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ABSTRACT 
 

Post-transcriptional gene silencing by RNA interference is 

mediated by small interfering RNA called siRNA. This gene 

silencing mechanism can be exploited therapeutically to a wide 

variety of disease-associated targets, especially in AIDS, 

neurodegenerative diseases, cholesterol and cancer on mice with the 

hope of extending these approaches to treat humans. Over the recent 

past, a significant amount of work has been undertaken to understand 

the gene silencing mediated by exogenous siRNA. The design of 

efficient exogenous siRNA sequences is challenging because of many 

issues related to siRNA. While designing efficient siRNA, target 

mRNAs must be selected such that their corresponding siRNAs are 

likely to be efficient against that target and unlikely to accidentally 

silence other transcripts due to sequence similarity. So before doing 

gene silencing by siRNAs, it is essential to analyze their off-target 

effects in addition to their inhibition efficiency against a particular 

target. Hence designing exogenous siRNA with good knock-down 

efficiency and target specificity is an area of concern to be addressed. 

Some methods have been developed already by considering both 

inhibition efficiency and off-target possibility of siRNA against a 
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gene. Out of these methods, only a few have achieved good inhibition 

efficiency, specificity and sensitivity.  

 
The main focus of this thesis is to develop computational 

methods to optimize the efficiency of siRNA in terms of “inhibition 

capacity and off-target possibility” against target mRNAs with 

improved efficacy, which may be useful in the area of gene silencing 

and drug design for tumor development. This study aims to 

investigate the currently available siRNA prediction approaches and 

to devise a better computational approach to tackle the problem of 

siRNA efficacy by inhibition capacity and off-target possibility. The 

strength and limitations of the available approaches are investigated 

and taken into consideration for making improved solution. Thus the 

approaches proposed in this study extend some of the good scoring 

previous state of the art techniques by incorporating machine learning 

and statistical approaches and thermodynamic features like whole 

stacking energy to improve the prediction accuracy, inhibition 

efficiency, sensitivity and specificity. Here, we propose one Support 

Vector Machine (SVM) model, and two Artificial Neural Network 

(ANN) models for siRNA efficiency prediction. In SVM model, the 

classification property is used to classify whether the siRNA is 

efficient or inefficient in silencing a target gene. The first ANN 
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model, named siRNA Designer, is used for optimizing the inhibition 

efficiency of siRNA against target genes. The second ANN model, 

named Optimized siRNA Designer, OpsiD, produces efficient 

siRNAs with high inhibition efficiency to degrade target genes with 

improved sensitivity-specificity, and identifies the off-target knock-

down possibility of siRNA against non-target genes. The models are 

trained and tested against a large data set of siRNA sequences. The 

validations are conducted using Pearson Correlation Coefficient, 

Mathews Correlation Coefficient, Receiver Operating Characteristic 

analysis, Accuracy of prediction, Sensitivity and Specificity.  

 
It is found that the approach, OpsiD, is capable of predicting 

the inhibition capacity of siRNA against a target mRNA with 

improved results over the state of the art techniques. Also we are able 

to understand the influence of whole stacking energy on efficiency of 

siRNA. The model is further improved by including the ability to 

identify the “off-target possibility” of predicted siRNA on non-target 

genes. Thus the proposed model, OpsiD, can predict optimized 

siRNA by considering both “inhibition efficiency on target genes and 

off-target possibility on non-target genes”, with improved inhibition 

efficiency, specificity and sensitivity. Since we have taken efforts to 

optimize the siRNA efficacy in terms of “inhibition efficiency and off 
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target possibility”, we hope that the risk of “off-target effect” while 

doing gene silencing in various bioinformatics fields can be 

overcome to a great extent. These findings may provide new insights 

into cancer diagnosis, prognosis and therapy by gene silencing. The 

approach may be found useful for designing exogenous siRNA for 

therapeutic applications and gene silencing techniques in different 

areas of bioinformatics. 
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  Chapter  - . 1 .      

 IInnttrroodduuccttiioonn  
        

 

1.1 Relevance of siRNA Design 

1.2 Issues in Predicting Efficient siRNA 

1.3 How to Address the Predcition Issues? 

1.4 Research Problem  

1.5 Extending the State of the Art 

1.6 Goals and Objectives 

1.7 Research Method 

1.8 Organization of the Thesis 

 

 

1.1 Relevance of siRNA Prediction 
 RNA interference (RNAi) is a biological process which can 

control the gene regulation by sequence specific post-transcriptional 

gene silencing mechanism [1,2]. In functional genomic research, the 

discovery of RNAi has become much helpful in drug design and 

therapeutic applications because of its ability to perform gene 

silencing. It has great potential in future therapeutics as it has the 

ability to regulate many disease-associated genes. RNAi has been 

successfully used to target diseases such as AIDS [3], 

neurodegenerative diseases [4], cholesterol [5] and cancer [6] on 

Co
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mice with the hope of extending these approaches to treat humans. 

Post-transcriptional gene silencing by RNAi is mediated by small 

interfering RNA (siRNA). The siRNA molecules are double stranded 

nucleic acids approximately 19-21 nucleotide in length that act as the 

mediators of RNAi. siRNAs interact with their cognate messenger 

RNAs (mRNA) and subsequently trigger degradation of the target 

mRNAs in a sequence specific fashion. The consequence of mRNA 

degradation is a reduction in protein expression or gene silencing. 

This gene silencing mechanism can be exploited therapeutically to a 

wide variety of disease-associated targets [7-8], especially in cancer, 

which is formed because of uncontrolled cell proliferation due to 

malfunctioning of regular cell division process. Because the RNAi 

mechanism results in sequence specific mRNA degradation, it has the 

potential to realize cancer therapy by specifically attacking the cancer 

cells and minimizing the effect on normal healthy cells. siRNA 

molecules have the potential to revolutionize cancer therapy by 

providing highly potent and specific cancer cell killing ability with 

drastically reduced side effects. Recently, it has been reported that 

some research area of drug design in cancer therapy is concentrating 

to artificially inject exogenous siRNA capable of degrading the 

mRNA responsible for tumour development. Therefore, identification 

of efficient siRNA capable of degrading target mRNA responsible for 

tumor development is a key step towards the diagnosis and treatment 

of cancer. Thus siRNAs are new promising therapeutic agents that 

are perfectly suited for gene silencing and molecularly targeted 
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cancer therapy. siRNA can be endogenous or exogenous. The use of 

exogenous siRNA for performing gene silencing has become an 

important biological milestone for mRNA target identification and 

drug design [9-11] in various areas of bioinformatics.  

 

1.2 Issues in Predicting Efficient siRNA 
 A significant amount of work has been undertaken over the 

recent past to understand the gene silencing mediated by exogenous 

siRNA. Many models have been proposed to predict efficient siRNAs 

against target mRNA. Even though several algorithms and methods 

have been presented to predict efficiency of siRNA, only a few have 

achieved an acceptable level of efficacy, due to the following issues 

related to siRNA.  

 
From the siRNA related studies, it is understood that among 

all siRNAs that can be generated against a target mRNA, only a few 

are found successful in causing degradation and the efficiency of 

such siRNA differs in different target sites of same mRNA. However 

even those few do not perform equal knock-down effects [12]. Also, 

it was earlier understood that full complementary siRNA is needed to 

silence a target gene. But recent studies reveal that siRNA behaves 

like micro RNA (miRNA) and can suppress protein synthesis even 

though it is not fully complementary to the target. This shows that 

mismatches are allowed during target selection by siRNA [13-14]. 
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This may cause a very serious problem of “off-target effect” where 

unintended genes may be suppressed by selected siRNA [15-17].  

 

Like this, there are many challenges in connection with 

therapies using gene silencing techniques. Most important challenges 

are target specificity and effectiveness of delivery. These challenges 

may prevent effective practical applications of exogenous siRNA. 

The factors of siRNA like specific targeting, efficient delivery 

system, validated genes and the potent siRNA sequences are all vital 

important to overcome these barriers. So target specificity and 

efficient delivery of siRNA molecules for gene silencing is a serious 

research issue to be addressed. Special care must be given to design 

efficient methods to deliver and develop specific gene silencing 

therapeutics using siRNA in a  more safe and effective manner. 

 

1.3 How to Address the Predction Issues? 

 The design of effective siRNA sequences is challenging 

because the target mRNAs must be selected such that their 

corresponding siRNAs are likely to be efficient against that target and 

unlikely to accidentally silence other transcripts due to sequence 

similarity. Hence to design efficient siRNAs, the ability of knocking 

down target genes as well as the off-target possibility on any non-

target genes are to be considered. So before doing gene silencing by 

siRNAs, it is essential to analyze their off-target effects in addition to 

their inhibition efficiency against a particular target. Thus during 
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efficient exogenous siRNA design, the following points are to be 

addressed properly. 

• How to design siRNA with specific targeting and efficient 

delivery system such that 

o they are likely to be efficient against that target? 

o they are unlikely to accidentally silence other 

transcripts due to sequence similarity? 

 
• How to optimize the inhibition efficiency, prediction 

accuracy and off-target effect of siRNA? 

• What are the computational methodologies that can be 

used for the design? 

• How the efficiency of the computational method can be 

evaluated? 

 

1.4 Research Problem 
 The issues related to exogenous siRNA predcition must be 

meaningfully addressed. So designing efficient siRNA against target 

mRNA or gene, with good knock-down efficiency and target 

specificity is an area of concern to be addressed. The efficiency of 

siRNA must be optimized such that they are capable of inhibiting 

their target mRNA sequences without affecting any other genes. Thus 

to design siRNAs, two important concepts must be considered: the 

ability in knocking down target genes and the off- target possibility 

on any non-target genes. Only a few methods have been developed 
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by considering “both inhibition efficiency and off-target possibility” 

of siRNA against a gene.  

 
The main aim of this study is to propose soft computing 

approach for predicting efficient exogenous siRNAs capable of 

performing post-transcriptional gene silencing in mammalian 

cells, with high inhibition capacity on target genes and low off-

target possibility on non-target genes. The thesis also focuses on 

optimizing the efficiency of predicted exogenous siRNA over the 

state of the art techniques.  

 

1.5  Extending the State of the Art 
 The techniques emerged to explore the issues related to 

exogenous siRNA design are classified into two groups, first 

generation and second generation methods. As the first generation 

models were not able to achieve the targeted level of efficacy, there 

was a need to develop techniques to improve the efficiency of 

predicted siRNA. These second generation models are based on 

either artificial neural network or linear regression models.  Some of 

the good scoring second generation models like  BIOPREDsi [18], 

DSIR [19], ThermoComposition21 [20], i-Score [21], Scales [22], 

OptiRNA [23], siDRM [24], RNAxs [25],  siRecords [26], E-RNAi 

[27], MysiRNA-Designer [28], and MysiRNA [29], DISR [30], 

RNAiAtlas [31], siSPOTR [32] were developed by  introducing data 

mining techniques to  improve the efficiency of siRNA with their 
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experimental inhibition. Among these techniques, we have 

considered some good scoring methods to integrate with our 

technique. These methods are BIOPREDsi [18], DSIR [19], 

ThermoComposition21[20], i-Score [21] and  MysiRNA [29]. 

 
 BIOPREDsi [18], ThermoComposition21 [20], and MysiRNA 

[29] used the artificial neural network models, while DSIR [19] and i-

Score [21] used linear regression models. ThermoComposition21 

[20] improved the prediction accuracy by combined position 

dependent features together with thermodynamic features in single 

artificial neural network model. The prediction accuracy is improved 

in DSIR [19] and i-Score [21] using linear regression model. In 

MysiRNA [29], the prediction accuracy is further improved by 

artificial neural network model. The approaches proposed in this 

thesis extend these selected state of the art techniques, by 

incorporating machine learning and statistical techniques to improve 

the prediction accuracy and reduce the off-target possibility of 

siRNA.   

 

1.6  Goals and Objectives 
 In this study we  propose machine learning approach which 

optimizes the efficacy of predicted siRNA by inhibition efficiency 

and off-target possibility against  target  genes, which is  built on  

existing good scoring second generation models. 
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The main goals of the study are 

1. Design exogenous siRNA capable of performing post-

transcriptional gene silencing. 

 
2. Identify siRNA with high inhibition capacity against a target 

mRNA, with minimum off-target silencing.  

` 
3. Compare the efficiency of our approach with the state of the 

art techniques. 

 
The main Objectives of the study are 

1. Design efficient siRNAs for any target messenger RNAs 

(mRNAs) or complementary DNAs (cDNAs). 

 
2. Predict siRNA inhibition efficiency for a given target mRNA 

using  machine learning techniques. 

 
3. Improve the efficiency by including thermodynamic 

properties of  siRNA. 

 
4. Improve the efficacy of siRNA in terms of accuracy of 

prediction,  target specificity, sensitivity and inhibition 

capacity than those of the existing approaches. 

 
5. Optimize the siRNA efficacy by combined approach of 

“inhibition capacity and off-target possibility”. 
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1.7 Research Method 

 The following are the set of machine learning approaches 

proposed in this study for finding the efficiency of siRNA data. 

Based on these algorithms, the efficiency of siRNA against target 

mRNA were modeled and tested. 

 
i.  Support Vector Machine (SVM) model is used to classify and 

 observe the efficiency of   siRNA against target mRNA. 
 

ii. Two Artificial Neural Network (ANN) models are designed to 
 improve the efficiency of siRNA against target mRNA. 
 

 In SVM model, the classification property is used to classify 

whether the siRNA is efficient or inefficient in silencing a target gene 

[33]. Out of the two ANN models, first model is named as siRNA 

Designer and is used to optimize the inhibition efficiency of the 

predicted siRNA [34-35]. Second model is the optimized siRNA 

designer, OpsiD, which optimizes the prediction efficacy in terms of 

inhibition capacity, prediction accuracy, sensitivity-specificity and 

off-target possibility over the state of the art techniques using feed 

forward back propagation neural network model. The research 

method adopted for this study is shown in the block diagram (Fig. 

1.1). 
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Fig. 1.1: Research Method 
 
 
 
 
 
 
 
 



                                        Introduction 

11 

1.8 Organization of the Thesis 
The layout of the thesis is as follows: 

 
• Chapter 1 describes research problem, goals and 

objectives of the study. 

 
• Chapter 2 presents biological aspects of gene silencing by 

RNA interference mechanism and the potential of RNAi 

in genomics and therapeutics. 

 
• Chapter 3 serves as a brief literature review on relevant 

work on siRNA efficiency prediction for gene silencing. 
 

• Chapter 4 provides a brief description of materials and 

methods, machine learning approaches, frame works, 

training algorithms and validation strategies used in this 

study. 

 
• Chapter 5 presents the work done for predicting 

efficiency of siRNA by Support Vector Machines Model. 

 
• Chapter 6 describes the work done for optimizing the 

inhibition efficiency of predicted siRNA by Artificial 

Neural Network Model. 
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• Chapter 7 presents the work done for optimization of 

predicted siRNA in terms of inhibition efficiency, 

accuracy of prediction, sensitivity, specificity and off-

target possibility. 

 
• Chapter 8 describes the results and discussion. The 

performance evaluation and comparison with existing 

approaches are also done in this chapter.   

 
• Chapter 9 summarizes the contributions and some of the 

limitations as well as future scope of the study. 

 

…….. ♦ …….. 
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2.2 Biological Aspects of Gene Silencing  

2.3 Mechanism of RNAi 

2.4 Small RNAs of RNAi 

2.5 Applications of RNAi   

2.6 Gene Silencing by RNAi    

2.7 Potential of RNAi in Genomics and Therapeutics 

2.8 Challenges to Gene Silencing Therapeutics 

2.9 Need of exogenous siRNA design     

2.10 Complexity in siRNA Design 

2.11 Summary 

 

 
2.1 Introduction 

 This chapter discusses how gene silencing can be done by 

RNA interference mechanism. Section 2.2 describes the biological 

aspects of gene silencing. The mechanism of RNAi and the RNAi 

pathway are explained the Section 2.3. The next sections, 2.4 and 2.5 

present small RNAs mediating RNAi and applications of RNAi 

respectively. Types of gene silencing like transcriptional gene 

Co
nte

nts
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silencing and post-transcriptional gene silencing are described in 

section 2.6. Potential and role of RNAi in genomics and therapeutics, 

challenges to gene silencing, need and complexities of designing 

exogenous siRNA are described in sections 2.7, 2.8, 2.9 and 2.10 

respectively. Finally, a brief summary of the chapter is presented in 

section 2.10. 

 

2.2  Biological Aspects of Gene Silencing  
   Gene is the basic unit of heredity of all living organism 
which is passed from parents to their offspring [36]. Each gene is a 
particular segment of DNA with a linear sequence of nucleotides, on 
a chromosome. They contain chemical information needed for the 
synthesis of different proteins. A gene determines the characteristics 
of an individual or a species in the form of protein. Thus genes 
regulate the operations of organisms and play very important role in 
differentiating individuals and species. The entire genetic material of 
an organism is called genome [37]. Genome represents an organism’s 
complete set of DNA, including all its genes and contains entire 
information needed to build and maintain that particular organism. 
The genome includes all the genes and the non-coding sequences of 
the DNA and RNA. DNA carries the essential instructions for 
building RNA and proteins. Inside the cells of all living things, some 
molecular mechanisms are constantly reading the information in 
DNA for building proteins. Thus DNA encodes for 
the genetic instructions for all living organisms [38-42], and hence 
DNA is considered as the “blue print of life”. A gene is said to be 
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expressed when a protein is formed due to this molecular mechanism. 
During gene expression, the information from a gene is used to 
produce a functional gene product, which may be a protein or a 
functional RNA.   
 

Genetic codes are set of rules though which the encoding of 

genetic materials is done. The information in genetic materials is thus 

translated or encoded into proteins. RNA is a nucleic acid which is 

responsible for various biological activities like coding of genetic 

materials into proteins or messenger RNA to amino acids, gene 

regulation, and expression of genes. Most of the RNAs are single 

stranded.  But there are some special types of RNA with two 

complementary strands similar to DNA, called double-stranded RNA 

(dsRNA). An important double-stranded RNA called short interfering 

RNA or small interferingRNA (siRNA) can trigger RNA 

interference in eukaryotes, and interferon response in vertebrates [43-

46]. RNA can be either coding or non-coding. A non-coding 

RNA (ncRNA) is a functional RNA molecule that is not translated 

into a protein [47-50]. Two examples of non-coding RNAs are 

microRNA (miRNA) and short interfering RNA (siRNA). Coding 

RNAs play crucial roles in protein synthesis and other cell activities. 

One important class of coding RNAs is messenger RNA (mRNA). It 

is a type of RNA that reflects the exact nucleotide sequence of the 

genetically active DNA. mRNA carries the "message" of the DNA to 
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the cytoplasm of cells, where protein is made as amino acid 

sequences specified by the mRNA. Thus mRNA acts as the key 

intermediary in gene expression by translating the DNA's genetic 

code into the amino acids that make up proteins. The central dogma 

of molecular biology describes the flow of genetic information to 

form proteins [51-52]. It has also been described as "DNA makes 

RNA and RNA makes protein” [53]. The main steps in Central 

Dogma are transcription and translation.   

 
2.2.1. Transcription  

 Transcription is the initial step of gene expression [51-52]. In 

transcription, a particular segment of DNA is copied into RNA. As a 

first step, the DNA sequence is read by the enzyme called RNA 

polymerase. It produces a complementary, anti parallel RNA strand 

called a primary transcript. The portion of DNA transcribed into an 

RNA molecule is called a transcription unit and it encodes at least 

one gene. The transcribed RNA molecule is called mRNA. Fig 2.1 

shows the steps during transcription. 
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Fig. 2.1: Transcription 

 

2.2.2 Translation  

 Translation is a process where ribosomes synthesize proteins 

from the information contained in the mRNA [51-52]. During 

translation, the ribosome reads a string of three bases on the mRNA 

(codon) and translates them into one amino acid (Fig. 2.2). Proteins 

are further processed in various cellular compartments and then 

transported in and out of the cell to carry out different metabolic 

functions.  
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Fig. 2.2: Translation 

 
 During gene expression, information encoded in a gene is 

used for producing the gene products like mRNA and proteins. It 

covers the entire process from transcription through protein synthesis 

[53]. In the first step, the DNA on which the gene resides is 

transcribed to messenger RNA and in second step, it is 

translated from mRNA to protein. When the protein is synthesized, a 

gene is said to be “expressed” and the expression level of gene 

depends on the amount of mRNA it produced. Different cell types in 

an organism carry out a range of specialized function depends upon 

the genes that are expressed only in that cell type. Some of the factors   

affecting gene expression are the age of the person, the type of tissue, 

the presence of specific chemical signals and heredity. 
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 Gene expression can be controlled by gene regulation [54-55]. 

Gene regulation is achieved by a process of turning genes on and off.  

It is the basis of all biological activities like cell growth, cellular 

differentiation, adaptability and versatility of any organism. Gene 

regulation controls the appearance of the functional gene product or 

gene expression. Gene expression is controlled at three levels during 

the production of an active gene product. First phase is the 

transcriptional regulation. It mainly takes care of when the gene is 

transcribed and how much it is transcribed. Second is the 

translational regulation which controls the amount of proteins 

synthesized from mRNA. Third phase is post-translational regulation 

mechanisms which control the level of active gene products. The 

gene expression can be controlled or altered by making alterations in 

mRNA or protein. An active mRNA level may be controlled by 

splicing or by silencing with some of the non-coding RNAs like 

miRNA (micro RNA), siRNA (short interfering RNA), rRNA 

(ribosomal RNA) and tRNA (transfer RNA). Also some proteins may 

undergo self modifications such as folding, enzymatic cleavageand 

bond formation. These modifications can play crucial roles in the 

regulation and control of gene expression. Genes can be either up 

regulated or down regulated. Using down regulation, the expression 

of a particular gene may be prevented.  Gene silencing is done by 

preventing the expression of a particular gene and there by turning 

“off” gene expression [54-55]. 
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2.3 Mechanism of RNAi 

Earlier, gene knock out was conducted by scientists using 

antisense, dominant negative or knockout techniques which were 

time consuming and expensive. The discovery of RNAi and double 

stranded RNA helped to silence genes very efficiently [2-3, 10-12].  

RNAi is an important gene silencing method used in molecular 

biology over the past few years. The presence of RNAi mechanism 

was discovered both in plants and animals [56-59]. Short RNAs of 

length 21-23 nucleotides exist in a double-stranded form, with 2 

nucleotide overhangs at each 3′ end [60-62]. They are known as small 

or short interference RNA. RNAi is a naturally evolved mechanism 

in insects, nematodes and plants as a result of a developed intrinsic 

defense against RNA virus [63-67].  This characteristic makes it ideal 

as the basis for a physiologic approach for both in vitro and in vivo 

gene silencing [68-69]. This mechanism has been described in several 

eukaryotic organisms including human cell lines and primary cells 

[70-75]. Thus RNAi, is known for co-suppression [76], quelling [77], 

post-transcriptional gene silencing [78], and plays an important role 

in cellular anti-viral defenses and silencing mechanisms [79]. The 

discovery of RNA-mediated gene silencing, changed the view of 

gene regulation and led to the development of new genetic tools and 

methods for selective gene silencing, and have opened a way for 

development of novel therapeutics against various diseases [80]. 
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2.3.1 RNAi Pathway 

 RNAi targets the protein producing mRNA and controls 

disease in the transcription phase by generating a non coding RNA 

called siRNA. The biogenesis of RNAi is divided into 4 steps and 

shown in Fig. 2.3.    

 

• dsRNA cleavage by Dicer generating siRNAs: When long 

dsRNA from an external source is introduced into the cell, it is 

recognized by Dicer. The Dicer is a Ribonuclease III protein 

which is present in all organisms. The dicer cleaves the dsRNA 

randomly to generate siRNAs of ~21 to 23 nucleotide in length 

[81-82]. Each siRNA strand has a 5' phosphate group and a 3' 

hydroxyl group and has a 2 nucleotide overhang at both ends 

[82]. 

• Formation of RISC: The siRNAs created by Dicer initiated 
cleavage get attached with a nuclease complex called RISC 
(RNA Induced Silencing Complex). The complex formed is 
inactive. 
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                   Fig. 2.3: RNAi Pathway 

 
• SiRNA unwinding and RISC activation: Due to RISC 

activation, siRNA duplexes will unwind and separate into sense 

and antisense strands. Both the sense and antisense strands of 

the siRNA are capable of directing RNAi, but specificity 

depends on the antisense strand. The antisense strand is taken 

up by RISC. Due to unwinding, siRNA duplex losses one 

strand that is not bound to the RISC. This single strand RISC 

complex thus gets activated. 

 
• mRNA targeting and degradation: The activated siRNA-RISC 

complex will target mRNAs which are  complementary with 
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the siRNA sequence. If the match is perfect, the targeted 

mRNA is cleaved into smaller fragments which are then 

degraded [17, 83]. If the match is not perfect the RISC remains 

stuck to the mRNA, thus translation inhibition occurs.  

 
2.4 Small RNAs of RNAi 
 Small RNAs are different classes of RNAs which can 

influence several levels of gene regulation. Here, we are listing two 

well defined classes of small RNAs: short interfering RNAs and 

microRNAs. 

 
2.4.1 Short interfering RNA  

 Short interfering RNA or small interfering RNA (siRNA) is a 

class of non-coding RNA molecule. siRNAs are short pieces of 

dsRNAs, which are mediators of RNAi at post-transcriptional level. 

The structure of siRNA is depicted in Fig. 2.4. This double stranded 

RNA is composed of a sense and an antisense strand which are paired 

resulting in a 2 nucleotide 3’ overhang at both the ends. siRNA 

directly induces the RNAi pathway by binding to an almost perfect 

 complementary region of the targeted mRNA transcript and cleaves 

the mRNA. siRNA plays very crucial role in the RNAi pathway, by 

degrading the expression of specific genes with complementary 

nucleotide sequences. siRNAs and their role in post-

transcriptional gene silencing (PTGS) in plants were first discovered  
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by David Baulcombe's group at the Sainsbury Laboratory in Norwich 

[84]. Later it is reported that synthetic siRNAs could induce RNAi in 

mammalian cells [60-62,82]. This discovery led to a keen   interest in 

harnessing RNAi for drug development for cancer therapy and 

various gene silencing applications in biomedical research. 

 

  
 

Fig. 2.4: Structure of siRNA 
 

2.4.2 Micro RNA  

 MicroRNAs (miRNA) were discovered in 1993 by Rosalind 

Lee, Rhonda Feinbaumand Victor Ambrosduring a study of the gene 

lin-14 in C.elegans development [85]. MicroRNAs are non-coding 

RNAs that combine to mRNAs and regulate the activities at 

translational and post-transcriptional level [86]. There are at least 800 

miRNAs within the human genome, which may target about 60% of 

mammalian genes [87-88]. MicroRNAs bind to partially 

complementary sites in the messenger RNA of other genes and 
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inhibit the translation of these genes. It has been found that miRNA 

can effectively regulate biological activities such as cell proliferation, 

cell differentiation, cell growth, apoptosis, protein synthesis [88-91], 

and can also act as oncogenes as well as tumor suppressors [92]. 

 

2.5 Applications of RNAi   

 RNAi has become a powerful biological technique for gene 

function studies and drug discovery [93-94]. It is also becoming 

increasingly important in developing therapeutic applications for a 

number of diseases due to its potential for specific targeted silencing 

[95-96]. Thus RNAi along with siRNA plays important role in gene 

regulation. Widely used applications of RNAi and siRNA in 

genomics and therapeutics are  

• Selection of possible targets for Tumor therapy [97] 

• Gene Therapy [98] 

• Better understanding of viral infections [99] 

• Gene Silencing [100] 

 
2.6 Gene Silencing by RNAi    
 When genes are silenced, the expression of those genes is 

reduced [101]. But when genes are knocked out, they are completely 

removed from the organism's genome and have no expression at all. 

It is understood that RNAi is a gene silencing mechanism that 
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reduces the expression of a gene by at least 70% but do not eliminate 

completely [101]. The gene regulatory mechanism by RNAi limits 

the transcript level either by suppressing the transcription or by 

activating sequence specific mRNA degradation. Based on this, gene 

silencing is classified as transcriptional gene silencing and post-

transcriptional gene silencing.  

 

2.6.1 Transcriptional Gene Silencing 

 Transcriptional Gene Silencing (TGS) is one type of silencing 

genes at transcriptional level [2,101]. In this method, due to the effect 

of silencing, the messenger RNA is not formed and further activities 

of protein formation are stopped. 

 

2.6.2 Post-transcriptional Gene Silencing 

 Post-transcriptional gene silencing (PTGS) is another type of 

silencing genes at post-transcriptional level, means silencing action is 

done after messenger RNA formation [2,101]. Due to post-

transcriptional gene silencing, the targeted messenger RNA is lost or 

degraded after RNA interference mechanism in gene. Ultimately 

gene expression will be turned off or gene knock-down may happen. 

 

2.7 Potential of RNAi in Genomics and Therapeutics 
 The use of RNAi has led to the development of a new 

technology called siRNA mediated gene silencing. It is used for gene 

therapy applications in medical research, especially in cancer 
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therapeutics. Gene specific silencing has allowed systematic 

approach of designing new drugs, and for enhancing the effect of 

already existing drugs. RNAi could enable gene silencing with high 

specificity and improved efficiency than with any other techniques. 

Instead of transfecting big dsRNA molecules in to the cells, 

chemically engineered siRNA’s enable targeting the specific genes. In 

principle any gene may be knocked-down by a synthetic siRNA with 

exact complementary sequence. Hence in the post-genomic era, 

siRNA is considered as an important tool for validating gene function 

and drug targeting. The gene silencing capacity of RNAi has been 

used in cell cultures and in animal models that encourage siRNA 

based reagents for clinical usage to treat cancer [6] as well as other 

diseases such as neurodegenerative disorders, cholesterol and viral 

diseases [4,102-103]. 

  
 Cancer treatment will be successful if it is able to do complete 

removal of the tumor without making damage to any other parts of 

the body. This shall be achieved by doing surgery, to a certain level. 

But surgery is not as effective if the disease has already spread to 

other locations of the body. Chemotherapy is sometimes toxic to 

healthy tissues as it is not specific to cancer cells. Radiation also 

damage normal cells and tissues. By considering all these limitations 

of the existing cancer therapy techniques, it is very essential to 

develop novel target specific therapeutics for the effective treatment 

of cancer. Recently it is understood that RNAi can be successfully 



Chapter – 2                                                                

28 

used in cancer therapies. Nowadays there are lot of insights and 

promises for using siRNAs as drugs targeted only into the cancer 

cells. Genes associated with several cancers can be silenced by RNA 

interference. For example, in in-vitro studies of one type of leukemia,  

it is shown that siRNA could damage the fusion protein, which 

prevents the drug from binding to the cancer cells [104]. Cleaving or 

damaging the fusion protein will reduce the amount of transformed 

cells that spread throughout the body. This is done by increasing the 

sensitivity of the cells to the drug [104]. RNA interference can be 

used to target particular mutants. For example, siRNAs were able to 

bind specifically to tumor suppressor  p53 molecules containing a 

single point mutation and destroy it [105]. 

 
 Researchers have used siRNAs to selectively regulate the 

expression of cancer related genes. siRNA molecules are used to 

target the uncontrolled production of cancer cells, proliferation of 

breast cancer [106]. Also it is understood that siRNAs can be used to 

reduce protein formation and can thereby increase the sensitivity of 

the cancer cells towards chemotherapy treatments [107-108]. In-

vivo studies are being utilized to study the potential use of siRNA 

molecules in cancer therapeutics [108]. RNAi has already been used 

to target particular genes in several serious viral diseases like 

hepatitis and human immunodeficiency virus (HIV) [102-103]. 

Especially, siRNA was used to silence the primary HIV receptor 

named chemokine receptor-5 [109] to prevent the virus from entering 
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the human peripheral blood lymphocytes and the primary 

hematopoietic stem cells [109-110]. Gene silencing techniques using 

RNAi have also been successfully used to target other viruses, such 

as hepatitis B and C, human Papilloma virus, West Nile Virus and so 

on. In hepatitis B, siRNA silencing technique was successfully used 

to target the hepatitis B virus and could effectively decrease the 

number of viral components [111]. Also, siRNA techniques used in 

hepatitis C were able to reduce the quantum of the virus in the cell by 

98% [112-113]. From recent studies it is understood that siRNA may 

also be used for diseases like cystic fibrosis and chronic obstructive 

pulmonary disease, asthma and Huntington’s disease (HD) [113-

116].  

  
 RNAi has great potential in future therapeutics since it has the 
potential to regulate disease related genes. So any disease caused by 
abnormal enhancement activity of one or more genes could be 
regulated by RNAi-based therapies [117]. Over the past several 
years, a number of RNAi-based preclinical and clinical trials have 
grown to understand brain and skin diseases, viral infections, 
respiratory disorders, cancer and metabolic diseases [118]. Till date, 
RNAi therapies in clinical trials have targeted approximately 14 
different diseases [118]. Many of the siRNA therapies are at 
preclinical stage. The methods for delivering siRNA drugs had been 
improved to maximize the specificity of siRNA and to minimize the 
toxicity and degradation effects that compromise drug efficacy [65]. 
Three clinical trials have used ex-vivo delivery of the siRNA 
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therapeutics. In this method, cells were collected from patients and 
treated with siRNAs and re-infused back into the patient [119]. One 
of the three clinical trials involves use of an anti-tumor bifunctional 
siRNA (bi-siRNA) for treatment of metastatic melanoma, a form of 
cancer that originates in melanocytes. The idea used in cancer 
treatment with RNAi is that cancer cells will be killed through the 
actions of the patient’s own immune system.  
 

2.8 Challenges to Gene Silencing Therapeutics 

 siRNA is the mediator of RNAi and can do efficient and 

specific gene silencing. Thus it is extremely promising for various 

therapeutic applications. But there are many barriers for making 

effective practical applications of siRNA. siRNA can be transfected 

directly into the cells or organs. But stability in the blood stream, the 

duration of the effect and the delivery techniques are still quite big 

questions before RNAi-based therapy can be used. siRNA stability 

and targeting may be highly influenced to degradation by various 

enzymes found in tissues. The life of siRNAs in serum may range 

from minutes to an hour [120]. Because of this survival problem of 

siRNA, target site accumulation for therapeutical applications is a 

major challenge [121]. There are many other challenges in 

connection with therapies using gene silencing techniques. Most 

important challenges are target specificity and effectiveness of 

delivery. For example, in case of neurodegenerative disorders, gene 

silencing particles must be directly delivered to the brain. The brain-
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blood barrier may block to deliver the gene silencing molecules 

exactly into the brain. This untargeted delivery may happen either by 

preventing the passage of the molecules that are injected or by 

absorbing into the blood [116,122]. Thus, it is found that gene 

silencing molecules must be either injected directly or using implant 

pumps which push them into the brain [116]. Once inside the brain, 

the molecules must move inside the targeted cells. This method of 

delivery may also make some problems as it can induce an immune 

response against the gene silencing molecules [116]. In addition to 

targeted delivery problem, target specificity is also an issue while 

doing gene silencing. There is a possibility of siRNA molecules to 

bind with the wrong mRNA molecule which may lead to undesirable 

results [116].  

 
 Recent studies have revealed that siRNA treatment can result 

in off-target gene silencing, means silencing genes other than the 

intended targets [17]. Off-target silencing may lead to mutation of 

gene expression and cell transformation in undesirable form. Most 

off-target silencing is resulting because of sequence similarity with 

six to seven nucleotides in the “seed region” of the siRNA sequence 

[17,123-124]. So by doing careful selection of guide strand of 

siRNA, the probability of matching with undesired targets can be 

avoided to some extent. Off-target silencing is an important issue to 

be addressed upon while doing siRNA-based therapeutics. For the  
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potential and efficiency of siRNA for therapeutic applications 

without doing “off-target” silencing must also be heavily tested 

before application. So target specificity and efficient delivery of 

siRNA molecules for gene silencing is a serious research issue to be 

addressed. Special care must be given to design efficient methods to 

deliver and develop specific gene silencing therapeutics using siRNA 

in a  more safe and effective manner. 

 

2.9 Need of exogenous siRNA design     
 Even though dsRNA had shown to induce gene-specific 

silencing capacity in early mouse embryos [2, 125], the attempts to 

use dsRNA in mammalian systems were not conclusive. In these 

experiments the application of long dsRNAs generated an overall 

decrease in mRNA eventually leading to apoptosis, instead of 

triggering RNAi and also created a response mediated by dsRNA 

dependent protein kinase [126]. Later it is understood that this type of 

non-specific response can be bypassed by using chemically 

synthesized 19 to 22 nucleotide siRNAs [62, 127-129]. By the 

transfection of these chemically synthesized siRNAs, strong and 

sequence specific silencing of gene expression in various mammalian 

cells could be done very effectively. Because of this potential of 

RNAi-based technologies [130] in therapeutic applications, the use of 

exogenous siRNA technology has become widespread to study 

mammalian gene function including clinically relevant genes. 
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2.10 Complexity in siRNA Design 
 The design of effective siRNA sequences is a challenging 

work because the target mRNAs must be selected such that their 

corresponding siRNAs are likely to be efficient against that target and 

unlikely to accidentally silence other transcripts due to sequence 

similarity [12-14]. So it is desirable to consider two important 

concepts while designing exogenous siRNAs: the ability in knocking 

down target genes and the off target possibility on any non target 

genes. Hence before doing gene silencing by siRNAs, it is essential 

to analyze their off target effects in addition to their inhibition 

efficacy against a particular target [15-17]. Many barriers prevent 

practical applications of siRNA. Concepts of siRNA like specific 

targeting, efficient delivery system, validated genes and the potent 

siRNA sequences are all vital important to overcome these barriers. 

 
 Although reasonable progress has been made in analyzing 

how the RNAi and siRNA mediates gene silencing, the design of 

potent siRNAs remains still challenging [15-17]. While considering 

to optimize the efficiency of siRNA, the above mentioned 

complexities may lead to the following questions. 

 
• How to identify and validate target genes to design potent 

siRNA? 
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• How to design siRNA with good inhibition efficiency?   

 
• How to select functional siRNA sequences with good 

inhibition efficiency? 

 
• How to eliminate near perfect matched off target genes? 

 

2.11 Summary 
 The role of siRNA in post-transcriptional gene silencing, the 

need, complexity, and challenges of designing exogenous siRNA for 

therapeutical applications are briefly described in this chapter. In this 

thesis, we try to address some of the complexities of siRNA design so 

that exogenous siRNA can be designed effectively with specific 

targeting and efficient delivery system, which may be helpful for 

effective gene silencing. 

 
…….. ♦ …….. 
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3.1 Introduction 

3.2 First Generation Methods 

3.3 Second Generation Methods 

3.4  siRNA Design Approaches 

3.5 Summary 

 

3.1 Introduction 
This chapter aims to provide the literature review of the 

existing siRNA design approaches. Section 3.2 deals with first 

generation methods for siRNA design by briefly describing the rules 

used to design siRNAs. Section 3.3 deals with second generation 

methods and the machine learning models used in these approaches. 

Section 3.4 explains the study of selected 23 good scoring siRNA 

design methods by making a comparison of them. This section is 

concluded by describing the important approaches selected to 

integrate in our study. Finally in section 3.5, a brief summary of the 

chapter is presented. 

 

 

Co
nte
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3.2 First Generation Methods 
 Several techniques have emerged in the past few years to 

explore the difficulties in designing exogenous siRNAs. Most studies 

suggest that positional features like presence or absence of specific 

nucleotides in certain positions within the siRNA, thermodynamic 

properties like ‘whole stacking energy’ and secondary structures of 

siRNAs are important in predicting efficacy [81,131-135]. These 

methods are classified into two groups, first generation and second 

generation methods. First generation methods follow certain rules 

and regulations for designing siRNA. The following section describes 

some important siRNA prediction rules followed by first generation 

methods. These studies reveal that position specific features 

(presence or absence of specific nucleotides in certain positions 

within the siRNA), thermodynamic properties and secondary 

structures of the target site are important in determining the 

regulatory efficiency of siRNA.  

 
3.2.1. Rules for Designing siRNA 

3.2.1.1 Tuschl Rules 

 Tuschl Rule is the first technique for designing effective and 

efficient siRNAs and is developed by Elbashir et al. [62]. They 

recommended that synthesizing siRNA duplexes with a 23 nucleotide 

sense strand and a 21 nucleotide antisense strand, paired with 2 

nucleotide 3’ overhang on both ends, mediates the efficiency of target 

mRNA cleavage. The important rules in this design are summarized 

below: 
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• The target region starts 50 to 100 nucleotides downstream of 

the start codon of a given transcript. 

• First search for 23-nt sequence motif AA(N19)TT13 

• After it, search for 23-nt sequence motif NA(N21) and 

convert the 3’ end of the sense siRNA to TT 

• Finally search for NAR(N17)YNN, where R 2 {A, G} and Y 

2 {C, T} 

• Target sequence should have a Guanine-Cytosine (G-C) 

content of around 50%. 

 

3.2.1.2 Amarzguioui Rules 

 Amarzguioui and Prydz  [81] designed the following siRNA 

design rules, based on their study of 46 siRNAs with a knockdown 

rate of more than 70%. The rules were tested on another 34 

independent siRNAs. 

• Strong binding of 5’sense strand 

• Weak binding of 3’sense strand 

• asymmetry in the stability of the duplex ends  

• Presence of G/C at position 1 

• Presence of A at position 6 

• Absence of U at position 6 

• Absence of U at position 1 

• Absence of G at position 19 

• Presence of A/U at position 19 
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3.2.1.3  Reynolds Rules 

 180 siRNAs are analyzed by Reynolds et al. [133]. Based on 

their regulation efficiency, they divided the siRNAs into different 

groups and tested whether siRNAs with high functionality have any 

similarities in their sequence. Based on their analysis, they proposed 

some rules of how to design highly potent siRNAs. They assigned a 

score to each siRNA based on the number of rules satisfied. Each 

siRNA exceeding a specific threshold is predicted to be functional. 

• GC content has to be between 30% and 52% 

• Presence of nucleotide A at position 3 and 19 

• Presence of U at position 10 

• Absence of G or C at position 19 

• Absence of G at position 13 

• Presence of A/U in positions 15 through 19 

 

3.2.1.4 Ui-Tei Rules 

 These rules are established by Ui-Tei et al. [134] based on 62 

siRNA from 5 genes. They analyzed 62 targets in mammalian and 

Drosophila cells and came up with a conclusion that four features of 

siRNA listed below should simultaneously satisfy to cause efficient 

silencing. These rules were found to be applicable to mammalian 

cells. 

• A/U at the first nucleotide of the 5’ end of the 

antisense strand 
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• G/C at the first nucleotide of the 5’ end of the sense 

strand 

• At least five A/U nt in the 5’ terminals first-third of   

       the antisense strand 

• No ’GC’ stretch of more than 9 nt in length 

 
3.2.1.5  Chalk Rules 

 Many rules established in recent studies are reviewed on a 

dataset of 398 siRNAs of known efficiency from 92 genes. This 

prediction algorithm by Chalk et al. [135] incorporates the 

thermodynamic properties of the siRNA.  The rules are 

• Total hairpin energy < 1 kcal/mol  

• 5’ end binding energy < 9 kcal/mol in the antisense 

strand 

• 5’ end binding energy in the range 5-9 kcal/mol 

exclusive in the sense strand 

• G/C Content between 36% and 53% 

• Middle area (7-12) binding energy < 13 kcal/mol 

• Energy difference between antisense and sense 5’ 

energies <0 kcal/mol 

• Energy difference between antisense and sense 5’  

     energies within -1 kcal/mol and 0 kcal/mol 
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3.2.1.6 Khvorova Rules  

 These rules are proposed by Khovorova et al. [136] based on 

180 siRNAs from one gene. The main aim is to study the internal 

stability of miRNAs and siRNAs, whose functional duplexes display 

a lower internal stability at the 5’ end antisense strand than 

nonfunctional duplexes. They could establish that the thermodynamic 

properties play a critical role in duplex unwinding and strand 

retention by RISC. The rules are as follows: 

 

• Low stability 3’ (sense strand) > -8.5 [kcal/mol] 

• Low stability 6-11 (sense strand) > -7 [kcal/mol] 

• High stability 5’ (sense strand) < -9 [kcal/mol] 

 

3.2.1.7 Takasaki Rules 

 Takasaki et al. [137] conducted a research on 249 siRNA 

from one gene. The rules are as follows: 

• No A/U at position 1 (sense strand) 

• G at position 1 (sense strand) 

• A at position 6 (sense strand) 

• G at position 7 (sense strand) 

• No U at position 7 (sense strand) 

• A at position 8 (sense strand) 

• No G at position 8 (sense strand)  

• No G at position 9 (sense strand) 

• U at position 9 (sense strand) 
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• U at position 15 (sense strand) 

• No G at position 19 (sense strand) 

 

3.2.1.8 Hohjoh Rules 

 These rules are proposed by Hohjoh in 2004 [138]. It is 

shown that newly designed siRNA duplexes, called “forksiRNA 

duplexes”, can enhance RNAi activity over conventional siRNA 

duplexes in cultured mammalian cells. 

• “Fork-siRNA” mismatch at the 3’ sense strand-siRNA 

• G/C at position 1 (sense strand) 

• A/U at position 19 (sense strand) 

• A/U at position 8 (sense strand)  

 
3.2.1.9 Hsieh Rules 

 Study by Hseih et al. [139] involved about 148 siRNAs from 

30 genes and proposed the following rules: 

• No C at position 6 (sense strand) 

• C/G at position 11 (sense strand) 

• A at position 13 (sense strand) 

• G at position 16 (sense strand) 

• U at position 19 (sense strand) 

• No G at position 19 (sense strand) 
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3.3 Second Generation Methods 
 Many of the first generation models were not achieving good 

inhibition efficiency against target genes. Also most of them were not 

considering many important aspects of siRNA like sensitivity, 

specificity, off-target possibility while designing siRNA. So there 

was a need to develop techniques to improve the efficacy of predicted 

siRNA. These methods are called second generation models which 

are mostly based on either support vector machine models, linear 

regression models or artificial neural network models.  

 

3.3.1 Machine Learning Models 
 
3.3.1.1 Support Vector Machines 

 Support Vector Machine Model (SVM) can be applied to a 

labeled data to perform classification or regression and can handle 

multiple continuous and categorical variables [33]. SVM is widely 

used for applications in bioinformatics [140], text classification [141], 

pattern recognition [142]. SVM performs classification by 

constructing hyper-planes in a multidimensional space that separates 

cases of different class labels. So it is considered to be working based 

on the concept of decision planes. From each output class, it 

identifies a subset of the training data. This subset is called support 

vectors. The model will learn the data using the support vectors. 

When a new data point needs to be classified, it uses the support 

vectors to make the classification. In the case of linear classifier, as 
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shown in Fig.3.1, it separates the data points or objects into their 

respective groups with a line. If classification is done based on 

drawing separating lines to distinguish between objects of different 

class memberships, it is known as hyper-plane classifiers (Fig.3.2). 

Then SVM finds a separating hyper-plane which has the maximum 

margin between the training examples and the class boundary. In 

principle, SVM can be viewed as the maximum margin classifier 

defined in terms of the support vector approach (Fig.3.3). 

Maximizing this margin will result in minimizing the maximum loss 

[143].  

 

3.3.1.1.1 Kernel Functions 

 SVM will project the training data into a higher dimensional 

space through a kernel function. Different kernels like linear, 

polynomial, radial basis function (RBF) and sigmoid can be used in 

SVM models.  Because of the localized and finite responses across 

the entire range of the real x-axis, RBF is the most popular choice of 

kernel types used in Support Vector Machines.   

 

K൫X୧, X୨൯ ൌ
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ଶ

ሻ
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   (3.1)  
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Here K൫X୧, X୨൯ ൌ  ԄሺX୧ሻ  Ԅ൫X୨൯ means the kernel function represents 

a dot product of input data points mapped into the higher dimensional 

feature space by transformation ф. The SVM uses a nonlinear 

mapping function ф, that maps the data to a higher dimension, here a 

separating hyperplane can always be found. Each data point Xk is 

mapped implicitly to Y୩ ൌ ԄሺX୧ሻ 

 

 
 

Fig.3.1: Linear classifier 
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  Fig.3.2: Hyper-plane classifier 

3.3.1.1.2 Classification of SVM 

 SVM constructs the optimal hyperplane by iterative training 

algorithm and minimize an error function. SVM models can be 

classified into four groups based on the error function: Classification 

SVM Type 1, Classification SVM Type 2, Regression SVM Type 1 

and Regression SVM Type 2. 

 
(i) Classification Type I: In this, training involves the 

minimization of the error function as  
ଵ
ଶ

wT  C ∑ ζ୧
N
୧ୀଵ     (3.2) 

  
Subject to the the constraints:  

y୧ሺwTԄሺx୧ሻ   bሻ   1 െ ζ୧  

 ζ୧   0, i ൌ 1, … , N 
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Where C is the capacity constant,  

w is the vector of coefficients,  

b is a constant, 

ζ୧ represents parameters for handling nonseparable  inputs 

Index i labels the N training cases 

y Ԗ േ 1 represents the class labels  

  represents the independent variablesݔ

߶ is kernel function used to transform data from the input to 

the feature space  
 

 
Fig. 3.3: Maximum margin hyper-plane for a two class problem 
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(ii) Classification Type II: This model minimizes the error 

function as: 
ଵ
ଶ

wT െ νρ  ଵ
N

 ∑ ζ୧
N
୧ୀଵ     (3.3) 

 Subject to the the constraints:  

y୧ሺwTԄሺx୧ሻ   bሻ   ρ െ ζ୧  

ζ୧   0, i ൌ 1, … , N 

ρ  0 

 
(iii) Regression Type I : In this type of SVM, the error function is 

given by 
ଵ
ଶ

wTw  C ∑ ζ୧
N
୧ୀଵ  C ∑ ζሶ୧N

୧ୀଵ    (3.4) 

Subject to the constraints:    

wTԄሺx୧ሻ   b െ y୧   ε െ ζሶ୧  

y୧ െ wTԄሺx୧ሻ െ b୧   ε  ζሶ୧ 

ζ୧, ζሶ ୧   0, i ൌ 1, … , N 

 
(iv) Regression Type II: For this SVM model, the error function 

is given by 
ଵ
ଶ

wTw െ C ሺνε  ଵ
N

∑ ሺζ୧
N
୧ୀଵ  ζሶ୧ሻ    (3.5) 

In which minimization of error is subject to 

wTԄሺx୧ሻ   b െ y୧   ε  ζሶ୧  

y୧ െ wTԄሺx୧ሻ െ b୧   ε  ζሶ୧ 

ζ୧, ζሶ ୧   0, i ൌ 1, … , N 

 



Chapter – 3                                                                  

48 

3.3.1.2 Artificial Neural Network  

 Artificial Neural Networks (ANNs) [34-35] are considered as 

neural network models in artificial intelligence, and is represented as 

a function ݂  ܺ ՜ ܻ  or a distribution over ܺ or both ܺ and ܻ. In an 

ANN, the basic units called perceptrons or neurons are 

interconnected between different layers of the system. An ANN is 

defined by three types of parameters:  interconnection pattern 

between the different layers of neurons, learning process for updating 

the weights of the interconnections, activation function that converts 

a neuron's weighted input to its output activation. Perceptrons are 

organized in different ways to form the neural network network’s 

structure. Each perceptrons receives the input which can be an 

independent raw data or the output of other perceptrons. After 

processing, the input perceptron delivers a single output, which can 

be the final result or inputs to other perceptrons. A graphical 

representation of a perceptron is shown Fig.3.4. A perceptron takes a 

vector of real-valued inputs, calculates a linear combination of these 

inputs, then outputs  

 
• a 1 if the result is greater than some threshold   

• –1 otherwise.  
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Fig.3.4: Graphical Representation of a Perceptron  

(Source of Figure: www.cse-wiki.unl.edu) 

 

3.3.1.2.1 The Network Architecture 

 Each ANN is composed of a collection of perceptrons 

grouped in layers. A typical structure of a multi layer neural network 

is shown in Fig.3.5. 

Input Hidden Output

 
Fig.3.5: A three layer neural network 
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  Based on the pattern of connections between the neurons or 

perceptrons and the propagation of data, the neural network models 

are classified into feed forward and feedback networks. 

 
(i) Feed forward Networks: The data flow from input to output 

unit is strictly feed-forward. The processing of data can be 

extended over multiple layers of the network. But feedback 

connections extending the output units to previous layers or to 

input units are not at all present anywhere in the network.  

Basic structure of a feed forward neural network is shown in 

Fig.3.6 (a). 

 
(ii) Feedback Networks: Feedback networks are also known as 

recurrent networks, which contain feedback connections. In 

recurrent neural network, the connections between units form 

a directed cycle. Basic structure off a feed forward neural 

network is shown in Fig.3.6 (b). 

    
 

Fig. 3.6: (a) Feed Forward Neural Network 
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Fig. 3.6:  (b) Feedback Neural Network 
 
 

3.4  siRNA Design Approaches 
 
3.4.1 Study of siRNA Design Methods  

 Using second generation siRNA models, the complexities in 

designing efficient siRNA have been addressed to a great extent. But 

even though many models have emerged, only a few have achieved 

accepted level of inhibition efficiency (minimum 0.70), accuracy 

(minimum 0.70), sensitivity (minimum 0.60) and specificity 

(minimum 0.80). We studied 23 available good scoring siRNA 

design approaches to understand the efficacy level of each of them. 

Table 3.1 describes some of the important good scoring siRNA 

design methods and their characteristics. 
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Table.3.1. Good Scoring siRNA prediction Methods 

Sl.No siRNA Design 
Methods Comments 

1 Sfold [144] 
Target accessibility prediction and 
RNA duplex thermodynamics for 
rational siRNA design. 

2 DEQOR [145] 
Predicts the probability that an 
mRNA fragment will cross-react 
with other genes in the cell  

3 BIOPREDsi [18] 
Designed a genome wide siRNA 
library using ANN Network 
Model  

4  siVirus [146] 
A web-based system that provides 
efficient siRNA design for 
antiviral RNA interference. 

5 ThermoComposition21 
[20] 

Improved the inhibition efficiency 
of siRNA usig ANN   Model, used 
thermodynamic features. 

6 siRNArules  [147] An open-source JAVA program 
predicting active siRNAs. 
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Sl.No siRNA Design 
Methods Comments 

7 DSIR  [19] 
Linear Regression Models, A 
model for siRNA and shRNA 
target design. 

8 iScore  [21] 
Designed an accurate and 
interpretable model for siRNA 
efficacy prediction using linear 
Regression. 

9 Scales [22] Linear Regression Model 

10 OptiRNA [23] A prediction server for ranking 
siRNA target sites.  

11 RNAxs [25] Design potent siRNAs to knock 
down gene  of interest.  

13 OligoWalk [148] 

The web server generates a list of 
siRNA candidate sequences, 
ranked by the probability of being 
efficient siRNA (silencing efficacy 
greater than 70%). 
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Sl.No siRNA Design 
Methods Comments 

14 AsiDesigner  [149] Exon-based siRNA design server 
considering alternative splicing 

15  BiLTR [150] 

A generic framework to enhance 
siRNA knockdown efficacy 
prediction.  

16 siDRM [24] 
An implementation of the DRM 
rule sets for selecting effective 
siRNAs. 

17 siRecords [26] 
A database of siRNAs 
experimentally tested by 
researchers with consistent 
efficacy ratings.  

18 E-RNAi  [27] 
A model for the design and 
evaluation of RNAi reagents for a 
variety of species. 

19 MysiRNA-Designer [28] 

Integrates several factors in an 
automated work-flow considering 
mRNA transcripts variations, 
siRNA and mRNA target 
accessibility, and both near-perfect 
and partial off-target matches. 
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Sl.No siRNA Design 
Methods Comments 

20 MysiRNA  [29] 

Including positional preferences, 
target accessibility and other 
thermodynamic features. Used 
ANN model to predict siRNA 
inhibition activity 

21 DISR   [30] 
A new version of DSIR 
incorporating  new findings, as 
well as the list of validated siRNA 
against the tested cancer genes 

22 RNAiAtlas [31] 

Provides a siRNA oligonucleotide 
data from different sources and 
companies, and visualize 
interactions between siRNA and 
predicted off-target. 

23 siSPOTR [32] 
Allows to determine the off-
targeting potential of already 
designed siRNAs. 

 

 
3.4.2  Methods Selected for Our Work 

   We studied 23 siRNA prediction models described in Table 

3.1 and tried to find out the prediction accuracy by independent 

models a well as with combinations of these approaches. The 

prediction accuracy of various combinations is tested against data 

sets. Finally it is noticed that accuracy is reaching closer to the 

original experimental values with a combination of five scoring 

algorithms: BIOPREDsi [18], DSIR [19], ThermoComposition21 
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[20], i-Score [21], MysiRNA [29]. So we selected these five state of 

the art techniques to be integrated in our work to improve the 

efficiency further. Out of these methods, MysiRNA model [29] is 

showing good results in terms of inhibition efficiency. Also in their 

model MysiRNA-Designer [28], they have tried to address the effect 

of off-target possibilities. All these selected algorithms have been 

developed by introducing data mining techniques to improve the 

efficiency of siRNA with their experimental inhibition. BIOPREDsi, 

ThermoComposition21, MysiRNA-Designer package and MysiRNA 

used the artificial neural network models, while DSIR, i-Score and 

Scales used linear regression models. The ThermoComposition21 

improved the prediction accuracy by combined position dependent 

features together with thermodynamic features in single artificial 

neural network model. The prediction accuracy is improved in DSIR, 

i-Score and Scales using linear regression model. Further the 

MysiRNA-Designer package and MysiRNA much improved the 

prediction accuracy by artificial neural network model.  These 

methods are described below. 

 
3.4.2.1 BIOPREDsi   and s-Biopredsi 
 Huesken et al. [18] designed a genome wide siRNA library to 

overcome the burden of shortage of interfering short hairpin RNAs 

for conducting gene knock-down experiments. They used the 

Stuttgart Neural Net Simulator to train algorithms. The experiments 

were conducted on a data set of 2,182 randomly selected siRNAs 
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targeted to 34 mRNA species. These were assayed through a high-

throughput fluorescent reporter gene system. This algorithm is known 

as BIOPREDsi, in which they could predict the inhibition activity of 

a test data set of 249 siRNAs with Pearson coefficient R= 0.66. They 

have done the experiments on both 21nucleotide and 19 nucleotide 

sequences and identified that neural networks trained on a 

complementary 21 nucleotide sequences were superior to those on 19 

nucleotide sequences. 

 
 Since we were not able to access most of data from the 

original BIOPREDsi model [18], we used the simulated-Biopredsi (s-

Biopredsi), as in Ichihara’s work [21], rather than the original 

BIOPREDsi. In [21], Ichihara et.al could prove the correspondence 

between s-Biopredsi and BIOPREDsi by achieving a Pearson 

correlation coefficient of 1 and identical receiver operating 

characteristics in ROC analysis. 

 

3.4.2.2 DSIR  

 Vert et.al. [19] proposed a simple linear model, DSIR, by 
combining the basic features of siRNA sequences for siRNA 
inhibition efficacy prediction. It performs well in terms of prediction 
accuracy. They have used large data set of 2431 randomly selected 
siRNAs targeting 34 different mRNAs identified by Huesken et al. 
[18]. They have divided the entire 2431 siRNAs into a training set of 
2182 sequences and a test set of 249 sequences. Each siRNA 
sequence was converted to a vector of features using PYTHON. In 
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conclusion, they have developed an accurate and interpretable model 
for siRNA efficacy prediction which performs at least as well as the 
current state of art.   
 

3.4.2.3 ThermoComposition21 
 
 Shabalina et al.[20] developed a model by considering the 
important thermodynamic properties of siRNA. They collected a 
heterogeneous set of 653 siRNAs as training data set from various 
literatures. They have used this training set to fix siRNA features and 
optimize computational models. They have improved the inhibition 
efficiency of siRNA molecules by performing thermodynamic and 
correlation analysis of the training data set. Using a neural network 
model, they could prove the efficiency of the model against the 
efficiency prediction at different concentrations. The main advantage 
of this model over other is the less number of parameters. Because of 
this advantage, this model requires a very small training data set to 
get consistent results. 
 

3.4.2.4 i-Score  

 Ichihara et al. [21] developed an algorithm to predict efficient 

siRNAs with their inhibitory-Score (i-Score). They have applied a 

linear regression model to 2431 siRNAs. The only parameter used in 

this algorithm is the nucleotide preferences at each position. For 

testing they have used a dataset consisting of 419 siRNAs. With this 

validation data set, they could predict the accuracy of prediction as 

well as those of BIOPREDsi[18], ThermoComposition21 [20] and 
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DSIR [19], in which they employed neural network model or linear 

regression model. Also they could establish relationship between 

whole stacking energy and prediction accuracy of siRNA. They could 

identify that exclusion of siRNAs with a threshold of whole stacking 

energy, will improve the prediction accuracy.  

 
3.4.2.5 MysiRNA   

 Mysara et al. [28-29] designed a model called MysiRNA. 

They identified that many factors including positional preferences, 

target accessibility and other thermodynamic features will affect the 

functionality of siRNA. They could develop a model which optimizes 

the selection of target siRNAs by identifying siRNAs having high 

experimental inhibition. This uses an artificial neural network model 

to predict siRNA inhibition activity. This is mainly built on two 

previous models (Thermo Composition21 [20] and i-Score [21]) 

together with whole stacking energy (ΔG) in a multi layer artificial 

neural network. Comparatively, this model results in good siRNA 

efficiency in terms of specificity, and sensitivity. They have also 

addressed the off target possibility of siRNA. 

 
3.5 Summary 
 A comparative study of various good scoring siRNA design 

approaches is done and the results are analyzed for finding their 

efficacy. After analyzing the efficacy in terms of inhibition efficiency 

and off-target possibility of each model in Table 3.1, it is understood 
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that only a few mechanism were developed for addressing “both 

inhibition efficiency and off-target effect” of predicted siRNA against 

genes. Our aim is to develop an approach which optimizes the 

accuracy of predicted siRNA against target genes by taking care of 

both inhibition efficiency and off-target effect. The approaches 

proposed in this thesis extend five previous state of the art techniques 

named BIOPREDsi [18], DSIR [19], ThermoComposition21 [20], i-

Score [21], and MysiRNA [29], by incorporating machine learning 

and statistical techniques to improve the prediction accuracy and 

reduce the off-target possibility of siRNA. Out of these methods, 

MysiRNA model is showing the best results in terms of inhibition 

efficiency and off-target possibility prediction. In this study, we try to 

further improve and optimize the predictive ability of siRNA in terms 

of inhibition efficiency, sensitivity and specificity, accuracy of 

prediction, off-target identification, by combining the selected state 

of the art siRNA design techniques. 

 
…….. ♦ …….. 
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4.1 Introduction 
 This chapter provides the materials and methods used in this 

research work. The data sets used in this study are presented in 

section 4.2. The sections 4.3, 4.4 and 4.5 describe the important 

aspects like siRNA efficiency, need of target specificity while 

designing exogenous siRNA, and whole stacking energy used during 

siRNA prediction. The actual machine learning approaches, machine 

learning frameworks and training algorithms to predict the efficiency 

of siRNA against target messenger RNAs are described in section 
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4.6, 4.7 and 4.8 respectively. Section 4.9 describes various validation 

strategies used for evaluating the performance of the proposed 

approaches. Finally in section 4.10, a brief summary of the chapter is 

discussed. 

 

4.2 Data Sets  
 The neural network models used in this study are trained 

using the experimental inhibition capacity values of the siRNAs in 

Huesken data set [18], Data Set 1. This data set contains a total of 

2431 siRNAs derived from 34 genes, and their corresponding 

experimental inhibition capacity values prepared by Huesken et al 

[18]. This is known as Huesken data set, which is the reliable training 

data set used by most of the siRNA design approaches.  We used 

entire Data Set 1 for training our neural network model. For testing 

our neural network, we used two more data sets: Data Set 2 and Data 

Set 3. Data Set 2, which is mutually exclusive from Data Set 1, 

consists of 419 siRNAs taken from various sources such as Reynolds 

et al. [133], Ui-Tei et al. [134], Vickers et al. [157], Khvorova et al. 

[136] and Harborth et al. [161]. This data set was compiled by 

Ichihara et al. [21] for their i-Score designer model and is used by 

Mysara et al. [29] for testing their MysiRNA model. Data Set 3 is 

used for evaluating the sensitivity and specificity of our model. Data 

Set 3, which is entirely different from Data Set 1 and Data Set 2, 

consists of 476 siRNAs presented by Mysara et al. [29]. These 476 
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siRNAs were originally taken from a larger data set of 18,593 

siRNAs introduced by Fellman et al. [162]. The details of data sets 

used in the study are shown in Table 4.1. We have particularly 

selected these data sets for training and testing, since we can make an 

easy comparison of results with previous state of art techniques. In 

addition to these data sets, we have maintained our own data set 

(Data Set 4) containing 743 siRNAs collected manually from RefSeq 

[163] for working with the model. Also the model can directly take 

any mRNA or cDNA sequence from RefSeq [163] and will 

automatically create the siRNA sequences corresponding to the 

mRNA or cDNA and continue with efficiency prediction. The sample 

cDNA sequences used for designing siRNA are shown in Appendix 

1. 

Table 4.1: Data Sets used for Training and Testing ANN models 

Train/Test 

Data Set 

Name of 

Data Set 

No of 

Genes

No  of 

siRNA 

used 

siRNA 

with 50% 

to 70 % 

inhibition

siRNA 

with 70% 

to 90 % 

inhibition 

siRNA with  

> 90 % 

inhibition 

Train   
Data Set 

Data        
Set 1 34 2431 778 853 369 

Test      
Data Set  

Data        
Set 2 12 419 60 117 96 

Test     
Data Set  

Data       
Set3 9 476 70 53 127 
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4.3 siRNA Efficiency  

 The goal of siRNA efficacy prediction is to help in designing 

siRNA sequences that are highly efficient against their target mRNA 

sequences. Reynolds et al. [133] observed in their siRNA knock-

down experiments that properties of the target mRNA did not affect 

knockdown and efficacy seems to be solely based on properties of the 

siRNA. Gene silencing related studies indicate that out of the 

possible siRNAs that can be synthesized against a particular target, 

only a few are found successful in causing any degradation [12,151]. 

Among those successful siRNAs, all do not result with equal 

knockdown effects [12]. Also the efficacy of same siRNA may be 

different among different target sites for the same mRNA. Some 

studies reveal that stability factors like secondary structure and 

thermodynamic properties of the siRNA are also important 

determinants of functionality [131-132]. So for performing effective 

gene silencing, it is important to select effective siRNA sequences 

with good inhibition capacity, i.e., siRNAs that are highly functional 

in causing a certain percentage of the target mRNA sequence to 

degrade. In most studies, siRNAs causing knockdown of more than 

70% of the target mRNA are considered highly efficient but the 

threshold varies depending on the level of silencing required [12,131-

132, 151-152].  
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4.4 siRNA Specificity 

 In addition to inhibition efficiency, another important factor 

to be considered while siRNA design is the specificity of the siRNA 

[16,62,153]. siRNA mediated gene silencing is generally believed to 

be highly sequence specific. Sometimes siRNAs may tolerate 

mismatches with the target mRNA, but knockdown of genes other 

than the intended target could make serious consequences. Gene 

expression profiling in cultured human cells demonstrated silencing 

of non-targeted genes. Even though eleven complementary matches 

out of the 19 nucleotides of siRNA was enough to cause silencing 

[16], in some cases even a single base mismatch between the siRNA 

and its mRNA target abolished gene silencing [62]. This indicates 

that siRNA may cross-react with targets of limited sequence 

similarity. While maximum degradation of target mRNA is required, 

silencing of non-target mRNA should be avoided. Therefore, due 

consideration must be given to the implications arising from siRNA 

specificity in design algorithms. This can be achieved by selecting 

target mRNA such that their corresponding siRNAs are likely to be 

efficient against that target and unlikely to accidentally silence other 

transcripts due to sequence similarity. So to design siRNAs, two 

important concepts must be considered: the ability in knocking down 
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target genes and the off target possibility on any non target genes 

[16,62].  

4.5 Whole Stacking Energy  

 We are using an important thermodynamic property of siRNA 

called whole stacking energy (ΔG) as one of the input parameters to 

our approaches since it reflects the stability of siRNA duplexes and 

shows good correlation with inhibition efficiency [21,23,154]. We 

have used nearest neighbour model [29,155-156] to calculate the 

whole stacking energy of siRNA strand. The method used is same as 

that of iScore designer [152] and MysiRNA [29]. For calculating ΔG, 

the sum of the ΔG values in kcal/mol contributed by each nearest 

neighbour pair in the siRNA sequence is found out as shown in Table 

4.2. 

Whole ∆G ൌ ∑ ∆GଷሺSeqሾiሿSeqሾi  1ሿሻ୬ିଵ
୧ୀଵ   (7.1) 

For example, if the siRNA sequence is AGACUA,  
 
Whole ΔG  = ΔG(AG) + ΔG(GA) + ΔG(AC) + ΔG(CU) +   
                           ΔG(UA) = -2.1 + -2.4 + -2.2 + -2.1 + -1.3  
                        = -10.1 kcal/mol. 

Table 4.2: ΔG values of nearest neighbor pairs 
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Nearest 

Neighbour 

Pair 

ΔG37 (kcal / mol) 

Nearest 

Neighbour 

Pair 

ΔG37 (kcal / mol) 

AA -0.9 GA -2.4 

AU -1.1 GU -2.2 

AG -2.1 GG -3.3 

AC -2.2 GC -3.4 

UA -1.3 CA -2.1 

UU -0.9 CU -2.1 

UG -2.1 CG -2.4 

UC -2.4 CC -3.3 

 

4.6 Machine Learning Approaches 
 The following are the set of machine learning approaches 

proposed in this study for finding the efficiency of siRNA data. 

Based on these algorithms the efficiency of siRNA against target 

mRNA are modeled and tested. 

i. Support Vector Machine (SVM) model is used to classify and 

observe the efficiency of   siRNA against target mRNA [33]. 

 
ii. Two Artificial Neural Network (ANN) models are designed to 

find the efficiency of siRNA against target mRNA [34-35].  
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4.7 Machine Learning Frameworks 
 In this study, we are using three machine learning approaches 

named LIBSVM [158], Neuroph Studio [159] and Encog Workbench 

IDE [160]. 

  

4.7.1 LIBSVM 

 LIBSVM [158] is used as a library for Support Vector 

Machines. The practical use of LIBSVM involves mainly two steps. 

In the first step, training is done with a known data set to obtain a 

model. In the second step, it will predict information of a testing data 

set using the developed model. LIBSVM supports various SVM 

formulations for classification, regression, and distribution 

estimation. It supports multi class classification like One-class SVM, 

SVC (Support Vector Classification for two-class and multi-class) 

and SVR (Support Vector Regression) [33,158]. We have used 

LIBSVM for working with our SVM model. 

 

4.7.2 Neuroph Studio 

 One of our artificial neural network models is designed by 

using Neuroph studio [159]. The Neuroph library for Java is used to 

create neural network model. Neuroph is a lightweight Java neural 

network framework to develop common neural network architectures. 

The Neuroph Studio IDE provided by Neuroph is used to easily 

design and test the model. The IDE provides an easy-to-use graphical 

interface to design various neural network configurations, and to train 
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or test the network using various neural network training algorithms.   

 Website: http://www.neuroph.sourceforge.net 

 
4.7.3 Encog Workbench IDE  

 The Encog Workbench IDE [160] is used for creating our 

second neural network model, i.e., optimized siRNA designer. The 

Encog machine learning framework for Java is used to create and use 

the siRNA designer neural network model. Encog is an advanced, 

lightweight Java machine learning framework which can be used to 

develop common neural network and other machine learning models 

like Support Vector Machines, Genetic Algorithms, Bayesian 

Networks, Hidden Markov Models. The Encog Workbench IDE is 

used to easily design and test the model. The IDE provides an easy-

to-use graphical interface to design various neural network 

configurations, and to train or test the network using various neural 

network training algorithms. In addition to Java, the Encog 

framework is also available for .NET and C/C++.  

Website: http://www.heatonresearch.com/encog 

 

4.8 Training Algorithms  
  The back propagation algorithms [164-165] are used for 

training our neural networks. For training with back propagation, the 

input patterns should be known apriory. Then the algorithm can be 

used for training a given feed-forward multilayer neural network with 
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a known set of input patterns with the classifications. For each of the 

sample input presented to the network, it examines the output 

response. Then the network will compare the output response to the 

known desired output and the error value is calculated accordingly. 

The connection weights are adjusted based on the error. The set of 

sample patterns are repeatedly presented to the network until the error 

value is minimized. We have used two back propagation algorithms 

namely Resilient Propagation (RProp) [166-167] and Scaled 

Conjugate Gradient (SCG) [168-172] in our neural network methods. 

4.8.1 Resilient Propagation  

 Resilient back propagation (Rprop) [166-167] is an algorithm 

which is used for training a neural network which is same as that of a 

regular back propagation algorithm. Training with Rprop is faster 

than back propagation and Rprop doesn't require specifying any free 

parameter values for learning rate. But the main disadvantage of 

Rprop algorithm is that it is more complex to implement than back 

propagation. The Rprop algorithm has two significant differences 

with the back propagation algorithm. First, Rprop uses only the sign 

of the gradient instead of magnitude to determine weight delta. 

Second, Rprop maintains separate weight deltas for each weight and 

bias, and adapts these deltas during training, instead of using a single 

learning rate for all weights and biases. 
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4.8.2 Scaled Conjugate Gradient  

 Many adaptive learning algorithms for feed forward neural 

networks have been introduced [164]. But most of them are based on 

Gradient Descent algorithm and have poor convergence rate. For 

example standard back propagation algorithm [165] often behaves 

badly on large scale problems. But Conjugate Gradient Methods are 

one class of optimization methods that are able to handle larger scale 

problems very effectively [166-169]. Several Conjugate Gradient 

algorithms have been introduced as learning algorithms in neural 

networks [170-171]. Finally Scaled Conjugate Gradient (SCG) [173] 

a supervised learning algorithm is introduced for improving the 

requirements of feed forward neural networks with good convergence 

rate. SCG is based on optimization techniques in numerical analysis.   

  

4.9  Validation Strategies 

 After training and testing of the neural network model, 

validation of results are done thorough Pearson Correlation analysis, 

followed by Accuracy of Prediction, Sensitivity and Specificity, 

Matthews Correlation Coefficient and Receiver Operating 

Characteristics analysis [174-175]. These validation strategies are 

explained briefly.  
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4.9.1 Pearson Correlation Coefficient  

 Pearson correlation coefficient (R) [174-175] is a measure of 

the linear dependence between two variables X and Y. The 

correlation values range between -1 to 1, where values closer to -1 

indicates negative correlation and values closer to +1 indicates 

strong  positive correlation and those tending towards 0 indicates no 

correlation. The interpretation of the Pearson correlation coefficient 

is as follows.   

 

R = +0.70 or above indicates very strong positive correlation 

R = +0.40 to +0.69 indicates strong positive correlation 

R = 0 indicates no correlation 

R = -0.40 to -0.69 indicates strong negative correlation 

R = -0.70 or above indicates very strong negative correlation 

 

 In our approaches, Pearson correlation is calculated to find the 

accuracy of our results with original experimental values. For this, 

correlation between the predicted siRNA inhibition efficiency by our 

model against original experimentally proven siRNA inhibition 

efficiency is observed and analyzed. 
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4.9.2 Sensitivity, Specificity, Accuracy  

 A diagnostic test may be highly specific without being 

sensitive, or it may be highly sensitive without being specific. But 

both factors are equally important. A diagnostic test is considered as 

“good” if the test has both high sensitivity and specificity. The 

sensitivity, specificity and accuracy are described in terms of true 

positive (TP), true negative (TN), false negative (FN), and false 

positive (FP). If a disease is proven present in a patient and the given 

diagnostic test also indicates the presence of disease, the result of the 

diagnostic test is considered true positive. Similarly, if a disease is 

proven absent in a patient and the diagnostic test suggests the disease 

is absent as well, the test result is true negative (TN). From Table 4.3 

it is understood that both true positive and true negative suggest a 

consistent result between the diagnostic test and the proven condition. 

However, if the diagnostic test indicates the presence of disease in a 

patient who actually has no such disease, the test result is false 

positive (FP). Similarly, if the result of the diagnosis test suggests 

that the disease is absent for a patient with disease for sure, the test 

result is false negative (FN). Both false positive and false negative 

indicate that the test results are opposite to the actual condition. 
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Table 4.3: Template for diagnostic test results 

Diagnostic Test 
Result 

Existence of Disease as determined by the 
standard of truth 

Positive Negative Row Total 

Positive TP FP TP+FP 

Negative FN TN FN+TN 

Column total TP+FN FP+TN N=TP+TN+FP+FN 

 

Sensitivity: Sensitivity [174-175]  is the proportion of true positives 

that are correctly identified by a diagnostic test. It shows the 

goodness of the test while detecting a disease. The numerical values 

of sensitivity represents the probability of a diagnostic test identifies 

patients who do in fact have the disease. As the numerical value of 

sensitivity is higher, the possibility of diagnostic test returns false-

positive results is less. For example, if sensitivity = 95%, it means: 

when we conduct a diagnostic test on a patient with certain disease, 

there is 95% of chance, this patient will be identified as positive. A 

test with high sensitivity may capture all possible positive conditions 

without missing anyone.  So a test showing high sensitivity is often 

used to screen for disease.  
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Sensitivity is defined as 

 

Sn = Number of true positive assessment / Number of all 

positive assessment  

Sn ൌ  TP
TPାFN

      (4.1) 

 

Specificity: Specificity [174-175]  is the proportion of the true 

negatives correctly identified by a diagnostic test. It indicates how 

good the test is at identifying normal (negative) condition. The 

numerical value of specificity represents the probability of a test 

diagnoses a particular disease without giving false-positive results. 

For example, the specificity of a test is 95% means: when we conduct 

a diagnostic test on a patient without certain disease, there is 95% 

chance of this patient to be identified as negative. Specificity is 

defined as 

 

Specificity = Number of true negative assessment/Number of all 

negative assessment 

Sp ൌ  TN
TNାFP

       (4.2) 

 

Along with sensitivity and specificity, the measures like Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), False 

Positive Rate (FPR), False Negative Rate (FNR), False Discovery 

Rate (FDR), F-Score (F) are also be used for describing the 

performance of diagnostics. 
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       PPV ൌ  TP
TPାFP

                                                   (4.3) 

 

      NPV ൌ  TN
TNାFN

                                                   (4.4) 

 

      FPR ൌ  FP
FPାTN

                                                   (4.5) 

 

      FNR ൌ  FN
TPାFN

                                                   (4.6) 

 

      FDR ൌ  FP
TPାFP

                                                   (4.7) 

 

      F ൌ  ଶTP
ଶTPାFPାFN

                                                   (4.8) 

 

Accuracy: Accuracy measures [174-175] the degree of veracity of a 

diagnostic test on a condition. The numerical value of accuracy 

represents the proportion of true positive results (both true positive 

and true negative) in the selected population. An accuracy of 95% 

means the test result is accurate, regardless positive or negative. 

However, the equation of accuracy implies that even if both 

sensitivity and specificity are high, it does not suggest that the 

accuracy of the test is equally high as well. Apart from sensitivity and 

specificity, accuracy of the test is also used as a measure to determine 

how common the disease in a selected population. A diagnosis for 
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rare conditions in a particular population might result in high 

sensitivity and specificity but with low accuracy.  

 
Accuracy is defined as  

 

Accuracy = Number of correct assessments/Number of all 

assessments 

 

 Acc ൌ  TPାTN
TPାFPାTNାFN

     (4.9) 

  

4.9.3 Matthews Correlation Coefficient 

 Matthews Correlation Coefficient (MCC) [174-175] is 

typically used in machine learning as a metric for assessing the 

quality of the predicted value to the observed value. Or it is a 

measure of quality of prediction which is the correlation coefficient 

between the observed and predicted binary classifications by 

considering false positive (FP), false negative (FN), true positive 

(TP) and true negative (TN).  An MCC with -1 indicates negative 

correlation, 0 indicates no correlation (random selection) and +1 

indicates positive (perfect) correlation. 

Mathews correlation coefficient, 
 
 

MCC ൌ  ሺTPൈTNሻି ሺFNൈFPሻ
ඥሺTPାFNሻሺTNାFPሻሺTPାFPሻሺTNାFNሻ

  (4.10) 
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4.9.4 Receiver Operating Characteristic  

 Receiver Operating Characteristic (ROC) [174-175] is one 

among the robust tool used for diagnostic tests. ROC plots sensitivity 

on Y axis against ‘1- specificity’ on X axis. Using ROC analysis, we 

can calculate the Area under Curve (AUC) as a measure of 

performance. The AUC can also be realized as the average sensitivity 

over entire range of all possible specificities, or the average 

specificity over entire range of all possible sensitivities. An AUC of 1 

identifies perfect classification and an AUC of 0.5 identifies random 

classification. 

 
 For siRNA efficacy prediction, it is desirable to have low 

false positive rates. For RNAi studies, where functional siRNAs are 

required, it is very important that siRNAs having low efficacy must 

not predicted to be functional. But, misclassifying siRNAs with high 

efficiency rates as nonfunctional is of much lesser consequence. ROC 

curve is a plot of a test’s sensitivity versus (1-specificity). ROC 

curves are useful in comparing classifiers based on true positive and 

false positive rates. For a given diagnostic test, the true positive rate 

(TPR) against false positive rate (FPR) can be measured, where 

 
TPR ൌ  TP

ሺTPାFNሻ
    (4.11) 

FPR ൌ  FP
ሺFPାTNሻ

    (4.12) 
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 From the above equations it can be noted that, TPR is 

equivalent to sensitivity and FPR is equivalent to (1 – specificity). All 

possible combinations of TPR and FPR compose a ROC space. A 

single point in the ROC space is determined by one TPR and one 

FPR. The position of a point in the ROC space indicates the tradeoff 

between sensitivity and specificity. An increase in sensitivity is 

accompanied by a decrease in specificity. Thus the location of the 

point in the ROC space depicts whether the diagnostic classification 

is good or not. If a point determined by both TPR and FPF gives 

coordinates (0,1), we can say that this point falls on the upper left 

corner of the ROC space. This ideal point indicates the diagnostic test 

has a sensitivity of 100% and specificity of 100%. It is also called 

perfect classification. Diagnostic test with 50% sensitivity and 50% 

specificity can be visualized on the diagonal determined by 

coordinate (0, 0) and coordinates (1, 0). If a point predicted by a 

diagnostic test fall into the area above the diagonal, it represents a 

good diagnostic prediction, otherwise a bad classification. A graphic 

representation is shown in Fig. 4.1. It shows that shadow area 

represents better diagnostic classification. 

 The interpretation of ROC curve is similar to a single point in 

the ROC space. If the point on the ROC curve is closer to the ideal 

coordinate, the test result will be more accurate. If the point on the 

ROC curve is closer to the diagonal, the test result is less accurate. 
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The properties of ROC are as follows, 

• As the curve approach the ideal point faster, the test results are 

more useful;  

• The slope of the tangent line to a cut-point indicates the ratio of 

the probability of identifying true positive over true negative. If 

the ratio is greater than 1, true positive results will be identified 

and if the ratio is less than 1, disease likelihood is decreased. 

 

 
    Fig. 4.1: ROC Curve 

 

• AUC, the area under ROC curve is a measure of accuracy of a 

diagnostic test. Accuracy classification by AUC for a diagnostic 
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test is shown in Table 4.4.  As the   area is larger, the more 

accurate the diagnostic test is.  

 

AUC of ROC curve is measured by the following equation,  

 

AUC ൌ   ROC ሺtሻdt ଵ
     (4.7) 

 

Where t = (1 – specificity) and ROC (t) is sensitivity. 

 
Table 4.4: Accuracy classification by AUC for a diagnostic test 

Range of AUC Classification 

AUC between 0.9 and 1.0 Excellent 

AUC between 0.8 and 0.9 Good 

AUC between 0.7 and 0.8 Worthless 

AUC between 0.6 and 0.7 Not good 

 

  
4.10 Summary  
 The materials and methods like machine learning approaches 

(SVM [33] and ANN [34-35]), machine learning frameworks 

(LIBSVM [149], Neuroph Studio [159], Encog Workbench IDE 
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[160]), machine learning algorithms [166-172] (Rprop and SCG), 

Data Sets for training and testing, validation strategies like Pearson 

Correlation Coefficient, MCC, ROC, Sensitivity, Specificity and 

Accuracy of Prediction [174-175] for evaluating the performance of 

the proposed approaches are briefly explained in this chapter.  

 
…….. ♦ …….. 



 

 

Chapter  - . 5.      

 ssiiRRNNAA  EEffffiicciieennccyy  PPrreeddiiccttiioonn  bbyy  

SSuuppppoorrtt  VVeeccttoorr  MMaacchhiinnee  MMooddeell      
  

5.1 Introduction 

5.2 Input parameters 

5.3 Training and Testing with SVM  

5.4 Steps in Training and Testing 

5.5 Summary 

 
 
5.1 Introduction 

 As the first step of our study, we selected Support Vector 

Machine model, to start predicting efficiency of siRNA against 

target mRNA or cDNA sequences. This chapter describes the 

method for predicting siRNA efficiency using one of the machine 

learning approaches called Support Vector Machine. Section 5.2 

describes the input parameters selected for the SVM model. Section 

5.3 briefly presents how training and testing is done with SVM. In 

section 5.4, various steps during training and testing phase are 

explained. Finally, an overview of the chapter is discussed in section 

5.5. Using this model, we try to classify a given siRNA as efficient 

or inefficient to silence a target mRNA sequence. Also we filtered 

the results to find the influence of melting temperature, one of the 

Co
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nts
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important thermodynamic properties of siRNA on the inhibition 

efficiency. 

 

5.2 Input parameters 
 The model is initially trained with input parameters like 

positional features, percentage of G-C content, and some 

thermodynamic properties of siRNA. Since thermodynamic 

properties are important stability factors of siRNAs, we finalized the 

input parameters as four thermodynamic properties of siRNA: 

whole stacking energy (∆G), enthalpy (∆H), entropy (∆S) and 

melting temperature (Tm). These values of siRNAs are calculated 

according to the nearest neighbor model [155-156]. NetBeans IDE 

6.9.1, the open-source Integrated Development Environment with 

Glass Fish Application Server is used to develop the model. Apache 

Derby Network Server is used for the implementation of servlets 

and JSP. LIBSVM [158], the publicly available SVM program 

written in Java is used by us for solving the classification problem.   

 

5.3 Training and Testing with SVM  
 The training data set is prepared as follows. Based on the 

gene silencing activity, we have collected 653 siRNAs from the 

published data from RefSeq [163]. Based on the reported gene 

silencing activity, we have filtered the siRNAs into two categories. 

The siRNAs with greater than or equal to 60 percentage gene 

silencing activity is considered as efficient and siRNAs with less 
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than or equal to 30 percentage gene silencing activity is considered 

as inefficient. Thus manually we could separate 359 siRNAs out of 

653. For each siRNA, the input parameters are calculated and 

training is done by SVM. The output is then scaled to keep features 

with large numerical scales with small numerical scales, to the range 

[0, 1]. Testing is done with target mRNA sequences. The input is 

taken as mRNA sequence or cDNA sequence. The flowcharts 

shown in Fig.5.1 and Fig.5.2 describe the training and testing phase 

of SVM. SVM finally lists all possible efficient and inefficient 

siRNAs for a specified mRNA or cDNA sequence. The predicted 

siRNAs by our model are compared and analyzed with existing 

available siRNA target finder models and the results are verified.  

 

5.4 Steps in Training and Testing 
 
5.4.1 Files used: 

1. Svm_trainingset.csv: Contains the set of siRNAs and 

their known efficiency which are used to train the SVM.   

2. Train:  Contains 4 parameters and efficiency of training 

siRNAs. 

3. Train.scale: Scaled values of parameters in the file 

“Train”.   

4. Train.model: Stores the trained SVM.   

5. Test: Stores the parameters of siRNAs generated from the 

user given mRNAs.  

6. Test.scale: Contains the scaled version of the file “Test”.   
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7. Scalingfactors: Stores the scaling factors used to scale 

the values.  

 

5.4.2 Training Phase: 
 Read siRNAs from svm_trainingset.csv file, calculate 

their parameters and write to the file “Train”. 

 Scale the parameters in the file “Train” and write the 

scaled values to file “Train.scale”. 

 Input the train.scale file to the SVM and write the trained 

SVM to the file “Train.model”. 

 

 
Fig 5.1: Flow Chart for Training Phase 
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Fig 5.2: Flow Chart for Testing Phase 

 

5.4.3 Testing Phase: 
 Read the mRNA submitted by the user from the web 

browser. 

 Generate all possible siRNAs from the given mRNA. 

 Calculate the 4 parameters of all these siRNAs and write 

to the file “Test”. 
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 Scale the values from “Test” and write to the file 

“Test.scale”. The scaling factors are obtained from the 

file “Scalingfactors”. 

 Feed the scaled parameters of each siRNA from the file 

“Test.scale” to the SVM and obtained the output 0 or 1. 

If the output is 1, the corresponding siRNA is efficient 

otherwise inefficient. SVM predicts siRNAs one by one. 

 

5.5 Summary 
 Using this SVM model, we are able to achieve the first 

objective of our study, i.e., designing efficient siRNAs for any target 

mRNA or cDNA. In efficiency prediction using SVM, we are 

classifying the siRNA into efficient or inefficient: means whether 

siRNA is able to silence a target mRNA sequence or a gene. The 

predicted efficiency is verified with existing siRNA design 

approaches. Also we are able to notice a relationship between the 

thermodynamic property and inhibition efficiency of siRNA using 

this model. Results and discussion of SVM model is further 

elaborated in chapter 8. 

 

 In this model, since we considered the classification property 

of SVM, we are able to only identify whether the predicted siRNA 

is efficient or inefficient against target genes. But in the optimized 

siRNA prediction model, we are supposed to find the percentage of 
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inhibition efficiency of each predicted siRNA too. When we 

analyzed the available siRNA prediction approaches, it is 

understood that most of them are using artificial neural network 

model for finding the efficiency of siRNA. So we have moved 

further to design artificial neural network machine learning models 

to identify as well as predict the inhibition efficiency of each 

siRNA against target genes. These models are described in Chapter 

6 and Chapter 7. 

 
…….. ♦ …….. 
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 Chapter  - . 6.      

 ssiiRRNNAA  EEffffiicciieennccyy  PPrreeddiiccttiioonn  bbyy  
AArrttiiffiicciiaall  NNeeuurraall  NNeettwwoorrkk  MMooddeell  

 
6.1 Introduction 

6.2 Neural Network Architecture 

6.3 siRNA Designer Workflow 

6.4 Summary  

 
 

6.1 Introduction 
 

 This chapter describes the method used for predicting siRNA 

inhibition efficiency using one of the machine learning approaches 

called Artificial Neural Network. An approach named siRNA 

Designer, is built through a  multi layer perceptron feed forward 

neural network (6-8-8-8-1 ANN) based on five previous second 

generation models BIOPREDsi, DSIR, ThermoComposition21, i-

Score and MysiRNA together with one of the important 

thermodynamic property of siRNA called whole stacking energy 

(ΔG), to predict the efficiency of siRNA. The chapter is divided into 

four sections.  Section 6.2 describes the architecture of the 6-8-8-8-1 

neural network model. The work flow of the model is described in 

section 6.3. The chapter ends with section 6.4, which gives a 

summary of this chapter. Using this model, we try to find the 

Co
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percentage of inhibition efficiency of each siRNA generated against a 

target mRNA or cDNA sequence and to optimize the result in terms 

of inhibition efficiency.   

 

6.2  Neural Network Architecture 

 A multi-layer perceptron, feed-forward neural network trained 

using the Resilient Propagation algorithm [166] is used for 

computing the final score. The neural network which we use is a 6-8-

8-8-1 ANN, which has 6 neurons in the input layer (x1 to x6); three 

hidden layers of 8 neurons each and 1 neuron in the output layer (y) 

(Fig. 6.1). The neural network is built and trained using Neuroph 

Studio [159] and integrated into our siRNA designer model. The 

Neuroph library for Java is used to create and use the siRNA designer 

neural network model.  

  

 Neuroph is a lightweight Java neural network framework to 

develop common neural network architectures. The Neuroph Studio 

IDE [159] provided by Neuroph is used to easily design and test the 

model. The IDE provides an easy-to-use graphical interface to design 

various neural network configurations, and to train or test the 

network using various neural network training algorithms. It is 

available under version 2.0 of the Apache License [176]. Apache 

License is free open source software from the Apache Software 

Foundation. The Apache library is used to read and write Microsoft 

Excel files, such as i-Score designer Excel file. It provides a set of 
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Java APIs for creating and manipulating Microsoft Office 

Documents. This model is named as siRNA Designer. 

 

 
Fig. 6.1: 6-8-8-8-1Neural Network Model 

 
6.2.1 Input Parameter Selection 

 The existing siRNA design approaches use different features 

and weights in their model design. We made an attempt to combine 

these features for improving the design. For this, we considered the 

features of many good scoring siRNA design models to get better 

prediction value. After several iterations and trials, we are able to 

obtain a combination of 5 approaches with a very good prediction 

power. These models are BIOPREDsi [18], ThermoComposition21 

[20], i-Score [21], DSIR [19] and MysiRNA [29]. Since most of the 

data from the original BIOPREDsi model [18] are not available 
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directly, we used the simulated-Biopredsi (s-Biopredsi), as in 

Ichihara’s work [21], rather than the original BIOPREDsi [18].  In 

the next step, we included one more parameter, whole stacking 

energy (ΔG), to find the effect of ΔG oin inhibition efficiency.  

 

6.2.2 Normalization of Input and Output 

 The input values given to the neural network, i.e. the 6 

metrics described above, are normalized using the z-normalization 

method [177]. That is, the normalized input values are given by: 

 
′   

Where ′  is the normalized value of the metric for the ith 

siRNA  

  is the actual value  

 
  is the mean value of the metric  for the entire set of 

siRNAs  

 
 is the standard deviation  

 
 The mean and standard deviation values obtained for the 

training data set are used for normalizing the input values. The neural 

network gives a single output value in the range [0, 1], which is 

multiplied by 100 to give the final score which is displayed for each 

siRNA. 
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6.3 siRNA Designer Workflow 

 
The workflow of the approach is shown in Fig. 6.2. 

 
 

Fig. 6.2: Workflow of 6-8-8-8-1 Model 
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6.4 Summary  
 In this work, an approach named  siRNA Designer (6-8-8-8-1 

ANN Model) is built based on artificial neural network model to 

predict siRNA inhibition activity based on five good scoring state of 

the art models, BIOPREDsi, DSIR, ThermoComposition21, i-Score 

and MysiRNA together with whole stacking. Using this 6-8-8-8-1 

ANN model, we are able to achieve the second objective of our 

study, i.e., predicting the percentage of inhibition efficiency of each 

predicted siRNA against a target mRNA or cDNA sequence. By 

maintaining a cut-off in inhibition efficiency (normally cut-off will 

be 70%-80% depending on the amount of silencing needed), one can 

select efficient siRNAs which are capable of inhibiting target 

mRNAs. The result and discussion of this ANN model is elaborated 

in section 8.3 of chapter 8. 

 
 It is found that this model results in very good performance in 

terms of inhibition efficiency. Using this model even though we are 

able to optimize the efficiency of siRNA in terms of inhibition 

capacity, we are not able to address the issues like sensitivity and 

specificity of siRNA properly. Hence another ANN model is 

designed for optimizing the siRNA efficiency in terms of inhibition 

capacity, sensitivity, specificity, accuracy of prediction and off-target 

possibility. With this new 5-12-1 artificial neural network model, we 
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try to improve and optimize the inhibition efficiency of siRNA on 

target genes and off target possibility on non- target genes, and is 

elaborated in Chapter 7. 

 

…….. ♦ …….. 
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Chapter  - . 7.      

 Oppttiimmiizzeedd  ssiiRRNNAA  PPrreeddiiccttiioonn  bbyy  

AArrttiiffiicciiaall  NNeeuurraall  NNeettwwoorrkk  MMooddeell  
 

7.1 Introduction 

7.2 Neural Network Architecture 

7.3 Optimized siRNA Designer (OpsiD) Workflow 

7.4 Working Model 

7.5 Summary 

 

7.1 Introduction 
 This chapter describes the method used for optimization of 

siRNA efficiency prediction using Artificial Neural Network model. 

An approach named Optimized siRNA Designer (OpsiD) is built 

through a multi layer perceptron feed forward neural network (5-12-1 

ANN) based on four previous second generation models DSIR, 

ThermoComposition21, i-Score and MysiRNA together with whole 

stacking energy (ΔG) to predict the   efficiency of siRNA. The 

chapter is divided into five sections. Section 7.2 describes the 

architecture of 5-12-1 neural network model. In section 7.3, the work 

flow of the model is presented by briefly explaining the input and 

output parameters, frame works used for designing and the 
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prerequisites. The working model and off-target possibility prediction 

are explained in section 7.4. Finally a brief summary about the 

approach is given in section 7.5. Using this model, we try to optimize 

the efficiency of predicted siRNA in terms of inhibition efficiency, 

off-target possibility, sensitivity, specificity and accuracy of 

prediction.   

 
7.2 Neural Network Architecture 
 A multi-layer perceptron feed-forward neural network is 

modeled for finding optimized siRNAs with improved efficacy 

against target mRNA in terms if inhibition capacity, sensitivity, 

specificity, accuracy of prediction and off-target possibility than 

existing state of the art techniques. For selecting the optimized neural 

network model, we tested various configurations of feed-forward 

neural networks such as 4-8-8-1, 5-7-7-1, 5-8-1, 5-8-8-1, 5-10- 1, 5-

12-1, 6-7-7-1, 6-8-8-1, 6-8-8-8-1, 6-10-1 and 6-12-1 using the proven 

good scoring models like BIOPREDsi [18], ThermoComposition21 

[20], i-Score [21], DSIR [19] and MysiRNA [29] together with whole 

stacking energy (ΔG) as inputs parameters. Since we were not able to 

access most of data from the original BIOPREDsi model [18], we 

used the simulated-Biopredsi (s-Biopredsi), as in Ichihara’s work 

[21], rather than the original BIOPREDsi.  Initially we had 

considered s-Biopredsi as an input metric, but after some 

experimentation, it is found that the inclusion of s-Biopredsi 
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decreased the accuracy of the neural network model for various data 

sets. We finally chose a configuration of 5-12-1 ANN.  For 

calculating the final score of each siRNA, we computed four different 

metrics for the siRNA strand’s inhibition capacity taken from earlier 

works and used as the input values of our neural network. These final 

methods considered for combining in our models are 

ThermoComposition21, i-Score, DSIR and MysiRNA. Along with 

these, whole stacking energy (ΔG) of each siRNA strand is taken as 

fifth input metric. The 5-12-1 neural network shown in Fig.7.1 

consists of an input layer with 5 neurons (x1 to x5), a single hidden 

layer with 12 neurons and output layer with 1 neuron (y1). A number 

of neural network training algorithms such as the classic Back 

Propagation, Resilient Propagation and Scaled Conjugate Gradient 

are tried out [166-173]. Varying number of training iterations are also 

tried out depending on the network configuration and the training 

algorithm. The training is started from a randomized state and is done 

for 1, 36,000 iterations. The neural network is built and trained using 

the Encog Workbench IDE [160] and later integrated into our siRNA 

designer model. Scaled Conjugate Gradient training algorithm 

provided by Encog [172-173] is used for computing the final score of 

each siRNA. The Scaled Conjugate Gradient algorithm is based upon 

a class of optimization techniques well known in numerical analysis 

as the Conjugate Gradient Methods. This model is named as 

Optimized siRNA Designer (OpsiD). 
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Fig. 7.1: 5-12-1 Neural Network Model. 

 

7.3 Optimized siRNA Designer (OpsiD) Workflow 
 
7.3.1  Input Parameter Selection 

  For computing the final score of each siRNA, we considered 

five different metrics: whole stacking energy (ΔG), DSIR score [19], 
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ThermoComposition21 score [20], i-Score prediction value [21] and 

MysiRNA score [29]. All these must be downloaded from their 

respective sources before using our model, OpsiD. In our 

experiments, these metrics are found to work well and give good 

results.  Along with these values, whole stacking energy is also 

calculated as described in section 4.5, for each siRNA strand. These 

five values are used as the input of our neural network.  

 
7.3.2 Normalization of Input and Output 

 The input values given to the neural network, i.e. the 5 

metrics described above, are normalized using the range 

normalization method, also known as min-max normalization. That 

is, the normalized input values are given by: 

 

A୧N ൌ
Aି୫୧୬A

୫ୟ୶Aି୫୧୬A
ሺmaxR െ minRሻ  minR   (7.1) 

 
 Where ࡺ is the normalized value of the metric A for the ith  

tuple of the training data,  is the actual value, ࢞ࢇ is the 

maximum value of the metric A for the entire training set of siRNAs 

and  is the minimum value. The values are normalized to the 

range [minR, maxR]. 

 
 The minimum and maximum values of each input metric are 

used for normalizing the input values. The input values for the neural 
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network are normalized to the range [-1, 1] before being given as 

input. The experimental inhibition values from the training data set 

were also normalized to the range [0, 1] before training the neural 

network. The neural network gives a single output value in the range 

[0, 1], which is then multiplied by 100 to give the final score which is 

displayed for each siRNA. 

  
7.3.3 Frameworks 

7.3.3.1  NCBI BLAST 

 The NCBI BLAST tool (blastall) [178] is used to filter out 

siRNAs with high off-target effect by running a BLAST search on 

the NCBI RefSeq database. The blastall tool is bundled along with 

OpsiD, but the NCBI RefSeq database must be downloaded 

separately.  

Website: ftp://ftp.ncbi.nlm. nih.gov/blast/executables/ release/ 

LATEST/.  

7.3.3.2 Encog Workbench IDE 

 The Encog machine learning framework for Java is used to 

create and use the siRNA designer neural network model.  The IDE 

[160] provides an easy-to-use graphical interface to design various 

neural network configurations, and also to train as well as test the 

neural network using various neural network training algorithms. 

Website: http://www.heatonresearch .com/encog                              
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7.3.3.3 Apache POI 

 The Apache POI library [176] is used to read and write 

Microsoft Excel files, such as the i-Score designer Excel file. The 

Apache POI library is an open-source library developed by the 

Apache Software Foundation which provides a set of Java APIs for 

creating and manipulating Microsoft Office Documents (both the new 

OOXML formats and the old OLE2 Compound Document Format). 

It is available under version 2.0 of the Apache License. Website: 

http://poi.apache.org/ 

 
7.3.4 Prerequisites 

 The siRNA designer software (OpsiD) requires the following 

software and files to be downloaded and installed: 

i. Java 7 

ii. Any Perl Distribution   

iii. i-Score Designer Excel file [21] 

iv. ThermoComposition21 [20] 

v. MysiRNA designer and model file [29] 

vi. NCBI BLAST tool (blastall)a  [178] 

vii. NCBI RefSeq RNA BLAST database [163]a 

viii. Encog Workbenchb  [160] 
a Required only for BLAST search filtering (optional) 
b Required only for testing the neural network model 

using the  supplied test data 
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7.4 Working  Model 
 

7.4.1 Input 

 The approach takes an mRNA or cDNA gene sequence as 

input. The nucleotides may be specified using the uppercase letters A, 

T, G, C and U or the corresponding lowercase letters, and any spaces 

or newlines within the sequence are ignored. The user can also enter 

the RefSeq number of the gene if it has been taken from the NCBI  

RefSeq RNA database [163]. This is only required if the user selects 

to perform BLAST search. 

 
7.4.2 Processing 

 The siRNA designer model first enumerates each possible 19 

nucleotide siRNA sequences from the input nucleotide sequence. 

Then, it computes the parameters for each siRNA strand such as G-C 

content percentage and whole stacking enenrgy. For calculating 

whole stacking enenrgy, we use the nearest-neighbor model from 

Sugimoto et al. [156], which is also used by other models such as i-

Score and MysiRNA. If the user has selected the option to filter 

siRNAs based on G-C content, the software removes all siRNAs 

which do not have GC content % between the minimum and 

maximum values specified by the user. Then, it gives each siRNA 

sequence as input to various pre-existing second generation siRNA 

designer models such as i-Score, ThermoComposition21, DSIR and 
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MysiRNA to get their scores for the strand’s inhibition capacity. The 

siRNA strand’s i-Score, ThermoComposition21, DSIR, MysiRNA 

scores and the initially calculated whole delta G value are given as 

input to the neural network model. The model gives an output value 

in the range [0, 1] which is then multiplied by 100 to give the 

displayed final score (in the range 0 – 100) for the siRNA strand. If 

the user has selected the option to filter siRNAs based on their score, 

the software will remove all siRNAs whose final scores lie below a 

certain threshold value specified.  

 
7.4.3 Off-Target Possibility Prediction 

 If the user wants to filter out siRNA with high off-target 

effect, the BLAST option must be selected through the interface. The 

BLAST score outputs for a particular siRNA’s maximal match 

obtained for that sequence against some other mRNA subsequence in 

the selected gene database. The use of siRNAs with high BLAST 

score may lead to off-target effect. Thus the user must make the 

trade-off between the “goodness” of siRNA with respect to inhibition 

capacity, and its similarity to other mRNA fragments. The work flow 

of the model, OpsiD is shown in Fig. 7.2. 
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Fig. 7.2: Workflow of OpsiD 

 

7.5  Summary 
 In this work, a 5-12-1 artificial neural network model named 

Optimized siRNA Designer (OpsiD), is designed to achieve the goals 

and objectives of our study. Using this model, we are able to optimize 

the siRNA efficacy in terms of inhibition efficiency, sensitivity-
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specificity, accuracy of prediction and off-target possibility. It is 

mainly built on four previous second generation models DSIR, 

ThermoComposition21, i-Score and MysiRNA together with an 

important thermodynamic property of siRNA called whole stacking 

energy (ΔG). Using OpsiD, we are able to observe the percentage of 

inhibition efficiency of each predicted siRNA against a target mRNA 

or cDNA sequence and able to address some of the issues like 

sensitivity and specificity.OpsiD also provides the choice for 

detecting the off-target possibility of each siRNA on any unintended 

genes during silencing. In OpsiD, the off-target possibility of each 

predicted siRNA can be observed by BLAST search option provided 

by the model. Using this method, the risk of “off-target” effect on 

non-target genes can be easily understood early. Thus, OpsiD 

provides the chance of identifying optimized siRNA with high 

inhibition capacity on target genes and low off-target possibility on 

non-target genes. The results and discussion of OpsiD is elaborated in 

section 8.4 of chapter 8.   

 
…….. ♦ …….. 
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8.1 Introduction  

8.2 SVM Model 

 Results 

 Discusion 

8.3 siRNA Designer Approach  

 Results 

 Performance Evaluation 

 Comparison with Existing Algorithms 

 Discussion 

8.4 Optimized siRNA Designer Approach  

        Results 

 Performance Evaluation 

 Comparison with Existing Algorithms 

 Discussion 

8.5  Summary 
 
 

8.1 Introduction  
 In this study, one SVM model and two ANN models for 

predicting efficiency of siRNA against target genes are proposed. The 

results and discussion of these models are presented in this chapter. 

The chapter is divided into five sections. Section 8.2 describes the 
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results and discussion of the SVM model. Section 8.3 and section 8.4 

present the results and discussion of siRNA Designer with 6-8-8-8-1 

ANN Model and Optimized siRNA Designer, OpsiD, with 5-12-1 

ANN Model respectively. The performance evaluation of these 

models and comparison with existing approaches are also done in 

these sections. Finally, a summary about the chapter is given in 

section 8.5.  

 

8.2 SVM Model 

8.2.1 Results 

 In SVM model, as a first attempt of the study, we considered 

only the classification property for analyzing the efficiency of an 

siRNA to silence a target mRNA. Because of this, we can only test 

the correctness of the results, but can’t evaluate the performance 

using the validation strategies shown in chapter 4. So we are not able 

to present any performance evaluation for SVM model. The sample 

input interface and output for SVM model is shown in Fig 8.1 and 

8.2.   
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8.2.2. Discussion 

 In efficiency prediction using SVM, we are classifying the 

siRNA into efficient and inefficient, i.e., we are able to identify and 

predict whether an siRNA is efficient or inefficient to silence a target 

mRNA sequence or a gene. Also, since we have used some 

thermodynamic features of siRNA as input parameters, we tried to 

find the relationship among these parameters with the inhibition 

efficiency of siRNA. From the results it is observed that most of the 

efficient siRNA stands have G-C content between 50-75 percentage, 

melting temperature between 60 to 75 and delta G between -30.0 to   

-38.0. From these results, we can come to the conclusion that the 

efficiency of siRNA is strongly connected with thermodynamic 

properties like melting temperature and delta G. So we have decided 

to include thermodynamic propertiy of siRNA as parameters in our 

neural network models. 
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                                                        Fig 8.1: Input interface of the SVM Model 
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                                               Fig 8.2: siRNA efficiency Prediction by SVM Model
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8.3 siRNA Designer Approach  

8.3.1 Results   

 The results and discussion of siRNA Designer with 6-8-8-8-1 

ANN Model is described in this section. Predicted inhibition capacity 

of each siRNA for a targeted mRNA has been observed with the 

model. The sample screen shot depicting user interface and output are 

shown Fig. 8.3 and Fig. 8.4 respectively. 

 

8.3.2 Performance Evaluation   

 For 6-8-8-8-1 ANN, predicted inhibition capacity of each 

siRNA for a targeted mRNA is found out and the performance 

evaluation in terms of Pearson Correlation is done. Pearson 

correlation gives the correlation between the inhibition efficiency of 

our predicted model with the original experimental inhibition 

efficiency. We achieved a good Pearson correlation coefficient of R= 

0.727 for Data Set 1. This R value shows that the predicted value of 

inhibition by our model is closer to the original experimental values. 

The inhibition activity of our model is plotted with original 

experimental inhibition for Data Set 1 and is shown in Fig. 8.5. 
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                                   Fig. 8.3: Sample Screen Shot showing the user interface



Chapter –8                                                   

118 

 

 

                    Fig 8.4: siRNA efficiency Prediction by siRNA Designer with 6-8-8-8-1 ANN Model
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Fig. 8.5: Distribution between experimental inhibition and predicted inhibition    

            for Data Set 1 by siRNA Designer with 6-8-8-8-1 model (R=0.727) 

  

8.3.3 Effect of ΔG on Performance 

 The results are further analyzed to study the influence of whole 

stacking energy on inhibition efficiency of siRNA. The Pearson 

correlation coefficient is calculated for experimental versus predicted 

inhibition efficiency for the data sets, Data Set 1and Data Set 2, at 

various thresholds of whole stacking energies. It is noticed that the 

inhibition efficiency of our model is much closer to the original 

experimental values when threshold of whole tacking energy is >= -

32.5 kcal/mol. We are able to achieve an improved correlation 

coefficient of R=0.753 when whole tacking energy is >= -32.5 
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kcal/mol, which shows improvement in the performance compared to 

our previous results. From this it is understood that while designing 

exogenous siRNA for gene silencing, whole stacking energy of each 

designed siRNA can also be analyzed for selecting efficient siRNAs 

with better inhibition capacity. Sample predicted inhibition values of 

siRNA for Data Set1 at whole tacking energy >= -32.5 kcal/mol is 

shown in Appendix 2. Fig 8.6 is the scatter plot showing distribution 

between experimental inhibition and predicted inhibition for Data Set 

1 at ΔG >=-32.5 kcal/mol.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 8.6: Distribution between experimental inhibition and predicted inhibition for 

Data Set 1 by siRNA Designer with 6-8-8-8-1 ANN Model at ΔG 
>=-32.5 kcal/mol(R=0.753) 
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8.3.4 Comparison with siRNA Design Approaches 

 The inhibition capacity of siRNA for targeted mRNA is 

observed for each of the six scoring models, s-Biopredsi, DSIR, 

ThermoComposition21, i-Score, MysiRNA and OpsiD. A 

comparison between inhibition activities (Experimental versus 

Observed) for Data Set 1 by each of the five models with our model 

has been done. Also Pearson correlation coefficient (R) is calculated 

for each of the six scoring models and is shown in Fig.8.7. We 

achieve a Pearson correlation coefficient of R= 0.727 for Data Set 1 

which is better than the other five models. The result shows the 

improvement of our approach in the accuracy of predicted siRNA. 

Also the experimental siRNAs activities of Data set 1 are plotted 

against the predicted siRNAs activities by each of the second 

generation models (s-Biopredsi, DSIR, ThermoComposition21, i-

Score and MysiRNA) together with our model, which is shown in 

Fig. 8.8. 
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Fig. 8.7:  Comparison between selected Second Generation Models and 6-8-8-8-1   
               ANN Model using Pearson Correlation Analysis.   
 
 

In order to make a comparison of the effect of whole stacking 

energy on inhibition capacity of various models, Pearson Correlation 

coefficient is calculated for all of them at ΔG >=-32.5 kcal/mol. We 

achieved an improved correlation coefficient of R =0.753 when 

whole tacking energy is greater than or equal to -32.5 kcal/mol. The 

value is compared with other five models and found better, which 

shows improvement in the performance of our model with them. The 

results of comparison are shown in shown in Fig.8.9.  
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Fig.8.8: Comparative analysis of distribution between experimental inhibition and 

predicted inhibition of Dataset 1 for siRNA Designer with 6-8-8-8-1 
ANN Model and selected second generation models. 
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Also the experimental siRNA activities of Dataset 1 at whole 

stacking energy, ΔG >=-32.5 kcal/mol are plotted against the 

predicted siRNA activities by each of the second generation models 

(s-Biopredsi, DSIR, ThermoComposition21, i-Score and MysiRNA) 

and is compared with our model and shown in Fig.8.10. 

 
 

 

 
 
Fig. 8.9: Comparative analysis of Pearson Correlation Coefficient (R) involving 

second generation models and siRNA Designer with 6-8-8-8-1 Model  
at whole stacking energy, ΔG >= -32.5 kcal/mol for Data Set 1. 
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Fig. 8.10: Comparative analysis of distribution between experimental inhibition and 
predicted inhibition of siRNA Designer with 6-8-8-8-1 Model and 
selected second generation models for Dataset 1 at whole stacking 
energy ΔG >= -32.5 kcal/mol. 
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8.3.5 Discussion 

  Using 6-8-8-8-1 ANN model we are able to predict the 

percentage of inhibition efficiency of each predicted siRNA against a 

target mRNA or cDNA sequence. By maintaining a cut-off in 

inhibition efficiency (normally cut-off will be 70%-80% depending 

on the amount of silencing needed), one can select efficient siRNAs 

which are capable of inhibiting target mRNAs. The performance 

analysis and comparison of the approach with selected good scoring 

models are done. It is found that the prediction accuracy is improved 

in our model compared to selected existing state of the art models. 

The improvement in Pearson correlation coefficient shows better 

performance of our model. The effect of ΔG on inhibition efficiency 

is also understood. But when we tried to find the sensitivity and 

specificity of the model, it could not show better results over the 

existing state of the art methods. Thus using this model, the 

prediction efficiency is only optimized in terms of inhibition 

efficiency. So we moved forward to design another efficient model 

which can optimize the siRNA efficiency in terms of inhibition 

capacity, sensitivity, specificity, accuracy of prediction and off-target 

possibility. This is a 5-12-1 ANN model. 
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8.4 Optimized siRNA Designer Approach  

8.4.1 Results 

 The results and discussion of the optimized siRNA designer, 

OpsiD, with 5-12-1 ANN model is described in this section. 

Predicted inhibition capacity of each siRNA on targeted genes and 

off-target possibility on non-target genes have been observed with 

OpsiD.  

 
8.4.1.1 Off-Target Possibility Prediction  

Even though an siRNA may have very good inhibition 

capacity i.e. it may have very good ability to bind to the target 

mRNA for gene knockdown, it may be fully unsuitable for practical 

therapeutic use because of its similarity to segments of other mRNAs. 

In such a case, the siRNA may bind to the other mRNAs instead of 

the intended target. In this way, it may interfere with the translation 

of essential genes to proteins, and cause unintended effects. This 

problem is known as “off target effect”, and is the major barrier 

against the practical use of gene silencing through siRNAs in 

therapeutics. So an important factor to be considered while designing 

efficient siRNAs for therapeutical and gene silencing applications is 

the chance of siRNA to do off-target effects on non-target genes. 

Thus the inhibition capacity alone is not a reliable indicator of an 
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siRNA’s practical utility because of the possibility of off-target 

effect.  

 
Initially the OpsiD model is designed to predict the inhibition 

capacity of an siRNA through its neural network regression model 

and we were getting excellent results. But in order to improve further 

by avoiding off-target possibility of designed siRNAs on non-target 

genes, we have added BLAST search technique in our model. So, the 

siRNA designer model, OpsiD, mitigates the problem of “off-target 

effect on non-target genes” by providing the facility of running 

BLAST search of the generated siRNAs against standard databases of 

mRNAs such as the NCBI RefSeq database [163]. The BLAST score 

given in the OpsiD outputs for a particular siRNA’s maximal match 

obtained for that sequence against some other mRNA subsequence in 

the selected gene database. A BLAST score of 19 indicates a 

complete match of the siRNA sequence with a subsequence of some 

other mRNA in the gene database. A score of 18 indicates that the 

siRNA sequence differs from a subsequence of some other mRNA by 

only a single nucleotide. The use of siRNAs with high BLAST score 

may lead to off-target effect, and the user must make the trade off 

between the “goodness” of an siRNA with respect to inhibition 

capacity, and its similarity to other mRNA fragments.  
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For example, in Table 8.1 the siRNA with best  inhibition 

efficacy against a given target mRNA is 89% with a BLAST score 

17, means even though the siRNA is best efficient to degrade the 

target mRNA by 89%, there is a high risk of ‘off target effect’ with 

17 nucleotide  matches to any other genes in the database. So we 

believe that the users will be able to eliminate those siRNA 

sequences with high BLAST score, even though they possess very 

good inhibition capacity. As per our approach, instead of selecting 

siRNA with the best inhibition capacity, we can consider both 

“inhibition efficiency and number of matches of BLAST score” to 

select siRNAs for gene silencing. Thus the risk of “off target effect” 

against unintended target sites may be avoided to a great extent. The 

sample screen shot showing user interface and results are shown Fig. 

8.11 and Fig. 8.12 respectively. 
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Table 8.1: Sample siRNAs with Inhibition capacity and BLAST Score in OpsiD 

siRNA Strand Inhibition BLAST Score 

AGGGUUAUUUUUCUUUGGC 75 11 

GAAAAAAACCAAAGGGUUA 67 3 

AACCACUGUAGAAAAUAAC 35 0 

UCUUUAUGUUUUUGGCGUC 89 17 

UUCUUUAUGUUUUUGGCGU 76 9 

GGGCCUUUCUUUAUGUUUU 55 7 

UUAUAAAUGUCGUUCGCGG 77 12 

UAAUUUUUUGGAUGAUUGG 45 4 

UUAAAAUCGCAGUAUCCGG 67 8 



                                          Results and Discussion 

131 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                    Fig. 8.11: Sample screen shot showing the user interface of OpsiD with off-target filtering
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                            Fig. 8.12: Sample Screen Shot showing the output with BLAST Score of OpsiD.
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8.4.2 Performance Evaluation 

 For OpsiD, predicted inhibition capacity of each siRNA for a 

targeted mRNA is found out and done the performance evaluation in 

terms of Pearson Correlation, Sensitivity-Specificity, Accuracy of 

Prediction, Mathews Correlation Coefficient, and Receiver Operating 

Characteristic analysis. These values are calculated a described in 

Section 4.8 of Chapter 4. 

 

8.4.2.1  Pearson Correlation  

 Pearson Correlation (R) gives the correlation between the 

inhibition efficiency of predicted model with the original 

experimental inhibition efficiency. Pearson correlation coefficient (R) 

is calculated for each of the six scoring models s-Biopredsi, DSIR, 

ThermoComposition21, i-Score, MysiRNA and OpsiD. The 

inhibition activities (Experimental versus Observed) for Data Set1 

and Data Set2 for all models are observed. We achieved a Pearson 

correlation coefficient of R= 0.699 for Data Set 1 and R= 0.606 for 

Data Set 2. The distribution between experimental inhibition and 

predicted inhibition for Data Set 1 and Data Set 2 is shown in Fig. 

8.13 and Fig. 8.14 respectively. 
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  Fig. 8.13: Distribution between experimental inhibition and predicted  

                           inhibition for Data Set 1 by OpsiD (R=0.699) 
 

 
     Fig. 8.14: Distribution between experimental inhibition and predicted    

 inhibition for Data Set 2 by OpsiD (R=0.606) 
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8.4.2.2 Sensitivity-Specificity 

 Normally the siRNA design models are expected to have the 

ability to reject as many as false positives as possible and retain 

maximum true positives. OpsiD is compared against five previous 

siRNA design models for their ability to select efficient siRNAs and 

reject inefficient siRNAs. For this we used Data Set 3 which contains 

476 siRNA from 9 genes. The inhibition capacity of the Data Set 3 is 

compared with experimental data results and the results are classified 

into 4 groups: True Positive (TP) and True Negative (TN) when the 

program could identify efficient siRNA and inefficient siRNA, and 

False Positive (FP) and False Negative (FN) when the program 

falsely identified inefficient siRNA as efficient, or efficient siRNA as 

inefficient, respectively. Both the sensitivity (ability to identify true 

positives) and specificity (ability to reject false positives) are taken 

into consideration. Appendix 3 shows sample TP, TN, FP, FN values 

calculated using Data Set3. Total count of TP, TN, FP, FN values 

obtained for Data Set3 in OpsiD is shown in Table 8.2.  
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Table 8.2: TP, TN, FP, FN Values of OpsiD 

Diagnostic Test Result 

Existence of disease as 
determined by  

the standard of truth 
 

Positive Negative Row Total 

Positive 164 (TP) 41 (FP) 205 

Negative 74 (FN) 197 (TN) 271 

Column total 238 238 576 

 
  

OpsiD is found capable of designing siRNA with high level of 

specificity and sensitivity. It achieves a Sensitivity of 0.69 and 

Specificity of 0.83.  These values show better prediction power of our 

model.  

 

8.4.2.3 Accuracy of Prediction, Mathews Correlation Coefficient   

 In addition to Pearson Correlation Coefficient and sensitivity-

specificity, the performance evaluation of OpsiD is also done by 

Accuracy of Prediction and Mathews Correlation Coefficient (MCC) 

as described in Chapter 4 (Section 4.8.2). For calculating MCC, a cut 

off value of inhibition efficiency of siRNA up to 60% is applied in 

Data set 3 to categorize siRNA as efficient or inefficient. The 

predicted siRNA is considered as efficient if predicted value is above 
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the threshold and inefficient if predicted value is below this 

threshold. OpsiD achieves the highest MCC of 0.52 with the 

experimentally verified data. The MCC value of 0.52 indicates a 

strong correlation between observed and experimental prediction 

OpsiD performed well with MCC = 0.52 and Accuracy of prediction 

= 0.76. Overall, the performance analysis indicates the improvement 

in performance of our model in terms of Accuracy, MCC, and 

Sensitivity over other models. The Table 8.3 shows the validation 

results for Pearson Correlation, Sensitivity, Specificity, Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), False 

Positive Rate (FPR), False Negative Rate (FNR), False Discovery 

Rate (FDR), F-Score (F), Accuracy of prediction, and MCC of 

OpsiD.     

 

Table 8.3: Validation results of OpsiD 

Validation Strategy Results of OpsiD 

Pearson Correlation for Data Set 1 0.699 

Pearson Correlation for Data Set 1 0.606 

Sensitivity   0.69 

Specificity  0.83 

PPV 0.80 

NPV 0.73 

FPR 0.17 
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FNR 0.31

FDR  0.20

F Score 0.74

Accuracy 0.76

MCC  0.52

 

8.4.2.4 ROC Analysis 

 In addition, we used receiver operating characteristic analysis 
that combines both sensitivity and specificity by plotting the 
sensitivity (Y axis) against 1- specificity (X axis). For the ROC 
analysis, we considered siRNA with inhibition equal to or above 70% 
as efficient siRNA and below 70% as inefficient siRNA. Fig.8.15 and 
Fig.8.16 shows the ROC curve obtained for OpsiD model for Data 
Set 1 and Data Set2 respectively. It is then possible to calculate the 
area under the curve, known as the AUC, as a single measure of 
performance (for which an AUC of 1 reflects perfect classification 
and an AUC of 0.5 reflects random classification). We achieved an 
AUC of 0.862 for Data Set 1 and 0.809 for Data Set 2 which are 
comparatively good results and indicate better performance of our 
model, OpsiD. 
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Fig. 8.15: The ROC Analysis Curve of Data Set1 by OpsiD (AUC =0.862) 

 
Fig. 8.16: The ROC Analysis Curve of Data Set 2 by OpsiD (AUC =0.809) 
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8.4.2.5 Effect of ΔG on Performance 

 When the four parameters (score of MysiRNA, score of 

DSIR, score of i-Score and ThermoComposition21 score) are 

combined with ΔG using a multi-layer perceptron feed-forward 

neural network model, considerable performance improvement in 

prediction accuracy is noticed. For this we divided the Data Set2 into 

two sets with a threshold of ΔG = -34.6. (i.e., ΔG < -34.6 kcal/mol 

and ΔG >= -34.6 kcal/mol). (In [21], Ichihara et al. calculated an 

effective threshold value of -34.6, for separating the data sets). This 

combination in our model results with Pearson Correlation of 0.693 

for Data Set1 and 0.741 for Data Set2 between the experimental 

inhibition and predicted inhibition efficiencies, when the threshold of 

whole stacking energy, ΔG >= -34.6 kcal/mol. Table 8.4 shows the 

Pearson Correlation Coefficient (R) of OpsiD for Data Set 1 and Data 

Set 2. The R value without considering ΔG for OpsiD is 0.699 for 

Data Set 1 and 0.606 for Data Set 2. Even though the R value is little 

reduced for Data Set 1 while considering ΔG >= -34.6 kcal/mol, still 

it is a better result when compared with selected existing models. 

This improvement in Pearson correlation values show the importance 

and influence of whole stacking energy on inhibition efficiency of 

siRNA. Sample predicted inhibition values of  siRNA for Data Set1 
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and Data Set 2 at whole tacking energy, ΔG >= -34.6 kcal/mol are 

shown in Appendix 4 and Appendix 5 respectively. Distribution 

between experimental inhibition and predicted inhibition of each 

siRNA for Data Set 1 and Data Set2 by OpsiD when Δ G >=-34.6 

kcal/mol is shown in Fig. 8.17 and Fig 8.18.   

 

 

 
 

Fig. 8.17: Distribution between experimental inhibition and predicted inhibition  
          for Data Set 1 by OpsiD when ΔG > =-34.6 kcal/mol (R=0.693).   
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 Fig. 8.18: Distribution between experimental inhibition and predicted inhibition      

          for Data Set 2 by OpsiD when ΔG > =-34.6 kcal/mol (R=0.741) 
 

 Table 8.4: Pearson Correlation Coefficient (R) of OpsiD 

Data Set AUC of OpsiD

Data Set 1 0.699 

Data Set 2 0.606 

Data Set 1 when ΔG>= -34.6 0.693 

Data Set 2 when ΔG>= -34.6 0.741 
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In order to find the effect of whole stacking energy on 

performance, the AUC values are calculated at ΔG >= -34.6 kcal/mol. 

With this whole stacking energy, the AUC values are also improved 

further and achieved 0.878 for Data Set1 and 0.906 for Data Set2. 

The ROC curves of Data Set1 and Data set2 at ΔG >= -34.6 kcal/mol 

is shown in Fig. 8.19 and Fig. 8.20. This improvement in AUC values 

shows the importance of the influence of whole stacking energy on 

the performance of siRNA. The results of performance evaluation in 

terms of AUC for OpsiD are shown in Table 8.5. 

 
Fig. 8.19: The ROC Analysis Curve of Data Set1 by OpsiD at  

ΔG>=-34.6 kcal/mol (AUC = 0.878)   
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Fig. 8.20: The ROC Analysis Curve of Data Set 2 by OpsiD at  

ΔG>=-34.6 kcal/mol (AUC =0.906) 
 
 

Table 8.5: AUC values of OpsiD 

Data Set AUC of OpsiD 

Data Set 1 0.862 

Data Set 2 0.809 

Data Set 1 when ΔG>= -34.6 0.878 

Data Set 2 when ΔG>= -34.6 0.906 
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Fig. 8.21:  Comparative analysis of Pearson Correlation Coefficient (R) involving 
OpsiD, MySiRNA, DSIR, iScore, ThermoComposition 21, s-Biopredsi 
for Data Set 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.22: Comparative analysis of Pearson Correlation Coefficient (R) involving 
OpsiD, MySiRNA, DSIR, iScore, ThermoComposition21, s-Biopredsi 
for Data Set 2. 
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8.4.3 Comparison with siRNA Design Approaches 

 The results of OpsiD are compared and validated with 

MysiRNA, DSIR, i-Score, ThermoComposition21, and s-Biopredsi in 

terms of siRNA inhibition efficiency, prediction accuracy, sensitivity, 

specificity, MCC and AUC values. The inhibition capacity is 

measured in terms of Pearson Correlation, R. The Pearson 

Correlation Coefficient is calculated for experimental inhibition 

capacity versus predicted inhibition capacity for each of six models.  

  

We achieved a very good correlation between the predicted 

and experimental siRNA inhibition efficiency for Data Set 1 and Data 

Set 2. In both Data Sets the correlation values are higher than 

MysiRNA, DSIR, i-Score, ThermoComposition21, and s-Biopredsi 

indicating better prediction by our model (Fig. 8.21 and Fig. 8.22). 

The experimental siRNA inhibition plotted against predicted 

inhibition with all six techniques for Data Set1 and Data Set 2 is 

shown in Fig. 8.23 and Fig 8.24.  
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            OpsiD    R= 0.699          MysiRNA   R= 0.686 
 
 

               
 DSIR   R=0.687    iScore    R= 0.635 
 
 

                   
         ThermoComposotion21    s-Biopredsi   R= 0.665 

        R=0.635   
 

  Fig.8.23:Comparative analysis of distribution between experimental   
inhibitionandpredicted inhibition of OpsiD and second generation 
models for Data Set 1.  
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Fig. 8.24:     Comparative analysis of distribution between experimental inhibition 

and predicted inhibition of OpsiD and second generation models for 
Data Set 2. 
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 Next comparison is done in terms of sensitivity, specificity, 

MCC, ROC analysis and Accuracy of prediction. OpsiD is found 

capable of designing siRNA with good level of specificity and 

sensitivity. It achieves Sensitivity (Sn) of 0.69 and Specificity (Sp) of 

0.83. From the results shown in Table 8.6, it is observed that the 

value of Sn for OpsiD is the best Sn value than all other shown 

models. This reflects the highest rate of predicting high efficacy 

siRNAs. OpsiD achieved a specificity of 0.83. Even though it is an 

acceptable level of specificity, it is comparatively a lower value when 

compared with other techniques, indicating that this aspect must be 

improved. But on analyzing the sensitivity-specificity values shown 

in Table 8.6, it is clear that even though all other models have high 

specificity than OpsiD, their sensitivity values are very less. So if we 

consider combined sensitivity-specificity effects shown by our 

model, we can come to the conclusion that OpsiD performs as well as 

or better than all other models in the list. Overall, the analysis 

indicates the performance improvement of our model in terms of 

Accuracy, MCC, and Sensitivity over other models. The Table 8.6 

shows the comparison of results from 6 models in terms of TP, TN, 

FP and FN. Table 8.7 shows the comparison of results from 6 models 

in terms of accuracy, sensitivity, specificity and MCC. 
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Table 8.6: Comparative analysis of   TP, TN, FP, FN   for OpsiD,  MySiRNA,     

                  DSIR, iScore, ThermoComposition21, s-Biopredsi for Data Set 3 

Count OpsiD MysiRNA DSIR Thermo iScore s-Biopredsi 

Count TP 164 153 105 96 0 43 

Count TN 197 204 223 217 238 233 

Count FP 41 34 15 21 0 5 

Count FN 74 85 133 142 238 195 

 
 

 

Table 8.7: Comparative analysis of Accuracy, Sensitivity, Specificity and MCC for 

OpsiD, MySiRNA, DSIR, iScore, ThermoComposition21, s-

Biopredsi for Data Set 3 

  OpsiD MySiRNA DSIR iScore 
Thermo  

Composit

ion21 
s-Biopredsi 

Accuracy 0.76 0.75 0.69 0.66 0.5 0.58 

Sensitivity   0.69 0.64 0.44 0.4 0 0.18 

Specificity  0.83 0.86 0.94 0.91 1 0.98 

MCC  0.52 0.51 0.43 0.37 -- 0.26 
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For the ROC analysis, we considered siRNA with inhibition 

efficiency equal to or above 70% as efficient siRNA and below 70% 

as inefficient siRNA. Fig.8.25 and Fig.8.26 shows comparative 

analysis of ROC curve obtained for OpsiD, MySiRNA, DSIR, iScore, 

ThermoComposition21, s-Biopredsi for Data Set 1 and Data Set2 

respectively.  Then it is possible to calculate the area under the curve, 

known as the AUC, as a single measure of performance (for which an 

AUC of 1 reflects perfect classification and an AUC of 0.5 reflects 

random classification). The AUC  obtained by our model  has been  

compared with each of 5  techniques and found that we have got an 

AUC of  0.862  for Data Set 1 and 0.809 for Data Set 2, which are 

better than those obtained from MysiRNA, DSIR, i-Score,  

ThermoComposition21, and s-Biopredsi. The AUC values of 0.809 

and 0.862 indicate better performance of our model. The results are 

shown in Fig. 8.27 and Fig. 8.28. 
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Fig. 8.25: Comparative analysis of ROC curve for OpsiD, MySiRNA, DSIR, iScore, 

  ThermoComposition21, s-Biopredsi for Data Set 1. 

 
Fig. 8.26: Comparative analysis of ROC Curve for OpsiD, MySiRNA, DSIR,   

iScore, ThermoComposition21, s-Biopredsi for Data Set 2. 
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 Fig. 8.27: Comparative analysis of AUC involving OpsiD, MySiRNA, DSIR, iScore,      
                      ThermoComposition21, s-Biopredsi for Data Set 1 
 

 
 

Fig. 8.28: Comparative analysis of AUC involving OpsiD, MySiRNA, 
                 DSIR, iScore, ThermoComposition21, s-Biopredsi for Data Set 2 
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 In order to find the performance improvement with whole 

stacking energy, we calculated the Pearson Correlation value and 

AUC values of OpsiD and other five models and compared the 

results. When the threshold of whole stacking energy, ΔG >= -34.6 

kcal/mol, we achieved a Pearson Correlation of 0.693 for Data Set1 

and 0.741 for Data Set2 between the experimental inhibition and 

predicted inhibition efficiencies. The comparative analysis of Pearson 

Correlation Coefficient, R, at whole stacking energy ΔG >= -34.6 

kcal/mol for OpsiD, MySiRNA, DSIR, iScore, Thermo  

Composition21, s-Biopredsi for Data Set 1 and Data Set 2 is shown 

in  Table 8.8. The values show that our model performs better. 

 
With this whole stacking energy, the AUC is also improved 

further and reached 0.878 for Data Set1 and 0.906 for Data Set2. This 

improvement in Pearson correlation values and AUC values show the 

importance of the influence of whole stacking energy on inhibition 

efficiency of siRNA. A comparison of improvement in Pearson 

Correlation, R and AUC at threshold of ΔG >= -34.6 kcal/mol of 

OpsiD is shown in Fig 8.29.   
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Table 8.8:  Comparative  analysis of  Pearson Correlation Coefficient at 
                       whole stacking energy, ΔG >= -34.6 kcal/mol for OpsiD,   
                       MySiRNA, DSIR,   iScore,  ThermoComposition21 and   
                       s-Biopredsi for Data Set 1  and Data Set 2 

 

siRNA Design 

Approaches 
Pearson Correlation 

Pearson Correlation 

when ΔG>= -34.6 

kcal/mol 

Data Set1 Data Set2 Data Set1  Data Set 2 

OpsiD 0.699 0.606 0.693 0.741 

MysiRNA 0.686 0.599 0.668 0.737 

DSIR 0.687 0.554 0.659 0.734 

i-Score 0.635 0.556 0.607 0.723 

ThermoComposition21 0.635 0.577 0.544 0.678 

s-Biopredsi 0.665 0.546 0.622 0.724 
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Fig 8.29:  Effect of ΔG in Performance of OpsiD 

 

8.4.4 Discussion 

  The complete results obtained by various validation strategies 

of OpsiD are summarized in Table 8.9. Using this model we are able 

to predict the percentage of inhibition efficiency of each predicted 

siRNA against a target mRNA or cDNA sequence. The performance 

analysis and comparison of 5-1-1 ANN (OpsiD) with selected good 

scoring second generation models are done. The improvement in 

prediction accuracy in terms of Pearson correlation coefficient shows 
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better performance of our model with previous good scoring siRNA 

design models. We tried to further optimize the inhibition efficiency 

in terms of sensitivity, specificity, accuracy of prediction and so on. 

When we compared these results with existing approaches, it is found 

that OpsiD achieves better performance. Thus we are able to optimize 

the efficacy of predicted siRNA in terms of inhibition efficiency, 

sensitivity, specificity and accuracy of prediction. Similarly using this 

model, we are able to address the problem of “off-target possibility 

on non-target genes” by providing the BLAST search. 

 
Thus OpsiD provides the chance of identifying optimized 

siRNA with high inhibition capacity on target genes and low off-

target effect on non-target genes. Also the effect of whole stacking 

energy (ΔG) on inhibition efficiency, by calculating the Pearson 

correlation coefficient at various threshold values of ΔG is noticed. 

The result shows an excellent improvement in Pearson correlation at 

ΔG >= -34.6 kcal/mol. From this, it is understood that exclusion of 

siRNAs with certain whole stacking energy is necessary to improve 

the inhibition efficiency. This reveals the importance and the 

influence of whole stacking energy on inhibition efficiency of 

siRNA.   
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Table 8.9: Performance of OpsiD 

                                

 

 

 

Validation  Parameters Results of OpsiD 

Accuracy 0.76 

Sensitivity 0.69 

Specificity 0.83 

MCC 0.52 

Pearson Correlation for Data Set 1 0.699 

Pearson Correlation  for Data Set 1 

when ΔG>= -34.6 kcal/mol 
0.693 

Pearson Correlation  for Data Set 2 0.606 

Pearson Correlation  for Data Set 2 

when ΔG>= -34.6 kcal/mol 
0.741 

Area Under Curve for Data Set 1 0.862 

Area Under Curve for Data Set 1 

when ΔG>= -34.6 kcal/mol 
0.878 

Area Under Curve for Data Set 2 0.809 

Area Under Curve for  Data Set 2 

when ΔG>= -34.6  kcal/mol 
0.906 
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8.5  Summary 
 The main focus of the thesis is to identify effective siRNA 

sequences with good inhibition efficiency and to optimize the 

efficiency of predicted siRNA by various efficacy parameters like 

sensitivity-specificity, accuracy of prediction and target specificity. 

We designed one SVM model and two ANN models in this study. 

The result and discussion of each model is presented in this chapter. 

From the results it is clear that one ANN model, OpsiD, performs 

well in terms of inhibition efficiency of siRNA against a particular 

target gene. Also OpsiD model is able to optimize the prediction 

efficacy of siRNA in terms of inhibition efficiency, sensitivity, 

specificity, accuracy of prediction and off-target possibility. Thus 

OpsiD provides the chance of identifying optimized siRNA with high 

inhibition capacity on target genes and low off-target effect on non-

target genes. Thus the model achieves all the goals and objectives of 

our study. 

…….. ♦ …….. 
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Chapter  - . 9.      

 CCoonncclluussiioonn  aanndd  FFuuttuurree  SSccooppee  
 

9.1 Summary of Work 

9.2 Limitations   

9.3 Future Scope 

 
 
  
 Gene silencing is an important research topic in functional 

genomics, biomedical research and in cancer therapeutics because of 

its ability to do sequence specific gene knock-down. Gene silencing 

is initiated by RNA interference mechanism and mediated by siRNA. 

siRNAs are new class of therapeutic agents which are suited for 

molecularly targeted gene silencing. The siRNA can be endogenous 

or exogenous. The use of exogenous siRNA for performing gene 

silencing has become an important biological milestone for mRNA 

target identification and drug design in various diseases, especially in 

cancer and AIDS. Therefore, identification of efficient siRNA 

capable of degrading target mRNA responsible for disease causing 

environment, is a key step towards the diagnosis and treatment of   

many serious diseases.  

 
 A significant amount of work has been undertaken over the 

recent past to understand the gene silencing mediated by siRNA. 

Many models have been proposed to predict efficient siRNAs against 

target mRNA. But there are many issues to be meaningfully 

Co
nte

nts
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addressed while designing siRNA for therapeutic use. From the 

siRNA related studies, it is understood that among all siRNAs that 

can be generated against a target mRNA, only a few are found 

successful in causing degradation. However even those few do not 

perform equal knock-down effects. Also, it was earlier understood 

that full complementary siRNA was needed to silence a target gene. 

But recent studies reveal that siRNA behaves like microRNA and can 

suppress protein synthesis even though it is not fully complementary 

to the target. This shows that mismatches are allowed during target 

selection by siRNA. The mismatches occurring during target 

selection by siRNA may cause a very serious problem of “off-target 

effect” where unintended genes may be suppressed by the selected 

siRNA. Thus while designing exogenous siRNA therapeutically, all 

these issues must also be taken into consideration. Even though 

several algorithms and methods have been proposed to predict the 

efficiency of siRNA, only some of them have achieved acceptable 

level of efficacy. 

 

9.1  Summary of Work 

 The main focus of this thesis is to develop methods to 

optimize the efficiency of siRNA in terms of “inhibition capacity and 

off-target possibility” against target mRNAs with improved 

sensitivity and specificity, which may be useful in the area of gene 

silencing and drug design for tumor development. This study aims to 

investigate the currently available siRNA prediction approaches and 

to devise a better computational approach to tackle the problem of 
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siRNA efficacy by inhibition capacity and off-target possibility. The 

strength and limitations of the available approaches are investigated 

and taken into account for making improved solution. Thus the 

approaches proposed in this study extend some of the good scoring 

previous state of the art techniques by incorporating machine learning 

and statistical approaches and thermodynamic features like whole 

stacking energy to improve the prediction accuracy, inhibition 

efficiency, sensitivity and specificity. In this thesis, we present three 

machine learning approaches (one SVM model and two ANN 

models) that enable to identify the efficiency of siRNA against target 

genes. 

 
 The first objective of our study is to design efficient siRNAs 

for any target mRNAs or cDNAs i.e. whether an siRNA is able to 

silence a target gene. As the first step of our study, we have selected 

Support Vector Machine model, to start predicting efficiency of 

siRNA against target mRNA or cDNA sequences. Using this model, 

we are able to classify a given siRNA as efficient or inefficient 

against a target mRNA sequence. The predicted siRNAs are analyzed 

and verified with existing siRNA design approaches. By carefully 

filtering the results, we are also able to notice the influence of 

thermodynamic properties like whole stacking energy (ΔG) and 

melting temperature of siRNA on inhibition efficiency. So we have 

included whole stacking energy of siRNA as one of the input 

parameters of our next ANN models. 

 



Chapter – 9                                                                             

164 

 The first ANN model, named siRNA Designer, is meant to 

achieve the second objective of predicting siRNA inhibition 

efficiency for a given target mRNA sequence. In this work, a 6-8-8-

8-1 ANN model is designed to predict siRNA inhibition activity 

which is built on five previous second generation models 

BIOPREDsi [18], DSIR [19], ThermoComposition21 [20], i-Score 

[21] and MysiRNA [29] along with whole stacking energy (ΔG). It 

has been found that this model generates better performance than the 

existing state of the art techniques in terms of inhibition efficiency of 

predicted siRNA. Thus by 6-8-8-8-1 ANN, we are able to achieve 

second objective of our study, i.e., predicting the percentage of 

inhibition efficiency of each predicted siRNA against a target mRNA 

or cDNA sequence. Using this approach, one can select efficient 

siRNAs of user defined inhibition cut-off (normally cut-off will be 

70%-80%) depending on the amount of silencing needed. But this 

model could not optimize the inhibition efficiency by sensitivity, 

specificity and accuracy of prediction. 

 
 The second ANN model is named as Optimized siRNA 

Designer, OpsiD, which is a 5-12-1 ANN. Using this we are able to 

achieve all the goals and objectives of this study, i.e., optimizing the 

prediction efficiency in terms of inhibition capacity, sensitivity, 

specificity, accuracy of prediction over the state of art techniques, 

with combined approach of “inhibition efficiency and off-target 

possibility”. For finalizing the second ANN model, we have analyzed 

currently available best scoring models and developed a neural 
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network model by combining the results of selected good scoring 

previous models to improve the prediction accuracy. This ANN 

model is named Optimized siRNA Designer, OpsiD. It is built on 

four previous good scoring second generation models: DSIR [19], 

ThermoComposition21 [20], i-Score [21] and MysiRNA [29] and 

whole stacking energy (ΔG). The Encog machine learning frame 

work for Java is used to create, train and test the model and later 

integrated into OpsiD.  

  
 The models are trained and tested with large data sets. 

Pearson correlation coefficient and AUC value of ROC analysis are 

calculated to find the accuracy and performance of the model 

respectively. We achieve a Pearson Correlation Coefficient of R= 

0.699 for Data Set 1 and 0.606 for Data Set 2. The AUC value for 

Data Set1 is 0.862 and for Data Set 2 is 0.809. Both Pearson 

Correlation values and AUC values are better than those of the state 

of the art techniques. Performance of the model is also tested with 

sensitivity, specificity and accuracy of prediction and found better 

than that of the state of the art techniques. These results show that our 

predicted inhibition is closer to the originally available experimental 

inhibition values. 

 
 The fifth input metric in our model is the whole stacking 

energy (ΔG) of siRNA strand, one of the important thermodynamic 

and stability factors of siRNA. We have analyzed the results to find 

its influence on performance. The inclusion of ΔG in the model 
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results in a performance of Pearson correlation coefficient R = 0.693 

and AUC = 0.878 for Data Set 1 and R = 0.741 and AUC = 0.906 for 

Data Ste 2, at a specific threshold value of ΔG >= -34.6 kcal/mol. 

Except for R value of Data Set 1, all other values show improvement 

(Even though R value of 0.693 for Data Set1 is less compared to our 

previous result for Data Set1 (R=0.699), it is still better than the R 

values obtained for DSIR [19], ThermoComposition21 [20], i-Score 

[21] and MysiRNA [29]). These results show an excellent 

improvement in Pearson correlation and AUC at ΔG >= -34.6 

kcal/mol. From this, it is understood that exclusion of siRNAs with 

certain whole stacking energy is necessary to improve the inhibition 

efficiency. This reveals the importance and the influence of whole 

stacking energy on inhibition efficiency of siRNA.   

 
 From the observations of various validations conducted in our 

approach, it is found that our model OpsiD, is capable of predicting 

the inhibition capacity of siRNA against a target mRNA with 

improved correlation, accuracy of prediction, MCC value, sensitivity, 

AUC value than those in the existing models. In addition, we have 

also included modules to reduce the consequence of ‘off target’ effect 

by providing facility to run BLAST search of each output siRNA 

sequences generated against any gene sequences in standard 

databases such as the NCBI RefSeq. Thus the proposed artificial 

neural network model ‘OpsiD’ can predict inhibition efficiency of a 

particular siRNA over a targeted mRNA sequence and can identify 

the similarity score of that siRNA with other genes in the database. 
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Using this approach, instead of selecting siRNA with the best 

inhibition capacity, we can consider both “inhibition efficiency and 

number of matches of BLAST score” to select siRNAs for gene 

silencing. The use of siRNAs with high BLAST score may lead to 

off-target effect and the user must make the trade-off between the 

“goodness” of siRNA with respect to inhibition capacity, and its 

similarity to other mRNA fragments. With this method siRNAs can 

be selected by carefully examining the inhibition efficiency and off 

target possibility. So we believe that the users will be able to 

eliminate those siRNA sequences with high BLAST score, even 

though they possess very high inhibition capacity. So we can take 

care of the risk of “off-target effect with unintended genes”. The 

appraoch is available at http://opsid.in/opsid/.  

 
This thesis introduces OpsiD, an artificial neural network 

model, to optimize the siRNA inhibition efficicency, built on four 

previous models (DSIR [19], ThermoComposition21 [20], i-Score 

[21] and MysiRNA [29]) and whole stacking energy (ΔG). Efforts are 

taken to combine different machine learning methods to improve the 

prediction efficiency compared to previously designed approaches. 

Thus using OpsiD, we are able to identify efficient siRNAs capable 

of performing post-transcriptional gene silencing with minimum off-

target silencing and hence we achieved all the goals and objectives of 

our study. The proposed soft computing model may be found useful 

in finding exogenous siRNAs capable of  effectively degrading the 

disease causing target mRNA and may help in drug design for cancer 
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treatment and other areas of bioinformatics by ‘gene silencing’. In 

conclusion, OpsiD can design high quality siRNA that leads to gene 

knockdown with lower risk of “off target effect”. This may be found 

useful in many areas of bioinformatics while designing siRNA for 

therapeutic and gene silencing applications.  

 

9.2 Limitations  

 The computational approach for optimizing the efficiency of 

predicted siRNAs presented in this thesis may lead to great promise 

in the area of gene silencing by RNA interference. But, there are 

certain limitations to the method which should be acknowledged and 

addressed at future research directions.  

 
 Even though we have undertaken the performance evaluation 

of the approach in terms of certain static validation strategies, we are 

not able to evaluate the results biologically. This is because as far as 

the gene silencing by RNAi technique is concerned, the pre-clinical 

trials are still continuing for critical diseases like cancer. Since the 

research is in the pre-clinical stage, we are not able to get the actual 

successful gene samples for effective biological validations. In future, 

if the accurate and successful biological data of gene samples of 

particular diseases are available, the model can be tested for more 

accuracy and modified accordingly to assist in the development of 

disease treatment very effectively.  
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Currently, this study is aimed to identify the efficient siRNA 

capable of doing post-transcriptional gene silencing in mammalian 

cells. In this study, the machine learning method used to implement 

the optimized approach is artificial neural network. For 

accomplishing more excellent results and to identify more effective 

siRNAs, other concepts of machine learning may also be used. With 

mechanisms like Hidden Markov Models, it can be extended to 

identify effective exogenous siRNA which may be more accurate and 

able to silence various disease-associated target sites. By making 

more accurate predictions, the model may assist excellent disease 

treatment through post-transcriptional gene silencing. 

 

9.3 Future Scope  

RNAi has been successfully used to target many serious 

diseases like cancer on mice, with the hope of extending these 

approaches to treat humans. Cancer treatment will be successful if it 

is able to do complete removal of the tumor without making damage 

to any other parts of the body. This shall be achieved by doing 

surgery, to a certain level. But surgery is not as effective if the 

disease has already spread to other locations of the body. 

Chemotherapy is sometimes toxic to healthy tissues as it is not 

specific to cancer cells. Radiation also damage normal cells and 

tissues. By considering all these limitations of the existing cancer 

therapy techniques, it is very essential to develop novel target 

specific therapeutics for the effective treatment of cancer. The idea 

used in cancer treatment with RNAi is that cancer cells will be killed 
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through the actions of the patient’s own immune system.  Nowadays 

there are lot of insights and promises for using siRNAs as drugs 

targeted only into the cancer cells. Delivery of such efficient siRNAs 

may provide new insights into in future therapy in cancer detection 

and drug design. 

 

Gene specific silencing has allowed systematic approach of 

designing new drugs, and for enhancing the effect of already existing 

drugs. RNAi could enable gene silencing with high specificity and 

improved efficiency than with any other techniques. In principle any 

gene may be knocked-down by a synthetic siRNA with exact 

complementary sequence. There by, any disease caused by 

abnormally enhanced activity of one or more genes may, in theory be 

regulated by RNAi-based therapies. Many of the siRNA therapies are 

at preclinical stage. The methods for delivering siRNA drugs should 

concentrate on maximizing the specificity of siRNA and minimizing 

the toxicity and degradation effects that compromise drug efficacy. 

Thus RNAi has great potential in future gene therapy applications 

since it has the potential to regulate disease related genes. Hence in 

the post-genomic era, siRNAs is considered as an important tool for 

validating gene function and drug targeting.   

 

…….. ♦ ……..        
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Appendix 2 
Sample siRNAs of Data Set1 showing inhibition efficiency at  

ΔG >= -32.5 kcal/mol using 6-8-8-8-1 ANN Model 
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Appendix 3 
 Sample siRNAs of Data Set 3 showing calculation of TP, TN, FP, 

FN values using 5-12-1 ANN (OpsiD) Model 
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Appendix 4 

Sample siRNAs of  Data Set 1 showing inhibition efficiency at  
ΔG>= -34.6 kcal/mol using 5-12-1 ANN (OpsiD) Model 
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Appendix 5 
Sample siRNAs of  Data Set 2 showing inhibition efficiency at 

 ΔG >= -34.6 kcal/mol using  5-12-1 ANN (OpsiD) Model 
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