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Abstract 
 

            Breast cancer detection is an important social requisite as it is the 

leading cause of death due to cancer among women. The mortality rate of 

breast cancer is second among all cancers. The cause for breast cancer is 

not known to date and early detection & treatment are the only means to 

reduce breast cancer related deaths. Mammography is the main radiological 

tool that is employed for identifying breast cancer at the earliest stage. 

Computer aided techniques have great relevance in detection of 

abnormalities from mammographic images, as often the features associated 

with various abnormalities are difficult to detect and might be missed by 

even trained radiologists. In addition, when screening mammography is 

employed, a large number of mammographic images need to be checked for 

signs of abnormality, justifying the use of computer aided diagnosis.  

 Three problems are addressed in this thesis: delineation of the 

pectoral muscle region by properly identifying the pectoral muscle 

boundary, detection of architectural distortion and enhancement of 

microcalcification features in the mammographic images. Two novel 

methods were developed for identifying the pectoral muscle boundary from 

mediolateral oblique view mammograms that employed multiscale 

decomposition and local segmentation. The breast area is extracted after 

this step following the removal of the Pectoral muscle region. The breast 

abnormalities are searched for in this region. Architectural distortion is the 

most commonly missed abnormality in mammograms. A novel method for 

detecting architectural distortion is proposed in this thesis that employs 

geometrical features obtained from selected edge structures in the 

mammographic image. These features are used to train a feedforward neural 

network classifier initialized using metaheuristic algorithms for better 

classification. Microcalcification is another breast cancer symptom which is 
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said to be the most commonly occurring. However the visibility of the 

microcalcification structures is often poor, especially when they are located 

in dense parenchymal tissues. Therefore an algorithm is proposed to 

enhance such features, employing the singularities, viz. zero-crossings and 

modulus maxima of coefficients obtained after computing the contourlet 

transform of the mammographic image. Contourlet transform is employed 

for the directional information it provides.  

All algorithms are evaluated against similar works from current 

literature and the results are promising. The standard databases employed in 

literature, the mammographic image analysis society database (MIAS) of 

the University of Sussex, UK, and the digital database for screening 

mammography of the University of South Florida, USA were employed to 

evaluate the algorithms. Ground truth information is provided in both 

databases for all images. Since in India, breast cancer is often found at a 

younger age, a study on a cross section of the Indian populace, with quite a 

good number of dense mammograms, was also undertaken, with the help of 

expert radiologists of  Lakeshore hospital, Kochi, Kerala.  

The results obtained are highly promising. 
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Chapter 1 

Introduction 

 

Computer aided techniques assists radiologists in providing a second 

opinion in mammographic analysis for early breast cancer detection. This 

chapter presents a brief introduction on breast cancer. The fundamental 

knowledge on breast anatomy is important in understanding the 

pathology of breast cancer. The two major views of mammogram which 

are significant in analyzing the areas of abnormalities are also discussed. 

Descriptions are given on various breast imaging modalities which are 

vital in early breast cancer detection.  The relevance of screening and 

computer aided algorithms for the detection of abnormalities in its early 

stage is also highlighted. A brief sketch of organization of chapters 

included in the research work is also provided. 
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1.1. Introduction 
Breast cancer is one of the most alarming cancers commonly 

diagnosed among women. Breast cancer stands first in developed countries 

and second in developing countries like India [Imran, 2011].  Even though 

there is no substantiating evidence about the exact reasons for the 

occurrence of breast cancer, some of the major risk factors include aging, 

late birth to first child, nulliparity, family history of breast cancer, lack of 

breast feeding and genetic mutation [Augustine, 2014]. 

The incidence rate of breast cancer is more in developed countries 

than in developing countries but the mortality rate is less in developed 

countries [Ferlay, 2014]. The reason for the reduction in mortality rate is 

mainly due to the awareness about screening techniques and treatment 

facilities. The analysis of breast image using various modalities such as 

mammogram along with computer aided methods assists radiologist in 

identifying the presence of abnormalities in its initial stage. The detection of 

abnormalities in the early stage avoids the spread of malignancy that leads 

to cancer death.  

A radiologist observes the presence of breast abnormality by 

analyzing different views of both left and right breast images. Even though 

double reading of mammogram provides better detection of malignancy; it 

is more time consuming and expensive.  Hence computer aided methods in 

association with detailed examination of breast images yields a more 

accurate and assured identification of cancerous areas.  

In this chapter, the anatomy of breast, various breast imaging 

modalities such as x-ray imaging, magnetic resonance imaging, ultrasound 

imaging, thermal imaging etc., major views of mammogram, computer 

aided detection/ diagnosis and the performance metrics of computer aided 

detection methods are discussed. The organization of research work in the 

following chapters is also summarized.  
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1.2. Anatomy of breast  
The study of anatomy of female breast is indispensable to 

understand breast cancer. Figure 1.1 shows the anatomy of a women’s 

breast.  Female breast, a mammary gland is a heterogeneous structure 

consisting of different types of tissues in which the major ones are glandular 

and stromal. Glandular tissue houses ducts, lobules etc. which involves in 

generation and transportation of milk. Alveolus, the milk secreting unit is 

the basic unit of glandular tissue. Stromal tissue consisting of fat tissue and 

fibrous connective tissue provides support and shape to the breast. Stroma, 

the non-parenchyma tissues consisting of fatty and connective tissues 

renders blood supply to parenchyma tissues of breast. 

The two important system of breast for immunity and purification 

are lymph and vascular system. Lymph system composing of lymph nodes 

and lymphatic vessels involves in resisting diseases and removal of waste 

materials. Vascular system consists of a network of blood vessels to 

transport blood between breast tissues and the rest of the body. Women’s 

breast, the mammary gland is located on top of muscle layers of chest.  

Breast parenchyma includes 15-20 lobes of glandular tissue. Lobes 

are the milk generating glands which are isolated by fibrous tissue septa. 

Each lobe consists of numerous smaller lobules which in turn consist of tiny 

cavities called alveoli where milk is produced. The characteristic shape of 

breast is provided by these lobes. Lactiferous ducts, a minute milk carrier 

tubes carries milk from lobes to nipples. Nipple is a small projection on the 

breast surface with 15- 20 duct opening from secretory glands inside the 

breast tissue [Kenneth, 2013]. These ducts form a radial pattern from the 

nipple at the center of a dark area of skin called the areola. Lactiferous sinus 

is a dilated portion of duct under areola for storing milk [Dixon, 2011], 

[Valerie, 2011], [Moinfar, 2007]. Fat lobules are formed by a bunch of fat 

cells encompassed in fine layer of single membrane. The fat cells in a fat 

lobule use the same terminal of vascular supply [Jeffrey, 2000]. Spaces 
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around lobules and ducts are filled with fat, ligaments and connective 

tissues.  

 

 
Figure 1.1: Sagittal section of female breast (from (MOORE, 2004)) [Moore,  

                          2004]. 

 
Breast covers most of the chest area from second rib level to sixth 

rib level in front of the human rib cage [Kenneth, 2013]. The breasts are 

located directly over the pectoralis major (chest) muscle. Pectoralis major is 

the largest chest muscle which controls shoulder movements and fits hand 

to the body. Pectoralis minor, the smallest chest muscle that lies under 

pectoralis major occupies the third to fifth ribs [Moore, 2004]. Suspensory 

ligaments consisting of fibrous tissue septa extend from the deep fascia to 

the skin in order to provide support to the breast on the chest wall. These 

ligaments which are observed throughout the breast are also known as 

‘Cooper’s ligaments’. Retromammary space consists of a layer of loose 
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connective tissue that differentiates the breast from the deep fascia and 

contributes some extent of movement over underlying structures [Valerie, 

2011]. Subcutaneous tissues consists mainly of fat tissues, connective 

tissues, blood vessels and nerves which has a role as heat provider, skin 

binder, shape provider, energy reservoir and shock absorber [Jay, 2009]. 

Intercoastals are the muscles between the ribs. During lactation, the lobules 

in mammary glands enlarge and the glandular tissues become more 

prominent than the connective. The generated milk flows from alveoli to 

nipple through ducts by contraction of muscle like cells called 

myoepithelial cells.  

 
1.3. Breast imaging modalities  

The World Health Organization (WHO) [Ferlay, 2014] statistics 

emphasize the need of early breast cancer detection in order to reduce the 

mortality rate among women. The abnormalities of breast are identified by 

analyzing images of breast. Various imaging modalities that are used for 

screening breast cancer comprises of magnetic resonance imaging (MRI), 

ultrasound (US), mammogram, ductogram, positron emission tomography 

(PET), digital infrared thermal imaging (DITI). Currently, although other 

modalities like MRI, DITI and US are popular, mammogram is considered 

as the gold standard generally used for screening of breast with average 

risk.  Even though there is advancement in imaging modalities, a combined 

approach is more efficient than single modality in detecting abnormalities 

due to breast cancer [Gheonea, 2011]. Analysis using various imaging 

technique reduce the possibility of missing the cancerous region.   

 

1.3.1. Magnetic resonance imaging  
MRI is a non-invasive imaging technique which uses magnets and 

radio waves to generate high quality images with good resolution [Stephan, 

2010]. A very detailed image of breast is obtained by capturing the pattern 
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released by the energy of absorbed radio waves. The visibility of abnormal 

breast tissues are improved by injecting a contrast substance called 

galladium into the vein of arm [ACS, 2015]. The major advantages of MRI 

images are the non-exposure to radiation, possibility in analyzing 

simultaneously, dense breasts and imaging of breasts with inverted nipples. 

The major disadvantages of MRI include its expensiveness, consumption of 

time, increased false positives, noneligibility for women with internal metal 

object, difficulties in identifying microcalcification and insitu carcinomas. 

MRI images are usually taken as an additional tool for confirming the 

presence of breast tumours. Figure 1.2 illustrates breast MRI technique. 

 

 
Figure 1.2: Breast MRI [ACS, 2013]. 

 
 
1.3.2. Ultrasound imaging  

US is mainly used for detecting breast lesions. In US imaging 

technique, the high frequency sound waves generated by the transducer are 

directed to the breast tissues. The reflected sound waves obtained from the 

breast tissues are used to form two dimensional ultrasound images. The 



                                         Chapter 1 : Introduction 

7 
 

ultrasound images are not considered as an effective technique in breast 

cancer screening due to the presence of false positive and false negative 

results [Teh, 1998]. US technique is considered as a supplementary tool to 

evaluate suspicious regions obtained using mammogram. The quality of US 

image is less compared to that of an MRI image. US imaging is a non-

invasive technique which is not painful, is safer and is getting popular day 

by day as it is not using radiations. It is less expensive than MRI but more 

than that of mammogram. Even though US imaging technique is not good 

for identifying microcalcifications as in mammogram, it is found superior in 

imaging lesions in dense breasts and soft tissues. Figure 1.3 illustrates the 

breast US operation. 

 

 

Figure 1.3: Breast Ultrasound [ACR, 2003] 

 
1.3.3. Ductogram (Galactogram) 

The reason for breast cancer with nipple discharge is identified 

using the technique known as ductogram or galactogram. A thin metal tube 

is placed through the opening of the duct where the nipple discharge occurs. 

In order to identify the presence of tumors in the passage of duct, a small 

amount of contrast substance is passed through the metal tube. The color 
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variation is useful in analyzing the size and shape of tumors [Valerie, 2011], 

[Sharmin, 2013]. 

 
Figure 1.4: Ductography [Sharmin, 2013] 

 
1.3.4. Positron emission tomography  

In PET, a special camera is used to take breast images by injecting 

radioactive substances into the blood stream. Cancerous tissues are active 

cells which absorb radioactive substances. The PET scanner forms an image 

by detecting the γ rays generated by radioactive materials. The advantage of 

PET is that it is not adversely affected by the presence of breast density, 

earlier surgery or radiotherapy [Gheonea, 2011]. The PET images are very 

expensive with less resolution. The exposure to radiation also generates side 

effects. Figure 1.5 shows a PET image of the breast. The parameters of the 

body including the blood flow, use of oxygen, metabolism of glucose etc. 

can be measured by the doctor through PET scan. 
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Figure 1.5:  PET image of breast.  
                    (Courtesy: http://breast-cancer.ca/pets-bcanc/) 
 

1.3.5. Thermal imaging 

In thermal imaging technique, a breast image is taken by a heat 

sensing camera. Figure 1.6 illustrates a thermal image of breast. The 

metabolic rate of malignant breast tissue is high compared to that of normal 

breast tissues. 

 

 

Figure 1.6: Thermal image of breast 
                   (Courtesy:http://southwestmedicalthermalimaging.com/breast- 
                   screening-thermography.html) 
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As these rapidly multiplying cancerous cells are in need of new blood 

vessels for providing nutrients, the temperature surrounding these areas are 

high [Ng, 2009]. Studies on thermal breast images show that it is an 

effective screening tool for breast cancer. A study on thermal imaging 

technique and mammography shows that the latter is superior. Thermal 

imaging method is capable to detect only a quarter of the number of cases 

of carcinoma detected using mammogram [ACS, 2013].  

 

1.3.6. Mammography 
Mammography is currently considered as the golden standard 

among other imaging modalities in detecting breast cancer at its early stage. 

It is the cost effective and globally acceptable technique for early breast 

cancer detection. The image acquired through the exposure of x-rays on a 

breast is called mammogram. Modern mammography uses very low levels 

of radiation, usually about a 0.1 to 0.2 rad dose per x-ray. In order to get an 

x-ray image of breast, it is placed between two 2 plates to flatten and spread 

the breast tissue.  

Mammograms appear as a black and white image of the breast 

tissue on a film or as a digital computer image that is read, or interpreted, 

by a radiologist [ACS, 2014]. As breast consists of various tissues such as 

fatty tissue, fibroglandular tissue, tumour tissues etc., rate of absorption of 

x-ray varies from tissue to tissue. The two dimensional image consisting of 

pixel intensities gives the characteristic features of various breast tissues 

through which the x-ray passes.  As the rate of absorption of x-ray photons 

increases, the color is changed from black to white. Fatty tissues absorb and 

scatter x-rays less than fibroglandular tissues and hence appears black 

whereas calcium absorbs and scatters more x-rays [Giovanni, 2008]. Breast 

cancer is more easily detected in the case of fatty breast compared to dense 

breast [Alan, 2005]. Malignant calcifications and masses appear bright in 

mammograms.  
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The major components of a mammography unit comprises of an x-ray tube, 

compression paddle, grid, receptors etc., as shown in figure 1.7.  The x-ray 

tube is used to produce characteristic x-ray energy. The desired x-ray 

energy for mammography is around 17- 24 kV [K Thayalan, 2014].  Anode 

material or the target material is usually made up of molybdenum (Mo) or 

rhodium (Rh) or tungsten (W) in rare cases [Lancaster]. 

 

 

Figure 1.7: Mammography Unit, Siemens MAMMMOMAT 3000 Nova.  
                    
 

 
 

Contrast among various tissues is useful in identifying the 

malignant structures present. Molybdenum and tungsten are the major x-ray 

tube anode material used in Siemens mammomat 3000 nova. Filters in x-ray 

tube kept on the x-ray path absorb the low and high x-ray energies in order 

to produce the desired energy. The usual range of x-ray tube voltage is 25-

35 kV.  A better quality of image is possible with operating voltage higher 

than the atomic number of the image structures. Since the most commonly 

visible microcalcification with atomic number, 20 is higher than that of the 

X-ray tube 

Grid 
Receptor 

Compression      
 paddle 

(https://www.cee.siemens.com/web/ua/ru/medecine/detection_dia
gnosis/mam/mammomat_nova/Documents/mammomat-3000-
nova-mammography applications-00009756.pdf) 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22K+Thayalan%22&source=gbs_metadata_r&cad=6
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three primary breast tissues (adipose, fibrous and glandular) ranging from 6 

to 8 kV value around 25 adequate for penetration [Richard, 2012]. In 

Siemens mammomat 3000 Nova shown in figure 1.7, the current in x-ray 

tube with 25 kV, anode material as Mo is 150 mA and W is 188 mA. The 

advantage of high current in x-ray reduces the motion artifacts as well as 

the exposure time of radiation. The photon energy used in mammogram unit 

is comparatively less than that of a normal x-ray unit [Peter, 2015]. The 

photon energy must not have a low or high value. A high photon energy 

value results in reduced image contrast whereas a low value necessitates 

large patient dose due to inadequate penetration of x-ray. The x-rays are 

emitted from a small area of anode known as focal spot. The size of focal 

spot in the mammogram device is usually smaller than other radiographic 

devices as small focal spot size yields a sharper and a detailed high 

resolution mammographic image. The small size of focal spot within 0.1-

0.3 mm, small distance between breast and image receptor, large distance 

between breast and focal spot are essential in reducing the geometrical 

blurriness [Ellen, 2007]. The compression paddle is used for compressing 

the breast in order to reduce the thickness of breast for uniform penetration 

of x-ray energy. Compression of breast improves the visibility of malignant 

lesion by spreading the overlying tissues of parenchyma. The radiation dose 

can be reduced with proper compression. Mammographic image blurring is 

reduced by holding the breast still using the compression paddle. Grid in the 

mammography unit which is thinner than other commonly used grid is 

helpful in improving the quality of image. It is efficient especially for the 

case of thick and dense breasts by reducing the spreading out of x-rays with 

more contrast [Robson, 2010].  Around 80% - 90% spreading of x-rays are 

reduced by placing grid in a mammography device. Even though the 

presence of grid increases the image quality, the exposure to x-ray radiation 

is two to three times more than that of nongrid mammographic unit 

[Richard, 2012]. Automatic exposure control is an essential part of 

mammography unit to provide consistent image receptor exposure for 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Richard+Carlton%22&source=gbs_metadata_r&cad=6
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Ellen+Shaw+De+Paredes%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Richard+Carlton%22&source=gbs_metadata_r&cad=6
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Arlene+Adler%22&source=gbs_metadata_r&cad=6
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various thickness and density compositions of breast tissues for the given 

kV. It is crucial as there is a difficulty for the radiologist in identifying the 

exact density composition of breast tissues [Richard, 2012]. The major 

advantages in using automatic exposure control include the reduction of 

repeated exposure and the exact time of exposure of x-rays. 

x-ray breast images can be captured either on film known as screen 

film mammography (SFM) or directly to computer called digital 

mammography (DM). SFM was a very common image capturing technique 

around two decades ago. Currently DM is preferred over SFM due to its 

advantages like high resolution, wide dynamic range, zooming, magnifying 

and enhancing the image [Faridah, 2008] of especially dense breasts. The 

digital mammogram can be exchanged very easily among experts in 

reaching a conclusion compared to SFM. Over and above, a 45% 

processing time can also be saved in DM [Ranganathan, 2007]. Even 

though the cost of DM is comparatively higher than SFM, the technological 

advancement of DM outperforms the SFM in other aspects.  

The database used in the proposed research work includes digital 

mammograms from standard databases such as mammographic image 

analysis society (MIAS) [Suckling, 1997], database for screening 

mammography (DDSM) [Paola, 2013] and images collected from 

Lakeshore hospital, India [Lakeshore]. The details of databases are 

provided in the second chapter. 

The detection of abnormalities in the beginning stage avoids 

growing and spreading of cancerous cells throughout the body and thereby 

improving the survival rate. The mammograms are commonly used for 

screening as well as diagnostic purpose. Screening mammograms are the x-

ray images of breast for women having no previous symptoms of breast 

cancer [ACS, 2014] whereas diagnostic mammograms are for women with 

previous cancerous symptoms. Screening mammograms are usually taken 

as part of routine medical check-up. Screening of breast using 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Richard+Carlton%22&source=gbs_metadata_r&cad=6
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Arlene+Adler%22&source=gbs_metadata_r&cad=6
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mammograms is scientifically suitable for identifying anomalies in its 

beginning [Kopans, 2000]. It reduces the mortality rate due to breast cancer 

by 28% [Weedon, 2014]. The purpose of diagnostic mammogram is 

different from that of screening mammogram. Women with suspicious 

breast (having lumps, discharge etc.) are advised to take diagnostic 

mammogram.  A thorough inspection of the suspicious area is performed 

using diagnostic mammogram. In order to evaluate the doubtful area, a 

magnification view or spot view is recommended. Other supplementary 

imaging modalities are also recommended for further analysis. Depending 

on the severity of breast cancer, the verification of diagnostic mammogram 

leads to a routine yearly or half-yearly checkup and biopsy.   

 

1.3.6.1. Major views of mammogram 

The two major standard views of mammogram involved in 

screening are the cranio caudal (CC) view and medio lateral oblique (MLO) 

view. Both these two views are essential in analyzing breast image for early 

breast cancer detection. Radiologists usually consider these two views in 

different angles for analyzing the mammographic images to reach a 

conclusion. In both views, x-rays are used for image acquisition. 

Compression of breast for x-ray imaging is proportional to the spreading of 

tissues which in turn maximizes the quality of resultant breast image. The 

reason for compressing breast is to reduce the exposure of x-rays on the 

breast [Harjit, 2011].  

 

1.3.6.1.1. Medio lateral oblique view 

Medio lateral oblique (MLO) view is considered as the primal view 

of mammogram because of the visibility of most of the breast tissues 

[Lawrence, 2004]. The whole breast image appears in the MLO view.  An 

MLO view of mammogram is obtained by fixing an x-ray tube and a film 

holder in a direction parallel to pectoralis major muscle. X-rays are passed 
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to a compressed breast image from upper inner quadrant to lower outer 

quadrant [Michael, 2001] in order to acquire greater amount of breast 

tissues by minimizing the overlapping breast tissues.  The visibility of 

pectoral muscle in MLO view of mammogram ensures the proper 

positioning of breast over the detector [William, 2007]. MLO view of right 

and left breast is distinguished by checking the label or position of pectoral 

muscle on the mammographic image. Right-MLO (RMLO) and left- MLO 

(LMLO) labels indicate the MLO view of the right and left breasts 

respectively. The pectoral muscle at the top right corner indicates a right 

breast image whereas the left breast has a pectoral muscle at top left corner.  

Figure 1.8 shows the MLO view of mammogram collected from the 

Lakeshore hospital, India [Lakeshore Hospital].  

 

                                                                                    

 

 

Figure 1.8: MLO view of a mammogram collected from Lakeshore hospital. 

 

1.3.6.1.2. Cranio caudal view 
Cranio caudal (CC) view images the breast by passing the x-rays 

from top to bottom. In CC view the x-ray device is positioned perpendicular 

to the floor and the breast is kept horizontally on the film holder [22]. The 

CC view complements the MLO view in the visual representation of 

medial, lateral, central and subareolar breast tissues. In CC view, nipple is 

clearly visible but pectoral muscle is minimally displayed. In CC view 

breast tissues in the medial and lateral portion of the breast should be 
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visible. Figure 1.9 shows the CC view of mammogram collected from the 

Lakeshore hospital.  

 

                                                                                        

 

 

 
Figure 1.9:  CC view of a mammogram collected from Lakeshore hospital 

In MLO view, the posterior nipple line (PNL) is formed as the 

perpendicular line from the anterior pectoral muscle boundary to the nipple. 

For CC view, PNL is the line between the nipple and back edge of breast. 

The breast tissues in MLO and CC views are assured as maximally visible 

by checking the PNL distance between both views. The PNL distance of 

both views within 1 cm is considered as proper view with inclusion of all 

breast tissues. 

 

1.3.6.2. Computer aided analysis of mammograms 

Screening of mammogram by expertise radiologists classifies the 

mammogram as negative or positive. But the more the number of 

mammograms, various image acquisition artifacts may mislead to the 

interpretation of mammogram as being normal or abnormal. The 

examination of a single mammogram by different radiologists referred to as 

‘Double reading of mammogram’ improves the interpretation thereby 

reducing misclassification [Brown,1996] and increasing high sensitivity and 

screening efficiency [Warren, 1995]. ‘Double reading of mammogram’ is 

 
 

 

 



                                         Chapter 1 : Introduction 

17 
 

more expensive and time consuming along with heavy work load compared 

to computer aided techniques. Assessment by radiologists along with 

computer aided techniques is a good choice of early breast cancer detection. 

The literature [Morton, 2006], [Brem, 2003] shows that there is 7.62% 

increase in the number of detected breast cancers with 21.2% improvement 

in sensitivity. 

A computer aided analysis of mammogram requires knowledge 

about the information on features of mammographic images and computer 

programming techniques. A database with proper number of 

mammographic images consisting of normal and abnormal cases is essential 

in computer aided analysis. Detection of various malignancies of the breast 

in their early stage improves the treatment thereby reducing the mortality 

rate among women [Freer, 2001]. 

The two major models of computer aided systems are computer 

aided detection (CADe) and computer aided diagnosis (CADx). Computer 

aided detection or diagnosis (CAD) systems have now emerged as a 

challenging and remarkable topic of interest among researchers as well as 

radiologists [Tang, 2009].  The need for detecting malignancies such as 

calcifications, masses, architectural distortions, bilateral asymmetry etc., 

and the incorrect classification of normal and abnormal mammograms are 

some of the major reasons for improving the computer aided systems 

among researchers whereas the results assists radiologists in providing a 

reliable analysis. CADe systems help in improving the accuracy of breast 

cancer detection by providing a second opinion whereas the CADx systems 

aids in making decisions between follow-up and biopsy [Sampat, 2005]. 

The interpretation of the abnormality in CADe system is left to radiologists 

[Warren, 1995]. In CADx, radiologists take the decision about the 

assessment, type and stage of the disease by considering the interpretations 

of radiologists or by the results of CADe system on mammograms 

[Vyborny, 2000], [Petrick, 2013].  
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1.3.6.2.1. Evaluation of CAD techniques 

The four major categories of the detection results are true positives (TP), 

true negatives (TN), false positives (FP) and false negatives (FN).  

 
True positive: 

Correct detection in which malignant case appears as malignant. 

 
True negative: 

Correct detection in which normal case appears as normal. 

 
False positive: 

Incorrect detection in which normal case appears as malignant. 

 
False negative: 

Incorrect detection in which malignant case appears as normal. 

 
As FP and FN are the errors in detection, the results with minimum number 

of false positives and false negatives make the system more efficient. FP 

detection may generate anxiety in the patient. The FP findings may lead to 

unnecessary biopsies and treatment. The FN result is a more serious 

problem as the CAD system failed to identify the lesion on a patient. The 

FN detection may lead to an irrecoverable state of malignancy. The 

evaluation of a CAD system is reported through various performance 

metrics such as Sensitivity and Specificity which are calculated on the basis 

of number of FP, FN, TP and TN.  

Sensitivity is referred as the capability of CAD system for 

identifying malignant breast. It is also known as true positive fraction. A 

high value of sensitivity is used for characterizing the detection of 

malignant cases. Sensitivity is inversely proportional to FN and is defined 

as 
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Sensitivity/ True positive fraction, 
FNTP

TPTPF
+

=                    

                                     ( )1.1
casesmalignantofnumberTotal

casesmalignantidentifiedofNumber
=

Specificity is referred as the capability of CAD system for identifying 

normal breast. Specificity is also known as true negative fraction. A high 

value of specificity represents the detection of normal cases. Specificity is 

inversely proportional to FP and is defined as 

Specificity/ True negative fraction
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The sensitivity and specificity values are used for plotting receiver 

operating characteristics (ROC) curve [Hanley, 1982]. ROC curve is a 

graph plotted as shown in figure1.10 with sensitivity along x axis and FPF 

along y axis. The efficiency of CAD system is visible in ROC curve. An 

ideal ROC curve with high accuracy (100% sensitivity and 100% 

specificity) passes through the upper left corner [Zweig, 1993]. The area 
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under curve (AUC) represents the accuracy of the CAD system. A high 

value of AUC indicates a high classification performance.  

 
 Figure 1.10: Receiver Operating Characteristics (ROC) curve  

 

1.4. Comparative study in terms of detection 
features of breast imaging modalities 
 

In addition to its ability to provide adequate visualization of soft 

tissue abnormalities, the particular strength of x-ray mammography is the 

ability to depict subtle calcifications. However in the case of dense breasts, 

mammography is seen to miss many cancers.  In such cases, US imaging is 

used as an adjunct to mammography [Berg, 2016].  However 

ultrasonography is not good at detecting microcalcification. Thermography 

is a promising screening tool because of its ability to diagnose breast cancer 

at least ten years in advance. The disadvantage with thermography is that 

less depth information is obtained with thermography as attenuation of 

infrared rays in tissue is very high [Berg, 2016]. MRI performs better 

compared to other modalities in detecting abnormalities in dense images. In 
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addition it is painless and non-invasive. The disadvantages include more 

time consumption, inferior in detecting in situ cancer and inability to image 

calcifications. It is also expensive compared to other imaging modalities 

[Berg, 2016]. Many studies have been conducted on the performance of 

PET in the evaluation of suspicious breast lesions.  Although PET can be a 

useful adjunct to mammography in characterizing breast tumors, this 

technique is limited by a low sensitivity in detecting small tumors and 

lobular carcinomas. Radiation exposure and the high cost of PET imaging 

has limited the use of this tool in the routine diagnosis of primary breast 

cancer [Sree, 2011]. 

 

1.5. Organization of the thesis 
The addressing problem of the proposed work is to develop automated 

algorithms for 

- extracting breast region by delineating pectoral muscle,  

- detection and classification of Architectural Distortion and  

 - enhancement of microcalcification features 

in mammographic images for assisting radiologists in early breast cancer 

detection. 

The accuracy of computer aided systems for breast cancer detection 

can be improved by analyzing the breast area excluding pectoral muscle and 

other unwanted artifacts such as noise, labels, markers, wedges etc. Various 

computer aided detection schemes have been proposed in the literature for 

delineating the pectoral muscle from the mammogram. In this research 

work, two novel methods are proposed to identify pectoral muscle boundary 

using a local segmentation and multiscale decomposition technique. The 

research work implements a novel method for the detection and 

classification of architectural distortion. Two different metaheuristic 

algorithms along with feature selection are applied to improve the 

performance of classification technique. The proposed method of research 
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make use of the directionality properties of contourlet transform for 

enhancing features of microcalcification in order to improve the visibility of 

anomaly in a mammogram. The proposed research work is structured in six 

chapters as mentioned below. 

Chapter 1: The objective, scope and relevance of the thesis, brief summary 

of the thesis and its organization in various chapters are explained. 

 
Chapter 2: An introduction, the current statistics of breast cancer, anatomy 

of the breast, various imaging modalities, views of mammogram, major 

breast cancer symptoms, Bi-rads categories, computer aided analysis and 

performance evaluation are discussed. 

 
Chapter 3: Two novel methods for pectoral muscle boundary detection are 

discussed in this chapter. A literature review on pectoral muscle methods is 

done. A performance evaluation of these two methods along with those in 

the literature was compared.   

 
Chapter 4: A novel method for the detection and classification of the most 

commonly missed abnormality, architectural distortion is proposed. An 

optimized neural network classification algorithm was used for optimizing 

the performance of the prescribed method. 

 

Chapter 5: An enhancement operation using contourlet transform for the 

easy identification of the most commonly occurring breast cancer system, 

microcalcification is done. Performance metrics of enhancement operations 

are analyzed to check the efficiency of the proposed method. 

 
Chapter 6: In chapter 6, the conclusions obtained on the proposed methods 

are discussed. The major outcomes along with the future work are 

described. 
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Chapter 2 

Scope and formulation of the problem 

 

Computer aided techniques assists radiologists in providing a second 
opinion in mammographic analysis for early breast cancer detection. This 
chapter covers breast cancer and its types, breast cancer statistics and the 
various reasons for breast cancer. The major symptoms of breast cancer 
and the Bi-Rads categories are also discussed.  The relevance of 
screening and computer aided algorithms for the detection of 
abnormalities in its early stage is also highlighted. The details about the 
mammographic images used for the proposed research is also explained. 
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2.1. Breast cancer 
Cancerous cells that develop within the body harm the healthy cells 

and tissues leading to death [Pat, 1999]. Breast cancer, an unregulated cell 

growth in breast is 90% curable, once it is detected in its early stage 

[Jerrold, 2004]. These uncontrolled groups of cells can be either benign or 

malignant. Benign cases with unregulated growth or tumor is generally 

associated with pain [Daniel, 2013]. The uncontrolled growth is usually not 

visible in its initial stage. Early identification of breast cancer is possible 

through screening. The breast cancer symptoms in later stage includes 

breast lump, thickening, swelling, distortion, tenderness, skin irritation, 

redness, nipple retraction, nipple discharge etc. [ACS, 2014]. The lobes and 

ducts are usually considered as the origin of breast cancer. In some cases, 

the breast cancer starts from the intermediate tissues. 

2.2. Major types of breast cancer 
Breast cancers are mainly categorized as ductal and lobular as the 

milk generating lobules and transporting ducts are observed as the major 

regions of malignancy [ACS, 2015]. Some types are also observed in the in-

between tissues containing glandular, fibrous and fatty tissues. The less 

frequently occurring breast cancers are inflammatory, paget, phyllodes and 

angiosarcoma. The complicated breast cancers among woman can be of 

more than one type [Judith, 2001].  

2.2.1. Ductal carcinoma  
Ductal carcinoma originates in the epithelial cells that lines the 

milk ducts. Around 65% of breast cancer originates in duct [Katherine, 

2011]. The two categories of ductal carcinoma are ductal carcinoma in situ 

(DCIS) and invasive ductal carcinoma (IDC). Ductal carcinoma in situ is a 

non-invasive breast cancer whereas invasive ductal carcinoma belongs to 
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invasive breast cancer. Figure 2.1 shows ductal carcinoma in situ and 

invasive ductal carcinoma, the two types of ductal carcinoma. 

 

 
(a) Ductal carcinoma insitu 

 

 
(b) Invasive ductal carcinoma  

 
Figure 2.1:  Ductal carcinoma. (a) Ductal carcinoma in situ, (b) invasive  
                       ductal carcinoma (courtesy: http://www.oncolink.org/types). 
 

IDC spreads outside the ductal epithelium and surrounding 

myoepithelial cells to nearby normal breast tissues whereas DCIS is 

enclosed inside the ductal epithelium cell. Figure 2.2 represents the 

developmental stages of cancer growth in a duct. The normal duct consists 

of an inner epithelial cell, surrounding myoepithelial cell and an outer 

basement membrane. The supporting breast tissue consists of white blood 

cells (leukocytes), cell in connective tissue generating 

fibrous protein (fibroblasts), a fibroblast with characteristics of soft muscle 
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cells (myofibroblasts) and cells which line the interior of blood vessels and 

lymph vessels (endothelial). Even though it is not included in aggressive 

category, there is always a risk of around 20-25% chance of it developing 

into invasive breast cancer in a later stage [Seth, 2008], [Katherine, 2011]. 

Ductal carcinoma in situ constitutes around 2.5% of breast cancer 

[Katherine, 2011]. DCIS breaks the basement membrane reducing the 

number of myoepithelial cells with an increase in epithelial, fibroblasts, 

myofibroblasts and lymphocytes cells. The complete disappearance of 

myoepithelial cell as well as basement membrane leads to IDC. The 

spreading of cancerous cells to the neighbouring tissues, lymph vessels, 

blood cells and to other parts of the body results in the generation of 

cancerous growth in other organs, leading to metastases. 

 

 

 
 

 
 
 
 
 
 
 
 
 
             
       
 
       
 

 
 
 
 
 
 
Figure 2.2: Breast cancer development from normal, in situ, invasive, and  
                     metastatic carcinoma [Kornelia, 2007]. 
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2.2.2. Lobular carcinoma 
Lobular carcinoma originates in the breast lobules. 10-15% of 

breast cancers originate in lobules [Katherine, 2011]. The two categories of 

lobular carcinoma are lobular carcinoma in situ (LCIS) and invasive lobular 

carcinoma (ILC). Lobular carcinoma in situ, also known as "lobular 

neoplasia” belongs to non-invasive category. The cancer like cells in 

lobular carcinoma in situ spreads only in lobules of milk generating glands. 

There is a probability for LCIS to develop into ILC or DCIS in its later 

stage [Bridget, 2011]. ILC is invasive category of lobular carcinoma with 

spreading of cancer cells to different parts of the body by breaking lobules.  

Figure 2.3 shows the normal lobule, LCIS and ILC. According to ACS, the 

symptom of ILC are thickening or hardening of breast instead of a lump 

formation [ACS, 2014]. The most commonly found invasive carcinoma is 

IDC and ILC stands second contributing to 5-15% of invasive breast cancer 

[Hacer 2012]. 

     
(a)                                           (b)                                (c) 

Figure 2.3: Lobular carcinoma. (a) Normal lobule, (b) lobular carcinoma in  
                    situ, (c) invasive lobular carcinoma. (Courtesy:  
                    http://beasurvivoravera.com/breast-anatomy-and-function/) 
 
 
2.2.3. Rarely occurring breast cancers 

Inflammatory, paget, phyllodes and angiosarcoma are considered as 

rarely occurring abnormalities since they constitute not more than 3% of 

breast cancers. Even though inflammatory breast cancer is occurring less 

frequently, the spreading of disease is very fast compared to other 

commonly occurring breast cancers. Some of the symptoms of 
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inflammatory breast cancer are hard breast, thickened and red colored 

breast skin. Paget is a breast cancer that originates in duct, extends to nipple 

skin and then to areola. In most cases it is associated with either DCIS or 

IDC. Phyllodes breast cancer originates in connective tissues of breast 

rather than ducts or lobules. Angiosarcoma emanates in cells that line blood 

or lymph vessels [ACS, 2014]. 

2.3. Reasons for breast cancer  
Even though the exact reasons of breast cancer are not available, 

the major possible causes of breast cancer are categorized as modifiable or 

preventive and non-modifiable or non-preventive [Lakshmi, 2013]. The 

modifiable factors include overweight, physical inactivity, alcohol 

consumption etc. whereas the non-modifiable factors are age, family 

history, medical history etc. 

Estrogen hormone, generated by ovaries is essential for the growth 

and development of breast, and reproductory system and organs until 

menopause. But the presence of high level of estrogen hormone after 

menopause, generated by fat tissues increases the risk of breast cancer 

[ACS, 2014]. Physical inactivity increases the fat deposits which in turn 

increases the estrogen level. Similarly alcohol consumption and smoking 

among women increases the risk of breast cancer [ACS, 2014]. Hormonal 

replacement therapy (HRT) raises the risk of breast cancer with adverse 

prognostic characteristics. Among the two major categories of HRT, 

combination HRT consisting of estrogen and progesterone is more 

dangerous than HRT with estrogen [Ronald, 2000].  

The mutation of human genes, BRCA1 and BRCA2 which 

produces tumor suppressor proteins generates a high risk of breast cancer 

[Campeau, 2008]. Breast cancer risk increases with age due to the 

possibility in mutation of genes. Breast cancer among women in young age 

is more destructive [Nelson, 2006]. A long time exposure of estrogen 

hormone in the body due to menarche at earlier age and menopause at later 
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age results in an increased risk of breast cancer [Key, 2001]. Pregnancy 

before the age of 30 and breast feeding reduce the risk of breast cancer 

[Huiyan, 2007]. Women having some hereditary factors as well as 

previously diagnosed cancer have a high risk of breast cancer [Dixon, 

2008]. Women with 75% dense breast tissues constituted by epithelium and 

stroma are more prone to breast cancer compared to the one with less dense 

tissue [Norman, 2007].  

A study on risk factors of female breast cancer conducted in 

Regional cancer centre, Thiruvananthapuram, Kerala (RCC), shows that the 

factors found to be consistent with the well known standards are women in 

latter age, previous history of breast cancer, nulliparity, pregnancy after age 

30, lack of breast feeding and nonuniform cycle of menstruation. Women in 

higher socio economic classes with better living conditions are found to be 

more susceptible to breast cancer [RCC, 2014] 

 

2.4. Major breast cancer symptoms 
Mammogram, the x-ray image of breast portraits the various tissue 

structures of breast. The mammographic images are analyzed by the 

radiologists to identify breast abnormalities. These anomalies on 

mammographic images are mainly characterized into four classes 

[Rangayyan, 2007]. The major symptoms of breast cancer are 

microcalcification, mass, architectural distortion and bilateral asymmetry. 

2.4.1. Microcalcification 
Microcalcification, one of the major anomalies of breast cancer is 

considered as the most commonly occurring breast cancer symptom. 

Microcalcifications are tiny deposits of calcium which appears as white 

speckles in mammogram. The size of microcalcification ranges from 0.1 to 

1 mm with an average diameter of 0.3 mm [Lanyi, 1988]. The low contrast 

and tiny size of microcalcification obstructs its visibility from superimposed 
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breast tissues and noise. Benign calcification generally of larger size than 

malignant microcalcification are coarser, round, easily visible with smooth 

margin whereas malignant microcalcification are usually visible with 

magnifying glass [ACR, 1998]. Figure 2.4 represents a mammogram, 

mdb241 with microcalcification in MIAS database [Suckling, 1994]. 

Usually benign calcifications are calcium oxalate dehydrate and malignant 

calcifications are calcium hydroxy apetite [Haka, 2002]. 

 

                                                                     
(a)                                                (b) 

Figure 2.4: Microcalcification. (a) Malignant area with microcalcification in  
                    mdb241 is within the blue border representing ground truth  
                    information. (b) Enlarged view of malignant region. 

 
2.4.2. Mass 

Mass, a space occupying lesion and one of the major anomalies of 

breast cancer is visible in at least two different projections [ACR, 2003]. 

Masses differ in shape, margin and density. Masses are often hard and 

painless. A benign mass is generally characterized as low dense or isodense 

lesion with round or oval shape and smooth or circumscribed margins. A 
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lobule shaped mass can be benign or suspicious. A mass with more density 

consisting of more fatty tissues are found to be highly suspicious. A 

malignant mass is usually irregular in shape with speculated or rough 

margins [Mislav, 2009]. Figure 2.5 depicts a mammogram, mdb028 from 

MIAS database with malignant region within blue border of ground truth 

information. 

 

 

Figure 2.5: Mass in a mammogram, mdb028 of MIAS database, within blue  
                    boundary of ground truth information. 
 
 
2.4.3. Architectural distortion 

Architectural distortion is defined as alteration of normal 

architecture of a breast. Radiating patterns appear to emanate from a central 

region with no definite mass visible. A focal retraction at the edge of 

parenchyma is also considered as a symptom of Architectural Distortion is 

usually associated with other abnormalities such as mass and 

microcalcification [ACR, 2003]. Even though there are enormous works 

related to the most commonly missed abnormalities such as mass and 

microcalcification, moderately less studies have been reported on 

architectural distortion detection. The subtle nature and lesser contrast of 

architecturally distorted breast tissue structures obstructs the identification 

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Mislav+Grgic%22&source=gbs_metadata_r&cad=5
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of architectural distortion [Banik, 2013]. Figure 2.6 represents an 

architecturally distorted mammogram, mdb115 from MIAS database. The 

ground truth information provided by the radiologist is represented as the 

area with blue border. 

 

 

Figure 2.6: Architectural distortion in mdb115 with ground truth information  
                   in blue circle. 
 
 
2.4.4. Bilateral asymmetry 

Bilateral asymmetry is a breast cancer symptom obtained by 

verifying corresponding right and left mammographic image. Bilateral 

asymmetry is the lack of evenness among right and left mammogram. The 

difference in the right and left images are mainly due to its density or 

fibroglandular tissue structural dissimilarity. The asymmetry among right 

and left breast may be an indication of development of other breast cancers 

[Rangayyan, 2005]. Global and focal asymmetry are the two categories of 

bilateral asymmetry [ACR, 2003]. The difference in volume of 

fibroglandular tissues of corresponding areas of both breasts defines global 

asymmetry whereas the circumscribed area of asymmetry is associated with 
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lack of margins and suspicious mass. Figure 2.7 depicts mammogram with 

bilateral asymmetry. 

 
                              (a)                                                          (b) 
Figure 2.7: Bilateral asymmetry in mdb081 and mdb082 with ground truth  
                    information marked as blue circular boundary 

 
2.5. Bi-Rads categories 

Breast imaging reporting and data system (BI-RADS) provide a 

standardized method for categorizing the mammographic interpretation 

using numbers from 1-6 [ACS, 2014]. The various categories are listed 

below. 

Category 1: An incomplete assessment of mammogram suggesting additional 

images of breast for a clear view of abnormality 

Category 2: A complete assessment of mammogram with no malignancy. 

Category 3: A complete assessment of mammogram with 98% of probability 

being benign. Repeat checkup during six months till the result 

become stable. 

Category 4: A biopsy is preferred as the mammogram looks suspicious. 

Category 5: A biopsy is compulsory as there is 95% chance of being cancer. 

Category 6: Assessment of mammogram in response to the treatment of a proven 

case of malignancy. 
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2.6.  Scope and relevance 
According to the global statistics, the incidence rate of breast 

cancer stands in the second position [Ferlay, 2014] among all cancers. 

WHO reports states that breast cancer incidence rate in India is 1, 44,937 

among new cases [Ferlay, 2014]. According to the statistics of american 

cancer society (ACS) [ACS, 2015], around 40,000 women died in 2015 due 

to breast cancer, 232,670 and 62,570 women were affected by invasive 

breast cancer and ductal carcinoma respectively. Breast cancer, the second 

cause of cancer fatality among women in India contributes 7% in the global 

scenario.  

An analysis in India [Agarwal, 2008] reports annual breast cancer 

diagnosis of about 10,000 new breast cancer cases. Women above 40 are 

more susceptible to breast cancer in Asia. A study conducted by Govt. 

Medical College, Thiruvananthapuram (under Pain and Palliative Clinic) 

shows that the most commonly occurring cancer in women in India is breast 

cancer [Asha, 2014]. The population based cancer registry [2009 - 2011] 

reports that around 25-31% of cancers in Indian cities are due to breast 

cancer. Various reports and fact sheets in the last two decades indicate an 

increase in breast cancer incidence rate as well as death rate in India 

[Curado, 2011]. As per the reports of GLOOCAN (WHO) [Ferlay, 2014] 

depicted in table 2.1, women mortality rate in India due to breast cancer for 

the year 2012 is 70,218 ranking the highest position in world. The graphical 

plot of the statistics is shown in figure 2.8. 

 
Table 2.1: Global comparison of incidence and mortality statistics  
                    with Indian scenario [Ferlay, 2014]. 

 

World India World India 

year Incidence rate Incidence rate Mortality rate Mortality rate 

2012 16,71,149 1,44,937 5,21,907 70,218 

2015 17,90,861 1,55,863 5,60,407 75,957 

2020 19,79,022 1,74706 6,22,676 85,869 
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Figure 2.8: Graphical representation of incidence rate (IR) and mortality rate  
                  (MR) of breast cancer 

 
In India, among the two newly identified breast cancer cases, one 

woman dies due to breast cancer [Ashutosh, 2015]. According to the Indian 

council of medical research (ICMR) study reports during the period from 

1982 to 2005, breast cancer incidence rate in metropolitan cities has 

doubled. Statistics reports in Kerala shows that the increased breast cancer 

incidence rate contributes to one-third of all types of cancers among women 

[RCC, 2014]. A study conducted in 2012, warns that breast cancer among 

women in India leads to cervix cancer [Priya, 2012] by 2020. 

According to Meshram [Meshram 2009], 90% of breast cancer 

stages are identified in its advanced stages. Early detection of breast cancer 

is very effective in reducing the mortality rate of breast cancer patients 

[Unger-Saldaña, 2014].  Routine checkup for breast cancer increases the 

chance of survival rate among women to about 10-25%. Mammography is a 

commonly used modality to detect breast cancer in its beginning stage as it 

is localized in a small area of breast without much spread.  It helps to 

reduce the false negative results so as to avoid unnecessary biopsies and 

treatments. Reports based on various studies suggest that breast cancer 

screening dramatically reduces mortality rate resulting in 30% fewer death 
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annually [Kopans, 2004]. The possibility of observational oversights can be 

reduced by double reading of mammogram. There is a probability for 

missing 10 - 30% of cancers in mammogram depending on an increased 

density [Kolb, 2002]. As the interpretation and judgment of mammogram is 

a difficult task, a double reading is preferred. A double reading of 

mammogram always improves the detection rate by 3% - 15% [Kopans, 

2000], [Harvey, 2003]. The difficulty in double reading includes high cost, 

more time consumption and less availability of an experienced radiologist. 

The prognosis of mammogram by an experienced radiologist assisted with 

adequate computer aided techniques reduces the false positive results 

thereby avoiding unnecessary biopsies [Ayres, 2005]. The computer aided 

techniques assists radiologists in identifying suspicious regions of 

mammogram for further analysis [Kolb, 2002]. These techniques are useful 

in highlighting abnormal regions which may be missed out by radiologists 

[Metz, 2001]. Computer aided techniques improves the breast cancer 

detection rates by 20-21% [Calas, 2012]. 

Automated computer aided systems for early breast cancer 

detection using mammograms; a low cost and low dose x-ray image is still 

an area of research due to various reasons.  

1. Interpretation of low contrast images can be increased by 

differentiating the minor difference in intensity between the normal 

tissue and the malignant disease.  

2. Presence of noises in mammographic images leading to false 

negatives can be avoided.  

3. Performance efficiency of radiologists in analyzing mammograms can 

be improved.  

4. Mortality rate can be reduced by detecting the symptoms of cancer 

lesions such as microcalcification, minute and low contrast anomaly 

as well as architectural distortion, most commonly missed abnormality 

in its early stage. 
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5. Efficient feature selection improves the accuracy of the system.  

6. Removal of pectoral muscle from breast region reduces false 

positives. 

7. Unnecessary biopsies can be avoided by reducing the false positives 

and false negatives.  

Computer aided techniques using mammogram for early breast 

cancer detection is a demanding research area. The addressing problem of 

the proposed work is to develop automated algorithms for enhancing the 

most commonly occurring abnormality, microcalcification and the most 

commonly missed malignancy, and ie; architectural distortion from pectoral 

muscle delineated mammograms. 

Radiologists usually compare right and left views of mammograms 

using landmarks such as nipple and pectoral muscle for the detection of 

breast cancer abnormalities. The omission of pectoral muscle from the 

mammographic image using computer aided techniques improves the 

accuracy of breast cancer screening. The pectoral muscle region may 

adversely affect anomaly detection due to its analogy with breast region. 

The presence of artifacts such as noise, wedges, opaque markers, labels etc. 

also adversely affects the precise detection of breast cancer. Extraction of 

the region of interest from the various perceptible and structurally distinct 

regions helps us to confine the search for anomalies only on the breast 

region. 

Microcalcification, the most commonly occurring abnormality is a 

non-palpable symptom of breast cancer. Due to the smaller size, subtle 

nature, low contrast, presence of noise and dense tissues reduce the 

visibility of microcalcification in mammogram. The microcalcification 

enhancement techniques improve the visibility of microcalcification so that 

the radiologist can efficiently distinguish the presence of abnormality in 

mammogram.  
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Architectural distortion is a major breast cancer symptom which is 

considered as the most commonly missed abnormality [Rangayyan, 2007].  

The diversity in appearance, subtle nature and the presence of dense tissues 

makes the detection of architectural distortion a challenging task for the 

radiologists. Architectural distortion, a common finding of false negative 

mammography reduces the detection of breast cancer in its early stage 

thereby increasing the mortality rate. Architectural distortion is usually 

found with other abnormalities such as microcalcification and mass.  

Compared to other malignancies such as mass and microcalcification, a less 

number of developed methods [Rangayyan, thesis, 2013] in the field of 

Architectural Distortion Detection makes it a promising research area.  

 

2.7. Databases employed  
The proposed works are experimented on mammograms from three 

databases (1) MIAS database, (2) DDSM database and (3) mammograms 

collected from Lakeshore hospital, India. The details of the databases 

employed are given as Appendix 1. 

2.7.1. MIAS database 
The mammographic image analysis Society (MIAS) [Suckling, 

1994] database from Royal Marsden Hospital, U.K is a collection of 322 

mammographic images. The database consists of normal and malignant 

mammograms in MLO view. The malignant images include symptoms such 

as microcalcification, circumscribed masses, spiculated lesions, ill-defined 

masses, architectural distortion and asymmetric density. The images are of 

size 1024 x 1024 with 200 micron pixel edge. The ground truth information 

is provided in the database with reference number of image, type of 

mammographic tissues (dense, glandular etc), category of mammogram 

(normal, microcalcification, mass, architectural distortion, bilateral 
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asymmetry), type of abnormality (benign or malignant) and circular region 

of abnormality with center coordinates and radius. 

2.7.2. DDSM database 
Database for screening mammography (DDSM) databases have 

been created by scanning images on x-ray films from Massachusetts 

General hospital, wake Forest University School of Medicine, Sacred Heart 

Hospital and Washington University of St. Louis School of Medicine. The 

four different scanners , DBA M2100 Image-Clear, Howtek 960, the 

Lumisys 200 Laser, and the Howtek MultiRad850 provide a sampling rate 

of  42, 43.5, 50, 43.5 μm/ pixel respectively. The database includes 2,620 

images containing both MLO and CC view of mammograms. The sizes of 

the mammogram images in the DDSM database are different. 

 
2.7.3. Lakeshore database 

The mammogram images in Lakeshore database are obtained from 

the hospital itself, India [Lakeshore]. The Lakeshore database is the only 

database with digital mammograms acquired using the Siemens 

MAMMOMAT 3000 NOVA digital mammography. Around 100 images 

were collected for experimental analysis.  
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Chapter 3 

Pectoral Muscle delineation  

  

Pectoral muscle (PM) occupies a significant portion of the MLO view of 

mammogram. The PM region may adversely affect anomaly detection due 

to its close similarity to the breast region. The unwanted artifacts during 

image acquisition such as noise, wedges, opaque markers etc. along with 

labels are also removed from mammographic images. This chapter 

discusses two novel methods for PM boundary detection. The 

performances of the methods were analyzed by comparing them with 

ground truth information provided by radiologists and the results were 

compared against those given by along with four algorithms in current 

literature.  The proposed methods utilize the geometrical properties of 

edge structures for extracting PM boundary. In order to obtain the 

suspicious segments of PM boundary, the first method uses contours of 

homogeneous regions in breast area and the second method utilizes 

canny edge detector on a coarse breast region. An intensity similarity 

approach extends the detected major PM boundary segment to the two 

boundaries of mammogram. Experimental analyses were carried out on 

mammograms obtained from the mammographic image analysis database 

(MIAS) and on mammographic images obtained from Lakeshore 

hospital, Kochi. The proposed methods yield low values for average false 

positive, average false negative and hausdorff distance. It is observed 

from the performance analysis that 97% of images have an average error 

less than 4 mm and 3 mm for method 1 and method 2 respectively. Among 

the two novel methods, PM boundary extracted by method 2 is closer to 

radiologist drawn PM border.    
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3.1.   Introduction 

The removal of PM from the mammographic image using computer 

aided techniques improves the accuracy of breast cancer screening along 

with a reduction in computation time for searching the whole mammogram. 

The PM in MLO views are unique and it appears visually continuous 

enough to be identified easily even by the untrained observer.  Even though 

the PM boundary seems to be easily detected, it is difficult to accurately 

delineate them in mammographic images. Evidence of abnormal axillary 

lymph nodes can be obtained by the internal analysis of pectoral region 

[Ferrari, 2004]. The similarity in densities and texture among PM and dense 

breast tissues results in inefficacy of detection methods. Inaccurate 

detection may in turn lead to an increase in false negative and false positive 

rates. The similarity in density and texture among PM region and breast 

parenchyma could bias the detection of various abnormalities. Intensity 

gradient at the PM boundary may generate false alarms. Around 52% of 

error is due to the misinterpretation of breast cancer signs and 43% of 

missed abnormalities results from overlooking signs [Ferrari, 2004]. 

Radiologists usually compare right and left views of mammograms using 

landmarks such as nipple and PM for the detection of breast cancer 

abnormalities.  

In a mammographic image, breast region is the area that contains 

the region of interest for breast cancer analysis whereas the non-breast 

region contains PM, labels as well as artifacts such as markers, wedges etc. 

[Masek, 2004]. Figure 3.1 shows various artifacts as well as PMs of 

mammographic images from the MIAS database.    Extraction of region of 

interest from the various perceptible and structurally distinct regions helps 

us to confine the search for anomalies only to the breast region. Thus 

removal of non breast region considerably reduces the false positives along 

with reduction in processing time. The accuracy in breast region 

interpretation reduces unnecessary biopsies. 
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This chapter describes two methods for extracting breast region, 

obtained after the removal of PM region, label, opaque markers and noise. 

For removing noise, labels, and other unwanted artifacts, weiner filtering 

and a global threshold operation are performed. The PM for the LMLO 

view is visible on top left corner of mammographic image. An optimal 

threshold value is applied on the selected region of interest (ROI) to 

determine the connected region at the top left corner as an approximate PM 

region. The geometrical properties of edge structures on a contrast 

enhanced coarse version of the mammographic image are used to identify 

the major PM boundary component.   

The images from MIAS database [Suckling, 1997] and the 

databases created from images supplied by the Lakeshore hospital, Kochi   

[Lakshmanan, 2014] were considered for experimental analysis. 

Automatically detected PM boundaries were compared with ground truth 

information provided by the radiologist. Qualitative as well as quantitative 

analyses were performed based on these results. The mentioned results were 

analyzed and compared with four well known methods in current literature 

to benchmark the proposed method. 

 

3.2.   Literature review 

              Some of the major works proposed for the automatic detection of 

PM boundary includes those based on straight line, curve, statistics, Gabor 

wavelet, and watershed transformation. The high density regions of PM are 

clearly visible in the upper part of most MLO views of mammograms 

[Homer, 1997]. Karssemeijer [Karssemeijer, 1998] developed a pectoral 

removal method based on the application of a threshold value on the peak 

values obtained using hough transform. As breast tumors are frequently 

projected in the lower areas of the pectoral and the presence of the intensity 

gradient at the PM edge may easily generate false alarms or miss tumors, 

the position of PM has great significance. Yam et al, [Yam, 2001] detected 
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curved pectoral boundary using a dynamic programming method on the 

straight line boundary obtained by Hough transform. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Kwok, et al, [Kwok, 2004] proposed an automatic method for PM 

extraction by estimating a straight line with correct location and orientation 

where an iterative cliff detection method is applied for an accurate 

segmentation. Ferrari et al, [Ferrari, 2004] enhanced the PM edge by 

employing a group of Gabor filters. The phase of each pixel in the filtered 

image is propagated until it reaches a location where two opposite 

directions of flow encounter each other. Bajger [Bajger, 2005] determined 

an estimate of PM boundary by initializing an active contour using 

minimum spanning tree. Ma utilized a graph based approach utilizing 

adaptive pyramid [Ma, 2007]. The quality of mammograms is assessed by 

the position, shape and visibility of PM [Christina, 2008]. Even though the 

boundary of PM seems visible, it is very difficult to demarcate the PM from 

the mammographic images due to the large fluctuation in edge potency. 

(a)                                                         (b) 

Pectoral muscle, wedge, label, marker and noise in 

mammographic images from MIAS database, mdb012, (b) 

mdb013. 
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Figure 3.1: 
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Chakraborty et al, [Chakraborty, 2011] proposed a method to automatically 

segment the PM from mammographic image.  The various properties of 

regions of PMs exploited in the proposed method are its high intensity 

nature, sharp intensity variation at edge, approximate triangular shape at 

upper corner, and straight line edge with certain orientation. Chakraborty 

realized a straight line boundary approximation using weighted average 

gradient, adaptive band division and selection. A precise muscle boundary 

is obtained by taking a small region around the line and finding out more 

accurate points employing local gradient search. Cardoso et al, [Cardoso, 

2010] proposed a method to separate the PM in a mammogram by finding 

the shortest path between two regions in a graph, after conveniently 

modeling the image as a weighted graph. Camilus et al, developed an 

automatic PM segmentation method using watershed transformation. 

Correction of PM region avoiding over segmentation is achieved from 

watershed line indicating the PM edge [Camilus, 2011].  

Even though the approximate PM boundary can be detected using 

line based techniques the PM boundaries having curved nature makes such 

methods inefficient. The primary focus of the proposed method is to detect 

principal boundary component of PM in a reduced region of interest where 

the PM lies. In most methods, it is difficult to separate the PM boundary 

accurately from dense tissues. The reason for this is mainly due to the 

similarity and low contrast nature of breast and PM tissues. A histogram 

based contrast enhancement method, gray level grouping (GLG) is used to 

improve the contrast between PM and the dense mammary tissues. The 

boundary coordinates of PM is utilized to extract the breast region in 

mammographic image for anomaly detection. In mammograms, factors 

such as intensity, linearity, edge strength and visual texture demand an 

accurate and automatic detection of edge [Sauders, 2007]. The three regions 

including breast, background and PM are modeled using a supervised single 

strategy based on position, intensity and texture information is utilized for 

extracting breast region in mammogram [Oliver, 2014]. An accurate breast 
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MRI segmentation in CAD systems and breast density assessment considers 

PM delineation as an important preprocessing step [Lianghao, 2014], 

Fooladivanda   , 2014].

The peculiar characteristics of PMs utilized for finding its boundary are 

1. PM region usually occupies a predominant portion in MLO view of 

mammograms. 

2. PM boundary is roughly a straight line [Ferrari, 2004]. 

3. Sharp intensity discontinuities exist at the PM boundary. 

4. PM lies at the top left corner of LMLO view of mammographic image. 

5. PM boundary line orientation of left oriented image lies within 30
0
 to 80

0 

[Ferrari, 2004]. 

6. PM boundary is visually separable but difficult to segment. 

7. PM region can be considered roughly as a triangular region 

[Chandrasekhar, 2001]. 

8. Width of PM region gradually decreases from top to bottom. 

10. The two edges of PM boundary are part of breast image boundary. 

11. PM boundary is clearly visible in its approximation image. 

 

3. 3. Proposed methods for PM boundary 

detection 
    

   The detection of PM boundary coordinates helps to extract breast 

region in a mammogram. The proposed PM removal technique consists of 

four major steps.  

1. Preprocessing operation to generate a triangular ROI including the PM. 

2. Detection of suspicious segments of PM boundary. 

3. Selection of major segment of PM boundary. 

4. Extension of PM segment to the mammographic image border. 

A preprocessing operation on mammogram removes unwanted 

artifacts and labels. The visibility of the PM boundary is improved using a 

contrast enhancement technique. Two methods are proposed for the 



          Chapter 3:  Pectoral Muscle Delineation 

                                                                                            59 
 

detection of suspicious segments including PM boundary. The first method 

generates contour segments of homogeneous regions whereas the second 

method extracts the edges of coarse image as suspicious PM boundary 

segments. In both methods, a segment which satisfies the property of PM 

boundary is selected as the major PM boundary segment. The end points of 

the identified segment are extended to the two borders of mammogram to 

obtain complete PM boundary coordinates. The boundary coordinates so 

obtained are utilized to generate the breast region. The flow charts of both 

the proposed methods are shown in figure 3.2.  

 

3.3.1.  Pre-processing operation 

The preprocessing operation in the PM boundary detection reduces 

the search area of mammogram for effective breast cancer analysis. The 

major steps of preprocessing operation consists of  

1. Unwanted artifact removal 

2. Keeping the orientation of mammogram towards left 

3. Enhancing the contrast  

4. Selection of a triangular ROI containing PM region. 

 

3.3.1.1 Removal of unwanted artifacts and label 

  Removal of unwanted artifacts from the breast region is a 

prerequisite operation. Here a significant breast area is extracted from 

various artifacts, labels and background region. The unwanted artifacts of a 

mammographic image include wedges, opaque markers, noise etc. [Masek, 

2004]. In the LMLO view of mammogram, the PM region occupies the top 

left corner.  

The first step of preprocessing operation consists of three steps including  

1. Noise reduction  

2. Global thresholding  

3. Large area detection.  

Sauders et al, concluded that the quantum noise due to low-counts of x-ray 
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photons in acquisition system is very prominent in mammographic images. 
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boundary 
Figure 3.2: 



          Chapter 3:  Pectoral Muscle Delineation 

                                                                                            61 
 

 

During breast cancer analysis, the presence of noise may bias the 

judgments of radiologist [Sauders, 2007]. Therefore an edge preserving 

noise removal using wiener filtering is performed on the mammographic 

image [Mayo, 2004]. An enhanced smoothing is performed in regions with 

less variance. Figure 3.3 shows the resultant image obtained after wiener 

filtering of mdb013 from MIAS database.  

 

 

 

 

 

 

 

 

 

Figure 3.3: Noise removal (a) original, (b) after Wiener filtering of  

                       mammogram, mdb013 

 

A global threshold is employed to obtain a binary image. The 

threshold, TH used for this operation is selected as 

 

where
minI  and maxI  are the minimum and maximum intensity value of 

image, I respectively. This value for TH was obtained empirically. 

The binary image with largest area connected component represents 

the breast region along with PM. The result obtained after thresholding 

operation is depicted in figure 3.4(a). The resultant image consists of 

various regions representing labels, opaque markers, wedges and breast 

region with PM. The connected components belonging to various regions 

are grouped together using eight connectivity [Mayo, 2004]. 

    
                           (a)                                                  (b) 

 

  )1.3(1.0maxmin  IITH
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                              (a)                                (b)                           (c) 

Figure 3.4:  

 

The largest connected component representing breast area including 

PM region is set to 1 and the rest is assigned as 0 as shown in figure 3.4(b). 

This component will act as a mask to extract the breast region from the 

mammographic image. The noise suppressed image after wiener filtering is 

multiplied by this mask to obtain the ROI, which includes the PM region 

and the breast region. This is illustrated in figure 3.4(c).   

 

3.3.1.2. Detection of orientation view of mammogram 

 An MLO view of mammographic image clearly shows the PM as a 

triangular region [Ma, 2007]. The orientation of the MLO view is found by 

checking the total number of nonzero pixels in a column at the boundary of 

ROI. For an LMLO view, the number of pixels in the column 

corresponding to the left boundary of ROI is more than that of right 

boundary.  

 

 

 

 

 

 

 

 

 
 

 

PM appears at the top left corner in an LMLO view and top right corner in 

an RMLO view of mammogram. In order to simplify the geometrical 

analysis of PM boundary, the algorithm is designed in such a way as to 

keep the position of PM region at left side of ROI. An ROI with PM at the 

right side is flipped to left so that the MLO view is left oriented and the PM 

Mammographic image, mdb013 after (a) thresholding operation 

(b) largest area component, (c) retained large area component in 

noise. 
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is always at the top-left corner. 

In the proposed method, the position of PM is determined by 

finding the nonzero pixels in a column lying ten pixels away from the left 

and right boundary of ROI. The reason for not choosing the left/ right 

boundary for pixel count is to avoid the defects or scanning imperfection at 

the boundary as found in the case of mdb085 [Suckling, 1994] shown in 

figure 3.5. 

 
 

 

 

 

 

 

 

 

 

 

 

 

3.3.1.3. Triangular ROI selection 

   The PM region occupies the top left corner of LMLO view of 

mammogram. Figure 3.6(b) depicts a mammogram after removing 

unwanted artifacts, labels, noise and background region of figure 3.6(a) 

from MIAS database.  Hence a triangular ROI is selected with the top 

leftmost pixel as one vertex and the bottom left pixel as the second vertex. 

A pixel located 50 pixels to the right of the first non-zero pixel on the first 

row, is selected as the third vertex of this triangle to account for 

imperfections if any that occurred during the thresholding operation in the 

       
  (a)                                                        (b) 

 
Figure 3.5: Boundary defect in a mammogram, mdb085 from MIAS 

database. (a) ROI including breast region and PM, (b) Enlarged 

portion of    defect on the boundary of ROI. Red circle encloses 

the defect on the boundary 
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preprocessing step. Figure 3.6(c) shows a triangular ROI of mdb004 from 

MIAS database after removing unwanted artifacts, labels, noise and 

background region. 

 

3.3.1.4. Contrast enhancement using gray level grouping  

              (GLG) 
     

    Enhancement of contrast improves the visual quality of an 

image. gray level grouping (GLG) proposed by Abidi [Chen, 2006], 

[Lakshmanan, 2008] is an efficient and effective automatic technique to 

enhance the contrast of medical images. GLG, a histogram based technique 

excels various conventional contrast enhancement techniques such as 

histogram equalization, Hanmandhu’s fuzzy based method [Hanmandhu, 

2006] etc.  GLG process tends to spread the histogram components 

uniformly over the grayscale, preventing the histogram components from 

concentrating on particular locations of the grayscale. The GLG algorithm 

outperformed other contrast stretching methods in increasing the contrast 

between the PM region and the breast region in the triangular ROI. The 

result of GLG contrast stretching for the image mdb004 from the MIAS 

mammographic database is shown in figure 3.6(d), where the boundary of 

PM is identifiable. 

  

 

 

 

 

 

 

 

Figure 3.6: Reduced ROI detection.  (a) Original image, mdb004 (b) flipped  

                  image after unwanted artifact removal, (c) triangular ROI (d)  

                  triangular ROI after contrast enhancement (reduced ROI). 

               
(a)                          (b)                       (c)             (d) 
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3.3.2.   Detection of major PM boundary segment 

   The enhanced triangular ROI consisting of PM and breast regions 

is used for finding the PM boundary. The PM region is nearly homogeneous 

with a sharp discontinuity at the border between PM and breast region. 

Hence the strong intensity variations in the enhanced triangular ROI are 

utilized for finding PM boundary segments. The following two methods are 

proposed for obtaining the suspected PM boundary segments: The first 

method extracts suspected PM boundary segments using contour segments 

of homogeneous regions obtained using SUSAN [Smith, 1997] filtering 

technique. In the second method, a multiscale decomposition is used for 

getting an approximation image. An edge detector on the coarse image 

yields strong edge structures. A technique for removing unwanted pixels 

from the edge structures generates suspected PM boundary segments. A 

major component of the PM boundary is selected from these segments 

using geometrical properties of the PM boundary. 

 

3.3.2.1.   METHOD 1: Using contours on homogeneous ROI 

                  The various steps involved in the first method for selecting 

major segment of PM boundary include  

1. Homogeneous region extraction  

2. Contour detection 

3. Detection of maximally stretched contour segments  

4. Selection of intersecting contour segments 

5. Selection of major PM boundary segment using orientation and 

eccentricity criteria 

6. Extension of major PM boundary segment to top and left borders 

 

3.3.2.1.1.   Homogeneous region extraction using SUSAN filtering 

The PM region with relatively high intensity values is roughly 

homogeneous [Kwok, 2004], [Ferrari, 2004]. The reduced ROI as shown in 

Figure 3.6(d) consists of regions of PM as well as breast. A homogeneous 
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region extraction method on reduced ROI groups similar intensity areas 

such as PM region.  In the proposed work, single univalue segment 

assimilating nucleus (SUSAN) [Smith, 1997] is used for extracting similar 

regions. It is a low level non-linear filtering technique for local 

segmentation. The local regions are formed on the basis of pixel intensity 

similarity. A circular mask is moved over the entire breast region for 

grouping regions with similar intensity.  Figure 3.7 shows a dark image on a 

white background. A circular mask shown in figure 3.7 at four different 

positions explains the SUSAN principle for grouping local regions. The 

center pixel of image region marked as red spot in figure 3.7, enclosed in 

the circular mask for processing is called nucleus. The locally grouped 

pixels with similar intensity value as that of nucleus are called univalue 

segment assimilating nucleus (USAN). Figure 3.7(b) shows USAN area of 

the circular mask in green shade. This technique isolates similar local 

structures of the image. The number of pixels assimilated in USAN area 

decides whether the nucleus belongs to a homogeneous, edge or corner 

region. The number of pixels in USAN area of a homogeneous region is 

very high compared to that of an edge which in turn is more than that of a 

corner region. The homogenous regions in an image are obtained using a 

circular mask of size 37 pixels. 

 

 

 

 

 

 

 

                   (a)                                                             (b) 

 

 

 

USAN 

Boundary of circular mask 

Nucleus 

Figure 3.7: Single univalue segment assimilating nucleus (SUSAN)           

principle. (a) Four circular mask with nucleus (red) placed a 

different position on an image for explaining SUSAN principle, (b) 

USAN area (green shade) 
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Figure 3.8: Single univalue segment assimilating nucleus (SUSAN) spatial  

                   filter mask 

 

The original function,  0,rrC  for checking the similarity is given in 

equation 3.2. 

where I is the image and r and 0r are the nucleus and a pixel enclosed in 

the USAN area respectively and t is a user defined brightness difference 

threshold. The value of t is obtained through empirical analysis. A smoother 

and stable form of equation 3.2 proposed by Smith [Smith, 1997] is used in 

the proposed method 1 and is given in equation 3.3.  

                              

6

0( ( ) ( )

0( , ) (3.3)

I r I r

t
C r r e

 
  
   

The representation of intensity similarity functions in equation 3.3 

and 3.4 are represented in figure 3.9 as ‘a’ and ’b’ respectively.  A smooth 

brightness comparison function is better than a sharp cut off function as the 

pixels brightness vary slightly without having much effect on C, even near 

the threshold. Noise suppression is also possible through the use of a 

smoothened profile than a sharp cut off spatial profile.   

 
Figure 3.9: Intensity similarity functions. Dotted curve (a) shows a sharp cut off  

                  function and continuous curve (b) represents a Gaussian function. 
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For each nucleus, the aggregate of C for each enclosed pixel is calculated as 

given in equation 3.4. 

               0 0, (3.4)
r

r r rn C
 

A modification in SUSAN filtering technique is employed here to 

obtain the homogeneous region rather than edge features in the triangular 

ROI. In the proposed method, for extracting a homogeneous region 

representing PM, the accumulated sum, )0(rn  is compared with a global 

threshold g=3nmax/4, where nmax is the maximum value of n, to obtain the 

response, R as given in equation 3.5. In the original SUSAN filtering 

method, a nucleus is included as an edge if the accumulated sum is less than 

g. 

     




 


otherwise

grnifrng
rR

0

00
0                                          (3.5) 

 

The value of R in equation 3.5 decides whether the pixel should be 

included in the local homogeneous region or not. Figure 3.10 shows the 

resultant image, mdb004 after applying homogeneous region extraction 

technique on reduced ROI. 

 

  

 
Homogeneous region extraction in mammogram, mdb004 using 

SUSAN filtering technique. 

 

Figure 3.10: 
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Figure 3.11:  

 

3.3.2.1.2.   Contour extraction 

       Contours are closed paths enclosing regions with uniform 

intensity. Contours represent the path of discontinuities. The locally 

grouped homogeneous regions in reduced ROI are extracted using contours. 

Figure 3.11 shows the contours of homogeneous region in mdb004. One of 

the regions inside the contours of reduced ROI represents the PM region. 

 

 

 

 

 

 

3.3.2.1.3.   Extraction of maximally stretched contour segments 

       The contours corresponding to each homogeneous region are 

closed paths enclosing the corresponding area. In an LMLO view of 

mammogram, PM region is roughly considered as a triangular area where 

the top and left side are borders of the mammographic image [Ferrari, 

2004], [Chandrasekhar, 2001], [Ma 2007]. The third side of PM region is in 

touch with breast area. In the proposed method, the contour of third side of 

the PM region in touch with breast area is selected for analyzing the 

properties of PM boundary. 

Contours of extracted homogeneous region in reduced ROI for 

mdb004. 
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The PM boundary segment is selected as a segment of a contour 

that has the maximum lengths in the direction of x and y axes, and labeled 

as the maximally stretched segment of that contour.  One of the maximally 

stretched contour segments for the ROI of the image mdb004 is shown in 

thick red colour in Figure 3.12.  

 

 

 

 

 

3.3.2.1.4. Selection of intersecting segments 

     The major PM boundary component is one of the maximally 

stretched contour segments in the ROI.  As the PM region in LMLO view 

of mammogram is always situated in the triangular ROI selected as 

discussed earlier, a line connecting the top-left corner to the midpoint of the 

hypotenuse of this triangle will always intersect the major PM boundary 

segment. Figure 3.13 shows such maximally stretched contour segments 

satisfying the criteria of intersection.  

Maximally streched contour segment extraction. One of the 

maximally streched contour segment of mdb004 representing 

PM boundary. 

Figure 3.12:  
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Figure 3.13:  

 

               
 

 

 

 

 

3.3.2.1.5. Selection of major PM boundary segment using  

                   orientation and eccentricity criteria 

 
The major segment corresponding to PM boundary is selected from 

the maximally stretched contour segments by analyzing geometrical 

properties such as orientation and eccentricity. The property of each 

maximally stretched contour segment is obtained by fitting it in an ellipsoid 

as shown in figure 3.14.  

 

 

 

  

 

 
Figure 3.14: Orientation angle of image region 

     

Major axis                         

 
Minor axis 
 

 

                                                                θ,orientation angle 
X-axis 

Maximally streched contour segments satisfying intersection 

criteria. Suspected PM boundary contours (red colour). Blue line 

represents intersecting line for finding suspected PM boundary. 
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The angle between the major axis and x-axis provides the 

orientation of a component. Here orientation angle of the PM boundary 

component (represented as major axis in figure 3.14) from the x-axis is 

supposed to lie between 30 and 80 degree [Ferrari, 2004]. Figure 3.15 

shows the suspected PM boundary components satisfying this orientation 

property. It is obvious that the number of suspicious PM boundary 

segments satisfying the orientation property can be more than one. 

Therefore the orientation property by itself is not enough to select the major 

PM boundary component from the suspicious contour segments. As the PM 

boundary is approximately a straight line [Ferrari, 2004], the eccentricity 

property is chosen as the next criteria for selecting major PM boundary 

component. 

 

 

Figure 3.15:  

 

 

Eccentricity of an elliptical region can be calculated either as the 

ratio of the distance between the foci of the ellipse and its major axis length 

or as the ratio of distance from the center to a focus and distance from that 

focus to a vertex. The range of eccentricity value is between 0 and 1 where 

Maximally stretched contour segments of mdb004 satisfying 

orientation property of PM boundary 
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0 indicates a circular region while 1 represents a line segment [Edward, 

2011]. Segments satisfying orientation property with an eccentricity value 

near to 1 are therefore better candidates to be selected as PM boundary 

component. In the proposed method, a major PM boundary segment is 

selected as the longest suspected segment having an eccentricity value 

greater than 0.99. Figure 3.16 depicts the major PM boundary segment of 

mdb004 obtained using method 1.   

 
Figure 3.16 : Major PM boundary segment satisfying eccentricity for mdb004. 

 
The major PM boundary segment is selected as the PM boundary if 

the endpoints are at the top and left boundary of mammogram. Otherwise 

an extension process based on neighbouring pixel intensity similarity is 

applied for extending this segment to the top boundary and the left 

boundary 

 

3.3.2.1.6.  Extension of major PM boundary segment 

      The principal PM boundary component can be extended to the 

top and left boundary of mammographic image by selecting pixels based on 

the assumption that the PM region is roughly of triangular shape. Figure 

3.17 shows the selection criteria to be considered while extending the major 
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PM boundary component. RP, VP, HP and DP in figure 3.17 represent 

reference pixel, vertical pixel, horizontal pixel, diagonal pixel respectively. 

From the reference pixel, the next neighbouring pixel to be included for 

extension can be vertical, horizontal or diagonal. For extending upwards, 

the neighbouring pixel in the outward direction is considered while an 

inward extension direction is utilized in the case of extensions towards left 

boundary. On comparison of intensity value of RP with that of VP, HP and 

DP, the pixel with nearest intensity value to that of RP can be identified and 

selected as next pixel for extension. Figure 3.18 depicts the extended major 

PM boundary component of mdb004 satisfying intersection, orientation and 

eccentricity criteria.   

 

 

 

 

(a)                                            (b) 

 

 

 

 

Figure 3.18: Extended PM boundary of mdb004 obtained using method 1. 

   

HP RP  

DP VP  

   

 VP DP 

 RP HP 

   

   

Figure 3.17:  

 

Extension of major PM boundary component (a) to top boundary   

(b) to left boundary of mammographic image. 
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3.3.2.2.   METHOD 2: Using edge detector on coarse ROI 

            In method 2, the PM boundary is extracted using the following 

steps  

1. Gaussian pyramid decomposition  

2. Canny edge detection  

3. Removal of unwanted pixels 

4. Selection of major PM boundary segment using orientation and 

eccentricity criteria 

5. Gaussian pyramid reconstruction 

6. Extension of major PM boundary segment 

 

3.3.2.2.1.   Gaussian pyramid decomposition  

A multiscale representation of images at various resolutions is 

useful in analyzing prominent features such as edge [Lopez, 2011]. A 

hierarchical representation is obtained by recursive low-pass filtering and 

downsampling. In the proposed method, a multiscale representation of 

mammographic region is obtained using a three level Gaussian 

decomposition with 9/7 filter [Burt, 1983].   Figure 3.19 illustrates the 

various stages of three level decomposition using Gaussian pyramid on 

enhanced triangular ROI. Here I0 is the original image, I1, I2 and Icoarse are 

the images at next levels with reduced resolution. Icoarse is the approximation 

or coarse image. Reduced resolution approximation is hierarchically 

obtained at each level.  

The strong edges such as the PM boundary are visible in the coarse 

resolution whereas weak edges are suppressed. Hence edge detection on 

coarse image generates prominent edges including PM border.  

 

3.3.2.2.2.   Canny edge detection at coarse level 

       Canny edge detection [Canny, 1986] with good localization 

features is used to detect and locate sharp discontinuities representing the 

PM boundary from the coarse image. Figure 3.20 illustrates the need for 



Chapter 3:  Pectoral Muscle Delineation 
 

76  
 

performing a three scale smoothening operation for the detection of edges. 

The disruption of strong edges obtained using approximation image at the 

third level are less compared to that in high resolution images.  

 

                                                                        

(a)                                   (b)                             (c)                         (d) 

Figure 3.19: Three level gaussian pyramid decomposition on mdb004 

 

 

                                                          
         (a)                                 (b)                                (c)                     (d) 

  

I0 

I1 

I2 

Icoarse *G     2 

*G     2 

*G     2 

I1 

I0 

I2 

Icoarse 

Canny edge detection on images obtained for a 3 level Gaussian 

pyramid decomposition on mdb004 
Figure 3.20: 
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In canny edge detection, a gradient operation is performed on a 

smoothened image. A double threshold is applied to detect the PM 

boundary.  Figure 3.21 illustrates the resultant edge structures obtained for 

mdb004 from MIAS database. In figure 3.21(a), a reduced ROI is utilized to 

get the edge image, whereas in figure 3.21(b), the entire image is used. It is 

obvious that the reduction to the ROI results in less number of false edges. 

     
                                       (a)                              (b) 

 

 

 

 

3.3.2.2.3.   Removal of unwanted pixels 

       PM region is roughly triangular in shape [Ferrari, 2004]. Hence 

the number of pixels in PM region narrows down while scanning from top 

to bottom. The possible pixel patterns of the edge components obtained for 

a PM boundary are shown in figure 3.22. For each edge component, 

analyzed from the top to bottom, RP denotes the reference pixel, HL the 

pixel horizontally left of RP, VD the pixel vertically down to RP and DDL 

the pixel diagonally left of RP. While scanning from top to bottom, the next 

RP may move in any of the three directions viz., DDL, HL or VD. Pixels in 

Edge structures of coarse representation of mdb004 (a) with 

reduced ROI, (b) on entire mammographic image. 

Figure 3.21: 
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Pixels involved in connected edge component (scanning from 

top  to bottom) 
Figure 3.22:  

 

the direction of HR2, i.e., two pixels to the right of RP, are removed as the 

PM with an approximate triangular shape will not extend to the right. 

 

 

 

 

 

 

 

 
 

Removal of such deviating pixels from the suspicious segments 

helps for an efficient analysis of properties of edge structures in later stages. 

Figure 3.23 shows the resultant image after removing these unwanted 

branches from the ROI for mdb004.  

 

         

 

 
 

3.3.2.2.4. Selection of major PM boundary segment using  

                  orientation and eccentricity criteria  
 

The connected components obtained after removing the unwanted 

pixel branches are utilized for selecting the major component representing 

PM boundary. The orientation and eccentricity properties mentioned in 

 
 

    

HL 
 

RP 
 

  

DDL VD      HR2 
 

   
  

Edge structures obtained after removing unwanted pixels on 

coarse image of reduced ROI. 

 

Figure 3.23:  
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section 3.3.2.1.5 are used for selecting a major PM boundary component 

from the suspicious segments. Figure 3.24 shows the retained suspicious 

segments of mdb004 within an orientation of 30
0
 to 80

0
. Among the 

retained structures, the component with a maximum eccentricity value is 

selected as the major PM boundary component. The retained structure is 

shown in figure 3.25. 

 
  

 

Figure 3.25: Edge component of mdb004 satisfying eccentricity property. 

 

 

Edge components of mdb004 satisfying orientation 

property of PM boundary 
Figure 3.24: 



Chapter 3:  Pectoral Muscle Delineation 
 

80  
 

3.3.2.2.5.   Gaussian pyramid reconstruction 

       A gaussian pyramid reconstruction [Burt, 1983] is performed 

with the major PM boundary component. The size of reconstructed image 

remains same size as that of original image used for decomposition. Figure 

3.26 illustrates the reconstructed image of major PM boundary segment. 

 

 
  

 

 

3.3.2.2.6.   Extension of major PM boundary segment 

       The major PM boundary component satisfying orientation and 

eccentricity criteria is extended to the top and left borders as per the method 

described in section 3.3.2.1.6.  Figure 3.27 depicts the result of PM 

boundary component of mdb004 obtained using method 2. 

 

3.4. Experimental setup and performance  

          measures 
   

  A total of 83 images from MIAS database [Suckling, 1994] taken 

for the experimental analysis are of size 1024x1024 with 200 µm sampling 

interval and 8-bit gray-level quantization. The 83 mammographic images of 

MIAS database that were used by Ferrari et al, [Ferrari, 2004] were 

Major PM boundary segment after Gaussian pyramid 

reconstruction 
Figure 3.26: 
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employed in the proposed method for PM boundary extraction.  

 

    
                                        (a)                                       (b) 

Figure 3.27: PM boundary of mdb004 drawn by (a) radiologist, (b) method 2 

 
 

The PM boundaries obtained were compared with ground-truth 

contours provided by Dr. Rangayyan, University of Calgary [Ferrari, 2004]. 

Performance evaluation and comparison of the proposed method with four 

methods from current literature [Ferrari, 2004], [Camilus, 2011], 

[Chakraborty, 2012] were conducted using three performance measures 

including the false positive average, false negative average and hausdorff 

distance [Ferrari, 2004], [Camilus, 2011], [Bajger, 2005], [Ma, 2007], 

[Huttenlocher, 1993]. The row normalized error [Bajger, 2005] of the 

proposed method was also computed to find out the average error per row. 

Figure 3.28 represents the false positive and false negative region 

for performance analysis. The PM boundary drawn by radiologists is 

selected as the reference for finding false positive and false negative region. 

False positive region is formed when the PM boundary generated by the 

proposed method is outside the ground truth boundary that is when the 
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detected PM boundary moves into the breast region. False positive region is 

calculated as the region outside the ground truth into the breast region, but 

inside the PM boundary formed by the proposed method. False negative 

region is obtained when the PM boundary drawn by the proposed method is 

inside the ground truth boundary, i.e., inside the PM region. False negative 

region is computed as the region outside the proposed algorithm detected 

PM boundary but inside the reference boundary. 

 

 

 
 

 

 
 

 

False positive average and false negative average are respectively the mean 

of false positive and false negative rates of all N images used for the 

evaluation, which are 83 in this case. These parameters, generally known as 

area normalized error (ANE) are dependent on the included area of PM 

region. The inclusion of PM region during image acquisition may vary 

according to the positioning of breast [Ma, 2007]. Hence row normalized 

error (RNE), which is independent of area of PM region, is also included in 

the proposed work as a performance measure. For RNE, the area between 

boundaries of PM drawn by radiologist and proposed method were 

normalized using total rows occupied by PM. The mismatch between the 

relative positions of boundaries obtained by proposed method and that 

drawn by radiologists is obtained using hausdorff distance. The various 

 
False positive region 

False negative region 

Radiologist marked 

boundary 

Proposed method marked 

boundary 

Figure 3.28: False positive and false negative region. Dotted line indicates 

the pectoral boundary drawn by radiologists whereas the 

solid line represents the PM boundary obtained by the 

proposed method. 
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performance measures such as false positive average (FPave), false negative 

average (FNave) and row normalized error (RNE) are defined below. 
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where value of m indicates the row size of the image, AR represents area of 

PM region marked by the radiologist, nr represents the maximum number 

of rows among radiologist and proposed method identified PM border, 

HCP(i) represents the horizontal coordinate in i
th 

row of PM boundary 

obtained using the proposed method, HCR(i) implies horizontal coordinate 

in i
th 

row of PM boundary drawn by radiologists, N represents the total 

number of images considered for performance analysis (here 83). The range 

of k is from 1 to N to find the average false positive and the average false 

negative. Hausdorff distance (HD) is defined as 

 

                 11.3,,,max RPhPRhPR,HD   
 

               12.3,minmax yxDPR,h
PyRx 



where  yxD ,  is the Euclidean distance between two points x and y.  

 

3.5. Results and discussion 

          The results obtained from the proposed method were compared with 

the ground-truth contours detected using hough and gabor based methods 

described in Ferrari et al, [Ferrari, 2004], watershed method by Camillus 

[Camillus, 2011] and average gradient method by Chakraborthy 

[Chakraborthy, 2012]. The average performance analysis for 83 
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mammographic images from MIAS database is indicated in table 3.1. 

Computationally efficient codes were developed in MATLAB 8.2 

computing environment, and the CPU had as the processor an AMD Athlon 

II X2 250- 3 GHz processor with 2 GB RAM. The average time taken for 

the first method was 41.8 second whereas the time taken by the second 

method was 3.72 second. It included 0.971 seconds for extracting the 

triangular ROI.  

 
Table 3.1. Performance analysis: Comparison of values reported for the  

                       proposed method with existing methods. 

Performance 

Measures 

Methods 

Hough 

(2004)
 

Gabor 

(2004) 

Watersh

ed 

(2011) 

Average 

gradient 

(2012) 

Method 1 

(contour) 

 

Method 2  

(multiscale) 

Hausdorff 

Distance  
33.16 22.69 19.25 19.28 17.09 15.31 

 

FP avg 

 

0.0198 

 

0.0058 

 

0.0085 

 

0.00422 

 

0.0030 

 

0.0028 

 

FN avg 

 

0.2519 

 

0.0577 

 

0.0488 

 

0.0393 

 

0.0421 

 

0.0367 

 
From table 3.1, it is evident that the performance measures 

calculated for the proposed method 2 is better compared to other techniques 

indicating that the results are closer to the ground truth PM boundary.  

The methods 1 and 2 were also evaluated for the RNE, and the 

results are illustrated in figure 3.29. In the proposed work, 5 pixels 

represent 1 mm. 97% of images considered in method 1 have an RNE error 

less than 4 mm per row whereas for the method 2 this figure is less than 

3mm. The proposed methods outperform the approach suggested by Ma 

[Ma, 2007], where RNE is considered as the parameter for evaluation for 

which the RNE similarly calculated, is less than 5 mm. 
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                                                        (a) 

 
   (b) 

 

 

 

 

 

The effectiveness of the algorithms to detect PM boundary were 

inspected by applying them on various types of mammographic images. 

Figures 3.30(b) and 3.30(c) demonstrate the boundary detection on mdb125 

which has a multilayered PM. The results obtained for the PM boundary are 

very close to the ground truth PM boundary as indicated in figure 3.30(a).  

The presence of dense tissue structures, small PM region, strong 

edges which are parallel to the PM boundary, misleading false edges are 

some of the major factors that could adversely affect the accurate 

delineation of PM boundary.  The proposed methods were found good in 

extracting the PM boundary from mammogram. The performance 
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Figure 3.29:   Histogram showing RNE of (a) method 1 and (b) method 2. 

The y axis represents the total number of images and x axis 

represents the pixel range. The first bar shows the number of 

images ith RNE in the range (0-5] pixels, whereas the second 

bar represents RNE in the range (5-10] 
[29]

.  
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evaluation metrics show that the method 2 is the best method for PM 

boundary delineation. 

 

 
  (a) 

 

   
                                 (b)                                               (c) 

  

PM boundary of mdb125 drawn by (a) radiologist, (b) method 1 

and (c) method 2. 
Figure 3.30: 
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Figure 3.31 presents the results for a mammographic image, 

mdb031 with a minuscule PM region. The small PM region is efficiently 

identified by the methods 1 and 2. 

 

 
                                                              (a) 

 

 
                          (b)                                                    (c) 

 PM boundary of mdb031 with small PM region using (a) 

ground truth information, (b) method 1 and (c) method 2. 

 

Figure 3.31: 
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The presence of dense tissues in the PM region can obscure the 

accurate detection of PM boundary. Figure 3.32(a) shows a dense glandular 

mammogram, mdb130 with the ground truth for the PM boundary marked 

by the radiologist. The PM boundary detected by methods 1 and 2 

respectively are shown as figure 3.32 (b) and figure 3.32 (c) respectively. It 

is observed that the proposed methods have succeeded in identifying the 

correct PM boundary for this dense mammogram.  

Figure 3.33 shows the results for a glandular noisy right oriented 

mammogram, mdb013 with small PM region. Both the proposed methods 

have identified the PM boundary. 

Figure 3.34 show the results for mdb028 from the MIAS database, 

which has a false edge that could obscure the true PM boundary. The 

methods 1 and 2 have succeeded in identifying the true boundary even in 

the presence of the false edge.  

Inaccurate detection is found is some dense images where the PM 

boundary is obscured by the presence of dense tissues. Figure 3.35 shows 

the results for a dense mammogram, mdb112, where the algorithms have 

not properly identified the PM boundary. 

In the later chapters, the second method is used due to its efficiency 

in PM boundary detection. Figure 3.36 depicts the result of the proposed 

method 2 for the mammographic image collected from Lakeshore Hospital, 

India. PM boundary coordinates thus obtained can be used to delineate PM 

region from a mammogram to generate breast region for further analysis of 

cancer. 

Figure 3.37 depicts the extracted breast region using method 2 for a 

mammogram collected from Lakeshore hospital, Kochi, India. The 

proposed method 2 is successful in delineating pectoral muscle boundary in 

cases where there are drastic intensity variations in pectoral muscle 

boundary.  
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                 (a) 

 

       
                                   (b)                                                   (c) 

 
PM boundary of mdb130 (dense breast) drawn by (a) 

radiologist, (b) method 1, (c) method 2. 

 

Figure 3.32: 
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                                                             (a) 

 

       
              (b)                                                 (c) 

 
PM boundary of mdb013 (a) flipped image. PM boundary 

drawn  

 

Figure 3.33: 
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  (a) 

 

      
                                (b)                                                     (c) 

 
PM boundary of (a) mdb028 drawn by (b) method 1and (c)  

method 2. 

Figure 3.34: 
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                                                         (a) 

 

     
 (b)                                                     (c) 

 
PM boundary marked on dense mammographic image, 

mdb112  

                    drawn by (a) radiologist, (b) method 1, (c) 

Figure 3.35: 
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(a)                                                             (b) 

 

 

 

 

3.6.   Summary 
 

 In this chapter, two novel methods were developed for the 

extraction of PM boundary. The MIAS mammographic database and 

mammograms of a representative set of Indian population, provided by 

Lakeshore hospital, Kochi, India, were employed to validate the algorithm. 

In the first method, suspicious PM boundary segments were extracted using 

contours of homogeneous regions. The second method used edge detection 

on a multiscale decomposed mammogram for identifying the suspicious 

segments of PM. Efficiency of the proposed methods were validated using 

performance measures such as false positive average, false negative 

average, row normalized error and hausdorff distance. The performance 

measures of proposed methods were evaluated with four methods from 

current literature and were promising. The performance metrics obtained 

for the proposed method 2 are better than method 1. The results of method 2 

PM boundary marked on a mammographic image obtained 

from Lakeshore hospital. (a) Original, (b) boundary marked by 

proposed method 2.   

Figure 3.36: 
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indicate that the ground truth is closely met by the algorithm. 

 

 
(a)                                                   (b) 

 

 
                                                            (c)                   

 
 

 
 
 
 
 
 
 

PM boundary of a mammogram obtained from Lakeshore 

hospital. (a) Original, (b) PM boundary marked using method 2 

and (c) the extracted breast region using detected PM boundary. 

Figure 3.37: 
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Chapter 4 

Detection and classification of architectural 

distortion 

 

Architectural distortion is the most commonly missed breast abnormality 

during visual examination of the mammogram and therefore its computer 

aided detection is challenging. A novel method for detecting architectural 

distortion is proposed in this chapter. The basis of the proposed method 

lies in the analysis of geometrical properties of abnormal patterns that 

correspond to architectural distortion in mammograms. Preprocessing 

methods are employed for the elimination of PM region from the 

mammogram. Regions that are candidates to contain centroids of 

architectural distortion are identified using a modification of the isotropic 

SUSAN filter. Edge features computed using phase congruency is thinned 

using gradient magnitude maximization. Three geometric properties 

namely eccentricity to retain near linear structures, perpendicular 

distance from each such structure to the centroid of the edges and 

quadrant support membership of these edge structures are used for 

finding features for classification. A feed-forward neural network, trained 

using a combination of backpropagation and a metaheuristic algorithm 

based on cuckoo search (CS)/ bat, is employed for classifying the 

suspicious regions as normal or malignant. The bat algorithm initialized 

classification yields a better sensitivity and specificity for the MIAS, 

DDSM and Lakeshore databases than CS initialized BPNN.  
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4.1. Introduction 

Architectural distortion (AD), a breast cancer symptom, is observed 

as a distortion of normal structure of breast tissues and is said to be the most 

commonly missed abnormality [Knutzen, 1993]. Normal breast tissue 

structures represented as curvilinear structures appear to converge towards 

the nipple whereas the abnormal tissues related to AD are straight lines that 

appear to emanate from a central region with no definite mass [Hashimoto, 

2011]. The point from which the linear radiating lines appear to originate is 

possibly located at the center of cancer [ACR, 1998]. According to the 

research conducted by Johnston [Johnston, 1991] on 308 biopsies of breast 

lesions, 67% were found to be AD and 80% of them were found to be 

invasive. 12 – 45% of breast carcinomas missed in mammography are 

found to be AD [Jasionowska, 2010]. The presence of subtle and uneven 

appearance of the abnormal structures corresponding to AD, normal breast 

parenchyma and dense tissues in mammogram make it difficult to identify 

the malignancy during screening [Sampat, 2005].  

The fine nature of abnormal structures corresponding to AD leads 

to false negative findings on screening mammograms [Matsubara, 2004]. 

The presence of AD symptom in a single view is dangerous and should be 

treated seriously [Hashimoto, 2011]. AD is usually associated with other 

abnormalities such as mass and microcalcification [ACR, 1998]. In the 

studies conducted by Knutzen and Gisvold for determining the likelihood of 

malignant diseases in 859 cases of mammogram, 14 out of 59 

architecturally distorted lesions were associated with calcifications 

[Knutzen, 1993].  AD is an important sign of malignancy as half to two-

third of the cases are often observed with other symptoms of breast cancer 

[Matsubara, 2004]. Radiologists detect AD by analyzing the breast structure 

for finding the presence of radiating structures from a central region or 

distortion at the edge of parenchyma. A comparison of various breast 

cancer detection in mammograms using computer aided techniques shows 
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that more research is required in the field of AD detection than detection of 

microcalcification and mass  [Baker, 2003]. The true positive detection of 

architecturally distorted abnormalities of breast reduces the mortality rate 

among women. 

AD, the indirect sign of malignancy, is a difficult to detect 

symptom in mammographic screening for early breast cancer detection.  

Among 300 cases of breast cancer affected mammographic images, 20% is 

due to indirect sign of malignancy such as AD, asymmetry, single dilated 

duct and increased density [Sickles, 1986]. A clear definition on 

characterization of normal mammograms is difficult [Kopans, 1989], 

[Bassett, 1997]. The different mammographic structures are visible due to 

the difference in attenuation coefficient. The normal breast structures 

consisting of ducts, blood vessels, ligaments, fibroglandular tissues etc. 

converge towards nipple whereas the architecturally distorted abnormal 

patterns concentrate towards the region of distortion [Rangayyan, 2013].  

The presence of overlapping normal breast tissues may appear as 

architecturally distorted structures which lead to false negative cases 

[Burrell, 1996]. According to Homer, [Homer, 1997], the identification of 

radiating breast structures corresponding to AD is more difficult than 

focally retracted structures. In dense mammogram, the fat trapped within 

fine spiculating structures surrounding the lesion appear as bright [Ellen, 

2007] making the detection of AD features difficult.  

According to Hashimoto [Hashimoto, 2011], the three major visible 

locations of AD are peripheral, central and subareolar positions of the 

breast region. Peripheral distortion retracts the edge of parenchyma. Central 

distortion at the center portion of fibroglandular tissue consists of numerous 

intersecting straight lines deviated from the direction towards nipple. 

Subareolar distortion is usually associated with nipple retraction. Central 

and subareolar distortions are more challenging than peripheral distortion. 

In dense breasts, the presence of breast parenchyma obstructs the visibility 

of abnormal lines representing AD. The subareolar region contains several 
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normal lines converging towards nipple. An isolation of abnormal 

structures in the subareolar region becomes difficult.   

Literature review of computer aided algorithms for early breast 

cancer detection shows that more volume of work has been undertaken for 

identification of microcalcification and mass symptoms on mammograms 

compared to AD [Baker, 2003]. 

 

4.2. Literature review 

Baeg [Baeg, 2002] achieved 90% sensitivity for detection of Architectural 

distortion using features based on a weighted gradient of the 

mammographic image. Training and testing of the method by back 

propagation neural network was conducted on 80 and 324 mammographic 

region respectively. Matsubara developed methods for AD detection for 17 

cases around skin line and 38 cases within mammary gland [Matsubara, 

2003].The technique for focal retraction detection utilizes features such as 

the size and position of depressed thick mammary gland regions by 

binarization and top-hat morphological operations. The technique for 

detecting AD within mammary glands exploits features such as isotropy 

index on linear structures of mammary gland with a high value of 

concentration index. These methods yielded sensitivity of 94% for focal 

retraction and 84% for malignancy within mammary glands. 

Ichikawa [Ichikawa, 2004] developed an automated computer aided 

method for detecting regions of AD. The mean curvature with positive sign 

is used to find the mammary glands. The concentration indices of linear 

structures extracted using mean curvature detect suspicious area of AD. A 

classification is performed using features such as size, mean pixel value, 

mean concentration index, mean isotropic index, contrast and features from 

the power spectrum. Experimental analysis on 94 mammographic images 

consisting of 41 architecturally distorted cases provided 76% accuracy and 

80% sensitivity. 
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 Guo [Guo, 2005] classified 40 mammographic ROI consisting of 

21 normal regions of interest and 19 abnormal ROI with AD using support 

vector machine and radial basis function neural network. The experimental 

results show that support vector machine and radial basis function neural 

network provides a classification accuracy of 72.5% and 65% respectively. 

Matsubara suggested a method [Matsubaraa, 2005] to detect AD by 

employing shape index and curvedness for extracting structures 

corresponding to mammary glands in density varying regions of 

mammographic images.   The direction of mammary gland structures 

situated in various radial areas originating from nipple is compared with the 

expected normal structures converging towards the nipple. The structures 

which are not aligned in the expected direction towards nipple are retained 

and others are rejected. A region with high value of concentration index is 

selected as suspicious.  

Sampat performed detection method with 80% sensitivity on 45 

architecturally distorted images in digital database for screening 

mammography (DDSM) [Sampat, 2005]. Linear structures representing AD 

are extracted by applying a filter on radon transform of the mammographic 

image. A threshold is applied to local peaks along the columns of 

transformed image to obtain linear structures in the image. Converging 

spiculations in the spatial domain are detected by applying a pair of radial 

spiculation filters on an inverse transformed image.  

Rangayyan [Rangayyan, 2006] detected potential sites of AD by 

analyzing phase portrait maps of selected core curvilinear structures using a 

Gabor filter bank. Nonmaximal suppression technique is used to identify 

core curvilinear structure pixels. The method applied on 19 mammograms 

from MIAS database yielded 84% sensitivity. In an AD method proposed 

by Nakayama [Nakayama, 2008], the linear structures of mammogram were 

identified by analyzing eigen values of hessian matrix on three scales. Six 

objective features consisting of convergence indices and distributions of 
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linear structures in the direction towards nipple in three scales distinguished 

the normal and abnormal region of interest with a sensitivity of 71.3%.  

Banik [Banik, 2009] obtained 80% sensitivity for detecting the 

possible sites of AD using Gabor filters, phase portrait modeling and 

classification. For each region, fractal dimension and haralick features were 

extracted. Out of these features, sum average, node value, difference 

variance, contrast, entropy, correlation, energy and fractal dimension were 

selected using the area under receiver operating characteristic (ROC) 

curves. Sequential forward selection and logistic regression were employed 

for the classification. Banik detected [Banik, 2011] probable regions of AD 

with 90% sensitivity using Gabor filters, phase portrait [Rangayyan, 2006] 

and features such as the angular spread of power and laws texture energy 

measures. The method was experimentally analyzed using 106 

mammograms, with 4224 regions of interest including 301 regions of AD. 

Rangayyan [Rangayyan, 2013] developed a computer aided algorithm for 

AD with 80% sensitivity based on the divergence of orientation patterns in 

a region from the expected pattern of orientation. As a preprocessing 

operation, the breast region is delineated from the mammographic image by 

otsu’s thresholding and morphological opening operation. The oriented 

patterns of breast region are obtained using a Gabor filter bank. The upper 

and lower breast boundaries are approximated using a polynomial curve. 

The deviation of breast tissue orientation from the expected orientation is 

utilized for detecting novel features such as index of divergence of spicules, 

radially weighted difference measure, angle-weighted difference measure, 

angle-weighted difference in the entropy of spicules etc. AD method 

proposed by Banik [Banik, 2013] based on Gabor filter, phase portrait 

analysis and classification using entropy based features achieved a 

sensitivity of 80%. The method was applied on 4,224 regions of interest 

with 301 malignant regions and the incorporated features included 

shannon’s entropy, tsallis entropy and rényi entropy for the classification. 
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  Zhiqiang [Zhiqiang, 2011] employed Gabor filter bank for the 

orientation estimation. Phase portrait template matching is performed at 

various scale for finding match with lesions of different size. Feature map is 

generated from phase portrait template at a particular scale for which a 

match with lesion is obtained. The maximum value and the entropy in the 

feature map indicating the likelihood of suspicious patterns are selected as 

features of AD. High values for both the features indicate that the region is 

architecturally distorted. A sensitivity of 93% is achieved for 500 abnormal 

and 1000 normal cases.  

A method for detecting AD proposed by Amit [Amit, 2012] on the 

MIAS database achieved a sensitivity of 89%. In this the orientation field 

obtained from an average orientation is used in the formation of a 

directional filter. Suspicious regions of AD are extracted as a directionally 

different region by employing the filtered output of the directional filter. 

The regions with low variations of spectral density and low density of 

closed contours represent an architecturally distorted region. 

Abhijith [Abhijith, 2013] proposed a method with 89.4% 

classification accuracy for differentiating the architecturally distorted 

regions and non architecturally distorted regions using control charts. ROI 

with size 128 by 128 are filtered using entropy to differentiate the distorted 

region from the normal. The linear patterns of filtered regions are extracted 

using Gabor filter. Shewhart control chart generates statistical measures and 

parameters for different orientations to generate a graphical plot which 

distinguishes architecturally distorted regions from normal regions. Otega 

obtained 87.5% sensitivity for detecting suspicious regions of Architectural 

distortion for 40 mammograms from DDSM [O'tega, 2014]. Features of 

CLAHE enhanced mammographic image were extracted using Gabor filter 

bank. Seven templates characterizing AD were created for finding a high 

value of cross correlation coefficient among Gabor filtered mammographic 

region and template. Such regions are considered suspicious areas of AD. 
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4.3. Detection and classification of architectural 
distortion 

 
The proposed method for AD focuses on finding the suspicious 

regions by analyzing the geometrical properties of edge structures within 

the ROI. The suspicious regions are extracted using a modified SUSAN 

filtering technique [Smith 1995], [Smith, 1996] which is explained in 

chapter 3. Thinned edges are extracted using phase congruency [Kovesi, 

1999] and gradient magnitude maximization [Canny, 1986]. Geometrical 

properties of these edges are then analyzed to extract features associated 

with these regions. A CS/ bat algorithm initialized back propagation 

algorithm is used for classifying regions into normal and abnormal. The 

flow chart of the proposed method is illustrated in figure 4.1. 

 

4.3.1.   Detection of suspicious regions 

      Most of the existing methods for detecting AD require processing 

of the entire mammogram for identification of abnormal region. In the 

proposed method, suspicious ROIs are selected from the entire breast region 

using a modified SUSAN filtering technique explained in section 3.3.2.1.1 

of chapter 3.  

 Figure 4.2 shows SUSAN filter outputs for mammograms from 

MIAS, Lakeshore hospital and DDSM databases respectively. The 

homogeneous regions of images are grouped together based on the intensity 

similarities. AD features are typically radiating spicules that emanate from 

small central homogeneous regions [Hashimoto 2011] that are captured by 

the isotropic SUSAN mask. The extracted regions include the abnormal as 

well as normal regions. 

The contours of homogeneous breast regions for the images in 

figure 4.2 are shown in figure 4.3. These contours are employed for 

detecting the radiating patterns that correspond to AD. However it is 

observed that the number of contours to be processed after their extraction 
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from the SUSAN filter output is large, which calls for employing a mask 

more tuned to the detection of AD features. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.1: Flowchart of the proposed method for architectural distortion  
                     detection 
 

4.3.1.1.   Spatial mask modification 

Various modifications of the spatial mask of SUSAN filter were 

performed to reduce the number of contours used for further processing, 

without missing out on any of the AD features. Figure 4.4 shows the 

different spatial masks that were tried out.  

Edge extraction and thinning 
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edge features 
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                          (a)                                  (b)                             (c) 

 
Figure 4.2:  
 
 
 

       
     (a)                               (b)                                    (c) 

 
                        (d)                                   (e)                                (f) 
                
 
    
 
 

Breast region and contours of breast region with ground truth 
information. Breast region of (a) mdb115 from MIAS database, (b) 
mammogram from Lakeshore hospital, (c) 1078LCC from DDSM 
database. Contours of (d) mdb115, (e) mammogram from Lakeshore 
hospital, (f) 1078LCC 

 

Figure 4.3: 

Images obtained after applying modified SUSAN filtering 
operation on mammograms from MIAS (mdb115), Lakeshore 
Hospital (LSH-RMLO-264412) and DDSM Database (1078-lcc).  
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4.3.1.2. Contour extraction 

Boundaries of region with iso-intensity are extracted by finding 

contours of breast image obtained using the modified SUSAN filters. Figure 

4.5 shows the contours of mammograms from the three databases 

employed, on applying the spatial masks in figure 4.4. 

 

 
  (a) 

    
             (b)                       (c)                         (d)                       (e) 
Figure 4.4: Different types of spatial mask for reducing the number of  
                     suspicious regions in breast region 
 
 

 
          (a)                        (b)                                  (c)                          (d) 

 
          (e)                            (f)                             (g)                            (h) 
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          (i)                            (j)                               (k)                            (l) 

 
         (m)                         (n)                               (o)                           (p) 

  
         (q)                           (r)                                 (s)                          (t) 
 
Figure 4.5:     

 
 

 

 
The spatial mask shown in figure 4.5(q) is found promising in 

finding regions with radiating patterns emanating from a central region. The 

radiating filter formed by modifying the SUSAN filter significantly reduces 

the number of processing regions without missing any of the origins of 

Spatial mask and resultant contours for mammograms as shown in 

4.3(a), 4.3(b) and 4.3(c) from MIAS (mdb115), Lakeshore 

hospital (LSH-RMLO-264412) and DDSM Database (1078-lcc) 

respectively. 
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abnormality. Figure 4.5(q) illustrates the effectiveness of the radiating mask 

in grouping the homogeneous regions of the mammogram, where the 

origins of the AD lie. When the radiating mask is employed, it is seen that 

the number of contours obtained (figure 4.5(r), 4.5(s), 4.5(t)) has been 

reduced significantly and the center of AD, indicated by the ground truth 

information is always seen to be included within one of the contours. It is 

observed that on an average, 32% computational savings is obtained with 

the radiating mask compared to the SUSAN mask. 
 

4.3.1.3. Detection of contour centroid 

Centroids of contours are computed from the contour coordinates 

[Bourke, 1998] as given below, to obtain the point of origin of AD.                                           

                              

 

                  

                 
 

Here xi and yi are the coordinates of the contour with i ranging from 

0 to N-1, N being the number of vertices in the contour. Cx and Cy are the 

coordinates of contour centroid and A is the contour area. The red spots in 

figure 4.6(b) represent the contour centroids of figure 4.6(a). 

 

4.3.1.4. Detection of suspicious regions of architectural 

distortion 

The identified centroids obtained are used for selecting ROIs. 

According to Sampat et al, [Sampat, 2005] the average length of 

architecturally distorted spicules measured by the radiologists is 17.3 ± 9.7 

mm. Hence ROIs centered on the identified centroid and large enough to 

include the largest spicule are considered. The size of this region depends 

on the resolution at which the images are digitized. Figure 4.7 shows breast 

regions with suspicious ROI of for mammograms from Lakeshore hospital, 
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Contours and centroids (red spots) of suspicious homogeneous 
region using radiating filter mask. (a), (b) and (c) are the 
contours and (d), (e) and (f) are the corresponding centroids of                    
mammograms of Lakeshore, MIAS and DDSM database as 
shown  in 4.3(a), 4.3(b) and 4.3(c).  
 

MIAS and DDSM databases. Geometrical properties of these suspicious 

regions are analyzed further for abnormality identification. 

 

 
                             (a)                                   (b)                          (c)                                 

 
                            (d)                                  (e)                             (f) 
Figure 4.6:  

 

 

 

4.3.2 Edge feature extraction  

Image features such as edge structures in a suspicious region of a 

mammogram can provide information regarding the presence of radiating 

patterns of AD. Though the gradient operators are good in edge feature 

extraction, there could be problems due to inaccurate localization and 

variations due to illumination and use of derivatives.  
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                   (a)                                           (b)                                   (c)               
Figure 4.7: Suspicious regions around each centroid of respective contours  
                    shown in Figure 4.6. 

 
In the proposed method, edge features are extracted using phase 

congruency [Kovesi, 1999], an energy based model employing log Gabor 

filter. Log Gabor functions are able to encode natural images more 

efficiently than ordinary Gabor functions, which would over represent the 

low frequency components and under-represent the high frequency 

components in any encoding. The advantage of log Gabor transform for 

radial filtering is that it is gaussian on a logarithmic scale and has zero DC 

components [Kovesi, 1999], [Zhiqiang, 2011], [David, 1987]. According to 

Morrone [Heeger, 1987], [Morrone, 1986], [Morrone, 1987], the features of 

an image are obtained at points where phase congruency is maximum. The 

phase congruency function is defined as  

 Phase congruency, PC(x)   

  
)4.4(

cos
max 2,0



 
 

n n

n
nn

A

xA 

  

where   n nn xA cos  represents the Fourier series expansion of a signal, 

nA  represents the amplitude of nth Fourier component,  xn  denotes the 

local phase of the Fourier component at position x and θ is the weighted 

phase angle of all the Fourier terms. The Taylors expansion of 



Chapter 4:  Detection and Classification of Architectural Distortion 

 

114 
 

 
2

1
2x

cos  in equation (4.4) shows that the phase congruency is 

maximum when the weighted standard deviation of phase angles is 

minimum.  In order to simplify the calculation of phase congruency, 

Venkatesh [Venkatesh, 1989] used peaks of local energy function for 

finding the points with maximum phase congruency, defined as 

 

                      Local energy function     )5.4((x)HxFxE, 22   

 
where )(xH is the Hilbert transform of )( xF . The phase congruency 

function which is directly proportional to energy function is given in 

equation (4.6). From equation (4.6), it is clear that the peak value of phase 

congruency corresponds to the peak value of energy. 

 

                                           )6.4()( 
n

nAxPCxE  

 Figure 4.8 shows the polar diagram of Fourier components at a 

point in a signal. The association among phase congruency, energy and the 

sum of Fourier amplitudes is illustrated in figure 4.8(b). Figure 4.8(b) 

shows the Fourier components plotted head to tail as complex vectors. 

)( xF is the original signal with removed DC component and )(xH , its 

Hilbert transform representing the summed vectors to the real and 

imaginary axis respectively. The magnitude of the summed vector is 

depicted as )( xE . From figure 4.8, it is clear that 

 
                                           n nn xAxE )7.4(cos   

 
From equations (4.6) and (4.7), phase congruency, PC is defined as 
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Instead of using Hilbert transform, local energy can be calculated by 

convolving the signal with a pair of filters in quadrature, i.e., the 

convolution is performed by odd and even symmetric filters with zero mean 

and same sum of squares value [Kovesi, 1999]. 

 

The transfer function of log Gabor filter is given in equation (4.9): 

                                      
       9.4)(

2
0

2
0 log2log  kexlg   

 

 

  

                         



                        

 

                                 

 

(a)                                                    (b) 
 
 
 
 
 
 

(a)                                                               (b) 
 
Figure 4.8: Polar diagram of the (a) components of a Fourier series at a point in  
                   a signal [33], (b) Fourier components plotted head to tail. 
  

where 0  is the center frequency of filter. In order to maintain a constant 

shape ratio,  0k  is kept constant for different values of 0 . For a scale n, 

let e
nM  and o

nM represent even symmetric (cosine) and odd symmetric 

(sine) wavelets for a signal I. The response vector obtained for this 
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quadrature filter pairs are given in equation (4.10). 

 

                             10.4,, o
n

e
nnn MxIMxIxoxe   

 

Amplitude of the transform at a wavelet scale, n is given in equation (4.11). 

                                              

 

Phase of the transform at a wavelet scale, n is given in equation (4.12). 

                                        12.4,2tan xoxeax nnn   

 

The plotting of response vectors for each scale is similar to that of 

Fourier components represented in figure 4.8. Hence F(x) is formed by 

projecting the summed response of the even filters to the axis corresponding 

to the output of even symmetric filter and H(x) is obtained by projecting the 

summed response of odd filters to the axis corresponding to the output of 

odd symmetric filter 

 

                                    13.4
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                                    14.4
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A group of log Gabor wavelets at N different scales and M 

orientations were used to compute phase congruency in two dimensions. A 

set of filters are generated by multiplying radial log Gabor filters and 

angular filters which filter the mammographic image. Log Gabor filters are 

calculated over N scales and angular filters are computed over M 

orientations. Thereafter the filtered image is converted back to spatial 

domain. For a particular orientation, a composite image is generated by 

 2 2( ) ( ) ( ) 4.11n n nA x e x o x   
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adding the filtered images obtained over the scales. A final edge image is 

formed combining all such composite images, by retaining pixel values 

from the composite image for orientations having the maximum magnitude. 

Figure 4.9 show the extracted edge features of mammographic images from 

Lakeshore hospital, MIAS and DDSM database respectively where a 

structural distortion is clearly visible in the abnormal regions.  

 

4.3.3. Thinning 

The suspicious regions of AD include normal structures such as 

blood vessels, ligaments, ducts, fibroglandular tissues etc. along with 

abnormal structures [Rangayyan, 2006]. The distributions of mammary 

gland are approximated to linear structures [Matsubara, 2004]. A 

subsequent thinning operation using gradient magnitude maximization 

[Canny, 1986] generates the strong edge structures. The obtained edge 

points are categorized into strong, weak and insignificant based on a double 

threshold value. The insignificant edge points are not included in the final 

set of edges. The strong edge points as well as weak edge points connected 

to strong edge points are included in the final edge set. 

Figure 4.10 shows strong edges of mammograms from MIAS, 

DDSM and Lakeshore hospital database after applying the thinning 

operation on edge features. The geometrical analysis of extracted strong 

edge structures differentiates the abnormal patterns from normal.  

 

4.3.4. Geometrical analysis of edge structures 

A suspicious region contains strong thinned edges associated with normal 

and abnormal structures. Geometrical analyses of these strong edge 

structures reduce the number of these normal structures. 
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(a)                                                (b) 

 
  (c) 
 
Figure 4.9:  

 

 

  

Edge features of mammograms from (a) MIAS, (b) Lakeshore 
hospital and (c) DDSM database obtained using phase 
congruency. Red circles indicates ground truth information 
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 (a)                                         (b) 

                         
                                  (c)                                   (d) 

                          
                                  (e)                                           (f) 

 
Figure 4.10:   
 

 
 

 

Strong edge structures: (a) Strong edge structures of breast region, (b) 
zoomed region of (a) in MIAS database. (c) Strong edge structures of 
breast region, (d) zoomed region of (c) in DDSM database. (e) Strong 
edge structures of breast region, (f) zoomed region of (e) in Lakeshore 
hospital. Red circles indicate ground truth information provided by 
the radiologists.  
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The geometrical properties incorporated in the proposed work are  

1. Eccentricity, to retain near linear structures. 

2. Perpendicular distance of thinned edge structures from the centroid. 

3. Quadrant support membership of edge structures. 

 
Features for classification are generated from these properties. 

Architecturally distorted structures are approximately linear [Rangayyan, 

2006]. Only those structures having eccentricity near to one are retained 

[Math, 2009], [Deneck, 2011]. Figure 4.11 shows linear structures in a 

normal and abnormal region of mdb115 from MIAS database. 

 
 

    
                                   (a)                                                   (b) 

    
                             (c)                                                (d) 
 
Figure 4.11:  
 
 
 

Linear structures: (a) and (c) shows the thinned structures 
of a malignant and normal region in mdb115 from MIAS 
database; (b) and (d) represents the corresponding linear 
structures. 
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The abnormal structures converge towards the central portion of 

AD [Hashimoto, 2011]. Hence in the method proposed, only the linear 

components converging towards the centroid of the region are retained. 

Each component is extended towards the boundary of the ROI. The 

components with shortest (perpendicular) distance from the centroid within 

a threshold (here taken as 4 mm) are retained.  

Figure 4.12 shows the results of converging linear structures for a 

normal and abnormal suspicious region on mammogram, mdb115 from 

MIAS database. 

 

    
                                 (a)                                                       (b) 

    
                               (c)                                                       (d) 
 
Figure 4.12:  

 

 

 

Converging lines. (a) Linear structures of a malignant 
region,(b) converging structures of (a), (c) linear structures of 
a normal region and (d) converging structures of (c) 
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Usually, the normal breast tissue structures converge towards 

nipple whereas abnormal structures appear to emanate from a central 

originating region [Hashimoto, 2011]. Here, the retained converging 

components may include linear structures oriented towards nipple. In order 

to remove normal lines extended through and beyond the identified centroid 

of suspicious region than ending there as in the case AD, two criteria based 

on quadrant division through the centroid is used.  

1. Quadrant crossing 

2. Quadrant slope 

 

The quadrant division of the ROI employs the centroid as the 

origin. If an edge structure exists across two quadrants, the possibility of it 

emanating from a region centered on the centroid of the converging 

structures is minimal, and such edge structures are removed. Figure 4.13 

shows the results of normal structure removal for normal and abnormal 

suspicious ROIs in mdb115.  

In addition, only those structures satisfying the corresponding 

quadrant slopes are retained as abnormal structures. For example, all 

lines emanating from the centroid, in the first quadrant, will have 

orientations in the range 0-900, in the second quadrant, orientations in the 

range 91-1800 and so on. Figure 4.14 shows the results after removing such 

structures.  

Figure 4.15 shows the structures so obtained for abnormal and 

normal ROIs for images from the MIAS database. Figure 4.16 shows 

similar results for images from the DDSM database. 

An initial set of thirteen features are extracted from the geometrical 

properties of these detected abnormal structures. The features employed are 

represented in table 4.1. This initial set is pruned in the next step and used 

to train a feed forward neural network [Rumelhart, 1986] to classify the 

suspected regions into sites of AD or normal regions. 
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                                  (a)                                                   (b) 

  
                                     (c)                                               (d) 
 

 
 
 

 

 

 

 

 
 
 
 
‘ 
 

Quadrant membership criteria 1. (a) Concentrating structures 
of a malignant ROI, (b) structures satisfying quadrant 
membership  criteria 1 of (a), (c) concentrating structures of a 
normal ROI, (d) structures satisfying quadrant membership 
criteria 1 of (c) for mdb115 of MIAS database. 

Figure 4.13: 
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                                  (a)                                                 (b) 

  
                      (c)                                                  (d) 

 
Figure 4.14:  

 
 

 

 

 
 
 

 
 
 
 
 
 
 
 

Quadrant membership criteria 2. (a) Concentrating structures of 
a  malignant ROI, (b) structures satisfying quadrant membership                       
criteria 2 of (a), (c) concentrating structures of a normal ROI, 
(d) structures satisfying quadrant membership criteria 2 of (c) 
for mdb115 of MIAS database. 
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                               (a)                                                         (b) 

          
                                 (e)                                                       (f) 
 
Figure 4.15:  

 

 

 

4.3.5. Classification 

A classification technique using features is essential to classify 

various regions of mammograms as normal or abnormal. The final step of 

the proposed method is to perform classification of suspicious regions of 

AD using various features extracted from the results of geometrical analysis 

of edge structures and backpropagation neural network (BPNN) 

[Rumelhart, 1986]. A BPNN with initial weights optimized by the CS 

algorithm [Xin-She Yang, 2014], [Jiao-hong, 2014] or bat algorithm [Yang, 

Abnormal structures in malignant and normal regions of                        
mammogram collected from MIAS database. Retained normal 
patterns in (a) malignant region of mdb155, (b) normal region 
of mdb155, (c) malignant region of mdb158 and (d) normal 
region of mdb158 



Chapter 4:  Detection and Classification of Architectural Distortion 

 

126 
 

2013] is used to classify the suspicious regions as normal and abnormal 

based on the selected features. The initial set of features is cross validated 

to generate an optimized set of features. The number of neurons in the 

hidden layers are optimized using the area under curve (AUC) [Hajian-

Tilaki, 2013]. 

 

    
                                   (a)                                                    (b) 

           
                       (c )                                                  (d) 

 
Figure 4.16:  

 

 

 

 

 

Abnormal Structures: (a) Abnormal structures in 
mammograms from DDSM database. Retained patterns in 
(a) malignant region of 3058_LCC, (b) normal region of 
3058_LCC, (c) malignant region of 3375_ RCC and normal 
region of 3375_RCC 
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4.3.5.1. Backpropagation neural network for 

classification 

Artificial neural networks (ANN) are biologically inspired 

classification algorithm consisting of input, output and hidden layers of 

neurons [Rumelhart, 1986]. Feed forward neural networks with BPNN is 

one of the popular category of ANN. The general structure of a BPNN 

network as shown in Figure 4.17 consists of at least three layers of neuron 

with first layer as input layer, second as hidden layer and third as output 

layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Architecture of a feed forward back propagation neural network 

 
Each node in the network is fully connected to all nodes in the next 

layer from input to output layer. Input patterns are given at the input layer. 

The number of nodes in the input layer is selected as the number of input 

patterns. A three layer feed forward back propagation neural network 

[Rumelhart, 1986] with one hidden layer is used in the proposed work for 

classification [Rumelhart, 1986], [Zhen-Guo, 2011].  
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Training and testing are the two major phases of a neural network 

classification technique. The main goal of training is to find best sets of 

weights and bias values for BPNN using gradient-descent search. Testing is 

to classify the given unknown input to various output classes. Learning 

process in the training stage is an iterative step. A supervised error based 

learning technique is used in BPNN for training purpose. Random values 

are used as the initial connecting weights. The inputs to a neuron multiplied 

by the corresponding weights are summed up to evaluate the activation 

function [Bekir, 2011] to generate output of each node. The output 

generated is actual output. The error is calculated on the basis of difference 

in desired output, DOutG and actual output, AOutG. The performance of the 

network model is improved by adjusting the weights on the basis of back 

propagated error. In the proposed work, sigmoid function is used as the 

activation function. Error at node, G at output layer is calculated as shown 

in equation (4.17),   

 
                           EG = AOutG (1-AOutG) (DOutG –AOutG)                     (4.17) 

where AOutG (1-AOutG) is the derivative of the activation function. The 

error of the output node, G is used to update the weight connecting nodes of 

hidden layer and output node. Let Wold be the old weight and Wnew be the 

new weight connecting node C of hidden layer and G of output layer. The 

updated weight, Wnew is calculated as given in equation (4.18) 

 
                         Wnew_CG= Wnew_CG +  α Wold_CG  + ( η EG AOutC)               (4.18) 
 
As the desired output at hidden layer, DOutC is not available, the error of 

node, C in hidden layer is obtained by backpropagating the error, EG at node 

G of output layer as given in equation (4.19). 

 
                          EC =  AOutC(1- AOutC)( EG   Wold_CG  )                           (4.19) 
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Weight of the hidden layer node is updated as 

 
                          Wnew_AC= Wold_AC  + α  Wold_AC  + η EC  AOutA                  (4.20) 

The learning process is repeated until the error is within a 

prescribed tolerance. In the proposed work, the iterative operation is 

performed until the training error decreases to 0.001. A large number of 

neurons in hidden layer results in slow convergence whereas less number 

reduces the reliability. Too fast or slow learning rate is not beneficial for the 

convergence of the neural network.  

The proposed method employed a learning rate, η of 0.8 which is in 

between 0.1 and 1, suggested by Li Min et al., [LiMin, 1994]. Momentum 

coefficient to avoid the error fluctuations in convergence was selected as 

0.7, which is advised to be in between 0.01 and 1 [Kumar, 2005]. Since 

large number of nodes in hidden layer reduces the converging speed and 

small number of nodes reduces reliability, we have initially selected the 

number of nodes in hidden layer as 13, same as that of the input. 

 

4.5.2. BPNN with metaheuristic optimization 

Metaheuristic approaches [Osman, 1996] were employed to 

initialize the BPNN with optimized weights to classify the suspicious ROIs 

as normal or abnormal. The major drawbacks of conventional BPNN 

algorithm are slow convergence speed, problems of local minima and the 

random choice of initial weights and bias. A proper initialization of weights 

and bias yields an ideal BPNN with high performance. If the selection of 

the weights and bias is improper, convergence of the algorithm will be very 

slow and the training process would take a long time. More importantly, the 

solutions could get trapped in local minima for problems with multiple 

solutions. 

Metaheuristic algorithms are stochastic optimization algorithms 

that work on randomization [Christian, 2003]. The optimized solution can 

be either a maximum or minimum depending upon the type of problem. 
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Diversification/ exploration and intensification/ exploitation are the two 

major factors of metaheuristic algorithms [Christian, 2003]. Intensification 

and diversification generates the solution on a local and global scale 

respectively. Diversification avoids local minima problem. The 

metaheuristic algorithms employed in this work to optimize the initial 

weights and bias of the BPNN are the CS and bat algorithm. This approach 

improves the sensitivity and specificity of the classification of the 

suspicious regions by the BPNN. 

 

4.3.5.2.1. Cuckoo search algorithm 

CS algorithm is a bio-inspired metaheuristic algorithm based on the 

breeding of cunning cuckoo birds [Yang, 2013]. Flight movement of many 

animals and insects is recognized as a random walk. Levy Flight is a 

random walk that is characterized by a series of straight jumps chosen from 

a heavy-tailed probability density function which is used to model the flight 

movement of birds and insects. In statistical terms, it is a stochastic 

algorithm for global optimization that finds a global minimum. Levy flight 

concept is used in CS Algorithm [Nazri, 2013]. Figure 4.18 shows the Levy 

flight distribution. Levy flights used in CS algorithm utilize a balanced 

combination of local and global random walk controlled by a probability

[0,1]ap  . 

The implementation of CS algorithm is based on three major 

assumptions as follows  

1. Each cuckoo lays single egg at a time in a randomly chosen host nest. 

2. The high quality eggs that survive best are permitted to the next 

generation.  

3. The number of host nest is fixed in advance. The host bird identifies the 

intruding egg with a probability, pa  [0, 1]. On recognizing intrusion, the 

host birds dispossess the parasitic egg or give up the nest for a new one. 
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.  

                             Figure 4.18: Levy flight distribution [Yan, 2009]. 

The pseudocode for CS algorithm is described in Appendix 2. CS 

algorithm starts with a set of possible solutions. Based on the fitness 

function, a randomly selected poor solution (egg in a nest) is replaced by a 

new and potentially better (cuckoo- egg) solution. Each egg in the nest 

represents a solution whereas the new solution is represented by cuckoo 

egg.  Levy flight is performed for generating new solutions. In the proposed 

method, each nest is assumed to occupy a single egg. The new solution is 

obtained by implementing the Levy flight as in equation (4.21). 

                                    21.4,1  sLevyxx t
i

t
i   

where 
1t

ix is the new solution for ith cuckoo, α is the step size scaling 

factor and s is the step length. The Levy flight provides a random walk 

whose random step length is drawn from a Levy distribution as per equation 

(4.22).
 
The step length, s needed for Levy flight distribution is given in 

equation (4.23) 

 
                                Levy ~ s-λ,   (1 < λ ≤ 3)                                           (4.22) 

                                 s = 



1

v

u
                                                                 (4.23) 

where u and v are obtained from the normal distribution as per equations 

(4.24), (4.25), (4.26) and (4.27). 

Normal Distribution 

Levy Flight Distribution 
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4.3.5.2.2. Bat algorithm 

Bat algorithm is a bio-inspired metaheuristic algorithm proposed by 

Xin-She Yang [Yang, 2013].  Bat algorithm makes use of the echolocation 

behavior of microbats. Bats emit very large and loud sound pulse in order to 

search/detect prey even in darkness. The sound pulse helps them to avoid 

obstacles, identify the type, distance and speed of the prey. Bats increase 

the loudness of pulse with a rate of 10 - 20 pulse/ sec while searching the 

prey. The pulse remains for around 8 - 10 ms with 25 khz – 150 khz 

frequency and 2 mm - 14 mm wavelength. On reaching near to the prey, the 

loudness is decreased whereas the pulse rate is increased to a rate of 200 

pulse/ sec. This algorithm is derived using echolocation behavior of bats 

with varying rate of pulse emission and loudness [Yang, 2013].  

The three major assumptions used in bat algorithm are as below: 

1. All bats use echolocation to sense distance, and they also ‘know’ the 

difference between food/ prey and background barriers in some 

manner. 

2. Bats fly randomly with velocity vi at position xi with a frequency fmin, 

varying wavelength λ and loudness A0 to search for prey. They can 

automatically adjust the wavelength (or frequency) of their emitted 

pulses and adjust the rate of pulse emission r ∈ [0, 1], depending on 

the proximity of their target.  
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3. Although the loudness can vary in many ways, we assume that the 

loudness varies from a large (positive) A0 to a minimum constant value 

Amin. 

The pseudocode for bat algorithm is described in Appendix 2. For a 

random bat fly, an adjustment in frequency parameter followed by an 

updation of velocity and position is performed according to the following 

equations (4.28), (4.29) and (4.30). 

  
 

                          
 

                          

 

where  1,0  is the random vector drawn from a uniform distribution. fi 

is the adjusted frequency. Here fmin and fmax are the minimum and maximum 

frequency, x* is the current best global position. The new solution is 

generated as given in equation (4.31). 

                        )31.4(t
oldnew Axx   

where ϵ Є[-1,1] and 
tA is the average loudness of the time step t.  

The loudness and pulse emission rate are updated at each iteration 

as in equations (4.32) and (4.33) 

                               

                      )32.4(1 t
i

t
i AA 

 
                           )33.4(exp101 trr i

t
i   

where α and γ are constants. The initial values of A and r are chosen 

randomly depending on the problem. 

 

4.3.5.2.3. Cuckoo search/ Bat BPNN classification 

BPNN with slow speed of convergence and local minima problem 

are optimized using metaheuristic optimization algorithm such as CS and 

bat algorithm. The optimized weights obtained using metaheuristics 
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algorithm is utilized for improving the efficiency of BPNN. The 

pseudocode for a CS/ bat initialized BPNN classification is given in 

appendix 2. 

 
4.3.6. Feature selection  

Feature selection provides a smaller but more distinguishing subset 

compared to the starting data, selecting the distinguishing features from a 

set of features and eliminating the irrelevant ones. The main goal of feature 

selection is to reduce the dimension of the data by finding a small set of 

important features that can give good classification performance. This 

results in both reduced processing time and increased classification 

accuracy [Uzer, 2013].  Feature selection requires a search strategy, 

sequential backward selection (SBS), to select candidate subsets and an 

objective function to evaluate these candidates. Here, k-fold cross-

validation method is utilized in order to increase the reliability in the phase 

of classification during the selection of features.  In k-fold cross-validation, 

the original sample is partitioned into k sub-samples randomly. Of the k 

sub-samples, a single sub-sample is retained as the validation data for 

testing the model, and the remaining k-1 sub-samples are used as training 

data. The cross-validation process is then repeated k times (the folds), with 

each of the k sub-samples used exactly once as the validation data. The 

average of k results from the folds gives the test accuracy of the algorithm.  

In this work, a set of thirteen features are extracted from the 

geometrical properties of the detected abnormal structures. These properties 

are represented in table 4.1. The performance of the method depends upon 

the features selected for classification [Rangayyan, 2013]. A set of 

optimized features are selected from the thirteen features using k-fold cross 

validation [Math, 2009]. Feature selection methods reduce the redundant set 

of features from the initial set thereby reducing the complexity of the neural 

network architecture [Girish, 2014]. A large number of features increases 
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the storage needs of the network. Unreliable and inaccurate classification 

and difficulty in generalization [Wang, 2008], [Nandi, 2006] are some of 

the disadvantages with increased number of features.  

Sequential backward selection is employed as the search strategy in 

the proposed method [Fukunaga, 1990]. Initially all features are included to 

check the classification performance. Elimination of a single feature is done 

until there is performance degradation. In order to evaluate the performance 

of the classifier by estimating the error rate, a 10 fold cross validation is 

performed. In 10 fold cross validation; training samples are randomly 

separated into 10 groups. For each trial, a single group is considered as a 

test set and the remaining 9 groups are used for training. The procedure is 

repeated with different test sets and the average estimate of 

misclassification rate. The optimal features selected from Table 1 are 1, 2, 

4, 8, 9, 10, 12 and 13. 

The possibility of over fitting is reduced by also optimizing the 

number of hidden layer neurons in the feed forward NN used for 

classification [Chen, 2006]. The initial set of thirteen features was optimally 

reduced to eight as discussed earlier, thereby reducing the number of input 

neurons from thirteen to eight. In order to reduce the number of hidden 

layer neurons, a backward approach [Ghana, 2013] is selected.  

Initially, the number of neurons in the hidden layer is selected by a 

rule of thumb [Saurabh, 2012]. According to this rule, the number of 

neurons in the hidden layer can be (1) in between the size of input and 

output layer or (2) the sum of size of output layer and two-third of the size 

of the input layer. Initially the number of hidden neurons is selected as six, 

as per the second rule of thumb. Now as per the first rule, the size of the 

hidden layer may go up to 8. Among the three possibilities for the number 

of hidden layer neurons (6, 7 or 8) as per the above rule of thumb, the 

optimal number is selected by finding the Area Under Curve (AUC) of the 

ROC (Receiver Operating Characteristics) curves [Hajian, 2013]  which are 

computed for all the three cases.  
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Table 4.1. Classification features of Architectural Distortion 
1. Total number of linear structures after applying eccentricity criteria in 

suspicious ROI  (TotL)  

2. Total number of converging lines :  (TotC) 

3. Total number of structures satisfying quadrant criteria1 (TotQ1) 

4. Total number of structures satisfying quadrant criteria2 (TotQ2) 

5. Normalized converging value, NorC is obtained as the ratio of total 

number of converging lines to the total number of linear structures

(NorC=TotC/TotL) 

6. Normalized quadrant criteria1, NorQ1 is obtained as the ratio of total 

number of structures satisfying quadrant criteria1 to the total number of 

linear structures (NorQ1=TotQ1/TotL) 

7. Normalized quadrant criteria2, NorQ2 is obtained as the ratio of total 

number of structures satisfying quadrant criteria2 to the total number of 

linear structures (NorQ2=TotQ2/TotL) 

8. Normalized quadrant criteria2-converging, NorQ2C obtained as the ratio 

of total number of structures satisfying quadrant criteria2 to the total 

number of converging lines (NorQ2C=TotQ2/TotC) 

9. Normalized stepwise quadrant criteria1, StQ1 is obtained as the total 

number of structures satisfying quadrant criteria1 to the total number of 

converging lines (StQ1 = TotQ1/TotC) 

10. Normalized stepwise quadrant criteria2, StQ2 is obtained as the total 

number of structures satisfying quadrant criteria2 to the total number of 

structures satisfying quadrant criteria1(StQ2 =TotQ2/TotQ1)  

11. Standard deviation of total lines, SDTot is obtained as the standard 

deviation among total number of linear structures, total number of 

converging lines, total number of structures satisfying quadrant criteria1 

and total number of structures satisfying quadrant criteria2, (SDTot 

=SD(TotL, TotC, TotQ1, TotQ2) 

12. Stepwise Standard deviation, SDSt is obtained as the standard deviation 

among Normalized stepwise quadrant criteria1 and Normalized stepwise 

quadrant criteria2 (SDSt = SD(StQ1, StQ2)) 

13. Standard deviation of normalized value, SDNor is obtained as the standard 

deviation among Normalized converging value, Normalized quadrant 

criteria1 and Normalized quadrant criteria2. ( SDNor = SD(NorC , 

NorQ1,NorQ2)) 

 

It is observed that the AUC is maximum for the case of seven neurons in 

hidden layer and thus the size of the feed forward NN was fixed as having 

eight input neurons, seven hidden layer neurons in a single hidden layer and 
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one neuron in the output layer.  Figure 4.19 depicts the training error for 

seven neurons in hidden layer. 

 

 

Figure 4.19: Training error for seven hidden neurons 

 

4.4. Experimental setup  

The experimental analyses were carried out on 60 images from 

MIAS database [Suckling, 1994], 100 images from DDSM databases 

[Paola, 2013], and 100 mammographic images from Lakeshore hospital, 

Kochi, India [Lakeshore hospital]. The results of mammograms obtained 

from Lakeshore hospital, India were verified by the senior radiologists, Dr. 

Suma M Jacob (M.D) and Dr. Thara Pratab (M.D) of Lakeshore hospital 

Kochi, India, who were associated with this research. For the MIAS and 

DDSM databases, the ground truth information provided was used for 

validation. 

The Lakeshore database that was created for the purpose of this 

research had digital mammograms (acquired using the Siemens 

MAMMOMAT 3000 NOVA digital mammograph), whereas both the 

MIAS and DDSM databases have been created by scanning x-ray films. 



Chapter 4:  Detection and Classification of Architectural Distortion 

 

138 
 

4.5. Results and discussion 

Detection of AD in a dense breast is a challenging task for the 

radiologists. Fat getting trapped in between radiating structures obscures the 

visibility of abnormalities [Ellen, 2007]. The proposed method focuses on 

distorted architecture and radiating structures for detecting AD patterns in 

dense breast. Figure 4.19 and figure 4.20 show the various steps involved in 

detecting the features from the ROIs (square regions within red and blue 

square border) that are detected by the radiating mask in a dense 

mammogram, (LSH_LCC_262437) collected from Lakeshore hospital, 

India. The ROI in red square border shown in figure 4.19 is positive for 

AD, whereas that in figure 4.20 is normal. The structures that are retained 

after the geometric analysis of the thinned edge features are seen to be 

distributed in different directions for the architecturally distorted region. 

The red circle shown in Figure 4.19(a) and 4.20(a) indicates the ground 

truth information provided by the radiologists.  

Figure 4.21 and 4.22 represents various steps involved with 

malignant and normal ROI of a mammogram (LSH_RMLO_237263) with 

abnormality at subareolar region. A focal retraction indicating malignancy 

is visible near the nipple. The right cranio caudal (RCC) view of above 

mammogram in figure 4.21 and 4.22 is depicted in figure 4.23 and 4.24. 

Figure 4.25 and 4.26 represents suspicious ROIs of a mammogram with 

focal retraction. Figure 4.27 shows the RCC view of mammogram 

(LSH_RMLO_1209) with focal retraction. 

Classification is performed for 60 images from MIAS database 

containing 101 ROIs (11 malignant and 90 normal ROIs), 100 images from 

DDSM database containing 599 ROIs (78 malignant and 521 normal ROIs) 

and 100 images collected from Lakeshore hospital database containing 454 

ROIs (30 malignant and 424 normal ROIs). A total of 28 ROIs (11 

malignant and 17 normal ROIs), 35 ROIs (13 malignant and 22 normal 

ROIs) and 30 ROIs (5 malignant and 25 normal ROIs) were used for 
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training Lakeshore, MIAS and DDSM database respectively. Specificity, 

sensitivity and accuracy were computed to evaluate the proposed algorithms 

and for comparison with other methods (these p arameters are explained in 

chapter 2). When the conventional BPNN was employed for the 

classification with the initial weights randomly initialized, the specificity 

and sensitivity values computed were 72% & 70%, 69% & 68% and 76% & 

75% respectively for the MIAS, DDSM and Lakeshore databases. These 

values are unacceptably low. However when the initial weights were found 

using the CS/ bat algorithms, there were significant improvements in the 

sensitivity and specificity values. The ROC curves for MIAS, DDSM and 

Lakeshore database using CS/ bat initialized BPNN are shown in figure 

4.28 and 4.29 respectively. 

Figure 4.31 shows the example of an erroneous classification for 

the case of a malignant mammogram (LSH_LMLO_262437) collected from 

Lakeshore hospital which was recognized as normal.  

The ROI extracted using modified SUSAN filter includes the 

region of malignancy. The classification step failed in identifying this dense 

mammogram as abnormal. The highly dense tissues present in the breast 

region obstruct the visibility of abnormal patterns which leads to 

misclassification. Even though the abnormal patterns obtained after 

geometrical analysis is distributed in different direction, the number of 

retained abnormal patterns are found less. However it is also to be observed 

that for the corresponding CC view shown in figure 4.25, the proposed 

method was successful in identifying the abnormality.  
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(a)                                         (b) 

     
                   (c)                                    (d)                              (e) 

      
        (f)                               (g)                                 (h) 

 
Figure 4.20: 
  
 
 
 
 
 
 

Malignant region of dense mammogram: 
LSH_LCC_262437). (a) Ground truth information in red 
circle, (b) suspicious ROIs (c) edge features, (d) thinned 
edge structures, (e) linear structures, (f) converging 
structures, (g) structures satisfying quadrant criteria1, 
(h) structures satisfying Quadrant criteria2 in malignant 
ROI of (b) with red border. 
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                                   (a)                                             (b)                            

    
                (c)                                        (d)                                     (e)          

 
                  (f)                                        (g)                                   (h)                 
 
Figure 4.21:   
 
 

Normal region of dense mammogram (LSH_LCC_262437). (a) 
Ground truth information in red circle, (b) suspicious ROIs (c) 
edge features, (d) thinned edge structures, (e) linear structures, 
(f) converging structures, (g) structures satisfying quadrant 
criteria1, (h) structures satisfying quadrant criteria 2 in normal 
ROI of (b) with red border 
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(a)                                (b)                                     (c) 

   
                 (d)                                        (e)                                     (f)   

   
                  (g)                                     (h)                                      (i) 
 
Figure 4.22:  

 
 
 
 
 
 

Mammogram (LSH_RCC_237263) with malignancy at sub 
areola region: (a) Ground truth information in red circle, (b) 
suspicious ROIs (c) malignant ROI, (d) edge features, (e) 
thinned edge structures, (f) linear structures, (g) converging 
structures, (h) structures satisfying quadrant criteria 1, 
(i) structures satisfying quadrant criteria 2 in malignant ROI of 
(b) with red border. 
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                   (a)                                     (b)                                    (c)                      

 
                 (d)                                        (e)                                      (f)   

   
                  (g)                                       (h)                                    (i) 
 
Figure 4.23:  
 
 
 
 
 
 
 

Normal region in a mammogram LSH_RCC_237263) with 
abnormality at sub areola region: (a) Ground truth information in 
red circle, (b) suspicious ROIs (c) normal ROI, (d) edge features, 
(e) thinned edge structures, (f) linear structures, (g) converging 
structures, (h) structures satisfying quadrant criteria 1, 
(i) structures satisfying quadrant criteria 2 in normal ROI of (b) 
with red border. 
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                 (a)                          (b)                                    (c)                      

   
                   (d)                                     (e)                                       (f)   

   
                   (g)                                      (h)                                       (i) 
 
Figure 4.24:  

 
Mammogram (LSH_RMLO_237263) with malignancy at sub                         
areola region:  (a) Ground truth information in red circle, (b)                      
suspicious ROIs (c) malignant ROI, (d) edge features, (e)                       
thinned edge structures, (f) linear structures, (g) converging                       
structures, (h) structures satisfying quadrant criteria 1,                       
(i) structures satisfying quadrant criteria 2 in malignant ROI of                       
(b) with red border 
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                 (a)                                (b)                                   (c)                      

                            
                    (d)                                    (e)                                      (f)   

  
                   (g)                                   (h)                                     (i) 
 
Figure 4.25:  

 
 
 
 
 
 
 

Normal region of a mammogram (LSH_RMLO_237263) with 
malignancy at sub areola region: (a) Ground truth information in 
red circle, (b) suspicious ROIs (c) normal ROI, (d) edge 
features, (e) thinned edge structures, (f) linear structures, (g) 
converging structures, (h) structures satisfying quadrant criteria 
1, (i) structures satisfying quadrant criteria2 in normal ROI of 
(b) with red border. 
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                   (a)                                   (b)                                 (c)                      

   
                (d)                                    (e)                                     (f)   

   
                 (g)                                   (h)                                   (i) 
 
Figure 4.26:  
 
 

 
 
 
 

Mammogram (LSH_RMLO_182539) with focal retraction: (a) 
Ground truth information in red circle, (b) suspicious ROIs(c) 
malignant ROI, (d) edge features, (e) thinned edge structures,(f) 
linear structures, (g) converging structures, (h) structures 
satisfying quadrant criteria 1, (i) structures satisfying quadrant 
criteria 2 in malignant ROI of (b) with red border. 
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                   (a)                                     (b)                                     (c)                      

   
                   (d)                                  (e)                                  (f)   

   
                   (g)                                 (h)                                   (i) 
 
Figure 4.27:  
 
 
 

 
 
 
 

Mammogram (LSH_RMLO_1209) with focally retracted 
malignancy: (a) Ground truth information in red circle, (b) 
suspicious ROIs, (c) malignant ROI, (d) edge features, (e) 
thinned edge structures, (f) linear structures, (g) converging 
structures, (h) structures satisfying quadrant criteria 1, 
(i) structures satisfying quadrant criteria 2 in malignant ROI of  
(b) with red border. 
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                 (a)                                    (b)                                 (c)                      

     
                  (d)                                  (e)                                      (f)   

   
               (g)                                   (h)                                      (i) 
 
Figure 4.28:  

 

 

 

 

 

 

Mammogram (LSH_RCC_1209) with RCC view of figure 4.26 
with focal retraction:  (a) Ground truth information in red circle, 
(b) suspicious ROIs, (c) malignant ROI, (d) edge features, (e) 
thinned edge structures, (f) linear structures, (g) converging 
structures, (h) structures satisfying quadrant criteria 1, 
(i) structures satisfying quadrant criteria 2 in malignant ROI of 
(b) with red border. 
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The CS initialized BPNN classification yields a sensitivity of 89%, 

89.8% and 97.6% and specificity of 90.9%, 85% and 96.7% respectively for 

the MIAS, DDSM and Lakeshore databases which is highly promising. 

Accuracy of the proposed method for Lakeshore database is 97.6% with 

0.2% FP/ image, MIAS database is 89.1% with 1,2% FP/ image and DDSM 

database is 89.1% with 2.5% FP/ image. 

The bat initialized BPNN classification yields a sensitivity of 90%, 

89.3% and 97.2% and specificity of 90.9%, 83.6% and 96.7% respectively 

for the MIAS, DDSM and Lakeshore databases which is highly promising. 

Accuracy of the proposed method for Lakeshore Database is 97.1% with 

0.2% FP/ image, MIAS database is 90.1% with 1.2% FP/ image and DDSM 

database is 88.6% with 2.6% FP/ image. The performance of the proposed 

method is compared against some state of the art methods in literature for 

DDSM and MIAS database respectively in the table 4.3 and table 4.4 

respectively. 

 

 
        (a) 
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       (b) 

 

            
       (c) 
 
Figure 4.29: ROC curves for CS BPNN classification of mammographic  
                       images collected from (a) MIAS database (b) DDSM database  
                       and (c) Lakeshore hospital. 
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       (a) 

              
          (b) 
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             (c) 

 
Figure 4.30:  

 
 
 
 

4.6. Summary 

The proposed method for detection of AD in mammograms shows 

immense potential. The images from MIAS and DDSM databases as well as 

images from a representative set of Indian populace from the Lakeshore 

hospital, Kochi were employed to validate the results. The accuracy of the 

proposed method was validated using performance measures. A BPNN 

initialized with the CS/ bat metaheuristic algorithm was employed for the 

classification of the detected ROIs into normal or with AD features. Use of 

metaheuristic algorithms to optimize the initial weights of the BPNN 

significantly improved specificity and sensitivity values. 

 

ROC curves for bat BPNN classification of 
mammographic images collected from (a)MIAS database 
(b) DDSM database and (c) Lakeshore hospital. 
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Malignant region of dense mammogram (LSH_LMLO_262437): 
(a) Ground truth information in red circle, (b) malignant ROI, (c) 
thinned edge structures, (d) linear structures, (e) converging 
structures, (f) structures satisfying quadrant criteria1, 
(g) structures satisfying quadrant criteria2 in malignant ROI  
 

   
(a)                                 (b)                              (c) 

    
             (d)                    (e)                       (f)                        (g)                                
Figure 4.31:  

 
 
 

 

Table 4.2. Comparison of classification results for DDSM database. 

Author Performance 

Matsubara et al., 

2004[Matsubara, 2004] 
80% sensitivity 

Sampat,2005[Sampat, 2005] 80% sensitivity with 14 FP/ image 

Magdalena Jasionowska, 

2010[Jasionowska, 2010] 
68% sensitivity with 0.86 FP/ image. 

Proposed work (CS/Bat

BPNN), 2015 

CS Bat  

89.8% 89.3% sensitivity 

85% 83.6% specificity 

89.1% with 2.5% 

FP/ image 

88.6% with 2.6%  

FP/ image 
accuracy 
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Table 4.3. Comparison of classification results for MIAS database. 

Author Performance 

Ayers and Rangayyan, 

2005 [Ayres, 2005] 
76.5% sensitivity, 76.4% specificity 

Özekes et al, 2005
[Özekes, 2005] 

89.02% accuracy 

Guo, 2005 [Guo, 2005] 72.5% accuracy 

Ayers and Rangayyan, 

2007 [Ayres, 2007] 
84% sensitivity with 4.5 FP/ image 

Amit Kamra et. al., 

2012 [Amit, 2012] 
89% sensitivity 

 

Anuradha et. al., 

2013[Anuradha, 2013] 

90 % sensitivity, 80 % specificity, 82.86 % 

accuracy 

Otega, 2013[otega, 2003] sensitivity, 79% 

Proposed work(CS/Bat

BPNN), 2015 

CS Bat  

89% 90% sensitivity 

90.9 89.3% specificity 

89.1% with 1.2% 

FP/image 

90.1% with 1.2% 

FP/image 
accuracy 
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Chapter 5 

Enhancement of microcalcification 

 

Visibility of the commonly occurring breast cancer symptom, 

microcalcification, can be improved by using computer aided techniques. 

In the proposed research work, approaches based on modulus maxima 

and zero crossings of contourlet transform were utilized to enhance 

microcalcification features. Parent-child relationship among the 

contourlet coefficients at various levels was employed to retain the strong 

edge information that corresponds to the relevant features and to 

minimize the artifacts. Contrast, target to background contrast ratio and 

contrast improvement index parameters are considered for performance 

evaluation of the enhancement algorithm. The MIAS mammographic 

image database was employed for testing the accuracy of the proposed 

method. The results illustrate the efficacy of the proposed method. 
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5.1. Introduction 

Mammography, the golden standard for breast cancer detection, is 

efficient in imaging breast changes up to two years before a physician can 

identify them [Hajar, 2012]. Mammograms are x-ray images consisting of 

various tissue structures, ligaments, blood vessels, ducts, abnormal 

structures etc. [Bao-Ning Zhang, 2015]. Enhancement techniques on 

mammography improve the visibility and quality of image thereby 

revealing the presence of abnormalities like microcalcification (MCC). The 

enhanced appearance of MCC helps radiologists in distinguishing the 

abnormal mammogram from the normal. When the x-ray beam passes 

through the compressed breast, the absorption of x-ray photons by calcium 

is ten times more than that of breast tissue [Cornelius, 2005]. Hence the 

visibility and capturing capacity of MCC is more in mammography than 

with other imaging modalities such as MRI and ultrasound [Cornelius, 

2005]. MCC is a non-palpable symptom of breast cancer. 

Even though the calcium deposits accumulated in breast duct 

appear on mammogram, detection through naked eye is difficult for the 

radiologist. MCCs are tiny white spots which appears brighter than the 

surrounding breast tissues and background. The size of MCC ranges from 

0.05 mm up to 1 mm [Tomislav, 2013]. The small size, subtle nature, low 

contrast, presence of noise and dense tissues reduce the visibility of MCC in 

mammogram. A cluster of MCC consists of approximately 10 to 100 single 

MCC findings with different size and irregular shape [Cornelius, 2005].  

Le Gal’s classification [Le Gal, 1973] of MCC is shown in figure 

5.1. According to Le Gal, there are five major types (type 1- 5) of 

classification with an increasing probability of malignancy. Type 1 is a 

benign MCC with 0% probability for malignancy. It usually appears as a 

‘ring’ or ‘tea cup’ shaped MCC.  The sediment calcification usually appears 

in micro cysts or in ecstatic ducts. Type 2 has 19% probability of 

malignancy with round shape, regularly punctiform but of variable size. 
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Type 3 is fine, powdery MCCs with a malignancy rate of 39%. Type 4 

MCCs are similar to those of type 2 but with variability in size, shape and 

irregular border. It has got 59% probability of malignancy. Type 5 is of 

worm like, linear or branching pattern of MCC with 100% probability of 

abnormality. 

 

     
         (a)            (b)                     (c)                      (d)                     (e) 

Figure 5.1: Le Gal’s classification of MCC 

5.2. Literature review 

There are several research works related to MCC detection 

[Cornelius, 2005]. All methods for the enhancement of MCC features try to 

improve the visibility of MCC using features such as discontinuous change 

in intensity, appearance at multiple resolution and orientation, global 

variation in texture, roughly circular shape etc. The literature survey shows 

that most of the MCC enhancement methods are based on various 

techniques including statistical measures, fuzzy based methods, multi-scale 

analysis, morphological operators, fractal analysis, modeling, background 

subtraction, unsharp masking etc.  

Strickland [Strickland, 1996] developed a two stage method based 

on undecimated Wavelet Transform (WT) using prewhitening matched 

filters for detecting gaussian objects such as MCCs. Chen [Chen, 1997] 

developed a method combining multiscale wavelet analysis and gaussian 

markov random field technique for detecting MCCs. Kim [Kimz, 1997] 

utilized first derivative and local statistics for enhancing MCCs in 

mammogram. Ted [Ted, 1998] applied a nonlinear thresholding method on 

high frequency sub-bands of daubechies 4 and daubechies 20 wavelets to 
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enhance the MCCs present in mammogram. The low frequency sub-band is 

suppressed to utilize the high frequency characteristics of the image. The 

local maxima locations in an image were used to represent MCCs as they 

appear as bright spots in mammogram [Bagci, 2002]. A fourth order 

statistic around maxima locations over sub-bands in adaptive WT isolates 

MCCs. Peter [Peter, 2003] suggested the use of integrated wavelets for the 

enhancement of multiscale structures such as MCCs in mammograms. A 

modified form of spot enhancement function is applied on wavelet 

coefficients. Wael [Wael, 2008] applied a method based on fractal 

modeling for enhancing MCCs embedded in inhomogeneous breast tissues 

of mammogram. 

A top-hat morphological operation proposed by Xinsheng 

[Xinsheng, 2009] with structuring element of different sizes and shapes 

highlight MCCs. Even though the method improves the visibility of MCCs, 

it also enhances the noise present in the image. Tomislav [Tomislav, 2010] 

recommended two different methods for MCC identification. In the first 

method of multifractal analysis, MCCs are detected in regions with high 

values of hölder exponent representing high local intensity variation and 

low values of its distribution indicating the occurrence of rare events. The 

second method extracts MCCs by iteratively performing a highpass filtering 

technique using top-hat and bottom-hat morphological operation. 

Balakumaran [Balakumaran, 2010] proposed a MCC enhancement method 

using dyadic WT.  Weighted detail sub-bands with low frequency sub-band 

assigned as zero are used for reconstruction. Fuzzy shell clustering 

algorithm is used for detecting MCCs from the reconstructed image. The 

method proposed by Mohanalin [Mohanalin, 2010] enhances MCCs with 

the help of fuzzy algorithm using tsallis entropy. The enhancement of 

mammary densities and the high time consumption are the disadvantages of 

the techniques. 

In the method proposed by Hashemi [Hashemi, 2012], the soft and 

hard thresholds based on statistical measures such as skewness and kurtosis 
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on coefficients of daubechies-2 (db2) WT were used to extract MCC. Hajar 

Moradmand [Hajar, 2012] analysed four different methods for enhancing 

MCCs: WT using five scales of asymmetric daubechies of order 8 

decomposition, contrast limited adaptive histogram equalization, 

morphological operation and unsharp masking. Among the four methods, 

wavelet based method reduced noise with MCC enhancement. Jaganath 

[Jaganath, 2012] compared two morphological techniques including top-hat 

and h-dome morphological processing for the enhancement of MCC. Chao 

[Chao, 2012] proposed an MCC detection method by retaining local 

maxima points obtained from the result of mean shift algorithm. A 

preprocessing method based on gaussian smoothing is used to remove noise 

from the mammogram. Marrocco proposed Watershed segmentation 

method Marrocco [Marrocco, 2012] to automatically detect MCCs. 

However the over segmentation due to watershed processing generates false 

positive results. Tay et al, [Tay, 2013] proposed a multilevel pyramidal 

decomposition to enhance the MCC features in mammograms. Instead of 

the usual low pass filter, a squeeze box filter is used for smoothing. The 

details are enhanced using a nonlinear function to enhance low contrast 

features without edge blurring. Zouari [Zouari, 2014] introduced a 

nonlinear stretching process for the identification of MCCs. A global and 

local application of nonlinear stretching increased the visual appearance of 

MCCs.  

Sundaram [Sundaram, 2014] proposed a technique to improve the 

visibility of MCCs by finding the malignancy in low contrast region as 

weak edges and high contrast region as strong edges. The strong and weak 

edges are obtained with average filter and unsharp mask respectively. 

Discrete WT is applied separately on images with weak and strong edges. 

Coefficients of sub-bands are modified on the basis of energy before 

reconstruction to yield an enhanced image with visible MCCs. Discrete WT 

coefficients of all sub-bands are enhanced by energy based mapping on 

strong and weak edge positions. Arya [Arya, 2015] proposed a 
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mammographic image enhancement algorithm using modulus maxima on 

coefficients of stationary WT. A high boost filtering operation on 

thresholded detail image with approximation coefficients set as zero is used 

for reconstruction.  Addition of reconstructed image on original image 

yields an enhanced image.  

 

5.3. Proposed methods 

Mammographic image composed by edges, textures and edge 

associated details oriented in different directions. While processing the 

image, all these details must be retained. An image transform is 

characterized by a set of basis functions. Efficiency of an image 

representation refers to the ability to capture significant information about 

an object of interest using a sparse description with few non-zero 

coefficients. Vanishing moments property is the key for the sparse 

expansion of piecewise smooth signals. For one dimensional piecewise 

smooth signals, wavelet is a right tool as they provides an optimal 

representation of signals. As natural images are not simply stacks of 1D 

piecewise scan lines; discontinuity points (i.e., edges) are usually located 

along smooth curves (ie. contours) owing to smooth boundaries of physical 

objects. Wavelets in two dimension are good at isolating the discontinuities 

at edge points, but will not sense the smoothness along the contours. Two 

dimensional separable wavelets have directional vanishing moments in the 

horizontal and vertical directions which make wavelets especially good in 

capturing horizontal and vertical edges. Thus the horizontal edges, vertical 

edges and edges oriented at    0
 alone are properly detected, as the 

wavelets employed have aspect ratio equal to one. This disadvantage is 

overcome with directional transforms such as contourlet transform (CT), 

which provide directionality and anisotropy property in addition to 

multiresolution and localization. Research in human visual system shows 

the importance of directional information in human visual perception. CT 
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has basis functions oriented at many directions in comparison with the only 

three directions of wavelets, are able to detect edges oriented along more 

directions as the basis functions appear at different aspect ratios depending 

on the scale. A contourlet expansion that satisfies the anisotropy scaling law 

and sufficient directional vanishing moments achieves the optimal non-

linear approximation behavior for two dimensional piecewise smooth 

functions with discontinuities along smooth curve [Do, 2005]. 

MCCs can be considered as objects defined by discontinuities or 

edges [Highnam, 1999]. Calcifications represent high spatial frequencies in 

the image [Sampat, 2005]. Thus, one approach to the calcification detection 

task is to localize the high spatial frequencies of the image. Many of the 

works in literature for the enhancement of MCCs are based on WT. Mallat 

and Zhong [Mallat, 1992] calculated the local maxima of discrete WT at 

each scale and formed a multiscale edge representation of an image which 

characterizes the shape of irregular structures while zero crossings of the 

WT were considered by Mallat [Mallat,1991]. The general wavelet based 

procedure for enhancing the MCCs present in a mammogram are 

decomposition using WT, modification of wavelet coefficients at various 

scales and reconstruction of image with modified coefficients [Arianna, 

2008]. Even though WT is good in capturing the points of discontinuities; 

there are some drawbacks for the WT. The directional information of WT is 

limited and confined only to the vertical, horizontal and diagonal directions 

[Do, 2001]. 

The proposed algorithms make use of the multiscale and 

directionality properties of the CT [Do, 2005] to enhance clinically 

important MCC features in mammograms. The detail coefficients of CT 

obtained from pyramidal decomposition having large absolute values 

correspond to sharp intensity changes indicating edges. The proposed 

methods enhance the sharp variation points indicating the possible 

occurrence of MCCs at the same time suppressing various artifacts. The 

algorithm makes use of the multiscale and directionality properties of the 
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CT at various levels. The high directional perceptiveness and anisotropy 

property of the needle-shaped elements of CT are very proficient in 

representing edges. Singularities can be identified by the presence of zero 

crossings/ modulus maxima of contourlet coefficients. The zero crossings/ 

modulus maxima of the CT at different scales with the directional 

characteristics satisfying the parent-child relationship can be used to locate 

the sharp variation points indicating MCCs in mammographic image. The 

algorithm of the proposed methods is given below. 

 

Step1: Extract contourlet coefficients using CT with four levels of 

directional decomposition on each of the three scale laplacian pyramid 

(LP). 

Step2: Apply zero crossings/ modulus maxima on corresponding 

directional sub-bands at different levels. 

Step3: Coefficients that hold parent–child relationships from finer to 

coarser levels are retained and others are pruned out. 

Step4: Contourlet coefficients of step1 are modified on the basis of retained 

coefficients in step3.  

Step5: Perform contourlet reconstruction with modified detail coefficients 

to yield enhanced image. 

 

5.3.1. Extraction of contourlet coefficients  

A region of MCC is distinguished from the normal area by 

identifying the tiny bright spots which are represented as sharp intensity 

discontinuities in the mammogram. An efficient frequency domain 

representation of mammogram is possible through transforms such as WTs, 

CTs etc. Compared to the WT, CT exhibits better approximation precision, 

excellent noise reduction, improved edge representation, efficiency in 

capturing fine details and high directionality in multiple scale with flexible 

aspect ratio. A singular curve is represented with less number of contourlet 

coefficients than wavelet coefficients [Do, 2001].  
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CT is a two dimensional transform with a capability to capture and 

link the discontinuity points to form linear structures. A smooth contour is 

obtained from the point of discontinuities. The contourlets have elongated 

supports at various scales, directions and aspect ratio. As the image is 

expanded with basis image as contour segments, the transform is coined as 

CT. Figure 5.2 describes the difference in the representation of a curve 

using basis elements of CT and WT.  

CT is also known as pyramidal directional filter bank (PDFB) [Do, 

2005]. The implementation of CT consists of two stages: multiscale 

decomposition and multidirectional decomposition. The multiscale 

decomposition is achieved using LP whereas the multidirectional 

decomposition is implemented with directional filter bank (DFB). 

 

 

(a)                                                                           (b) 

 

 

 
A representation of the analysis filter bank for computing CT is shown in 

figure 5.3. LP proposed by Burt and Adelson [Burt, 1983] is used for 

multiscale decomposition where a sampled lowpass result of original image 

and the difference between the original and the prediction are generated. 

Figure 5.4(a) and 5.4(b) depicts the analysis and synthesis of LP 

decomposition. A coarse approximation ‘c’ is obtained by decimating a low 

pass filtered version of original image, ‘x’. A prediction image, ‘p’ is 

generated by interpolating a low pass filtered version of coarse 

Figure 5.2: Representation of a curve using basis elements of (a) wavelet                    

transform and (b) contourlet transform 
[Do, 2001]
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approximation. A band pass image, ‘d’ is obtained by subtracting prediction 

image from original image.  

 

 

 

 

 

 

 

 

 

 

 
                                           (a) 

 

 
                                            (b) 

Figure 5.4: LP Decomposition. (a) Analysis. (b) Synthesis
 [Do, 2001]  

 

Further coarser approximations if needed, are obtained by 

decomposing the approximation image ‘c’ using additional levels of 

pyramidal decomposition as needed. Directional Information is obtained 

from the band pass image,‘d’, which is given as input to the DFB 

[Bamberger, 1992]. Efficient directional information at various scales can 

be obtained by the appropriate combination of the LP and DFB 

Figure 5.3: Block diagram of contourlet transform 
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decomposition. LP separates low frequency information to avoid leaking of 

low frequencies into directional sub-bands. 

DFB is implemented by an m-level binary tree decomposition using 

quincunx filter banks with fan filters leading to 2
m
 sub-bands of wedge-

shaped frequency partitioning as shown in figure 5.5. 

 

 

 

Quincunx filter bank partitions the frequency spectrum of input 

signal into horizontal and vertical channel with the help of fan filters [Do, 

2001]. DFB is constructed from two building blocks. Figure 5.6 depicts the 

two stages of DFB using fan filters.  

 

 

 

Q0, Q1   -   Quincunx downsampling 
F0, F1   -   Fan Filters 

F1 

F1 

F1 

F0 

F0 

F0 
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Second level 

Q0 

Q0 

Q1 

Q1 

Q1 

Q1 

 

 

 

 

 

 

First level 

Figure 5.5: Wedge shape frequency partition for a 3-level DFB 

decomposition that leads to 8 (2
3
) sub-bands

 [Do, 2001]
. 

Figure 5.6: DFB decomposition blocks in two level directional filterbank 

of figure 5.6.  
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The first building block, a two-channel quincunx filter bank with fan filters 

divides the two dimensional spectrum into two directions, horizontal and 

vertical. The sampling matrices, Q0 for the first and Q1 for second level is 

given as below.  

       )1.5(
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The overall sampling after first and second level is Q0 Q1 = 2.I2 or 

downsampling by two in each dimension. The generation of four sub-bands 

after the first two levels is shown in figure 5.7 (a). The quadrant response at 

the second stage is obtained using multi rate identity [Do, 2001]. The 

multirate identity for swapping the filtering and downsampling operation is 

shown in figure 5.8. The fan filters at the second level with the sampling 

matrix Q0 at the first level generates an equivalent filter with a quadrant 

frequency response. The fan filters at the first level with the filters with 

quadrant response generates the four directional sub-bands with wedge 

shape as shown in figure 5.7(b).  

 

 

 

 

 

                                             

 

 
 

 

 

 

 
. 

               

                   

                  

                  

  Subband 0 

 

  Subband 1 

 

 

  Subband 2 

 

 

   Subband 3 

 

(a) 

                                                         

                            (b) 

Directional subbands. (a) Impulse responses at first two level    

directional filter bank, (b) directional subbands of two level    

directional filter bank 

Figure 5.7: 
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Figure 5.9 represents a resampling operation on quincunx filter bank from 

third level of DFB in CT to obtain finer frequency division. The four 

unimodular matrix that are used for rotation or rearranging operation are R0, 

R1, R2 and R3 where 
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Another property of the resampling matrix is R0. R1= R2.R3 = I2, where I2 is 

a two dimensional identity matrix.  

 

 

 

 

 
 

 

Figure 5.10 shows the resampling operations for a mammographic 

region of mdb241 from MIAS database [Suckling, 1994] by resampling 

matrices R0, R1, R2 and R3. Figure 5.11 illustrates the various steps involved 

in a three stage DFB as shown in figure 5.10.  There are four different cases 

of QFB using resampling matrices R0, R1, R2 and R3 to obtain wedge shaped 

frequencies as shown in figure 5.11. A multidimensional multirate identity 

M M H (ω) H (M
T
ω) ≡ 

Ri H(ω) Ri 

)3.5(
10

11
1 







 
R

Figure 5.8: Swapping of filtering and downsampling operation using 

multirate identity
 [Do, 2001]

. 

 

Figure 5.9: Quincunx filter bank with resampling operation from third level 

of DFB in CT 
[Do, 2001]

. 

 



Chapter 5:  Microcalcification Enhancement 

178   

 

rule is applied from the third level onwards to obtain parallelogram filter 

response as shown in figure 5.12.  

 

 
                                                      (a) 

     
               (b)                           (c)                         (d)                             (e) 

 

 

 

 

According to smith form [Bamberger, 1992], the quincunx matrix 

can be represented as 

                                        Q0  =  R1D0R2  =   R2D1R1                                   (5.7) 

                                       Q1 = R0D0R3 = R3D1R0                                                              (5.8) 

where D0 and D1 are two dimensional diagonal matrix representing dyadic 

sampling. 

                                   )9.5( 
11

02
0 








D  

                                    )10.5( 
21

01
1 








D  

 

Hence the overall sampling matrices P0 and P1 of figure 5.12 are obtained 

as given in equation 5.11 and 5.12. 

                                      P0=R0Q0=D0R2                                                                             (5.11) 

                                      P1=R1Q1=D0R3                                                                             (5.12) 

Figure 5.10: Resampling operation on (a) a mammographic region of 

mdb241. Resultant image by resampling matrix (b) R0, (c) R1, 

(d) R2 and (e) R4. 

                     R3 
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Figure 5.11: Block diagram for a three level DFB of contourlet transform 
[Do,  

                                2001] 

 

 
 

 

 

 (a) 

 (b) 

Figure 5.12: Resampled responses of quincunx filter bank on third level of 
DFB. Parallelogram filters obtained after applying (a) resampling 

matrix, R0 and quincunx matrix, Q0 (b) resampling matrix, R1 and 

quincunx matrix, Q1 
[Do, 2001]

. 

 



Chapter 5:  Microcalcification Enhancement 

180   

 

Sinc type filters in CT provide the contourlet coefficients an infinite 

directional vanishing moment [Cunha, 2007]. Compared to WT, CT 

provides an optimal approximation of piecewise smooth signals due to the 

presence of directional vanishing moments [Do, 2001]. 

Efficiency of the proposed methods for enhancement is attributed to 

the preservation of directional information in CT. Impulse response of a 

bandpass arm at one level of contourlet decomposition constitutes the 

combined impulse responses of filters in LP as well as DFB. The direction 

of the combined impulse response is decided by the orientation of 

directional filters and the specified number of directional decomposition 

levels. The low pass filters employed at the LP stage are derived from the 

PKVA filters (Phoong, 1995) and the fan filters at the DFB stage are 

derived from the biorthogonal 9, 7 filters (Vetterli, 1992). The 9/7 filters in 

LP decomposition reduces interscale and interlocation mutual information 

of contourlet coefficients whereas PKVA filter in DFB is efficient in 

localizing edge direction by reducing interdirection mutual information of 

contourlet coefficients [Po, 2006].   

Figure 5.13 depicts the combined impulse response of bandpass 

arm of LP and the 8
th
 directional filter in the DFB, which is smooth enough, 

to be modelled as the second derivative of a smooth function, oriented in 

the direction of the impulse response of the corresponding directional filter.  

Figure 5.14 shows the resultant contourlet coefficients using a 

single level LP with four level of directional decomposition. The resultant 

sub-bands are oriented in sixteen different directions with each providing 

information in the corresponding direction. Contourlet coefficients of 

mammographic images can be used to locate the sharp variation points due 

to MCC features. 
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Figure 5.13: Combined impulse response of bandpass arm of LP and the 8
th
  

                     directional filter in the DFB 

 

 

 

Figure 5.14: Impulse response of the sub-bands after 4 level directional  

                     decomposition of CT 
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5.3.2. Singularity detection of contourlet coefficients 

using zero crossings/ modulus maxima 
 
MCCs which appear as bright spots in a mammogram are detected 

by finding the singularities or edges. The geometrical irregularities of an 

image such as edges are usually located along the smooth contours [Hubel, 

1962]. Usually the sharp discontinuities in an image are obtained by finding 

its first or second order derivatives [James, 2011]. The modulus of the first 

derivative has a local maximum in accordance with the zero crossings of 

the second derivative and hence to the singularities [Gonzales, 2007]. 

Mallat [Mallat, 1991] has shown that the WT has a sequence of local 

maxima that converges to a point at a finer scale even though the function is 

regular at that point. 

A simple method to find the sharp variations points are by finding 

the zero crossings/ local extrema of CT coefficients. The identification of 

zero crossings/ local extremas in the CT enable multiresolution 

implementations of the Marr-Hildreth [Marr, 1980] and canny edge 

detectors [Canny, 1986] respectively. For the case of identifying the zero-

crossings of the CT, only those  pixels whose contourlet coefficient values 

at a particular level having  sign changes in the direction that correspond to 

the particular sub-band, are retained. The edge information is formed using 

these retained zero crossing coefficients. In a similar manner edge 

information from the modulus maxima points in the direction corresponding 

to the particular sub-band may also be formed. A point x0 is modulus 

maximum if )()( 0xCfxCf  when x belongs to neighborhood of x0 where 

)(xCf is the CT of function f(x). In order to detect the contours of small 

structures as well as the boundaries of larger objects, several researchers in 

computer vision have introduced the concept of multiscale edge detection 

[Marr 1980], [Rosenfield 1971], [Witkin, 1980]. The bandpass image 

obtained after LP decomposition is partitioned into wedge shaped frequency 

sub-bands in various orientations by the DFB. Each sub band contains high 
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frequency information such as sharp intensity variation in the corresponding 

direction of orientation. While enhancing MCC features in the high 

frequency sub-bands, noise needs to be eliminated as it may interfere with 

the judgement by the radiologist. For this the relationships among the high 

frequency sub-band coefficients at various levels were exploited as 

described in the following section. 

 

5.3.3. Suspicious MCC detection using parent-child 

relationship in CT 

 
A parent-child relationship exists among contourlet coefficients 

along various scales similar to the spatial orientation tree concept of 

wavelet coefficients [Shapiro, 1993]. The parent-child relationship among 

strongly dependent coefficients at adjacent directions implemented using 

the DFB [Po 2006] is as follows: If the scale in which the children lie has 

twice as many directional sub-bands as the scale in which the parent lies, 

the four children will be in two adjacent directional sub-bands [Sudhakar, 

2006]. Figure 5.15 shows the case when the number of directional sub-

bands considered is the same at two adjacent levels of decomposition of the 

LP. 

In this example, a four level DFB was constructed at every stage of 

the LP decomposition, resulting in sixteen directional sub-bands at each 

resolution. Each of the sub-bands will contain information about edge 

features that are oriented in a particular direction. If there is a significant 

edge feature in a coarse sub-band, its children in the finer sub bands will 

also be significant. Clinically important MCC structures form edge features 

are present at more than one level of resolutions in the contourlet 

decomposition whereas edges due to image artifacts are very fine structures 

that are significant only at the finest resolutions.  Accordingly, a zero 

crossing/ modulus maxima tree is constructed based on the parent-child 

relationship among pixels as in figure 5.15.  
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The zero crossings/ modulus maxima in each directional sub-band 

are found out only in the direction of orientation of the impulse response of 

the filter, to be included in the zero crossing/ modulus maxima trees. The 

tree retains only those zero crossings/ modulus maxima that propagate to 

the coarser levels of the contourlet decompositions, while discarding those 

zero crossings/ modulus maxima that exist only at the finer resolutions. The 

coefficients in the sub-band images are selectively weighted to enhance the 

calcifications after considering the parent-child relationship. The isolated 

single pixel intensity changes, i.e., noise, are eliminated by retaining only 

those zero crossings/modulus maxima that hold a parent– child relationship 

from the coarsest level to the finest level of detail. These coefficients are 

added with decomposed coefficients before reconstruction. Thus if either a 

local modulus maxima or zero crossing is present at a coarse resolution, all 

child local modulus maxima or zero crossings will be searched for in the 

immediate finer resolution. If such features are detected, they will be 

retained, and other modulus maxima or zero crossings that do not propagate 

to the finest resolutions will be pruned. Thus the significant coefficients 

among directional sub-bands that potentially correspond to MCC features 

are retained and very minute structures attributed to noise are removed. The 

coefficients that correspond to significant edge features including MCC 

features are enhanced.  The inverse CT step is performed now with the 

modified directional sub-band coefficients to obtain an enhanced image. 

The features of an edge are described differently in different 

directions and at different resolution scales. This is decided by the level of 

the LP at which the DFB decomposition is performed. A three level LP 

decomposition with four level DFB decomposition in each scale was 

performed on the mammographic image as it was observed that further 

decompositions to coarser levels of the LP failed to capture MCC features.  

It was observed that enhancement using the local modulus maxima 

outperformed that with the local zero crossings. The maxima of the absolute 

value of the first derivative are sharp variation points, whereas the minima 
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correspond to slow variations.  Zero crossings give position information but 

do not differentiate small amplitude fluctuations from important 

discontinuities. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.15:  Parent-child relationships among the CT coefficients 

 

 

5.4. Performance measures 

The performance measures for analyzing the enhancement of breast 

region to identify MCC features while removing very tiny structures 

corresponding to noise are contrast [Morrow, 1992], contrast improvement 

index (CII) [Laine, 1994], target to background contrast (TBC), [Xinsheng, 

2009] and tenengrad criterion [Chen, 2006].The definitions of CII and 

contrast are defined as,                                               

                                  13.5
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where enhancedC  and originalC  are the contrasts for a mammogram in the 

enhanced and original images, respectively. 

The contrast, C of a region is defined by  
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where Imax  is the maximum luminance in the image and Imin  is the 

minimum luminance. In order to evaluate the visual appearance of the 

enhanced image, a quantitative measure, target to background Contrast 

Ratio using Variance (TBc) is considered, computed as below,         
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where   is the difference between the ratios of the mean gray in the 

foreground and background,
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level value in the foreground of enhanced image, mean gray-level value in 

the background of enhanced image, mean gray-level value in the 

foreground of original image, mean gray-level value in the background of 

original image, and  
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where 
o
f

  and 
e
f

 are the standard deviations of  the target in the original 

and enhanced image.  

The sharpness of the MCC enhanced mammogram image is also 

computed using the tenengrad criterion, which is based on gradient 

magnitude maximization. It is considered as one of the most robust and 

functionally accurate image quality measures [Chen, 2006]. The tenengrad 

value of an image, I is calculated from the gradient ),( yxI at each pixel

),( yx , where the partial derivatives are obtained by a high-pass filter, e.g., 
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the sobel operator, with the convolution kernels ix and iy. The gradient 

magnitude is given as 

                                     18.5²)),((²)),((),( yxIiyxIiyxS yx   

 

and the tenengrad criterion is formulated as 

                                    19.5),( 2
  x y yxSTEN  

 

for S(x,y) >T where T is a threshold. The image quality is usually 

considered higher if its Tenengrad value is larger.  

 

5.5. Results and discussion 

The database used for the proposed work is the MIAS 

mammographic database (Suckling, 1994l). The MIAS database contains 

322 images with 25 images having MCC features, with 13 cases diagnosed 

as malignant and 12 as benign. The proposed algorithm was tested on the 

25 images with MCCs and the performance measures were computed.  

The performances of the enhancement techniques using zero 

crossings/ modulus maxima of CT were compared. The low pass filters 

employed at the LP stage are derived from the PKVA filters [phoong, 1995] 

and the fan filters at the DFB stage are derived from the BIOR 9, 7 filters 

[Vetterli, 1992]. Three levels of the LP with four levels of the directional 

filter bank (i.e., 16 directional sub-bands) at each level of the LP 

decomposition were employed for the contourlet decomposition of the 

mammogram images. The PKVA filter is designed by Phoong, Kim, 

Vaidyanathan, and Ansari with support size of (23, 23) and (45, 45). The 

directional sub-band coefficients on either side of the selected modulus 

maxima are boosted by a factor of four. Only those elements in the 

directional sub-bands that lie on either side of the selected modulus maxima 

in the appropriate direction (decided by the orientation of the directional 

filter for that sub-band) are retained. In the figures, 5.16, 5.17 and 5.18, the 
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results with enhancement of the MCC features on various images from 

the MIAS mammographic image database are shown.  

 

 
(a)          

    
              (b)                                                       (c) 

    
  (d)                                                     (e) 

 

 

 

Figure 5.16:   Enhanced result of MDB 249. (a) Original. Enhanced results 

using (b) zero crossings coefficients of WT, (c) zero crossings 

coefficients of CT, (d) modulus maxima coefficients of WT and 

(e) modulus maxima coefficients of CT. 

 



       Chapter 5:  Microcalcification Enhancement 

189 

 

The enhancement using zero crossing/ modulus maxima features of 

the discrete WT coefficients, with the BIOR 6.8 wavelet and CT are shown 

for comparison. Figure 5.16 shows enhanced results of mdb 249 using 

singularities of WT and CT. Figure 5.17 shows enhanced results of mdb 

241 based on zero crossings of WT and CT along with modulus maxima of 

WT and CT. The enhanced results in figure 5.16 and 5.17 shows that the 

visibility of MCC is more in the method based on modulus maxima of CT 

compared to that of zero crossing of CT.  The visibility of MCC is more for 

methods based on CT compared to that of corresponding approaches on 

WT. Figure 5.18 provides a graphical plot of various performance measures 

such as TBc, contrast, contrast improvement index and TEN for few 

enhanced mammographic images based on zero crossings and modulus 

maxima of wavelet coefficients and contourlet coefficients. Visual quality 

of the enhanced images for the proposed approaches is obtained using the 

TBc parameter.   The contrast obtained in the reconstructed images is 

compared using the contrast and contrast improvement index (CII) 

parameters. The TEN value, a sharpness measure, which is found useful in 

medical images is found to be more in enhanced images compared to the 

original mammographic images.  There is a significant improvement in the 

values of TBc and contrast with the proposed method using modulus 

maxima technique, indicating that the enhanced image is visually superior 

with a larger contrast, to those with the method to which it was compared. 

The improvement in sharpness of modulus maxima technique is verified 

through the analysis of tenengrad. 

The proposed methods are effective in enhancing the regions of 

MCCs. These regions were formed by replacing the coarse sub image by an 

all-zero array in the reconstruction step. The enhanced locations of 

malignancy are clearly visible on the reconstructed image with suppressed 

approximation coefficients. A global thresholding operation is performed 

on the reconstructed image that is obtained after suppressing the coarse sub 

image in the reconstruction by the contourlet synthesis filter bank to 
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indicate the regions that have been enhanced. The high intensity MCCs 

above the threshold value can be highlighted from the rest of 

mammographic regions 

 

 
(a)          

      
                                 (b)                                                     (c) 

       
  (d)                                                     (e) 

   

 

 

Figure 5.17: Enhanced result of MDB 241. (a) Original. Enhanced results 

using (b) zero crossings coefficients of WT, (c) zero crossings 

coefficients of CT and (d) modulus maxima coefficients of WT 

and (e) modulus maxima coefficients of CT. 
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The images in figure 5.19, 5.20 and 5.21 indicate the regions where 

the enhancement has taken place. Figure 5.19, 5.20 and 5.21 shows the 

results of segmented MCCs in mdb 241, mdb 249 and mdb 245 using zero 

crossings of WT and zero crossings/ local extremas of CT respectively.  

Even though the segmented MCCs appears to lie within the ground 

truth circle represented by red color in figure 5.19 and 5.20, more MCCs 

within the malignant area is captured by the local extrema method using 

CT. Even though the ground truth information of distributed MCCs in mdb 

245 is not provided in the database, the local extrema method is found 

successful in extracting most of the MCCs in the region as verified by the 

radiologist.  
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                        (d)  Tenengrad Criterion (TEN) 

  

 

 

 

    

(c)  Target to Background Contrast Ratio (TBC) 
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WT-MM

CT-MM

Original
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(e)  Tenengrad Criterion (TEN) 

in expanded plot 
Figure 5.18:   Comparison of performance measures to evaluate 

contrast, visual quality and sharpness of enhanced 

mammographic images using zero crossings and 

modulus maxima on wavelet and contourlet coefficients. 

(a) contrast, (b) contrast improvement index, (c) target to 

background contrast ratio, (d) tenengrad criterion and (e) 

expanded plot of (d) excluding original. 
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                                                       (a) 

 
        (b)                                                (c) 

 
  (d)                                               (e) 

 

 

Figure. 5.19: Segmented MCCs. obtained for (a) mdb241 using (b) zero 

crossings of WT, (c) zero crossings of CT, (d) modulus 

maxima of WT and (e) modulus maxima of CT. Red circle 

shows ground truth information. 
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                                                     (a) 

      
  (b)                                                        (c)    

    
                             (d)                                                           (e)            

 

  Figure. 5.20: Segmented MCCs. obtained for (a) MDB 249 using (b) Zero 

crossings of WT, (c) zero crossings of CT, (d) modulus 

maxima of WT and (e) modulus maxima of CT. Red circle 

shows ground truth information. 
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                                                       (a) 

    
 (b)                                                      (c) 

    
                  (d)                                              (e)             

 

 

 

Figure. 5.21: Segmented MCCs. obtained for (a) mdb245 using (b) zero 

crossings of WT, (c) zero crossings of CT, (d) modulus 

maxima of WT and (e) modulus maxima of CT. 
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Table 5.1 illustrates a comparison of contrast improvement Index (CII) for 

the proposed methods with that of various methods proposed by Raj [Raj 

Kumar, 2011] and Arya [Arya, 2015]. It shows the variation of CII across 

various methods including proposed techniques used for images in MIAS as 

well as DDSM database. It is found that the proposed technique using 

modulus-maxima of CT techniques outperforms the other methods. 

 

Table 5.1: Comparison of contrast improvement index (CII) in various 

methods for MIAS and DDSM database 

Top Hat [Raj Kumar, 2011],  (MIAS database) 1.027 

Wavelet decomposition (Sure Shrink) [Raj Kumar, 2011],   

(MIAS database) 
1.165 

Top Hat +Sure Shrink[Raj Kumar, 2011], (MIAS database) 1.242 

Top Hat + level dependent Wavelet Shrink[Raj Kumar, 

2011], (MIAS database) 
1.203 

Shrink 1.203 Top Hat +Visual Shrink[Raj Kumar, 2011],     

(MIAS database) 
1.186 

Top Hat +level dependent Visual Shrink[Raj Kumar, 2011], 

(MIAS database) 
1.188 

Top Hat +modified level independent Visual Shrink[Raj 

Kumar, 2011], (MIAS database) 
1.185 

Top Hat +Bit Plane decomposition[Raj Kumar, 2011],         

(MIAS database) 
1.069 

Stationary WT (SWT) [Arya, 2015],  (MIAS database) 1.64 

CT – Zero Crossing [proposed 1],  (MIAS database) 1.84 

CT – Modulus Maxima [proposed 2],  (MIAS database) 1.85 

Modified Homomorphic Filtering based on background noise 

[Ravi, 2013], (DDSM database). 
1.1085 

CT – Zero Crossing [proposed1],  (DDSM database) 1.39447 

CT – Modulus Maxima [proposed2], (DDSM database) 1.401979 
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           (a)            (b)            (c)            (d) 

    

           (e)            (f)            (g)            (h) 

    

           (i)            (j)            (k)            (l) 

    

           (m)            (n)            (o)            (p) 

 

 

 

 

The algorithms were also tested on images obtained from the DDSM 

database. However statistics for enhancement of MCC features in 

mammograms have not been reported with the DDSM database other than 

for the parameter CII. For the MIAS database, the modulus maxima method 

achieved an improvement of 17.9% in visual appearance, 11.3% in contrast 

Figure. 5.22: Enhanced MCCs. obtained for mammograms including (a) 

4710_rmlo, (b) 1236_rcc, (c) 1152_lcc, (d) 4103_rcc using 

(i- l) zero crossings of CT and (m-p) modulus maxima of 

CT. The ground truth information of corresponding 

mammograms marked by radiologist is shown in (e-h). 
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and CII, 21.7% in noise reduction and 0.26% in sharpness compared to that 

of zero crossings method.  For the DDSM database, the modulus maxima 

method achieved 0.29% improvement in visual appearance, 0.71 % increase 

in contrast and 4.57% in CII, 0.29% improvement in noise reduction and 

improvement of 0.29% in sharpness compared to that of zero crossings 

method.  

5.6. Summary 
 

The proposed methods for enhancing MCCs in mammographic 

images show promising results. The images from MIAS database are 

employed to validate the results. The processed mammographic images 

enhanced using the modulus maxima/ zero crossings of CTs are 

significantly better in visual appearance, noise reduction, contrast and 

sharpness compared to the other methods. 
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Chapter 6 

Concluding remarks and future work 

 

The concluding remarks of various computer aided techniques 

discussed in earlier chapters for PM boundary delineation, MCC 

enhancement and AD detection and the scope of further work are 

presented in this chapter.  
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6.1. Concluding remarks 

Breast cancer stands as the second most threatening cancer among 

women in India. Detection of breast cancer in its early stage responds more 

effective to treatments which in turn reduce the mortality rate. 

Mammography, the gold standard as a screening tool is very helpful for the 

radiologist in providing an expert opinion. A second opinion using 

mammograms and computer aided techniques can assist the radiologists in 

providing accurate opinion thereby avoiding unnecessary biopsies. The 

GLOBOCON statistics clearly indicate that the lack of timely screening test 

in developing countries is the reason for high rate of mortality even though 

the incidence rate is less than that of developed countries [Ferlay, 2014]. As 

a result of this research, a database of mammograms for the Indian populace 

could be created with the help of mammogram images collected from the 

Lakeshore hospital. For evaluating the results, standard databases used by 

researchers worldwide, the MIAS database and the DDSM database were 

employed. 

The goal of the proposed thesis is to develop computer aided 

detection techniques to assist radiologists in providing a second opinion for 

identifying two major anomalies of breast cancer: MCC, the most 

commonly occurring anomaly and AD, the most commonly missed 

abnormality. The delineation of the PM region, so as to extract the breast 

region in the mammogram, is also addressed.  

The anatomy of breast, various breast imaging modalities, and the 

need for computer aided techniques for detection of breast cancer 

symptoms were discussed. The different types of breast cancer, incidence 

and mortality statistics, causes and the Bi-rads categories were also 

described. 

Two novel methods for detecting the PM boundary coordinates 

were investigated in this thesis. The difference in two methods lay in the 

extraction of strong edges including the PM boundary. The contours of the 
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homogeneous region were applied to generate the strong edges from an 

artifact removed mammogram in method 1. Edge detection using the canny 

edge detector on an approximation image obtained from the LP 

decomposition of the mammogram was employed in method 2. The PM 

boundary is selected from the edge structures obtained, after an analysis of 

the geometrical properties of such structures. The nearness of the computed 

PM boundary to the ground truth marked by the radiologists was verified 

using the performance metrics Hausdorff distance, false positive average 

and false negative average. Around 97% of images had an average row 

normalized error of 4 mm for method 1 and 3 mm for method 2. The 

obtained values indicated that the PM border extracted by the method 1 was 

closer to the ground truth compared to the method 2. Both methods were 

found to be superior to the works in current literature to which they were 

compared.  

A novel method for detecting architecturally distorted region is also 

proposed. In order to reduce the area of searching, homogeneous regions in 

mammograms were extracted using modified SUSAN filter. The strong 

edge structures of these regions were obtained using an energy based 

model. A geometrical evaluation of these thinned structures generated 13 

features. These features were used by a BPNN to classify the ROIs as 

normal or architecturally distorted. The specificity, sensitivity and accuracy 

were significantly improved by initializing the input weights and bias using 

metaheuristic algorithms: CS and Bat algorithm. The overfitting was 

addressed by k-fold cross validation for feature selection and reduction of 

hidden layer neurons.  The CS initialized BPNN classification yielded a 

sensitivity of 89%, 89.8% and 97.6% and specificity of 90.9%, 85% and 

96.7% respectively for the MIAS, DDSM and Lakeshore databases. 

Accuracy of the CS initialized BPNN classification for Lakeshore database 

was 97.6% with 0.2% FP/ image. For the MIAS database it was 89.1% with 

1.2% FP/ image and for the DDSM database it was 89.1% with 2.5% 

FP/image. The bat initialized BPNN classification yielded a sensitivity of 
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90%, 89.3% and 97.2% and specificity of 90.9%, 83.6% and 96.7% 

respectively for the MIAS, DDSM and Lakeshore databases. Accuracy of 

the bat initialized BPNN classification for the Lakeshore database was 

97.1% with 0.2% FP/ image, for the MIAS database 90.1% with 1.2% 

FP/image and for the DDSM database it was 88.6% with 2.6% FP/ image. 

The values obtained were superior to those for the methods in current 

literature to which the algorithms were compared, for the MIAS and DDSM 

databases. 

 The directionality properties of contourlet transform were 

employed to enhance the MCC edge features in the mammogram. The 

parent child relationship of the zero crossings and modulus maxima of the 

contourlet coefficients across the different scales were utilized to enhance 

the abnormality.  An analysis of the visual quality, noise reduction and 

contrast after the enhancement of the MCC features were performed using 

the Tenengrad criterion, peak signal to noise ratio, average signal to noise 

ratio, contrast measure and contrast improvement index. When the modulus 

maxima of the CT were used in MIAS and DDSM database it yielded an 

improvement in visual appearance, contrast, noise reduction and sharpness. 

These results were better than those obtained with the zero crossings of the 

CT.  

 

6.2. Future work 

Some proposals for future work are listed below. 

 

 Expansion of the Lakeshore database with more number of 

mammograms, with accompanying ground truth information 

 Evaluation of the MCC enhancement methods with larger databases 

and to develop a classifier for detection of malignancy from the 

MCC clusters 

 Classification techniques based on BPNN were employed in the 

research. Other more efficient classifiers could be tried out. 
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 Other areas that could be addressed include detection of bilateral 

asymmetry, spiculated lesions and masses. 
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Appendix 1: 

Database Specifications 

Research in computer-aided detection for mammography has been a 

challenging and active area of research. The publicly available 

mammography datasets such as the Mammographic Image Analysis Society 

(MIAS) (Suckling et al. 1994) and Digital Database for Screening 

Mammography (DDSM) (Heath et al. 1998) databases have been employed 

by researchers to develop and evaluate CAD schemes. This research work 

also includes a collection of mammographic images of Indian populace 

created from images obtained from the Lakeshore Hospital. 

 

1. MIAS DATABASE: Mammographic Image Analysis Society 

The Mammography Image Analysis Society (MIAS), based out of 

the University of Essex, U.K., is available at: 

http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html). The X-ray 

films in the database were selected from the United Kingdom National 

Breast Screening Programme and digitized with a Joyce-Lobel scanning 

microdensitometer to a resolution of 50 μm × 50 μm, a device linear in the 

optical density range 0-3.2 and representing each pixel with an 8-bit word. 

The database contains left and right breast images for 161 patients, and is 

available on a DAT-DDS tape. It consists of 322 images which belong to 

Normal, benign and malignant classes. There are 208 normal, 63 benign 

and 51 malignant (abnormal) images. It also includes radiologist's t̀ruth'-

markings on the locations of any abnormalities that may be present. The 

database has been reduced to a 200 micron pixel edge and padded/clipped 

so that all the images are 1024 by1024. Mammographic images are 

available via the Pilot European Image Processing Archive (PEIPA) of the 

University of Essex. Four types of abnormities (architectural distortions, 

stellate lesions, circumscribed mass and calcifications) are found in the 
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database. Consider the following description about an image, described 

using legends in 7 columns as shown in the example:  

mdb001  G  CIRC  B  535  425  197 

 

The Legends are described below. 

1st column: 

MIAS database reference number.  

2nd column: 

Character of background tissue:  

  F  Fatty 

  G  Fatty-glandular 

  D  Dense-glandular 

3rd column: 

Class of abnormality present:  

  CALC  Calcification 

  CIRC  Well-defined/circumscribed masses 

  SPIC  Spiculated masses 

  MISC  Other, ill-defined masses 

  ARCH  Architectural distortion 

  ASYM  Asymmetry 

  NORM  Normal 

4th column: 

Severity of abnormality;  

  B  Benign 

  M  Malignant 

5th, 6th columns: 

x,y image-coordinates of centre of abnormality.  

7th column: 

Approximate radius (in pixels) of a circle enclosing the abnormality  
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Other information regarding the database includes: 

 The list is arranged in pairs of films, where each pair represents the 

left (even filename numbers) and right mammograms (odd filename 

numbers) of a single patient.  

 The size of all the images is 1024 pixels x 1024 pixels. The images 

have been centered in the matrix.  

 When calcifications are present, centre locations and radii apply to 

clusters rather than individual calcifications. Coordinate system 

origin is the bottom-left corner.  

 In some cases calcifications are widely distributed throughout the 

image rather than concentrated at a single site. In these cases centre 

locations and radii are inappropriate and have been omitted.  

2. DSM Database: Digital Database for Screening Mammography  

     (DDSM)  

DDSM database is a resource for use by the mammographic image 

analysis research community. The images are available at: 

http://marathon.csee.usf.edu/ Mammography/Database.html. It is a 

collaborative effort between Massachusetts General Hospital, Sandia 

National Laboratories and the University of South Florida Computer 

Science and Engineering Department. The database contains 

approximately 2,500 studies, each one includes two images of each 

breast, along with some associated patient information (age at time of 

study, ACR breast density rating, subtlety rating for abnormalities, and 

ACR keyword description of abnormalities) and image information 

(scanner, spatial resolution, etc.). Images containing suspicious areas 

have associated pixel-level "ground truth" information about the 

locations and types of suspicious regions.  

The Digital Database for Screening Mammography is organized 

into "cases" and "volumes." A "case" is a collection of images and 

information corresponding to one mammography exam of one patient. 

A "volume" is simply a collection of cases collected together for 
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purposes of ease of distribution. All volumes are available on 8mm 

tape. Each case in this volume of cancer cases has at least one path-

proven cancer. Some cases contain more than one cancer in one breast, 

a cancer in each breast, or a cancer along with other 

abnormal/suspicious regions. The outlines of all regions have been 

transcribed from markings made by an experienced mammographer. 

Software provided in the site are useful both for accessing the 

mammogram and truth images and for calculating performance figures 

for automated image analysis algorithms. 

Each case consists of between 6 and 10 files, classified as four    

       categories: 

 "ics" file: contains some information about the images, such as the 

age of the patient, the size of the mammograms, whether or not a 

file exists for the overlay of abnormality outlines, etc.  

  "16-bit PGM" file: overview of the real mammograms. 

 "ljpeg" file: contains four image files that are compressed with 

lossless JPEG encoding.  

 "overlay" files: gives the keyword description for a given 

abnormality in each view, while normal cases will not have any 

overlay files.  

     

       3. Lakeshore Hospital Database  

This database was created for the purpose of this research from 

mammograms obtained from Lakeshore Hospital Kochi.  All images 

are digital mammograms obtained using the Siemens MAMMOMAT 

3000 NOVA mammograph. The results of mammograms obtained from 

Lakeshore Hospital, India are verified by the senior radiologists of 

Lakeshore Hospital who collaborated with this work. 

 

 

 



  

217 
 

Appendix 2: 

Pseudocode of CS/ Bat algorithm. 

 
1. CS Algorithm: 
 
The pseudo code for CS algorithm can be summarized as follows. 

Generate population xi , where i=1,2…..n for n number of host nests  

Evaluate the fitness function, Fi =f(xi) for all xi 

While (iteration < MaxGeneration) or (stopping criterion) 

           Generate a cuckoo egg, xj randomly from host nest using levy flight 

           Evaluate the fitness function, Fj =f(xj) 

           Get a random nest i among host nest n 

If Fi < Fj 

Replace xi with xj and Fi with Fj 

           Eliminate a fraction (pa) of worst nests.  

           Replace lost nests with new one  

           Evaluate the fitness of new nests. Find the best nest. 

End of while 

 

2. Bat algorithm: 

The pseudo code for Bat algorithm following the above assumption is given 

below. 

Initialize population such as position, xi  and velocity, vi for n number of 

Bats where i=1,2…..n  

Initialize parameters including frequency fi, pulse rate ri and loudness Ai  

Evaluate the fitness function, Fi =f(xi) for all xi 

While (t < MaxNoOfIteration) 

Generate new solutions by adjusting frequency and updating 

velocities and locations through local search 

  Evaluate new solutions according to the fitness function 

Update echolocation parameters 

Find the current best Bat, x* 

End of while 
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3. CS/ bat BPNN Algorithm 

The pseudocode for a CS/ Bat initialized BPNN classification is 

given below. 

 

CS/ Bat is initializes and passes the best weights to BPNN  

Load the training data  

While MSE < stopping criteria 

Initialize all cuckoo nests /Bat position & velocity 

Pass the cuckoo nests/Bat position & velocity as weights to network  

Feed forward neural network runs using the weights initialized with CS/  

                                                                                                                   Bat  

Calculate the error backward  

CS/Bat keeps on calculating the best possible weight at each epoch until  

                                                                                the network is converged. 
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