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Abstract 

Modeling of chaotic systems, based on the output time series, is quite 

promising since the output often represents the characteristic behaviour of 

the total system. It has been an interesting topic for researchers over the past 

few years. So far, some methods are developed for the identification of 

chaotic systems. Because of the intense complexity of chaotic systems, the 

performance of existing algorithms is not always satisfactory. Application of 

chaotic system theory to socially relevant problems like environmental 

studies is the need of the hour. 

Neural networks have the required self-learning capability to tune the 

network parameters (i.e. weights) for identifying highly non-linear and 

chaotic systems.  In the present work, effectiveness of modeling a chaotic 

system using dynamic neural networks has been demonstrated. From the rich 

literature available for non-linear modeling with neural networks, the 

Recurrent Neural Network (RNN) structure is selected. The Extended 

Kalman Filter (EKF) algorithm is used to train the RNN. Further, the 

Expectation Maximization algorithm is used to effectively arrive at the initial 

states and the state covariance. Particle filter algorithm with its two important 

variants namely Sampling Importance Resampling (SIR) and Rao 

Blackwellised algorithms are also used for training the given RNN. Four 

standard chaotic systems, Lorenz, Rossler, Chua and Chen, are modelled 

with the three algorithms. The best algorithm is found to be EKF-EM based 

on the least mean square error criterion. Validation of RNN model with EKF-

EM algorithm is done in time domain by Estimation of embedding 

dimension, Phase plots, Lyapunov Exponents, Kaplan -Yorke dimension and 

Bifurcation diagrams. Analysis of the chaotic systems is also performed in 

the transform domain using Fourier, Wavelet and Mapped Real Transforms.  
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Natural chaotic systems are analyzed based on the selected model structure 

and training algorithm, taken for analysis. Sunspot, Venice Lagoon and 

North Atlantic oscillations are the three of the natural chaotic systems 

modelled with the selected RNN model structure and EKF-EM algorithm. 

Important contributions of the thesis are: 

1. Successfully demonstrated that given the output of any chaotic 

system, it is possible to build a stable model by the proposed RNN 

structure trained with EKF-EM algorithm.  

2. A successful method for online computation of Lyapunov exponent, 

from a noisy chaotic dataset, along with the bifurcation diagram is 

developed. 

3. Proved that RNN model is capable to characterize the invariant 

properties of chaotic systems that are Phase plots, Lyapunov 

Exponents, Kaplan – Yorke dimension and Embedding dimension. 

4. Transform domain analysis of chaotic systems demonstrated that 

MRT transformation is capable of retaining the properties of chaotic 

system.  

5. Use of MRT enables the chosen window to be represented by any one 

of the MRT coefficients through which the computation time can also 

be considerably reduced.  

6. Three important natural chaotic systems considered for study, namely 

Sunspot, Venice Lagoon, and North Atlantic oscillation, are 

modelled with considerably low error and computation time.  

7.  Characteristics of the natural systems like phase plots, embedding 

dimension, Lyapunov exponents and MRT coefficients are computed 

and analysed. 
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1. Introduction 

The subject of system theory plays a significant role in the field of 

engineering.A system is a group of ordered, focused arrangement that 

involves of interconnected and codependent elements. The elements of the 

systems can be modules, units, features, members, fragments etc. These 

elements repeatedly influence one, another directly or indirectly, 

to maintain their activity and the existence of the system, 

in order to achieve the goal of the system [26].The universe itself is a large 

system which is subjected to constant changes. The galaxies, solar system 

and other possible celestial systems are all subsystems of the universe. On a 

relatively smaller scale, the earth itself is a system with many elements like 

water, land, atmosphere etc. influencing the growth and sustenance of every 

living and non-living organisms like animals, plants, ocean and mountains, 

all being its subsystems. The systems theory encompasses the study of the 

behaviour of a system in response to changes in the inputs and parameters 

that govern the behaviour.  

The research and development of system theory began in the mid-1600s, 

when Newton proposed the differential equations, discovered his laws of 

motion and universal gravitation, and combined them to explain Kepler’s 

laws of planetary motion. Later on, the system theory was extended to all 

engineering fields and analysis of industries, products and processes. The 

basic procedure in the system theoretical frame work always includes 

mathematical modelling, development of efficient algorithms for analysis 

and subsequently simulation and validation of the model, with a view to 

predict the behaviour at any instance. Almost all real world systems are by 

and large non-linear. In restricted cases these systems could   be modelled by 

differential equations. As the complexity of the system increases, the order 

http://www.businessdictionary.com/definition/organized.html
http://www.businessdictionary.com/definition/structure.html
http://www.businessdictionary.com/definition/element.html
http://www.businessdictionary.com/definition/influence.html
http://www.businessdictionary.com/definition/maintain.html
http://www.businessdictionary.com/definition/order.html
http://www.businessdictionary.com/definition/achieve.html
http://www.businessdictionary.com/definition/goal.html
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and number of differential equations required to represent the system 

increase and the analysis become more and more complex. It is also an 

accepted fact that with advent of efficient computers, the complexity in 

analysis is meaningfully handled to a great extent. On the other hand, with 

the development of intelligent computational techniques, like neural 

networks, a more effective representation of non-linear systems has been 

possible, thus giving an effective thrust in the development of modelling 

techniques and algorithms for non-linear systems. Among the non-linear 

systems, systems with sensitive dependence on initial conditions are referred 

to as Chaotic Systems. Many natural phenomena like solar radiations, 

oceanic waves, changes in whether all exhibit chaotic behaviour very often. 

The modelling and analysis of such systems have become very topical in the 

field of system theory. The present thesis addresses the topic of modelling 

the chaotic systems from the available output in the form of time series, with 

a view develop techniques to characterise the systems and predict the 

behaviour subsequently.  

1.1 Linear and non-linear systems 

The systems are classified broadly into two: linear and non-linear.Linear 

systems satisfy the properties of superposition and homogeneity. The 

principle of superposition states that for two different inputs, x1 and x2, in 

the domain of the function f, 

f (1x1+2x2) =1f(x1)+2f(x2)                                      (1.1) 

The property of homogeneity states that for a given input, x, in the domain 

of the function f, and for any real number k, 

f(kx1)=kf(x1)                                                                              (1.2)
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any system that does not satisfy these properties is non-linear. Linear Time 

Invariant (LTI) systems are commonly described by the equations 

( ) ( )
dx

Ax t Bu t
dt

                                                                     (1.3)  

y(t) ( ) ( )Cx t Du t                                                                   (1.4) 

where x is the system state vector, u is the input vector, and y is the output 

vector. A, B, C and D are constant matrices defining the system parameters. 

A non-linear system on the other hand may be defined by the following non-

linear equations 

 ( ), ( )
dx

f x t u t
dt

                                                                          (1.5) 

 y(t) ( ), ( )g x t u t                                                                        (1.6) 

 where f and g are non-linear functions. 

 Dynamical systems 

Dynamical system is a system that changes over time according to its 

functional characterisation. It deals with the analysis of processes that are 

continuously undergoing changes in system states. Study of dynamical 

systems involves the determination of how a given state of the system 

moves to another state [26]. This process is called state transition. The state 

transition is represented by state transition diagrams. A non-linear 

dynamical system has two parts: 

a) a state vector, which describes exactly the state of some real or  

hypothetical system 
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b) a set of parameterized functions, which describes the state 

transition in time.  

State vector can be described by 

                     (1.7)  

The set of functions can be described by 

                (1.8) 

 Entire system can be then described by a set of differential   equations.  

 

 

 

 

 

where 1 2, ,...., nx x x are the state variables. For example, the state variables 

of a single particle moving in one dimension are position and velocity. In a 

dynamical system, the present state is completely determined by the previous 

states of the system [26].  

A phase space is an n-dimensional space in which all possible states of a 

system are represented with each possible state of the system corresponding 

to one unique point. A phase plot is a plot of different states of a system in 

the phase plane. Phase plots depend on initial conditions. In a phase plot, the 

axes will be system states.  

1 2( ) [ ( ), ( ),......, ( )]nx t x t x t x t

1 1 2 2 1 2 1 2( , ,...., ) , ( , ,...., ),...., ( , ,...., )n n n nf x x x f x x x f x x x

1
1 1 2

2
2 2 1 2

1 2

( , ,...., )

( , ,...., ) (1.9)

.
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.

( , ,...., )

n

n

n
n n n

dx
x f x x x

dt

dx
x f x x x

dt

dx
x f x x x

dt

 

 

 
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 The phase plots of a non-linear system for stable, marginally stable or 

unstable [54], systems are shown in Figure 1-1. 

 

Figure 1-1 (a) stable, (b) marginally stable and (c) unstable phase plots 

Initial conditions and external inputs can affect stability of the systems and 

shape of phase plots as depicted in Figure 1-1 (image courtesy 

www.sovietencyclopedia.org). A limit cycle is a type of phase plot similar 

to a unique, self-excited oscillation. It is also a closed trajectory in the state 

space. Non-linear systems with high dependency on initial conditions are 

called chaotic systems. The phase plots of chaotic systems show distinct 

properties, as discussed in the section to follow.  

 Chaotic Systems 

Chaos theory is the qualitative study of unstable aperiodic behaviour in non-

linear dynamical systems. The chaotic systems have been of interest to many 

researchers over years. Chaos is a complex and unpredictable phenomena, 

which occur in non-linear systems, which are sensitive to their initial 

conditions. The theory has origins back to around 1900, but advanced more 

swiftly after mid-century. Currently, chaos theory continues to be a very 

active area of research.  
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The modern theoretical analysis of chaotic systems started with the 

meteorologist Edward Lorenz. In 1963, while simulating atmospheric 

convection using a simple non-linear model, he observed extreme sensitivity 

to changes in initial conditions [2]. He compared these results with earlier 

observations of Henry Poincare and concluded that this particular system 

behaviour is chaotic in nature. He repeated the experiment with different 

initial conditions and verified the observation. Each experiment was found 

to be validating the extreme sensitivity of the system to initial conditions. 

The corresponding observations were published in 1965 and the scientific 

world received these results with enthusiasm. The system of equations were 

later on known as Lorenz system. The strange attractors of Lorenz system 

evolved as the wings of a butterfly. The system is represented by the 

following three non-linear differential equations with variables x, y, and z  

( ) (1.10)x y x


 

(1.11)y xz x y


   

(1.12)z xy z


   

σ represents the ratio of fluid viscosity of a substance to its thermal 

conductivity called, "Prandtl number".  The constants γ and β represent 

difference in temperature between top and bottom of the gaseous system, 

width to height ratio of the box used to hold the gas in the gaseous system 

respectively. The variable “x” represents rate of rotation of the cylinder, "y" 

represents the difference in temperature at opposite sides of the cylinder, and 

"z" represents the deviation of the gaseous system temperature from 

atmospheric temperature. Variables x, y and z are the three states of the 

system that can be separately plotted as three time series. Figure 1-2 shows 

the time series x of the Lorenz system simulated in Matlab for parameter 
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values 
8

1, 26.5 ,
3

      and initial conditions x0=0, y0=0.1, z0=0 for 

which the system will be chaotic. The behaviour of the system is controlled 

by three parameters σ, γ and β. x, y and z are system states. According to the 

observation of   Lorenz, the change in any one parameter caused an abrupt 

change in system behaviour. In the following illustrations; Figure 1-2 to 1-5, 

variable x is represented as state1, y as state 2 and z as state 3. 

 

Figure 1-2Lorenz time series state1 for σ=1 

 

Figure 1-3Lorenz phase plot states 1 &2 for σ=1 
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Figure 1-4Lorenz time series state1 for σ=10 

 

Figure 1-5 Lorenz phase plot state1 & state2 for σ=10 

Figure 1-2 and 1-3 shows time series and phase plot of Lorenz system for the 

parameter σ =1. But when the parameter σ is changed to 10, the properties of 

time series and phase plot undergoes a significant transition as in Figure 1-4 

and 1-5. The shape of the phase plot in Figure 1-5 is called the famous 

“Lorenz butterfly”. This type of phase plots, which have two equilibrium 

points and the solution of the state space travels from one to another is called 

a strange attractor, which is considered as the signature of chaotic systems. 

In chaotic systems, there exists unstable aperiodic behavior that depends 

sensitively on initial conditions.  The aperiodic behavior occurs when none 
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of the variables describing the state of the system undergoes a regular 

repetition of values. Such a behavior never repeats and it continues to 

manifest the effects of any small perturbation. Hence, any prediction of a 

future state in an aperiodic chaotic system is practically impossible. Though 

prediction of chaotic systems is in general difficult, a well-established 

parameterized model often helps to characterize the system and even predict 

the system, thus getting an insight into the dynamic behaviour of the system 

[100]. A comparatively smaller change in a system parameter may cause very 

large change in the total behaviour. Lorenz used this result to state the 

“Butterfly effect” which states that “sometimes the flapping of a tiny 

butterfly may cause hurricanes in the nature”.  Lorenz system was followed 

by many other chaotic systems like Rossler, Chen, Chua, Lu, Henon etc. 

some of which are analysed in this work.  

Chaos theory helps one to understand patterns in nature. Chaotic patterns 

show up everywhere around the world, including cloud formations, the 

currents in  the ocean, the flow of blood through fractal blood vessels, the 

formation of branches of trees, astronomy, epidemiology, air turbulence etc. 

The Earth's atmospheric behaviour is an extremely complex system that can 

be described by physics in the form of thermodynamics, fluid mechanics, 

radiation, etc. However, the equations derived from these laws that are used 

for weather forecasting are very sensitive to initial conditions. This chaotic 

nature means that long-term weather forecasting is inherently problematic. 

The work of Lorenz in chaotic weather systems made the modeling and 

analysis of chaotic weather systems an interesting topic for research. 

Modeling and analysis of real-world chaotic systems has thus become a 

necessity, in view of the large scale impact of these systems and the topical 

interest they have generated. 
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 Chaotic systems in Nature 

Chaotic behaviour in systems has been very natural and many manifestations 

of chaotic behaviour have been observed in nature. The solar radiation, 

Earth’s atmospheric system, oceanic currents, storms, etc. are a few to 

mention.  Some of the typical systems are summarised in the sections to 

follow. The present thesis also analyses these natural systems using the 

models developed here. 

 Chaotic weather systems 

Weather systems are of different types like winds, rainfall, earthquake, ocean 

waves etc. Most of these weather systems are highly non-linear or chaotic in 

nature. There are different forms of chaotic weather systems in nature. 

Tornados, hurricanes, oceanic oscillations, sea clutters, sunspots, tides, water 

level variations in lagoons are all examples of such systems. The final 

outcome  of these systems are of different nature, such as tornados and 

hurricanes are harmful for human kind, whereas oceanic oscillations, 

sunspots etc. are helpful in revealing many important atmospheric effects. 

 Sunspot time series  

Sunspots appear as dark spots on the surface of the Sun (Figure1-6 courtesy 

NASA). Sunspots are magnetic regions on the Sun with thousands of times 

stronger magnetic field than Earth's magnetic field. They develop and persist 

for periods ranging from hours to months, and are carried around the surface 

of the Sun by its rotation. Sunspots themselves produce only minor effects 

on solar emissions even though the magnetic activity that accompanies the 

sunspots can produce dramatic changes in the ultraviolet and soft x-ray 

emission levels. These changes over solar cycle have important 

consequences in Earth’s upper atmosphere.  
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Figure 1-6 Sunspot 

One striking feature that emerges from the long-term data is that the number 

of sunspots observed in a given year varies in a dramatic and highly 

predictable way. Sunspots usually come in groups with two sets of spots. 

One set will have positive or north magnetic field while the other set will 

have negative or south magnetic field. Often, sunspot area is represented as a 

physical index of solar activity [113]. 

As was mentioned in the previous paragraph, the sunspots themselves 

produce only minor effects on solar emissions. These changes over solar 

cycle have important consequences in Earth’s upper atmosphere. The 

number of sunspots visible on the sun shines and diminishes with an 

approximate 11-year cycle. The connection between solar activity and 

terrestrial climate is an area of on-going research. 
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Figure 1-7 Enlarged picture of sunspot 

The sunspot can be divided into two parts: 

 The central umbra, the darkest part, where the magnetic field is 

approximately normal to the Sun's surface.  

 The surrounding penumbra, lighter, where the magnetic field is more 

inclined. (Figure. 1-7image courtesy: New Jersey Institute of 

Technology, Big Bear Solar Observatory) 

Early records of sunspots indicate that the Sun went through a period of 

inactivity in the late 17th century. Very few sunspots were seen on the Sun 

from about 1645 to 1715. This period of solar inactivity corresponds to a 

climatic period called the "Little Ice Age" when rivers that are normally ice-

free froze and snow fields remained year-round at lower altitudes. There is 

evidence that the Sun has had similar periods of inactivity in the more 

distant past. 

http://en.wiktionary.org/wiki/umbra
http://en.wikipedia.org/wiki/Normal_(geometry)
http://en.wiktionary.org/wiki/penumbra
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Sunspots have been monitored since the time of Galileo. The number of 

sunspots visible from a particular area is systematically counted and recorded 

in many parts of the world. There is a striking variation in the number of 

sunspots that is cyclic, with a period of approximately 11 years. This 11 year 

periodicity is called the sunspot cycle [66].  

 Venice Lagoon Time series 

The Lagoon of Venice is the most important survivor of a set of lagoons that 

existed in Roman times extended from Ravenna north to Trieste [117]. In the 

sixth century, the Lagoon gave security to Roman people from invaders. 

Later, it provided naturally protected conditions for the growth of 

the Venetian Republic and its maritime empire. It still provides a base for 

a seaport, the Venetian Arsenal, and for fishing, as well as a limited amount 

of hunting and fish farming .. 

 

Figure 1-8 Venice lagoon   

Venetian Lagoon stretches from River Sile in the north to Brenta in the south, 

with a surface area of around 550 square kilometres. The land area is around 

8% including Venice itself and many smaller islands. About 11% is 

permanently covered by network of dredged channels while around 80% 

http://en.wikipedia.org/wiki/Ravenna
http://en.wikipedia.org/wiki/Trieste
http://en.wikipedia.org/wiki/Venetian_Republic
http://en.wikipedia.org/wiki/Thalassocracy
http://en.wikipedia.org/wiki/Seaport
http://en.wikipedia.org/wiki/Venetian_Arsenal
http://en.wikipedia.org/wiki/Fishing
http://en.wikipedia.org/wiki/Hunting
http://en.wikipedia.org/wiki/Fish_farming
http://en.wikipedia.org/wiki/River_Sile
http://en.wikipedia.org/wiki/Brenta_(river)
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consists of mud flats, tidal shallows and salt marshes. Figure 1-8(image 

courtesy, Earth Observatory system-NASA). The lagoon is the 

largest wetland in Mediterranean BasinIt is connected to the Adriatic Sea by 

three inlets. Sited at the end of a largely enclosed sea, the lagoon is subjected 

to high variations in water level. The most extreme variations occur by spring 

tides, known as the “Acqua Alta” (Italian word for "high water"), that 

regularly flood much of Venice. The Venetian lagoon is an important natural 

wetland which is home to one of world’s most beautiful cities ‘Venice’. 

Modeling and analysis of Venice lagoon water level is a highlight of this 

thesis, explained in Section 6.2.  

 North Atlantic Oscillation Index. 

North Atlantic Oscillation (NAO) is a climatic phenomenon in the 

North Atlantic Ocean due to the difference in atmospheric pressure at sea 

level between the Icelandic low and the Azores high [50]. It controls the 

strength and direction of westerly winds and storm tracks across the North 

Atlantic through fluctuations in the strength of Icelandic low and Azores 

high. It is part of the Arctic oscillation, and varies over time with no 

particular periodicity.  NAO was discovered in 1920s by Sir Gilbert Walker. 

Unlike the El Niño-Southern Oscillation phenomenon in the Pacific Ocean, 

NAO is a largely atmospheric mode. It is one of the most important 

manifestations of climatic fluctuations in the North Atlantic and surrounding 

humid climates.  

A large difference in pressure at the two stations, positive NAO, leads to 

increased westerlies and consequently cool summers & mild wet winters in 

Central Europe. If the pressure difference is low, negative NAO, westerlies 

are suppressed (Figure 1-9, image courtesy; NOAA). As a result Northern 

Europe suffers from cold dry winter and storms track towards 

http://en.wikipedia.org/wiki/Mud_flat
http://en.wikipedia.org/wiki/Salt_marsh
http://en.wikipedia.org/wiki/Wetland
http://en.wikipedia.org/wiki/Mediterranean_Basin
http://en.wikipedia.org/wiki/Adriatic_Sea
http://en.wikipedia.org/wiki/Inlet
http://en.wikipedia.org/wiki/Spring_tide
http://en.wikipedia.org/wiki/Spring_tide
http://en.wikipedia.org/wiki/Acqua_Alta
http://en.wikipedia.org/wiki/Climate
http://en.wikipedia.org/wiki/Atlantic_Ocean
http://en.wikipedia.org/wiki/Atmospheric_pressure#Mean_sea_level_pressure
http://en.wikipedia.org/wiki/Atmospheric_pressure#Mean_sea_level_pressure
http://en.wikipedia.org/wiki/Icelandic_low
http://en.wikipedia.org/wiki/Azores_high
http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Storm
http://en.wikipedia.org/wiki/Arctic_oscillation
http://en.wikipedia.org/wiki/Sir_Gilbert_Walker
http://en.wikipedia.org/wiki/El_Ni%C3%B1o-Southern_Oscillation
http://en.wikipedia.org/wiki/Pacific_Ocean
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the Mediterranean Sea. This brings increased storm activity and rainfall in 

Southern Europe and North Africa, especially during the months of 

November to April. The NAO is responsible for much of the variability in 

weather in the North Atlantic region, affecting wind speed & direction, 

temperature, moisture distribution & intensity, number & track of storms 

[109]. A very significant time series called NAO index is given by 

continuous measurement of pressure difference in the above mentioned 

stations 

 

Figure 1-9 Positive and negative NAO 

The modeling and analysis of NAO index will be helpful for better weather 

forecasts. A detailed study of NAO index is presented in Section 6.3. After 

the chaotic weather systems are modelled, the outputs are also analysed time 

and frequency domains.  

 System modeling  

Simulation and analysis of mathematical models are important for 

understanding physical and biological phenomena. The knowledge created 

http://en.wikipedia.org/wiki/Mediterranean_Sea
http://en.wikipedia.org/wiki/North_Africa
http://en.wikipedia.org/wiki/File:Nao_indices_comparison.jpg
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from modeling, simulation, analysis and visualization contributes to reveal 

the secrets they embody. Linear systems can be uniquely described by their 

impulse, step or frequency response. Transfer functions, root locus, bode 

plot, frequency spectrum are all tools for analysis of linear systems. 

Graphical representations of these responses are widely employed for 

analysis. 

 On the other hand, for the non-linear system analysis, a mathematical 

representation of the relationship of all the state variables of the system is 

required. The model parameters bring out the system behaviour in a telling 

and easy to assimilate manner [15].  It is most essential that the model 

parameters are derived from the measured systems output, especially when 

one is trying to characterize unknown systems. The procedure of system 

modeling adopts the following factors: 

 Prior knowledge  

 Data collection 

 Choice of model parameters 

 Selection of the best model  

 Validation of selected model 

Figure 1-10 shows the block schematic of system modeling approach. The 

mathematical model usually consists of many differential equations and the 

solutions of such equations by classical methods are often difficult. Hence, 

analysis of the models was considered to be quite involved in the early times. 

Later on, with the development of fast computers and simulation software, 

the analysis of even complex mathematical models became quite easy. [15]. 
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Figure 1-10 System modeling: a block diagram 

With the advancement in the field of Soft Computing, modeling of highly 

non-linear and chaotic systems took a new turn. Fuzzy logic and neural 

networks are two important branches in artificial intelligence, which support 

soft computing. Artificial Neural Networks (ANN) mimics the human brain. 

They are highly parallel and distributed interconnection of processing units.  

The neural networks with non-linear activation function helps in precise 

modeling of highly non-linear and chaotic systems [22]. They can be 

effectively used in non-linear and chaotic system modeling and analysis. 

 Neural networks for chaotic system   modeling.      

The basic computational element of an ANN is often called a neuron or 

simply a node. It receives input from some other units, or perhaps from an 

external source. Each input has an associated weight w, which can be 

modified so as to model synaptic learning. The unit computes some 
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activation function f of the weighted sum of its inputs [45]. Figure 1-11 

shows the architecture of a single artificial neuron with inputs, weights, 

summing point, activation function and output. 
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Figure 1-11 Artificial neuron  

Neural Network types can be classified based on various factors as illustrated 

in Figure 1-12.  

Method of connection Topology Learning Methods

RecurrentSingle layer Multilayer
Self

organizing

Feedforward Feedback
Supervised Unsupervised

Artificial neural Networks

 

Figure 1-12 Classification of neural network 
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Application of neural network in modeling non-linear systems has been 

addressed by many researchers in the past few years. Among the different 

architectural formation of the artificial neural Networks, Recurrent Neural 

Networks come out to be most effective in handling the evolutionary nature 

of the Chaotic Systems.  Built with multi-layer networks, with feedback in 

their hidden layer, the information flow in Recurrent Neural Networks is 

multidirectional. Such networks inherently possess sense of time and 

memory. Hence recurrent neural networks could be used in creating models 

of highly non-linear and chaotic systems [77] 

  Recurrent neural networks 

The fundamental feature of a Recurrent Neural Network (RNN) is the feed-

back connection. Learning can be achieved by similar gradient descent 

procedures as that used in back-propagation algorithm. The presence of 

feedback loops has a profound impact on the learning capability of the 

network and its performance. An effective model reported in literature [45] 

has a single output, regressing on the past output values as shown in Figure 

1-13 and 1-14. It is realized using a delay line on the inputs, known as Non-

linear Auto-Regressive with eXogeneous inputs (NARX) model: 

y(t+1) = f [(y(t), y(t-1), … y(t-p), x(k), x(k-1), …x(k-q), )]            (1.13) 

where x(k) = v(k) account for the noise driving the system and  is the 

parameter set of the model. This type of neural network is particularly 

effective for time series modeling. The present thesis therefore addresses the 

issues of modeling chaotic systems from output series using recurrent neural 

networks.  
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Figure 1-13 Recurrent neural network 

 

Figure 1-14 RNN-NARX model 

There are many training algorithms, both supervised and unsupervised, for 

neural networks. Starting from perceptron learning rule, the list is large with 

delta learning rule, Widrow Hoff learning rule, gradient descent rule, etc. 

[45] the invention of error back propagation learning for multilayer neural 

networks has made the non-linear modeling much easier. However, it is well 

known that the any algorithm that depends on the gradient suffers from the 

problem of local minima, since the objective function to be optimized to 

derive the model parameters is not always convex. In attempting to derive   

alternative algorithms in order to overcome the problem of the local minima, 

the Extended Kalman filter (EKF) was proposed [56], for estimating the 

model parameter through training from the measured data.  Since the 
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assumptions on the Guassianity, as required in the EKF are not promised as 

the output goes through the non-linearity, other approaches like the Particle 

filtering algorithms came up as effective choice in training the recurrent 

neural networks. These algorithms are utilized to create an efficient model 

structure for chaotic modeling [77] [98]. 

1.6.1.1 Kalman filter algorithm 

The Kalman filter algorithm has been in existence over more than 50 years; 

but is still one of the most sought out techniques for target tracking and 

parameter estimation. Named after Rudolf E. Kalman, the great success of 

Kalman filter algorithm is due to its relatively small computational 

requirement, elegant recursive properties, and its status as the optimal 

estimator for one-dimensional linear systems with Gaussian error statistics 

[57]. Typical applications include smoothing noisy data and providing 

estimates for parameters of interest. From a theoretical stand point, the 

Kalman filter deals with linear dynamic system, described by a vector 

difference equation with additive white Gaussian noise, which models 

unpredictable disturbances. Generally in the context of the Linear System 

modeling, the Kalman filter can be used to estimate the state, x ∈ ℜn, of a 

discrete-time controlled process governed by the linear stochastic difference 

equation, along with the model parameters. 

1 1 (1.13)k k k kx Ax Bu w   

with a measurement z ∈ ℜm that is  

(1.14)k k kz Hx    

where u is the input vector, A, B and H are parameter matrices of the system. 

Process & measurement noises kw & k  are   independent (of each other), 
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white, and with normal probability distribution ( ) ~ (0, ), ( ) ~ (0, )p N R p w N Q  where 

Q is the process noise covariance and R the measurement noise covariance. 

The true state xk of the system cannot be directly observed and can be 

estimated using Kalman filter algorithm from the models of the system. In 

the case of non-linear systems the Kalman filter algorithm needs 

modifications [57]. 

1.6.1.2 Extended Kalman Filter algorithm (EKF) 

The Kalman filtering process has been designed to estimate the unknown 

states in a linear stochastic system with apriory knowledge of known states 

and noise statistics. The Kalman filter can be extended for non-linear systems 

along a linearization procedure. The resulting filter is referred to as Extended 

Kalman Filter (EKF).   

 Let the system is described by the non-linear functions 

1 1( , ) (1.15)k k kx f x w 

( , ) (1.16)k k kz h x   

EKF recursively estimates the state kx  from the previous time step k-1, using 

the error between the estimated input and the measured input and the Kalman 

Gain. The algorithm also estimates the covariance matrix of the parameters 

and the states computed. The algorithm thus attempts to reduce the variance 

in the estimate, while trying to minimize the modeling error.   EKF algorithm 

gives a systematic procedure for estimation of process and measurement 

state updates, as explained in Appendix A. 

One of the basic problems in implementation of the EKF algorithm is the 

choice of initial values of state and state co-variance. Since arbitrary choices 

can lead to divergence of the filter, the EM algorithm has been effectively 
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employed to calculate the initial values for an initial set of measurements 

[74].  

With all its attractive features as an effective estimator, the estimates of EKF 

algorithm could be less accurate, since the Guassianity assumed by the 

algorithm is not satisfied, when the output of the model under goes the non-

linear transformation. Computing the pdf of the states, (called particles) 

generated using an Importance function, the particle filtering algorithm 

alleviates the limitation of non-Guassianity in the modeling.  

1.6.1.3 Particle filter algorithm  

The objective of a particle filter is to estimate the posterior density of state 

variables, given the observation variables. The particle filter is designed for 

a Hidden Markov Model (HMM), where the system consists of hidden and 

observable variables [60]. The observable variables are related to the hidden 

variables by some known function. Similarly, the probabilistic dynamic 

system describing evolution of the state variables should also be known. A 

generic particle filter estimates posterior distribution of the hidden states 

using observation and measurement. Optimal filtering problem involves 

estimation of the state vector at the instant k with all the measurements up to 

and including k, denoted by z1: k. This problem can be formulized, in a 

Bayesian set up, as a two-step recursive computation of distribution 

p(xk|z1:k)[97].The new measurement zk is used to update the distribution

1 1: 1( | )k kp x z  , from     Bayes’ rule, to obtain the posterior distribution over xk: 

as 

1: 1: 1( | ) ( | ) ( | ) (1.17)k k k k k kp x z p z x p x z 
 

the prediction step involves 

http://en.wikipedia.org/wiki/Hidden_Markov_Model
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1: 1 1 1 1: 1 1( | ) ( | ) ( | ) (1.18)k k k k k k kp x z p x x p x z dx     

The  1: 1( | )k kp x z   is to be evaluated from the integral in Equation 1.18 where 

1( | )k kp x x  is known from the probabilistic origin of equation (1.3). Before 

receiving the most recent measurement zk, the distribution 1 1: 1( | )k kp x z   is 

known prior to xk.  

In general, the computations in prediction and update steps cannot be carried 

out analytically [60]. Hence approximate methods such as Monte Carlo 

sampling are required. Particle filters are suboptimal filters, which perform 

Sequential Monte Carlo (SMC) estimation based on point mass or “particle” 

representation of probability densities.  The SMC ideas, in the form of 

sequential importance sampling, had been introduced in statistics back in 

1950s.  Although these ideas continued to be explored during 1960s and 

1970s, they were largely overlooked and ignored.  Most likely the reason for 

this was the modest computational power available at that time.  In addition, 

all these early implementations were based on plain sequential importance 

sampling that degenerates over time.  
 

Inclusion of re-sampling step in the development of SMC method, coupled 

with ever faster computers, made particle filters useful in practice for the first 

time.  Research activity in the field has dramatically increased since then, 

with many improvements of particle filters and their numerous applications. 

A detailed derivation of particle filter and its variants are presented in 

Appendix A. 

Model validation has to be performed after the selection of a proper model 

structure like the NARX and implementation structure like the RNN and an 

efficient training algorithm to estimate the model (or network) parameters 

from known input. The availability of a stable model to represent the chaotic 
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system can be a useful for analyzing wide variety of physical phenomena, 

including turbulence, vibrations of buckled elastic structures, behavior of 

certain atmospheric changes etc.  

 Time domain characterization of chaotic systems                                 

The change in the qualitative character of chaotic systems can be analyzed 

from phase plots, bifurcation diagram and Lyapunov exponents [14]. Phase 

plots illustrate the state space evolution of the chaotic system. Lyapunov 

Exponents and Kaplan- Yorke dimensions are sets of invariant geometric 

measures that describe the dynamical content of a system. The embedding 

dimension of a dynamic system is the smallest integer for which the system 

states can be embedded into, without intersecting itself. Bifurcation diagram 

is characterized by growth rate of a perturbation [14]. In the present work all 

these characteristics of chaotic systems are studied using the models 

developed and presented in Section 4.1.  

 Frequency analysis of chaotic systems 

Representing a periodic function as a linear combination of sines and cosines 

decomposes the function into its components of various frequencies, much 

as a prism resolves a light beam into its constituent colours. Resulting 

coefficients of the trigonometric basis functions tell what frequencies are 

present in the function in what amounts. Moreover, this representation of the 

function in frequency domain enables some of the manipulations required in 

many applications, such as signal processing or solving differential 

equations, to be performed efficiently than in time domain. There are many 

frequency domain analysis tools like Fourier transform and its variants. The 

discrete time Fourier transform has got wide application in signal analysis 

and is most effective when the signal is stationary. Time-frequency analysis 

is helpful to study the time-frequency pattern of non-stationary signals from 
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non-linear dynamics, when data are sampled at fixed rate. The most explored 

algorithms of time-frequency analysis are Wavelet Transform and Wigner 

Ville Distribution [18].  Mapped Real Transform (MRT) is an alternate form 

of signal representation in the frequency domain, which makes use of 

operations in real domain only [42]. In the present thesis, the behaviour of 

the chaotic systems are also examined in the frequency domain using Fourier 

Transform, Wavelet Transform and MRT in Sections 5.1 to 5.3. 

 Motivation 

The mathematical modeling of linear and simple non-linear systems is 

straightforward and many efficient techniques have been developed for the 

analysis of such systems. The modeling and analysis of highly non-linear and 

chaotic systems is still considered to be a difficult task because of the 

complex nature of the systems itself.  Complexity in analysis of such systems 

were reduced with the development of soft computing techniques, such as 

neural networks and fuzzy logic. The availability of good number of 

estimation techniques to estimate the parameters of the model from the time 

series of the chaotic systems was a major motivation in evolving state space 

models, which can fully characterize the chaotic system. Among the different 

approaches proposed for modeling and analysis of chaotic systems, the 

artificial neural networks appear to be quite promising. Availability of rich 

literature in neural network training methods also was a motivating factor to 

explore the modeling of chaotic systems.  Accordingly, the thesis focused on 

the modeling and analysis of chaotic systems using soft computing 

techniques. Though the frequency domain analysis of chaotic systems is 

limited because of their broad banded nature of such systems, the analysis 

using new transforms like MRT appears to be quite promising.  Having 

modeled mathematically described chaotic systems, it was felt that study of 

different types of natural chaotic systems is in order. Typical systems like 
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the weather systems which have high impact on the environment were 

considered in the study noting that such an analysis   is a need of the day. 

The amazing challenges in the modeling and analysis of chaotic systems, 

along with an opportunity to suggest new techniques and methodologies in 

the analysis motivated the work reported in the thesis.  Developing stable 

and accurate methods to estimate the time varying parameters of computable 

mathematical models of chaotic systems is a major objective of the proposed 

work. Building the models from time series of observations underscores the 

methodology adopted in this work. The thesis has been organized as follows.  

1.10 Outline of the thesis 

 Chapter 1 introduces the concept of systems and reviews different 

types of systems like linear, non-linear and chaotic systems. It also 

introduces different techniques of system modelling. The idea of 

representing systems using NARX models and the utilisation of 

neural networks, with emphasis on RNN to model the chaotic 

systems,   is also introduced in the chapter. Different types of chaotic 

systems and their characteristics are discussed concisely. Important 

chaotic weather systems and some important frequency domain 

concepts are discussed briefly.  

 A comprehensive review of the literature available on system 

modelling, analysis and characterization of chaotic systems along 

with frequency domain concepts used in this work are reviewed in 

Chapter 2. 

 Chapter 3 explores the selection of a best model structure for chaotic 

systems. Four important chaotic systems-Lorenz, Rossler, Chen and 

Chua – are thus modelled with RNN, using the NARX model. Three 

versatile algorithms are used to train the RNN: 

(i) EKF algorithm with EM to initialise the error covariance 
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(ii) SIR particle filter algorithm 

(iii) RB particle filter algorithm 

 In Chapter 4 the RNN model is extended to the estimation of 

important time domain characteristics of chaotic systems like strange 

attractors, Lyapunov exponents, Kaplan - Yorke dimensions, 

bifurcation diagrams and embedding dimensions. 

 Some important frequency domain characteristics of chaotic systems 

using Fourier transform (FT), wavelet transform (WT) and Mapped 

real transform (MRT) are presented in Chapter 5.  

 Modeling and analysis of some important chaotic systems in nature 

like Sunspot time series, Venice Lagoon time series and North 

Atlantic Oscillations is presented in Chapter 6. 

 Chapter 7 concludes the work with scope for future work  

 Some of the topics available in literature, relevant to the work 

presented in the thesis, such as EKF, SIRPF and RBPF algorithms 

are briefly discussed in Appendix A. The Fourier, wavelet and 

Mapped Real transforms are discussed briefly in Appendix B. 
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2. Literature Review 

Literature review is a critical discussion and summary of collected works 

relevant to the topic of research problem. The chapter reviews literature 

associated with the main areas of interest in this work. The survey on past 

works describes how the proposed problem is related to prior research in 

system modeling.   

 System theory 

System theory is a branch of engineering which deals with study of linear 

and non-linear dynamic systems. Non-linear dynamics has a long history in 

the branch of mathematics. Kepler started explaining planetary motion with 

circular orbits. In the mid-1600s Newton invented differential equations, 

which later became a major tool to describe the behaviour of dynamic 

systems. Further, he discovered laws of motion and universal gravitation. 

Combining these, he was able to accurately calculate the elliptical orbit of 

planetary motion. Driven by the propositions of Laplace, Fourier, Nyquist 

and Lyapunov, the theory of linear systems grew up on strong footings. Later 

on dynamic system theory moved over to address non-linear systems leading 

to the studies of non-linear oscillators and their applications in physics and 

engineering. Many problems in fluid mechanics, electrical circuits, structural 

analysis etc. were analysed using well established techniques in non-linear 

systems. 

 Chaotic systems 

The behaviour of a dynamic system sometimes depends sensitively on the 

initial conditions. Such systems are referred to as chaotic systems. The first 

major development in the branch of chaotic systems was occurred in 1890 

with the work of Henry Poincare [26]. He proved that the knowledge of all 
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possible behaviour of the system states was essential in solving non-linear 

problems. He concluded that the solution to non-linear equations may 

sometimes behave in a much complicated or ‘chaotic’ fashion than anyone 

has previously imagined.  

The scientific world had to wait around 70 years for another significant 

development in the field of chaotic system. It was in 1963 Edward Lorenz 

[2], an American meteorologist, discovered the sensitive dependence on 

initial conditions on his differential equation model of weather. These 

equations are henceforth called Lorenz equations and are still explored with 

the same enthusiasm as its launching period.  A detailed analysis and 

simulation of Lorenz system   is found in the book by F. C. Hoppensteadt 

[54]. 

 Later on, many chaotic systems were evolved, out of which three of them 

are extremely relevant and are analyzed in detail in the work reported here. 

Otto Rössler designed the Rössler system in 1976 [5]. It consists of three 

non-linear ordinary differential equations. These differential equations 

define a continuous-time dynamical system that exhibits chaotic dynamics. 

The original Rössler paper says the Rössler system was designed with some 

similarities to the Lorenz system. But the equations are simpler than Lorenz 

system and hence are easy to analyze. Chen found a new chaotic system in 

1999 [47]. Chen systems are most suited for generating hyper chaos. The 

analysis of Chen system contributed to a better understanding of a whole 

family of similar and closely related chaotic systems. T Matsumoto [11] 

reported that a chaotic attractor has been observed with an extremely simple 

autonomous circuit suggested by Leon Chua of the University of California, 

Berkeley [7]. The system was named Chua chaotic system and is analyzed 

in detail in the present work. 

http://en.wikipedia.org/wiki/Non-linear_dynamics
http://en.wikipedia.org/wiki/Ordinary_differential_equation
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 There are a number of new chaotic and hyper chaotic systems which are 

derived from the classical Lorenz, Rossler, Chen and Chua systems [80] 

[102]. Guoyuan Qi presents an independent and new chaotic system with 

four differential equations [96]. 

 Chaotic weather systems 

Chaotic dynamical systems are present in the nature in various forms such as 

the weather, activities in human brain, variation in stock market, flows and 

turbulence. The Sunspot time series, the Venice lagoon time series and the 

North Atlantic Oscillations- are some weather systems analyzed in the 

present work. 

 Naked eye observations of sunspots are known from different cultures as 

noticed by Bray &Longhead [1]. In particular, the ancient Chinese have kept 

detailed although very incomplete records going back over 2000 years which 

is effectively summarized by Wittmann &Wu [16]. Nevertheless, it was the 

rediscovery of sunspots by Galilei, Scheiner and others around 1611, with 

the help of the then newly invented telescope that marked the beginning of 

the systematic study of the Sun in the western world and heralded the dawn 

of research into the Sun’s physical character. Over the ages the view on the 

nature of sunspots has undergone major revisions.  Overviews of the 

structure and physics of sunspots are given by Thomas [23] and Solanki [66]. 

Theoretical models of sunspot structure and dynamics is explained in detail 

by John H Thomas [23]. A frequency domain analysis of sunspot is presented 

in a paper of P Chen [32].  

Sunspot areas are available since 1818 in the Greenwich series obtained from 

daily photographic images of the sun. Although sunspots themselves produce 

only minor effects on solar emissions, the magnetic activity that accompanies 
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the sunspots can produce dramatic changes in the ultraviolet and soft x-ray 

emission levels. These changes over the solar cycle have important 

consequences for the Earth's upper atmosphere. The sunspot number is 

calculated by first counting the number of sunspot groups and then the 

number of individual sunspots. This method is suggested by Wolf [10]. The 

sunspot index has a physical meaning related to the solar magnetic flux 

emerging at sunspots [35]. 

The NAO is characterized by an oscillation of atmospheric mass between the 

Arctic and the subtropical Atlantic. According to R. J. Greatbatch [50] it is 

usually defined through changes in surface pressure. He also points out that 

permanent low-pressure system over Iceland (the Icelandic Low) and a 

permanent high-pressure system over the Azores (the Azores High) control 

the direction and strength of westerly winds into Europe. The relative 

strengths and positions of these systems vary from year to year and this 

variation is known as the NAO. It measures the strength of the westerly 

winds blowing across the North Atlantic Ocean between 40oN and 60oN. 

Studies of C. Collette and M. Ausloos [73] reveal that the NAO accounts for 

31% of the variance in hemispheric winter surface air temperature north of 

20oN.  

NASA has accepted   an index for the NAO as the difference between 

normalized mean winter (December to February) sea level pressure (SLP) 

anomalies at Ponta Delgadas, Azores and Akureyri, Iceland [88].The studies 

of R. J. Greatbatch also reveals that large difference in the pressure at the 

two stations (denoted NAO+) leads to increased westerlies and, 

consequently, cool summers and mild and wet winters in Central Europe and 

Atlantic areas. In contrast, if the index is low (NAO-), westerlies are 

suppressed, these areas suffer cold winters and storms. The detailed studies 
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of NAO also points out that it strongly affects the Atlantic ocean by 

inducing substantial changes in surface wind patterns. According to 

Greatbatch [50], changes in NAO have a wide range of effects on marine 

and terrestrial ecosystems, including distribution and population of fish, 

flowering dates of plants, growth, reproduction and demography of many 

land animals. The modeling and analysis of NAO index considered as a 

time series is an important problem. The chaotic origins of NAO are 

investigated by S. M. Osprey.et. al [109] and R Washington[51].  

2.4 System modeling 

Box and Jenkins in [4] gives an introductory idea about system modeling 

and introduces the Box-Jenkins model. Lennart Ljung explains the key 

concepts of modeling and identification of linear and non-linear system in  

[15]. According to Ljung the construction and estimation of models on non-

linear dynamic systems relies upon many different disciplines like physical 

modeling, mathematical statistics, neural network techniques, learning 

theory, support vector machines, and automatic control. Yakov Bar-Shalom 

and Xiao-Rong propose that non-linear models play important roles in 

many different application fields, and many specific areas have developed 

their own techniques [28]. 

2.5 Neural network for modeling non-linear systems 

Simon Haykin [45] presents extensive materials on neural network 

architectures, learning methods etc. and finds that neural networks can be 

successfully used for system modeling and identification. V Gorlovka in his  

paper demonstrates that multilayer neural networks with back propagation 

algorithm can be effectively used for modeling of non-linear systems [55]. 

The extended Kalman Filter algorithm is a variant of the basic linear Kalman 

filter. Both these are well explained by Greg Welch and Garry Bishop [57].  
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Shu hi Li gives a comparative study of back propagation and EKF algorithm 

for neural network training and suggests that EKF is more convergent [56].  

Peter Trebaticky suggests that RNN are suitable for non-linear modeling 

when trained with EKF algorithm [77]. The application of RNN in online 

modeling and identification of non-linear system is underlined in the work 

of L Palma et. al. Puskorius and Feldcamp [31] also highlight the fact  that  

RNN trained with EKF algorithm performs well in non-linear modeling. In 

addition, Si-Zhao Quin Hong [24] gives a comparison of four Neural 

network learning methods for dynamic system modeling and suggest EKF 

algorithm.Meanwhile Wu Xue-Dong and Song Zhi-Hua gives an important 

observation that some variants of Kalman filter are suitable for modeling of 

chaotic system [93]. This result is in line with the earlier method suggested 

by R G Hutchins [38] and H Leung [75] for the identification of chaotic 

systems with neural networks. One of the well-known issues in the Kalman 

Filter is the proper assumption of the initial conditions, since arbitrary 

choices can lead to divergence of the filter. J F G De Freitas et.al [44] 

proposes a method to calculate the initial values of the state variable and its 

covariance (along with other properties like the measurement and plant 

variance) by maximizing the expectation of the state estimate from the 

given measurement. 

Particle filtering methods are a novel area for neural network modeling 

which results in very low error. Afonso [98] suggested particle filter 

training algorithms for RNN for various applications. Arnauld Doucet gives 

a detailed study of Particle filters and its variants like SIRPF, Auxiliary PF,  

RBPF etc. with detailed algorithm, examples and explanations [97]. Q. 

Wen and P. Qicoiig [84] proves that particle filters can be successfully used 

for neural network training. M. Sanjeev Arulampalam, Simon Maskell, Neil 
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Gordon, and Tim Clapp[60] [71] in their paper demonstrates that particle 

filters and all its variants can be suitably used for training all types of 

neural networks with non-linear activation functions. The RBPF is an 

efficient algorithm with an adaptation of Kalman filter and best suited for 

training neural networks as suggested by Daucet et al [53].  Dong and Hua 

in their research paper validates that [93] EKF and particle filter are suited 

for reconstruction of chaotic signals. 

2.6 Time Domain Characterization of Chaotic systems 

The change in the qualitative character of chaotic systems can be depicted   

by phase plots, strange attractors, Lyapunov exponents, Kaplan -Yorke 

dimension, bifurcation diagrams and embedding dimension. Phase plots 

and strange attractors illustrate the state space evolution of the chaotic 

system. A detailed explanation of strange attractors can be seen in J C 

Sprotts paper [49]. The Lyapunov Exponents and Kaplan –Yorke 

dimension describe the dynamical content of the system. A. Wolf describes 

a practical method to calculate the Lyapunov exponent from a noisy time 

series [12]. M Ateae [67] and CE Meador [110] in two separate studies 

reveal important methods to calculate the same.J Kaplan and J A Yorke [6] 

have conjectured that the dimension of a strange attractor can be 

approximated from the spectrum of Lyapunov exponents.  Such a 

dimension has been called the Kaplan-Yorke (or Lyapunov) dimension, and 

it has been shown that this dimension is also helpful in the analysis of 

typical strange attractors.  

An equivalent dynamical system can be developed by assuming proper 

dimension which is able to embed all the properties of the actual dynamical 

system. If the selected dimension is not optimum the reconstruction may 

preserve only some of the properties of the dynamical system. A set has 
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embedding dimension n if n is the smallest integer for which it can be 

embedded into without intersecting itself. Taken’s theorem states that the 

original dynamic properties of the attractor can be retained as long as the 

embedding dimension is accurately estimated [8]. Choice of the minimum 

embedding dimension can be done by the method of false nearest 

neighbours as explained by Takens in [9]. H. Ma and C. Han [82] also give 

valuable suggestion for selecting suitable embedding dimension and delay 

time. Liangyue Cao established with proof that the method of false nearest 

neighbours is actually the most suitable method for estimating the 

minimum embedding dimension [40]. 

A bifurcation diagram is a plot that shows the value of the changing 

parameter, on one axis and the solution to the system on the other axis. H. 

Broer et al [61] explains bifurcation in other words as change in the 

qualitative character of a solution as a control parameter is varied is known 

as a bifurcation. E. J. Doedel [85] explains that bifurcation causes the 

solution of a system to change from a stable fixed point to a chaotic 

attractor.In yet another research paper, E. J. Doedel [85], explains in detail 

the bifurcations of Lorenz systems whereas J. Lü et al. does the same of 

Chen system [62]. Specific applications of bifurcation analysis can be seen 

in studies of S. Grillo [105].Bifurcation analysis is extended to hyper 

chaotic systems by H. Jia [102]. 

2.7 Frequency analysis of chaotic systems 

The introduction of Fourier and fast Fourier transforms is considered as a 

turning point in frequency domain analysis of signals as observed by Cooley 

and Tukey[3]. From the notes of D. Batenkov[76]a detailed information of 

Fourier analysis was initiated. Even though the broad band spectrum of 

chaotic signals limits the use of Fourier analysis, P. Cvitanovi and M. J. 
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Feigenbaum [63] gives a very useful Fourier analysis of chaotic systems 

which is also verified by D. Kugiumtzis and A. Tsimpiris [106] .In her 

dissertation, S. H. Isabelle [36] gives a very useful time series analysis of 

non-linear systems in the Fourier aspect. This work is supported by the 

findings of Aberbanel,et al [30].  

The first literature that relates to the wavelet transform is Haar wavelet. It 

was proposed by the mathematician Alfred Haar in 1909. However, the       

concept of the wavelet did not exist at that time, until 1981, the concept was 

proposed by the geophysicist Jean Morlet [48]. Afterward, Morlet and the 

physicist Alex Grossman invented the term wavelet in 1984. Before 1985, 

Haar wavelet was the only orthogonal wavelet people know.  A lot of 

researchers even thought that there was no orthogonal wavelet except Haar 

wavelet. Fortunately, the mathematician Yves Meyer constructed the second 

orthogonal wavelet called Meyer wavelet in 1985 [25].  In 1988, Stephan 

Mallat [18] and Meyer proposed the concept of multiresolution. In the same 

year, Ingrid Daubechies [17] found a systematical method to construct the 

compact support orthogonal wavelet. In 1989, Mallat proposed the fast 

wavelet transform. With the appearance of this fast algorithm, the wavelet 

transform had numerous applications in the signal processing field.  In the 

study report of Alfred Mertins[48] the concepts of wavelet transforms are 

summarized.   

The thesis of Vela Arevalo gives a broad idea about the time frequency 

analysis of non-linear systems with stress on wavelet transform [64].               

C. Lamarque and J. Malasoma gives an interesting study of wavelet 

transforms applied for non-linear oscillations [37]. The basic functions of the 

wavelet transform have the key property of localization in time(or space) and 

in frequency as suggested by P Chen[32]. The initial approaches of chaotic 
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systems analysis using wavelet is seen in the work of Carlo Cattani [90]. J. 

S. Murgu particularly used the Daubechies wavelet for analysis of chaotic 

systems which inspired the present work [89]. Wavelet analysis of Lorenz 

system by Kaiyan Zliu [69] was of significant importance to the present area 

of interest. S. Azad and S. K. Sett of IIT Bombay has proved that wavelet 

can be used for detecting chaotic transitions in Logistic map [65]. Another 

important contribution in this area was from C. Chandré and T. Uzer [78]. 

They have proved that instantaneous frequencies of chaotic system can be 

identified from the ridge plot of wavelet coefficients. Based  the on  work of  

X. Jiang and S. Mahadevan [107] the wavelet coefficient level  of 

decomposition suited for chaotic applications was selected.  

R Gopikakumari in her dissertation in 1998 [42] modified 2-D DFT 

definition in terms of real additions, derived a visual representation of the 

DFT coefficient in terms of 2 x 2 DFT and developed a parallel distributed 

architecture for the hardware implementation of N x N  DFT for any even N.  

Rajesh Cherian Roy, together with R Gopikakumari, extended this idea to 

develop a  new real transform in 2004  named MRT (Mapped Real 

Transform, originally M-dimensional Real Transform) [70] which can 

represent signals using real additions and without complex arithmetic, and 

which offers a different way of signal analysis. MRT is an evolving 

transform that can be used for the frequency domain analysis of 2-D signals. 

MRT mapping is highly redundant [103]. Different placement schemed were 

proposed by Bhadran and Rajesh Cherian Roy to remove the redundancy and 

placing the unique MRT coefficients [104]. A computationally efficient 

algorithm for placing these coefficients called Unique MRT (UMRT) was 

developed for the forward and inverse transforms by Preetha [111]. 

Exploiting the visual representation of unique MRT coefficients, a new 

placement named Sequency based Unique MRT(SMRT) was developed by 
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Jaya [112]. Considering the fact that chaotic systems always consist of a 

large array of data samples, it seems that SMRT with its Sequency based 

placement techniques may prove to be a suitable tool for analysis of such 

systems. 

 Conclusion  

The availability of rich literature as portrayed above is a major motivation in 

taking up the topics addressed in the thesis.  Some of the papers on Extended 

Kalman Filter, Expectation maximization and Frequency domain analysis 

are very seminal and furnished valuable information in developing some of 

the techniques reported in the thesis. 
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3. Selection of Model Structure  

It is well known that many natural systems exhibit chaotic behaviour at some 

time or other.  Magnetic radiations from sun, climatologic systems, and fluid 

flow are a few typical occurrences in nature, producing occasional 

manifestations of chaotic behaviour.  Though chaotic phenomena described 

by well-established mathematical equations are completely defined in terms 

of initial values and parametric sets, what is interesting in natural systems is 

the lack of complete knowledge of the forcing functions of the dynamic 

systems. Such chaotic phenomena are often manifest as output time series 

only. It therefore becomes imperative to use the output time series alone to 

develop a model for the chaotic system. Such a modeling exercise is quite 

challenging in view of the requirement of blind identification from given 

output series. Literature has reported the use of the NARX [75] model to 

represent time series emanating out of non-linear systems.  Fortunately, 

artificial neural networks configured as Recurrent Neural Networks directly 

map the NARX model and are shown to possess the required self-learning 

capability to tune the network parameters (i.e. weights) to identify highly 

non-linear and chaotic systems [22] [24]. Non-linear dynamical systems can 

be approximated to any accuracy by a recurrent neural network, with no 

restrictions on the compactness of the state space according to the Universal 

approximation theorem [45]. The following section deals with the choice of 

best neural network model structure for representing chaotic system.  

 Recurrent Neural Networks 

The fundamental feature of a Recurrent Neural Network (RNN) is the 

presence of at least one feed-back connection, so that activation can flow 

round in a loop [44]. The architectures of recurrent neural networks exploit 

the powerful non-linear mapping capabilities of the Multi-Layer Perceptron 
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with some form of memory. The simplest form of fully recurrent neural 

network has the previous set of hidden unit activations fed back along with 

the inputs. These networks have the potential to be used in unison with 

dynamic elements and feedback [55]. In effect, the recurrent neural 

networks, used for modeling or model based predictive control, are multi-

layer neural networks with a delay element in their feedback loop. Figure 3-

1 below illustrates the architecture of the RNN used in this work for 

modeling chaotic system.  

Delay

 Input
Neurons

Output, y(k)
Delay

Delay

Noise, (k)

 

Figure 3-1 Recurrent neural network for time series modeling 

While the representational capability of RNN to describe evolutionary 

phenomena like time series is well understood, the learning of the neural 

network parameters requires a competent and effective learning algorithm. 

There are many efficient training algorithms reported in literature for training 

RNN. Back propagation, Least mean square algorithm, conjugate gradient 
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algorithm [45], different types of competitive learning algorithms etc. are a 

few to mention. 

Earlier studies on non-linear modeling have  explored some  training 

algorithms and a comparative study to select the best algorithm for non-linear 

modeling has been reported[22][24]. 

Since the problem of local minima is a well known issue in the objective 

fucntion to be minimised, grdient based tachniuqes generaly do not promise 

comprehensive solution to the paraneter estimation problem in RNN. On the 

other hand, the results reported  in [24] highlights  the Extended Kalman 

Filter (EKF) as a promising  for non-linear modeling. Accordingly, in the 

work reported here the EKF algorithmis and their variannts have been used 

forestimating the weights of the RNN modelin the time seriesof chaotic 

system. Expectation Maximization technique is incorporated  to compute the 

intial values of the states and co-variance matirces. The complete algorithm 

is described in Appendix A.The thesis also examines the efficacy of using  

particle filter algorithm, with its two variants to train the RNN for chaotic 

system modeling.  

 RNN training with EKF algorithm 

The chaotic system with a single output can be represented by the NARX 

model equation below: 

1 1 1 2( , ,..., , , ,..., , )k k k k p qy g y y y                             (3.1) 

where  account for the noise driving the system,  represents the 

parameters of the modeling functions. Given the time series measurements 

ky  , the parameters  are estimated optimally for known functional 

representations. In the present work, neural networks are used to represent 
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the non-linearity. Given the output time series of the chaotic system to be 

modeled, the weights of neural networks are estimated using the EKF 

algorithm. When recurrent neural networks are used, Equation (3.1) becomes  

1

1

0 0

( w y )
p q

m n

k i k i i

i i

iy h w 


 

 

                                                     (3.2) 

where wm
& wn

are the forward  and recurrent weights of the RNN and 

1 tanh( )
( )

1 tanh( )

x
h x

x






 is the non-linearity corresponding to the measurement 

function in the EKF model. The state equation is given by the identity 

transformation, 

1k k kW W                                                                                       (3.3)                  

[ ]m n T

kW w w                                                                                   (3.4)                                                                                              

k is the process noise with covariance 
TQ  and  is the measurement 

noise with covariance TR  . The EKF equations are given by   projecting 

the states ahead 

 1k kW h W                         (3.5) 

and the error covariance ahead 

1k kP P Q                         (3.6) 

The Kalman gain is computed using  

1

1 1( )T T

k k k k k k kK P H H P H R 

                        (3.7) 

H is the Jacobean of partial derivatives of h with respect to W. The estimate 

of W is updated from the given measurement 



Neural Network based Modeling, Characterization and Identification of Chaotic systems in Nature…………………. 

51 

 

 1 (  – ,   ( )k k k k kW W K y h W                              (3.8) 

where h ( ) is as given in Equation 3.2. Now update error covariance  

(P P )k k k kI K H                   (3.9) 

Starting with some reasonable assumptions on W[0], P[0], Q and R the 

estimate 
1ky 
 is obtained from Equation 3.2. It is compared with given time 

series and the weights are updated by (3.8). The process is repeated for every 

k. The EKF often converges with sufficient number of samples, the exact 

number being decided by the accuracy in the choice of the parameters and 

initial conditions as described above. One of the basic problems in the 

implementation of the EKF is the choice of the initial values of W[0] and 

P[0]. Since arbitrary choices can often lead to divergence of the filter, EM 

algorithm [44] is used considering its capability in computing the initial 

values of W[0] and  P[0].The outline of the algorithm is given below. 

 EM Algorithm 

 As has been indicated earlier, the EKF Algorithm [57] for training Multi-

Layer Perceptron suffers from some shortcomings, namely choosing the 

initial states and covariance W [0], P[0], along with the process error 

covariance Q and measurement error covariance R. It is proposed to alleviate 

the problem by using the EM algorithm [44]. Using the Expectation 

maximization approach, the algorithm maximizes the likelihood p(W ,  Y 

), where  = { Q,R,  , } - the set of parameters governing the likelihood 

function. Assuming that the measurements are independent,  

1 1

2 1

( , | ) ( ) ( | ) ( | ))
N N

k k k k

k k

p W Y p W p w w p y w

 

            (3.10) 

The first term p
1( )W is parameterized with   &, whereas the other terms 
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have Q and R as parameters. In the E step, the algorithm computes the 

likelihood using the known parameters  and in the M step maximizes the 

expected likelihood of data known thus far. The maximization is done by 

differentiating W w.r.t.   and equating to zero. It has been shown [44 ] that 

the estimates  = W1N and   = P1N. Starting with WNN,  PNN, obtained 

after computing the forward estimates in EKF over N measurements, the  

“Rauch-Tung- Striebel smoother” [44] is executed on the same  data series 

in the reverse order to do the following backward recursions. For the time 

series modeling problem, A = I.  The recursion converges to W1N and P1N 

1

11

T
kk kJ P H P


                     (3.11) 

1

1 1 1k k k kJ P IP

                      (3.12) 

^

1 1 1 1k k k k kW W J W AW   

 
  

                                      
(3.13) 

^

1 1 11 1

T
k k kk k kP P J P P J

  

   

 
   

                                      
(3.14)  

The EKF algorithm for RNN training is given below: 

EKF Algorithm for RNN Training 

1.   All the weights are initialized to small random values. The state 

covariance matrix P(0|-1) is initialized to a diagonal matrix with 

relatively small values.  

2. The EKF algorithm is executed for the first N measurements using 

equations 3.5 to 3.9.  

3. Starting with W1N and P1N the equations (3.10) to (3.13) are executed 

to obtain  WN  and PN 
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4. The initial values obtained are used again to correctly estimate the 

weights W using the EKF, until the modeling error comes down to 

acceptable limits. 

5. Driven by noise,   the time series corresponding to the chaotic system to 

be modelled is regenerated using W. 

Algorithm 3.1 

Other algorithms are to be explored to select the best training method for 

RNN. Particle filter algorithm and some of its variants [53] [60] [71] seems 

to be worth testing.  

 RNN training with Particle Filter algorithm 

The particle filters attempts to find the posterior distribution of the hidden 

states in general using observation and measurement as discussed in Section 

1.6.1.3. This problem has been formulated, in a Bayesian set up, as a two-

step prediction and update computation of distribution p(xk|z1:k)[97]. In 

general, the computations in prediction and update steps cannot be carried 

out analytically [60]. Accordingly a set of particles are generated by 

sampling from a known probability density function, called importance 

sampling function. Each of this particles undergo state transformation and 

are combined using weights which are updated for every measurement. 

Following [97], the weights are calculated using the likelihood ratio of the 

measurement with respect to each particle. In order to avoid degeneracy of 

the weights a resampling step is included [60].  Inclusion of re-sampling step 

coupled with ever faster computers, made particle filters a versatile 

algorithm.  The proposed RNN is trained with particle filter algorithm.  A 

detailed explanation of particle filters is given in appendix A.3 Two 

important variants of particle filter algorithm Sampling Importance 
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Resampling Particle Filter (SIRPF) and Rao Blackwellised Particle Filter 

(RBPF) are explored in this section. 

 RNN training with SIRPF  

The inclusion of resampling step in the generic particle filter algorithm 

resulted in one of the best variant, the SIRPF algorithm. Here the weights of 

RNN correspond to the states of particle filter and each data sample of the 

time series produces the weight from likelihood function.  

SIRPF Algorithm for RNN Training 

1. The RNN weights are to be initialized to random values in the range             

0 :1 for i=1:N 

2. Each of the selected RNN weights are sampled to finite number of 

particles, 1 2, . . .i i i

NW W W  

3. The importance weights 1 1 2 2( ), ( ) . . . ( )i i i

N Nw W w W w W  are calculated using 

likelihood function 

4. The weights are resampled back to N particles 

 6. The importance weights are normalized  

7. The RNN weights are updated by combining the particles along with the 

importance weights. 

8. The model output is recalculated and compared with the given data to 

calculate the error  

9. If the MSE is within limits, the process is terminated  

9.    Else, go to step 1.  

Algorithm 3.2 
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 RNN training with RBPF  

One of the important constraints of SIRPF algorithm is the requirement of 

large number of particles, to converge to an optimum solution. Calculation 

of importance weights, sampling and resampling steps are to be repeated for 

all the particles. Complexity of the algorithm increases with increase in 

number of particles. Kalman filter is combined with a particle filter to reduce 

the number of particles required to obtain a given level of performance. This 

variant of particle filter is called RBPF and algorithm is as follows 

RBPF algorithm for RNN Training 

1. The weights 
iW are partitioned into 

iR and 
iX such that  p(

1: iR |
1: iY ) 

can be predicted with Particle Filter (PF) and  p(
iX  | 

1: iR ,
1: iY ) can be 

updated analytically using a Kalman filter. 

2. The RNN weights in the hidden layer are partitioned by using linear and 

using nonlinear activation functions.  

3. The weights of linear neurons are updated with Kalman Filter. 

4. The particle filter algorithm 3.2 is used for non-linear neurons  

Algorithm 3.3 

The above steps 1 to 4  are detailed in Algorithm A.3. All the RNN weights 

are updated with the help of RBPF algorithm in each iteration and the results 

are obtained. 

  Performance evaluation of the training algorithms 

Time series output from four standard chaotic systems, viz. Lorenz, Rossler, 

Chua and Chen, are modeled using RNN neural network architecture and 
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trained by the above three algorithms. The weight vector W is estimated for 

an initial set of data. Thereafter, driven by the noise, the RNN free wheels to 

produce the output time series and compared with the target time series.  

Performance of each training algorithm is evaluated based on least mean 

square error between the target time series and the modelled output. 

   Lorenz system 

The Lorenz system, represented by the Equations (1.10) to (1.12), discussed 

in Section 1.3 is modelled using RNN architecture. It is assumed that the 

time series of state x alone is known. The state x is estimated using RNN 

with the three algorithms EKF, SIRPF & RBPF. the modeling results of EKF 

is given in Figure 3-2. 

 

Figure 3-2 Lorenz model with EKF 
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Similarly the results of SIRPF and RBPF are plotted in Figure 3-3& 3-4. In 

all the three figures there are three subplots 

(a) Time series of state x, generated from dynamic equations 

superimposed on the time series generated from RNN model 

structure 

(b)  Modeling error of each sample 

(c)  Mean square error  

 

 

Figure 3-3Lorenz model with SIRPF 
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Figure 3-4Lorenz model with RBPF 

The modeling error of Lorenz system calculated over 3000 samples is given 

in Table 3.1. It shows superiority of the EKF algorithm with EM technique 

over the others. 

Table 3.1 Comparison of Mean Square Error (MSE) - Lorenz system 

Data MSE with EKF  MSE with SIRPF MSE with RBPF 

Lorenz 6.052 x 10
-10

 6.003 x 10
-6

 2.803 x 10
-7

 

Further the RNN is trained with three algorithms and tested on other 

standard chaotic systems, Rossler, Chen & Chua as follows. 
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  Rössler   system                            

Otto Rössler designed the Rössler system in 1976 [5]. It consists of three 

non-linear ordinary differential equations. These differential equations 

define a continuous-time system that exhibits chaotic dynamics. It was the 

second significant improvement in chaos theory after Lorenz. The research 

in chaotic theory was further motivated other researchers to come up with 

similar systems. The original Rössler system was designed with some 

similarities to the Lorenz system. But the equations are simpler than Lorenz 

system and hence are easy to analyze. The system is described by the non-

linear equations  

(3.15)x y z


    

(3.16)y x ay


         

(3.17)z bx cz xz


     

 

Figure 3-5 Time series ‘x’ of Rossler system 

http://en.wikipedia.org/wiki/Non-linear_dynamics
http://en.wikipedia.org/wiki/Ordinary_differential_equation
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The system is simulated in MATLAB, with a= 2, b=0.2, c=5.7 and initial 

conditions x0 =  y0 = z0=0.1 for which the system will be chaotic. 

Figures 3-6 to 3-8 show the plot of time series, modeling error and mean 

square error of Rossler system with EKF, SIRPF and RBPF respectively.  

 

Figure 3-6 Rossler model with EKF 

The Rossler system time series is reconstructed accurately which verifies the 

efficiency of RNN. The plots show a very low modeling error for EKF 

algorithm. Following Figures explore the efficiency of SIRPF and RBPF 

algorithms for Rossler system. The Rossler system dynamic equations were 

found to be useful in modeling equilibrium in chemical reactions. 
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Figure 3-7 Rossler model with SIRPF 

               

Figure 3-8 Rossler model with RBPF 



Neural Network based Modeling, Characterization and Identification of Chaotic systems in Nature…………………. 

62 

 

 Chen system 

Chen proposed a new chaotic system in 1999 [46], described by the 

following three non-linear equations. 

( ) (3.18)

( ) (3.19)

(3.20)

x a y x

y c a x xz cy

z xy bz







 

   

 

 

The system exhibits chaotic behaviour with the values of a=35, b=3, c=25. 

Chen systems are most suited for generating hyper chaos. The analysis of 

Chen system will contribute to a better understanding of a whole family of 

similar and closely related chaotic systems. The intrinsic dynamics of the 

Chen system deserves further investigation in the near future. 

Figure 3-9 shows the time series ‘x’ of Chen system.  Figures 3-11 to 3-13 

show the plot of time series, modeling error and mean square error of Chen 

system with EKF, SIRPF and RBPF respectively. 

 

Figure 3-9 Time series ‘x’ of Chen system 
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Figure 3-10 Chen model with EKF 

 

Figure 3-11 Chen model with SIRPF 
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Figure 3-12 Chen model with RBPF 

3.4.4 Chua Chaotic Oscillator 

The Chua oscillator is a simple electronic circuit conceived by Chua, as 

shown in Figure3-13. It has 5elements: a linear resistor, a linear inductor, 2 

linear capacitors, and a nonlinear 2-terminal resistor (Chua’s diode) with 

piecewise non-linear characteristicsshown in Figure 3-14. The system is 

defined by the following differential equations and parameter  

( )x y x f x


                                                                              (3.21) 

where 
1

( ) ( ) 1 1
2

f x bx a b x x         

y x y z


                                                                                     (3.22) 

z y x 


                                                                                    (3.23) 
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Figure 3-13 Chua’s Circuit 
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Figure 3-14 Chua diode characteristics 
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Chuas circuit is considered as the simplest tool for analyzing chaotic 

systems. It is easy to implement with a few energy storage elements and one 

non-linear element. The chaotic behaviour of Chua’s circuits are verified 

with laboratory experiments. The system shows chaotic behaviour for the 

following parameter values 

0

1 2

1 1 1
1001 , 20 , , ,

878.1 2339 878.1

1 , 12 , 15.06 178.5

a b

p

R R G G

B V L mH C nF and C nF

 
      

  

     

Figure 3-16 shows the time series ‘x’ of Chua system. Figures 3-17 to 3-19 

show the plot of time series, modeling error and mean square error of Chua 

system with EKF, SIRPF and RBPF respectively. 

 

Figure 3-15 Time series x of Chua system 
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Figure 3-16 Chua model with EKF 

 

Figure 3-17 Chua model with SIRPF 
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Figure 3-18 Chua model with RBPF 

  Selection of best training algorithm for RNN 

Four standard chaotic systems - Lorenz, Rossler, Chen and Chua - are 

generated from the dynamic equations given in Sections 1.4, 3.4.2, 3.4.3 and 

3.4.4 respectively. State x of each system is selected and samples of the 

corresponding time series are given as input to RNN model. The model is 

trained with the algorithms – EKF, SIRPF and RBPF- discussed in Sections 

3.2, 3.3.1, 3.3.2 respectively to produce estimated output. Mean square error 

between actual output and estimated output is calculated. The MSE 

corresponding to all the four chaotic systems are tabulated in Table 3.2. . 

Analysis of the plots of MSE and Table 3.2 shows that EKF is the best among 

the three algorithms. 
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Table 3.2 Comparison of Mean Square Error (MSE) 

No Data MSE with EKF  MSE with SIRPF MSE with RBPF 

1 Lorenz 6.052 x 10-10 6.003 x 10-6 2.803 x 10-7 

2 Rossler 2.892 x 10-7 2.795 x 10-6 2.788 x 10-6 

3 Chen 2.888 x 10-7 2.899 x 10-5 2.700 x 10-5 

4 Chua 2.500 x 10-6 2.902 x 10-5 2.522 x 10-5 

 

 Conclusion 

Chapter presents selection of a best model structure for chaotic. While RNN 

is selected as the model structure, a suitable training algorithm was to be 

identified. Three versatile algorithms, EKF with EM, SIRPF and RBPF,  are 

used to train the RNN. Four well known chaotic systems, Lorenz, Rossler, 

Chen and Chua, with known dynamics are modeled using these algorithms, 

with a view to demonstrate the correctness of the model structure chosen and 

the parameter estimation algorithm. The output generated by the 

freewheeling RNN model , trained using EKF algorithm after parameter 

estimation match the chosen time series with a MSE as low as 10-10. Hence 

it is concluded that RNN model can be selected as the best choice for time 

series modeling of chaotic systems and is adopted herein after. Since the 
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behaviour of the chaotic system is more manifest in the state space evolution 

diagram, it is imperative that the model is able to produce correct phase 

sequence on attaining minimum error after training. The RNN model 

outlined here is extended to accommodate state transition function of the 

chaotic system modeled. The chapter to follow introduces and demonstrates 

the extended model which is able to correctly generate the state space 

evolution sequence thus facilitating the analysis of chaotic systems from the 

state space evolution characteristics like Lyapunov exponents, Kaplan Yorke 

dimension, and Embedding dimension and bifurcation diagram. 
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4. Model Validation with Time Domain 

Characteristics 

Chaotic systems have the property of sensitive dependence on initial 

conditions. Therefore analysis and characterization of chaotic systems is 

unique. The previous chapter describes methods of modeling chaotic system 

from the output time series. The EKF algorithm is proved to be the best 

algorithm with minimum modeling error for RNN.  

Change in the qualitative character of chaotic systems can be depicted by 

certain invariant time domain properties like phase plots, strange attractors, 

Lyapunov exponents, Kaplan - Yorke dimension, embedding dimension and 

bifurcation diagrams [14] [26]. Phase plots and strange attractors illustrate 

the state space evolution of the chaotic system. The Lyapunov Exponents 

and Kaplan - Yorke dimension describe the dynamic content of the system. 

Embedding dimension gives a proper measure for attractor reconstruction, 

while bifurcation characterizes growth rate of a perturbation of chaotic 

systems. 

 The present chapter describes an extension to time series model of chaotic 

systems to a complete state estimation process. The invariant parameters are 

estimated for the systems generated from the RNN model. Since the dynamic 

equations are known, the estimated values and plots are compared with that 

of original dynamic systems. The chapter also discusses estimation of 

Lyapunov exponents along with bifurcation. 

 State estimation from RNN model 

The RNN model discussed in Section 3.1 is insufficient for state estimation 

since it generate only one state of the chaotic system and hence only one 
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output. But the chaotic systems described in Sections 3.4.1 to 3.4.4 has 3 

states x, y & z. Hence the RNN model is modified to accommodate 3 outputs. 

Hence the RNN model in Figure 3-1 is modifies for complete state estimation 

as depicted in Figure 4-1. The network consists of n input neurons and 3 

output neurons. Each output neuron represents a state of the chaotic system 

under consideration. The complete weight vector is W=[ , , ]m s T

pw w w

  where 

m is the number of input neurons of NARX model,   is the number of 

neurons with noise input & s is the number of feedbacks. 

Delay

Delay

Delay

Delay

Delay

Noise, 

Delay

 

Figure 4-1 RNN model for state estimation 

Following the approach developed in modeling of time series, the parameter 

vector W=[ , , ]m s T

pw w w
 corresponding to the weights of the neural network 

is represented as a state and is augmented with X=[ x1, x2 …xp] where p is 

the number of states. Because of the dynamic characteristic of the model the 

state transition is expressed as,  
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 1k kW h W                                                                                               (4.1) 

 1

T

kX f W X                                                                                   (4.2) 

Accordingly, the Jacobean of the state transition function to be used in the 

EKF algorithm is given by 

 
^

0 0

0 0

(4.3)

.
0

k

k

I

F

f

X

 
 
 
 
 

 
 

 

and the Jacobean of the measurement function is given by 

   . .
, (4.4)k m

h h
H

w w

  
  

  

The corresponding EKF algorithm for state estimation is given below: 

EKF Algorithm for state estimation 

1. All the weights and states are initialized to small random values.  

2. The covariance matrix P(0/-1) is initialized to a diagonal matrix with 

relatively small values. 

3.  EM algorithm is used to calculate the proper values of W(0), X(0) 

and P(0/-1) using 3.14 to 3.17. 

4. Let s

pw  be the weights corresponding to the p states, w be the 

weights of the feedback layer corresponding to the input time series. 

NARX model estimates the states 1( )x k from the time series 1( - )x k n

; n= 1, 2,… q  for NARX input and n= 1, 2,… r for noise inputs 



Neural Network based Modeling, Characterization and Identification of Chaotic systems in Nature…………………. 

76 

 

 1 1

1 1

( ) ( ) ( )
q r

m

n n

n n

x k h w x k n w n
 

 
   

 
                                                (4.5) 

5. Then estimate of state 
^

( )X k at any instant will be 

1 11 1 12 2 13 3

^

2 21 1 22 2 23 3

^

1 1 2 2 3 3

( ) ( ( ) ( ) ( ))

( ) ( ( ) ( ) ( )) (4.6)

( ) ( ( ) ( ) ( ))

s s s

s s s

s s s

p p p p

x k f w x k w x k w x k

x k f w x k w x k w x k

x k f w x k w x k w x k



  

  

  

Algorithm 4.1 

As in the case of   modeling time series, the approach here is to estimate the 

parameters of the RNN model corresponding to ws, wm and w from the 

output time series.The state transition function estimated in terms of ws 

correctly generates the state space, as the modeling error comes down to 

acceptable limits. The following sections validate the performance of the 

technique by implementing the chaotic systems described in Section 3.4 

using the Algorithm 4.1 by computing the invariant properties. 

 Phase plots and strange attractors 

Phase plot of a dynamic system represents the relation between state 

variables where time is implicit and each axis represents one of the states. 

The trajectory traversed by a state is called a phase trajectory. The phase plot 

of a system depends on system parameters and initial conditions. The 

geometrical shape of phase plots give valuable information about nature of 

the system. The attractor of a system is an invariant set and a signature of 

chaotic behaviour. All the four chaotic systems discussed in Chapter 3 are 
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found to have attractors in their phase plots. Change in dynamics of the 

systems is described from the state space analysis.  

In order to validate the state space model developed in Section 4.1, one of 

the states of standard systems described mathematically is used as the time 

series input. The RNN model is trained using the EKF algorithm, along with  

EM, until the modeling error between the state 1 of RNN and the 

corresponding state of the given chaotic system falls below an acceptable 

value ( < 10 -7). Training is carried out with 22,000 samples, so as to ensure 

the correct reproduction of strange attractors.  Subsequently, RNN model is 

driven by noise over 30,000 samples. Evolution of all the state variables in 

time in gives the phase plot and are plotted. The phase plot from RNN model 

is given in green, while the plot from the system of equations describing 

given chaotic system is plotted in black. Sections to follow illustrate the 

correctness of the state space evolution RNN model developed as applied to 

Lorenz, Rossler, Chen & Chua systems. 

 Phase plots of Lorenz system 

According to chaotic system theory, existence of strange attractors in the 

phase plots is a sufficient condition for chaotic property. The Lorenz system 

of equatiuons are already proved to have strange attractors in their phase 

plots. Lorenz system represented by the set of dynamic equations (1.10) to 

(1.12) is simulated with parameter values 
8

10 , 26.5 ,
3

      and 

initial conditions x0=0, y0=0.1, z0=0. The state x of the Lorenz system is used 

for modeling. The samples from output time series ‘x’ is applied to the RNN 

model along with noise and recurrent inputs. The model, trained with EKF 

algorithm generates all the three states: ‘x’, ‘y’ & ‘z’..These states are 

plotted along with the actual system states as follows. 
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              Figure 4-2 Phase plots of Lorenz system:  (a) States1 &2 (b) States 2 &3 

   

                 Figure 4-3 Phase plots of Lorenz system:  (a) States1 &3 (b) States1, 2 &3 

Figures 4-2 and  4-3 show the phase plots  of Lorenz system in 2-D with 

states taken pairwise and 3-D with all the three states together. The state 

space evolves perfectly as a strange atrractor which brings out  chaotic 
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nature. Further, the superimposed plots of the state space evolution from the 

mathematical model and the RNN model shows perfect agreement of the 

state trajectory, thereby confirming the correctness of the RNN model 

developed. 

 Phase plots of Rossler system 

The Rossler system described by the non-linear dynamic equations (3.15) to 

(3.17) are simulated in MATLAB, with a= 2, b=0.2, c=5.7and initial 

conditions x0= 0, y0= 0, z0=0.1 for which the system will be chaotic. The state 

x of the Rossler system is used for modeling. The samples from output time 

series ‘x’ is applied to the RNN model along with noise and recurrent inputs. 

The model, trained with EKF algorithm generates all the three states: ‘x’, ‘y’ 

& ‘z’. These states are plotted along with the actual system states as follows. 

 

 

                 Figure 4-4 Phase plots of Rossler system:  (a) States1 &2 (b) States 2 &3 
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             Figure 4-5 Phase plots of Rossler system:  (a) States1 &3 (b) States1, 2 &3 

 

The phase plots of RNN model and system generated from dynamic 

equations are shown respectively in Figures 4-4 and  4-5. The state space 

progresses as a strange atrractor and the superimposed plots of the state space 

evolution from the mathematical model and the RNN model shows perfect 

agreement of the state trajectory. 

 Phase plots of Chen system 

Chen system, described by the three non-linear dynamic equations (3.18) to 

(3.20), is simulated with the parameter values a=35, b=3, c=25 for which the 

system exhibits chaotic behaviour. The state x of the Chen system is used for 

modeling as in the case of Lorenz and Rossler. The model, trained with EKF 

algorithm, generates all the three states: ‘x’, ‘y’ & ‘z’. These states are plotted 

along with the actual system states as follows. 
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               Figure 4-6 Phase plots of Chen system:  (a) States1 &3 (b) States1, 2 &3 

 

              Figure 4-7 Phase plots of Chen system:  (a) States1 &3 (b) States1, 2 &3 

Figures 4-6 and 4-7 show the phase plots  of Chen system. The perfect 

agreement of the superimposed plots of the  state space evolution from the 

mathematical model and the RNN model is convincingly evident. 
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  Phase plots of Chua system 

The Chua system is simulated and the strange attractors are plotted using the 

dynamic equations and parameters described in Section 3.4.4  

 

                      Figure 4-8 Phase plots of Chua system:  (a) States 1 & 2 (b) States 2 & 3 

 

                     Figure 4-9 Phase plots of Chua system:  (a) States 1 & 3 (b) States 1, 2 & 3 
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 Figures 4-8 and 4-9 show the phase plots  of Chua system. Obviously 

enough,  the  state space evolution from the mathematical model and the 

RNN model are in perfect covenant.  

 Lyapunov Exponents  

The most important quantity of chaotic systems, the Lyapunov Exponents 

(LE) is a set of invariant geometric measures that describe the dynamic 

content of the system. Lyapunov Exponents quantify the average rate of 

convergence or divergence of nearby trajectories in a global sense. A positive 

exponent implies divergence of trajectories and a negative one implies 

convergence. The more positive the exponent, the faster the trajectories 

move apart. Similarly, for negative exponents, the trajectories move together. 

The presence of both positive and negative exponents is an indication of 

exponential separation of trajectories and is a signature of chaos [12]. The 

number of exponents is equal to the number of states of the system. A system 

with m states has m Lyapunov exponents λ1, λ2.  . . , λm in descending order. 

Hence, it can be seen that the Lyapunov Exponents describe the average rate 

of exponential growth in distance between orthonormal trajectories within 

the embedding space sense.  

Mathematically Lyapunov Exponent can be defined by 

 1

0

( )1
lim ln , 1,2,... (4.7)
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where xi, is the ith state variable  of the system and f(xi) is the output of the 

system corresponding to the state  xi. n=3 for Lorenz, Rossler, Chua & Chen 

systems. 

The Lyapunov exponents of the four chaotic systems under consideration are 

calculated using Equation (4.7), from the state space evolution generated 
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using the dynamic equations of respective systems. Further, the Lyapunov 

exponents of the state space evolutions of RNN model, estimated in Section 

4.1, are also calculated and compared with the actual values. It is seen from 

Table 4.1 that the numerical values of the Lyapunov exponents of both the 

approaches compare very well.  

Table 4.1 Lyapunov Exponents: comparison 

No Data Standard LE  LE of RNN model 

1 Lorenz 0.906, 0.000, -14.572 0.902, 0.000, -14.038 

2 Rossler 0.0714, 0.000, -5.394 0.077, 0.000, -5.809 

3 Chen 2.030, 0.000, -10.035 2.079, 0.000, -10.819 

4 Chua 0.340, 0.000,  -5.989 0.350, 0.000, -5.890 

 

 Kaplan - Yorke dimensions  

J. Kaplan and J. A. Yorke [6] have conjectured that the dimension of a 

strange attractor can be approximated from the spectrum of Lyapunov 

exponents.  Such a dimension has been called the Kaplan - Yorke (or 

Lyapunov) dimension, helpful in the analysis of typical strange attractors.  

Let λi  be the ith  Lyapunov exponent. The Kaplan - Yorke Dimension (KYD) 

DKY=D+ (λ1+λ2+...+λD)/abs (λD+1)                                                             (4.8) 

where D is the largest integer for which 
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 λ 1 + λ 2 + ... + λ D > 0 

The Kaplan - Yorke dimensions of Lorenz, Rossler, Chen and Chua systems 

are calculated both from the dynamic equations and RNN model. The values 

so obtained are almost similar as seen from Table 4.2, demonstrates 

efficiency of the RNN model. 

Table 4.2 Kaplan Yorke dimension: comparison 

Sl No Data Standard KYD KYD of RNN  model 

1 Lorenz 2.0622 2.0640 

2 Rossler 2.0131 2.0135 

3 Chen 2.2024 2.02083 

4 Chua 2.0208 2.0394 

 

 Bifurcation analysis 

A bifurcation diagram is a plot that shows the value of a change in parameter, 

on one axis and the solution to the system on the other axis. In other words, 

change in the qualitative character of a solution, as a variation in control 

parameter, is known as a bifurcation. A bifurcation causes the solution of a 

system to change from a stable fixed point to a chaotic attractor. In the case 

of chaotic systems, the parameters play an important role in the transition to 

chaos. If one of the parameter of a chaotic system is varied, the nature of the 

output varies accordingly. The transition of a given system from non-chaotic 
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to chaotic state occurs corresponding to the variation in system parameters. 

For example, σ, β and γ are the parameters of Lorenz system as in equations 

(1.10) to (1.12). If any one parameter is varied, keeping the others constant, 

it yields the bifurcation diagram of the system. 

 Evaluation of Lyapunov Exponents along with 

Bifurcation 

 The Lyapunov Exponents of all the chaotic system under analysis are 

calculated and tabulated in Section 4.3. The exponents are calculated for the 

whole state space evolution by taking the logarithm of the differences of the 

states and averaged. In this section it is shown that the average of the 

derivative of the model function calculated continuously for each point in the 

state space evolution indicates the Lyapunov exponent. The derivative is 

given by f’ (xi(k)) wii , where f’ ( ) is the derivative of the non-linearity (tan 

sigmoid) considered. Figure 4-10 to 4-13 show the values of the Lyapunov 

exponents as a function of the parameters (changing in time) along with the 

state variable xi  for Lorenz, Rossler, Chen & Chua systems. The figure shows 

perfect match of the change in Lyapunov exponent and the onset of 

bifurcation. When one of the Lyapunov exponents becomes positive and the 

system shows second bifurcation, the transition from non-chaotic to chaotic 

state. In the following section, the Lyapunov Exponents are evaluated 

continuously along with change in parameter β, during the state space 

evolution, and the correspondence among the parameter and Lyapunov 

exponent is demonstrated. 

 Bifurcation analysis of Lorenz system 

Figure 4-10 shows the bifurcation diagram and Lyapunov Exponent of 

Lorenz system. The parameter β is varied from 3 to 4 in 200 steps and 

corresponding values of state 1 are plotted. It is seen that for β = 3 the system 
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state starts its first bifurcation. When the value of β is 3.45 the system further 

bifurcates and for the value β=3.6 the complete transition to chaos take place. 

As the plot of the Lyapunov exponent is observed, it is clear that for the 

values of β between 3 to 3.45 the Lyapunov exponent is negative, which 

prove that the system is not chaotic at this time interval. Near to β=3.5 the 

Lyapunov exponent becomes positive and remains positive. The bifurcation 

diagram and Lyapunov exponents are justifying each other.  

 

Figure 4-10 Bifurcation and Lyapunov exponents: Lorenz system 

 Bifurcation analysis of Rossler system 

Figure 4-11 shows the bifurcation diagram and Lyapunov Exponent of 

Rossler system. The parameter c is varied from 3.5 to 8.55 in 200 steps and 

corresponding values of state 1 are plotted. It is seen that for c = 3.5 the 

system state shows its first bifurcation. When the value of c is 5.75, the 

system further bifurcates and for the value c=6.4 the complete transition to 

chaos take place. As the plot of the Lyapunov exponent is observed, it is clear 

that for the values of c between 3.5 to 5.75 the Lyapunov exponent is 
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negative, which prove that the system is not chaotic at this time interval. 

When the value of c is 5.75, the Lyapunov exponent becomes positive and 

remain positive till the final value of c. The bifurcation diagram and 

Lyapunov exponents are justifying each other. 

 

Figure 4-11 Bifurcation and Lyapunov exponents: Rossler system 

 Bifurcation analysis of Chen system 

 Figure 4-12 shows the bifurcation diagram and Lyapunov Exponent of Chen 

system. The parameter b is varied from 1 to 5 in 200 steps and corresponding 

values of state 1 are plotted. It is seen that for b = 1, the system state shows 

its first bifurcation. When the value of b is 2.8 the system further bifurcates 

and for the value b= 3.25 the complete transition to chaos take place. Since 

the Lyapunov exponent is negative for the values of b between1 to 2.8  

system is not chaotic at this time interval. When the values of b is 3.25 the 

Lyapunov exponent becomes positive and remain   positive till the final value 
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of b. The bifurcation diagram and Lyapunov exponents are justifying each 

other. 

 

Figure 4-12 Bifurcation and Lyapunov exponents: Chen system 

 Bifurcation analysis of Chua system 

Figure 4-13 shows the bifurcation diagram and Lyapunov Exponent of Chua 

system. The parameter β is varied from 10 to 20 in 200 steps and 

corresponding values of state 1 is plotted. It is seen that for β = 10 the system 

state starts its first bifurcation. When the value of β is 15 the system further 

bifurcates and for the value β=15.6 the complete transition to chaos take 

place. As the plot of the Lyapunov exponent is observed, it is clear that for 

the values of β between 3 to 3.45 the Lyapunov exponent is negative, which 

prove that the system is not chaotic at this time interval. Near to β = 15 the 

Lyapunov exponent becomes positive and remain positive till the final value 

of β. The bifurcation diagram and Lyapunov exponents are justifying each 
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other. It can be concluded that the online evaluation of Lyapunov exponents 

if an efficient method to characterize the transition to chaos. 

 

Figure 4-13 Bifurcation and Lyapunov exponents: Chua system 

  Minimum Embedding Dimension 

One of the basic questions to be answered when modeling an unknown 

system is the number of states.  The technique based on the minimum self-

embedding dimension due to Takens [8] provides a fool proof method to 

calculate the number of states from the time series. There are three important 

dimensions for a dynamic system - geometric dimension or box counting 

dimension, attractor dimension or state space dimension and embedding 

dimension. The first two are invariant sets, calculated from the dynamic 

equations of the system. The embedding dimension is the smallest integer 

for which the system states can be embedded into, without intersecting itself 
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[40]. An efficient model of a dynamic system can be derived by selecting a 

proper embedding dimension capable of embedding all the properties of 

actual dynamic system. Reconstructed system may preserve only some of the 

properties, if the selected dimension is not optimum and does not preserve 

the geometric shape of structures in phase space.  

Taken’s theorem [8] [9] states that the original dynamic properties of the 

attractor can be retained as long as the embedding dimension de > 2d+1 

where d is the correlation dimension of the attractor, equivalent to Kaplan 

Yorke dimension. It is already estimated for the systems under observation. 

It is sufficient to find the minimum embedding dimension so as to reconstruct 

the dynamic system with all the properties. The minimum embedding 

dimension can be obtained from the following algorithm based on The 

Method of False Nearest Neighbours [33]: 

Algorithm for Minimum Embedding Dimension 

1. Dimension of the attractor is assumed as‘d=1’ and the kth state is 

assumed as ‘x(k)’. 

2. Each state x(k) is sampled, in dimension ‘d’, into time lagged set - 

{(s(k), s(k+T), s(k+2T), . . . , s(k+(d-1)T)} - where T is a small time 

lag. 

3.  Each state x(k) has a Nearest Neighbour (NN), xNN(k) with nearness 

in the sense of distance function  norm,  2 ( )dR k = [x(k )- xNN(k)]2 

4.    2 ( )dR k  is calculated in terms of time lagged sets as. 

 
2 2 2
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5.  Dimension is incremented as d= d+1. Correspondingly the new state 

is  x(k+dT) and its nearest  neighbour is xNN(k+dT). Then the distance 

is changed due to the (d+1)st samples as  s(k+dT) and sNN(k+dT). The 

new distance is calculated as 

 

Relative change in distance can be used to check whether the points are really 

close together or a projection from a higher state space. 

6. The  criteria for false nearest neighbours is chosen as the threshold 

given by 

      

                 (4.5)  

Algorithm 4.2 

Using this criterion all the sequence of samples are tested. The sample, where 

percentage of false nearest neighbours goes to zero is calculated. A graph is 

plotted between the percentage of false nearest neighbours and embedding 

dimension. The lowest point in the graph gives the minimum embedding 

dimension [40]. The four chaotic systems under analysis are subjected to the 

method of false nearest neighbours and minimum embedding dimensions are 

calculated. Figure 4-14 shows the plot of embedding dimension and 

percentage of false nearest neighbours. 
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Figure 4-14 Estimation of embedding dimension 

The figure shows that the minimum embedding dimension of the model for 

Lorenz, Rossler, Chen and Chua systems is 3. The percentage of false nearest 

neighbours vanishes when the value of embedding dimension approaches 3. 

 Conclusion 

The method of identifying a chaotic system, by building a model from the 

time series of the system output, has been developed and demonstrated in the 

present Chapter. Important characteristics of the chaotic systems, phase 

plots, strange attractors, Lyapunov exponents, Kaplan Yorke dimensions and 

bifurcation diagrams of the RNN model output are calculated from the state 

space evolution from the model developed and compared with actual values 

calculated from the dynamic equations. It is observed that the selected model 

structure retains all the properties of the original chaotic system, thereby 

further validating the model structure. The bifurcation plots show the 

transition of the system from non-chaotic to chaotic behavior. This is further 

identified from the plot of the Lyapunov Exponents calculated online from 

analytic expression derived from the state transition function estimated by 
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the technique developed in the thesis.  Since chaotic dynamical systems are 

broadband signals, the analysis in the frequency domain is complicated. 

Some important frequency domain characteristics of chaotic systems using 

Fourier transform (FT), wavelet transform (WT) and Mapped real transform 

(MRT) are presented in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Frequency Analysis of Chaotic 

Systems 

 

 

 

 

 

 

 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Neural Network based Modeling, Characterization and Identification of Chaotic systems in Nature………………………………… 

97 

 

5. Frequency Domain Analysis of Chaotic 

Systems  

Fourier analysis is the traditional method in frequency domain and is very 

powerful in revealing the periodicity of time series.  However, a chaotic time 

series has broad-band power spectra for which the Fourier spectrum gives no 

indication about the deterministic origin. As a result, they have been mainly 

investigated using time-domain techniques. Various time domain 

characteristics of chaotic systems are presented in Chapter 4. The Fourier 

spectrum is not capable of representing the non-stationary nature of a chaotic 

signal. But the fundamental invariants of the underlying dynamical system 

can be analysed using Fourier representation. Time-frequency distributions 

are powerful set of tools specifically designed for non-stationary signal 

analysis. It is helpful in the study of time-frequency pattern present in non-

linear dynamics. One of the competing approaches for time-frequency 

analysis is Wavelet Transform. Mapped Real Transform (MRT) is an 

alternate form of signal representation in the frequency domain, which makes 

use of real additions only. In this chapter chaotic systems are analyzed in the 

frequency domain using Fourier Transform (FT), Wavelet Transform and 

MRT. 

 Analysis using Fourier Transform  

Fourier transform, explained in Appendix B, of chaotic systems is analyzed 

in order to study the spectrum and nature of coefficients. The   Lorenz system 

behaviour changes from non-chaotic to chaotic according to changes in 

parameters. In the present analysis, the value of ‘σ’ in Equations (1.10) to 

(1.12) is chosen as 1 &10. The system generate non-chaotic time series for  
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σ = 1, whereas chaotic time series for σ = 10. Behaviour of the system in 

both cases under the Fourier domain is illustrated in Figures 5-1 to5-4.  

 

Figure 5-1 Time series and frequency spectrum of Lorenz system 

 

Figure 5-2 Scatter plot of Fourier coefficients 
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Figure 5-3 Phase plot of amplitude of Fourier coefficients States 1 &2 Lorenz system: (a) Non-

chaotic & (b) chaotic  

 

Figure 5-4 Phase plot of phase angle of Fourier coefficients States 1 &2 Lorenz system: (a) Non-

chaotic & (b) chaotic  
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Figure 5-1 show the time series and corresponding frequency spectrum of 

Lorenz system for σ = 1 & 10 respectively in which 5.1 (a) is non-chaotic 

and narrow banded  whereas 5.1 (b) is  chaotic and broad banded.  Figure 5-

2 demonstrate the scatter plot of  Fourier coefficients in which the real part 

of the Fourier transform is represented on the X axis and imaginary part on 

Y axis. The figures show that Fourier coefficients of the non-chaotic time 

series are spread more or less linearly, whereas that of chaotic state are in a 

scattered manner. 

Figures 5-3 (a) and (b) show the the phase plot of amplitude of Fourier 

coefficients whereas Figures 5-4 (a) and (b) show the corresponding phase 

angles of state1 and state 2 on X and Y axes, in comparison with the phase 

plots illustrated in Figure  4-2.  The above figures show that  phase plot of 

the two states is  linear for non-chaotic and non-linear for chaotic systems. 

Comparison of Figures 5-3 & 5-4 with Figure 4-2 shows that Fourier 

representation is not capable of explicitly representing the chaotic behaviour. 

The following section explores the feasibility of wavelet analysis of Lorenz 

system. 

 Analysis using wavelet transform 

 The Fourier technique decomposes a signal into harmonically related 

complex exponential signals. Another tool for analysing time series is the 

wavelet transform, detailed in Section B.2. It has been introduced and 

developed to study a large class of phenomena such as image processing, 

data compression, chaos, fractals, etc.  

The basic features of the wavelet transform are localization in time (or space) 

and in frequency. There are different types of mother wavelets available in 

the literature like Haar, Daubechies, and Mayer etc. Daubechies wavelets are 
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used for analysis of chaotic time series following the work reported in [88]. 

In general, Daubechies wavelet can be chosen to have the highest number of 

vanishing moments and have the property of very low shift invariance. 

 Wavelet transform is applied for the analysis of chaotic and non-chaotic 

states of Lorenz time series. The work reported in [65] had optimized the 

number of levels for decomposition as 14 for chaotic system representation 

and hence the present work is implemented using Daubechies wavelet with 

14 levels of decomposition. The energy of each level coefficients are 

calculated and the coefficients with highest energy are analysed. Chaotic 

time series are mainly characterized by the strange attractors evolved from 

the phase plots. Hence the analysis of detailed coefficients with highest 

energy level is done based on the phase plots. The following analysis reveals 

the characteristics of wavelet coefficients of chaotic time series. 

 

Figure 5-5 Energy content vs wavelet levels of Lorenz system 
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The variation in energy corresponding to each level for non- chaotic and 

chaotic states of Lorenz system is shown in Figure 5-5 (a) and (b). It is seen 

that when the Lorenz system is non-chaotic (ie. σ =1) the plot presents a peak 

energy at level 6 whereas for the chaotic time series (ie. σ=10), the peak 

energy is at level 8. Hence, level 6 detailed coefficients of non-chaotic and 

level 8 detailed coefficients of chaotic time series   are used for analysis and 

plotted in Figure 5-6 (a) and (b). 

 

Figure 5-6 Level 6 and 8 wavelet detailed coefficients of Lorenz system 

It is evident from the plot that the detailed coefficients of level 6 and level 8 

resembles that of the original time series shown in Figure 5-1 and 5-2 to an 

extent. Even though the non-chaotic time series is reconstructed with a good 

level of accuracy, the chaotic time series is not well replicated by the wavelet 

coefficients. It is required to observe how the phase plots are reconstructed 

by wavelet coefficients.  The wavelet coefficients corresponding to state 1 

and state 2 are plotted on X & Y axes  respectively for  σ =1 and σ =10 in 

Figures 5-7 (a) & (b). 
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Figure 5-7 Wavelet coefficients’ phase plots of Lorenz system 

The phase plot for σ =1 in Figure 5-7 (a), follows the non- chaotic nature of 

the time series. Interestingly the phase plot for σ =10 shown in Figure 5-7 

(b), unfolds the strange attractor like behaviour presented in Figure 4-2. 

However a close comparison of Figure 4-2 and Figure 5-7 (b) reveals the fact 

that the wavelet coefficients’ phase plot does not exactly follow the actual 

strange attractor. Even though wavelet transform is comparatively more 

effective than the Fourier transform in representation of chaotic behaviour of 

systems, it is not able to completely reconstruct the strange attractors. Hence 

it is important to search for a better transform to completely represent the 

chaotic behaviour. MRT, being a newly developed transform to map signals 

from time domain to frequency domain in terms of real additions, is chosen 

as a new tool. 
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 Analysis using MRT 

MRT (Mapped Real Transform, originally M-dimensional Real Transform) 

is an evolving transform [5] [7] that can be used for the frequency domain 

analysis of signals. It is evolved by modifying DFT computations in terms 

of real additions, exploiting the symmetry and periodicity properties of the 

twiddle factor. Sequency based unique MRT (SMRT) [8] is a new 

representation of MRT applicable for both 1-D and 2-D signals. 

 In the present section 1-D SMRT is used for analysis non-chaotic and 

chaotic systems. Non-overlapping rectangular window of size 16 is applied 

over a data array of size 10240 samples from the system and the SMRT 

coefficients are obtained for each block. There are 16 SMRT coefficients 

corresponding to each block representing different computations as 

illustrated in Appendix B.3.5.1. An array is formed from a selected 

coefficient of the same type from each block. Thus there will be 640 

coefficients in each array. A detailed analysis of all the 16 arrays of SMRT 

coefficients are performed for different chaotic systems. 

 SMRT analysis of Lorenz system 

The energy content of all 16 SMRT arrays are plotted in Figure 5-8. The aim 

of this experiment was to observe which array of SMRT coefficients is 

having the highest level of energy content. It was deduced that the array with 

highest energy content will contain the most appropriate coefficients for 

chaotic time series analysis as observed in wavelet analysis. Interestingly it 

is observed that the energy content in all 16 arrays are identical and a notion 
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that all arrays of SMRT coefficients may have sufficient information to 

reconstruct the chaotic system was underlined from this investigation. 

 

Figure 5-8Energy content vs array number of Lorenz system 

Figure 5-8 above illustrate the fact that all arrays of SMRT coefficients are 

having the same energy content.  This finding gives an impression to select 

any array for analysis of chaotic systems with SMRT coefficients. This 

property is explicitly different from that of wavelet coefficients in which 

the energy content of different level of decompositions were different and 

hence a particular level was found to be sufficient for representing non-

chaotic and another one for representing chaotic system.  

The selection of any array of SMRT coefficients may yield the same 

results. The validation of this can be done only by testing the capability of 

SMRT coefficients to reconstruct the time series and phase plots.  
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Figure 5-9 Array1 SMRT coefficients of Lorenz system (a) non-chaotic &(b) chaotic states 

 

Figure 5-10Phase plot of array1 SMRT coefficients of Lorenz system 
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The array1 SMRT coefficients of non-chaotic Lorenz system does not match 

with the actual time series in Figure 5-1 whereas the array1 SMRT 

coefficients of the chaotic state exactly matches the actual time series as in 

Figure 5-2. 

The phase plot of SMRT coefficients of the non-chaotic and chaotic states 

are surprisingly similar to the actual Lorenz system phase plots as in Figure 

4.2.  

 

Figure 5-11 Phase plot of array 2&6 SMRT coefficients, chaotic Lorenz system 

 

It is evident from the phase plots of Fourier, wavelet and SMRT coefficients 

that the SMRT coefficient retains the actual nature of the system under 

chaotic transformation. It is proved that all the 16 arrays are having the same 

energy level as shown in Figure 5-8. It will be interesting to analyze whether 

all arrays are able to unfold the strange attractor of the chaotic system under 
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consideration. Hence phase plots of array2, array 6, array13 and array16 are 

analyzed to verify the consistency in different categories of SMRT 

coefficients. 

  

Figure 5-12 Phase plot of array 13 &14 SMRT coefficients, chaotic Lorenz system 

Figures 5-11 and 5-12 clearly show that all arrays of SMRT coefficients 

retains the inherent properties of the chaotic system.  Hence it is sufficient to 

compute one SMRT coefficient per window to extract the chaotic behaviour 

of systems. The validation of the intuition that SMRT coefficients, under 

transformation retains the property in all arrays is well established by these 

observations.  

It is also worthy to note that SMRT representation is more informative when 

the system behaviour is chaotic. As the same system shows non-chaotic 

behaviour, the SMRT coefficients fails in exact reproduction of time series. 
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The placement of SMRT coefficients in a scattered plot is appreciable, in 

order to note the property of these coefficients. Hence the scattered plot of 

SMRT coefficients for chaotic and non-chaotic states of Lorenz system is 

simulated in MAtlab and observed  as shown in the following figure. 

 

Figure 5-13 SMRT coefficients scatter plot: Lorenz non-chaotic &chaotic 

Figure 5-13 shows the combined scatter plot of SMRT coefficients for both 

non- chaotic (plotted in blue) and chaotic (plotted in red) states. As in the 

original system, the coefficients corresponding to non- chaotic state are 

linear and that of chaotic state are scattered. 

From these observations it is clear that the SMRT coefficients retains the 

original property of chaotic systems and are well suited for the analysis. 

The analysis of chaotic systems based on SMRT is extended to validate 

other chaotic systems such as Rossler, Chen and Chua.  
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The Rossler system is defined by the non-linear equations (3.15) to 

(3.17).The system is simulated in Matlab and the resulting time series is 

transformed to obtain the SMRT coefficients. As in the case of Lorenz 

system, there are 16arrays of SMRT coefficients each containing 640 

samples.  

 

Figure 5-14 SMRT coefficients of chaotic Rossler system (a) array 1 samples& (b) phase plot 

The array1 SMRT coefficients and the corresponding phase plots of 

Rossler system are plotted in Figures 5-14 (a) and (b) respectively. 

Comparing these with Figures 3-5 and 4-4 respectively it can be observed 

that the SMRT coefficients of Rossler system retain the original system 

properties. 

Similarly Chen system &Chua system, defined by (3.18) to (3.20) & (3.21) 

to (3.23) respectively, are also subjected to SMRT transformation. The time 

series and phase plots of array 1 alone of the above systems under chaotic 

behaviour are considered for a crisp analysis. 
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Figure 5-15 SMRT coefficients of chaotic Chen system (a) array 1 samples & (b) phase plot 

 

Figure 5-16 SMRT coefficients of chaotic Chua system (a) array 1 samples & (b) phase plot 
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Comparison of these with Figures 3-9 and 4-6 show the consistency of the 

SMRT technique. 

Chua system is also analyzed in the SMRT domain and plotted in Figures 5-

16 (a) & (b).  Figures 3-15 and 4-8 are also in agreement with this as in other 

cases of chaotic systems. The power of SMRT coefficients in analyzing the 

chaotic behaviour of non-linear system is excellently demonstrated from all 

these investigations. 

Thus all the 16 arrays of SMRT coefficients are capable to retain each and 

every properties of the original time series as observed from Figures 5-14 to 

5-16. Hence, 640 SMRT coefficients are sufficient to extract important 

properties of a long time series of length 10240. If the length of the time 

series is still higher the array size can be increased, thereby further reducing 

the number of samples. These observations are important in the analysis of 

chaotic systems in the frequency domain. Comparing to Fourier and 

transforms, SMRT is proved to be the best tool for frequency domain 

analysis of chaotic systems. 

 Conclusion 

Frequency domain analysis of chaotic systems is presented in this chapter. 

Three important transforms -Fourier, wavelet and SMRT- are used. The 

Lorenz system with non - chaotic and chaotic states are analyzed by varying 

one of the parameter σ. The frequency spectrum is band limited for non-

chaotic and is broad banded for chaotic systems. The amplitude and phase of 

Fourier coefficients under non-chaotic state are linear while the same under 

chaotic state is non-linear. Attempt is made to construct the phase plot of 

Fourier coefficients of two states and has been futile as it did not reveal the 

original system properties.  
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The wavelet analysis proved to be more fruitful in many aspects. Initially the 

wavelet level with highest energy concentration is selected from energy plot. 

It is found that when the system is non-chaotic & chaotic, level 6 and level 8 

respectively are suitable for analysis. Interestingly the coefficients seemed to 

be in line with the actual time series. Further, the phase plot of wavelet 

detailed coefficients is plotted and is found to be having some of the 

properties of the original phase plots. 

The SMRT analysis is found to be the promising one in frequency domain. 

In the present analysis, there are 16 arrays of SMRT coefficients and each 

array is found to have the same energy level. Further, the plot of coefficients 

of each array is exactly similar to the actual time series. Then the phase plots 

of SMRT coefficients are investigated and found to be surprisingly 

coinciding with the actual phase plots. Also a scatter plot of non- chaotic and 

chaotic SMRT coefficients showed distinguishing features. Thus it is 

concluded that the SMRT analysis is the best method for analysis of time 

series in frequency domain. Modeling and analysis of some important 

weather systems like sunspot time series, Venice Lagoon time series and 

North Atlantic Oscillations are presented in the next chapter. 
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6. Modeling and Analysis of Chaotic 

Systems in Nature 

There are a number of weather systems which are chaotic in nature. Chaotic 

dynamical systems are present in the nature in various forms such as weather, 

oceanic oscillations, flows and turbulence. Modeling and analysis gives 

detailed understanding of a system in an effective way. In the present chapter 

three important weather systems - the Sunspot time series, the Venice lagoon 

time series and the North Atlantic Oscillations - are modeled and analyzed. 

A few important features are extracted and certain observations are made on 

the three weather systems which will contribute to further analysis of these 

systems. 

 Sunspot time series 

Sunspot data are available since 1818 in the Greenwich series obtained from 

daily photographic images of the sun. Although, sunspots themselves 

produce only minor effects on solar emissions, the magnetic activity that 

accompanies the sunspots can produce dramatic changes in the ultraviolet 

and soft X-ray emission levels. These changes over the solar cycle have 

important consequences for the Earth's upper atmosphere. Sunspot number 

is calculated by first counting the number of sunspot groups and then the 

number of individual sunspots. The "sunspot number" is then given by sum 

of the number of individual sunspots and ten times the number of groups 

since most sunspot groups have about ten spots. This formula for counting 

sunspots gives reliable numbers even when the observing conditions are less 

than ideal and small spots are hard to see. The sequence of sunspot numbers 

[116] available as a time series, from year 1818 to 2013 has been utilized in 
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the present study. The model and the algorithms developed in Chapter 4 are 

utilized to characterize the sunspot time series. 

 

Figure 6-1 Sunspot time series 1818-2013 

Figure 6-1 shows the sunspot time series. The steps followed in modeling 

and analysis of sunspot time series include:  

1. Estimation of minimum embedding dimension 

2. Computation of modeling error 

3. Phase plots reconstruction 

4. Computation of Lyapunov exponents 

5. Computation and analysis of SMRT coeffcients 

The behaviour of sunspot time series in the time and frequency domain are 

analysed following the above mentioned steps and explained. 
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  Estimation of minimum embedding dimension of sunspot 

time series 

Number of states of the sunspot time series is to be computed to facilitate 

proper modeling. Minimum embedding dimension is the parameter that 

reveals the number of states of unknown dynamical system.As explained in  

Section 4.6 the minimum embedding dimension of the sunspot timeseries is 

estimated using the method of false nearest neighbours.  

 

Figure 6-2 Minimum embedding dimension of sunspot time series 

Figure 6-2 shows the estimation of embedding dimension of sunspot 

timeseries. It is evident from  the plot of percentage false nearest neighbours 

and embedding dimension that the minimum embedding dimension is 3, 

which corresponds to three states. 

 Phase plots of Sunspot time series 

The given timeseries is modeled using the RNN model structure with three 

states after estimating the minimum embedding dimension. The recurrent  
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Neural networks are trained with a single channel time series data of the 

sunspot. All the three sets of weights are updated using Algorithm 4.1. The 

training is continued until the modeling error comes to an appreciable level 

of 2.54x10-6 as shown in Figure.6-3. 

 

Figure 6-3 Modeling error-sunspot 

The training of the sunspot time series with the selected RNN structure 

trained with the EKF algorithm is proved to satisfying the mean square error 

criterion and can be adopted for state space modeling of the same system. 

The sunspot time series is nonlinear, but in extreme situations the system 

may show chaotic behaviour. Also the phenomena causing sunspot 

originating in the sun can also be chaotic in nature. A verification of these 

facts can be derived from phase plots. 
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Figure 6-4 Phase plots, states 1 &2 (a) sunspot & (b) Rossler 

 

 

Figure 6-5 Phase plots, states 2 &3 (a) sunspot & (b) Rossler 
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Figure 6-6 Phase plots, states 1 &3 (a) sunspot & (b) Rossler 

          

 

Figure 6-7 Phase plots, states 1, 2 &3 (a) sunspot & (b) Rossler 



Neural Network based Modeling, Characterization and Identification of Chaotic systems in Nature…………………………………… 

123 

 

The state space evolved has demonstrated strange attractors which confirm 

the chaotic nature of the source of time series. Interestingly enough, the state 

space evolution shows that the system modelled from the sunspot time series 

using the method in Section 4.1 has a close semblance to the famous chaotic 

system developed by Otto Rossler, Section 4.1. In Figures 6-4 to 6-7, the 

phase plots of Rossler system and sunspot time series (in black) are plotted 

along with that of the (in green) to facilitate comparison. 

  Lyapunov exponents of sunspot time series 

Lyapunov Exponents of the Sunspot time series are calculated using the 

method described in Section 4.3 and is given in Table 6.1. The phase plots 

of sunspot time series showed a close resemblance with that of Rossler 

system. Hence a comparison of Lyapunov Exponents of sunspot time series 

and Rossler system is essential.  

Table 6.1 Lyapunov exponents of sunspot time series 

Sunspot -5.2446 0 0.0694 

Rossler -5.394 0 0.0714 

One of the Lyapunov exponent is negative, one is zero and the other one is 

positive in the case of sunspot, verifying its chaotic behaviour. Table 6.1 

shows that the Lyapunov exponents of the Rossler system and sunspot are 

closely matching, thereby establishing the correlation between them.  

  SMRT analysis of Sunspot time series 

Frequency analysis of chaotic systems is done with the help of three 

important transforms viz - Fourier, wavelet & SMRT.  Sections 5.1 to 5.3 

covers a detailed analysis of behaviour of chaotic systems in frequency 
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domain. It was found that SMRT is the best tool for chaotic system analysis 

since all the SMRT coefficients retain the property of original chaotic 

systems and preserve the shape of time series and phase plots 

 

Figure 6-8 SMRT coefficients sunspot 

 

Figure 6-9 Phase plot of SMRT coefficients, sunspot (a) states1 &2 (b) states 2 & 3 
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Figure 6-10 Phase plot of SMRT coefficients, sunspot (c) states 1 &3 and (d) states 1, 2, &3 

Figures 6-9 and 6-10 shows the phase plots of SMRT coefficients. From the 

comparison of these figures with Figures 6-4 to 6-7 it is validated that the 

SMRT coefficients are completely capable of retaining the chaotic properties 

of the system after the transformation under SMRT domain. The phase plots 

of SMRT coefficients are investigated and found to be surprisingly 

coinciding with the actual phase plots of the sunspot time series. 

  Venice Lagoon time series 

The Venice Lagoon time series is a measure of the level of water in the 

lagoon in centimetres each hour along the years 1940-2013. Non-linear 

stochastic models are used for modeling the system. Unusually high tides 

and other climatic condition drive the time series to show chaotic behaviour. 

Modeling and analysis of such events has always been subject of intense 

interest to mankind, not only from human point of view, but also from an 

economic sense. 
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The most famous example of flooding in the Venice Lagoon occurred in 

November 1966 when, driven by strong winds, the Venice Lagoon rose by 

nearly 2 m above the normal water level. The damage to the city's homes, 

churches and museums ran into hundreds of millions of Euros. Such 

behaviour is difficult to be modeled, because they depends on too much 

factors, like the astronomic and atmospheric agents. 

The problem has been approached by numerical models and statistical 

methods, familiar to climatologists. Such numerical modeling requires 

computation of meteorological forcing functions on each point of finite 

difference grid and hence are computationally expensive. The model 

developed may be applied to explore the feasibility of characterizing this 

time series with unusual events.  

 

Figure 6-11 Time series: Venice lagoon water level 
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6.2.1 Estimation of minimum embedding dimension of Venice 

lagoon time series 

Venice lagoon time series is  modled with  RNN model structure. As a first 

step the minimum embedding dimension is to be calculatedand estimated 

using the method of false nearest neighbours. 

 

Figure 6-12 Minimum embedding dimension of Venice lagoon time series 

The minimum embedding dimension of Venice lagoon time series is found 

to be two from Figure 6-12.   

6.2.2 Phase plots of Venice lagoon time series 

After estimating the minimum embedding dimension the given timeseries is 

modeled using the RNNmodel structure. The system is modeled with two 

states. The systems analysed so far are all proved to be with three states, 

but the present system- Venice lagoon time series exhibits properties of a 

system with only two states. 
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Figure 6-13 Modelling error: Venice lagoon time series 

The recurrent neural networks are trained with a single channel time series 

data of the Venice lagoon. All the three sets of weights are updated using 

the EKF equations. The initial values of P(0/-1) and x(0) are obtained using 

EM method. The training is continued until the modelling error comes to an 

appreciable level of 0.254x10
-6 

as shown in Figure 6-13. Further the phase 

plot of the two states of the given time series is plotted. 

 

Figure 6-14 Phase plot: Venice lagoon 
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Figure 6-14 illustrate the phase plot of Venice lagoon time series. In chaotic 

system theory, the identification of chaotic systems by phase plots is 

applicable only to systems with three or more states. Since the system has 

got only two states there is no possibility of a strange attractor. From the 

phase plot it is not possible to understand the chaotic behaviour of the system. 

For a detailed investigation into the chaotic nature the Lyapunov exponents 

are to be studied 

 Lyapunov exponents of Venice lagoon time series 

The Lyapunov Exponents of the Venice lagoon time series is calculated and 

is given in table 6.2. 

Table 6.2.Lyapunov exponents of 

 Venice lagoon time series 

Lyapunov exponents 

0 0.05 

 

It can be seen that one of Lyapunov exponent is   zero and the other one is 

positive verifying the chaotic behaviour. The chaotic nature of the Venice 

lagoon time series is verified from the above modeling. 

 SMRT analysis of Venice Lagoon time series 

As explained in Section 6.1.4, SMRT analysis of Venice lagoon time series 

is done and the results are plotted in Figures 6-15 and 6-16. The time series 

is well reconstructed with SMRT and phase plot does not reveal much about 

the underlying dynamics. 
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Figure 6-15 SMRT coefficients: Venice lagoon time series 

 

Figure 6-16 Phase plot of SMRT coefficients: Venice lagoon time series 
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 North Atlantic Oscillation  

 The North Atlantic Oscillation (NAO) is characterized by an oscillation of 

atmospheric mass between the Arctic and the subtropical Atlantic. It is 

usually defined through changes in surface pressure. A permanent low-

pressure system over Iceland (the Icelandic Low) and a permanent high-

pressure system over the Azores (the Azores High) control the direction and 

strength of westerly winds into Europe. The relative strengths and positions 

of these systems vary from year to year and this variation is known as the 

NAO. NAO measures the strength of the westerly winds blowing across the 

North Atlantic Ocean between 40oN and 60oN. Studies reveal that the NAO 

accounts for 31% of the variance in hemispheric winter surface air 

temperature north of 20oN[49]. 

.  

Figure 6-17 Time series: NAO 
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There is an index for the NAO as the difference between normalised mean 

winter (December to February) sea level pressure (SLP) anomalies at Ponta 

Delgadas, Azores and Akureyri, Iceland [73]. The normalisation is    

achieved by dividing the SLP anomalies at each station by the long term 

(1864-2014) standard deviation [114] [115].The modeling and analysis of 

NAO index considered as a time series - Figure 6-17 - can throw light on the 

behaviour of the system responsible for the oscillations. In the forthcoming 

section the modeling and analysis of origins of the NAO index series is 

presented 

  Estimation of minimum embedding dimension of NAO 

time series 

In order to model the NAO time series with RNN model structure, it is 

required to estimate the minimum embedding dimension. As explained in 

Section 4.6 the minimum embedding dimension of the NAO timeseries is 

estimated using the method of false nearest neighbours. 

 

Figure 6-18 Minimum embedding dimension of NAO time series 
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Figure 6-18 shows the estimation of embedding dimension of NAO 

timeseries. From  the plot of percentage false nearest neighbours and 

embedding dimension it is evident that the minimum embedding dimension 

is 3, which decides the number of states. 

6.3.2 Phase plots of NAO time series 

After estimating the minimum embedding dimension the given timeseries is 

modeled using the RNN model structure. The system is modeled with three 

states. The recurrent neural networks are trained with a single channel time 

series data of the NAO. All the three sets of weights are updated using the 

EKF equations. The initial values of P(0/-1) and x(0) are obtained using 

EM method. The training is continued until the modelling error comes to an 

appreciable level of 2.54x10
-6 

as shown in Figure 6-19. Further the phase 

plots of the three states of the given time series are plotted. 

 

Figure 6-19 Modelling error: NAO time series 
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Figure 6-20Phase plots of NAO (a) states 1&2, (b) states 2&3 

 

Figure 6-21 Phase plots of NAO (a) states 1 &3 and (b) states 1, 2 &3 
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Figures 6-20 and 6-21 illustrate the phase plots of NAO time series. The state 

space evolution shows that the system modelled from the NAO time series 

using the method reported here exhibits chaotic behaviour characterized by 

strange attractors.  Also a mild similarity of these phase plots with Lorenz 

system (Figures 4-2 & 4-3) appears to indicate the possibility of deriving a 

mathematical model similar to that of Lorenz system. With the possibility of 

chaotic behaviour from strange attractors, the Lyapunov exponents of the 

time series are to be calculated. 

 Lyapunov exponents of NAO time series 

The Lyapunov Exponents of the NAO time series is calculated using the 

method described in Section 4.2 and is given in table 6.3. 

Table.6.3.Lyapunov exponents of NAO time series  

Lyapunov exponents 

-15.2446 0 0.00127 

It can be seen that one of Lyapunov exponent is negative, one is   zero and 

the other one is positive, which shows the chaotic behaviour of the system 

responsible for NAO. 

 SMRT analysis of NAO time series 

SMRT analysis of NAO time series is done and the results are plotted in 

Figures 6-22 to 6-24. As already observed in the cases of standard chaotic 

systems like Lorenz, Rossler, Chen & Chua and natural chaotic systems like 

sunspot time series, it is expected that the SMRT coefficients of NAO time 

series will be able to preserve the system properties and analysed by the 

following figures. 
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Figure 6-22 SMRT coefficients NAO 

 

 

Figure 6-23 Phase plot of SMRT coefficients, NAO  (a) states1 &2 (b) states 2 &3 
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Figure 6-24 Phase plot of SMRT coefficients, NAO (c) states 1 &3 and (d) states 1,2, &3 

From Figures 6.22 to 6-24 it is validated that the SMRT coefficients are 

completely capable of retaining the chaotic properties of the system after the 

transformation under SMRT domain. The phase plots of SMRT coefficients 

were investigated and fou nd to be surprisingly coinciding with the actual 

phase plots of the NAO time series. 

 Conclusion 

Analysis and characterization of three important weather systems are 

presented in this chapter. The Sunspot, Venice lagoon and the North Atlantic 

Oscillation are modelled using the RNN model structure with a very low 

modeling error. The important characteristics of these systems like 

embedding dimension, phase plots, strange attractors and Lyapunov 

exponents are calculated. It is observed that the Sunspot time series has a 

minimum embedding dimension of three and the phase plot of Sunspot series 

evolve as strange attractor. Also the strange attractors of Sunspot time series 
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hold a significant similarity with the famous Rossler chaotic system. The 

Lyapunov exponents of Sunspot series are calculated and the chaotic 

behaviour is confirmed. The Venice lagoon time series is found to have a 

minimum embedding dimension of two. It has two Lyapunov exponents and 

one of which is positive verifying the chaotic nature. Finally the NAO index 

time series is analysed and found to have an embedding dimension of three. 

It’s phase plots show strange attractors signifying chaotic nature. Also a 

close observation of the strange attractors of NAO time series reveals a 

significant similarity with the phase plots of Lorenz system. The Lyapunov 

exponents of NAO time series also verified the chaotic nature. The SMRT 

coefficients of all the three natural chaotic systems are calculated. Section 

5.4 concludes that SMRT analysis is the most promising method for time 

series in frequency domain and inherent properties of the chaotic systems are 

well preserved in these coefficients. This fact is again verified from phase 

plots of SMRT coefficients of natural chaotic systems. 
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7. Conclusion and Suggestions for Future 

Work 

The study of chaotic systems have become very topical  over  the past few 

decades, since they have ramifications in diverse disciplines like 

Engineering, Ecology, Climatology, Biology and Finance. Modeling of 

chaotic systems, based on output time series, is quite promising since the 

output often represents the characteristic behavior of the total system. 

Growing importance of chaotic systems has motivated the researchers to 

look for various tools to model and analyze such systems. Artificial neural 

networks, with their exceptional self-learning capacity, have always 

presented themselves as one of the best tool for modeling highly non-linear 

and chaotic systems. Choice of a good training algorithm to estimate the 

weights of artificial neural networks so as to model chaotic systems remained 

a challenging problem in this field. The thesis addresses this aspect by 

examining different estimation techniques and finally establishes that the 

EKF algorithm, with EM technique to estimate the initial values, is the right 

candidate for estimate. Current research is also very active in the analysis of 

chaotic systems in time and frequency domain. Accordingly, the present 

thesis addresses modeling and analysis of chaotic systems and puts forward 

many important observations and conclusions. 

Neural network based modeling, identification, and characterization of 

chaotic systems in nature are discussed in the previous chapters. The thesis 

discusses the concept of linear, non-linear and chaotic systems in Chapter 1. 

A brief description about chaotic weather systems, which are later modelled, 

is introduced here. An introduction to recurrent neural networks and training 

strategies are also discussed. Chapter 2 deals with a review of important 
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publications relevant to the present work. Choosing RNN as the model to 

represent chaotic systems, described by NARX model, selection of the best 

training algorithm to estimate the weights and application of the same on 

standard chaotic systems is developed systematically in Chapter 3. EKF 

algorithm along with EM technique to estimat the initial values and  Particle 

Filter algorithm with its two variants are evaluated  to train the RNN model.  

Performance of the three training algorithms, for modeling the time series 

emanating out of chaotic systems modelled using RNN structure, is 

systematically evaluated based on least mean square error criterion. Samples 

of the time series is given as input to the RNN model. The output time series 

from four standard chaotic systems, Lorenz, Rossler, Chen and Chua, are 

modeled producing a modeling error as low as 10-7. It is observed that the 

lowest modeling error is obtained for the EKF algorithm with EM technique 

for estimating initial values and therefore it is concluded that RNN, trained 

with EKF algorithm along with EM technique, can be selected as the best 

structure to model chaotic systems.  

Extending the results on modeling the time series, the complete modeling of 

the chaotic system involving the state transition and output in the form of 

time series is taken up, with a view to identify the chaotic system. The RNN 

model is modified to accommodate both the aspects. The complete set of 

weights are then estimated, based on the time series of the output. The 

consequent demonstration on the time series generated from standard chaotic 

systems resulted in the truthful reproduction of state space evolution of the 

system (with modeling error as low as 10-7). The model and the resultant 

state space evolution lead to the computation of various parameters 

representing the properties of chaotic system, viz. strange attractors, 

Lyapunov exponents, Kaplan - Yorke dimensions and bifurcation diagrams. 

All these properties are seem to be perfectly in agreement with the state space 
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evolution and resulting properties computed on the four standard chaotic 

systems using the cross coupled mathematical equations. The values 

obtained for Lyapunov exponents and Kaplan - Yorke dimensions of the 

modelled output, closely comparable to what is reported in literature, proved 

to be very convincing on the correctness of the modeling approach 

developed. The analysis of the bifurcation plots reveals the transition, of the 

system from non-chaotic to chaotic behaviour, in response to change in the 

parameter describing the system. The online evaluation of Lyapunov 

exponents directly from the model along with the bifurcation diagram brings 

out the close correspondence between the two, thereby highlighting the 

ability of the model developed.  

The analysis in the frequency domain is complicated since chaotic dynamical 

systems are broadband signals. Some important frequency domain 

characteristics of chaotic systems using Fourier Transform, wavelet 

transform and Mapped Real Transform (MRT) turned out to be a set of 

significant findings of the thesis. The fact that Fourier spectrum is not able 

to well represent the non-stationary nature is established from the studies 

chaotic signals. The Lorenz system with non-chaotic and chaotic states are 

analyzed by varying one of the parameters. The Fourier coefficients of 

Lorenz system demonstrated different characteristics under non- chaotic and 

chaotic states. The frequency spectrum is band limited for the former state 

and is broad banded for latter. The Fourier coefficients under non-chaotic 

state are linear while the same under chaotic state is non-linear. Attempt is 

made to construct the phase plot of Fourier coefficients of two states and the 

attempt has been futile as it did not reveal the original system properties. 

The wavelet analysis is proved to be more fruitful in many aspects. From the 

energy plot of different wavelet decomposition levels, one with highest 
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energy concentration is selected and the detailed coefficients are taken for 

analysis. It is found that level 6 and 8 are suitable for non-chaotic and chaotic 

states respectively. The corresponding detailed coefficients are plotted. 

Interestingly, the coefficients seemed to be in line with the actual time series. 

Further, the phase plot of wavelet detailed coefficients is found to be 

somewhat similar to the original phase plot. 

There were 16 arrays of SMRT coefficients and each array is found to have 

the same energy level. Further the plot of coefficients of each array is exactly 

similar to the actual time series. Then the phase plots of all the 16 arrays of 

SMRT coefficients are investigated and all are found to be surprisingly 

coinciding with the actual phase plots. Thus any one array of SMRT 

coefficients is capable to represent all the properties of the complete time 

series. Thus it is sufficient to compute only one SMRT coefficient 

corresponding to the selected window and hence it also reduces the 

computation time and complexity. Scatter plot of SMRT coefficients from 

non-chaotic and chaotic systems revealed distinguishing features. Thus it is 

concluded that the SMRT analysis is the most promising methods for chaotic 

system analysis in transform domain from among the three transforms 

considered.  Validity of the SMRT analysis is established using other 

standard chaotic systems like Rossler, Chen and Chua.  

The techniques based on output time series developed using standard chaotic 

systems is extended to model and identify unknown natural systems. There 

are a number of natural systems which are non-linear in nature with 

probability of exhibiting chaotic behaviour. Analysis and characterization of 

three important weather systems are performed. The time series of Sunspot, 

Venice lagoon and North Atlantic Oscillation index are modeled using  RNN 

model structure with a modeling error as low as 10-6. The number of states 
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required to model an unknown source has been calculated using the self-

embedding dimension due to Takens. The important characteristics of these 

systems like strange attractors and Lyapunov exponents are calculated 

directly from the model. It is interesting to observe that the Sunspot time 

series has a minimum embedding dimension of three and the phase plot of 

Sunspot series evolve as strange attractor. Also the strange attractors of 

Sunspot time series hold a significant similarity with the famous Rossler 

chaotic system. The Lyapunov exponents of Sunspot series are calculated 

and the chaotic behaviour is confirmed.  

The Venice lagoon time series is found to have a minimum embedding 

dimension of two. There is no possibility to find any strange attractor since 

there are only two states. It has two Lyapunov exponents and one of which 

is positive verifying the chaotic nature. 

Finally the NAO index time series is analyzed and found to have an 

embedding dimension of three. Its phase plots show strange attractors 

signifying chaotic nature. Phase plots of NAO show some similarities to that 

of Lorenz system. The three Lyapunov exponents of the system show that 

one is a large negative value, another is zero and the third one is positive, 

verifying the chaotic nature as observed from the phase plots.  

The results obtained in the thesis are regularly submitted for peer review in 

national/international conferences and international journals. On the whole a 

total of 9 papers have been published based on the investigations reported in 

the thesis, attached as list of papers published. 

The investigations and findings of the thesis suggest the way ahead for 

further work in the areas of modeling, time and frequency domain analysis 

of chaotic systems. Other modeling structures and algorithms for chaotic 
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systems are worth exploring. Recent literature highlights extensive use of 

frequency domain approaches for the analysis of chaotic systems. However 

the broadband nature of such systems is a major concern in the frequency 

domain. A detailed research on SMRT technique to analyze chaotic systems 

could trigger some further investigation. Derivation of a mathematical model 

for unknown natural systems will be helpful in the prediction of events like 

Tsunami, earthquake, etc. The efficacy of the proposed method can be 

extended in the modeling of hyper chaotic systems. There are a number of 

such systems like hyper chaotic Chen, Lorenz and Rossler systems. The 

analysis of other natural chaotic systems like sea clutter, EL Nino Southern 

Oscillation index, business data like stock market index etc. will prove to be 

a flourishing continuation of the work.  
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Appendix A 

A RNN Learning Algorithms 

A.1 System representation 

Consider a discrete time non-linear dynamic system, described by a vector 

difference equation with additive white Gaussian noise that models 

“unpredictable” disturbances. The dynamic system equation is given by the 

following non-linear equations 

1 1( , , ) ( .1)k k k kx f x u w A 

where xk is an n dimensional state vector uk is an m dimensional known 

input vector, and wk is a sequence of independent and identically 

distributed zero mean white Gaussian process noise with covariance  

 

( ) ( .2)TE ww Q A

The measurement equation is  

( , ) ( .3)k k kz h x v A

 

 where kv is the measurement noise with covariance 

( ) ( .4)TE vv R A

The functions f and h and the matrices Q and R are assumed to be known. 

A.2  Extended Kalman Filter 

The Kalman filtering process has been designed to estimate the unknown 

states in a linear stochastic system with apriory knowledge of known states 

and noise statistics. The Kalman filter may be extended for non-linear 

systems also by a linearization procedure. The resulting filter is referred to 

as Extended Kalman Filter ( EKF) 
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Consider the actual state and measurement equations (A.1) and (A.3). 

 Let the approximate state and measurement equations be

~ ^

1( , ,0) ( .5)kk kx f x u A

and

~ ~

( ,0) ( .6)k kz h x A

Where 
~

kx is a posterior estimate of the state from a previous time step k. 

The equations that linearize the estimate about (A.5) and (A.6) are given as  

~ ^

1 1 1( )k k k k kx x A x x Ww                                                                         (A.7) 

~ ~

( )k k k k kz z H x x Vv                                                                             (A.8) 

where kx  and kz  are the  actual state  and  measurement vectors,
~

kx  and 

~

kz are the approximate state and measurement vectors, 
^

kx  is a posterior 

estimate of the state at step k, wk and vk are random variables and represent 

the process and measurement noise. A is the Jacobian matrix of partial 

derivatives of f  with respect to x,  W is the Jacobian matrix of partial 

derivatives of f with respect to w. H is the Jacobian matrix of partial 

derivatives of h with respect to x and   V is the Jacobian matrix of partial 

derivatives of h with respect to v. 

A.2.1 EKF time update equations 

Project the state ahead 

^ ^

1( , ,0)k k kx f x u


                                                                                 (A.9) 

Project the error covariance ahead 

1 1

T
T

k k k k k k kP A P A W Q W


                                                                           (A.10) 
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A.2.2 EKF measurements update equations 

Compute the Kalman gain 

1( )T T T

k k k k k k k k kK P H H P H V R V                                                               (A.11) 

Update estimate with measurement 

^ ^ ^

( ( ,0)k k k k kx x K z h x
 

                      (A.12) 

Update error covariance  

( )k k k kP I K H P


                      (A.13) 

One of the basic problems in the implementation of the Kalman filter is the 

choice of the initial values of the state x and the state co-variance P. Since 

arbitrary choices can lead to the divergence of the filter, the present work 

has used the EM algorithm [44] to compute the initial values of state and 

the state co variance. 

A.2.3 EM Algorithm 

The EKF Algorithm for training Multi-Layer Perceptrons (MLPs) suffers 

from serious shortcomings, namely choosing the initial states and 

covariance  ,x Q and R .  Following backward recursions are done after 

computing the forward estimates in EKF. 

1

1 1 1

T

k k kJ P A P

                                                           (A.14)                 

^ ^ ^

1 1 1 1 1k k k k kx x J x A x    

 
  

 
                                                       (A.15)

^ ^ ^

1 11 1 1

T
k kk k k kP P J P P J   

 
   

 
                                     (A.16) 
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 1 1 1 1 1

T T

k k k k k k kP P J J P AP J                                           (A.17) 

 

A.3 Particle filters 

Particle filters are suboptimal filters.  They perform Sequential Monte 

Carlo (SMC) estimation based on point mass (or “particle”) representation 

of probability densities.  The SMC ideas in the form of sequential 

importance sampling had been introduced back in the 1950s.  Although 

these ideas continued to be explored during the 1960s and 1970s, they were 

largely overlooked and ignored.  Most likely the reason for this was the 

modest computational power available at the time.  In addition, all these 

early implementations were based on plain sequential importance sampling, 

which degenerates over time.  The major contribution to the development 

of the SMC method was the inclusion of the re-sampling step, which, 

coupled with ever faster computers, made the particle filters useful in 

practice for the first time.  Since then research activity in the field has 

dramatically increased, resulting in many improvements of particle filters 

and their numerous applications.   

A.3.1 Monte Carlo Integration 

Monte Carlo integration is the basis of SMC methods.  Suppose we want to 

numerically evaluate a multidimensional integral: 

( )I g x dx                                        (A.18) 

where nxx R . Monte Carlo (MC) methods for numerical integration 

factorize g(x) =f(x).(x) In such a way that (x) is interpreted as a 

probability density satisfying (x) 0 and  (x) dx =1.  The assumption 
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is that it is possible to draw>>1 samples x
i
; i = 1… Ndistributed 

according to (x).  The MC estimate of integral 

I =   f(x) (x)dx                                       (A.19) 

Is the sample mean 

1

1

( )
N

i

N N

i

I f x


                                                                                      (A.20) 

If the samples x
i
 are independent then IN is an unbiased estimate and 

according to the law of large numbers IN will almost surely converge to I.  

If the variance of f(x), 

2 2( ( ) ) ( )f x I x dx                                                                        (A.21)                                                                

Is finite, then the central limit theorem holds and the estimation error 

converges in distribution: 2lim ( 1) ~ (0, )N
n

N I N 


 . The error of the MC 

estimate, e = IN-I, is of order 0(N
-1/2

), meaning that the rate of convergence 

of the estimate is independent of the dimension of the integrand.  In 

contrast, any deterministic numerical integration has a rate of convergence 

that decreases as the dimensions  nx   increases. This useful and important 

property of MC integration is due to the choice of samples {x
i
, i =1… N}, 

as they automatically come from regions of the state space that are 

important for the integration result.  In the Bayesian estimation context, 

density (x) is posterior density.  Unfortunately, usually it is not possible to 

sample effectively from the posterior distribution, being multivariate, 

nonstandard, and only known up to a proportionality constant. A possible 

solution is to apply the importance sampling method. 
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A.3.2 Importance Sampling 

Ideally we want to generate samples directly from (x) and estimate I using 

(A.19).  Suppose we can only generate samples from a density q(x), which 

is similar to (x).  Then a correct weighting of the sample set still makes 

the MC estimation possible.  The PDF q(x) is referred to as the importance 

or proposal density.  Its “similarity” to (x) can be expressed by the 

following condition: 

(x)>0q(x)>0forall nxx R                                                                (A.22)
 

which means that q(x) and (x) have the same support.  Condition (3.4) is 

necessary for the importance sampling theory to hold and, if valid, any 

integral of the form (A.17) can be rewritten as 

( )

( )
( ) ( ) ( )( )

x

q x
I f x x dx f x dx

                                                          (A.23) 

provided that (x)/q (x) is upper bounded.  A Monte Carlo estimate of I is 

computed by generating N>>1 independent samplex i ,i=1…N 

distributed according to q(x) and forming the weighted sum: 

1

1
n

i

i

N
N X

I






''
1

1

( ) ( )
N

i i

N N

i

I f x w x


                                       (A.24) 

where 
''

( )

( )
( )

xi

q x
w x


    are the importance weights. If the normalizing factor of 

the desired density (x) is unknown, we need to perform normalization of 

the importance weights.  Then we estimate IN as follows;  
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,,

1

1

1
,,

( )

1

( ) ( )
N

i

N
i

N
iN w xi

i

f x

N

iw x
I 







                                     (A.25) 

where the normalized importance weights are given by: 

,,

,,

1

( )

( )

( )
i

N
j

j

w xi

w x

w x






                                                        (A.26) 

This technique is applied to the Bayesian framework, where (x) is the 

posterior density. 

A.3.3 Sequential Importance Sampling 

Importance sampling is a general MC integration method that we now 

apply to perform non-linear filtering specified by the conceptual solution.  

The resulting sequential importance sampling (SIS) algorithm is a Monte 

Carlo method that forms the basis for most sequential MC filters developed 

over the past decades; this sequential Monte Carlo approach is known 

variously as bootstrap filtering, the condensation algorithm, particle 

filtering, interacting particle approximation, and survival of the fittest.  It is 

a technique for implementing a recursive Bayesian filter by Monte Carlo 

simulations.  The key idea is to represent the required posterior density 

function by a set of random samples with associated weights and to 

compute estimates based on these examples and weights.  As the number of 

samples becomes very large, this Monte Carlo characterization becomes an 

equivalent representation to the usual functional description of the posterior 

PDF, and the SIS filter approaches the optimal Bayesian estimator: 
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SIS Particle Filter Algorithm 

At time n=1 

Sample 
1 1 1~ ( )iX q x  

Compute the weights 
1 1( )iw X  and 

1 1 1( )i iW w X  

At time n ≥ 2 

Sample  
1: 1~ ( | )i i

n n n nX q x X 
 

Compute the weights 

1: 1 1: 1 1:( ) ( ) ( )i i i

n n n n n nw X w X X   

1:( )i i

n n nw w X  

Algorithm A.1 

A.3.4 Sequential Importance sampling Resampling (SIR) 

SIS provides estimates whose variance increases with „n‟. Employing the 

technique of resampling this problem can be solved. Consider an IS 

approximation  1:( )n nx


 of the target distribution 1:( )n nx .This approximation is 

based on the weighted samples from 1:( )n nq x . This approximation does not provide 

samples distributed according to 1:( )n nx .To obtain approximate samples from

1:( )n nx , sample from its IS approximation 1:( )n nx


.This operation is called 

resampling as it corresponds to sampling from an approximation 1:( )n nx


 which 

was itself obtained from sampling. In order to obtain N samples from 1:( )n nx

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resample N times from 1:( )n nx


 and associate a weight of  1

N
with each sample. 

The approximate measure of 1:( )n nx


 is given by 

_

1: 1: 1:

1

( ) ( )

i

N
in

n n n

i

N
x x x

N
 



                                   (A.27) 

SIR Particle Filter Algorithm 

At time n=1 

Sample 
1 1 1 1~ ( | )iX q x y  

Compute the weights 1 1 1

1 1

( ) ( | )

( | )

i i

i

X g y X

q X y


and 

1 1 1( )i iW w X  

Resample  1 1,i iW X to obtain N equally weighted particles 
_

1
,

1
i

N
X

  
 
  

 

At time n ≥ 2 

i

nX ~ 
1( | , )i

n n nq x y X 
and set

1 1: 1( , )i i i

n n nX X X   

Compute the weights 1
1:

1

( | ) ( | )
( )

( | , )

i i i
i n n n n

n n n i i

n n n

g y X f X X
X

q X y X






   

and  
1 1 1:( )i i

n nW w X   

Resample  1 1,i iW X to obtain N equally weighted particles 
_

1
,

1:
i

nN
X

 
 
 
  

 

Algorithm A.2 
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A.3.5 Rao Blackwellised Particle Filter 

One of the major drawbacks of PF is that sampling in high-dimensional 

spaces can be inefficient. In some cases, however, the model has “tractable 

substructure”, which can be analytically marginalized out, conditional on 

certain other nodes being imputed, The analytical marginalization can be 

carried out using standard algorithm like such as the Kalman filter, the 

HMM filter, the junction tree algorithm for general DBNs [ ] or, any other 

finite-dimensional optimal filters. The advantage of this strategy is that it 

can drastically reduce the size of the space over which we need to sample. 

Marginalizing out some of the variables is an example of the technique 

called Rao-Blackwellisation, because it is related to the Rao-Blackwell 

formula. 

A.3.6.1 Rao-Blackwell Theorem 

Let 
^

 be an estimator of θ with E (
^

 2) <∞ for all θ. Suppose that T is 

sufficient for 
^

 , and let 
^

 = E (
^

 | T). Then for all θ 

* ^
2 2( ) ( ) ( .28)E E A     

The inequality is strict unless 
^

  is a function of T. In many cases, it may be 

possible to divide the problem into linear-Gaussian and non-linear parts. 

Suppose that the state vector may be partitioned as 

L

k

k N

k

x
x

x

 
  
 
 

so that the 

required posterior may be factorized into Gaussian and non-Gaussian 

terms: 

       , ( , ( ( .29)L N L N N

k k k k k k k k k kp x z p x x z p x x z p x z A 

Where  ( ,L N

k k kp x x z  is Gaussian and   ( N

k kp x z  is non-Gaussian. The Gaussian 
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term may be calculated from a Kalman filter and non- Gaussian term from 

a particle filter. The Rao- Blackwell zed Particle Filter (RBPF) algorithm is 

given below. 

RBPF Particle Filter Algorithm 

kx =state of the given system 

ky =measurement 

k = arbitrary latent variable 

The probability distribution  

1 1 1 1 1 1 1( | ) ( | ( ) , ( ))k k k k k k k kp x N x A x Q          

( | , ) ( | ( ) , ( ))k k k k k k k k kp y x N y H x R    

1( | )k kp    = any given form 

Initialization: for i=1: N draw samples 0 ( )i from the initial pdf 

0( ) ( | )p p y  and set 
^

0 0 0 0( ) , ( ) ,x i x P i P


  where 0x


the initial state 

estimate is and 0P is the initial state estimation covariance matrix 

For k=1, 2… repeat the following steps 

for i=1: N draw samples ( )k i


 from 1( | ( ))k kp i    
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for i=1, 2, …, N propagate the mean  1( )kx i


 and covariance 1kP  of the 

state 1kx  as follows 

~ ~

| 1 1( ) ( ( )) ( )k k k kx i i x i


   

~ ~ ~ ~ ~

| 1 1( ) ( ( )) ( ) ( ( )) ( ( )) ( ( ))T T
k k k k k kk wP i i P i i i Q i         

for i= 1, 2, …, N evaluate and normalize the importance weights 

~ ~ ~

1 | 1( ) ( | , ( )) ~ ( ( ), ( ))kk kk k k ki p y i N y i R i     

~

~

1

( )
( )

( )

k

k N

j

j

i
i

i










, where

~ ~

| 1| 1
( ) ( )k kk k

y i H x i
  

~ ~

| 1( ) ( ) T
k k k vR i H P i H Q   

Resample particles 
~ ~ ~

| 1| 1{ ( ), ( ), ( ) : 1,........, }k kk k kx i P i i i N   

Sampling probabilities proportional to
~

( )k i to obtain N particles 

| 1| 1{ ( ), ( ), ( ) : 1,........, }k kk k kx i P i i i N


   

for i= 1, 2, …, N  perform measurement update for state vector x using 

Kalman recursion to obtain particles{ ( ), ( ), ( )}kk kx i P i i


given 

| 1| 1{ ( ), ( ), ( )}k kk k kx i P i i


  
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where  

| 1 | 1( ) ( ) ( )( ( ))k k k k kkx i x i K i yk H x i
  

     

| 1( )( ( ) ) ( )k k kkP i I K i H P i  

1
| 1( ) ( ) ( )T

k kk kK i P i H R i
  

| 1( ) ( ) T
k kk vR i H P i H Q   

Algorithm A.3 

In RBPF the dimension of xk for the particle filter is less than the full state 

vector xk and so fewer particles are needed for satisfactory performance. 

Thus the computational cost of particle filter is reduced but complexity of 

RBPF is more than that of the SIR particle filter though RBPF requires 

only less number of particle. 

The EKF, SIR and RBPF algorithms are presented in detail. The work 

reported in chapter 3 is based on the theory of these three algorithms. 
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Appendix B 

 

B Fourier, Wavelet & Mapped Real 

Transforms 

B.1 Fourier transform 

Fourier transform represents signal as a linear combination of harmonically 

related complex exponential function. The resulting set of coefficients as a 

function of frequency is called the Fourier spectrum. The Fourier 

representation is applicable to both periodic and aperiodic cases of 

continuous and discrete time signals.  

B.1.1 Continuous Time Fourier transform    

The Continuous Time Fourier Transform of an aperiodic signal x(t) is 

defined as 

1
( ) ( ) ( .1)

2

j tX j x t e dt B








 

The signal x(t) can be reconstructed by using  the inverse Fourier transform 

relation, defined as 

1
( ) ( ) ( .2)

2

j tx t X j e d B 






 

 

B.1.2 Discrete Time Fourier Transform 

The Discrete Time Fourier Transform (DTFT) of a signal
nx  is defined as 
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( )jX e   =
j n

n

n

x e 






                                     (B.3) 

 ( )jX e   is a complex function of the real variable   and can be written as  

( )jX e  = ( ) ( )j j

re imX e jX e                      (B.4) 

 ( )jX e   can alternately be expressed as 

( )( ) ( )j j jX e X e e                         (B.5) 

( )jX e 
 is called the magnitude spectrum, ( )  is called the phase 

spectrum. When 
nx  is real, ( )jX e 

 & ( )j

reX e   are even functions of ω, 

whereas ( )   & ( )j

imX e   are odd functions of ω. 

B.1.3 Discrete Fourier Transform  

Discrete Fourier transform (DFT) is the sampled version of DTFT. It maps a  

sequence 
nx  , 0 1n N   , into 

kX , 0 1k N    

21

2

0

( ) |
j nkN

j N
k k n

kN

X e X x e







 




                                                          (B.6) 

Using the notation

2

W
j

N
N e



 , called twiddle factor, the DFT can be  

expressed as 

kX =  

1

0

N
nk

n N

n

x W




                                                                                               (B.7)The 

Inverse DFT is given by 
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1

0

1
, 0 1

N
nk

n k N

k

x X W n N
N






                                                           (B.8) 

The Fourier transform gives frequency information of the signal but it does 

not reveal the time information. Time information is not required when the 

signal is stationary. Dennis Gabor (1946) used Short-time Fourier transform 

(STFT) to analyse a small section of the signal at a time by windowing the 

signal. It uses overlapping or non-overlapping sliding window to find the 

spectrogram, which gives the information of both time and frequency. But 

the window size limits the frequency resolution. Also the selection of type 

and size of the window function is an important issue. Wavelet transform 

gives a better solution to this problem. 

B.2 Wavelet Transform 

Wavelet Transform gives time - frequency information.  Consider a real or 

complex valued continuous time function ψ(t) with the following properties 

1. The function is integrable to zero 

( ) 0 ( .9)t dt B





 

 

2. Its square is integrable having finite energy 

2
( ) ( .10)t dt B





 

 

The function ψ(t) is a mother wavelet. Property 1 is suggestive of a function 

that is oscillatory and property 2 implies that most of the energy in ψ(t) is 

confined to a finite duration. 
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The Continuous time Wavelet Transform (CWT) of a signal x(t) is defined 

as 

*

,

1
( ) ( .11)a b

t b
W x t d t B

aa





 
   

 
                            

where a & b are real, * denotes complex conjugate and ψ(t) is the mother 

wavelet. Thus the wavelet transform is a function of two variables. The 

signals x(t) & ψ(t) belong to L2R, the set of all square integrable functions. 

If the mother wavelet satisfies the admissibility condition  

2
( )

, 0 ( .12 )C d C B







 


       

      then the inverse transform is 

,2

1 1 1
( .13)t a b

a b

t b
x W da db B

C aa a

 

     

 
  

 
        

B.2.1 The Discrete wavelet transform 

Consider the representation of the signal x(t) in the following form 

/2( ) ( , ) 2 (2 ) ( .14)k k

k k

x t d k l t l B
 

 

 

   

The values d(k,l) are related to the continuous wavelet transform W(a,b) at 

a=2k and b=2kl. This corresponds to sampling the coordinates (a, b) on a grid 

with sampling intervals with a difference of two. This process is called 

dyadic sampling. The two dimensional sequence d(k, l) is commonly referred 

to as the Discrete Wavelet Transform (DWT). The DWT is the transform of 
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actually a continuous time signal. The discretization is only in the ‘a’ and ‘b’ 

variables. 

B.2.3 Concept of scaling and resolution 

Consider the case of a function x(t) being scaled as x(t)=x(at), where a>0, 

then it is contracted if a>1 and expanded  if a<1. As the scale increases the 

filter impulse response becomes spread out in time function, and takes only 

the long time behaviour of the signal into account. The resolution of a signal 

is linked to its frequency content. Scale change of continuous time signals 

does not alter their resolution. In discrete time signals, increasing the scale 

involves subsampling, which automatically reduces its resolution. 

B.2.3 Different types of wavelet functions 

There are many versions of wavelets. One of the oldest one is the Haar 

wavelet. Many other wavelets are derived later, namely Morlet, Meyer, 

Mallet, Daubechies etc. All these transforms have numerous applications in 

signal processing. 

B.2.4.1 Haar wavelet 

The expression for mother wavelet ψ(t) is as follows: 

1 0 1/ 2

( ) 1 1/ 2 1 ( .15)

0

t

t t B

otherwise



 


   



B.2.4.2 Morlet wavelet 

2 2
( ) cos( ( .16)

ln 2

tt e t B 

B.2.4.3 Mexican hat wavelet 



 

166 

 

2

( ) (1 2 ) ( .17)tt t e B  

B.2.4.4 Daubechies wavelet 

The Daubechies family wavelets are referred as dbN, where N is the order. 

The db1 wavelet is the same as Haar discussed above. These wavelets have 

no explicit expression except for db1.  

Modern technological advancements paved the way for the development of 

many new transforms. One of the most promising transforms is Mapped Real 

Transform (MRT).  

B.3 Mapped Real Transform 

DFT / FFT computations converts a signal into a set of complex coefficients. 

Exploiting the symmetry and periodicity properties of the twiddle factor and 

combining the data that are mapped onto a particular twiddle factor axis, the 

DFT computations are modified in [42] to reduce the complex 

multiplications. The resulting representation was developed into a new 

transform MRT (Mapped Real Transform, originally M- dimensional Real 

Transform) to eliminate the complex multiplications [103].  MRT maps an 

N ×N data matrix into M matrices of size N × N where N is an even integer 

and M = N/2.  

B.3.1 2-D MRT 

The 2-D DFT of a 2-D signal 
1, 2 1 2,0 , 1n nx n n N   is given by 

   1 1 2 2

1 2 1 2

1 2

1 1

, , 1 2

0 0

, 0 , 1
N N

n k n k

k k n n N

n n

Y x W k k N
 



 

                              (B.18) 
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 where 

2j

N
NW e



  

Since the twiddle factor  
NW  is periodic, (B-18) can be expressed as  

1 1 2 2

1 2 1 2

1 2

1 1
(( ))

, ,

0 0

N

N N
n k n k

k k n n N

n n

Y x W
 



 

                                   (B.19) 

The exponent 
1 1 2 2

(( )) , 0 1
N

n k n k p p M      is satisfied by a set of 1 2( , )n n for a 

given 1 2( , )k k  Hence, by grouping such data and applying the property that 

p M p

N NW W    , (B.19) can be expressed as  

1 2 1 2

1
( )

, ,

0

M
p p

k k k k N

p

Y Y W




                                                                                (B.20) 

where 

   
1 2 1 2 1 2

1 2 1 2

1 1
( )

, , ,

( , )| ( , )|

, 0 1
N N

p

k k n n n n

n n z p n n z p M

Y x x p M
 

    

               (B.21) 

where 
1 1 2 2(( ))Nz n k n k   

The computations of the N2 DFT coefficients using (B.18) & (B.19) involves 

M complex multiplications each, and thus a total of 
3

2

N complex 

multiplications for any even N.  As a result of the combined works reported 

in [42] and [103]  
1 2

( )

,

p

k kY of Eqn. (B.21) was developed as a new transform 

MRT which involves only real additions rather than complex multiplication. 

This transform maps the data 
1 2,n nx of size NxN into M matrices each of size 
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NxN with elements
1 2

( )

,

p

k kY .  The MRT computation is highly redundant and 

needs to be represented in terms of unique coefficients. 

B.3.2 2-D Unique MRT 

The MRT of an NxN data matrix in the raw form will have MN2coefficients 

and is highly redundant. There are only N2 coefficients that are unique in the 

MRT computation. Different arrangements in the form of an NxN matrix 

were proposed in [103] & [111]. These arrangements were finally developed 

as Unique MRT (UMRT). Here the coefficients corresponding to 1 2( , )k k be 

placed at 
1 2(( . )) ,(( . ))N Nk q k q where q is a non-negative integer, co-prime 

to N

dm

and less than N

dm

where
1 2gcd( , , )dm k k M . A sequency ordered 

placement of the unique MRT coefficients named SMRT (Sequency based 

unique MRT) was proposed in [112]. 

B.3.3 2-D Sequency based unique MRT  

MRT coefficients corresponding to a particular 1 2( , )k k are distributed in 

UMRT. Hence, ordered changes in the signal are reflected in a scattered 

manner in UMRT. A reordering based on sign changes or sequencies was 

found to be more advantageous in signal analysis. Hence a new placement 

technique called Sequency based unique MRT (SMRT) was developed for 

N a power of 2 [112]. The coefficients are arranged in the order of sequencies 
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along row, column and diagonal directions. An algorithm to compute the 

SMRT coefficients, as given in [112] is as follows 

2-D SMRT algorithm 

Let 
1 2, 1 2, 0 , 1n nx n n N   be the elements of data matrix and 

1 2,s sS  , 

1 20 , 1n n N   be the corresponding elements of SMRT matrix. In the 

algorithm presented below, 
1 2

( )

, 1 2, 0 , 1, 0 1p

k kY k k N p M       can 

be computed using (B.17) 

1. Initialization 

                      
2log M   

2. To find divisors of M 

                        for  i=0 to   

                             ( )divd i = 2
i
 

                      end 

3. To find DC SMRT coefficient 
0,0S  

       
0,0S = 

(0)

0,0Y  

4. To compute and place first row and column 

      a=1 

               for i=0 to   

                     j = ( )divd i  

                         for   p= 0 to M-1 in steps of j 

        
0,aS = 

( )

0,

p

jY  

       
a,0S = 

( )

,0

p

jY  

       a=a+1 

                 end 

end 

5. To compute and place other coefficients 
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 a=1 

           for i=0 to   

        b=i, r=a, c=a 

                  for   j=0 to  -1 

      s1=2 ( )divd i ,     s2= ( )divd i  

     s3=
( )div

N

d j
,     s4= ( )divd j  

 

         for k1= s2 to s3 in steps of s1 

                                        k2= ( )divd i j  

                                                       for   p= 0 to M-1 in steps of  s2 

                             S( ,c) = 
1 2

( )

,

p

k kY  

                                                       if  i ≠ b (% to find related                           

coefficients) 

                                                            
,cS

= 
2

1 4
4

( )

. ,

p

k
k s

s

Y  

                                                       end 

             =r+1 

                                                         end  

                                                       = 

2

M
r

s
 , c=c+1 

                                               end 

      b=b+1 

   end 

     a=a+

2

M

s
 

    end 

Algorithm B 

 B.3.5.1   1-D SMRT 

The thesis addresses chaotic system analysis with the knowledge of output 

time series alone.  
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Therefore an algorithm to compute 1-D SMRT coefficients of an array of 

length N is derived from the Algorithm B.1. 

1-D SMRT Algorithm 

The coefficient 
1 2

( )

,

p

k kY  & 
0,0S in 2-D SMRT are replaced  by ( )p

kY & 
0S  

1. Initialization 

 M= 
2

N
 

            
2log M   

2. To find divisors of M 

                        for  i=0 to   

                             ( )divd i = 2i
 

                      end 

3. To find DC SMRT coefficient 0S          

                                    0S = (0)

0Y  

4. To compute and place other coefficients 

            a=1 

               for i=0 to   

                     j = ( )divd i  

                         for   p= 0 to M-1 in steps of j 

        aS = 
( )p

jY  

  a=a+1 

   

                 end 

 

end 

Algorithm B.2 
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The 16 point 1-D SMRT for n= 0, 1… 15coefficients can be calculated as 

follows. 

nx =
0x ,

1x  ,
2x  ,

3x  ,
4x  ,

5x , 
6x  ,

7x  ,
8x  ,

9x , 
10x , 

11x , 
12x , 

13x  ,
14x

,
15x  

The 1-D SMRT coefficients
0S ,

1S , . . ., 
15S are computed using Algorithm 

A.2 as follows 

0S  =  
0x +

1x  +. . . + 
15x  

1S =   
0x -

8x   

2S =  
1x -

9x  

3S =   
2x  -

10x  

4S =   
3x  - 

11x  

5S =   
4x  - 

12x  

6S =   
5x - 

13x  

7S =   
6x  -

14x   

8S =   
7x  - 

15x  

9S =   
0x -

4x +
8x -

12x  

10S = 
1x -

5x +
9x -

13x   

11S =  
2x -

6x  +
10x -

14x   

12S =  
3x -

7x +
11x  -

15x  

13S =   
0x -

2x +
4x -

6x +
8x -

10x +
12x -

14x  

14S =  
1x  -

3x +
5x -

7x +
9x -

11x +
13x -

15x  

15S = 
0x -

1x +
2x -

3x +
4x -

5x +
6x -

7x +
8x -

9x +
10x -

11x +
12x -

13x +
14x  

15x  

The illustration of 1-D SMRT shows an ordered arrangement of the terms 

according to sign change / sequency. This arrangement and the fact that it is 
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an integer to integer transform makes it suitable for time series analysis. The 

Fourier, wavelet and SMRT concepts are discussed here. MRT, being a 

comparatively new transform, is explained from basic concepts. The 

algorithms to compute 2-D and 1-D SMRT coefficients are also listed. The 

chaotic systems are analysed in frequency domain by exploiting these 

techniques in Chapters 5 &6. 
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