Soft Computing Approach for Optimization of siRNA
Efficiency Prediction for Post-transcriptional Gene

Silencing

Thesis Submitted to
Cochin University of Science and Technology
For the award of the degree of
Doctor of Philosophy
Under
Faculty of Technology

By
Reena Murali

Under the Supervision of
Dr. David Peter S

DEPARTMENT OF COMPUTER SCIENCE
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Kochi — 682022

February 2016






DEPARTMENT OF COMPUTER SCIENCE
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
COCHIN-682022, KERALA, INDIA

CERTIFICATE

This is to certify that the thesis entitled “Soft Computing
Approach for Optimization of siRNA Efficiency Prediction for
Post-transcriptional Gene Silencing” is a bonafide record of the
research carried out by Ms. Reena Murali under my supervision and
guidance at the Department of Computer Science, in partial
fulfillment of the requirements for the Degree of Doctor of
Philosophy under the Faculty of Technology, Cochin University of

Science and Technology.

Kochi, Dr. David Peter S
15-02-2016 Supervising Guide
Department of Computer Science

Cochin University of Science and Technology

Kochi-682022, Kerala






DEPARTMENT OF COMPUTER SCIENCE
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
COCHIN-682022, KERALA, INDIA

CERTIFICATE

This is to certify that all the relevant corrections and
modifications suggested by the audience during the pre-synopsis
seminar and recommended by the Doctoral Committee of the
candidate have been incorporated in the thesis entitled “Soft
Computing Approach for Optimization of siRNA Efficiency

Prediction for Post-transcriptional Gene Silencing”.

Kochi, Dr. David Peter S
15-02-2016 Supervising Guide
Department of Computer Science

Cochin University of Science and Technology
Kochi-682022, Kerala






DECLARATION

I, Reena Murali, hereby declare that the thesis titled “Soft
Computing Approach for Optimization of siRNA Efficiency
Prediction for Post-transcriptional Gene Silencing”, submitted to
Cochin University of Science and Technology under Faculty of
Technology is the outcome of the original research done by me under
the supervision and guidance of Dr.David Peter S, Professor,
Department of Computer Science, Cochin University of Science and
Technology. I also declare that this work did not form part of any
dissertation submitted for the award of any degree, diploma,
associateship, or any other title or recognition from any University or

Institution.

Kochi, Reena Murali
15-02-2016






Dedicated to my Father

Sree R. Muraleedharan






Acknowledgements

This research work has been undertaken with the
unconditional support and encouragement of many and so it is my

pleasure to convey my deep felt gratitude to all of them.

First and foremost, I express my utmost and profound
gratitude to my supervising guide Dr. David Peter S, Professor,
Department of Computer Science, Cochin University of Science and
Technology for his valuable guidance, encouragement and support
throughout the course of work. I am grateful for his constructive

comments and careful evaluation of my thesis.

It is my privilege to express my gratitude to Dr. Sumam Mary
Idicula, Professor and Head, Department of Computer Science,
Cochin University of Science and Technology for providing timely
suggestions as well as necessary facilities in the institute, for my
research work. I also express my sincere gratitude to Dr. Sheena
Mathew of the institute for giving valuable suggestions and
encouragement during the course of my study. I thank all the
administrative and supporting staff of the institute for their support

and help.

I acknowledge with gratitude to Dr. Indiradevi K.P, Principal,
Rajiv Gandhi Institute of Technology, who has always been helpful
during the entire course of my work. Also I would like to thank my
friends Dr. Vinod Chandra S.S and Dr. Vineetha S, for their timely

help, sincere suggestions and encouragement during my research.



It would not have been possible to undertake this journey
without the support of my family. The love and prayers of my parents
towards me have always been a great strength which helped me
throughout. Also I would like to express my gratitude towards my
husband Dr. Raghunathan Rajesh for his valuable suggestions, advice
and mental support. Without his help, the completion of the work
would not have been possible. I am deeply indebted to my children
Naveen and Nandan, who bore with me in spite of lack of proper

attention and care during my research.

I am also grateful to all who have been helpful during the
entire course of the work. Above all, I express my gratitude to the
Almighty for showering His choicest blessings up on me in my

journey through this research.

Reena Murali



ABSTRACT

Post-transcriptional gene silencing by RNA interference is
mediated by small interfering RNA called siRNA. This gene
silencing mechanism can be exploited therapeutically to a wide
variety of disease-associated targets, especially in AIDS,
neurodegenerative diseases, cholesterol and cancer on mice with the
hope of extending these approaches to treat humans. Over the recent
past, a significant amount of work has been undertaken to understand
the gene silencing mediated by exogenous siRNA. The design of
efficient exogenous siRNA sequences is challenging because of many
issues related to siRNA. While designing efficient siRNA, target
mRNAs must be selected such that their corresponding siRNAs are
likely to be efficient against that target and unlikely to accidentally
silence other transcripts due to sequence similarity. So before doing
gene silencing by siRNAs, it is essential to analyze their off-target
effects in addition to their inhibition efficiency against a particular
target. Hence designing exogenous siRNA with good knock-down
efficiency and target specificity is an area of concern to be addressed.
Some methods have been developed already by considering both

inhibition efficiency and off-target possibility of siRNA against a



gene. Out of these methods, only a few have achieved good inhibition

efficiency, specificity and sensitivity.

The main focus of this thesis is to develop computational
methods to optimize the efficiency of siRNA in terms of “inhibition
capacity and off-target possibility” against target mRNAs with
improved efficacy, which may be useful in the area of gene silencing
and drug design for tumor development. This study aims to
investigate the currently available siRNA prediction approaches and
to devise a better computational approach to tackle the problem of
siRNA efficacy by inhibition capacity and off-target possibility. The
strength and limitations of the available approaches are investigated
and taken into consideration for making improved solution. Thus the
approaches proposed in this study extend some of the good scoring
previous state of the art techniques by incorporating machine learning
and statistical approaches and thermodynamic features like whole
stacking energy to improve the prediction accuracy, inhibition
efficiency, sensitivity and specificity. Here, we propose one Support
Vector Machine (SVM) model, and two Artificial Neural Network
(ANN) models for siRNA efficiency prediction. In SVM model, the
classification property is used to classify whether the siRNA is

efficient or inefficient in silencing a target gene. The first ANN



model, named siRNA Designer, is used for optimizing the inhibition
efficiency of siRNA against target genes. The second ANN model,
named Optimized siRNA Designer, OpsiD, produces efficient
siRNAs with high inhibition efficiency to degrade target genes with
improved sensitivity-specificity, and identifies the off-target knock-
down possibility of siRNA against non-target genes. The models are
trained and tested against a large data set of siRNA sequences. The
validations are conducted using Pearson Correlation Coefficient,
Mathews Correlation Coefficient, Receiver Operating Characteristic

analysis, Accuracy of prediction, Sensitivity and Specificity.

It is found that the approach, OpsiD, is capable of predicting
the inhibition capacity of siRNA against a target mRNA with
improved results over the state of the art techniques. Also we are able
to understand the influence of whole stacking energy on efficiency of
siRNA. The model is further improved by including the ability to
identify the “off-target possibility” of predicted siRNA on non-target
genes. Thus the proposed model, OpsiD, can predict optimized
siRNA by considering both “inhibition efficiency on target genes and
off-target possibility on non-target genes”, with improved inhibition
efficiency, specificity and sensitivity. Since we have taken efforts to

optimize the siRNA efficacy in terms of “inhibition efficiency and off



target possibility”, we hope that the risk of “off-target effect” while
doing gene silencing in various bioinformatics fields can be
overcome to a great extent. These findings may provide new insights
into cancer diagnosis, prognosis and therapy by gene silencing. The
approach may be found useful for designing exogenous siRNA for
therapeutic applications and gene silencing techniques in different

areas of bioinformatics.

Vi
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Introduction

1.1 Relevance of siRNA Design

1.2 Issues in Predicting Efficient siRNA
1.3 How to Address the Predcition Issues?
1.4 Research Problem

1.5 Extending the State of the Art

1.6 Goals and Objectives

1.7 Research Method

1.8 Organization of the Thesis

1.1 Relevance of siRNA Prediction

RNA interference (RNAI) is a biological process which can
control the gene regulation by sequence specific post-transcriptional
gene silencing mechanism [1,2]. In functional genomic research, the
discovery of RNAi has become much helpful in drug design and
therapeutic applications because of its ability to perform gene
silencing. It has great potential in future therapeutics as it has the
ability to regulate many disease-associated genes. RNAi has been
successfully used to target diseases such as AIDS [3],

neurodegenerative diseases [4], cholesterol [5] and cancer [6] on
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mice with the hope of extending these approaches to treat humans.
Post-transcriptional gene silencing by RNAi is mediated by small
interfering RNA (siRNA). The siRNA molecules are double stranded
nucleic acids approximately 19-21 nucleotide in length that act as the
mediators of RNAi. siRNAs interact with their cognate messenger
RNAs (mRNA) and subsequently trigger degradation of the target
mRNAs in a sequence specific fashion. The consequence of mRNA
degradation is a reduction in protein expression or gene silencing.
This gene silencing mechanism can be exploited therapeutically to a
wide variety of disease-associated targets [7-8], especially in cancer,
which is formed because of uncontrolled cell proliferation due to
malfunctioning of regular cell division process. Because the RNAi
mechanism results in sequence specific mRNA degradation, it has the
potential to realize cancer therapy by specifically attacking the cancer
cells and minimizing the effect on normal healthy cells. siRNA
molecules have the potential to revolutionize cancer therapy by
providing highly potent and specific cancer cell killing ability with
drastically reduced side effects. Recently, it has been reported that
some research area of drug design in cancer therapy is concentrating
to artificially inject exogenous siRNA capable of degrading the
mRNA responsible for tumour development. Therefore, identification
of efficient siRNA capable of degrading target mRNA responsible for
tumor development is a key step towards the diagnosis and treatment
of cancer. Thus siRNAs are new promising therapeutic agents that

are perfectly suited for gene silencing and molecularly targeted
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cancer therapy. siRNA can be endogenous or exogenous. The use of
exogenous siRNA for performing gene silencing has become an
important biological milestone for mRNA target identification and

drug design [9-11] in various areas of bioinformatics.

1.2 Issues in Predicting Efficient siRNA

A significant amount of work has been undertaken over the
recent past to understand the gene silencing mediated by exogenous
siRNA. Many models have been proposed to predict efficient siRNAs
against target mRNA. Even though several algorithms and methods
have been presented to predict efficiency of siRNA, only a few have
achieved an acceptable level of efficacy, due to the following issues

related to siRNA.

From the siRNA related studies, it is understood that among
all siRNAs that can be generated against a target mRNA, only a few
are found successful in causing degradation and the efficiency of
such siRNA differs in different target sites of same mRNA. However
even those few do not perform equal knock-down effects [12]. Also,
it was earlier understood that full complementary siRNA is needed to
silence a target gene. But recent studies reveal that siRNA behaves
like micro RNA (miRNA) and can suppress protein synthesis even
though it is not fully complementary to the target. This shows that
mismatches are allowed during target selection by siRNA [13-14].
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This may cause a very serious problem of “off-target effect”” where

unintended genes may be suppressed by selected siRNA [15-17].

Like this, there are many challenges in connection with
therapies using gene silencing techniques. Most important challenges
are target specificity and effectiveness of delivery. These challenges
may prevent effective practical applications of exogenous siRNA.
The factors of siRNA like specific targeting, efficient delivery
system, validated genes and the potent siRNA sequences are all vital
important to overcome these barriers. So target specificity and
efficient delivery of siRNA molecules for gene silencing is a serious
research issue to be addressed. Special care must be given to design
efficient methods to deliver and develop specific gene silencing

therapeutics using siRNA in a more safe and effective manner.

1.3 How to Address the Predction Issues?

The design of effective siRNA sequences is challenging
because the target mRNAs must be selected such that their
corresponding siRNAs are likely to be efficient against that target and
unlikely to accidentally silence other transcripts due to sequence
similarity. Hence to design efficient siRNAs, the ability of knocking
down target genes as well as the off-target possibility on any non-
target genes are to be considered. So before doing gene silencing by
siRNAs, it is essential to analyze their off-target effects in addition to

their inhibition efficiency against a particular target. Thus during

4
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efficient exogenous siRNA design, the following points are to be
addressed properly.
e How to design siRNA with specific targeting and efficient
delivery system such that
o they are likely to be efficient against that target?
o they are unlikely to accidentally silence other

transcripts due to sequence similarity?

e How to optimize the inhibition efficiency, prediction
accuracy and off-target effect of sSiRNA?

e What are the computational methodologies that can be
used for the design?

e How the efficiency of the computational method can be

evaluated?

1.4 Research Problem

The issues related to exogenous siRNA predcition must be
meaningfully addressed. So designing efficient siRNA against target
mRNA or gene, with good knock-down efficiency and target
specificity is an area of concern to be addressed. The efficiency of
siRNA must be optimized such that they are capable of inhibiting
their target mRNA sequences without affecting any other genes. Thus
to design siRNAs, two important concepts must be considered: the
ability in knocking down target genes and the off- target possibility

on any non-target genes. Only a few methods have been developed
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by considering “both inhibition efficiency and off-target possibility”
of siRNA against a gene.

The main aim of this study is to propose soft computing
approach for predicting efficient exogenous siRNAs capable of
performing post-transcriptional gene silencing in mammalian
cells, with high inhibition capacity on target genes and low off-
target possibility on non-target genes. The thesis also focuses on
optimizing the efficiency of predicted exogenous siRNA over the

state of the art techniques.

1.5 Extending the State of the Art

The techniques emerged to explore the issues related to
exogenous SiRNA design are classified into two groups, first
generation and second generation methods. As the first generation
models were not able to achieve the targeted level of efficacy, there
was a need to develop techniques to improve the efficiency of
predicted siRNA. These second generation models are based on
either artificial neural network or linear regression models. Some of
the good scoring second generation models like BIOPREDsi [18],
DSIR [19], ThermoComposition21 [20], i-Score [21], Scales [22],
OptiRNA [23], siDRM [24], RNAxs [25], siRecords [26], E-RNAi
[27], MysiRNA-Designer [28], and MysiRNA [29], DISR [30],
RNAiAtlas [31], siSPOTR [32] were developed by introducing data

mining techniques to improve the efficiency of siRNA with their
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experimental inhibition. Among these techniques, we have
considered some good scoring methods to integrate with our
technique. These methods are BIOPREDsi [18], DSIR [19],
ThermoComposition21[20], i-Score [21] and MysiRNA [29].

BIOPREDsi [18], ThermoComposition21 [20], and MysiRNA
[29] used the artificial neural network models, while DSIR [19] and i-
Score [21] used linear regression models. ThermoComposition21
[20] improved the prediction accuracy by combined position
dependent features together with thermodynamic features in single
artificial neural network model. The prediction accuracy is improved
in DSIR [19] and i-Score [21] using linear regression model. In
MysiRNA [29], the prediction accuracy is further improved by
artificial neural network model. The approaches proposed in this
thesis extend these selected state of the art techniques, by
incorporating machine learning and statistical techniques to improve
the prediction accuracy and reduce the off-target possibility of

siRNA.

1.6  Goals and Objectives

In this study we propose machine learning approach which
optimizes the efficacy of predicted siRNA by inhibition efficiency
and off-target possibility against target genes, which is built on

existing good scoring second generation models.
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The main goals of the study are
1. Design exogenous siRNA capable of performing post-

transcriptional gene silencing.

2. Identify siRNA with high inhibition capacity against a target

mRNA, with minimum off-target silencing.

3. Compare the efficiency of our approach with the state of the

art techniques.

The main Objectives of the study are

1. Design efficient siRNAs for any target messenger RNAs
(mRNASs) or complementary DNAs (cDNAs).

2. Predict siRNA inhibition efficiency for a given target mRNA

using machine learning techniques.

3. Improve the efficiency by including thermodynamic

properties of siRNA.

4. Improve the efficacy of siRNA in terms of accuracy of
prediction,  target specificity, sensitivity and inhibition

capacity than those of the existing approaches.

5. Optimize the siRNA efficacy by combined approach of

“inhibition capacity and off-target possibility”.
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1.7 Research Method

The following are the set of machine learning approaches
proposed in this study for finding the efficiency of siRNA data.
Based on these algorithms, the efficiency of siRNA against target
mRNA were modeled and tested.

i. Support Vector Machine (SVM) model is used to classify and
observe the efficiency of siRNA against target mRNA.

ii. Two Artificial Neural Network (ANN) models are designed to
improve the efficiency of siRNA against target mRNA.

In SVM model, the classification property is used to classify
whether the siRNA is efficient or inefficient in silencing a target gene
[33]. Out of the two ANN models, first model is named as siRNA
Designer and is used to optimize the inhibition efficiency of the
predicted siRNA [34-35]. Second model is the optimized siRNA
designer, OpsiD, which optimizes the prediction efficacy in terms of
inhibition capacity, prediction accuracy, sensitivity-specificity and
off-target possibility over the state of the art techniques using feed
forward back propagation neural network model. The research
method adopted for this study is shown in the block diagram (Fig.
1.1).
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Fig. 1.1: Research Method
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1.8 Organization of the Thesis

The layout of the thesis is as follows:

e Chapter 1 describes research problem, goals and

objectives of the study.

e Chapter 2 presents biological aspects of gene silencing by
RNA interference mechanism and the potential of RNAi

in genomics and therapeutics.

e Chapter 3 serves as a brief literature review on relevant
work on siRNA efficiency prediction for gene silencing.

e Chapter 4 provides a brief description of materials and
methods, machine learning approaches, frame works,
training algorithms and validation strategies used in this

study.

e Chapter 5 presents the work done for predicting

efficiency of siRNA by Support Vector Machines Model.

e Chapter 6 describes the work done for optimizing the
inhibition efficiency of predicted siRNA by Artificial

Neural Network Model.

11
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Chapter 7 presents the work done for optimization of
predicted siRNA in terms of inhibition -efficiency,
accuracy of prediction, sensitivity, specificity and oft-

target possibility.

Chapter 8 describes the results and discussion. The
performance evaluation and comparison with existing

approaches are also done in this chapter.

Chapter 9 summarizes the contributions and some of the

limitations as well as future scope of the study.

12



Cipen B
Gene Silencing by RNA
Interference

2.1 Introduction

2.2 Biological Aspects of Gene Silencing

2.3 Mechanism of RNAi

2.4 Small RNAs of RNAi

2.5 Applications of RNAi

2.6 Gene Silencing by RNAi

2.7 DPotential of RNAi in Genomics and Therapeutics
2.8 Challenges to Gene Silencing Therapeutics

2.9 Need of exogenous siRNA design

2.10 Complexity in siRNA Design

2.11 Summary

2.1  Introduction

This chapter discusses how gene silencing can be done by
RNA interference mechanism. Section 2.2 describes the biological
aspects of gene silencing. The mechanism of RNAi and the RNAi
pathway are explained the Section 2.3. The next sections, 2.4 and 2.5
present small RNAs mediating RNAi and applications of RNAIi

respectively. Types of gene silencing like transcriptional gene
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silencing and post-transcriptional gene silencing are described in
section 2.6. Potential and role of RNAI in genomics and therapeutics,
challenges to gene silencing, need and complexities of designing
exogenous siRNA are described in sections 2.7, 2.8, 2.9 and 2.10
respectively. Finally, a brief summary of the chapter is presented in

section 2.10.

2.2 Biological Aspects of Gene Silencing

Gene is the basic unit of heredity of all living organism
which is passed from parents to their offspring [36]. Each gene is a
particular segment of DNA with a linear sequence of nucleotides, on
a chromosome. They contain chemical information needed for the
synthesis of different proteins. A gene determines the characteristics
of an individual or a species in the form of protein. Thus genes
regulate the operations of organisms and play very important role in
differentiating individuals and species. The entire genetic material of
an organism is called genome [37]. Genome represents an organism’s
complete set of DNA, including all its genes and contains entire
information needed to build and maintain that particular organism.
The genome includes all the genes and the non-coding sequences of
the DNA and RNA. DNA carries the essential instructions for
building RNA and proteins. Inside the cells of all living things, some
molecular mechanisms are constantly reading the information in
DNA for building proteins. Thus DNA encodes for
the genetic instructions for all living organisms [38-42], and hence

DNA is considered as the “blue print of life”. A gene is said to be
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expressed when a protein is formed due to this molecular mechanism.
During gene expression, the information from a gene is used to
produce a functional gene product, which may be a protein or a
functional RNA.

Genetic codes are set of rules though which the encoding of
genetic materials is done. The information in genetic materials is thus
translated or encoded into proteins. RNA is a nucleic acid which is
responsible for various biological activities like coding of genetic
materials into proteins or messenger RNA to amino acids, gene
regulation, and expression of genes. Most of the RNAs are single
stranded. But there are some special types of RNA with two
complementary strands similar to DNA, called double-stranded RNA
(dsRNA). An important double-stranded RNA called short interfering
RNA or small interferingRNA (siRNA) can trigger RNA
interference in eukaryotes, and interferon response in vertebrates [43-
46]. RNA can be either coding or non-coding. A non-coding
RNA (ncRNA) is a functional RNA molecule that is not translated
into a protein [47-50]. Two examples of non-coding RNAs are
microRNA (miRNA) and short interfering RNA (siRNA). Coding
RNAs play crucial roles in protein synthesis and other cell activities.
One important class of coding RNAs is messenger RNA (mRNA). It
is a type of RNA that reflects the exact nucleotide sequence of the
genetically active DNA. mRNA carries the "message" of the DNA to

15
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the cytoplasm of cells, where protein is made as amino acid
sequences specified by the mRNA. Thus mRNA acts as the key
intermediary in gene expression by translating the DNA's genetic
code into the amino acids that make up proteins. The central dogma
of molecular biology describes the flow of genetic information to
form proteins [51-52]. It has also been described as "DNA makes
RNA and RNA makes protein” [53]. The main steps in Central

Dogma are transcription and translation.

2.2.1. Transcription

Transcription is the initial step of gene expression [51-52]. In
transcription, a particular segment of DNA is copied into RNA. As a
first step, the DNA sequence is read by the enzyme called RNA
polymerase. It produces a complementary, anti parallel RNA strand
called a primary transcript. The portion of DNA transcribed into an
RNA molecule is called a transcription unit and it encodes at least
one gene. The transcribed RNA molecule is called mRNA. Fig 2.1

shows the steps during transcription.

16



Gene Silencing by RNA Interference

L ATGGCCTGGACTTCA.....3" DMNA Sense Strand

G - TACCGGACCTGAAGT.....5" DMNA Antisense Strand

Transcription of Antisense Strand

Apsussssnnnnndnnng

g....AUGGCCUGGACUUCA....3' mRMNA

Fig. 2.1: Transcription

2.2.2 Translation

Translation is a process where ribosomes synthesize proteins
from the information contained in the mRNA [51-52]. During
translation, the ribosome reads a string of three bases on the mRNA
(codon) and translates them into one amino acid (Fig. 2.2). Proteins
are further processed in various cellular compartments and then
transported in and out of the cell to carry out different metabolic

functions.
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w5 AUGGCCUGGACUUCA..... 3 ... >mRNA

mRMNA is Grouped as codons
L J

AUG GCC UGG ACU UCA

Transktion of mRNA
w

Met ..... Ala...Trp... Thr.....Ser.. = Peptide

Fig. 2.2: Translation

During gene expression, information encoded in a gene is
used for producing the gene products like mRNA and proteins. It
covers the entire process from transcription through protein synthesis
[53]. In the first step, the DNA on which the gene resides is
transcribed to messenger RNA and in second step, it is
translated from mRNA to protein. When the protein is synthesized, a
gene is said to be “expressed” and the expression level of gene
depends on the amount of mRNA it produced. Different cell types in
an organism carry out a range of specialized function depends upon
the genes that are expressed only in that cell type. Some of the factors
affecting gene expression are the age of the person, the type of tissue,

the presence of specific chemical signals and heredity.
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Gene expression can be controlled by gene regulation [54-55].
Gene regulation is achieved by a process of turning genes on and off.
It is the basis of all biological activities like cell growth, cellular
differentiation, adaptability and versatility of any organism. Gene
regulation controls the appearance of the functional gene product or
gene expression. Gene expression is controlled at three levels during
the production of an active gene product. First phase is the
transcriptional regulation. It mainly takes care of when the gene is
transcribed and how much it is transcribed. Second is the
translational regulation which controls the amount of proteins
synthesized from mRNA. Third phase is post-translational regulation
mechanisms which control the level of active gene products. The
gene expression can be controlled or altered by making alterations in
mRNA or protein. An active mRNA level may be controlled by
splicing or by silencing with some of the non-coding RNAs like
miRNA (micro RNA), siRNA (short interfering RNA), rRNA
(ribosomal RNA) and tRNA (transfer RNA). Also some proteins may
undergo self modifications such as folding, enzymatic cleavageand
bond formation. These modifications can play crucial roles in the
regulation and control of gene expression. Genes can be either up
regulated or down regulated. Using down regulation, the expression
of a particular gene may be prevented. Gene silencing is done by
preventing the expression of a particular gene and there by turning

“off” gene expression [54-55].
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2.3 Mechanism of RNAI

Earlier, gene knock out was conducted by scientists using
antisense, dominant negative or knockout techniques which were
time consuming and expensive. The discovery of RNAi and double
stranded RNA helped to silence genes very efficiently [2-3, 10-12].
RNAIi is an important gene silencing method used in molecular
biology over the past few years. The presence of RNAi mechanism
was discovered both in plants and animals [56-59]. Short RNAs of
length 21-23 nucleotides exist in a double-stranded form, with 2
nucleotide overhangs at each 3’ end [60-62]. They are known as small
or short interference RNA. RNAI is a naturally evolved mechanism
in insects, nematodes and plants as a result of a developed intrinsic
defense against RNA virus [63-67]. This characteristic makes it ideal
as the basis for a physiologic approach for both in vitro and in vivo
gene silencing [68-69]. This mechanism has been described in several
eukaryotic organisms including human cell lines and primary cells
[70-75]. Thus RNAI, is known for co-suppression [76], quelling [77],
post-transcriptional gene silencing [78], and plays an important role
in cellular anti-viral defenses and silencing mechanisms [79]. The
discovery of RNA-mediated gene silencing, changed the view of
gene regulation and led to the development of new genetic tools and
methods for selective gene silencing, and have opened a way for

development of novel therapeutics against various diseases [80].
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2.3.1 RNAIi Pathway

RNAI targets the protein producing mRNA and controls
disease in the transcription phase by generating a non coding RNA
called siRNA. The biogenesis of RNAIi is divided into 4 steps and

shown in Fig. 2.3.

J dsRNA cleavage by Dicer generating siRNAs: When long
dsRNA from an external source is introduced into the cell, it is
recognized by Dicer. The Dicer is a Ribonuclease III protein
which is present in all organisms. The dicer cleaves the dSSRNA
randomly to generate siRNAs of ~21 to 23 nucleotide in length
[81-82]. Each siRNA strand has a 5' phosphate group and a 3'
hydroxyl group and has a 2 nucleotide overhang at both ends
[82].

o Formation of RISC: The siRNAs created by Dicer initiated
cleavage get attached with a nuclease complex called RISC

(RNA Induced Silencing Complex). The complex formed is

active.
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Fig. 2.3: RNAi Pathway

. SiRNA unwinding and RISC activation: Due to RISC
activation, siRNA duplexes will unwind and separate into sense
and antisense strands. Both the sense and antisense strands of
the siRNA are capable of directing RNAi, but specificity
depends on the antisense strand. The antisense strand is taken
up by RISC. Due to unwinding, siRNA duplex losses one
strand that is not bound to the RISC. This single strand RISC

complex thus gets activated.

. mRNA targeting and degradation: The activated siRNA-RISC

complex will target mRNAs which are complementary with
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the siRNA sequence. If the match is perfect, the targeted
mRNA is cleaved into smaller fragments which are then
degraded [17, 83]. If the match is not perfect the RISC remains

stuck to the mRNA, thus translation inhibition occurs.

2.4 Small RNAs of RNAIi
Small RNAs are different classes of RNAs which can

influence several levels of gene regulation. Here, we are listing two
well defined classes of small RNAs: short interfering RNAs and
microRNAs.

2.4.1 Short interfering RNA
Short interfering RNA or small interfering RNA (siRNA) is a

class ofnon-coding RNA molecule. siRNAs are short pieces of
dsRNAs, which are mediators of RNAI at post-transcriptional level.
The structure of siRNA is depicted in Fig. 2.4. This double stranded
RNA is composed of a sense and an antisense strand which are paired
resulting in a 2 nucleotide 3’ overhang at both the ends. siRNA
directly induces the RN Ai pathway by binding to an almost perfect

complementary region of the targeted mRNA transcript and cleaves
the mRNA. siRNA plays very crucial role in the RNAi pathway, by
degrading the expression of specific genes with complementary
nucleotide sequences. siRNAs and their role in post-

transcriptional gene silencing (PTGS) in plants were first discovered
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by David Baulcombe's group at the Sainsbury Laboratory in Norwich
[84]. Later it is reported that synthetic siRNAs could induce RNAi in
mammalian cells [60-62,82]. This discovery led to a keen interest in
harnessing RNAi for drug development for cancer therapy and

various gene silencing applications in biomedical research.

19-nt duplex
|
g L . ] I 3
3 |1 s
—_ bt
2-nt overhang 2-nt overhang

Fig. 2.4: Structure of siRNA

2.4.2 Micro RNA
MicroRNAs (miRNA) were discovered in 1993 by Rosalind

Lee, Rhonda Feinbaumand Victor Ambrosduring a study of the gene
lin-14 in C.elegans development [85]. MicroRNAs are non-coding
RNAs that combine to mRNAs and regulate the activities at
translational and post-transcriptional level [86]. There are at least 800
miRNAs within the human genome, which may target about 60% of
mammalian genes [87-88]. MicroRNAs bind to partially

complementary sites in the messenger RNA of other genes and
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inhibit the translation of these genes. It has been found that miRNA
can effectively regulate biological activities such as cell proliferation,
cell differentiation, cell growth, apoptosis, protein synthesis [88-91],

and can also act as oncogenes as well as tumor suppressors [92].

2.5 Applications of RNAi

RNAIi has become a powerful biological technique for gene
function studies and drug discovery [93-94]. It is also becoming
increasingly important in developing therapeutic applications for a
number of diseases due to its potential for specific targeted silencing
[95-96]. Thus RNAI along with siRNA plays important role in gene
regulation. Widely used applications of RNAi and siRNA in
genomics and therapeutics are

e Selection of possible targets for Tumor therapy [97]
e Gene Therapy [98]
¢ Better understanding of viral infections [99]

e Gene Silencing [100]

2.6  Gene Silencing by RNAi

When genes are silenced, the expression of those genes is
reduced [101]. But when genes are knocked out, they are completely
removed from the organism's genome and have no expression at all.

It is understood that RNAi is a gene silencing mechanism that
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reduces the expression of a gene by at least 70% but do not eliminate
completely [101]. The gene regulatory mechanism by RNAi limits
the transcript level either by suppressing the transcription or by
activating sequence specific mRNA degradation. Based on this, gene
silencing is classified as transcriptional gene silencing and post-

transcriptional gene silencing.

2.6.1 Transcriptional Gene Silencing

Transcriptional Gene Silencing (TGS) is one type of silencing
genes at transcriptional level [2,101]. In this method, due to the effect
of silencing, the messenger RNA is not formed and further activities

of protein formation are stopped.

2.6.2 Post-transcriptional Gene Silencing

Post-transcriptional gene silencing (PTGS) is another type of
silencing genes at post-transcriptional level, means silencing action is
done after messenger RNA formation [2,101]. Due to post-
transcriptional gene silencing, the targeted messenger RNA is lost or
degraded after RNA interference mechanism in gene. Ultimately

gene expression will be turned off or gene knock-down may happen.

2.7 Potential of RNAIi in Genomics and Therapeutics
The use of RNAi has led to the development of a new
technology called siRNA mediated gene silencing. It is used for gene

therapy applications in medical research, especially in cancer
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therapeutics. Gene specific silencing has allowed systematic
approach of designing new drugs, and for enhancing the effect of
already existing drugs. RNAi could enable gene silencing with high
specificity and improved efficiency than with any other techniques.
Instead of transfecting big dsRNA molecules in to the cells,
chemically engineered siRNA’s enable targeting the specific genes. In
principle any gene may be knocked-down by a synthetic siRNA with
exact complementary sequence. Hence in the post-genomic era,
siRNA is considered as an important tool for validating gene function
and drug targeting. The gene silencing capacity of RNAi has been
used in cell cultures and in animal models that encourage siRNA
based reagents for clinical usage to treat cancer [6] as well as other
diseases such as neurodegenerative disorders, cholesterol and viral

diseases [4,102-103].

Cancer treatment will be successful if it is able to do complete
removal of the tumor without making damage to any other parts of
the body. This shall be achieved by doing surgery, to a certain level.
But surgery is not as effective if the disease has already spread to
other locations of the body. Chemotherapy is sometimes toxic to
healthy tissues as it is not specific to cancer cells. Radiation also
damage normal cells and tissues. By considering all these limitations
of the existing cancer therapy techniques, it is very essential to
develop novel target specific therapeutics for the effective treatment

of cancer. Recently it is understood that RNAi can be successfully
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used in cancer therapies. Nowadays there are lot of insights and
promises for using siRNAs as drugs targeted only into the cancer
cells. Genes associated with several cancers can be silenced by RNA
interference. For example, in in-vitro studies of one type of leukemia,
it is shown that siRNA could damage the fusion protein, which
prevents the drug from binding to the cancer cells [104]. Cleaving or
damaging the fusion protein will reduce the amount of transformed
cells that spread throughout the body. This is done by increasing the
sensitivity of the cells to the drug [104]. RNA interference can be
used to target particular mutants. For example, siRNAs were able to
bind specifically to tumor suppressor p53 molecules containing a

single point mutation and destroy it [105].

Researchers have used siRNAs to selectively regulate the
expression of cancer related genes. siRNA molecules are used to
target the uncontrolled production of cancer cells, proliferation of
breast cancer [106]. Also it is understood that siRNAs can be used to
reduce protein formation and can thereby increase the sensitivity of
the cancer cells towards chemotherapy treatments [107-108]. In-
vivo studies are being utilized to study the potential use of siRNA
molecules in cancer therapeutics [108]. RNAIi has already been used
to target particular genes in several serious viral diseases like
hepatitis and human immunodeficiency virus (HIV) [102-103].
Especially, siRNA was used to silence the primary HIV receptor

named chemokine receptor-5 [109] to prevent the virus from entering
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the human peripheral blood lymphocytes and the primary
hematopoietic stem cells [109-110]. Gene silencing techniques using
RNAI have also been successfully used to target other viruses, such
as hepatitis B and C, human Papilloma virus, West Nile Virus and so
on. In hepatitis B, siRNA silencing technique was successfully used
to target the hepatitis B virus and could effectively decrease the
number of viral components [111]. Also, siRNA techniques used in
hepatitis C were able to reduce the quantum of the virus in the cell by
98% [112-113]. From recent studies it is understood that siRNA may
also be used for diseases like cystic fibrosis and chronic obstructive
pulmonary disease, asthma and Huntington’s disease (HD) [113-

116].

RNAI has great potential in future therapeutics since it has the
potential to regulate disease related genes. So any disease caused by
abnormal enhancement activity of one or more genes could be
regulated by RNAi-based therapies [117]. Over the past several
years, a number of RNAi-based preclinical and clinical trials have
grown to understand brain and skin diseases, viral infections,
respiratory disorders, cancer and metabolic diseases [118]. Till date,
RNAI therapies in clinical trials have targeted approximately 14
different diseases [118]. Many of the siRNA therapies are at
preclinical stage. The methods for delivering siRNA drugs had been
improved to maximize the specificity of siRNA and to minimize the
toxicity and degradation effects that compromise drug efficacy [65].

Three clinical trials have used ex-vivo delivery of the siRNA
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therapeutics. In this method, cells were collected from patients and
treated with siRNAs and re-infused back into the patient [119]. One
of the three clinical trials involves use of an anti-tumor bifunctional
siRNA (bi-siRNA) for treatment of metastatic melanoma, a form of
cancer that originates in melanocytes. The idea used in cancer
treatment with RNAI is that cancer cells will be killed through the

actions of the patient’s own immune system.

2.8 Challenges to Gene Silencing Therapeutics

siRNA is the mediator of RNAi and can do efficient and
specific gene silencing. Thus it is extremely promising for various
therapeutic applications. But there are many barriers for making
effective practical applications of siRNA. siRNA can be transfected
directly into the cells or organs. But stability in the blood stream, the
duration of the effect and the delivery techniques are still quite big
questions before RNAi-based therapy can be used. siRNA stability
and targeting may be highly influenced to degradation by various
enzymes found in tissues. The life of siRNAs in serum may range
from minutes to an hour [120]. Because of this survival problem of
siRNA, target site accumulation for therapeutical applications is a
major challenge [121]. There are many other challenges in
connection with therapies using gene silencing techniques. Most
important challenges are target specificity and effectiveness of
delivery. For example, in case of neurodegenerative disorders, gene

silencing particles must be directly delivered to the brain. The brain-
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blood barrier may block to deliver the gene silencing molecules
exactly into the brain. This untargeted delivery may happen either by
preventing the passage of the molecules that are injected or by
absorbing into the blood [116,122]. Thus, it is found that gene
silencing molecules must be either injected directly or using implant
pumps which push them into the brain [116]. Once inside the brain,
the molecules must move inside the targeted cells. This method of
delivery may also make some problems as it can induce an immune
response against the gene silencing molecules [116]. In addition to
targeted delivery problem, target specificity is also an issue while
doing gene silencing. There is a possibility of siRNA molecules to
bind with the wrong mRNA molecule which may lead to undesirable
results [116].

Recent studies have revealed that siRNA treatment can result
in off-target gene silencing, means silencing genes other than the
intended targets [17]. Off-target silencing may lead to mutation of
gene expression and cell transformation in undesirable form. Most
off-target silencing is resulting because of sequence similarity with
six to seven nucleotides in the “seed region” of the siRNA sequence
[17,123-124]. So by doing careful selection of guide strand of
siRNA, the probability of matching with undesired targets can be
avoided to some extent. Off-target silencing is an important issue to

be addressed upon while doing siRNA-based therapeutics. For the
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potential and efficiency of siRNA for therapeutic applications
without doing “off-target” silencing must also be heavily tested
before application. So target specificity and efficient delivery of
siRNA molecules for gene silencing is a serious research issue to be
addressed. Special care must be given to design efficient methods to
deliver and develop specific gene silencing therapeutics using siRNA

in a more safe and effective manner.

2.9 Need of exogenous siRNA design

Even though dsRNA had shown to induce gene-specific
silencing capacity in early mouse embryos [2, 125], the attempts to
use dsRNA in mammalian systems were not conclusive. In these
experiments the application of long dsRNAs generated an overall
decrease in mRNA eventually leading to apoptosis, instead of
triggering RNAi and also created a response mediated by dsRNA
dependent protein kinase [126]. Later it is understood that this type of
non-specific response can be bypassed by wusing chemically
synthesized 19 to 22 nucleotide siRNAs [62, 127-129]. By the
transfection of these chemically synthesized siRNAs, strong and
sequence specific silencing of gene expression in various mammalian
cells could be done very effectively. Because of this potential of
RNAi-based technologies [130] in therapeutic applications, the use of
exogenous siRNA technology has become widespread to study

mammalian gene function including clinically relevant genes.
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2.10 Complexity in siRNA Design

The design of effective siRNA sequences is a challenging
work because the target mRNAs must be selected such that their
corresponding siRNAs are likely to be efficient against that target and
unlikely to accidentally silence other transcripts due to sequence
similarity [12-14]. So it is desirable to consider two important
concepts while designing exogenous siRNAs: the ability in knocking
down target genes and the off target possibility on any non target
genes. Hence before doing gene silencing by siRNAs, it is essential
to analyze their off target effects in addition to their inhibition
efficacy against a particular target [15-17]. Many barriers prevent
practical applications of siRNA. Concepts of siRNA like specific
targeting, efficient delivery system, validated genes and the potent

siRNA sequences are all vital important to overcome these barriers.

Although reasonable progress has been made in analyzing
how the RNAi and siRNA mediates gene silencing, the design of
potent siRNAs remains still challenging [15-17]. While considering
to optimize the efficiency of siRNA, the above mentioned

complexities may lead to the following questions.

e How to identify and validate target genes to design potent

siRNA?
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e How to design siRNA with good inhibition efficiency?

e How to select functional siRNA sequences with good

inhibition efficiency?

e How to eliminate near perfect matched off target genes?

2.11 Summary

The role of siRNA in post-transcriptional gene silencing, the
need, complexity, and challenges of designing exogenous siRNA for
therapeutical applications are briefly described in this chapter. In this
thesis, we try to address some of the complexities of siRNA design so
that exogenous siRNA can be designed effectively with specific
targeting and efficient delivery system, which may be helpful for

effective gene silencing.
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Introduction
First Generation Methods
Second Generation Methods

siRNA Design Approaches

Summary

3.1 Introduction

This chapter aims to provide the literature review of the
existing siRNA design approaches. Section 3.2 deals with first
generation methods for siRNA design by briefly describing the rules
used to design siRNAs. Section 3.3 deals with second generation
methods and the machine learning models used in these approaches.
Section 3.4 explains the study of selected 23 good scoring siRNA
design methods by making a comparison of them. This section is
concluded by describing the important approaches selected to
integrate in our study. Finally in section 3.5, a brief summary of the

chapter is presented.
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3.2 First Generation Methods

Several techniques have emerged in the past few years to
explore the difficulties in designing exogenous siRNAs. Most studies
suggest that positional features like presence or absence of specific
nucleotides in certain positions within the siRNA, thermodynamic
properties like ‘whole stacking energy’ and secondary structures of
siRNAs are important in predicting efficacy [81,131-135]. These
methods are classified into two groups, first generation and second
generation methods. First generation methods follow certain rules
and regulations for designing siRNA. The following section describes
some important siRNA prediction rules followed by first generation
methods. These studies reveal that position specific features
(presence or absence of specific nucleotides in certain positions
within the siRNA), thermodynamic properties and secondary
structures of the target site are important in determining the

regulatory efficiency of siRNA.

3.2.1. Rules for Designing siRNA
3.2.1.1 Tuschl Rules

Tuschl Rule is the first technique for designing effective and
efficient siRNAs and is developed by Elbashir et al. [62]. They
recommended that synthesizing siRNA duplexes with a 23 nucleotide
sense strand and a 21 nucleotide antisense strand, paired with 2
nucleotide 3’ overhang on both ends, mediates the efficiency of target
mRNA cleavage. The important rules in this design are summarized

below:
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3.2.1.2

design

The target region starts 50 to 100 nucleotides downstream of
the start codon of a given transcript.

First search for 23-nt sequence motif AA(N19)TT13

After it, search for 23-nt sequence motif NA(N21) and
convert the 3° end of the sense siRNA to TT

Finally search for NAR(N17)YNN, where R 2 {A, G} and Y
2{C, T}

Target sequence should have a Guanine-Cytosine (G-C)

content of around 50%.

Amarzguioui Rules
Amarzguioui and Prydz [81] designed the following siRNA
rules, based on their study of 46 siRNAs with a knockdown

rate of more than 70%. The rules were tested on another 34

independent siRNAs.

Strong binding of 5’sense strand

Weak binding of 3’sense strand

asymmetry in the stability of the duplex ends
Presence of G/C at position 1

Presence of A at position 6

Absence of U at position 6

Absence of U at position 1

Absence of G at position 19

Presence of A/U at position 19
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3.2.1.3 Reynolds Rules
180 siRNAs are analyzed by Reynolds et al. [133]. Based on

their regulation efficiency, they divided the siRNAs into different
groups and tested whether siRNAs with high functionality have any
similarities in their sequence. Based on their analysis, they proposed
some rules of how to design highly potent siRNAs. They assigned a
score to each siRNA based on the number of rules satisfied. Each
siRNA exceeding a specific threshold is predicted to be functional.

* GC content has to be between 30% and 52%

* Presence of nucleotide A at position 3 and 19

* Presence of U at position 10

» Absence of G or C at position 19

» Absence of G at position 13

» Presence of A/U in positions 15 through 19

3.2.1.4 Ui-Tei Rules
These rules are established by Ui-Tei et al. [134] based on 62
siRNA from 5 genes. They analyzed 62 targets in mammalian and
Drosophila cells and came up with a conclusion that four features of
siRNA listed below should simultaneously satisfy to cause efficient
silencing. These rules were found to be applicable to mammalian
cells.
* AJ/U at the first nucleotide of the 5’ end of the

antisense strand
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* G/C at the first nucleotide of the 5’ end of the sense
strand

*  Atleast five A/U nt in the 5’ terminals first-third of
the antisense strand

* No ’GC’ stretch of more than 9 nt in length

3.2.1.5 Chalk Rules

Many rules established in recent studies are reviewed on a
dataset of 398 siRNAs of known efficiency from 92 genes. This
prediction algorithm by Chalk et al. [135] incorporates the
thermodynamic properties of the siRNA. The rules are

» Total hairpin energy < 1 kcal/mol

* 5’ end binding energy < 9 kcal/mol in the antisense
strand

* 5 end binding energy in the range 5-9 kcal/mol
exclusive in the sense strand

* G/C Content between 36% and 53%

* Middle area (7-12) binding energy < 13 kcal/mol

* Energy difference between antisense and sense 5’
energies <0 kcal/mol

* Energy difference between antisense and sense 5’

energies within -1 kcal/mol and 0 kcal/mol
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3.2.1.6 Khvorova Rules

These rules are proposed by Khovorova et al. [136] based on
180 siRNAs from one gene. The main aim is to study the internal
stability of miRNAs and siRNAs, whose functional duplexes display
a lower internal stability at the 5° end antisense strand than
nonfunctional duplexes. They could establish that the thermodynamic
properties play a critical role in duplex unwinding and strand

retention by RISC. The rules are as follows:

» Low stability 3’ (sense strand) > -8.5 [kcal/mol]
» Low stability 6-11 (sense strand) > -7 [kcal/mol]
» High stability 5’ (sense strand) < -9 [kcal/mol]

3.2.1.7 Takasaki Rules
Takasaki et al. [137] conducted a research on 249 siRNA

from one gene. The rules are as follows:

* No A/U at position 1 (sense strand)

* G at position 1 (sense strand)

* A at position 6 (sense strand)

* G at position 7 (sense strand)

» No U at position 7 (sense strand)

* A at position 8 (sense strand)

» No G at position 8§ (sense strand)

» No G at position 9 (sense strand)

» U at position 9 (sense strand)
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» U at position 15 (sense strand)

* No G at position 19 (sense strand)

3.2.1.8 Hohjoh Rules
These rules are proposed by Hohjoh in 2004 [138]. It is

shown that newly designed siRNA duplexes, called “forksiRNA
duplexes”, can enhance RNAIi activity over conventional siRNA
duplexes in cultured mammalian cells.

* “Fork-siRNA” mismatch at the 3’ sense strand-siRNA

* G/C at position 1 (sense strand)

* A/U at position 19 (sense strand)

* A/U at position 8 (sense strand)

3.2.1.9 Hsieh Rules
Study by Hseih et al. [139] involved about 148 siRNAs from

30 genes and proposed the following rules:

» No C at position 6 (sense strand)

* C/G at position 11 (sense strand)

» A at position 13 (sense strand)

* G at position 16 (sense strand)

» U at position 19 (sense strand)

* No G at position 19 (sense strand)
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3.3 Second Generation Methods

Many of the first generation models were not achieving good
inhibition efficiency against target genes. Also most of them were not
considering many important aspects of siRNA like sensitivity,
specificity, off-target possibility while designing siRNA. So there
was a need to develop techniques to improve the efficacy of predicted
siRNA. These methods are called second generation models which
are mostly based on either support vector machine models, linear

regression models or artificial neural network models.

3.3.1 Machine Learning Models

3.3.1.1 Support Vector Machines
Support Vector Machine Model (SVM) can be applied to a

labeled data to perform classification or regression and can handle
multiple continuous and categorical variables [33]. SVM is widely
used for applications in bioinformatics [140], text classification [141],
pattern recognition [142]. SVM performs classification by
constructing hyper-planes in a multidimensional space that separates
cases of different class labels. So it is considered to be working based
on the concept of decision planes. From each output class, it
identifies a subset of the training data. This subset is called support
vectors. The model will learn the data using the support vectors.
When a new data point needs to be classified, it uses the support

vectors to make the classification. In the case of linear classifier, as
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shown in Fig.3.1, it separates the data points or objects into their
respective groups with a line. If classification is done based on
drawing separating lines to distinguish between objects of different
class memberships, it is known as hyper-plane classifiers (Fig.3.2).
Then SVM finds a separating hyper-plane which has the maximum
margin between the training examples and the class boundary. In
principle, SVM can be viewed as the maximum margin classifier
defined in terms of the support vector approach (Fig.3.3).
Maximizing this margin will result in minimizing the maximum loss

[143].

3.3.1.1.1 Kernel Functions

SVM will project the training data into a higher dimensional
space through a kernel function. Different kernels like linear,
polynomial, radial basis function (RBF) and sigmoid can be used in
SVM models. Because of the localized and finite responses across
the entire range of the real x-axis, RBF is the most popular choice of

kernel types used in Support Vector Machines.

I( Xi‘X]'

K(Xi,X;) = 4 (vX.X; +C)°

2
| exp(—v[Xi — Xj|)
ktanh(yXi X+ 0)

(3.1)
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Here K(X;, X]-) = o(X;) - q)(X]-) means the kernel function represents
a dot product of input data points mapped into the higher dimensional
feature space by transformation ¢. The SVM uses a nonlinear
mapping function ¢, that maps the data to a higher dimension, here a
separating hyperplane can always be found. Each data point X is

mapped implicitly to Y = $(X;)

® | O
Q‘Q
QQQ
® 0 |0

Fig.3.1: Linear classifier

O o0
® S
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Fig.3.2: Hyper-plane classifier

3.3.1.1.2 Classification of SVM

SVM constructs the optimal hyperplane by iterative training

algorithm and minimize an error function. SVM models can be

classified into four groups based on the error function: Classification

SVM Type 1, Classification SVM Type 2, Regression SVM Type 1

and Regression SVM Type 2.

)

Classification Type I In this, training involves

minimization of the error function as

LT C I (62)

Subject to the the constraints:

yiw ) + b) =21-7
. >0i=1,..,N

the
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Where C is the capacity constant,

w is the vector of coefficients,

b is a constant,

(; represents parameters for handling nonseparable inputs
Index i labels the N training cases
y € £ 1 represents the class labels

x; represents the independent variables

¢ is kernel function used to transform data from the input to
the feature space
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Fig. 3.3: Maximum margin hyper-plane for a two class problem
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(ii) Classification Type II: This model minimizes the error
function as:
“wT—vp+ <3N, g (3.3)
Subject to the the constraints:
yiwTdG) + b) 2p -7
G =>0i=1,..,N
p=0

(iii) Regression Type I : In this type of SVM, the error function is
given by

“wTw+C N, G +C IV, ¢ (3.4)
Subject to the constraints:

widpx) + b—y; <e—¢

vi—wTpkx) —b; <e+

4.4 =0,i=1,..,N

(iv)  Regression Type II: For this SVM model, the error function
is given by
“wTw—C(ve+ - IN (G + &) (3.5)
In which minimization of error is subject to
widp(x) + b—y; <e+
yi—wio(x) —b; e+
4,4 =0,i=1,..,N
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3.3.1.2 Artificial Neural Network

Artificial Neural Networks (ANNs) [34-35] are considered as
neural network models in artificial intelligence, and is represented as
a function f : X - Y or a distribution over X or both X and Y. In an
ANN, the basic units called perceptrons or neurons are
interconnected between different layers of the system. An ANN is
defined by three types of parameters: interconnection pattern
between the different layers of neurons, learning process for updating
the weights of the interconnections, activation function that converts
a neuron's weighted input to its output activation. Perceptrons are
organized in different ways to form the neural network network’s
structure. Each perceptrons receives the input which can be an
independent raw data or the output of other perceptrons. After
processing, the input perceptron delivers a single output, which can
be the final result or inputs to other perceptrons. A graphical
representation of a perceptron is shown Fig.3.4. A perceptron takes a
vector of real-valued inputs, calculates a linear combination of these

inputs, then outputs

e a | ifthe result is greater than some threshold

e ] otherwise.

48



Study of SIRNA Design Approaches

f_
¥
]! if}: W; x!->0
0= i=0
-1 otherwise

Fig.3.4: Graphical Representation of a Perceptron

(Source of Figure: www.cse-wiki.unl.edu)

3.3.1.2.1 The Network Architecture
Each ANN is composed of a collection of perceptrons
grouped in layers. A typical structure of a multi layer neural network

is shown in Fig.3.5.

Input Hidden Output

Fig.3.5: A three layer neural network
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Based on the pattern of connections between the neurons or

perceptrons and the propagation of data, the neural network models

are classified into feed forward and feedback networks.

)

(i)

Feed forward Networks: The data flow from input to output
unit is strictly feed-forward. The processing of data can be
extended over multiple layers of the network. But feedback
connections extending the output units to previous layers or to
input units are not at all present anywhere in the network.

Basic structure of a feed forward neural network is shown in

Fig.3.6 (a).

Feedback Networks: Feedback networks are also known as
recurrent networks, which contain feedback connections. In
recurrent neural network, the connections between units form
a directed cycle. Basic structure off a feed forward neural

network is shown in Fig.3.6 (b).

Fig. 3.6: (a) Feed Forward Neural Network
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Fig. 3.6: (b) Feedback Neural Network

3.4 siRNA Design Approaches

3.4.1 Study of siRNA Design Methods

Using second generation siRNA models, the complexities in
designing efficient siRNA have been addressed to a great extent. But
even though many models have emerged, only a few have achieved
accepted level of inhibition efficiency (minimum 0.70), accuracy
(minimum 0.70), sensitivity (minimum 0.60) and specificity
(minimum 0.80). We studied 23 available good scoring siRNA
design approaches to understand the efficacy level of each of them.
Table 3.1 describes some of the important good scoring siRNA

design methods and their characteristics.
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Table.3.1. Good Scoring siRNA prediction Methods

siRNA Design
SL1.No Methods Comments
Target accessibility prediction and
1 Sfold [144] RNA duplex thermodynamics for
rational siRNA design.
Predicts the probability that an
2 DEQOR [145] mRNA fragment will cross-react
with other genes in the cell
Designed a genome wide siRNA
3 BIOPRED:si [18] library wusing ANN Network
Model
A web-based system that provides
4 siVirus [146] efficient siRNA  design for
antiviral RNA interference.
i Improved the inhibition efficiency
5 ThermoComposition21 of siRNA usig ANN Model, used
[20] :
thermodynamic features.
. An open-source JAVA program
6 siRNArules [147] predicting active siRNAs.
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siRNA Design
S1.No Methods Comments

Linear Regression Models, A

7 DSIR [19] model for siRNA and shRNA
target design.
Designed an accurate and

? iScore [21] interpretable mgdel fgr s1RNA
efficacy prediction using linear
Regression.

9 Scales [22] Linear Regression Model

. A prediction server for ranking

10| OptiRNA [23] siRNA target sites.

1 RNAxs [25] Design potent. siRNAs to knock
down gene of interest.
The web server generates a list of
siRNA  candidate  sequences,

13 OligoWalk [148] ranked by the probability of being

efficient siRNA (silencing efficacy
greater than 70%).
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SI.LNo

siRNA Design
Methods

Comments

14

AsiDesigner [149]

Exon-based siRNA design server
considering alternative splicing

15

BiLTR [150]

A generic framework to enhance
siRNA  knockdown  efficacy
prediction.

16

siDRM [24]

An implementation of the DRM

rule sets for selecting effective
siRNAs.

17

siRecords [26]

A database of siRNAs
experimentally tested by
researchers with consistent
efficacy ratings.

18

E-RNAi [27]

A model for the design and
evaluation of RNAi reagents for a
variety of species.

19

MysiRNA-Designer [28]

Integrates several factors in an
automated work-flow considering
mRNA  transcripts  variations,
siRNA and mRNA  target
accessibility, and both near-perfect
and partial off-target matches.
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siRNA Design

SLNo Methods

Comments

Including positional preferences,
target accessibility and other
20 | MysiRNA [29] thermodynamic features. Used
ANN model to predict siRNA
inhibition activity

A new version of DSIR
incorporating new findings, as
well as the list of validated siRNA
against the tested cancer genes

21 | DISR [30]

Provides a siRNA oligonucleotide
data from different sources and
22 | RNAiAtlas [31] companies, and visualize
interactions between siRNA and
predicted off-target.

Allows to determine the off-
23 siSPOTR [32] targeting potential of already
designed siRNAs.

3.4.2 Methods Selected for Our Work
We studied 23 siRNA prediction models described in Table

3.1 and tried to find out the prediction accuracy by independent
models a well as with combinations of these approaches. The
prediction accuracy of various combinations is tested against data
sets. Finally it is noticed that accuracy is reaching closer to the

original experimental values with a combination of five scoring

algorithms: BIOPREDsi [18], DSIR [19], ThermoComposition21
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[20], i-Score [21], MysiRNA [29]. So we selected these five state of
the art techniques to be integrated in our work to improve the
efficiency further. Out of these methods, MysiRNA model [29] is
showing good results in terms of inhibition efficiency. Also in their
model MysiRNA-Designer [28], they have tried to address the effect
of off-target possibilities. All these selected algorithms have been
developed by introducing data mining techniques to improve the
efficiency of siRNA with their experimental inhibition. BIOPREDsi,
ThermoComposition21, MysiRNA-Designer package and MysiRNA
used the artificial neural network models, while DSIR, i-Score and
Scales used linear regression models. The ThermoComposition21
improved the prediction accuracy by combined position dependent
features together with thermodynamic features in single artificial
neural network model. The prediction accuracy is improved in DSIR,
i-Score and Scales using linear regression model. Further the
MysiRNA-Designer package and MysiRNA much improved the
prediction accuracy by artificial neural network model. These

methods are described below.

3.4.2.1 BIOPREDsi and s-Biopredsi

Huesken et al. [18] designed a genome wide siRNA library to
overcome the burden of shortage of interfering short hairpin RNAs
for conducting gene knock-down experiments. They used the
Stuttgart Neural Net Simulator to train algorithms. The experiments

were conducted on a data set of 2,182 randomly selected siRNAs
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targeted to 34 mRNA species. These were assayed through a high-
throughput fluorescent reporter gene system. This algorithm is known
as BIOPREDsi, in which they could predict the inhibition activity of
a test data set of 249 siRNAs with Pearson coefficient R= 0.66. They
have done the experiments on both 21nucleotide and 19 nucleotide
sequences and identified that neural networks trained on a
complementary 21 nucleotide sequences were superior to those on 19

nucleotide sequences.

Since we were not able to access most of data from the
original BIOPREDsi model [18], we used the simulated-Biopredsi (s-
Biopredsi), as in Ichihara’s work [21], rather than the original
BIOPREDsi. In [21], Ichihara et.al could prove the correspondence
between s-Biopredsi and BIOPREDsi by achieving a Pearson
correlation coefficient of 1 and identical receiver operating

characteristics in ROC analysis.

3.4.2.2 DSIR

Vert et.al. [19] proposed a simple linear model, DSIR, by
combining the basic features of siRNA sequences for siRNA
inhibition efficacy prediction. It performs well in terms of prediction
accuracy. They have used large data set of 2431 randomly selected
siRNAs targeting 34 different mRNAs identified by Huesken et al.
[18]. They have divided the entire 2431 siRNAs into a training set of
2182 sequences and a test set of 249 sequences. Each siRNA

sequence was converted to a vector of features using PYTHON. In
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conclusion, they have developed an accurate and interpretable model
for siRNA efficacy prediction which performs at least as well as the

current state of art.

3.4.2.3 ThermoComposition21

Shabalina et al.[20] developed a model by considering the
important thermodynamic properties of siRNA. They collected a
heterogeneous set of 653 siRNAs as training data set from various
literatures. They have used this training set to fix siRNA features and
optimize computational models. They have improved the inhibition
efficiency of siRNA molecules by performing thermodynamic and
correlation analysis of the training data set. Using a neural network
model, they could prove the efficiency of the model against the
efficiency prediction at different concentrations. The main advantage
of this model over other is the less number of parameters. Because of
this advantage, this model requires a very small training data set to

get consistent results.

3.4.2.4 i-Score
Ichihara et al. [21] developed an algorithm to predict efficient

siRNAs with their inhibitory-Score (i-Score). They have applied a
linear regression model to 2431 siRNAs. The only parameter used in
this algorithm is the nucleotide preferences at each position. For
testing they have used a dataset consisting of 419 siRNAs. With this
validation data set, they could predict the accuracy of prediction as

well as those of BIOPREDsi[18], ThermoComposition21 [20] and
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DSIR [19], in which they employed neural network model or linear
regression model. Also they could establish relationship between
whole stacking energy and prediction accuracy of siRNA. They could
identify that exclusion of siRNAs with a threshold of whole stacking

energy, will improve the prediction accuracy.

3.4.2.5 MysiRNA
Mysara et al. [28-29] designed a model called MysiRNA.

They identified that many factors including positional preferences,
target accessibility and other thermodynamic features will affect the
functionality of siRNA. They could develop a model which optimizes
the selection of target siRNAs by identifying siRNAs having high
experimental inhibition. This uses an artificial neural network model
to predict siRNA inhibition activity. This is mainly built on two
previous models (Thermo Composition21 [20] and i-Score [21])
together with whole stacking energy (AG) in a multi layer artificial
neural network. Comparatively, this model results in good siRNA
efficiency in terms of specificity, and sensitivity. They have also

addressed the off target possibility of siRNA.

3.5 Summary

A comparative study of various good scoring siRNA design
approaches is done and the results are analyzed for finding their
efficacy. After analyzing the efficacy in terms of inhibition efficiency

and off-target possibility of each model in Table 3.1, it is understood
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that only a few mechanism were developed for addressing “both
inhibition efficiency and off-target effect” of predicted siRNA against
genes. Our aim is to develop an approach which optimizes the
accuracy of predicted siRNA against target genes by taking care of
both inhibition efficiency and off-target effect. The approaches
proposed in this thesis extend five previous state of the art techniques
named BIOPREDsi [18], DSIR [19], ThermoComposition21 [20], i-
Score [21], and MysiRNA [29], by incorporating machine learning
and statistical techniques to improve the prediction accuracy and
reduce the off-target possibility of siRNA. Out of these methods,
MysiRNA model is showing the best results in terms of inhibition
efficiency and off-target possibility prediction. In this study, we try to
further improve and optimize the predictive ability of siRNA in terms
of inhibition efficiency, sensitivity and specificity, accuracy of
prediction, off-target identification, by combining the selected state

of the art siRNA design techniques.
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4.10 Summary

4.1 Introduction

This chapter provides the materials and methods used in this

research work. The data sets used in this study are presented in

section 4.2. The sections 4.3, 4.4 and 4.5 describe the important

aspects like siRNA efficiency, need of target specificity while

designing exogenous siRNA, and whole stacking energy used during

siRNA prediction. The actual machine learning approaches, machine

learning frameworks and training algorithms to predict the efficiency

of siRNA against target messenger RNAs are described in section
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4.6, 4.7 and 4.8 respectively. Section 4.9 describes various validation
strategies used for evaluating the performance of the proposed
approaches. Finally in section 4.10, a brief summary of the chapter is

discussed.

4.2 Data Sets

The neural network models used in this study are trained
using the experimental inhibition capacity values of the siRNAs in
Huesken data set [18], Data Set 1. This data set contains a total of
2431 siRNAs derived from 34 genes, and their corresponding
experimental inhibition capacity values prepared by Huesken et al
[18]. This is known as Huesken data set, which is the reliable training
data set used by most of the siRNA design approaches. We used
entire Data Set 1 for training our neural network model. For testing
our neural network, we used two more data sets: Data Set 2 and Data
Set 3. Data Set 2, which is mutually exclusive from Data Set 1,
consists of 419 siRNAs taken from various sources such as Reynolds
et al. [133], Ui-Tei et al. [134], Vickers et al. [157], Khvorova et al.
[136] and Harborth et al. [161]. This data set was compiled by
Ichihara et al. [21] for their i-Score designer model and is used by
Mysara et al. [29] for testing their MysiRNA model. Data Set 3 is
used for evaluating the sensitivity and specificity of our model. Data
Set 3, which is entirely different from Data Set 1 and Data Set 2,
consists of 476 siRNAs presented by Mysara et al. [29]. These 476
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siRNAs were originally taken from a larger data set of 18,593
siRNAs introduced by Fellman et al. [162]. The details of data sets
used in the study are shown in Table 4.1. We have particularly
selected these data sets for training and testing, since we can make an
easy comparison of results with previous state of art techniques. In
addition to these data sets, we have maintained our own data set
(Data Set 4) containing 743 siRNAs collected manually from RefSeq
[163] for working with the model. Also the model can directly take
any mRNA or cDNA sequence from RefSeq [163] and will
automatically create the siRNA sequences corresponding to the
mRNA or cDNA and continue with efficiency prediction. The sample
cDNA sequences used for designing siRNA are shown in Appendix
1.

Table 4.1: Data Sets used for Training and Testing ANN models

siRNA siRNA

No of siRNA with
Train/Test| Name of | No of with 50% |with 70%
siRNA >90 %
Data Set Data Set | Genes to70 % | t0o 90 %
used inhibition

inhibition |inhibition

Train Data

Data Set Set 1 34 2431 778 853 369
Test Data
Data Set Set 2 12 419 60 117 9%
Test Data
Data Set Set3 ? 476 70 53 127
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4.3 siRNA Efficiency

The goal of siRNA efficacy prediction is to help in designing
siRNA sequences that are highly efficient against their target mRNA
sequences. Reynolds et al. [133] observed in their siRNA knock-
down experiments that properties of the target mRNA did not affect
knockdown and efficacy seems to be solely based on properties of the
siRNA. Gene silencing related studies indicate that out of the
possible siRNAs that can be synthesized against a particular target,
only a few are found successful in causing any degradation [12,151].
Among those successful siRNAs, all do not result with equal
knockdown effects [12]. Also the efficacy of same siRNA may be
different among different target sites for the same mRNA. Some
studies reveal that stability factors like secondary structure and
thermodynamic properties of the siRNA are also important
determinants of functionality [131-132]. So for performing effective
gene silencing, it is important to select effective siRNA sequences
with good inhibition capacity, i.e., sSiRNAs that are highly functional
in causing a certain percentage of the target mRNA sequence to
degrade. In most studies, siRNAs causing knockdown of more than
70% of the target mRNA are considered highly efficient but the
threshold varies depending on the level of silencing required [12,131-
132, 151-152].
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4.4 siRNA Specificity

In addition to inhibition efficiency, another important factor
to be considered while siRNA design is the specificity of the siRNA
[16,62,153]. siRNA mediated gene silencing is generally believed to
be highly sequence specific. Sometimes siRNAs may tolerate
mismatches with the target mRNA, but knockdown of genes other
than the intended target could make serious consequences. Gene
expression profiling in cultured human cells demonstrated silencing
of non-targeted genes. Even though eleven complementary matches
out of the 19 nucleotides of siRNA was enough to cause silencing
[16], in some cases even a single base mismatch between the siRNA
and its mRNA target abolished gene silencing [62]. This indicates
that siRNA may cross-react with targets of limited sequence
similarity. While maximum degradation of target mRNA is required,
silencing of non-target mRNA should be avoided. Therefore, due
consideration must be given to the implications arising from siRNA
specificity in design algorithms. This can be achieved by selecting
target mRNA such that their corresponding siRNAs are likely to be
efficient against that target and unlikely to accidentally silence other
transcripts due to sequence similarity. So to design siRNAs, two

important concepts must be considered: the ability in knocking down
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target genes and the off target possibility on any non target genes

[16,62].

4.5 Whole Stacking Energy

We are using an important thermodynamic property of siRNA
called whole stacking energy (AG) as one of the input parameters to
our approaches since it reflects the stability of siRNA duplexes and
shows good correlation with inhibition efficiency [21,23,154]. We
have used nearest neighbour model [29,155-156] to calculate the
whole stacking energy of siRNA strand. The method used is same as
that of iScore designer [152] and MysiRNA [29]. For calculating AG,
the sum of the AG values in kcal/mol contributed by each nearest
neighbour pair in the siRNA sequence is found out as shown in Table
4.2.

Whole AG = X" AG3,(Seqli]Seq[i + 1]) (7.1)

For example, if the siRNA sequence is AGACUA,

Whole AG = AG(AG) + AG(GA) + AG(AC) + AG(CU) +
AG(UA)=-2.1+-24+-22+-21+-13
=-10.1 kcal/mol.
Table 4.2: AG values of nearest neighbor pairs
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Nearest Nearest
Neighbour | AGg;; (keal / mol) Neighbour | AGg;; (kecal / mol)

Pair Pair

AA -0.9 GA 2.4
AU -1.1 GU 2.2
AG -2.1 GG -3.3
AC 2.2 GC -3.4
UA -1.3 CA 2.1
uu -0.9 CU 2.1
UG -2.1 CG 2.4
ucC 2.4 CcC -3.3

4.6 Machine Learning Approaches
The following are the set of machine learning approaches
proposed in this study for finding the efficiency of siRNA data.
Based on these algorithms the efficiency of siRNA against target
mRNA are modeled and tested.
1. Support Vector Machine (SVM) model is used to classify and
observe the efficiency of siRNA against target mRNA [33].

ii.  Two Artificial Neural Network (ANN) models are designed to
find the efficiency of siRNA against target mRNA [34-35].
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4.7 Machine Learning Frameworks

In this study, we are using three machine learning approaches
named LIBSVM [158], Neuroph Studio [159] and Encog Workbench
IDE [160].

4.7.1 LIBSVM

LIBSVM [158] is used as a library for Support Vector
Machines. The practical use of LIBSVM involves mainly two steps.
In the first step, training is done with a known data set to obtain a
model. In the second step, it will predict information of a testing data
set using the developed model. LIBSVM supports various SVM
formulations for classification, regression, and distribution
estimation. It supports multi class classification like One-class SVM,
SVC (Support Vector Classification for two-class and multi-class)
and SVR (Support Vector Regression) [33,158]. We have used
LIBSVM for working with our SVM model.

4.7.2 Neuroph Studio

One of our artificial neural network models is designed by
using Neuroph studio [159]. The Neuroph library for Java is used to
create neural network model. Neuroph is a lightweight Java neural
network framework to develop common neural network architectures.
The Neuroph Studio IDE provided by Neuroph is used to easily
design and test the model. The IDE provides an easy-to-use graphical

interface to design various neural network configurations, and to train
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or test the network using various neural network training algorithms.

Website: http://www.neuroph.sourceforge.net

4.7.3 Encog Workbench IDE
The Encog Workbench IDE [160] is used for creating our

second neural network model, i.e., optimized siRNA designer. The
Encog machine learning framework for Java is used to create and use
the siRNA designer neural network model. Encog is an advanced,
lightweight Java machine learning framework which can be used to
develop common neural network and other machine learning models
like Support Vector Machines, Genetic Algorithms, Bayesian
Networks, Hidden Markov Models. The Encog Workbench IDE is
used to easily design and test the model. The IDE provides an easy-
to-use graphical interface to design various neural network
configurations, and to train or test the network using various neural
network training algorithms. In addition to Java, the Encog
framework is also available for .NET and C/C++.

Website: http://www.heatonresearch.com/encog

4.8 Training Algorithms

The back propagation algorithms [164-165] are used for
training our neural networks. For training with back propagation, the
input patterns should be known apriory. Then the algorithm can be

used for training a given feed-forward multilayer neural network with
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a known set of input patterns with the classifications. For each of the
sample input presented to the network, it examines the output
response. Then the network will compare the output response to the
known desired output and the error value is calculated accordingly.
The connection weights are adjusted based on the error. The set of
sample patterns are repeatedly presented to the network until the error
value is minimized. We have used two back propagation algorithms
namely Resilient Propagation (RProp) [166-167] and Scaled
Conjugate Gradient (SCG) [168-172] in our neural network methods.

4.8.1 Resilient Propagation

Resilient back propagation (Rprop) [166-167] is an algorithm
which is used for training a neural network which is same as that of a
regular back propagation algorithm. Training with Rprop is faster
than back propagation and Rprop doesn't require specifying any free
parameter values for learning rate. But the main disadvantage of
Rprop algorithm is that it is more complex to implement than back
propagation. The Rprop algorithm has two significant differences
with the back propagation algorithm. First, Rprop uses only the sign
of the gradient instead of magnitude to determine weight delta.
Second, Rprop maintains separate weight deltas for each weight and
bias, and adapts these deltas during training, instead of using a single

learning rate for all weights and biases.
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4.8.2 Scaled Conjugate Gradient

Many adaptive learning algorithms for feed forward neural
networks have been introduced [164]. But most of them are based on
Gradient Descent algorithm and have poor convergence rate. For
example standard back propagation algorithm [165] often behaves
badly on large scale problems. But Conjugate Gradient Methods are
one class of optimization methods that are able to handle larger scale
problems very effectively [166-169]. Several Conjugate Gradient
algorithms have been introduced as learning algorithms in neural
networks [170-171]. Finally Scaled Conjugate Gradient (SCG) [173]
a supervised learning algorithm is introduced for improving the
requirements of feed forward neural networks with good convergence

rate. SCG is based on optimization techniques in numerical analysis.

4.9 Validation Strategies

After training and testing of the neural network model,
validation of results are done thorough Pearson Correlation analysis,
followed by Accuracy of Prediction, Sensitivity and Specificity,
Matthews Correlation Coefficient and Receiver Operating
Characteristics analysis [174-175]. These validation strategies are

explained briefly.
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4.9.1 Pearson Correlation Coefficient

Pearson correlation coefficient (R) [174-175] is a measure of
the linear dependence between two variables X andY. The
correlation values range between -1 to 1, where values closer to -1
indicates negative correlation and values closer to +1 indicates
strong positive correlation and those tending towards 0 indicates no
correlation. The interpretation of the Pearson correlation coefficient

1s as follows.

R =+0.70 or above indicates very strong positive correlation
R =+0.40 to +0.69 indicates strong positive correlation

R = 0 indicates no correlation

R =-0.40 to -0.69 indicates strong negative correlation

R =-0.70 or above indicates very strong negative correlation

In our approaches, Pearson correlation is calculated to find the
accuracy of our results with original experimental values. For this,
correlation between the predicted siRNA inhibition efficiency by our
model against original experimentally proven siRNA inhibition

efficiency is observed and analyzed.
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4.9.2 Sensitivity, Specificity, Accuracy

A diagnostic test may be highly specific without being
sensitive, or it may be highly sensitive without being specific. But
both factors are equally important. A diagnostic test is considered as
“good” if the test has both high sensitivity and specificity. The
sensitivity, specificity and accuracy are described in terms of true
positive (TP), true negative (TN), false negative (FN), and false
positive (FP). If a disease is proven present in a patient and the given
diagnostic test also indicates the presence of disease, the result of the
diagnostic test is considered true positive. Similarly, if a disease is
proven absent in a patient and the diagnostic test suggests the disease
is absent as well, the test result is true negative (TN). From Table 4.3
it is understood that both true positive and true negative suggest a
consistent result between the diagnostic test and the proven condition.
However, if the diagnostic test indicates the presence of disease in a
patient who actually has no such disease, the test result is false
positive (FP). Similarly, if the result of the diagnosis test suggests
that the disease is absent for a patient with disease for sure, the test
result is false negative (FN). Both false positive and false negative

indicate that the test results are opposite to the actual condition.
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Table 4.3: Template for diagnostic test results

Existence of Disease as determined by the
Diagnostic Test standard of truth
Result
Positive Negative Row Total
Positive TP FP TP+FP
Negative FN TN FN+TN
Column total TP+FN FP+TN N=TP+TN+FP+FN

Sensitivity: Sensitivity [174-175] is the proportion of true positives
that are correctly identified by a diagnostic test. It shows the
goodness of the test while detecting a disease. The numerical values
of sensitivity represents the probability of a diagnostic test identifies
patients who do in fact have the disease. As the numerical value of
sensitivity is higher, the possibility of diagnostic test returns false-
positive results is less. For example, if sensitivity = 95%, it means:
when we conduct a diagnostic test on a patient with certain disease,
there is 95% of chance, this patient will be identified as positive. A
test with high sensitivity may capture all possible positive conditions
without missing anyone. So a test showing high sensitivity is often

used to screen for disease.
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Sensitivity is defined as

Sn = Number of true positive assessment / Number of all

positive assessment

Sn= —+ (4.1)

TP+FN

Specificity: Specificity [174-175] is the proportion of the true
negatives correctly identified by a diagnostic test. It indicates how
good the test is at identifying normal (negative) condition. The
numerical value of specificity represents the probability of a test
diagnoses a particular disease without giving false-positive results.
For example, the specificity of a test is 95% means: when we conduct
a diagnostic test on a patient without certain disease, there is 95%
chance of this patient to be identified as negative. Specificity is

defined as

Specificity = Number of true negative assessment/Number of all

negative assessment

Sp = — (4.2)

TN+FP

Along with sensitivity and specificity, the measures like Positive
Predictive Value (PPV), Negative Predictive Value (NPV), False
Positive Rate (FPR), False Negative Rate (FNR), False Discovery
Rate (FDR), F-Score (F) are also be used for describing the

performance of diagnostics.
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PPV = —— (4.3)
TP+FP

NPV = —— (4.4)
TN+FN

FPR = —— (4.5)
FP+TN

FNR = —~ (4.6)
TP+FN

FDR = — (4.7)
TP+FP
2TP

F= 2TP+FP+FN (4.8)

Accuracy: Accuracy measures [174-175] the degree of veracity of a
diagnostic test on a condition. The numerical value of accuracy
represents the proportion of true positive results (both true positive
and true negative) in the selected population. An accuracy of 95%
means the test result is accurate, regardless positive or negative.
However, the equation of accuracy implies that even if both
sensitivity and specificity are high, it does not suggest that the
accuracy of the test is equally high as well. Apart from sensitivity and
specificity, accuracy of the test is also used as a measure to determine

how common the disease in a selected population. A diagnosis for
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rare conditions in a particular population might result in high

sensitivity and specificity but with low accuracy.

Accuracy is defined as

Accuracy = Number of correct assessments/Number of all

assessments

TP+TN

Acc= ————————
TP+FP+TN+FN

(4.9)

4.9.3 Matthews Correlation Coefficient
Matthews Correlation Coefficient (MCC) [174-175] is

typically used in machine learning as a metric for assessing the
quality of the predicted value to the observed value. Or it is a
measure of quality of prediction which is the correlation coefficient
between the observed and predicted binary -classifications by
considering false positive (FP), false negative (FN), true positive
(TP) and true negative (TN). An MCC with -1 indicates negative
correlation, 0 indicates no correlation (random selection) and +1
indicates positive (perfect) correlation.

Mathews correlation coefficient,

(TPXTN)— (FNXFP)

MCC =
J(TP+FN)(TN+FP)(TP+FP)(TN+FN)

(4.10)
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4.9.4 Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) [174-175] is one
among the robust tool used for diagnostic tests. ROC plots sensitivity
on Y axis against ‘1- specificity’ on X axis. Using ROC analysis, we
can calculate the Area under Curve (AUC) as a measure of
performance. The AUC can also be realized as the average sensitivity
over entire range of all possible specificities, or the average
specificity over entire range of all possible sensitivities. An AUC of 1
identifies perfect classification and an AUC of 0.5 identifies random

classification.

For siRNA efficacy prediction, it is desirable to have low
false positive rates. For RNAI studies, where functional siRNAs are
required, it is very important that siRNAs having low efficacy must
not predicted to be functional. But, misclassifying siRNAs with high
efficiency rates as nonfunctional is of much lesser consequence. ROC
curve is a plot of a test’s sensitivity versus (1-specificity). ROC
curves are useful in comparing classifiers based on true positive and
false positive rates. For a given diagnostic test, the true positive rate

(TPR) against false positive rate (FPR) can be measured, where

TP

TPR = s (4.11)
FP

FPR= - (4.12)
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From the above equations it can be noted that, TPR is
equivalent to sensitivity and FPR is equivalent to (1 — specificity). All
possible combinations of TPR and FPR compose a ROC space. A
single point in the ROC space is determined by one TPR and one
FPR. The position of a point in the ROC space indicates the tradeoff
between sensitivity and specificity. An increase in sensitivity is
accompanied by a decrease in specificity. Thus the location of the
point in the ROC space depicts whether the diagnostic classification
is good or not. If a point determined by both TPR and FPF gives
coordinates (0,1), we can say that this point falls on the upper left
corner of the ROC space. This ideal point indicates the diagnostic test
has a sensitivity of 100% and specificity of 100%. It is also called
perfect classification. Diagnostic test with 50% sensitivity and 50%
specificity can be visualized on the diagonal determined by
coordinate (0, 0) and coordinates (1, 0). If a point predicted by a
diagnostic test fall into the area above the diagonal, it represents a
good diagnostic prediction, otherwise a bad classification. A graphic
representation is shown in Fig. 4.1. It shows that shadow area
represents better diagnostic classification.

The interpretation of ROC curve is similar to a single point in
the ROC space. If the point on the ROC curve is closer to the ideal
coordinate, the test result will be more accurate. If the point on the

ROC curve is closer to the diagonal, the test result is less accurate.
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The properties of ROC are as follows,
e As the curve approach the ideal point faster, the test results are
more useful;
e The slope of the tangent line to a cut-point indicates the ratio of
the probability of identifying true positive over true negative. If
the ratio is greater than 1, true positive results will be identified

and if the ratio is less than 1, disease likelihood is decreased.
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Fig. 4.1: ROC Curve

e AUC, the area under ROC curve is a measure of accuracy of a

diagnostic test. Accuracy classification by AUC for a diagnostic
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test is shown in Table 4.4. As the area is larger, the more

accurate the diagnostic test is.
AUC of ROC curve is measured by the following equation,
AUC = [/ROC (D)dt (4.7)

Where t = (1 — specificity) and ROC (t) is sensitivity.

Table 4.4: Accuracy classification by AUC for a diagnostic test

Range of AUC Classification
AUC between 0.9 and 1.0 Excellent
AUC between 0.8 and 0.9 Good
AUC between 0.7 and 0.8 Worthless
AUC between 0.6 and 0.7 Not good

4.10 Summary

The materials and methods like machine learning approaches
(SVM [33] and ANN [34-35]), machine learning frameworks
(LIBSVM [149], Neuroph Studio [159], Encog Workbench IDE

81



Chapter — 4

[160]), machine learning algorithms [166-172] (Rprop and SCG),
Data Sets for training and testing, validation strategies like Pearson
Correlation Coefficient, MCC, ROC, Sensitivity, Specificity and
Accuracy of Prediction [174-175] for evaluating the performance of

the proposed approaches are briefly explained in this chapter.
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5.1 Introduction

As the first step of our study, we selected Support Vector
Machine model, to start predicting efficiency of siRNA against
target mMRNA or cDNA sequences. This chapter describes the
method for predicting siRNA efficiency using one of the machine
learning approaches called Support Vector Machine. Section 5.2
describes the input parameters selected for the SVM model. Section
5.3 briefly presents how training and testing is done with SVM. In
section 5.4, various steps during training and testing phase are
explained. Finally, an overview of the chapter is discussed in section
5.5. Using this model, we try to classify a given siRNA as efficient
or inefficient to silence a target mRNA sequence. Also we filtered

the results to find the influence of melting temperature, one of the
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important thermodynamic properties of siRNA on the inhibition

efficiency.

5.2 Input parameters

The model is initially trained with input parameters like
positional features, percentage of G-C content, and some
thermodynamic properties of siRNA. Since thermodynamic
properties are important stability factors of siRNAs, we finalized the
input parameters as four thermodynamic properties of siRNA:
whole stacking energy (AG), enthalpy (AH), entropy (AS) and
melting temperature (Tm). These values of siRNAs are calculated
according to the nearest neighbor model [155-156]. NetBeans IDE
6.9.1, the open-source Integrated Development Environment with
Glass Fish Application Server is used to develop the model. Apache
Derby Network Server is used for the implementation of servlets
and JSP. LIBSVM [158], the publicly available SVM program

written in Java is used by us for solving the classification problem.

5.3 Training and Testing with SVM

The training data set is prepared as follows. Based on the
gene silencing activity, we have collected 653 siRNAs from the
published data from RefSeq [163]. Based on the reported gene
silencing activity, we have filtered the siRNAs into two categories.
The siRNAs with greater than or equal to 60 percentage gene

silencing activity is considered as efficient and siRNAs with less
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than or equal to 30 percentage gene silencing activity is considered
as inefficient. Thus manually we could separate 359 siRNAs out of
653. For each siRNA, the input parameters are calculated and
training is done by SVM. The output is then scaled to keep features
with large numerical scales with small numerical scales, to the range
[0, 1]. Testing is done with target mRNA sequences. The input is
taken as mRNA sequence or cDNA sequence. The flowcharts
shown in Fig.5.1 and Fig.5.2 describe the training and testing phase
of SVM. SVM finally lists all possible efficient and inefficient
siRNAs for a specified mRNA or cDNA sequence. The predicted
siRNAs by our model are compared and analyzed with existing

available siRNA target finder models and the results are verified.

5.4 Steps in Training and Testing

5.4.1 Files used:

1. Svm_trainingset.csv: Contains the set of sSiRNAs and
their known efficiency which are used to train the SVM.

2. Train: Contains 4 parameters and efficiency of training
siRNAs.

3. Train.scale: Scaled values of parameters in the file
“Train”.

4. Train.model: Stores the trained SVM.

5. Test: Stores the parameters of siRNAs generated from the
user given mRNAs.

6. Test.scale: Contains the scaled version of the file “Test”.
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7. Scalingfactors: Stores the scaling factors used to scale

the values.

5.4.2 Training Phase:

= Read siRNAs from svm_trainingset.csv file, calculate

their parameters and write to the file “Train”.

= Scale the parameters in the file “Train” and write the

scaled values to file “Train.scale”.

= Input the train.scale file to the SVM and write the trained
SVM to the file “Train.model”.

Training File

RNA, effineff ile wi
SIRNA, efffing [ Calculate _ [File with parameters

File
<Trainingset csv>

File <Train.model>

Wite trained
SYM

'W and efficiency

4 parameters

A

Scaled
parameters Scaled values
<

SYM < File <Train.scale> Scale Values

Scaling factors

File <Scaling
factors>

Fig 5.1: Flow Chart for Training Phase
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parameters

Calculate
parameters

Generate all
SiRNAs

Web browser File <Test>

4 parameters

Oulput (1) Sealed Scaled values
. parameters |
File <output> [« SWM < File <Test scale> Scale Values
)
Trained SVM Scaling factors
o File <Scalin
Web browser File <Train.model> g
factors>

Fig 5.2: Flow Chart for Testing Phase

5.4.3 Testing Phase:
= Read the mRNA submitted by the user from the web

browser.
= Generate all possible siRNAs from the given mRNA.
= Calculate the 4 parameters of all these siRNAs and write

to the file “Test”.
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= Scale the values from “Test” and write to the file
“Test.scale”. The scaling factors are obtained from the
file “Scalingfactors”.

= Feed the scaled parameters of each siRNA from the file
“Test.scale” to the SVM and obtained the output 0 or 1.
If the output is 1, the corresponding siRNA is efficient

otherwise inefficient. SVM predicts siRNAs one by one.

5.5 Summary

Using this SVM model, we are able to achieve the first
objective of our study, i.e., designing efficient siRNAs for any target
mRNA or cDNA. In efficiency prediction using SVM, we are
classifying the siRNA into efficient or inefficient: means whether
siRNA is able to silence a target mRNA sequence or a gene. The
predicted efficiency is verified with existing siRNA design
approaches. Also we are able to notice a relationship between the
thermodynamic property and inhibition efficiency of siRNA using
this model. Results and discussion of SVM model is further

elaborated in chapter 8.

In this model, since we considered the classification property
of SVM, we are able to only identify whether the predicted siRNA
is efficient or inefficient against target genes. But in the optimized

siRNA prediction model, we are supposed to find the percentage of
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inhibition efficiency of each predicted siRNA too. When we
analyzed the available siRNA prediction approaches, it is
understood that most of them are using artificial neural network
model for finding the efficiency of siRNA. So we have moved
further to design artificial neural network machine learning models
to identify as well as predict the inhibition efficiency of each
siRNA against target genes. These models are described in Chapter
6 and Chapter 7.
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siRNA Efficiency Prediction by
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Introduction

Neural Network Architecture
siRNA Designer Workflow
Summary

6.1 Introduction

This chapter describes the method used for predicting siRNA
inhibition efficiency using one of the machine learning approaches
called Artificial Neural Network. An approach named siRNA
Designer, is built through a multi layer perceptron feed forward
neural network (6-8-8-8-1 ANN) based on five previous second
generation models BIOPREDsi, DSIR, ThermoComposition21, i-
Score and MysiRNA together with one of the important
thermodynamic property of siRNA called whole stacking energy
(AG), to predict the efficiency of siRNA. The chapter is divided into
four sections. Section 6.2 describes the architecture of the 6-8-8-8-1
neural network model. The work flow of the model is described in
section 6.3. The chapter ends with section 6.4, which gives a

summary of this chapter. Using this model, we try to find the
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percentage of inhibition efficiency of each siRNA generated against a
target mRNA or cDNA sequence and to optimize the result in terms

of inhibition efficiency.

6.2 Neural Network Architecture

A multi-layer perceptron, feed-forward neural network trained
using the Resilient Propagation algorithm [166] is used for
computing the final score. The neural network which we use is a 6-8-
8-8-1 ANN, which has 6 neurons in the input layer (x1 to x6); three
hidden layers of 8 neurons each and 1 neuron in the output layer (y)
(Fig. 6.1). The neural network is built and trained using Neuroph
Studio [159] and integrated into our siRNA designer model. The
Neuroph library for Java is used to create and use the siRNA designer

neural network model.

Neuroph is a lightweight Java neural network framework to
develop common neural network architectures. The Neuroph Studio
IDE [159] provided by Neuroph is used to easily design and test the
model. The IDE provides an easy-to-use graphical interface to design
various neural network configurations, and to train or test the
network using various neural network training algorithms. It is
available under version 2.0 of the Apache License [176]. Apache
License is free open source software from the Apache Software
Foundation. The Apache library is used to read and write Microsoft

Excel files, such as i-Score designer Excel file. It provides a set of
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Java APIs for creating and manipulating Microsoft Office

Documents. This model is named as siRNA Designer.

=, 4 _
Fig. 6.1: 6-8-8-8-1Neural Network Model

6.2.1 Input Parameter Selection

The existing siRNA design approaches use different features
and weights in their model design. We made an attempt to combine
these features for improving the design. For this, we considered the
features of many good scoring siRNA design models to get better
prediction value. After several iterations and trials, we are able to
obtain a combination of 5 approaches with a very good prediction
power. These models are BIOPREDsi [18], ThermoComposition21
[20], i-Score [21], DSIR [19] and MysiRNA [29]. Since most of the
data from the original BIOPREDsi model [18] are not available
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directly, we used the simulated-Biopredsi (s-Biopredsi), as in
Ichihara’s work [21], rather than the original BIOPREDsi [18]. In
the next step, we included one more parameter, whole stacking

energy (AG), to find the effect of AG oin inhibition efficiency.

6.2.2 Normalization of Input and Output
The input values given to the neural network, ie. the 6
metrics described above, are normalized using the z-normalization
method [177]. That is, the normalized input values are given by:
D xi—
x, = Xk

l Oy

Where x; is the normalized value of the metric for the i"

siRNA

x; 1s the actual value

U, 1s the mean value of the metric x for the entire set of

siRNAs
o, 1s the standard deviation

The mean and standard deviation values obtained for the
training data set are used for normalizing the input values. The neural
network gives a single output value in the range [0, 1], which is
multiplied by 100 to give the final score which is displayed for each
siRNA.
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6.3 siRNA Designer Workflow

The workflow of the approach is shown in Fig. 6.2.

Input an mRNA or cDNA sequence to be
largeled

Enumerate all possible siRNA sequences

Compute various metrics for each siRNA

Using our siRNA Designer Neural Network model
compute final inhibition score of each siRNA

Filter out siRNAs with low scores and output the
remaining list of siRNAs

Fig. 6.2: Workflow of 6-8-8-8-1 Model
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6.4 Summary

In this work, an approach named siRNA Designer (6-8-8-8-1
ANN Model) is built based on artificial neural network model to
predict siRNA inhibition activity based on five good scoring state of
the art models, BIOPREDsi, DSIR, ThermoComposition21, i-Score
and MysiRNA together with whole stacking. Using this 6-8-8-8-1
ANN model, we are able to achieve the second objective of our
study, i.e., predicting the percentage of inhibition efficiency of each
predicted siRNA against a target mRNA or cDNA sequence. By
maintaining a cut-off in inhibition efficiency (normally cut-oft will
be 70%-80% depending on the amount of silencing needed), one can
select efficient siRNAs which are capable of inhibiting target
mRNAs. The result and discussion of this ANN model is elaborated

in section 8.3 of chapter 8.

It is found that this model results in very good performance in
terms of inhibition efficiency. Using this model even though we are
able to optimize the efficiency of siRNA in terms of inhibition
capacity, we are not able to address the issues like sensitivity and
specificity of siRNA properly. Hence another ANN model is
designed for optimizing the siRNA efficiency in terms of inhibition
capacity, sensitivity, specificity, accuracy of prediction and off-target

possibility. With this new 5-12-1 artificial neural network model, we
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try to improve and optimize the inhibition efficiency of siRNA on
target genes and off target possibility on non- target genes, and is

elaborated in Chapter 7.
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Optimized siRNA Prediction by
Artificial Neural Network Model

Introduction

Neural Network Architecture

Optimized siRNA Designer (OpsiD) Workflow
Working Model

Summary

7.1 Introduction

This chapter describes the method used for optimization of
siRNA efficiency prediction using Artificial Neural Network model.
An approach named Optimized siRNA Designer (OpsiD) is built
through a multi layer perceptron feed forward neural network (5-12-1
ANN) based on four previous second generation models DSIR,
ThermoComposition21, i-Score and MysiRNA together with whole
stacking energy (AG) to predict the efficiency of siRNA. The
chapter is divided into five sections. Section 7.2 describes the
architecture of 5-12-1 neural network model. In section 7.3, the work
flow of the model is presented by briefly explaining the input and

output parameters, frame works used for designing and the
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prerequisites. The working model and off-target possibility prediction
are explained in section 7.4. Finally a brief summary about the
approach is given in section 7.5. Using this model, we try to optimize
the efficiency of predicted siRNA in terms of inhibition efficiency,
off-target possibility, sensitivity, specificity and accuracy of

prediction.

7.2 Neural Network Architecture

A multi-layer perceptron feed-forward neural network is
modeled for finding optimized siRNAs with improved efficacy
against target mRNA in terms if inhibition capacity, sensitivity,
specificity, accuracy of prediction and off-target possibility than
existing state of the art techniques. For selecting the optimized neural
network model, we tested various configurations of feed-forward
neural networks such as 4-8-8-1, 5-7-7-1, 5-8-1, 5-8-8-1, 5-10- 1, 5-
12-1, 6-7-7-1, 6-8-8-1, 6-8-8-8-1, 6-10-1 and 6-12-1 using the proven
good scoring models like BIOPREDsi [18], ThermoComposition21
[20], i-Score [21], DSIR [19] and MysiRNA [29] together with whole
stacking energy (AQG) as inputs parameters. Since we were not able to
access most of data from the original BIOPREDsi model [18], we
used the simulated-Biopredsi (s-Biopredsi), as in Ichihara’s work
[21], rather than the original BIOPREDsi. Initially we had
considered s-Biopredsi as an input metric, but after some

experimentation, it is found that the inclusion of s-Biopredsi
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decreased the accuracy of the neural network model for various data
sets. We finally chose a configuration of 5-12-1 ANN. For
calculating the final score of each siRNA, we computed four different
metrics for the siRNA strand’s inhibition capacity taken from earlier
works and used as the input values of our neural network. These final
methods considered for combining in our models are
ThermoComposition21, i-Score, DSIR and MysiRNA. Along with
these, whole stacking energy (AG) of each siRNA strand is taken as
fifth input metric. The 5-12-1 neural network shown in Fig.7.1
consists of an input layer with 5 neurons (x1 to x5), a single hidden
layer with 12 neurons and output layer with 1 neuron (yl). A number
of neural network training algorithms such as the classic Back
Propagation, Resilient Propagation and Scaled Conjugate Gradient
are tried out [166-173]. Varying number of training iterations are also
tried out depending on the network configuration and the training
algorithm. The training is started from a randomized state and is done
for 1, 36,000 iterations. The neural network is built and trained using
the Encog Workbench IDE [160] and later integrated into our siRNA
designer model. Scaled Conjugate Gradient training algorithm
provided by Encog [172-173] is used for computing the final score of
each siRNA. The Scaled Conjugate Gradient algorithm is based upon
a class of optimization techniques well known in numerical analysis
as the Conjugate Gradient Methods. This model is named as

Optimized siRNA Designer (OpsiD).
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Fig. 7.1: 5-12-1 Neural Network Model.

7.3 Optimized siRNA Designer (OpsiD) Workflow

7.3.1 Input Parameter Selection

For computing the final score of each siRNA, we considered

five different metrics: whole stacking energy (AG), DSIR score [19],
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ThermoComposition21 score [20], i-Score prediction value [21] and
MysiRNA score [29]. All these must be downloaded from their
respective sources before using our model, OpsiD. In our
experiments, these metrics are found to work well and give good
results. Along with these values, whole stacking energy is also
calculated as described in section 4.5, for each siRNA strand. These

five values are used as the input of our neural network.

7.3.2 Normalization of Input and Output

The input values given to the neural network, ie. the 5
metrics described above, are normalized wusing the range
normalization method, also known as min-max normalization. That
is, the normalized input values are given by:

Ai—minA

AN = (maxg — ming) + ming (7.1)
A

1 maxa —min

Where AY is the normalized value of the metric A for the it
tuple of the training data, A; is the actual value, max, is the
maximum value of the metric A for the entire training set of siRNAs
and miny, is the minimum value. The values are normalized to the

range [ming, maxg].

The minimum and maximum values of each input metric are

used for normalizing the input values. The input values for the neural
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network are normalized to the range [-1, 1] before being given as
input. The experimental inhibition values from the training data set
were also normalized to the range [0, 1] before training the neural
network. The neural network gives a single output value in the range
[0, 1], which is then multiplied by 100 to give the final score which is
displayed for each siRNA.

7.3.3 Frameworks
7.3.3.1 NCBI BLAST

The NCBI BLAST tool (blastall) [178] is used to filter out
siRNAs with high off-target effect by running a BLAST search on
the NCBI RefSeq database. The blastall tool is bundled along with
OpsiD, but the NCBI RefSeq database must be downloaded
separately.
Website:  ftp://fip.ncbi.nlm.  nih.gov/blast/executables/ release/
LATESTY/.

7.3.3.2 Encog Workbench IDE

The Encog machine learning framework for Java is used to
create and use the siRNA designer neural network model. The IDE
[160] provides an easy-to-use graphical interface to design various
neural network configurations, and also to train as well as test the
neural network using various neural network training algorithms.

Website: http://www.heatonresearch .com/encog
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7.3.3.3 Apache POI

The Apache POI library [176] is used to read and write
Microsoft Excel files, such as the i-Score designer Excel file. The
Apache POI library is an open-source library developed by the
Apache Software Foundation which provides a set of Java APIs for
creating and manipulating Microsoft Office Documents (both the new
OOXML formats and the old OLE2 Compound Document Format).
It is available under version 2.0 of the Apache License. Website:

http://poi.apache.org/

7.3.4 Prerequisites
The siRNA designer software (OpsiD) requires the following
software and files to be downloaded and installed:
i Java7
ii. Any Perl Distribution
iii. 1-Score Designer Excel file [21]
iv. ThermoComposition21 [20]
v. MysiRNA designer and model file [29]
vi. NCBI BLAST tool (blastall)® [178]
vii. NCBI RefSeq RNA BLAST database [163]"
viii. Encog Workbench” [160]
* Required only for BLAST search filtering (optional)
b Required only for testing the neural network model

using the supplied test data
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7.4 Working Model

7.4.1 Input
The approach takes an mRNA or cDNA gene sequence as

input. The nucleotides may be specified using the uppercase letters A,
T, G, C and U or the corresponding lowercase letters, and any spaces
or newlines within the sequence are ignored. The user can also enter
the RefSeq number of the gene if it has been taken from the NCBI
RefSeq RNA database [163]. This is only required if the user selects
to perform BLAST search.

7.4.2 Processing

The siRNA designer model first enumerates each possible 19
nucleotide siRNA sequences from the input nucleotide sequence.
Then, it computes the parameters for each siRNA strand such as G-C
content percentage and whole stacking enenrgy. For calculating
whole stacking enenrgy, we use the nearest-neighbor model from
Sugimoto et al. [156], which is also used by other models such as i-
Score and MysiRNA. If the user has selected the option to filter
siRNAs based on G-C content, the software removes all siRNAs
which do not have GC content % between the minimum and
maximum values specified by the user. Then, it gives each siRNA
sequence as input to various pre-existing second generation siRNA

designer models such as i-Score, ThermoComposition21, DSIR and
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MysiRNA to get their scores for the strand’s inhibition capacity. The
siRNA strand’s i-Score, ThermoComposition21, DSIR, MysiRNA
scores and the initially calculated whole delta G value are given as
input to the neural network model. The model gives an output value
in the range [0, 1] which is then multiplied by 100 to give the
displayed final score (in the range 0 — 100) for the siRNA strand. If
the user has selected the option to filter siRNAs based on their score,
the software will remove all siRNAs whose final scores lie below a

certain threshold value specified.

7.4.3 Off-Target Possibility Prediction

If the user wants to filter out siRNA with high off-target
effect, the BLAST option must be selected through the interface. The
BLAST score outputs for a particular siRNA’s maximal match
obtained for that sequence against some other mRNA subsequence in
the selected gene database. The use of siRNAs with high BLAST
score may lead to off-target effect. Thus the user must make the
trade-off between the “goodness” of siRNA with respect to inhibition
capacity, and its similarity to other mRNA fragments. The work flow

of the model, OpsiD is shown in Fig. 7.2.
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mRNA (or cDNA) sequence to be targeted

v

Enumerate al possible 19-mer siRNAs

7

Filter out siRNAs having G+C content outside a specified range
(using @ user-specified range)

v

Compute various metrics for each siRNA (including various scores for
inhibition capacity from existing SRNA design tools)

v

Compute final score for each siRNA
(using siRNA Designer Neural Network)

v

Filter out siRNAs with low score
{using a user-gpecified threshold)

U

Filter out siRNAs with high off-target effect
(BLAST search for similar sequences in the NCBI RefSeq database)

LV

Output the remaining list of sRNAs

Fig. 7.2: Workflow of OpsiD

7.5 Summary

In this work, a 5-12-1 artificial neural network model named
Optimized siRNA Designer (OpsiD), is designed to achieve the goals
and objectives of our study. Using this model, we are able to optimize

the siRNA efficacy in terms of inhibition efficiency, sensitivity-
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specificity, accuracy of prediction and off-target possibility. It is
mainly built on four previous second generation models DSIR,
ThermoComposition21, i-Score and MysiRNA together with an
important thermodynamic property of siRNA called whole stacking
energy (AG). Using OpsiD, we are able to observe the percentage of
inhibition efficiency of each predicted siRNA against a target mRNA
or cDNA sequence and able to address some of the issues like
sensitivity and specificity.OpsiD also provides the choice for
detecting the off-target possibility of each siRNA on any unintended
genes during silencing. In OpsiD, the off-target possibility of each
predicted siRNA can be observed by BLAST search option provided
by the model. Using this method, the risk of “off-target” effect on
non-target genes can be easily understood early. Thus, OpsiD
provides the chance of identifying optimized siRNA with high
inhibition capacity on target genes and low off-target possibility on
non-target genes. The results and discussion of OpsiD is elaborated in

section 8.4 of chapter 8.
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8.1 Introduction

In this study, one SVM model and two ANN models for

predicting efficiency of siRNA against target genes are proposed. The

results and discussion of these models are presented in this chapter.

The chapter is divided into five sections. Section 8.2 describes the
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results and discussion of the SVM model. Section 8.3 and section 8.4
present the results and discussion of siRNA Designer with 6-8-8-8-1
ANN Model and Optimized siRNA Designer, OpsiD, with 5-12-1
ANN Model respectively. The performance evaluation of these
models and comparison with existing approaches are also done in
these sections. Finally, a summary about the chapter is given in

section 8.5.

8.2 SVM Model

8.2.1 Results

In SVM model, as a first attempt of the study, we considered
only the classification property for analyzing the efficiency of an
siRNA to silence a target mRNA. Because of this, we can only test
the correctness of the results, but can’t evaluate the performance
using the validation strategies shown in chapter 4. So we are not able
to present any performance evaluation for SVM model. The sample

input interface and output for SVM model is shown in Fig 8.1 and

8.2.
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8.2.2. Discussion

In efficiency prediction using SVM, we are classifying the
siRNA into efficient and inefficient, i.e., we are able to identify and
predict whether an siRNA is efficient or inefficient to silence a target
mRNA sequence or a gene. Also, since we have used some
thermodynamic features of siRNA as input parameters, we tried to
find the relationship among these parameters with the inhibition
efficiency of siRNA. From the results it is observed that most of the
efficient siRNA stands have G-C content between 50-75 percentage,
melting temperature between 60 to 75 and delta G between -30.0 to
-38.0. From these results, we can come to the conclusion that the
efficiency of siRNA is strongly connected with thermodynamic
properties like melting temperature and delta G. So we have decided
to include thermodynamic propertiy of siRNA as parameters in our

neural network models.
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GCIATTCCTGCGCCTCOGT TCCCCGCGGGICICITCCGTGTGCCATGGACGGCATCGTCCCAGACATAGC

AGTCGETACARAGCGEGER CEAGCTCTTCTCCACGTGTGTCAGCARCGGCCCCTTCATCATGAGCAGCTC

TGCCTCAGCAGCCARTGGA TAGCAAGAAGTTCAAAGGT GACAACAGGAGCGCAGGAGTCCCTTCCAGAGT
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Fig 8.1: Input interface of the SVM Model
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design output

Target sequense

GGGGATCCGACGAGCT
CCCCTTCATCATGAGC
CAAAGGTGACAACAGG
[GACAACAGGAGCGCA
GAGCGCAGGAGTCCCT
TGCCCAGCGATGTCAC
[CTCATGCTGAAGGGG
GAAGAACCAGGCCTTC
CCAGGCCTTCATTGAG
GGCCTTCATTGAGATG
MGAGGAGGCTGCCAAC
CTATACATCGGTGGCG
GGAGCCGITGGGTICGG
CAAAGAGCTCAAGACC
GCTCAAGACCGACAGC
CGACAGCTCGCCCAAC
GGCACGTGCCCAGGCA

Antisense sequense
AGCUCGUCGGAUCCCCGCU
GCUCAUGAUGAAGGGGCCG
CCUGUUGUCACCUUUGAAC
UGCGCUCCUGUUGUCACCU
AGGGACUCCUGCGCUCCUG
GUGACAUCGCUGGGCAGCU
CCCCUUCAGCAUGAGAAGG
GAAGGCCUGGUUCTUUCCCC
CUCAAUGAAGGCCUGGUUC
CAUCUCAAUGAAGGCCUGE
GUUGGCAGCCUCCUCUGUG
CGCCACCGAUGUAUAGUAG
CCGACCCAACGGCUCCGAG
GGUCUUGAGCUCUUUGUGG
GCUGUCGGUCUUGAGCUCU
GUUGGGCGAGCUGUCGGUC
UGCCUGGGCACGUGCCUGG

target position

83
125
182
188
197
238
305
320
326
329
350
380
452
500
506
515

333

GC content
61.904762
57142857
42857143
52.38095
61.904762
57142857
52.38095
57.142857
4761905
47.61905
57142857
47.61905
66666664
4761905
52.38095
61.904762
66.666664

Tm
70.62809
66.727425
59.193245
67.29598
7135027
68.3326
6498411
68.51932
62.01272
61.64982
68 23084
61.689503
71.265144
62213776
6554435
6927297
74.353276

-46.399998

-41.399998
-43.699997

-39.199997

-44.600002
-48.200003

deltaG

432
364

-42 800003 Inefficient
-46.499996

442

301 Inefficient

436
2383 Inefficient

-45.899998 Inefficient
-38.999996

421 Inefficient

Fig 8.2: siRNA efficiency Prediction by SVM Model
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8.3 siRNA Designer Approach

8.3.1 Results

The results and discussion of siRNA Designer with 6-8-8-8-1
ANN Model is described in this section. Predicted inhibition capacity
of each siRNA for a targeted mRNA has been observed with the
model. The sample screen shot depicting user interface and output are

shown Fig. 8.3 and Fig. 8.4 respectively.

8.3.2 Performance Evaluation

For 6-8-8-8-1 ANN, predicted inhibition capacity of each
siRNA for a targeted mRNA is found out and the performance
evaluation in terms of Pearson Correlation is done. Pearson
correlation gives the correlation between the inhibition efficiency of
our predicted model with the original experimental inhibition
efficiency. We achieved a good Pearson correlation coefficient of R=
0.727 for Data Set 1. This R value shows that the predicted value of
inhibition by our model is closer to the original experimental values.
The inhibition activity of our model is plotted with original

experimental inhibition for Data Set 1 and is shown in Fig. 8.5.

116



Results and Discussion

e Desgner T T | oS
Designer | Results

mRNA or cDMA Sequence:

>gi|343199107 |ref|[NR_044579.1| Muricauda olearia strain CL-554 165 ribosomal RNA, partial seguence =

CATGCAAGTCGA GC AAAAGCTTGCTTTTCCGCCGGCGACCGGCGCACGGGTGCGGAACGCGTATGGARCT
TGCCCCTGTC: TAGCCCAGGE TTGGATTAATGCCCCATGGTACCAATATATCGCATGATATTTTGGTTAA
AGATTTATCGGACAGGGATGGCCATGCGTACCATTAGT TAGATGGT GAGGTAACGGCTCACCATGGCAGCGATGGTTAGS
GGCCCT TCCCCCACACTGGTACTGAGACACGGACCAGACTCCTAC! CARGCAGT TATTGG

ACAARTGGTCGGGAGACTGATCCAGCCATGCCGCGTIGCAGGATGACTGCCCTATGGGTIGTAAACTGCTTITATACGGGAR
GAAACCACCCTACGTGTAGGGTGCTGACGGTACCGTAAGRATAAGGACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATA
CGGAGGGTCCGAGCGTTATCCGGAATCATTGGGTTTARAGGGTCCGTAGGCGEGCCGTTAAGT CAGGGGTGARAGTCTGC
GGCTCAACCGTAAAATTGCCTTTGATACTGGCGETCTIGAGTCATGETGEGETTGCCGGAACATGTGGT GTAGCGGTGAR
ATGCATAGATATCACATAGAACACCGATCGCGAAGGCAGGTGAACAACCATGTACTGACGCTGATGGACGARAGCGTGGESE
TAGCGAACGGGATTAGATACCCCGETAGTICCACGCCGTARACGATGGATACTAGCTGTIGGGGACTTICGGICTCCGTGGCC
AAGCARRLAGTGATAAGTATCCCACCTGGEEAGTACGTICGCARGRAATGARRCTCARAGGRAATTIGACGGGGGCCCGCACAR
GCGGTGGAGCATGTGGTTTAATTCGATGATACGCGAGGRAACCTTACCAGGGCTTAAATGCAGGCTGCATARGCTAGAGAT
AGCTTTTTCTTCGGACTGCCTGCAAGGTGCTGCATGGTTGTCGTCAGCTCGTGCCGTGAGGTGTCAGGTTAAGTCCTATA
ACGAGCGCAACCCCTACCGITAGTI TGCCAGCATGTCARAGATGGGGACTCTAACGGGACT GCCGGTGCARACCGTGAGGAR
GCETIGGEEACCACGTCARATCATCACGGCCCTITACGTICCTGGGCCACACACGTGCTACAATGECCEGETACAGAGEGAAGCC
ACCCCGCAAGGGGGCECGEATCTATAR R ACCGETCACAGTICGGATCGGGETCTGCARCTCGACCCCGTGAAGCTGGAAT
CGCTAGTRAATCGGATATCAGCCATGATCCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCARGCCATGGAAGT

n

L
Status: Ready

—

15:40

23-07-2014 ||

Fig. 8.3: Sample Screen Shot showing the user interface
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Designer | Results

Position Sense strand Antisense strand GC Content Whole deltaG s-Biopredsi i-Score DSIR. ThermoComposition21 MySiRMA Score
3 UCCUUGUUUGGUCUGCUGU ACAGCAGACCAAACAAGGAag [47.37 % -38.800 .530 44 299 69.921 .630 66.155 51.383 -
4 (CCUUGUUUGGUCUGCUGUG CACAGCAGACCAAACAAGGaa 52.63 % -38.500 .615 52.291 |76.605 . 710 |78.215 58.569
5 ICUUGUUUGGUCUGCUGUGG (CCACAGCAGACCAAACAAGOa 52.63 % -38.500 .439 40.373 65.731 .590 59.408 43.686
5 HUGUUUGGUCUGCUGUGGA UCCACAGCAGACCAAACAAGD [47.37 % -38.800 .600 44,902 |72.697 .660 ©9.030 55.109
7 UGUUUGGUCUGCUGUGGAL WUCCACAGCAGACCAAACAag [47.37 % -39.000 .710 54.655 82.616 .800 84.223 |55.719
8 IGUUUGGUCUGCUGUGGAUC GAUCCACAGCAGACCAAACaa 52.63 % -39.300 420 39.912 65.338 .650 63.723 48.159
9 WUUGGUCUGCUGUGGALICU AGAUCCACAGCAGACCAAACA [47.37 % -39.200 402 42.291 62.013 . 560 59.515 41.028
10 WUGGUCUGCUGUGGAUCUG CAGAUCCACAGCAGACCAAAC 52.63 % -40.400 .281 32. 768 149.498 . 540 51.288 33.491
11 UGGUCUGCUGUGGAUCUGC GCAGAUCCACAGCAGACCAaa 57.89 % -42.900 -344 33.178 56.324 .550 53.077 37.005
12 GEUCUGCUGUGGAUCUGCC (GECAGAUCCACAGCAGACCaa 63.16 % -44. 100 434 +4.894 57.908 .750 171.129 56.028
13 GUCUGCUGUGGAUCUGCCU MWGGCAGAUCCACAGCAGAC 57.89 % -42.900 .565 [50.380 |70.029 .730 [73.593 56.485
14 UCUGCUGUGGAUCUGCCUU AAGGCAGAUCCACAGCAGACC 52.63 % -41.600 .377 45.959 61.112 .680 170,144 49.314
15 (CUGCUGUGGAUCUGCCUUA UAAGGCAGAUCCACAGCAGaC 52.63 % -40.500 .693 62.895 |77.930 .870 B87.799 58.977
16 UGCUGUGGAUCUGCCUUAL AUAAGGCAGAUCCACAGCAga 147.37 % -39.500 . 709 58.786 |77.905 . 790 84.591 59.188
17 IGCUGUGGAUCUGCCUUAUU AAUAAGGCAGALUCCACAGCag [47.37 % -38.300 .811 64.897 185.859 .880 190.587 63.557
18 ICUGUGGAUCUGCCUUALUG CAAUAAGGCAGAUCCACAGE [47.37 % -37.000 .603 52.804 58.932 .690 [77.541 58.252
19 UGUGGAUCUGCCUUAUUGC GCAAUAAGGCAGAUUCCACAQC [47.37 % -38.300 .370 39.828 53.894 .570 57.348 35.203
20 GUGGAUCUGCCUUAUUGCA UGCAAUAAGGCAGAUCCACag [47.37 % -38.300 .780 51.897 81.616 .830 88.284 60.947
21 UGGAUCUGCCUUAUUGCAL AUGCAAUAAGGCAGAUCCACa 42.11 % -37.200 .543 50.393 64. 7949 . 720 |77.613 56.812
22 GGAUCUGCCUUAUUGCALA UAUGCAAUAAGGCAGALICCac 42.11 % -36.400 .831 | 78.720 B7.528 .950 194.637 70.453
23 GAUCUGCCUUAUUGCALAL AUAUGCAAUAAGGCAGALCCa |36.84 % -34.200 .812 67.749 183.082 . 780 190.044 64.663
24 AUCUGCCUUALUUGCAUAUG CAUAUGCAAUAAGGCAGAUCC 136,84 % -33.900 290 35,413 44, 580 400 45,644 38,547
25 UCUGCCUUAUUGCAUAUGC GCAUAUGCAAUAAGGCAGAUC 42,11 % -36.200 353 37,004 149,155 510 50,220 33.782
26 CUGCCUUAUUGCAUAUGCC (GECAUAUGCAAUAAGGCAGaU [47.37 % -37.100 493 44449 58.558 .630 85.215 41.823
27 UGCCUUAUUGCAUAUGCCA UGGCAUAUGCAALAAGGCAga 142,11 % -37.100 727 57.198 |72.612 750 83.814 60.566
28 GCCUUAUUGCAUAUGCCAL AUGGCAUAUGCAAUAAGGCag [42.11 % -36.100 816 56.887 [80.645 910 192.842 £3.842
29 (CCUUAUUGCAUAUGCCAUG (CAUGGCAUAUGCAAUAAGGCa 42.11 % -34.800 641 54.580 67. 146 .690 \77.924 57.841
30 (CUUAUUGCAUAUGCCAUGC GCAUGGCAUAUGCAALAAGOC 42.11 % -34.900 .361 39.297 50.255 .530 51.629 33.791
31 UUAUUGCAUAUGCCAUGCA UGCAUGGCAUALUGCAAUAAQG |36.84 % -34.900 .626 47.105 65.963 .640 66.184 48.082
32 UALUGCAUAUGCCAUGCAL AUGCAUGGCAUAUGCAAUAaG 136,84 % -35.100 700 54.803 71,825 770 82,848 58.295
33 AUUGCAUAUGCCAUGCAUC GAUGCAUGGCAUAUGCAAUaa 42,11 % -36.200 398 39,009 56,230 .660 80,001 37.815
34 UUGCAUAUGCCAUGCALCA UGAUGCAUGGCAUAUGCAAUE 142.11 % -37.200 048 51.723 59.901 710 |78.007 58.101
35 UGCAUAUGCCAUGCAUCAG CUGAUGCAUGGCAUAUGC Aau [47.37 % -38.400 494 43.488 (55,464 620 54.558 42.433
36 GCAUAUGCCAUGCAUCAGA UCUGAUGCAUGGCAUAUGCaa [47.37 % -38.700 791 54.874 84.132 .840 [88.208 62,131
37 ICAUAUGCCAUGCAUCAGAL AUCUGAUGCAUGGCALAUGCa 42.11 % -36.400 .719 60.847 |77.757 .810 88.257 61.340
38 AUAUGCCAUGCAUCAGALA UAUCUGAUGCALUGGCAUAUgC 136.84 % -35.600 .681 59.132 |72.951 . 750 85.017 61.088 -

Fig 8.4: siRNA efficiency Prediction by siRNA Designer with 6-8-8-8-1 ANN Model
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Fig. 8.5: Distribution between experimental inhibition and predicted inhibition

for Data Set 1 by siRNA Designer with 6-8-8-8-1 model (R=0.727)

8.3.3 Effect of AG on Performance

The results are further analyzed to study the influence of whole
stacking energy on inhibition efficiency of siRNA. The Pearson
correlation coefficient is calculated for experimental versus predicted
inhibition efficiency for the data sets, Data Set land Data Set 2, at
various thresholds of whole stacking energies. It is noticed that the
inhibition efficiency of our model is much closer to the original
experimental values when threshold of whole tacking energy is >= -
32.5 kcal/mol. We are able to achieve an improved correlation

coefficient of R=0.753 when whole tacking energy is >= -32.5
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kcal/mol, which shows improvement in the performance compared to
our previous results. From this it is understood that while designing
exogenous siRNA for gene silencing, whole stacking energy of each
designed siRNA can also be analyzed for selecting efficient siRNAs
with better inhibition capacity. Sample predicted inhibition values of
siRNA for Data Setl at whole tacking energy >= -32.5 kcal/mol is
shown in Appendix 2. Fig 8.6 is the scatter plot showing distribution
between experimental inhibition and predicted inhibition for Data Set

1 at AG >=-32.5 kcal/mol.
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Fig. 8.6: Distribution between experimental inhibition and predicted inhibition for
Data Set 1 by siRNA Designer with 6-8-8-8-1 ANN Model at AG
>=-32.5 kcal/mol(R=0.753)
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8.3.4 Comparison with siRNA Design Approaches
The inhibition capacity of siRNA for targeted mRNA is

observed for each of the six scoring models, s-Biopredsi, DSIR,
ThermoComposition21, i-Score, MysiRNA and OpsiD. A
comparison between inhibition activities (Experimental versus
Observed) for Data Set 1 by each of the five models with our model
has been done. Also Pearson correlation coefficient (R) is calculated
for each of the six scoring models and is shown in Fig.8.7. We
achieve a Pearson correlation coefficient of R= 0.727 for Data Set 1
which is better than the other five models. The result shows the
improvement of our approach in the accuracy of predicted siRNA.
Also the experimental siRNAs activities of Data set 1 are plotted
against the predicted siRNAs activities by each of the second
generation models (s-Biopredsi, DSIR, ThermoComposition21, i-
Score and MysiRNA) together with our model, which is shown in

Fig. 8.8.
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Fig. 8.7: Comparison between selected Second Generation Models and 6-8-8-8-1
ANN Model using Pearson Correlation Analysis.

In order to make a comparison of the effect of whole stacking
energy on inhibition capacity of various models, Pearson Correlation
coefficient is calculated for all of them at AG >=-32.5 kcal/mol. We
achieved an improved correlation coefficient of R =0.753 when
whole tacking energy is greater than or equal to -32.5 kcal/mol. The
value is compared with other five models and found better, which
shows improvement in the performance of our model with them. The

results of comparison are shown in shown in Fig.8.9.
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Also the experimental siRNA activities of Dataset 1 at whole
stacking energy, AG >=-32.5 kcal/mol are plotted against the
predicted siRNA activities by each of the second generation models
(s-Biopredsi, DSIR, ThermoComposition21, i-Score and MysiRNA)

and is compared with our model and shown in Fig.8.10.
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Fig. 8.9: Comparative analysis of Pearson Correlation Coefficient (R) involving
second generation models and siRNA Designer with 6-8-8-8-1 Model
at whole stacking energy, AG >=-32.5 kcal/mol for Data Set 1.
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8.3.5 Discussion
Using 6-8-8-8-1 ANN model we are able to predict the

percentage of inhibition efficiency of each predicted siRNA against a
target mMRNA or cDNA sequence. By maintaining a cut-off in
inhibition efficiency (normally cut-off will be 70%-80% depending
on the amount of silencing needed), one can select efficient siRNAs
which are capable of inhibiting target mRNAs. The performance
analysis and comparison of the approach with selected good scoring
models are done. It is found that the prediction accuracy is improved
in our model compared to selected existing state of the art models.
The improvement in Pearson correlation coefficient shows better
performance of our model. The effect of AG on inhibition efficiency
is also understood. But when we tried to find the sensitivity and
specificity of the model, it could not show better results over the
existing state of the art methods. Thus using this model, the
prediction efficiency is only optimized in terms of inhibition
efficiency. So we moved forward to design another efficient model
which can optimize the siRNA efficiency in terms of inhibition
capacity, sensitivity, specificity, accuracy of prediction and off-target

possibility. This is a 5-12-1 ANN model.
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8.4 Optimized siRNA Designer Approach

8.4.1 Results

The results and discussion of the optimized siRNA designer,
OpsiD, with 5-12-1 ANN model is described in this section.
Predicted inhibition capacity of each siRNA on targeted genes and
off-target possibility on non-target genes have been observed with

OpsiD.

8.4.1.1 Off-Target Possibility Prediction
Even though an siRNA may have very good inhibition

capacity i.e. it may have very good ability to bind to the target
mRNA for gene knockdown, it may be fully unsuitable for practical
therapeutic use because of its similarity to segments of other mRNAs.
In such a case, the siRNA may bind to the other mRNAs instead of
the intended target. In this way, it may interfere with the translation
of essential genes to proteins, and cause unintended effects. This
problem is known as “off target effect”, and is the major barrier
against the practical use of gene silencing through siRNAs in
therapeutics. So an important factor to be considered while designing
efficient siRNAs for therapeutical and gene silencing applications is
the chance of siRNA to do off-target effects on non-target genes.

Thus the inhibition capacity alone is not a reliable indicator of an
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siRNA’s practical utility because of the possibility of off-target

effect.

Initially the OpsiD model is designed to predict the inhibition
capacity of an siRNA through its neural network regression model
and we were getting excellent results. But in order to improve further
by avoiding off-target possibility of designed siRNAs on non-target
genes, we have added BLAST search technique in our model. So, the
siRNA designer model, OpsiD, mitigates the problem of “off-target
effect on non-target genes” by providing the facility of running
BLAST search of the generated siRNAs against standard databases of
mRNAs such as the NCBI RefSeq database [163]. The BLAST score
given in the OpsiD outputs for a particular siRNA’s maximal match
obtained for that sequence against some other mRNA subsequence in
the selected gene database. A BLAST score of 19 indicates a
complete match of the siRNA sequence with a subsequence of some
other mRNA in the gene database. A score of 18 indicates that the
siRNA sequence differs from a subsequence of some other mRNA by
only a single nucleotide. The use of siRNAs with high BLAST score
may lead to off-target effect, and the user must make the trade off
between the “goodness” of an siRNA with respect to inhibition

capacity, and its similarity to other mRNA fragments.
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For example, in Table 8.1 the siRNA with best inhibition
efficacy against a given target mRNA is 89% with a BLAST score
17, means even though the siRNA is best efficient to degrade the
target mRNA by 89%, there is a high risk of ‘off target effect’ with
17 nucleotide matches to any other genes in the database. So we
believe that the users will be able to eliminate those siRNA
sequences with high BLAST score, even though they possess very
good inhibition capacity. As per our approach, instead of selecting
siRNA with the best inhibition capacity, we can consider both
“inhibition efficiency and number of matches of BLAST score” to
select siRNAs for gene silencing. Thus the risk of “off target effect”
against unintended target sites may be avoided to a great extent. The
sample screen shot showing user interface and results are shown Fig.

8.11 and Fig. 8.12 respectively.
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Table 8.1: Sample siRNAs with Inhibition capacity and BLAST Score in OpsiD

siRNA Strand

Inhibition

BLAST Score

AGGGUUAUUUUUCUUUGGC

75

11

GAAAAAAACCAAAGGGUUA

67

AACCACUGUAGAAAAUAAC

35

UCUUUAUGUUUUUGGCGUC

&9

17

UUCUUUAUGUUUUUGGCGU

76

GGGCCUUUCUUUAUGUUUU

55

UUAUAAAUGUCGUUCGCGG

77

12

UAAUUUUUUGGAUGAUUGG

45

UUAAAAUCGCAGUAUCCGG

67
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[ Designer | Results |

mRNA or cDNA Sequence:

=gil4507894|reflNM_003380.1| Homo sapiens vimentin (ViM), mRNA
IGGGCGCGCCAGAGACGCAGCCGCGCTCCCACCACCCACACCCACCGCGCCCTCGTICGCCTCTICTCCGG
IGAGCCAGTCCGCGCCACCGCCGCCGCCCAGGCCATCGCCACCCTCCGCAGCCATGTCCACCAGGTCCGTG
TCCTCGTCCTCCTACCGCAGGATGTTCGGCGGCCCGGGCACCGCGAGCCGGCCGAGCTCCAGCCGGAGCT
MCGTGACTACGTCCACCCGCACCTACAGCCTGGGCAGCGCGCTGCGCCCCAGCACCAGCCGCAGCCTCTA
ICGCCTCGTCCCCGGGCGGCGTGTATGCCACGCGCTCCTCTGCCGTGCGCCTGCGGAGCAGCGTGCCCGGG
IGTGCGGCTCCTGCAGGACTCGGTGGACTICTCGCTGGCCGACGCCATCAACACCGAGTTICAAGAACACCC
GCCACCAACGAGAAGGTGGAGCTGCAGGAGCTGAATGACCGCTTICGCCAACTACATCGACAAGGTGCGCTT
ICCTGGAGCAGCAGAATAAGATCCTGCTGGCCGAGCTCGAGCAGCTCAAGGGCCAAGGCAAGTCGCGCCTA
IGCCGGACCTCTACGAGGAGGAGATGCGGGCGAGCTGCGCCGGCAGGTGGACCAGCTAACCAACGACAAAGCCC
IGCGTCGAGGTGGAGCGCGACAACCTGGCCGAGGACATCATGCGCCTCCGGGAGAAATTGCAGGAGGAGAT
GCTTCAGAGAGAGGAAGCCGAAAACACCCTGCAATCTTITCAGACAGGATGTTIGACAATGCGTCTCTGGCA

[

{

[
Status: Ready

GC Content (%):
Mi 35.0 | mMaximum: 55.0

Minimum Score: [o70 |

Do off-target filtering by BLAST search (requires NCEBI BLAST tool and NCBI RefSeq to be pr t)

Exclude List: |[NM_003380 |

| Design sirnas |

Fig. 8.11: Sample screen shot showing the user interface of OpsiD with off-target filtering
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134 134.|CAAUAUAUCGCAUGAUAUU AAUAUCAUGCGAUAUAUUGEU 26.32% -29.2 0.836 69.792 85.603 0.81 89.568 16 65.971
35| 135 AAUAUAUCGCAUGAUAUUU AAAUAUCAUGCGAUAUAUUgg 21.05% -28 0.781 58.619 74.756 0.72 70.861 16 51.272
136| 136 AUAUAUCGCAUGAUAUUUU AAAAUAUCAUGCGAUAUAUUg 21.05% -28 0.75 57.598 72.546 0.76 71.853 17 49.407
137 137 UAUAUCGCAUGAUAUUUUG CAAAAUAUCAUGCGAUAUAUU 26.32% -29 0.61 45.249 61.127 0.69 59.279 17 37.108
138 138 AUAUCGCAUGAUAUUUUGG CCAAAAUAUCAUGCGAUAUau 31.58% -31 0.448 40.712 54.663 0.54 45.599 17 36.694
133 139 UAUCGCAUGAUAUUUUGGU ACCAAAAUAUCAUGCGAUAua 31.58% -32.1 0.444 39.777 57.695 0.67 54.67 16 35.957
140| 140 AUCGCAUGAUAUUUUGGUU AACCAAAAUAUCAUGCGAUau 31.58% -31.7 0.688 55.155 71.555 0.82 81.268 15 56.44
41| 141 UCGCAUGAUAUUUUGGUUA UAACCAAAAUAUCAUGCGAua 31.58% -31.9 0.75 59.964 76.95 0.87 88.035 14 60.962
142| 142 CGCAUGAUAUUUUGGUUAA UUAACCAAAAUAUCAUGCGau 31.58% -30.4 0.871  82.355  94.758 101 96.492 13 79.938
143| 143 GCAUGAUAUUUUGGUUAAA UUUAACCAAAAUAUCAUGCga 26.32% -28.9 0.877 81739 96.537 0.98  96.092 12 81.02
144| 144 CAUGAUAUUUUGGUUAAAG CUUUAACCAAAAUAUCAUGCE 26.32% -27.6 0.709  55.257  69.435 072  65.111 4] 44.979
145 145 AUGAUAUUUUGGUUAAAGA UCUUUAACCAAAAUAUCAUEC 21.05% -27.9 0.755 63.11  74.752 0.77  79.519 12 54.015
146| 146 UGAUAUUUUGGUUAAAGAU AUCUUUAACCAAAAUAUCAUE 21.05% -27.9 0.837 65.59  84.243 0.86  86.327 13 61.61
147 | 147 GAUAUUUUGGUUAAAGAUU AAUCUUUAACCAAAAUAUCaU 21.05% -26.7 0.806  70.367  86.453 0.89  89.308 14 65.9
148| 148 AUAUUUUGGUUAAAGAUUU AAAUCUUUAACCAAAAUAUCE 15.79% -25.2 0.768  66.389  78.147 0.76  76.177 14 54.596
149 149 UAUUUUGGUUAAAGAUUUA UAAAUCUUUAACCAAAAUAUC 15.79% -25.4 0.831  73.878 £1.84 0.8  87.011 14 62.437
150 150 AUUUUGGUUAAAGAUUUAU AUAAAUCUUUAACCAAAAUEU 15.79% -25.2 0.739  57.655  74.125 0.67  59.301 15 44.008
151 151 UUUUGGUUAAAGAUUUAUC GAUAAAUCUUUAACCAAAAUA 21.05% -26.5 0.525  43.586  60.306 0.59  48.721 16 36.622
152 152 UUUGGUUAAAGAUUUAUCG CGAUAAAUCUUUAACCAAAAU 26.32% -28 0.402  40.069  54.765 051  47.275 17 40.968
153 153 UUGGUUAAAGAUUUAUCGG CCGAUAAAUCUUUAACCAAZE 31.58% -30.4 0.353  36.692  53.449 0.53  47.525 18 38.217
154| 154 UGGUUAAAGAUUUAUCGGA UCCGAUAAAUCUUUAACCAzE 31.58% -31.9 0.719  58.957  76.582 079/ 83.934 19 58.081
155 155 GGUUAAAGAUUUAUCGGAC GUCCGAUAAAUCUUUAACCEa 36.84% -32 0711  59.581  77.188 0.84  86.732 19 59.869
156 156 GUUAAAGAUUUAUCGGACA UGUCCGAUAAAUCUUUAACCE 31.58% -30.8 0.776  66.993  83.638 0.8 89.081 19 64.046
157 157 UUAAAGAUUUAUCGGACAG CUGUCCGAUAAAUCUUUAACC 31.58% -30.7 0.372  41.524  52.962 0.51  48.999 19 37.713

i

Fig. 8.12: Sample Screen Shot showing the output with BLAST Score of OpsiD.
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8.4.2 Performance Evaluation

For OpsiD, predicted inhibition capacity of each siRNA for a
targeted mRNA is found out and done the performance evaluation in
terms of Pearson Correlation, Sensitivity-Specificity, Accuracy of
Prediction, Mathews Correlation Coefficient, and Receiver Operating
Characteristic analysis. These values are calculated a described in

Section 4.8 of Chapter 4.

8.4.2.1 Pearson Correlation

Pearson Correlation (R) gives the correlation between the
inhibition efficiency of predicted model with the original
experimental inhibition efficiency. Pearson correlation coefficient (R)
is calculated for each of the six scoring models s-Biopredsi, DSIR,
ThermoComposition21, i-Score, MysiRNA and OpsiD. The
inhibition activities (Experimental versus Observed) for Data Setl
and Data Set2 for all models are observed. We achieved a Pearson
correlation coefficient of R= 0.699 for Data Set 1 and R= 0.606 for
Data Set 2. The distribution between experimental inhibition and
predicted inhibition for Data Set 1 and Data Set 2 is shown in Fig.

8.13 and Fig. 8.14 respectively.
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Fig. 8.13: Distribution between experimental inhibition and predicted
inhibition for Data Set 1 by OpsiD (R=0.699)
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Fig. 8.14: Distribution between experimental inhibition and predicted
inhibition for Data Set 2 by OpsiD (R=0.606)
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8.4.2.2 Sensitivity-Specificity
Normally the siRNA design models are expected to have the

ability to reject as many as false positives as possible and retain
maximum true positives. OpsiD is compared against five previous
siRNA design models for their ability to select efficient siRNAs and
reject inefficient siRNAs. For this we used Data Set 3 which contains
476 siRNA from 9 genes. The inhibition capacity of the Data Set 3 is
compared with experimental data results and the results are classified
into 4 groups: True Positive (TP) and True Negative (TN) when the
program could identify efficient siRNA and inefficient siRNA, and
False Positive (FP) and False Negative (FN) when the program
falsely identified inefficient siRNA as efficient, or efficient siRNA as
inefficient, respectively. Both the sensitivity (ability to identify true
positives) and specificity (ability to reject false positives) are taken
into consideration. Appendix 3 shows sample TP, TN, FP, FN values
calculated using Data Set3. Total count of TP, TN, FP, FN values

obtained for Data Set3 in OpsiD is shown in Table 8.2.
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Table 8.2: TP, TN, FP, FN Values of OpsiD

Existence of disease as
determined by

Diagnostic Test Result the standard of truth

Positive Negative Row Total
Positive 164 (TP) 41 (FP) 205
Negative 74 (FN) 197 (TN) 271
Column total 238 238 576

OpsiD is found capable of designing siRNA with high level of
specificity and sensitivity. It achieves a Sensitivity of 0.69 and
Specificity of 0.83. These values show better prediction power of our

model.

8.4.2.3 Accuracy of Prediction, Mathews Correlation Coefficient

In addition to Pearson Correlation Coefficient and sensitivity-
specificity, the performance evaluation of OpsiD is also done by
Accuracy of Prediction and Mathews Correlation Coefficient (MCC)
as described in Chapter 4 (Section 4.8.2). For calculating MCC, a cut
off value of inhibition efficiency of siRNA up to 60% is applied in
Data set 3 to categorize siRNA as efficient or inefficient. The

predicted siRNA is considered as efficient if predicted value is above
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the threshold and inefficient if predicted value is below this
threshold. OpsiD achieves the highest MCC of 0.52 with the
experimentally verified data. The MCC value of 0.52 indicates a
strong correlation between observed and experimental prediction
OpsiD performed well with MCC = 0.52 and Accuracy of prediction
= 0.76. Overall, the performance analysis indicates the improvement
in performance of our model in terms of Accuracy, MCC, and
Sensitivity over other models. The Table 8.3 shows the validation
results for Pearson Correlation, Sensitivity, Specificity, Positive
Predictive Value (PPV), Negative Predictive Value (NPV), False
Positive Rate (FPR), False Negative Rate (FNR), False Discovery
Rate (FDR), F-Score (F), Accuracy of prediction, and MCC of

OpsiD.
Table 8.3: Validation results of OpsiD
Validation Strategy Results of OpsiD

Pearson Correlation for Data Set 1 0.699
Pearson Correlation for Data Set 1 0.606
Sensitivity 0.69
Specificity 0.83
PPV 0.80
NPV 0.73
FPR 0.17
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FNR 0.31
FDR 0.20
F Score 0.74
Accuracy 0.76
MCC 0.52

8.4.2.4 ROC Analysis

In addition, we used receiver operating characteristic analysis
that combines both sensitivity and specificity by plotting the
sensitivity (Y axis) against 1- specificity (X axis). For the ROC
analysis, we considered siRNA with inhibition equal to or above 70%
as efficient siRNA and below 70% as inefficient siRNA. Fig.8.15 and
Fig.8.16 shows the ROC curve obtained for OpsiD model for Data
Set 1 and Data Set2 respectively. It is then possible to calculate the
area under the curve, known as the AUC, as a single measure of
performance (for which an AUC of 1 reflects perfect classification
and an AUC of 0.5 reflects random classification). We achieved an
AUC of 0.862 for Data Set 1 and 0.809 for Data Set 2 which are
comparatively good results and indicate better performance of our
model, OpsiD.

138




Results and Discussion
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Fig. 8.15: The ROC Analysis Curve of Data Setl by OpsiD (AUC =0.862)
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Fig. 8.16: The ROC Analysis Curve of Data Set 2 by OpsiD (AUC =0.809)
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8.4.2.5 Effect of AG on Performance
When the four parameters (score of MysiRNA, score of

DSIR, score of i-Score and ThermoComposition21 score) are
combined with AG using a multi-layer perceptron feed-forward
neural network model, considerable performance improvement in
prediction accuracy is noticed. For this we divided the Data Set2 into
two sets with a threshold of AG = -34.6. (i.e., AG < -34.6 kcal/mol
and AG >= -34.6 kcal/mol). (In [21], Ichihara et al. calculated an
effective threshold value of -34.6, for separating the data sets). This
combination in our model results with Pearson Correlation of 0.693
for Data Setl and 0.741 for Data Set2 between the experimental
inhibition and predicted inhibition efficiencies, when the threshold of
whole stacking energy, AG >= -34.6 kcal/mol. Table 8.4 shows the
Pearson Correlation Coefficient (R) of OpsiD for Data Set 1 and Data
Set 2. The R value without considering AG for OpsiD is 0.699 for
Data Set 1 and 0.606 for Data Set 2. Even though the R value is little
reduced for Data Set 1 while considering AG >= -34.6 kcal/mol, still
it is a better result when compared with selected existing models.
This improvement in Pearson correlation values show the importance
and influence of whole stacking energy on inhibition efficiency of

siRNA. Sample predicted inhibition values of siRNA for Data Setl
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and Data Set 2 at whole tacking energy, AG >= -34.6 kcal/mol are
shown in Appendix 4 and Appendix 5 respectively. Distribution
between experimental inhibition and predicted inhibition of each
siRNA for Data Set 1 and Data Set2 by OpsiD when A G >=-34.6

kcal/mol is shown in Fig. 8.17 and Fig 8.18.
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Fig. 8.17: Distribution between experimental inhibition and predicted inhibition
for Data Set 1 by OpsiD when AG > =-34.6 kcal/mol (R=0.693).
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Fig. 8.18: Distribution between experimental inhibition and predicted inhibition

for Data Set 2 by OpsiD when AG > =-34.6 kcal/mol (R=0.741)

Table 8.4: Pearson Correlation Coefficient (R) of OpsiD

Data Set AUC of OpsiD
Data Set 1 0.699
Data Set 2 0.606
Data Set 1 when AG>= -34.6 0.693
Data Set 2 when AG>= -34.6 0.741
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In order to find the effect of whole stacking energy on
performance, the AUC values are calculated at AG >= -34.6 kcal/mol.
With this whole stacking energy, the AUC values are also improved
further and achieved 0.878 for Data Setl and 0.906 for Data Set2.
The ROC curves of Data Setl and Data set2 at AG >= -34.6 kcal/mol
is shown in Fig. 8.19 and Fig. 8.20. This improvement in AUC values
shows the importance of the influence of whole stacking energy on
the performance of siRNA. The results of performance evaluation in

terms of AUC for OpsiD are shown in Table 8.5.

ROC Curve
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Fig. 8.19: The ROC Analysis Curve of Data Setl by OpsiD at
AG>=-34.6 kcal/mol (AUC = 0.878)
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ROC Curve
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Fig. 8.20: The ROC Analysis Curve of Data Set 2 by OpsiD at
AG>=-34.6 kcal/mol (AUC =0.906)

Table 8.5: AUC values of OpsiD

Data Set AUC of OpsiD
Data Set 1 0.862
Data Set 2 0.809
Data Set 1 when AG>= -34.6 0.878
Data Set 2 when AG>= -34.6 0.906
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Fig. 8.21: Comparative analysis of Pearson Correlation Coefficient (R) involving
OpsiD, MySiRNA, DSIR, iScore, ThermoComposition 21, s-Biopredsi
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Fig. 8.22: Comparative analysis of Pearson Correlation Coefficient (R) involving
OpsiD, MySiRNA, DSIR, iScore, ThermoComposition21, s-Biopredsi

for Data Set 2.
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8.4.3 Comparison with siRNA Design Approaches

The results of OpsiD are compared and validated with
MysiRNA, DSIR, i-Score, ThermoComposition21, and s-Biopredsi in
terms of siRNA inhibition efficiency, prediction accuracy, sensitivity,
specificity, MCC and AUC values. The inhibition capacity is
measured in terms of Pearson Correlation, R. The Pearson
Correlation Coefficient is calculated for experimental inhibition

capacity versus predicted inhibition capacity for each of six models.

We achieved a very good correlation between the predicted
and experimental siRNA inhibition efficiency for Data Set 1 and Data
Set 2. In both Data Sets the correlation values are higher than
MysiRNA, DSIR, i-Score, ThermoComposition21, and s-Biopredsi
indicating better prediction by our model (Fig. 8.21 and Fig. 8.22).
The experimental siRNA inhibition plotted against predicted
inhibition with all six techniques for Data Setl and Data Set 2 is

shown in Fig. 8.23 and Fig 8.24.
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Next comparison is done in terms of sensitivity, specificity,
MCC, ROC analysis and Accuracy of prediction. OpsiD is found
capable of designing siRNA with good level of specificity and
sensitivity. It achieves Sensitivity (Sn) of 0.69 and Specificity (Sp) of
0.83. From the results shown in Table 8.6, it is observed that the
value of Sn for OpsiD is the best Sn value than all other shown
models. This reflects the highest rate of predicting high efficacy
siRNAs. OpsiD achieved a specificity of 0.83. Even though it is an
acceptable level of specificity, it is comparatively a lower value when
compared with other techniques, indicating that this aspect must be
improved. But on analyzing the sensitivity-specificity values shown
in Table 8.6, it is clear that even though all other models have high
specificity than OpsiD, their sensitivity values are very less. So if we
consider combined sensitivity-specificity effects shown by our
model, we can come to the conclusion that OpsiD performs as well as
or better than all other models in the list. Overall, the analysis
indicates the performance improvement of our model in terms of
Accuracy, MCC, and Sensitivity over other models. The Table 8.6
shows the comparison of results from 6 models in terms of TP, TN,
FP and FN. Table 8.7 shows the comparison of results from 6 models

in terms of accuracy, sensitivity, specificity and MCC.
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Table 8.6: Comparative analysis of TP, TN, FP, FN for OpsiD, MySiRNA,

DSIR, iScore, ThermoComposition21, s-Biopredsi for Data Set 3

Count OpsiD | MysiRNA | DSIR | Thermo | iScore | s-Biopredsi
Count TP | 164 153 105 96 0 43
Count TN | 197 204 223 217 238 233
Count FP 41 34 15 21 0 5
Count FN 74 85 133 142 238 195

Table 8.7: Comparative analysis of Accuracy, Sensitivity, Specificity and MCC for

OpsiD, MySiRNA, DSIR, iScore, ThermoComposition21, s-
Biopredsi for Data Set 3
Thermo
OpsiD | MySiRNA | DSIR | iScore |Composit| s-Biopredsi
ion21

Accuracy 0.76 0.75 0.69 0.66 0.5 0.58
Sensitivity | 0.69 0.64 0.44 0.4 0 0.18
Specificity | 0.83 0.86 0.94 0.91 1 0.98
MCC 0.52 0.51 0.43 0.37 -- 0.26
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For the ROC analysis, we considered siRNA with inhibition
efficiency equal to or above 70% as efficient siRNA and below 70%
as inefficient siRNA. Fig.8.25 and Fig.8.26 shows comparative
analysis of ROC curve obtained for OpsiD, MySiRNA, DSIR, iScore,
ThermoComposition21, s-Biopredsi for Data Set 1 and Data Set2
respectively. Then it is possible to calculate the area under the curve,
known as the AUC, as a single measure of performance (for which an
AUC of 1 reflects perfect classification and an AUC of 0.5 reflects
random classification). The AUC obtained by our model has been
compared with each of 5 techniques and found that we have got an
AUC of 0.862 for Data Set 1 and 0.809 for Data Set 2, which are
better than those obtained from MysiRNA, DSIR, i-Score,
ThermoComposition21, and s-Biopredsi. The AUC values of 0.809
and 0.862 indicate better performance of our model. The results are

shown in Fig. 8.27 and Fig. 8.28.
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Fig. 8.25: Comparative analysis of ROC curve for OpsiD, MySiRNA, DSIR, iScore,
ThermoComposition21, s-Biopredsi for Data Set 1.
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Fig. 8.26: Comparative analysis of ROC Curve for OpsiD, MySiRNA, DSIR,
iScore, ThermoComposition21, s-Biopredsi for Data Set 2.
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Fig. 8.27: Comparative analysis of AUC involving OpsiD, MySiRNA, DSIR, iScore,
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Fig. 8.28: Comparative analysis of AUC involving OpsiD, MySiRNA,
DSIR, iScore, ThermoComposition21, s-Biopredsi for Data Set 2

153



Chapter -8

In order to find the performance improvement with whole
stacking energy, we calculated the Pearson Correlation value and
AUC values of OpsiD and other five models and compared the
results. When the threshold of whole stacking energy, AG >= -34.6
kcal/mol, we achieved a Pearson Correlation of 0.693 for Data Setl
and 0.741 for Data Set2 between the experimental inhibition and
predicted inhibition efficiencies. The comparative analysis of Pearson
Correlation Coefficient, R, at whole stacking energy AG >= -34.6
kcal/mol for OpsiD, MySiRNA, DSIR, iScore, Thermo
Composition21, s-Biopredsi for Data Set 1 and Data Set 2 is shown

in Table 8.8. The values show that our model performs better.

With this whole stacking energy, the AUC is also improved
further and reached 0.878 for Data Setl and 0.906 for Data Set2. This
improvement in Pearson correlation values and AUC values show the
importance of the influence of whole stacking energy on inhibition
efficiency of siRNA. A comparison of improvement in Pearson
Correlation, R and AUC at threshold of AG >= -34.6 kcal/mol of

OpsiD is shown in Fig 8.29.
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Table 8.8: Comparative analysis of Pearson Correlation Coefficient at
whole stacking energy, AG >= -34.6 kcal/mol for OpsiD,
MySiRNA, DSIR, iScore, ThermoComposition21 and
s-Biopredsi for Data Set 1 and Data Set 2

Pearson Correlation
siRNA Design

Pearson Correlation when AG>= -34.6

Approaches

kcal/mol
Data Setl | Data Set2 | Data Setl | Data Set 2

OpsiD 0.699 0.606 0.693 0.741
MysiRNA 0.686 0.599 0.668 0.737
DSIR 0.687 0.554 0.659 0.734
1-Score 0.635 0.556 0.607 0.723
ThermoComposition21 0.635 0.577 0.544 0.678
s-Biopredsi 0.665 0.546 0.622 0.724
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Fig 8.29: Effect of AG in Performance of OpsiD

8.4.4 Discussion

The complete results obtained by various validation strategies
of OpsiD are summarized in Table 8.9. Using this model we are able
to predict the percentage of inhibition efficiency of each predicted
siRNA against a target mRNA or cDNA sequence. The performance
analysis and comparison of 5-1-1 ANN (OpsiD) with selected good
scoring second generation models are done. The improvement in

prediction accuracy in terms of Pearson correlation coefficient shows
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better performance of our model with previous good scoring siRNA
design models. We tried to further optimize the inhibition efficiency
in terms of sensitivity, specificity, accuracy of prediction and so on.
When we compared these results with existing approaches, it is found
that OpsiD achieves better performance. Thus we are able to optimize
the efficacy of predicted siRNA in terms of inhibition efficiency,
sensitivity, specificity and accuracy of prediction. Similarly using this
model, we are able to address the problem of “off-target possibility

on non-target genes” by providing the BLAST search.

Thus OpsiD provides the chance of identifying optimized
siRNA with high inhibition capacity on target genes and low off-
target effect on non-target genes. Also the effect of whole stacking
energy (AG) on inhibition efficiency, by calculating the Pearson
correlation coefficient at various threshold values of AG is noticed.
The result shows an excellent improvement in Pearson correlation at
AG >= -34.6 kcal/mol. From this, it is understood that exclusion of
siRNAs with certain whole stacking energy is necessary to improve
the inhibition efficiency. This reveals the importance and the
influence of whole stacking energy on inhibition efficiency of

siRNA.
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Table 8.9: Performance of OpsiD

Validation Parameters Results of OpsiD
Accuracy 0.76
Sensitivity 0.69
Specificity 0.83
MCC 0.52
Pearson Correlation for Data Set 1 0.699

Pearson Correlation for Data Set 1

0.693
when AG>= -34.6 kcal/mol
Pearson Correlation for Data Set 2 0.606
Pearson Correlation for Data Set 2 0741
when AG>= -34.6 kcal/mol '
Area Under Curve for Data Set 1 0.862
Area Under Curve for Data Set 1

0.878
when AG>= -34.6 kcal/mol
Area Under Curve for Data Set 2 0.809
Area Under Curve for Data Set 2

0.906

when AG>= -34.6 kcal/mol

158



Results and Discussion

8.5 Summary

The main focus of the thesis is to identify effective siRNA
sequences with good inhibition efficiency and to optimize the
efficiency of predicted siRNA by various efficacy parameters like
sensitivity-specificity, accuracy of prediction and target specificity.
We designed one SVM model and two ANN models in this study.
The result and discussion of each model is presented in this chapter.
From the results it is clear that one ANN model, OpsiD, performs
well in terms of inhibition efficiency of siRNA against a particular
target gene. Also OpsiD model is able to optimize the prediction
efficacy of siRNA in terms of inhibition efficiency, sensitivity,
specificity, accuracy of prediction and off-target possibility. Thus
OpsiD provides the chance of identifying optimized siRNA with high
inhibition capacity on target genes and low off-target effect on non-
target genes. Thus the model achieves all the goals and objectives of

our study.
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NI 9.1 Summary of Work
9.2 Limitations

9.3 Future Scope

Gene silencing is an important research topic in functional
genomics, biomedical research and in cancer therapeutics because of
its ability to do sequence specific gene knock-down. Gene silencing
is initiated by RNA interference mechanism and mediated by siRNA.
siRNAs are new class of therapeutic agents which are suited for
molecularly targeted gene silencing. The siRNA can be endogenous
or exogenous. The use of exogenous siRNA for performing gene
silencing has become an important biological milestone for mRNA
target identification and drug design in various diseases, especially in
cancer and AIDS. Therefore, identification of efficient siRNA
capable of degrading target mRNA responsible for disease causing
environment, is a key step towards the diagnosis and treatment of

many serious diseases.

A significant amount of work has been undertaken over the
recent past to understand the gene silencing mediated by siRNA.
Many models have been proposed to predict efficient siRNAs against
target mRNA. But there are many issues to be meaningfully
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addressed while designing siRNA for therapeutic use. From the
siRNA related studies, it is understood that among all siRNAs that
can be generated against a target mRNA, only a few are found
successful in causing degradation. However even those few do not
perform equal knock-down effects. Also, it was earlier understood
that full complementary siRNA was needed to silence a target gene.
But recent studies reveal that siRNA behaves like microRNA and can
suppress protein synthesis even though it is not fully complementary
to the target. This shows that mismatches are allowed during target
selection by siRNA. The mismatches occurring during target
selection by siRNA may cause a very serious problem of “off-target
effect” where unintended genes may be suppressed by the selected
siRNA. Thus while designing exogenous siRNA therapeutically, all
these issues must also be taken into consideration. Even though
several algorithms and methods have been proposed to predict the
efficiency of siRNA, only some of them have achieved acceptable

level of efficacy.

9.1 Summary of Work

The main focus of this thesis is to develop methods to
optimize the efficiency of siRNA in terms of “inhibition capacity and
off-target possibility” against target mRNAs with improved
sensitivity and specificity, which may be useful in the area of gene
silencing and drug design for tumor development. This study aims to
investigate the currently available siRNA prediction approaches and

to devise a better computational approach to tackle the problem of
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siRNA efficacy by inhibition capacity and off-target possibility. The
strength and limitations of the available approaches are investigated
and taken into account for making improved solution. Thus the
approaches proposed in this study extend some of the good scoring
previous state of the art techniques by incorporating machine learning
and statistical approaches and thermodynamic features like whole
stacking energy to improve the prediction accuracy, inhibition
efficiency, sensitivity and specificity. In this thesis, we present three
machine learning approaches (one SVM model and two ANN
models) that enable to identify the efficiency of siRNA against target

genes.

The first objective of our study is to design efficient siRNAs
for any target mRNAs or cDNAs i.e. whether an siRNA is able to
silence a target gene. As the first step of our study, we have selected
Support Vector Machine model, to start predicting efficiency of
siRNA against target mRNA or cDNA sequences. Using this model,
we are able to classify a given siRNA as efficient or inefficient
against a target mRNA sequence. The predicted siRNAs are analyzed
and verified with existing siRNA design approaches. By carefully
filtering the results, we are also able to notice the influence of
thermodynamic properties like whole stacking energy (AG) and
melting temperature of siRNA on inhibition efficiency. So we have
included whole stacking energy of siRNA as one of the input

parameters of our next ANN models.
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The first ANN model, named siRNA Designer, is meant to
achieve the second objective of predicting siRNA inhibition
efficiency for a given target mRNA sequence. In this work, a 6-8-8-
8-1 ANN model is designed to predict siRNA inhibition activity
which is built on five previous second generation models
BIOPREDsi [18], DSIR [19], ThermoComposition21 [20], i-Score
[21] and MysiRNA [29] along with whole stacking energy (AG). It
has been found that this model generates better performance than the
existing state of the art techniques in terms of inhibition efficiency of
predicted siRNA. Thus by 6-8-8-8-1 ANN, we are able to achieve
second objective of our study, i.e., predicting the percentage of
inhibition efficiency of each predicted siRNA against a target mRNA
or cDNA sequence. Using this approach, one can select efficient
siRNAs of user defined inhibition cut-off (normally cut-off will be
70%-80%) depending on the amount of silencing needed. But this
model could not optimize the inhibition efficiency by sensitivity,

specificity and accuracy of prediction.

The second ANN model is named as Optimized siRNA
Designer, OpsiD, which is a 5-12-1 ANN. Using this we are able to
achieve all the goals and objectives of this study, i.e., optimizing the
prediction efficiency in terms of inhibition capacity, sensitivity,
specificity, accuracy of prediction over the state of art techniques,
with combined approach of “inhibition efficiency and off-target
possibility”. For finalizing the second ANN model, we have analyzed

currently available best scoring models and developed a neural
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network model by combining the results of selected good scoring
previous models to improve the prediction accuracy. This ANN
model is named Optimized siRNA Designer, OpsiD. It is built on
four previous good scoring second generation models: DSIR [19],
ThermoComposition21 [20], i-Score [21] and MysiRNA [29] and
whole stacking energy (AG). The Encog machine learning frame
work for Java is used to create, train and test the model and later

integrated into OpsiD.

The models are trained and tested with large data sets.
Pearson correlation coefficient and AUC value of ROC analysis are
calculated to find the accuracy and performance of the model
respectively. We achieve a Pearson Correlation Coefficient of R=
0.699 for Data Set 1 and 0.606 for Data Set 2. The AUC value for
Data Setl is 0.862 and for Data Set 2 is 0.809. Both Pearson
Correlation values and AUC values are better than those of the state
of the art techniques. Performance of the model is also tested with
sensitivity, specificity and accuracy of prediction and found better
than that of the state of the art techniques. These results show that our
predicted inhibition is closer to the originally available experimental

inhibition values.

The fifth input metric in our model is the whole stacking
energy (AG) of siRNA strand, one of the important thermodynamic
and stability factors of siRNA. We have analyzed the results to find

its influence on performance. The inclusion of AG in the model
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results in a performance of Pearson correlation coefficient R = 0.693
and AUC = 0.878 for Data Set 1 and R = 0.741 and AUC = 0.906 for
Data Ste 2, at a specific threshold value of AG >= -34.6 kcal/mol.
Except for R value of Data Set 1, all other values show improvement
(Even though R value of 0.693 for Data Setl is less compared to our
previous result for Data Setl (R=0.699), it is still better than the R
values obtained for DSIR [19], ThermoComposition21 [20], i-Score
[21] and MysiRNA [29]). These results show an excellent
improvement in Pearson correlation and AUC at AG >= -34.6
kcal/mol. From this, it is understood that exclusion of siRNAs with
certain whole stacking energy is necessary to improve the inhibition
efficiency. This reveals the importance and the influence of whole

stacking energy on inhibition efficiency of siRNA.

From the observations of various validations conducted in our
approach, it is found that our model OpsiD, is capable of predicting
the inhibition capacity of siRNA against a target mRNA with
improved correlation, accuracy of prediction, MCC value, sensitivity,
AUC value than those in the existing models. In addition, we have
also included modules to reduce the consequence of ‘off target’ effect
by providing facility to run BLAST search of each output siRNA
sequences generated against any gene sequences in standard
databases such as the NCBI RefSeq. Thus the proposed artificial
neural network model ‘OpsiD’ can predict inhibition efficiency of a
particular siRNA over a targeted mRNA sequence and can identify
the similarity score of that siRNA with other genes in the database.
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Using this approach, instead of selecting siRNA with the best
inhibition capacity, we can consider both “inhibition efficiency and
number of matches of BLAST score” to select siRNAs for gene
silencing. The use of siRNAs with high BLAST score may lead to
off-target effect and the user must make the trade-off between the
“goodness” of siRNA with respect to inhibition capacity, and its
similarity to other mRNA fragments. With this method siRNAs can
be selected by carefully examining the inhibition efficiency and off
target possibility. So we believe that the users will be able to
eliminate those siRNA sequences with high BLAST score, even
though they possess very high inhibition capacity. So we can take
care of the risk of “off-target effect with unintended genes”. The

appraoch is available at http://opsid.in/opsid/.

This thesis introduces OpsiD, an artificial neural network
model, to optimize the siRNA inhibition efficicency, built on four
previous models (DSIR [19], ThermoComposition21 [20], i-Score
[21] and MysiRNA [29]) and whole stacking energy (AG). Efforts are
taken to combine different machine learning methods to improve the
prediction efficiency compared to previously designed approaches.
Thus using OpsiD, we are able to identify efficient siRNAs capable
of performing post-transcriptional gene silencing with minimum off-
target silencing and hence we achieved all the goals and objectives of
our study. The proposed soft computing model may be found useful
in finding exogenous siRNAs capable of effectively degrading the

disease causing target mRNA and may help in drug design for cancer
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treatment and other areas of bioinformatics by ‘gene silencing’. In
conclusion, OpsiD can design high quality siRNA that leads to gene
knockdown with lower risk of “off target effect”. This may be found
useful in many areas of bioinformatics while designing siRNA for

therapeutic and gene silencing applications.

9.2 Limitations

The computational approach for optimizing the efficiency of
predicted siRNAs presented in this thesis may lead to great promise
in the area of gene silencing by RNA interference. But, there are
certain limitations to the method which should be acknowledged and

addressed at future research directions.

Even though we have undertaken the performance evaluation
of the approach in terms of certain static validation strategies, we are
not able to evaluate the results biologically. This is because as far as
the gene silencing by RNAI technique is concerned, the pre-clinical
trials are still continuing for critical diseases like cancer. Since the
research is in the pre-clinical stage, we are not able to get the actual
successful gene samples for effective biological validations. In future,
if the accurate and successful biological data of gene samples of
particular diseases are available, the model can be tested for more
accuracy and modified accordingly to assist in the development of

disease treatment very effectively.
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Currently, this study is aimed to identify the efficient siRNA
capable of doing post-transcriptional gene silencing in mammalian
cells. In this study, the machine learning method used to implement
the optimized approach is artificial neural network. For
accomplishing more excellent results and to identify more effective
siRNAs, other concepts of machine learning may also be used. With
mechanisms like Hidden Markov Models, it can be extended to
identify effective exogenous siRNA which may be more accurate and
able to silence various disease-associated target sites. By making
more accurate predictions, the model may assist excellent disease

treatment through post-transcriptional gene silencing.

9.3 Future Scope

RNAi has been successfully used to target many serious
diseases like cancer on mice, with the hope of extending these
approaches to treat humans. Cancer treatment will be successful if it
is able to do complete removal of the tumor without making damage
to any other parts of the body. This shall be achieved by doing
surgery, to a certain level. But surgery is not as effective if the
disease has already spread to other locations of the body.
Chemotherapy is sometimes toxic to healthy tissues as it is not
specific to cancer cells. Radiation also damage normal cells and
tissues. By considering all these limitations of the existing cancer
therapy techniques, it is very essential to develop novel target
specific therapeutics for the effective treatment of cancer. The idea

used in cancer treatment with RN A1 is that cancer cells will be killed
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through the actions of the patient’s own immune system. Nowadays
there are lot of insights and promises for using siRNAs as drugs
targeted only into the cancer cells. Delivery of such efficient siRNAs
may provide new insights into in future therapy in cancer detection

and drug design.

Gene specific silencing has allowed systematic approach of
designing new drugs, and for enhancing the effect of already existing
drugs. RNAI could enable gene silencing with high specificity and
improved efficiency than with any other techniques. In principle any
gene may be knocked-down by a synthetic siRNA with exact
complementary sequence. There by, any disease caused by
abnormally enhanced activity of one or more genes may, in theory be
regulated by RNAi-based therapies. Many of the siRNA therapies are
at preclinical stage. The methods for delivering siRNA drugs should
concentrate on maximizing the specificity of siRNA and minimizing
the toxicity and degradation effects that compromise drug efficacy.
Thus RNAIi has great potential in future gene therapy applications
since it has the potential to regulate disease related genes. Hence in
the post-genomic era, siRNAs is considered as an important tool for

validating gene function and drug targeting.
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Appendix

Appendix 1
Sample_cDNA Sequences for siRNA design

NCBI gene cDNA insert sequence used for siRNA design Length
| symbeol mt)

HsTCI10 CTTCCTTGTTTGGTCTGCTGTGGATCTGCCTTATTGCATATGCCATGCATCAGATAATGGATGCAT 623

(BD135193) CAGATAATGGTGTTAGACAAAGCTTCATTGTGAACAACCTAATGCATTTTAGAGAAACAATCTC

ATCACATTTTTTCTAGCCTTTCCTACATTTAAACTTGCTGTTGCCCAAATTATAATTTTITAAATGT
CTTTGGTGGGCTTCTGTTAATTCACATGACTTGAGCTTATAGCTATGTCTACTGCACAGATTGGG
TAATGGAACACTAAACTTTTATACTTGAAAATGACAGCCTTAAATGCTCATATCAGTCACAAATC
TAGGATGTACTGTCTTGTTGTATGTGAGCTTTGTAGAGATTTTTAAAAATATAAGCATCACCTTC
CCATTGAAGAGTGGAGAGAGTCTACTGGATGACTGGCCAGGAACTTTCTCTCTGAATCGGACAT
TTGGATGTCTTCTTTCTTCCAAGAAATGGTGGTTCACATTAAAGTATCATGGCCTTATGTATGCTC
AAATGGAATCTTATGTAACTTTCTTATTTAATTTTGGTCTGCTTATTTTTAGATAAAATTGAAAG
GAATTGTATAAATCAATTAACATATTAGCTGAGTTG
Hs CDC34 CAAGGGGCTGCAGGAAGAGCCGGTCGAGGGATTCCGCGTGACACTGGTGGACGAGGGCGATCT | 607
(NM._004359) | ATACAACTGGGAGGTGGCCATCTICGGGCCCCCCAACACCTACTACGAGGGCGGCTACTTCAAGG
- CGCGCCTCAAGTTCCCCATCGACTACCCATACTCTCCAC

GGCACCCTAACATCTACGAGACGGGGGACGTGTGTATCTCCATCCTCCACCC
CCCCAGAGCGGGGAGCTGCCCTCAGAGAGGTGGAACCCCACGCAGAACGTCAGGACCATTCTCC
TGAGTGTGATCTCCCTCCTGAACGAGCCCAACACCTTCTCGCCCGCAAACGTGGACGCCTCCGTGA
TGTACAGGAAGTGGAAAGAGAGCAAGGGGAAGGATCGGGAGTACACAGACATCATCCGGAAG
CAGGTCCTGGGGACCAAGGTGGACGCGGAGCGTGACGGCGTGAAGGTGCCCACCACGCTGGCCG
AGTACTGCGTGAAGACCAAGGCGCCGGCGCCCGACGAGGGCTCAGACCTCTTCTACGACGACTA
CTACGGGACGGCGAGGTGGAGGAGGAGG
Hs UBE2D3 TCCAGCACAATGTTCTGCAGGTCCAGTTGGGGATGATATGTTTCATTGGCAAGCCACAATTATGG | 344
(NM_003340) | GACCTAATGACAGCCCATATCAAGGCGGTGTATTCTTTTTGACAATTCATTTTCCTACAGACTACC

R CCTTCAAACCACCTAAGGTTGCATTTACAACAAGAATITATCATCCAAATATTAACAGTAATGGC
AGCATTTGTCTCGATATTCTAAGATCACAGTGGTCGCCTGCTTTAACAATTTCTAAAGTTCTTTTA
TCCATTTGTTCACTGCTATGTGATCCAAACCCAGATGACCCCCTAGTGCCAGAGATTGCACGGAT
CTATAAAACAGACAGAG
Hs UBE2B CTCATGCGGGATTTCAAGCGGTTACAAGAGGACCCACCTGTGGGTGTCAGTGGCGCACCATCTG | 420
(NML_003337) | AAAACAACATCATGCAGTGGAATGCAGTTATATTTIGGACCAGAAGGGACACCTITIGAAGATG

R GTACTTTTAAACTAGTAATAGAATTTTCTGAAGAATATCCAAATAAACCACCAACTGTTAGGTTT
TTATCCAAAATGTTTCATCCAAATGTGTATGCTGATGGTAGCATATGTTTAGATATCCTTCAGAA
TCGATGGAGTCCAACATATGATGTATCTTCTATCTTAACATCAATTCAGTCTCTGCTGGATGAAC
CGAATCCTAACAGTCCAGCCAATAGCCAGGCAGCACAGCTTTATCAGGAAAACAAACGAGAATA
TCGAGAAAAGAGTTTCGGCCATTGTTGAACAAAGC
Hs UBE2M CAGCAGAAGAAGGAGGAGGAGTCGGCGGGCGGCACCAAGGGCAGCAGCAAGAAGGCGTCGGC | 511
(NM_003969) | GGCGCAGCTGCGGATCCAGAAGGACATAAACGAGCTGAACCTGCCCAAGACGTGTGATATCAGC

- TTCTCAGATCCAGACGACCTCCTCAACTTCAAGCTGGTCATCTGTCCTGATGAGGGCTTCTACAAG

AGTGGGAAGTTTGTGTTCAGTTTTAAGGTGGGCCAGGGTTACCCGCATGATCCCCCCAAGGTGA
AGTGTGAGACAATGGTCTATCACCCCAACATTGACCTCGAGGGCAACGTCTGCCTCAACATCCTC
AGAGAGGACTGGAAGCCAGTCCTTACGATAAACTCCATAATTTATGGCCTGCAGTATCTCTTCTT
GGAGCCCAACCCCGAGGACCCACTGAACAAGGAGGCCGCAGAGGTCCTGCAGAACAACCGGCG
GCTGTTTGAGCAGAACGTGCAGCGCTCCATGCGGGGTGGCTACATCGGCTCCACCTACTTTG
Hs C6orf110 AGGAATATGTGGCTTCAGCTATGCACGGGGACAGCCATGACCGGTATGAGCGTCTCACCTCTGTC | 2186
(XM_371822) | TCCAGCTCCGTIGACTITGACCAAAGGGACAATGGTTICTICCTGGCTGACAGCCATCTICAGGA

= TAAAGGATGATGAGATCCGGGACAAATGTGGGGGCGATGCCGTGCACTACCTGTCCTTTCAGCG
GCACATCATCGGGCTGCTGGTGGTTGTGGGCGTCCTCTCCGTAGGCATCGTGCTGCCTGTCAACTT
CTCAGGGGACCTGCTGGAGAACAATGCCTACAGCTTTGGGAGAACCACCATTGCCAACTTGAAA
TCAGGGAACAACCTGCTATGGCTGCACACCTCCTTCGCCTTCCTGTATCTGCTGCTCACCGTCTAC
AGCATGCGTAGACACACCTCCAAGATGCGCTACAAGGAGGATGATCTGGTGAAGCGGACCCTCT
TCATCAATGGAATCTCCAAATATGCAGAGTCAGAAAAGATCAAGAAGCATTITGAGGAAGCCT
ACCCCAACTGCACAGTTCTCGAAGCCCGCCCGTGTTACAACGTGGCTCGCCTAATGTTCCTCGATG
CAGAGAGGAAGAAGGCCGAGCGGGGAAAGCTGTACTTCACAAACCTCCAGAGCAAGGAGAAC
GTGCCTACCATGATCAACCCCAAGCCCTGTGGCCACCTCTGCTGCTGTGTGGTGCGAGGCTGTGA
GCAGGTGGAGGCCATTGAGTACTACACAAAGCTGGAGCAGAAGCTGAAGGAAGACTACAAGCG
GGAGAAGGAGAAGGTGAATGAGAAGCCTCTTGGCATGGCCTTTGTCACCTTCCACAATGAGACT
ATCACCGCCATCATCCTGAAGGACTTCAACGTGTGTAAATGCCAGGGCTGCACCTGCCGTGGGGA
GCCACGCCCCTCATCCTGCAGCGAGTCCCTGCACATCTCCAACTGGACCGTGTCCTATGCCCCTGA
CCCTCAGAACATCTACTGGGAGCACCTCTCCATCCGAGGCTTCATCTGGTGGCTGCGCTGCCTGGT
CATCAATGTCGTCCTCTTCATCCTCCTCTTCTTCCTCACCACTCCAGCCATCATCATCACCACCATGG
ACAAGTTCAACGTCACCAAGCCTGTGGAGTACCTCAACAACCCCATCATCACCCAGTTCTTCCCCA
CCCTGCTGCTGTGGTGCTTCTCGGCCCTCCTTCCCACCATCGTCTACTACTCAGCCTTCTTTGAAGC
CCACTGGACACGCTCTGGGGAGAACAGGACAACCATGCACAAGTGCTACACTTTCCTCATCTTCA
TGGTGCTGCTCCTACCCTCGCTGGGACTGAGCAGCCTGGACCTCTTCTTCCGCTGGCTCTTTGATA
AGAAATTCTTGGCTGAGGCAGCTATTCGGTTTGAGTGTGTGTTCCTGCCCGACAACGGCGCCTTC
TTCGTGAACTACGTCATTGCCTCAGCCTTTATCGGCAACGCCATGGACCTGCTGCGCATCCCAGGC
CTGCTCATGTACATGATCCGGCTCTGCCTGGCGCGCTCGGCCGCCGAGAGGCGCAACGTGAAGCG
GCATCAGGCCTACGAGTTCCAGTTTGGCGCAGCCTACGCCTGGATGATGTGCGTCTTCACGGTGG
TCATGACCTACAGTATCACCTGCCCCATCATCGTGCCCTTCGGGCTCATGTACATGCTGCTGAAGC
ACCTGGTAGACAGGTACAATCTCTACTACGCCTACCTGCCGGCCAAGCTGGACAAGAAGATCCAC
TCGGGGGCTGTGAACCAGGTGGTGGCCGCGCCCATCCTCTGCCTCTTCTGGCTGCTCTTCTTTTCC
ACCATGCGCACGGGGTTCCTAGCTCCCACGTCTATGTTCACATTTGTGGTCCTGGTCATCACCATC
GTCATCTGTCTCTGCCACGTCTGCTTTGGACACTTCAAATACCTCAGTGCCCACAACTACAAGATT
GAGCACACGGAGACAGATACTGTGGACCCCAGAAGCAATGGACGGCCCCCCACTGCTGCTGCTG
TCCCCAAATCTGCGAAATACATCGCTCAGGTGCTGCAGGACTCAGAGGTGGACGGGGATGGGGA
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TGGGGCTCCTGGGAGCTCAGGGGATGAGCCCCCATCATCCTCATCCCAAGATGAGGAGTTGCTG
ATGCCACCCGACGCCCTCACGGACACAGACTTCCAGTC

Hs CDSIP3
(AY044845)

ATGAGGGGCAGGAGCTGGCACTGGGCTGCCTGGCGAGGACAAGCACACAGAAGCACACACACC
TGGCAGTGTCCTTTGGGCGATCTGTGCCCGAGGCACCAGTTGGGCGGTCAACTCTGCAGGAAGT
GGTGGGAATCCGGTCAGACTTGGCCGTGGAGGCTGGAGCTCCCTATGCTGAGCGATTGGCTGCA
GGGGAGCTTCGTCTGGGCAAGGAAGGGACCGATCGGTACCGCATGGTAGTAGGGGGTGCCCAG
GCAGGGGACGCAGGCACCTACCACTGCACTGCCGCTGAGTGGATTCAGGATCCTGATGGCAGCT
GGGCCCAGATTGCAGAGAAAAGGGCCGTCCTGGCCCACGTGGATGTGCAGACGCTGTCCAGCCA
GCTGGCAGTGACAGTGGGGCCTGGTGAACGTCGGATCGGCCCAGGGGAGCCCTTIGGAACTGCTG
TGCAATGTGTCAGGGGCACTTCCCCCAGCAGGCCGTCATGCTGCATACTCTGTAGGTTGGGAGAT
GGCACCTGCGGGGGCACCTGGGCCCGGCCGCCTGGTAGCCCAGCTGGACACAGAGGGTGTGGGC
AGCCTGGGCCCTGGCTATGAGGGCCGACACATTGCCATGGAGAAGGTGGCATCCAGAACATACC
GGCTACGGCTAGAGGCTGCCAGGCCTGGTGATGCGGGCACCTACCGCTGCCTCGCCAAAGCCTAT
GTTCGAGGGTCTGGGACCCGGCTTCGTGAAGCAGCCAGTGCCCGTICCCGGCCTCTCCCTGTACAT
GTGCGGGAGGAAGGTGAGAGGGGGCTGGGCCCTGGACGGGGTTCGAGGATTGTCAACCCCTTT
TCCTTCTGTTTCCATGACCCCTCCCTCTCCGTCAGCTGT

872

Hs RABGIPI
(NM_015213)

TCGCCGACTACTTTGTCATCTGCGGACTGGACACGGAGACCGGGCTGGAGCCGGACGAGCTGTC
GGCATTATGCCAGTACATACAGGCTTCTAAAGCCAGGGATGGTGCCAGCCCTTTCATITCAAGTA
CGACTGAAGGAGAAAATTTTGAGCAGACACCATTGAGAAGAACATTCAAATCTAAGGTCCTTGC
ACGATATCCTGAGAACGTAGAATGGAATCCCTTTGACCAAGATGCAGTAGGAATGCTATGTATG
CCGAAAGGGCTGGCATTCAAGACCCAGGCTGATCCCAGGGAGCCCCAATTCCATGCCTTTATTAT
CACAAGGGAGGATGGCTCTCGGACATTTGGGTTTGCCCTCACATTITATGAAGAGGTGACTAGC
AAGCAGATCTGCAGTGCAATGCAGACCCTCTACCACATGCACAATGCTGAGTATGATGTCCTACA
TGCTCCCCCTGCTGATGACAGAGACCAGAGCAGCATGGAGGATGGTGAAGACACTCCTGTGACC
AAACTGCAGCGCTTCAACTCCTATGACATTAGCCGGGACACTCTCTACGTCTCTAAGTGCATCTGC
CTCATCACACCCATGTCTTTCATGAAGGCATGTCGGAGCGTGCTGGAGCAACTCCACCAGGCAGT
CACTTCACCTCAGCCCCCTCCACTGCCCCTTGAGAGCTACATATACAACGTACTCTACGAGGTGCC
GCTCCCACCTCCTGGCCGGTCCTTIGAAGTTTICTGGGGTCTATGGGCCAATAATCTGCCAGAGACC
AAGTACCAATGAGCTTCCCCTATTTGACTTTCCTGTCAAAGAGGTTTTTGAACTGCTCGGGGTGG
AGAATGTGTTTCAGCTTTTTACTTGTGCCCTTCTGGAGTTTCAAATCCTGCTCTACTCACAGCATT
ACCAGAGACTGATGACTGTGGCGGAGACGATTACAGCTCTCATGTTTCCTTTCCAGTGGCAGCAT
GTCTATGTCCCTATTCTCCCAGCTTCTCTCCTGCATTTCTTAGATGCTCCTGTTCCATACCTGATGG
GTTTGCATTCCAATGGCCTGGATGACCGGTCAAAGCTGGAGCTGCCTCAAGAGGCTAACCTCTGC
TITGTGGACATTGACAACCACTTCATTGAGTTGCCAGAGGACTTGCCACAGTTCCCCAACAAATT
GGAGTTTGTCCAGGAAGTCTCTGAGATTCTCATGGCATTTGGAATTCCCCCTGAAGGGAATCTTC
ATTGCAGTGAGAGTGCCTCCAAGCTGAAGAGGCTGCGGGCCTCTGAGCTTGTCTCGGACAAGAG
GAATGGGAACATTGCTGGCTCCCCTTITGCATTCCTACGAGCTTCTTAAGGAGAATGAAACTATTG
CCCGGCTGCAAGCCTTGGTCAAGAGAACTGGGGTGAGCCTGGAAAAGTTGGAAGTGCGTGAAG
ACCCCAGCAGCAATAAGGATCTCAAAGTTCAGTGTGATGAAGAAGAACTCAGGATTTACCAGCT
AAACATTCAGATCCGGGAAGTTTTTGCAAATCGTTTCACTCAGATGTTTGCAGATTATGAGGCGT
TTGTCATCCAACCCAGCCAGGATAAGGAATCCTGGTTTACCAACAGGGAGCAAATGCAAAACTT
TGATAAAGCATCTTTTCTGTCAGATCAGCCTGAGCCCTACCTGCCCTTCCTCTCAAGATTCCTGGA
GACCCAGATGTTTGCATCTTTCATTGACAACAAAATAATGTGTCATGATGATGATGATAAAGAC
CCTGTACTCCGGGTATTTGATTCCCGAGTTGACAAGATCAGGCTGTTGAATGTTCGGACACCTAC
TCTCCGTACATCCATGTACCAGAAGTGTACCACTGTGGATGAAGCAGAGAAAGCAATTGAGCTG
CGTCTGGCAAAAATTGACCATACTGCAATTCACCCACATITACTTGACATGAAGATTGGACAAG
GGAAATATGAGCCGGGCTTCTTCCCTAAGCTGCAGTCTGATGTACTTTCCACTGGGCCAGCCAGC
AACAAGTGGACGAAAAGGAATGCCCCTGCCCAGTGGAGGCGGAAAGATCGGCAGAAGCAGCAC
ACAGAACACCTGCGTTTAGATAATGACCAGAGGGAGAAGTACATCCAGGAAGCCAGGACTATG
GGCAGCACTATCCGCCAGCCCAAACTGTCCAACCTCTCTCCATCAGTGATTGCCCAGACCAATTGG
AAGTTTGTAGAGGGCCTGCTGAAGGAATGCCGCAATAAGACCAAGAGGATGCTGGTGGAAAAG
ATGGGCCGAGAAGCTGTGGAGCTAGGGCATGGGGAGGTGAACATCACAGGGGTGGAAGAGAA
CACCCTGATTGCCAGCCTTIGTGATCTCCTGGAAAGGATCTGGAGTCATGGACTACAAGTGAAAC
AGGGGAAATCAGCCTTATGGTCCCACCTGTTACATTATCAGGACAACCGGCAGAGAAAACTCAC
ATCAGGAAGCCTCAGTACCTCAGGAATACTTCTTGATTCAGAACGTAGGAAGTCTGATGCCAGC
TCACTCATGCCTCCCCTGAGGATCTCCCTGATTCAGGATATGAGGCACATCCAGAACATCGGGGA
AATCAAGACTGATGTGGGAAAGGCCAGAGCATGGGTGCGACTGTCCATGGAAAAAAAGTTACT
TTCCAGACACCTGAAGCAGCTCCTCTCAGACCATGAGCTCACCAAAAAGTTATATAAGCGCTATG
CCTTCCTGCGCTGTGATGACGAGAAGGAGCAGTTCCTCTATCACCTCCTGTCTTTCAATGCCGTCG
ATTACTTITTGCTTCACCAATGTCTTCACAACTATCCTGATCCCGTACCACATTCTGATCGTACCAA
GCAAGAAGCTGGGGGGCTCCATGTTCACTGCCAACCCATGGATCTGTATATCAGGAGAATTGGG
TGAGACACAGATCATGCAGATTCCCAGGAATGTGCTAGAGATGACCTTCGAGTGCCAGAACTTG
GGGAAGCTTACTACTGTCCAGATTGGCCATGATAACTCTGGGCTGTATGCCAAATGGCTGGTGG
AGTATGTGATGGTCAGGAATGAGATCACAGGACATACCTACAAGTTCCCGTGTGGCCGGTGGTT
AGGGAAGGGCATGGATGATGGAAGCCTGGAGCGGATCCTAGTTGGGGAGCTGCTCACATCCCA
GCCTGAGGTGGATGAGAGGCCATGCCGGACCCCGCCGCTGCAGCAGTCCCCCAGTGTCATCCGGA
GGCTTGTTACCATCTCACCCAACAACAAGCCCAAGCTGAACACTGGGCAGATCCAGGAGTCCATC
GGGGAGGCAGTCAATGGCATTGTGAAGCACTTCCATAAGCCTGAGAAAGAGCGAGGCAGTCTG
ACGCTGTTGCTCTGTGGAGAGTGTGGCCTTGTCTCGGCCTTGGAACAGGCTTICCAGCATGGATT
TAAATCGCCCCGGCTCTTCAAAAATGTCTTCATTITGGGATTTCCTGGAAAAAGCACAAACCTATT
ATGAGACATTAGAGAAGAATGAAGTAGTCCCTGAGGAAAACTGGCATACAAGAGCCCGGAACT
TCTGCCGATTTGTCACTGCAATCAACAATACTCCCCGGAACATCGGCAAGGATGGCAAGTTTCAG
ATGCTGGTGTGCTTGGGAGCCAGAGATCACCTCCTACACCACTGGATTGCCCTGCTGGCTGACTG
CCCCATCACTGCACACATGTATGAGGATGTGGCACTGATCAAAGACCATACACTTGTCAATTCCT
TGATTCGTGTGCTGCAGACATTGCAGGAGTTCAACATCAC

3784
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Appendix 2
Sample siRNAs of Data Setl showing inhibition efficiency at
AG >= -32.5 kcal/mol using 6-8-8-8-1 ANN Model

Original |Our Score
Experime | (6-8-8-8-
Antisense Stamd AG iScore |s-Biopre| Thermo | DSIR | MySIRNA | ntal 1)

CUAAUAUGUUAMIUGAUUUEY| -24.6 37 0.71 0.7 09.8 | 3849 | 046 0.4

AAUAUGUUAAUUGAUUUAUa| -23.6 | 633 | 069 | 078 | 714 | 7103 | 038 | 038

GAUUUAUACAAUUCCUUUCaa| -28.2 | 615 074 | 086 | 748 | 8284 | 051 | 071

CAMUUCCUUUCAAUUUUAUCU| -26.2 | 445 | 030 | 064 | 367 | 49.72 | 0.26 | 045
CAGACCAAMAUUAAAUAAGRR | -274 | 504 | 0.66 | 0.82 [ 7196 | 052 | 0.65
AGACCAAMAUUAMAUAAGARa | -27.7 | L3 | 04 | 071 | 624 | 3971 | 044 | 033

ACCAMMAUUAASUAAGARAGU | -25 486 | 062 | 068 | 611 | 5145 | 044 | 043

CAMMAUUAMAUAAGAAMGUUR | -23.8 | 593 | 0.7 | 0J5 | 687 | oled | 044 | 030

UAAGAAAGUUACAUAMGAUUC | -28.2 | 642 | 077 | 086 | 731 | 8558 | 059 | 072
AAGUUACAUAAGAUUCCAUU | -304 | 42 | 074 | 082 | 734 | 7719 | 03l | 072

ACAUAAGAUUCCAUUUGAGea | -31.4 52 060 | 072 | 715 | 7068 | 056 | 0.66

CCAUUUGAGCAUACAUAAGEE | -32.5 46 046 | 064 | 624 | 60.34 | 044 | 053

CAUUUGAGCAUACAUAMGGCe | -325 | 032 | 060 | 078 73 86.01 | 0463 | 076
UUAAUGUGAACCACCAUUUCY | -32 764 | 085 ) 091 | 912 | 9492 | 086 | 031

AUUUCUUGGAAGAAAGAAGac| -30.8 | 667 | 0750 | 085 | 731 | %044 | 0.4 | 0.79

GAAAGAAGACAUCCAAAUGUE | -32.3 | 50.6 | 054 | 071 | 644 | 70.29 | 0.74 | 0.62

UUUAAGGCUGUCAUUUUCAzg) -32 712 | 085 | 0.9 | 346 | 9358 | 079 | 0.86
UUAAGGCUGUCAUUUUCAAgU| -32 3.5 | 071 | 0.M | 7L1 | 7077 | 087 | 071
AAGUAUAAAAGUUUAGUGUuc| -27.6 | 633 | 077 | 088 | 773 | 8A30 | 076 | 072

UAARAGUUUAGUGUUCCAUUE| -29.8 | 70.5 | 0.85 0.9 86.2 | 9269 | 0.82 | 0.89

CUCAAGUCAUGUGAAUUAACa | -31.3 | 375 | 030 | 036 | 336 | 4334 | 054 | 0.4

GCAACAGCAAGUUUAMUGUa | -316 | 473 | 0.60 | 071 | 687 | 6484 | 075 | (.64
ACAGCAAGUUUAMUGUAGga | -30.8 | 204 | 067 | 078 | 752 | 7739 | 083 | 071

AUUGUUUCUCUAAAAUGCAUL| -29.8 | 65.2 | 0.80 | 0.5 | 804 | 8BS0 | 085 | 0.78

GUGAACAMAUGGAUAMAMGRE | -29.8 | 487 | 061 | 0.77 | 67.2 | 65.00 | 0.27 | 0.65

UGCAUAAMAGAACUUUAGAaa| -30.2 | 57.8 | 068 | 035 | 737 | 8259 | 0.64 | 0.73
GAUAAAAGAACUUUAGAMWY | -26.6 | 416 | 047 | 075 | 601 | 3098 | 031 | 0.4l
AAMAGAACUUUAGAMAUUGUU | -23.9 | 6B | 084 | 095 | 863 | 8836 | 08l | 077
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Original
5 Experim | Qur Score
Anfisense Stand AG | iScare | Biopre |Thermo | DSIR | MySiRNA| ental |i6-8-8-8-1)

GUCUGUAGGAAAAUGAAUURY | -313 | 498 | 069 | 077 | 73 | 7056 | 0.62 | 071

CUGUAGGAMAUGAAUUGUea | -31 | 499 | 058 | 071 | 685 | 66.18 | 0.76 | 0.2

UGUAGGARRAUGAAUUGUCaa | -31.3 | 72.2 | 082 | 095 | 90.8 | 94.63 | 092 | 0.94

GUAGGAAMAUGAAUUGUCAza | -31.3 | 449 | 049 | 075 | 644 | 62.68 | 0.35 | 0.2

CGAAACUCUUUUCUCAUAUC | -30.6 | 454 | 046 | 039 | 596 | 53392 | 046 | 030

ABACUCUUUUCUCAUAUUCUC | -28.1 | 705 | 079 | 0.88 | 842 | 9L75 | 0.79 | 0.4

ACUCUUUUCUCAUAUUCUCu | -31.8 | 63.6 | 078 | 0.86 | B83.6 | 8985 | 0.84 [ 050

CUCUUUUCUCAUAUUCUCGu | -32 | 644 | 083 | 09 | 341 | 9130 | 0.74 | 092

UCUUUUCUCAUAUUCUCGUu | -32.1 | 67.2 | 0.84 | 0.87 | 88.6 | 9186 | 0.84 | 093

AJUCUCGUUUGUUUUCCUGaY | -32.2 | 64.2 | 081 | 091 | 843 | 9077 | 084 | 093

UUUGUUUUCCUGAUAAAGCug | -30.8 | 84.8 | 089 | LI1 | 986 | 97.12 | 0.80 | 055

CUGAAUUGAUGUUAAGAUAZE | -29.4 | 457 | 052 | 0.7 | 64.2 | 56.80 | 0.51 | 054

UUAAGAUAGAAGAUACAUCau | -30.1 | 811 | 088 | 107 | 983 | 96.73 | 0.85 | 054

AUAGAAGAUACAUCAUAUGUY | -30.2 | 67.4 | 082 | 055 | 879 | 9272 | 084 | 093

CUGAAGGAUAUCUAAACAUBu | -31.8 | 513 | 064 | 07 73 | 6841 | 047 | 0.67

UGAAGGAUAUCUAAACAUAug | -31 | 583 | 076 | 078 | 825 | 8122 | 064 | 0.77

CACAUUUGGAUGARACAUUY | -30.8 | 53.7 | 0.69 | 079 | 758 | 7579 | 064 | 0.72

UUUGGAUGAAACAUUUUGGaL | -30.5 | 78 | 0.86 | 104 | 934 | 96.30 | 0.85 | 054

GGAUGAAACAUUUUGGAUAZa | -3L4 | 40.7 | 040 | 064 | 573 | 53.20 | 048 | 047

GUUUAUUUGGAUAUUCUUCag | -282 | 626 | 081 | 079 | 784 | 8067 | 0.78 | 071

UUAUUUGGAUAUUCUUCAGaa | -29.3 | 7019 | 0.84 | 0.3 | 87.7 | 9272 | 0.80 | 088

UUUGGAUAUUCUUCAGAMGY | -30.2 | 36.3 | 0.67 | 081 | 732 | 78.79 | 083 | 071

UUGGAUAUUCUUCAGAAMAuY | -30.2 | 641 | 0.80 | 086 | 80 | 8355 | 085 | 0.79

UGGAUAUUCUUCAGAAMAUuc | -30.4 | 56,2 | 062 | 077 | 657 | 76.88 | 0,64 | (.66

UCAGAAAAUUCUAUUACUAgu | -284 | 588 | 075 | 081 | 783 | 77.50 | 072 | 0.70

AMMAUUCUAUUACUAGUUUaa | -25.5 | 6L1 | 073 | 078 | 768 | 70.72 | 048 | 0.63

AAUUCUAUUACUAGUUUAAZa | -25.9 | 555 | O.66 | 082 | 729 | 66.22 | 047 | 0.63

AUUACUAGUUUAMAAGUACca | -26.8 | 69.8 | 081 | 091 | 332 | 83.63 | 086 | 076
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Appendix 3

Sample siRNAs of Data Set 3 showing calculation of TP, TN, FP,
FN values using 5-12-1 ANN (OpsiD) Model

Actual | Predicted | Classified

sRINA Strand OpsiD | Activity | Activity as
CUGAUAUUAACAAAGCUUA 0.69 1 1 TP
AAUGCAAAGCACAUCCAAU 0.60 1 0 FM
GGGAGAACAGGGUAUGAUA 0.78 1 1 TP
GOGUGUCUCUCUGCCCUGE 0.34 1 0 FN
GEUUGGEAUUCCUACGGAU 0.70 1 1 TP
AGUUGUAAAGAAGCUUAUA 0.80 1 1 TP
CGAUGGIGUGGUUGCCUUA 0.82 1 1 TP
UTAGAAAATTACAGUAAGULT 0.37 1 0 FMN
CCUCUCAACGACAGCAGCU 0.57 1 0 FMN
GOGACUCUGAGGAGGAACA 0.61 1 1 TP
AAATTCCATIGUUGUUTICTIGT 0.27 1 0 FN
AUCUUCUUUCUGUCGAALA 0.67 1 1 TP
GUCUGGAUCACCUUCUGLU 0.54 1 0 FN
GEGCUUTAUCUAACUCGCT 0.62 1 1 TP
ACCAGAUCCOGRAGUUGEA 0.57 1 0 FM
AACGACGAGAACAGUUGAA 0.61 1 1 TP
GACGAGAACAGUUGAAACA 0.69 1 1 TP
ACGACAACAGUUGAAACAC 0.48 1 0 FMN
ACGGAACUCUUGUGCGUAA 0.67 1 1 TP
CCAGCGAGGATUATICUGGAA 0.62 1 1 TP
ACCGRAAACAGGUGGUCAU 0.58 1 0 FM
GCAGGUCAAGAAGAGUAUA 0.83 1 1 TP
CCACUAUAGAGGACUCCUA 0.73 1 1 TP
AGACUGUUCACAAAGGCUT 0.61 1 1 TP
UUAGCUAAAUUACUGUAAG 0.37 1 0 FN
UAAGGCAGACCCAGUAUGA 0.55 1 0 FN
UUGAATTUCUGUUGUUGAA 0.61 1 1 TP
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Actual | Predicted |Classified

siRMNA Strand Opsilr | Activity | Activity as
UGCACUUAAAGCAACCCUU 0.60 1 1 TR
ACCCUUCACATICATTIGA A 0.02 1 TP
ACATTUAACCUCCCAGOOGL 0.524 1 o FM
AUGUUGACACACCTTAGUITA 0.66 1 1 TP
UUGACACACCUAGUUAUCA 0.43 1 0 FMN
ACAATCUGUAACTGUUUTTA 0.02 1 1 TR
GLAAATTUGUGCAAGAGETTA 0.69 1 1 TP
UGACGATACAGCTTAATITIICA 0.69 1 1 TP
ACTUCAAACTUUUGUUICCA 0.59 1 0 FMN
CGATACAGCUAATTUCAGAN 0.77 1 1 TP
CUAAGGUAGGUACATCAAA 0.74 1 1 TP
ACACCATAGUGEEATIUTTAA 0.67 1 1 TP
AAACACTIICGAAGUIICAL 0.59 1 i FN
GEUGAAUUUUAAGUCTUAA 0.79 1 1 TR
GUGAATTIITAAGUCTTAA L 0.04 1 1 TP
GUAAUACTUUCTUCATUUCTTA 0.70 1 1 TP
CAAATTACAATMIIGAGITALL 0.65 1 1 TP
AUTUGCACAATUTUGUCCTUA 0.67 1 1 TR
GCAGRUCAAGAGEAGUACA 0.07 1 1 TR
CAAGUUCTUGUGAGGCATUGU 0.29 1 o FM
AGEUCAAGAGGAGUACAGT 0.58 1 ] FM
AMACATTACATTACATTACATIA 0.69 1 1 TP
GAAGUACATIUAGUUUTICAA 0.84 1 1 TP
GUAGGCAUUTUTAGATUGAAT 0.00 1 ] FN
TAGGCAUTTUTAGATIGA AT 0.56 1 o FM
GATTGAATITIMIGGGAA AAATTA 0.77 1 1 TP
AAAATTAAAGUUCUGCAGAA 0.63 1 1 TR
AATCCCGUUUCAUGTCUTC 0.46 1 ] FN
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Appendix 4

Sample siRNAs of Data Set 1 showing inhibition efficiency at
AG>=-34.6 kcal/mol using 5-12-1 ANN (OpsiD) Model

-
Whale | Biopre Therm My Qriginal

siRNA Strand AG dsi |iScore| o | DSIR |SiRNA | OpsiD |Inhibition
CUAAUAUGUUAAUUGAUUVaU | -24.60 | 071 | 57.00 | 0,70 | 69.80 | 58.43 | 0.39 046
AAUAUGUUAAUUGAUUUAUAC | -23.60 | 0.69 | 65.30 | 0.78 | 71.40 | 71.03 | 047 0.38
GAUUUAUACAAUUCCUUUCaa |-28.20| 0.74 | 6L50 | 0.86 | 74.80 | 82.84 | 0.55 0.51
CAAUUCCUUUCAAUUUUAUCY |-26.20| 050 | 4450 | 0.64 | 36.70 | 49.72 | 0.33 0.36
CAGACCAAAAUUAAAUAAGaa |-27.40| 0.66 | 3040 | 0.82 | 68.00 | 7196 | 048 0.32
AGACCAAAAUUAAAUAAGARa |-27.70 | 0.34 | 5130 | 071 | 6240 | 39.71 | Q.37 0.44
ACCAAARUUAAAUAAGAAAgU | -25.00 | 0.62 | 48.60 | 0.68 | 6110 | 5145 | 0.32 | 0.44
CAAAAUUAAAUAAGAAAGUUA | -23.830 | 0.74 | 59.30 | 0.75 | 68.70 | 61.63 | 040 | 044
UAAGAAAGUUACAUAAGAUUC | -28.20 | 077 | 64.20 | 0.86 | 73.10 | 83.38 | Q.57 0.39
AAGUUACAUAAGAUUCCAUUU | -30.40 | 0.74 | 54.20 | 0.82 | 73.40 | 7719 | 0.54 | 0.51
ACAUAAGAUUCCAUUUGAGea |-31.40 | 0.60 | 52.00 | 0.72 | 7150 | 70.68 | 0.51 | 0.56
AAGAUUCCAUUUGAGCAUAca |-32.60 | 0.54 | 50.80 | 0.69 | 68.50 | 69.92 | 0.51 | 0.5
CCAUUUGAGCAUACAUAAGEC |-32.50 | 0.46 | 46.00 | 0.64 | 62.40 | 60.34 | 041 | 044
CAUUUGAGCAUACAUAAGGee | -32.50 | 0.66 | 63.20 | 0.76 | 73.00 | 86.61 | 0.61 0.65
AUAAGGCCAUGAUACUUUAAu | -32.50 | 0.61 | 51.70 | 0.68 | 64.50 | 7L.06 | 0.50 0.76
GCCAUGAUACUUUAAUGUGas |-32.60 | 0.49 | 45.20 | 0.67 | 60.40 | 61.36 | 0.40 0.62
UUAAUGUGAACCACCAUUUCY | -32.00| 0.85 | 76.40 | 091 | 91.20 | 94.92 | 0.74 (.86
AUUUCUUGGAAGAAAGAAGaC |-30.80 | 0.75 | 66.70 | 0.85 | 78.10 | 90.44 | Q.62 0.54
GAAAGAAGACAUCCAAAUGuUC |-32.30| 0.54 | 50.60 | 0.71 | 64.40 | 70.25 | 0.49 0.74
GGAAGGUGAUGCUUAUAUUUL | -34.00 | 043 | 38.00 | 059 | 57.70 | 52.34 | 0.37 0.52
ACAGUACAUCCUAGAUUUGUg |-33.30 | 0.64 | 49.50 | 0.78 | 76.00 | 76.74 | 0.57 0.79
GCAUUUAAGGCUGUCAUUUUC | -33.20 | 046 | 4430 | 020 | 36.20 | 23.30 | Q.30 0.42
UUUAAGGCUGUCAUUUUCAag | -32.00| 0.85 | 7020 | 0.85 | 84.60 | 93.55 | 0.67 | 0.7%
JUAAGGCUGUCAUUUUCAAgU | -32.00 | 0.71 | 55.50 | 0.74 | 7010 | 72.77 | 0.55 0.87
AAGUAUAAAAGUUUAGUGUuC | -27.60 | 0.77 | 65.30 | 0.88 | 77.30 | 86.30 | 0.58 | 0.76
UAAAAGUUUAGUGUUCCAUUa | -29.80 | 0.85 | 70.30 | 0.90 | 86.20 | 32.69 | 0.68 0.82
CUCAAGUCAUGUGAAUUAAca |-31.30 | 0.36 | 37.50 | 0.56 | 53.60 | 48.84 | 0.36 | 0.54
UAUAAUUUGGGCAACAGCAaE |-34.50 | 0.85 | 7220 | 0.94 | 9040 | 9455 | 0.72 | 0.36
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Whole| Biopre Therm My Original
$IRNA Strand AG | dsi |iScore| o | DSIR |SIRNA | OpsiD (Inhibition

AUUGUUUCUCUAAAAUGCAUL | -29.80 | 0.80 | 03,20 | 0.85 | B0.40 | 8850 | 061 | 083

AUGCAUUAGGUUGUUCACAaU | -34.50 | 0.73 | 59.70 | 0.82 | 79.40 | BB.05 | 0.61 | 0.75

UGCAUUAGGUUGUUCACAAug | -3430) 0.73 | 5450 ) 0.79 | 76.70 | 83.01 | 0.39 0.83

UAACACCAUUAUCUGAUGCau | -34.10| 0.84 | 7160 | 0395 | 9470 | 9467 | 0.75 | 053

CAUUAUCUGAUGCAUCCAUua |-34.20| 0.56 | 4450 | 0.68 | 03.00 | 64.92 | 049 | 083

UAUCUGAUGCAUCCAUUAUcu | -3340| 0.75 | 6130 | 0.79 | 80.60 | 87.24 | 0.61 | 0.81

AUCCAUUAUCUGAUGCAUGEC |-34.20| 0.78 | 6650 | 0.77 | 8130 | 83.28 | 064 | 0.72

GUCUGUUUUAUAGAUCCGUge | -33.30| 0.60 | 5140 | 0.75 | 67.40 | 76.02 | 034 | 0.68

UUUAUAGAUCCGUGCAAUCUC | -33.40| 0.81 | 7L10| 1.03 | 8630 | 9361 | 0.70 | 052

CAUAGCAGUGAACAAAUGGaU | -3440| 074 | 3700 ) 084 | 73.20 | §7.01 | 0.61 | 095

GCAGUGAACAAAUGGAUAAa | -33.00| 035 | 3200 | 0.64 | 5280 | 5133 | 0.34 | 0.4

GUGAACAAAUGGAUAAAAGaa | -29.80 | 0.61 | 4870 | 0.77 | 67.20 | 65.00 | 047 | 0.27

UGGAUAAAAGAACUUUAGARa | -30.20 | 0.68 | 57.80 | 0.85 | 73.70 | 8259 | 0.56 | 0.64

GAUAAAAGAACUUUAGAAAUU | -26.60 | 047 | 4160 | 075 | 60,10 | 5098 | 033 | 031

AAAAGAACUUUAGAAAUUGUU | -25.90 | 0.84 | 68.50 | 0.85 | 86.30 | 38.56 | 0.66 | 081

UUUAGAAAUUGUUAAAGCAgg | -27.30| 0.84 | 67.60 | 0.53 | 85.50 | 89.38 | 0.66 | 0.92

UUAGAAAUUGUUAAAGCAGge | -28.50 | 0.84 | 75.80 | 0.93 | 84.50 | 94.29 | 0.69 | 0.50

UGAUCUUAGAAUAUCGAGAca | -32.50| 0.77 | 66,10 | 0.85 | 83.70 | 9134 | 0.66 | 038

GAAUAUCGAGACAAAUGCUge |-33.30| 048 | 46.60 | 0.69 | 63.60 | 65.91 | 046 | 0.79

AAUAUCGAGACAAAUGCUGee |-33.00| 0.74 | 67,70 | 0.86 | 8270 | 5217 | 0.05 | 033

UGCUGCCAUUACUGUUAAUaY | -34.60 | 048 | 4L10 | 073 | oL10 | 6417 | 045 | 0.8

CUGUUAAUAUUUGGAUGAUAa | -29.30 | 0.38 | 37.90 | 0.66 | 54.20 | 49.78 | 033 | 032

UAAUAUUUGGAUGAUAAAUuC | -26.20 | 0.81 | 70.40 | 0.83 | 73.30 | 8646 | 059 | 0.76

UUUGGAUGAUAAAUUCUUGUU | -23.90 | 0.86 | 73.20 | 101 | 9100 | 94.84 | 0.74 | 053

GAUAAAUUCUUGUUGUAAAUg | -26.60 | 0.52 | 4160 | 0.70 | 6130 | 49.54 | 0.33 | 049

AUAAAUUCUUGUUGUAAAUge | -25.30| 0.68 | 59.70 | 0.76 | 72.20 | 66.96 | 046 | 0.4
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Appendix 5

Sample siRNAs of Data Set 2 showing inhibition efficiency at
AG >= -34.6 kcal/mol using 5-12-1 ANN (OpsiD) Model

Whole| s- i- My Original
SiRNA Strand AG | Biopre | Score (Thermo|DSIR | SiRNA |OpsiD | Inhibition
GCCAAAGAAAAAUAACCCU | -32.90) 0.78| 63.000 0.80| 76.30| 88.32| 0.6l 0.96
UAACCCUUUGGUUUDDUUC | -30.30|  0.49] 40.30) 0,58 52,50 49.89] 0.34] 0.52
GUUAUUUUCUACAGUGGUU| -31.10  0.73] 62.30] 0.90| 87.00f 89.67) 0.66( 0.98
GACGCCAAAAMACAUAAAGA | -3240) 0.78| 62.90) 0.83) 79.10| 8896 0.62( 0.86
ACGCCAAAAACAUAAAGAA | -30.90( 0.83 70.30  0.81| 8L70| 9L.16| 0.64| 0.95
ABAACAUAAAGAAAGGCCC|-32.90| 0.54| 4L1.30) 0.57| 55.50| 52.80) 0.36) 0.11
CCGCGAACGACAUUUAUAA | -33.60)  0.83| 73.90) 0.90| 87.70| 94.31| 0.70{ 0.95
CCAAUCAUCCAAAAAAUUA | -28.00) 0.87) 7730 0.96| 8340 95.22| 093 0.98
CCGGAUACUGCGAUUUUAA | -34.40) 0.8 76.10/  0.94| 93.40( 94.93| 0.6 0.96
GGUUUUGGAAUGUUUACUA| -31.00|  0.86| 76.70|  0.97) 97.60| 95.60] 0.80] 0.93
GAUUUCGAGUCGUCUUAAU| -32.50) 0,78 6690  0.86| 83.70| 9L76| 0.65( 0.99
CCUUCAGGAUUACAAGAUU | -33.60[  0.83| 72.00] 0.90] 90.40) 94.01) 0.72] 099
GACAAAUACGAUUUAUCUA| -29.00) 0.5 74.80) 0.93| 96.80| 94.23| 0.79( 0.87
CAAAUACGAUUUAUCUAAU | -26.40| 0.80| 70.70|  0.89| 83.50 89.10| 0.63 0.88
GGUAAAGUUGUUCCAUUUU| -30.60) 0.83| 7230 0,30 91.50( 93.68| 0.73| 0.95
GAUUAUGUCCGGUUAUGUA| -33.60)  0.85| 73.50)  0.95| 96.00f 94.97) 0.77( 0.97
CGACGCAAGAAAAAUCAGA |-34.000 0.83| 68.90| 0.92) 9240 93.76) 0.72] 0.96
GCAAGAAAAAUCAGAGAGA| -33.00) 0.83| 70.30) 091 92.50| 93.87| 0.73[ 0.93
AAAACUCGACGCAAGAAAA | -3240) 0.75| 69.10) 0.79] 80.20| 90.71| O0.64| 0.5
AARAAAGAGAUCGUGGAUUA| -31.800 077 70.200 0,78 79.90) 90.69] 0.64) 091
AACUCGACGCAAGAAAAAU | -32.60| 076 57.10(  0.74| 79.90| 80.59) 058 0.90
ACGCAAGAAAAAUCAGAGA | -33.70| 0.78| 61.50| 0.78| 83.00| B7.14) 0.62| 0.88
GAAAAAUCAGAGAGAUCCU| -34.00) 0.80| 63.60/ 0.81) 83.70| 89.43| 0.064 0.87
GUAACAACCGCGAAAAAGU | -33.60| 0.74| 5780 0.80| 77.10{ 8543 0.60( 0.86
AAGUAACAACCGCGAAAAA | -32.30) 0.83| 67.000 0.80| 36.90| 90.07) 0.67) 0.77
ABAGACGAUGACGGAAAAA| -32.80) 0.62| 57.10) 0.67| 73.60| 76.77) 0.58 0.74
AAAGGUCUUACCGGAAAAC | -34.60)  047| 3870 054 57.70| 51.37) 0.37| 071
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Appendix,

Whole| s- i- My Original
SiRNA Strand AG | Biopre | Score (Thermo| DSIR |SiRNA | OpsiD | Inhibition

UUACUGACUUUCCUUGAGU |-34.60| 0.38 | 39.70 | 0.70 | 56.30 | 60.56 | 0.38 -0.08

AAGAUGCCAUGAAAGCUUA (-34.600 0.77 | 70.80 | 077 | 79.10 | 90.54 | 0.64 0.51

UGAAAGCUUACAUCAACAA |-32.10| 0.84 | 6470 | 0.91 | 87.60 | 91.92 | 0.68 0.34

AAAGUAGAAGAGCUAAAGA(-32.50| 0.77 | 58.30| 0.80 | 85.10 | 85.11| 0.62 0.72

AAGAGCUAAAGAAAAAAUA|-27.50| 0.83 | 70.90| 0.81 | 85.70| 88.24 | 0.66 0.68

AGAAUGAAUACAGUAUUCC|-31.50| 0.38 | 40.00| 0.51 | 56.00 | 49.07 | 0.38 0.58

UAUUUCCGCAAUUACAUGA |-31.90| 0.68 | 5L.20| 0.68 | 69.50| 68.21 | 0.50 0.57

UUUGAGACUUCUUGCCUAA |-34.50| 0.7 | 60.50 | 0.80 | 73.70 | 87.71 | (.61 0.52

CAUGAGAAGUAUGACAACA|-33.80| 0.81 |65.50| 0.80 |87.70| 89.87 | 0.67 0.92

CUUGACCUAUAUUUAUCCA |-31.90| 0.71 | 6250 | 0.82 | 73.30 | 87.94 | (.61 0.43

AUACAGGAACAAUAUUGAU(-30.60| 0.67 | 53.20| 091 | 73.00 | 77.58 | 0.56 0.49

UGACACCGCCAAAUUUAAU |-33.50) 0.70 | 54.90| 073 | 70.20 | 79.09 | 0.57 0.65

CCUUUUGUGAAGAUCUUGA | -33.30| 0.82 | 67.50 | 0.83 | 86.00 | 91.41 | (.66 0.73

AAAGGUGAAGAUAUAUUCC|-31.80| 0.52 | 45.60| 0.53 |64.10|53.19| 0.39 0.09

GGGUAAAUACAUUCUUCAU |-31.60| 0.86 | 78.20 | 0.92 | 83.90| 9530 | 0.73 0.70

AUAAAGACAAAGCCAACCG (-34.50| 041 | 34.80| 0.56 | 56.80 | 49.61| 0.37 0.00

UAAAACACCAUGAAAAUAA | -27.50 0.72 | 6270 | 0.79 |68.20| 73.10 | 0.52 0.58

UUACCAGUUAUAGGAACAA |-32.60| 0.61 |52.30| 0.72 | 70.00 | 74.59 | 0.54 0.40

UUCCCGUUUUAUUCCAGUU |-33.50| 0.65 |49.40| 0.71 |69.50| 7L.33 | 0.53 0.38

UUCCGAAAGGUUUUGCUAC |-34.60| 0.28 | 3530 054 | 5240 49.62 | 0.35 0.32

CUCAGAAAGGAAAUAAUUU|-28.70| 0.75 | 66.00| 0.80 | 78.00| 85.67 | 0.59 0.30

GCUACAGUUAUUAAUCUGG |-32.80| 0.62 |53.30| 0.74 | 73.30| 76.72 | 0.55 0.37

AAGAAACACAGCAACAAUG [-32.70| 045 | 46.50| 0.65 | 63.80 | 61.96 | 0.43 0.30

AAGAAUGGGCUUGARACAU(-34.200 0.73 | 54.20| 0.87 | 7170 | 86.35 | 0.62 0.40

GCACUCUGAUUGACAAAUA |-33.80| 0.87 | 78.00 1.01 |9530|96.00| 0.79 0.93

CUCGACGCAAGAAAAAUCA |-34.001 0.77 | 61.60| 0.86 |8210|30.14 | 0.63 0.91
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