597
0.858595431
0.858557642
0.85843315
0.858352482
0.85812664
0.85773623
0.857056856
0.855860233
0.853719652
0.849799335

0.857297719
0.858557999
0.858649135
0.858664453
0.85866493
0.858654141
0.858629882
0.858585477
0.858507335
0.858371615
0.85813427
0.857717574
0.856978774

0.857302189
0.858564317
0.858658373
0.85867846
0.858686686
0.858688831
0.85868609
0.858678579
0.858663321
0.858636022
0.858588219
0.858504355
0.858356416

0.857303083
0.858565569
0.858660281
0.858682321
0.858691096
0.858695865
0.858697653
0.858697355
0.858694911
0.858689725
0.858680248
0.85866344
0.858633459

0.857303262
0.858565807
0.85860638
0.858681917
0.85869205
0.858697295
0.858699918
0.858701289
0.858701229
0.85870Q752
0.858698964
0.858695865
0.858689785

0.855655491 0.858094394 0.858580709 0.858679175
0.85324846 0.857627392 0.858486652 0.858660221
0.848758399 0.856788158 0.858318806 0.858626127

0.855264723 0.858017802 0.858565032
0.852453589 0.857475638 0.858455837

0.856491923 0.85825938
0.85468632 0.857904792
0.851310493 0.85725981

0.856079221
0.853889942
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Table 6.4. Variation in the server busy probability when external cus-
tomers are not allowed

k=20\=4,u=55

N n=45 n=50 n=55 n=60 n=65
1 0.72722 0.72726 0.72727 0.72727 0.7272
3 07272 0.72726 0.72727 0.72727 0.7272
5
7
9

7
7

0.72717 0.72725 0.72727 0.72727 0.72727

0.72711 0.72724 0.72727 0.72727 0.72727

0.72703 0.72722 0.72726 0.72727 0.72727
11 0.72688 0.72719 0.72726 0.72727 0.72727
13 0.72663 0.72714 0.72725 0.72727 0.727237
15 0.72622 0.72706 0.72723 0.72726 0.72727
17 0.7255 0.72691 0.7272 0.72726 0.72727
19 0.72425 0.72666 0.72715 0.72725 0.72727
21 0.72206 0.72623 0.72706 0.72723 0.72726
23 0.71814 0.72546 0.72691 0.7272 0.72726
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Table 6.5. Variation in cost

%=32,u=557=8,p=0.6,C, = 2000,C, = 1000,
Cs = 1600,C, = 1000,Cs = 500,Cg = 100

A=4

A=45

L=5

L=06

6294.77881
5568.93115
5818.25
6210.08398
6648.28174
7105.86084
7571.48877
8038.32568
8500.26953
8949.75098
9375.36719
9758.08301
10063.5977

7014.58057
6558.06396
6848.77002
7246.75537
7676.01807
8114.13281
8550.64063
8978.31543
9390.24902
9778.28027
10131.4531
10433.8193
10660.3818

8451.76855
8271.66699
8555.66797

8901.53516
9259.15332
9613.13281
9955.93164
10282.1611
10586.7256
10863.8584
11106.3301
11304.4141
11444.3047

13187.4873
13118.216000

13162.37800 -

13227.14480
13297.110640
13367.08760

13434.380

13497.3@60&

13554.3G880

13604.19820

13645.4541 o

13676.7705
13696.7246

20 40

——\=4

—l—\=4.5
A=5

i \=6
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Chapter 7

Reliability of a k-out-of-n system with a repair

facility- Essential and Inessential services

7.1. Introduction

We consider &-out-of-n system with a single server repair facility. At the epoch the
system starts, all components are in operational state. Service to failed components is
in the order of their arrival. When a component is selected for repair, we assume that,
the server may select it for a service that turns out to fferint from what is exactly
needed for it. In other words, each failed component may get selected for an unwanted
service, which we call the inessential service with probabilitsnd with probability
(1 - p), itis taken for desired service, called the essential service. Once the inessential
service process starts, the customer either completes the service there and moves for the

essential service or leaves the system before completing the service in the rst part. A
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random clock is assumed to start ticking the moment the inessential service starts, which
decides the event to follow: if the clock realises rst (still the inessential service is going
on) the customer leaves the system immediately without going for the essential service.
On the other hand if the inessential service gets completed before the realisation of the
random clock, then the component moves for the essential service immediately.

The arrival process of the failed components has inter-arrival times exponentially
distributed with parametér. The essential service time of a failed component is ex-
ponentially distributed with parametgrand the service time of failed components in
inessential service has a phase type distribution with representati&y ¢f orderm.

We assume tha&@® = —-Se S be a square matrix of orderwith entriesu;j, wherew; is
the parameter of the exponentially distributed sojurn time in $tateen it moves from
j toi. The random clock time is assumed to be exponentially distributed with parameter

0.

7.2. The Markov Chain
Let N(t) = at timet number of failed components in the system.
0, if the failed component getting essential service

IO = 1, if afailed component getting® phase of inessential service,

wherei=1,2,...,m

Then{X(t),t > 0} whereX(t) = (N(t), J(t)) is a continuous time Markov chain with state

space(0,0)}U{1,2,...,n—-k+1}x{0,1,2,...,m}.
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The generator matrix of the Markov chgiX(t), t > 0} is

A Bg

Bir A Ao

A A

A

Ao

A Ao

A

Aoo = [-1]; Bo = [(L - P phal; By ="

—(u+2) 0
A]_:

SO S—(6+ Ml
— |+ 0
A =

S S -4ly,

oe

Au

A

Ao = [)\|m+l]; Ay =

wherea = (@, az...,am) Withay + a2 + ... + oy = 1.

Letg=(1-p) p)
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since this system is nite, it is stable. Let

= (7(0), 7(1), ..., (N — K + 1))

with

(i) = (x(i, 0), 7(i, 1), (i, 2), ... x(i,m)), L<i<n—k+1

be the steady state probability vector of the sys{ift),t > 0}. Then it satis es the
equationsrQ = 0 andre = 1.

The equatiomQ = 0 gives rise to

7(0)Ago + 7(1)By = 0 (7.2.1)

7(0)Bo + 7(1)A; + m(2)A, = 0 (7.2.2)

(i — A+ (i)A +7(i + 1)A, = 0,2 <i <n-k (7.2.3)
m(n—K)Ag + (N — k+ 1)A, = 0. (7.2.4)

SinceAq = [-A] andB; = Ay e, from (7.2.1) it follows that

1(0) = n(L)As e (7.2.5)

SinceBy = AB, equation (7.2.2) becomes

7008 + m(1)Aq + 7(2)As = O. (7.2.6)
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Using (7.2.5) we can write this equation as

7(1)B1B + (L)AL + 1(2)A; = 0.

We notice thaB,8 = A, and hence equation (7.2.7) beocmes

ﬂ(l)(Al + A2) + 7T(2)A2 =0.

Post multiplying equation (7.2.8) wiy we get

(L)AL + Ag) e+ n(2)Are = 0

but (A; + Ay)e = -Age = -Le. Hence (7.2.9) becomes

n(l)he = n(2)Aze.

We notice thaty, = A, €3, which transforms equation (7.2.8) in to

ﬂ(l)(Al + A2) + 7T(2)A2Q8 =0.

Substituting forr(2)A; e from (7.2.10) in (7.2.11), we get

2(1)(As + A) + n(1)re8 = 0.

That is

7T(1)(A1 + A2 + }\,QG) =0.
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Equation (7.2.12) shows tha{l) is a constant multiple of the steady state vegtaf

the generator matrid; + A, + AeB. That is

n(1)=ne (7.2.13)

wherer is a constant.

Equation (7.2.3) for = 2 gives

(LA + 1(2)A; + 71(3)A; = 0. (7.2.14)

SinceA; = Ay €8, equation (7.2.14) becomes

7(1)Ao + 1(2)A; + n(3)A.€5 = 0. (7.2.15)

Post multiplying withe, we get

r(he+ n(2)A e + n(3)Ae = 0. (7.2.16)

Using (7.2.10) the above equation can be written as

n(2)Ae+ n(2)Ae + n(3)Ae=0
i.e., n(2)(A1+A)e=-n(3)Ae

ie., n(2he=n(3)Ae (7.2.17)
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In the light of equation (7.2.17), equation (7.2.15) becomes,

(1A + n(2)A; + n(2)heB3 = 0

e, (L)Ay+7(2)(A +1e8) = 0

which implies that

7(2) = —n(1)Ao(Ar + 1 €8) .

That is

m(2) = —neAo(AL + 1eB) . (7.2.18)

Post-multiplying equation (7.2.3) withand proceeding in the same lines as we derived

equation (7.2.17), we can derive that

(i + 1)Ae = n(i)he, for3<i<n-k (7.2.19)

Equation (7.2.19) then transforms equation (7.2.3) as

(i — 1)Ao + n())A, + 7(i)he€8 = 0,3 < i < n—k,

which implies that

n(i) = —n(i — 1)Ag(AL +heB) L, 2<i<n-k (7.2.20)

which in turn gives

(i) = (-1) " e(A(AL + 188 ) L2 <i <n-k. (7.2.21)
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We notice thaih; e = —A, €; post-multiplying equation (7.2.4) witl we get
ain-khre=n(n-k+1)Ae (7.2.22)
From equation (7.2.4), we can also write
a(n—k+ 1) = —x(n = K)A(A) . (7.2.23)
Using (7.2.21) foi = n -k, (7.2.23) becomes
a(n—k+1) = (=1)" 7 ¢(Ao(Ar +1.€8) ) A(A) . (7.2.24)

Hence, we have the following theorem for the steady state distribution:

Theorem 7.2.1.The steady state distribution = (7(0), 7(1),...,n(n — k + 1)) of the

Markov chain{X(t),t > O} is given by

7(0) = %—7“081
n(l)=ne
() = (1) ne(Ao(A + 1882 <i<n-k

a(n—k+ 1) = (1) 7 p(Ao(Ar +1.€8) ) LA(A) L,

whereg is the steady state vector of the generator matrix+AA, + €3 andn is a

constant, which can be found from the normalizing conditien= 1.
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7.3. System performance measures

(1) Fraction of time the system is down,

Paown= ) w(n—k+1, j)

m
j=0
(2) System reliability,

m
Prel = 1 — Pgown = 1_Zﬂ(n_k+ 1’j)

)
o

(3) Average number of failed components in the system,

(4) Expected rate at which failed components are taken for essential service:

n-k+1 n—-k+1 m
Ees= (L p)Ax(0)+ > (L- pun(i,0)+ > (1~ p)a[Z n(i,n].
i=2 i=2

1

(5) Expected rate at which failed components are taken for inessential service

n—k+1 n—k+1 m
Enes= PA(0)+ > pun(i,0)+ p«f[Z n(i,j)}.

i—2 i=2 =1

(6) Expected rate at which new components were bought:

n-k+1 m
Ecr= 6(Zn(i, j)).

i=1 =1
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(7) Expected rate at which failed components that start with inessential service subse-

guently moves to essential service before clock realisation :

n—-k+1 m+1

Ene =, >, )S% - 12)

i=1 =2

(8) Fraction of time server is idle:

Pigie = 7(0).

(9) Fraction of time server is busy:

Pbusy: 1- 7T(0)

Numerical study of the system performance measures

Notice that if a component is selected for inessential service, it is either replaced
by a new component (if the random clock realises before completion of the inessential
service) or is got repaired (if the inessential service completes before the random clock
realises). Hence a component getting selected for inessential service according to prob-
ability p affects the system reliability only through an increase in the repair time by a
random amount of time (minimum of inessential service time and random clock time).
Table 7.1 shows that very high reliability is maintained in the system, which decreases
slightly as the probabilityp that a failed component receives an undesired service ini-
tially, increases. The decrease in the average rate at which components directly receive

essential service with an increasepnas seen in Table 7.2, was expected. So is the
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increase in the rate at which components receive inessential service initially as seen in
Table 7.3, with an increase ip. According to the modelling assumption, if the ran-
dom clock expires during an inessential service, the component receiving the inessential
service is replaced with a new component. Hence, as the probgbilityreases, more
components will get selected for inessential service, which leads to an increase in the
replacement rate as seen in Table 7.4.

Since the inessential service is not helping the system in any way whatsoever, one
would expect the optimal value for the probabilgys to be zero. However in a situation
where the possibility for inessential service can’t be avoided, one would like to know its
harm through some number. For this purpose, we have constructed a cost function as
follows:

Let C, be the cost per unit time incurred if the system is do@),be the repair cost
per unit time for essential service per failed compon€gis the cost incurred towards
the time loss due to wrong diagnosis with failed components and consequent realisation
of random clock before inessential service completi@.is the extra cost incurred
on failed components that start with inessential service subsequently moves to essential

service before clock realisatioBg be the repair cost per unit time for inessential service

Expected cost per unittime = C; - Pyown+ C2 - Ees+ C3- Ecr+ C4 - EinE + Cs - Eines

Table 7.5 presents the variation in cost function as the probalplitcreases for

different component failure rates. In all the cases studied, the optimum vatueasf
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found zero as was expected. The table also shows that as the component failure rate increases, the cost function also increases.

8
Table 7.1. Variation in system reliability) = 4,4 = 3.8,6 =5,S° = 8]
8

p n=45 n=>50 n=>55 n =60 n==65

08T

0.001 0.999985933 0.999985933 0.999997139 0.999999404 0.999999881
0.003 0.999985874 0.999985874 0.999997139 0.999999404 0.999999881

0.005 0.999985874 0.999985874 0.999997139 0.999999404 0.999999881

0.007 0.999985814 0.999985814 0.999997139 0.999999404 0.9999998811 o

0.009 0.999985814 0.999985814 0.999997139 0.999999404 0.999999881. ——n-as
0.01 0.999985814 0.999985814 0.999997079 0.999999404 0.99999%335;\.\_\- -
0.03 0.999985576 0.999985576 0.99999702 0.999999404 0.999999881

0.05 0.999985278 0.999985278 0.99999696 0.999999404 0.999999881s

0.07 0.999985039 0.999985039 0.999996901 0.999999344 0.999999881 , .. . .
0.09 0.999984741 0.999984741 0.999996841 0.999999344 0.999999881

0.1 0.999984622 0.999984622 0.999996841 0.999999344 0.999999881

0.3 0.999981642 0.999981642 0.999996066 0.999999166 0.999999821

0.5 0.999978125 0.999978125 0.999995172 0.999998927 0.999999762

0.7 0.999973893 0.999973893 0.99999404 0.999998629 0.999999702

0.9 0.999968886 0.999968886 0.999992669 0.999998271 0.999999583

0.99 0.999966323 0.999966323 0.999991954 0.999998093 0.999999523

==n=60

=t==n=65
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Table 7.2. Average rate at which components taken for essential sexvicé, u = 3.8,6 = 5,S° =

8
8
8

p

n=45

n=50

n=55

n=60

n==65

0.001
0.003
0.005
0.007
0.009
0.01
0.03
0.05
0.07
0.09
0.1
0.3
0.5
0.7
0.9
0.99

3.99649739
3.98938107
3.98248005
3.97557425
3.96866465
3.96520758
3.89581704
3.82595038
3.75561023
3.68479681
3.64921474
2.91331673
2.13270593
1.30956876
0.44612866

3.99649739
3.9896009
3.98269963
3.97579312
3.96888351
3.96542716
3.89603281
3.82616258
3.7558198
3.6850028
3.64941883
2.91348505
2.13283181
1.30964661
0.446155071

0.045032669 0.04503531

3.99654222
3.98964596
3.98274446
3.97583771
3.9689281
3.96547127
3.89607692
3.82620668
3.75586271
3.68504548
3.64946103
2.91352081
2.13285947
1.30966437
0.44616127

0.045035943 0.045036085

3.99655128
3.98965478
3.98275352
3.97584677
3.9689374
3.96548033
3.89608598
3.82621574
3.75587177
3.68505406
3.64946985
2.91352844
2.13286543
1.30966842
0.446162701

3.09655718
3.98965(5
3.98275566
3.97584867

3.9689393 ¢

3.965482

3.89608765

3.82621717
3.75587368

)

3.684505%9'

3.649472 0

2.91353035
2.13286662
1.30966926

0.446163058
0.045036126

= N=45
——n=50

n=55
e =60

——n=65
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Table 7.3. Average rate at which components taken for essential sexvicé, u = 3.2,6 = 5,S° =

8
8
8

P

n=45

n=>50

n=>55

n=60

n==65

0.001
0.003
0.005
0.007
0.009
0.01
0.03
0.05
0.07
0.09
0.1
0.3
0.5
0.7
0.9
0.99

0.001677582
0.005032186
0.008386041
0.011391506
0.015091507
0.016767405
0.050246038
0.083649568
0.116977736
0.150230378
0.16682826
0.494757891
0.814846277
1.12684083
1.43048191
1.5643245

0.001677335
0.005031444
0.008384803
0.011737416
0.015089272
0.01676492
0.050238468
0.083636761
0.11695952
0.150206596
0.166801631
0.494664699
0.814665198
1.12654567
1.43004024
1.56380451

0.001677285
0.005031293
0.008384562
0.011737063
0.015088818
0.016764414
0.050236922
0.083634131
0.116955772
0.150201693
0.166796118
0.494644821
0.814625323
1.12647855
1.429936605
1.56368077

0.001677275
0.005031263
0.008384501
0.01173699
0.015088724
0.016764313
0.050236605
0.083633594
0.116955005
0.15020068
0.166794986
0.494640589
0.814616561
1.12646341
1.42991233
1.56365132

0.001677273
0.005031.8
0.00838448 —m
0.0117360%6 B
0.015088706-
0.016764291 -+
0.050236542 Bl
0.08363849 -/
0.116954848 "—
0.150200% 31 4
0.166794747 f A
0.494639665 |
0.814614654
1.12645984
1.42990661
1.56364441

w—p—N=4

== n=5

n=5

—<—n=6
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Table 7.4. Average rate at which components were bought4, u = 3.2,6 =5,S° = 8}
8

p n=45 n=50 n=>55 n =60 n=65
0.001 0.001538355 0.00153844 0.001538457 0.001538461 0.001538462
0.003 0.004615065 0.004615319 0.004615371 0.004615382 0.00461!1.6 ——n=1
0.005 0.007691774 0.007692199 0.007692286 0.007692303 0.00769213@775"*7 5
0.007 0.010768481 0.010769077 0.010769199 0.010769224 0.01076912_§9k;.'.¥
0.009 0.01384519 0.013845956 0.013846113 0.013846145 0.013846132 ['\ =8—n=5
0.01 0.015383544 0.015384398 0.015384572 0.015384607 0.0153846i5‘ 0
0.03 0.046150584 0.04615318 0.046153713 0.046153817 0.0461538%3 H n=5
0.05 0.076917566 0.076921947 0.076922849 0.076923035 0.076923][)62';"." 5
0.07 0.107684486 0.107690714 0.107691996 0.107692257 0.10769253_3;6%‘ ——1=G
0.09 0.138451293 0.138459414 0.138461098 0.138461441 0.13846]63_}5 "‘ 0
0.1 0.153834701 0.15384379 0.153845653 0.15384604 0.15384613
0.3 0.461498737  0.46153 0.461536676 0.461538808 0.4615383704 ’1 —#—=n=6
0.5 0.769154251 0.769213974 0.769227087 0.769230008 0.769230664 0 2 3
0.7 1.07679927 1.076895 1.07691669 1.0769217 1.07692277
0.9 1.38443172 1.38457251 1.38460553 1.38461328 1.38461506
0.99 1.52286148 1.52302587 1.52306497 1.52307427 1.52307653
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Table 7.5. Variation in cosiC; = 9500,C, = 2600,C; = 4000,C, = 1600Cs = 3000

P

r=4

L=45

A=5

L=06

0.001
0.003
0.005
0.007
0.009
0.01
0.03
0.05
0.07
0.09
0.1
0.3
0.5
0.7
0.9
0.99

10411.8662
10435.6221
10459.3789
10483.1328
10506.8916
10518.7715
10756.3047
10993.7998
11231.2598
11468.6729
11587.3662
13958.7285
16324.3867
18682.9082
21032.8359
22087.1016

11709.9268
11734.1328
11758.334
11782.5352
11806.7393
11818.8389
12060.7119
12302.373
12543.8252
12789.0537
12905.5889
15304.4629
17679.4102
20028.3828
22349.3281
23384.0664

12982.9131
13006.5225
13030.1328
13053.7373
13077.3428
13089.1475
13324.9258
13560.29
13795.2471
14029.7676
14146.8809
16466.709
18742.8711
20973.9453
23158.7715
24126.6035

15048.7344
15070.1104
150914854
15112.8564

15134.244900

15144.925800
15358.380%00

15571.4082,,,,
15784.0264
15996.2021
16102.1484
18199.4043
20256.9434
22276.6172
24260.2168
25141.5078

——\=4
=—\=4.5




Conclusion

In this thesis, we studied fiierentk-out-of-n systems where the server, besides re-
pairing failed components, renders service to external customers also. Rendering service
to external customers could be affieetive way for utilizing the server idle time and
there by earn more pro t to the system. However, in the case of a system, where a mini-
mum number of working components is necessary for its operation, the external service
should be carefully managed so that it does iidc the system reliability seriously.

In chapter 2, we adopted axrpolicy for managing the external service. Precisely,
we assume that the server starts attending failed components of the main system only
on accumulation ofN of them. During this idle period, the server renders service to
external customers (if there is any). This scenario was modeled using a continuous time
Markov chain. Further we make the reasonable assumption that the external service is
pre-emptive in nature on accumulationdfailed components and also that the external
arrivals which nds the server busy with failed system components are blocked from en-
tering the system. These assumptions lead us to a product form solution for the system
steady state distribution, when the underlying distributions are all assumed to be expo-
nential; and for obtaining the same, we used a novel matrix decomposition approach.
Our numerical study of the system performance measures reveals that by introdeicing
policy, we can optimize the system revenue, by rendering service to external customers,
still maintaining high system reliability. Analysis of a cost function has helped us in

nding an optimal value for theN-policy level.
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In chapter 3, we extended the model in chapter 2 by considering a non-preemptive
service for external customers thereby making their service more attractive. We analyzed
two models: one in which the external customers joins a queue and another in which they
move to an orbit of in nite capacity. Our numerical study showed that rendering non-
preemptive service to external customers has ffected the system reliability much,
thereby re-asserting that the same could beffattve idea for utilizing the server idle
time and there by earning more prot to the system. Here also we analyzed a cost
function, which helped us in nding an optimal value for tNepolicy level.

In chapter 4, we replaced tiNepolicy for the service of failed components witf a
policy. That is at the epoch the system starts with all components operational, the server
starts attending the external customers (if there is any). The server starts the service of
the failed components only at the moment of the realization of the randomttiife
there is at least one failed component). If the tifinés realized in the middle of an
external customer’s service and if there exists at least one failed component, the external
customer in service is pre-empted and the server is switched over to the service of main
customers. The preempted external customer goes to the queue of external customers.
Our numerical study showed that the realization rate of the randomTisteould be
chosen very carefully since it may severefeat the reliability of thek-out-of-n system.

More precisely ifT takes large values with positive probability, reliability is very small
and at the same time the server busy probability is not very high. We have therefore
constructed a cost function for selecting an optimal value for the realization rate of

As in the case of classical queue, the performandg-pblicy excels that of -policy.
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In chapter 5, it was assumed that the server selects an external customer from the
pool of external customers for service with probabilipy, if the number of failed com-
ponents is less thah*, a pre-assigned number called the transition level. We notice that
in the case of alN-policy (assumed in chapters 2 and 3), the server starts attending the
failed components only on the accumulationhbf them and in the case @f-policy
(assumed in chapter 4) it happens on the realization of Timka contrast to these, ac-
cording to the policy adopted in this chapter, even if there is only one failed component
found at an external customers service completion epoch, its repair is started with prob-
ability 1 — p. Hence this policy helps to maintain very high system reliability and at the
same time gives much attention for external customers. Optimal valuevias found
based on a cost function.

Chapter 6 diers from the preceding chapters that it assumes the external customers
are sent to an orbit instead of a queue. We assumé-palicy for starting the service
of failed components and the service of an external customer is preempted and it is sent
back to the orbit at the epoch of accumulatior\bfailed components. Because of the
assumption of the orbit of external customers, the server goes idle after each service
completion of an external customer. In order to reduce the server idle probability, an
orbital search of external customers was applied. An optimal valuél faas found
using a cost function.

Chapter 7 does not assume any external customers in the system; instead here the
reliability of ak-out-of-n system is studied in a setup where a failed component may get

selected for an undesirable service initially, which may be due to some wrong diagnosis
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of the reason for its failure. Each failed component may complete ffexeint stages of

the undesirable service to nally receive the essential service or may get replaced with a
new component. This decision was done on the basis of the elapse of a randoim.clock
More precisely, ifT realizes before the completion of the unwanted service, the failed
component is replaced with a new component. A cost function was studied for selecting
an optimal value for the probabilitp with which an external customer is selected for
the unwanted service and it was found that zero is its optimal value.

There are several extensions to the work reported in this thesis. For example external
arrivals, wherever considered could be assumed to follow an Markovian Arrival Process
with appropriate representatio®-policy as a control policy could be examined. Here
it is the accumulated work load] that is to be considered. Yet another direction of
extension is a multi server system. The extension of the results reported to the case of
more than one essential service is worth examining. This has applications in medicine,

biology and several other elds of activity.
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