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Preface 

Estuaries are among the most productive areas of world’s coastal zones which 

connect the carbon cycle of the oceans to the continents. These ecosystems play a pivotal 

role in the cycling of carbon and associated elements in tropical environments. Organic 

matter delivered by rivers can undergo prominent biogeochemical alterations and 

therefore estuaries are recognised as highly active areas in terms of organic matter and 

nutrient processing. The relative contribution of allochthonous and autochthonous input 

results in alterations in the biogeochemical cycling of organic matter. The carbon fixed in 

estuaries is highly important in the coastal food webs and exerts profound effect on 

promoting biodiversity richness. Large amounts of organic matter and nutrients, which 

support not only the fauna and flora of the system but also adjacent coastal habitats. 

Defining the sources and composition of organic matter within the estuaries is therefore 

essential to the understanding of the carbon cycle as well as to implement sustainable 

management practices for their conservation. A better knowledge of the geochemical 

characteristics is required for the evaluation of nature, source and degradation state of 

sedimentary organic matter.  

Primary production creates large quantities of organic matter in these 

transitional ecosystems, of which a major fraction sinks through the water column and 

ultimately preserved in sediments. The quantity and quality of organic matter 

preserved in sediments varies greatly depending on the nature of material delivered to 

the sediment and on the depositional environment. Information on the processes 

controlling the input of organic matter to coastal environments is important for the 



understanding of global biogeochemical cycles. Cochin estuary is a highly productive 

ecosystem, and its complex nature is attributed to permanent connection with the 

Arabian Sea and the input of significant quantities of organic matter and nutrients via 

river run off. Eventhough detailed information on organic matter dynamics is 

available in Cochin estuary, studies based on molecular level distribution 

characteristics of amino acids and free sugars has not been carried out yet.  

The thesis entitled Provenance, Isolation and Characterisation of Organic 

Matter in the Cochin Estuarine Sediment-“ a Diagenetic Amino Acid Marker 

Scenario”is an attempt to evaluate the quantity, quality and degradation state of the 

organic matter in the surface sediments of Cochin estuarine system with the 

application of bulk and molecular level approaches. Bulk parameters utilized for 

source characterisation include: biochemical composition, elemental ratios and stable 

carbon isotope ratio. The applications of organic molecules to studies of natural 

systems are their use as source and process indicators. In this study, free sugars and 

amino acids were selected as the molecular level tools to evaluate the productive 

nature, source and degradation state of sedimentary organic matter.  

The thesis is divided into six chapters, grouping to different facts of the 
research objectives.  

Chapter 1, General Introduction and it deals with the aim and scope of the 

present study. The general geographical location of the sampling sites and salient 

features of the study area are described in Chapter 2, Materials and Methods. It also 

describes the sampling and analytical methodology. Nine sampling stations spread 



across the Cochin estuarine system, Southwest India were selected for the present 

study. The results of general hydrographic parameters and nutrients are also included 

here. Chapter 3 entitled “Geochemistry of Phosphorous and Nitrogen fractions in 

Sediments” includes the seasonal and spatial variations of the fundamental 

geochemical variables in the surface sediments. It also deals with the general 

sedimentary characteristics, elemental composition, phosphorous and nitrogen 

fractionation. Chapter 4- “Quality Assessment of Organic Matter - Bulk 

Parameter Approach”, deals with the biochemical composition of organic matter in 

the surface sediments to examine the quality and quantity of organic matter. Bulk 

sedimentary parameters such as elemental ratios and stable isotope ratios are also 

employed for source characterisation of organic matter. Chapter 5, “Spatio-

Temporal Variability of Free Sugar Distribution: Implications on Primary 

Productivity”, explain the seasonal and spatial variation of free sugars in the 

sediments of the estuary and its implications on the primary productivity of the 

ecosystem. Chapter 6, entitled “Distribution and Degradation Status of Amino 

Acids in Estuarine Sediments”, deals with the occurrence, spatio-temporal 

distributional characteristics of amino acids to evaluate the nature and degradation 

state of sedimentary organic matter. The salient findings and interpretations derived 

by detailed analysis of the data in each chapter is briefly outlined in Summary 

section. References are provided at the end of each Chapter. The results of 

biochemical composition, chromatograms of free sugars and amino acids are given in 

the Appendix provided at the end of the thesis. 
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Introduction  

1 

 
 

 

Estuaries represent a biogeochemically active zone, significantly 
transports both terrestrial and riverine inputs to the coastal zone. These unique, 
dynamic and complex environments are among the most productive ecosystems 
in the world (Chapman and Wang, 2001).  Estuaries are commonly entitled as 
semi-enclosed bodies of water, situated at the interface between land and ocean, 
where seawater is measurably diluted by the inflow of freshwater (Hobbie, 2000). 
Another definition of the estuary according to Perillo (1995) is  “a semi-enclosed 
coastal body of water that extends to the effective limit of tidal influence, within 
which sea water entering from one or more free connections with the open sea, or 
any other saline coastal body of water, is significantly diluted with fresh water 
derived from land drainage, and can sustain euryhaline biological species from 
either, part or the whole of their life cycle”. These ecosystems perform important 
role in various ecological and biological functions (Dolbeth et al., 2007), provide 
a direct resource for commercially important species of fishes, shelter and food 
resources for commercially important shell species. They are significant for 
human welfare through their role in trade, transportation, production of food and 
various recreational pursuits.  
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1.1 Estuarine biogeochemistry  

Estuaries are characterised by high rate of primary production and 

shallow water depth, both of which allow the accumulation of relatively large 

fraction of autochthonous and allochthonous organic matter to the sea floor 

and ultimately preserved in anoxic sediments (Hedges and Keil, 1995). 

Processing of organic matter along the estuarine mixing zone has the potential 

to modify the quantity, sources, and composition of organic carbon before its 

export to the coastal zone. The diversity in the origin of estuarine organic 

matter depends not only on the biological and geographical factors but also on 

the socio-economic environment through the effects of urbanisation, 

industrialisation and regional development (Galois et al., 2000). The sources 

of organic matter within the estuarine sediments is of utmost important in 

understanding the roles of terrestrial or estuarine derived organic matter as 

sources of energy and nutrients to coastal ecosystems (Yamamuro, 2000; Goni 

et al., 2003) and the potential enhancement of nutrient loads that contribute to 

eutrophication processes (Yamamuro, 2000). The preservation of organic 

matter in estuarine sediments is principally controlled by productivity, 

sedimentation rate, redox potential, adsorption and desorption (Hedges and 

Keil, 1995).  

The diversity in the origin of estuarine organic matter depends on the 

natural biological and geographical factors, as well as on the anthropogenic 

interventions like urbanisation, industrialisation and regional development 

(Galois et al., 2000). The origin of organic matter in estuarine systems is often 

diverse, due to autochthonous and allochthonous inputs, including: 

phytoplankton (Meyers, 1997), algae (Meziane and Tsuchiya, 2000), bacteria 

(Dale, 1974) and terrestrial vegetation (Mfilinge et al., 2005). A greater 

knowledge of biogeochemical cycling in estuaries, which involves the 



Introduction  

3 

transformation, fate and transport of chemical substance, is critical in 

understanding the effects of these environmental alterations from regional to 

global context (Bianchi, 2007). Hence on a global basis, estuarine sediments 

are important sites for evaluating fluxes, cycling and storage of the chemical 

elements. 

1.2 Primary production in estuaries 

The photosynthetic fixation of inorganic carbon and nutrients into plant 

biomass is the primary source of organic matter existing in the estuaries. 

Primary production is simply defined as the photosynthetic formation of 

organic matter. Phytoplankton represents an important source of organic 

matter in most estuaries. Microphytobenthos consist of an assemblage of 

benthic diatoms that typically migrate vertically in the sediments over a 

diurnal period (Serodio et al., 1997). Enhanced turbidity in shallow regions 

from resuspension events can decline light penetration; hence, the most 

effective time for primary production occurs in intertidal sand and mud flats 

during daytime exposure periods (Guarini et al., 2000; 2002). Stumm and 

Morgan (1996) modified the stoichiometry of the chemical reaction of 

photosynthesis (primary production) and oxidation (degradation) of organic 

matter by the following equation: 

         ← respiration 
106 CO2 + 16 HNO3 + H3PO4 + 122 H2O ↔ (CH2O)106 (NH3)16H3PO4 + 138 O2 

 photosynthesis → 

This equation offers a different perspective on how photosynthesis and 

degradation processes are linked to redox chemistry and the stoichiometric 

constraints on the availability of key elements in many biogeochemical cycles in 

aquatic ecosystems. Primary production related to cell abundance, diversity of 

phytoplankton that varies seasonally, concentration of various pigments and 
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primary productivity. Physico-chemical parameters like nutrient concentrations, 

chlorophyll, water transparency (Carlson, 1977; Kratzer and Brezonik, 1981) 

and primary production measurements (Nixon, 1995) have often been employed 

to assess trophic status. In the pelagic waters, concentration of inorganic 

nutrients such as nitrate, phosphate and silicate in the water determines the 

population growth of planktonic primary producers. The nitrogen as nitrate and 

phosphorus as phosphate greatly augment the primary productivity and both are 

essential for the survival of primary producers. Primary production can also be 

limited by Fe availability in coastal environments (Kirchman et al., 2000; 

Bruland et al., 2001). 

Benthic macroalgae and microphytobenthos are important sources of 

primary production in estuaries and have significant effects on the seagrass, tidal 

flat and intertidal marsh habitats (Bianchi, 1988; Pinckney and Zingmark, 1993; 

de Jonge and Colijn, 1994). Common benthic macroalgae found in estuaries 

include: Chlorophyta (Ulva latuca, Entermorpha intestinales), Phaeophyta 

(Fucus vesciculousus), and Rhodophyta (Gracilaria folifera). The increase in 

anthropogenic loading of nutrients has resulted in numerous macroalgal blooms 

consisting primarily of the genera Ulva, Enteromorpha and Gracilaria spp. 

(Rosenberg and Ramus, 1984; Duarte, 1995; Kamer et al., 2001).  

1.3 Nutrients in aquatic sediments  

Sources of nitrogen and phosphorus in aquatic environments include: 

land run off, where synthetic fertilizers and detergents are the major 

contributors. Concentration of nutrient elements in aquatic systems are 

governed by the biological uptake, regeneration and other geochemical 

processes. The study of nutrients in the dissolved and particulate forms would 

help in understanding the potential availability of life supporting elements in 
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any particular aquatic region (Klump and Martens, 1981). Phosphate can be 

present in association with metals like Fe, Al and Ca oxides or adsorbed on the 

surface of minerals and organic materials. The range of variables like salinity, 

pH and redox potential in estuarine systems determines the relative importance 

of each phosphorous fractions (Lebo, 1991; Paludan and Morris, 1999). 

Growth rate and reproduction of organisms depends not only upon the 

availability of carbon, water and energy but also a variety of essential mineral 

nutrients. The important factors controlling the productivity of estuaries are 

nitrogen in chlorophyll and amino acids, phosphorous in adenosine triphosphate 

(ATP) and phospholipids. Some of these essential elements (N, P, Ca and Si) 

are generally abundant, and so can be termed macronutrients, whereas others 

(Fe and Mg) are required by organisms in only trace amounts and are called 

micronutrients. Nitrogen and phosphorous availability can also limit primary 

production in the aquatic environments, therefore, termed bio limiting elements. 

Nitrogen (N) and phosphorous (P) are the primary nutrients that affect 

sediment and water quality in rivers (Nair et al., 1983; Babu, 1999). Surface 

runoff can contribute nutrients, particularly P in connection with the 

application of fertilizers in agricultural fields. Sewage effluent is also another 

important source of N and P in rivers. Nitrogen and phosphorous are the two 

elements that react completely different when once emitted to the terrestrial 

and aquatic environment. The fate of P in the soil is dominated by chemical 

processes like adsorption-desorption and dissolution-precipitation, whereas the 

fate of N is dominated mainly by biological processes such as mineralisation, 

nitrification, and denitrification (Edwards and Withers, 1998). Nutrients 

limiting the primary production in aquatic ecosystems may vary locally. 

Nitrogen is the most common limiting element of primary production in most 

marine ecosystems (Mortimer et al., 1999). Phosphorous can be a limiting 
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nutrient in coastal systems (Thingstad et al., 1998) due to eutrophication 

resulting from increased population, urbanisation and industrialisation. 

Nitrogen and phosphorous exchange at the water-sediment interface is 

controlled by many complex physicochemical factors, as well as by biological 

processes. Zoo benthos can influence nutrient dynamics at the water-sediment 

interface through excretion of nutrient compounds, and through continuous 

release of nutrients from sediments along the channels created by bioturbation 

activity (Risnoveanu et al., 2004). Sediment bound organic matter content can 

function as a limiting factor and act as an important indicator for nutrients and 

production in both aerobic and anaerobic sediments. 

The significant inputs of nitrogen containing compounds to estuaries 

have been linked to freshwater inputs from rivers (Nixon et al., 1995; 

Seitzinger et al., 2002; Bouwman et al., 2005). Many of these nitrogen inputs 

have increased in estuaries around the world as a direct result of human 

population expansion (Howarth et al., 1996; de Jonge et al., 2002; Bouwman 

et al., 2005). Export of dissolved inorganic nitrogen to coastal environment, 

frequently leads to enhanced primary production, since many estuaries are N 

limited (Nixon, 1995; D’Elia et al., 1992; Howarth et al., 2000). This can 

result in the formation of harmful algal blooms as well as hypoxia, and 

ultimately creates anoxic water columns (Valiela et al., 1990; Boynton et al., 

1995; Richardson, 1997). Hence in the present investigation, the fractionation 

of nitrogen was carried out to assess its bioavailability as well as its role on the 

fertility of the Cochin estuarine system. 

Internal loading of sediment bound P can be a significant term in the 

annual phosphorous budget of an aquatic ecosystem. Moreover release of 

sediment bound nutrients represent a more ecologically important process than 

inputs from external nutrient sources because P released from sediments often 
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contains a larger quantities of bio available portion (Pardo et al., 2003). 

Therefore, it is critical to characterise sources of P, both external and internal, to 

rivers and reservoirs in order to manage nutrient inputs to aquatic systems. 

Several methods can be used to investigate the bioavailability/mobility of 

sediment bound phosphorus; among these, chemical fractionation involving 

extraction procedures has widely been used. The fractionation of P can be used 

as an effective tool for unravelling the redox processes acting along the salinity 

gradients of the Cochin estuary. Since an important fraction of the chemicals 

present in the aquatic environment is reversibly associated with sediments, the 

study of nutrient dynamics was performed in this research work as a prerequisite 

to understand their behaviour as well as the general geochemical settings of the 

sedimentary environment.  

1.4 Characterisation of bulk sedimentary organic matter  

Source characterisation of organic matter associated with estuarine 

sediments is an essential criteria in unravelling the autochthonous and 

allochthonous input as well as to assess global biogeochemical cycles 

(Yamamuro, 2000; Goni et al., 2003).In situ biological production and 

accumulation of marine particles and terrestrial origin have been recognised as 

the significant sources of organic matter to estuarine sediments (Mayer et al., 

1988; Cifuentes, 1991). However in the case of anthropogenically affected 

estuaries, urban sewage inputs strongly influence the quantity and quality of 

incoming materials at sediments and therefore, the nature of organic materials 

depend on complex physicochemical processes (Cotano and Villate, 2006).   
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1.4.1 Biochemical composition 

Indications on the origin and the processes involved in the 

transformation of organic matter in sediments can be achieved by several 

methodological approaches. Biochemical composition (total proteins, total 

lipids and total carbohydrates) serves not only as a valid methodology to 

quantify the organic matter (Colombo et al., 1996), but also a useful tool to 

evaluate its nutritional quality - as available food source for benthic consumers 

(Dell Anno et al., 2000; Cividanes et al., 2002; Joseph et al., 2008). The 

portions of sedimentary organic matter which are more readily available to 

benthic consumers (labile fraction), have usually been evaluated by estimation 

of the main biochemical classes of organic compounds (Danovaro et al., 1993; 

Fabiano et al., 1995; Dell’Anno et al., 2002). Composition of organic matter in 

sediments has been established  as the major factor affecting metabolism, 

distribution and dynamics of benthic organisms (Grant and Hargrave, 1987; 

Graf, 1989; Duineveld et al., 1997) and has been widely employed to evaluate 

the trophic state of marine ecosystems (Cloern, 2001; Dell' Anno et al., 2002; 

Renjith et al., 2012). Moreover protein to carbohydrate ratio and the lipid to 

carbohydrate ratio have been used as valuable indicators to investigate the status 

of biochemical degradation processes (Galois et al., 2000). 

1.4.2 Elemental composition 

Elemental analysis can meaningfully constrain the structural 

characteristics and biochemical compositions of individual organic materials 

(Mitchell et al., 1997; Andrews et al., 1998; Graham et al., 2001). The major 

elements occurring in pure organic substances viz. C, H, N, O, and S can be 

routinely analysed by a combination of methods involving combustion and 

pyrolysis. C, H, N, and S are measured simultaneously by high temperature 
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(>1000 oC) combustion to CO2, H2O, N2 and SO2 gases, which are separated 

and quantified (Hedges and Stern, 1984; Verardo et al., 1990). Among the 

bulk parameters, TOC/TN ratio has been used as best descriptor for the quality  

of organic matter in sediments (Huston and Deming, 2002). Besides TOC/TN 

ratios have been widely used to differentiate the sources of organic matter 

based on the assumption that algal derived organic matter exhibit TOC/TN 

ratios between 4 and 10, whereas organic matter delivered from terrestrial 

vascular plants record TOC/TN ratios of 20 and greater (Redfield et al., 1963; 

Ishiwatari and Uzaki,1987; Ruttenberg and Goni, 1997; Lehmann et al., 2002). 

The distinction in organic matter sources arises on account ofthe absence of 

cellulose in algae and its greater abundance in terrestrial vascular plants. The 

characteristic lowering of TOC/TN ratios in sedimentary phase might be 

attributed to microbial immobilisation of nitrogenous material accompanied by 

the remineralisation of carbon (Sollins et al., 1984). According to the previous 

investigation, the selective degradation of organic matter during early diagenesis, 

results in the variation of TOC/TN/P ratios in sediments (Meyers, 1997). 

1.4.3 Stable isotope composition 

δ13C values are most commonly employed as indicators of ultimate 
plant or geographic sources (Dittmar et al., 2001; Bouillon et al., 2003). In 
order to distinguish between the relative contributions of terrestrial versus 
marine organic matter in sediments, comparison of the more  negative δ13C 
value of common C3 or C4 land plants with marine plankton is a widely 
accepted  methodology (Smith and Epstein, 1971; Rau, 1978; Forsberg et al., 
1993). The principle involved in the application of stable isotopes in natural 
ecosystems is the alterations in the relative abundance of lighter isotopes 
arising due to chemical processes (Hoefs, 1980). The faster reaction kinetics of 
the lighter isotope of an element, results in a situation where the reaction 
products in nature can be enriched with lighter isotopes (Killops and Killops, 
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2005). The process is known as isotopic fractionation, which have proven to 
be useful in determining source of organic matter in biogeochemical studies. 

1.5 Molecular level characterisation 

Molecular characterisation can be defined as the analysis and 

quantification of an essentially pure type of organic compound or classes of 

compounds. Natural organic materials usually contain many molecular 

components, their characterisation typically involves several preparation and 

isolation steps prior to analysis. For biopolymers, a common preparation step is 

necessary to break the parent biochemical into its structural units that can be 

chromatographically separated and quantified. The analysis step may involve 

simple detection of individual compounds as they elute through a liquid 

chromatograph or other separation system, coupled with characterisation 

methods (often spectral or mass based) that have sufficiently high sensitivities 

and fast enough response times to operate in a continuous flow mode. 

A number of methodologies have been organised and utilised for the 

characterisation of organic matter in aquatic sediments. Among these tools 

(bulk and molecular level approaches), lipid class of organic compounds are of 

particularly advantageous since they can reveal valuable information on 

sources of organic matter at the molecular level (Meyers, 2003). Even though 

bulk organic matter source indicators play vital role in identifying the origin of 

organic matter, molecular constituents provide details of production, delivery 

and preservation of sedimentary organic matter (Meyers, 1997). Previous 

investigations have successfully used molecular level approach to explore the 

origin of organic matter in coastal areas, estuaries, rivers and lakes (Jaffe et al., 

2001; Bianchi et al., 2002; Mead et al., 2005). Analysis of lipids in sediments 

has been successfully employed to unravel the environmental changes that 

have brought about alterations in the sources of organic matter (Zimmerman 
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and Canuel, 2000). Amino acids and carbohydrates (free sugars) were the 

organic compounds selected for the molecular level studies in the present 

investigation. 

1.6 Carbohydrates in sedimentary organic matter  

The cycling of carbohydrates is a key process in the marine carbon 

cycle due to its abundance and omnipresent nature in the marine ecosystem. 

Carbohydrates form an important fraction of the organic carbon produced by 

phytoplankton (Biddanda and Benner, 1997; Biersmith and Benner, 1998) as 

well as major constituents of dissolved, particulate and sedimentary organic 

matter (Cowie and Hedges, 1984; Benner et al., 1992). Different types of 

carbohydrates, engaged with various functions are synthesised by 

phytoplankton. In addition to this phytoplankton releases a portion of the 

organic compounds formed by primary production directly as dissolved 

organic carbon (Nagata, 2000; Teira et al., 2001), a significant part of which 

typically consists of carbohydrates (Biersmith and Benner, 1998; Aluwihare 

and Repeta, 1999). Carbohydrates represent important structural and storage 

materials in both terrestrial and aquatic organisms and denote the most 

abundant class of organic compounds in the environment. Algae and other 

chlorophyll bearing organisms, in presence of sunlight transform CO2 and water 

to polymers such as cellulose, starch and related compounds (Rawn, 1990).  

Carbohydrate constitutes a major resource of reduced carbon, which is 

predominantly recycled in the water column, where it is used as energy and a 

carbon source for the food web. In general, at the basis of the food web, 

particulate organic matter is taken up by grazers, while the dissolved organic 

matter is utilised by bacteria. A large fraction of the dissolved and particulate 

marine organic matter comprised of carbohydrates released from 
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polysaccharides and other biopolymers during hydrolysis (Benner, 2002). 

Biogeochemical studies on sedimentary organic matter, have achieved greater 

attention during the past few decades, with numerous advances in 

understanding the diagenetic fate and versatile of applications (Benner and 

Opsahl, 2001; Amon and Benner, 2003; Jia et al., 2008). Sediments occurring 

in estuaries are vital reservoirs of carbohydrates, originated via photosynthesis.  

Carbohydrates comprise 75% of weight of terrestrial plant tissue, present in 

structural polysaccharides such as cellulose, hemicellulose and pectin 

(Aspinall, 1970; Sjostrom, 1981); whereas constitutes only 20 and 40% of weight 

in plankton and bacteria respectively (Parsons et al., 1984; Moers et al., 1993).  

The individual neutral sugars in aquatic ecosystems may have different 

origins (phytoplankton, zooplankton, bacteria, debris from local vegetation 

and soil organic matter) (Cowie and Hedges, 1984; Guggenberger et al., 

1994b). Production of carbohydrate by microorganisms depends on several 

factors such as phytoplankton biomass, phytoplankton species, phase of 

growth, nutrient status and bacterial activities (Morris, 1981; Sakugawa and 

Handa, 1985). Most photosynthesizing organisms are aerobes: vascular plants, 

macroscopic algae (seaweeds), unicellular algae (phytoplankton), cyanobacteria 

and prochlorophytes.  

1.7 Amino acids in sedimentary organic matter  

General structure of amino acids (AAs) is NH2CH(R)-COOH, where the 

side chain (R group; see Figure 1.1) may vary in size, shape, charge and 

hydrophobicity. There are hundreds of amino acids in nature, among them only 

20 are commonly found in proteins, which are reported to have significant 

concentration in the aquatic ecosystems. It can be placed in the category of either 

essential or non-essential amino acids. Essential amino acids are those that are 
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"essential" in the diet; the living organisms cannot create them through their own 

metabolism. Therefore, organisms need to obtain them through foods containing 

them. The non-essential amino acids are those which can be produced from other 

amino acids and substances in the diet and metabolism. Histidine, isoleucine, 

leucine, lysine, methionine, phenylalanine, threonine, tryphtophan and valine are 

grouped as essential AAs. Meanwhile, arginine, alanine, asparagine, aspartate, 

cysteine, glutamate, glutamine, glycine, proline, serine and tyrosine are 

nonessential AAs. 

Amino acids are the major N forms and important components of 

organic carbon in most of the marine organisms (Parsons et al., 1977). They are 

typically labile relative to bulk carbon and N and account for a considerable 

portion of the particulate organic carbon and N recycled in both water column 

and sediments (Henrichs and Farrington, 1987; Burdige and Martens, 1988) and 

therefore are important nutrients for secondary producers.  Amino acids are 

structural components of proteins and are the most important nitrogen bearing 

compound in most organisms. Their analysis in sediments provides useful tool 

to evaluate the reactivity of particulate organic matter (Jennerjahn and Ittekkot, 

1999; Kerherve et al., 2002; Pantoja and Lee, 2003). Plant remains and other 

debris contribute nitrogen in the form of amino acids. Amino acids exist in soil 

in several different forms, like free amino acids in the sediment micropores; as 

amino acids, peptides or proteins bound to clay minerals; as amino acids, 

peptides or proteins bound to humic colloids. Proteins most likely form the 

principal source of nitrogen for benthic heterotrophs (Cowie and Hedges, 1994; 

Wakeham et al., 1997; Dauwe and Middleburg, 1998). Despite the ubiquitous 

distribution among living organisms, the molar composition of amino acids 

provide clues to the sources of organic matter (da Cunha et al., 2002; 

Jennerjahn, 2004). 
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Figure 1.1 Structure of the side chains (R groups) in various amino acids; source: Killops and Killops, 2005 

1.8 Aim and scope of the study 

The peculiar geographic location of estuaries make them to act as 

receptors of organic matter - both natural and anthropogenic; originate from 

terrestrial run off, riverine and aeolian input. Estuarine ecosystems are proper 

environments for studying the source, pathway and fate of organic matter due to 

the rapid accumulation of fine sediments and enhanced preservation potential 

(Hedges and Keil, 1999). It is therefore, crucial to distinguish the relative 

contribution of different sources of organic carbon to the biogeochemical cycles 

in estuarine environments to substantiate their ecological importance. 



Introduction  

15 

Eventhough a number investigations established their ecological, economical 

and societal value, estuarine ecosystems are under the threat of destruction due 

to urbanisation, industrialisation, coastal development, altered hydrology and 

sea level rise. The ecological functioning of these ecosystems has been varied 

without public notice. On account of ecological and economic importance as a 

coastal resource, estuaries requires more attention to protect these fragile 

ecosystems. Ever increasing demographic pressure and indiscriminate 

anthropogenic interventions during the past decades have delivered bulk 

quantities of nutrients, heavy metals and organic constituents to these vulnerable 

ecosystems. The evidence has been reported for nutrient enrichment, heavy 

metal accumulation and decline in productivity associated with the reduction in 

phytoplankton density in the Cochin estuarine System (Selvaraj et al., 2003; 

Jyothybabu et al., 2006; Ratheesh Kumar et al., 2010; Renjith et al., 2012; 

Selvam et al., 2012). The investigations on biogeochemical aspects of 

sedimentary organic matter have been carried out as an essential requirement to 

evaluate the quality, source and carbon budget. Since the organic matter 

deposited in aquatic sediments is directly related with the primary productivity, 

biogeochemical characterisation has to be adopted as a tool for the conservation 

and sustainable management of these vulnerable ecosystems. 

The biogeochemical functioning of estuarine environments has been 

assessed in a number of regions around the world (Galois et al., 2000; Bianchi, 

2007; Gireeshkumar et al., 2015), but the ability to elucidate carbon and nutrient 

budgets of these ecosystems is still incomplete. Long term monitoring of the 

geochemical parameters is required since the biogeochemistry of estuaries are 

complex due to the tidal influx of allochthonous organic matter via terrestrial 

run off. In order to understand the relative importance of biogeochemical 

processes, it is necessary to characterise the organic matter as well as to identify 
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its origin. Common chemical parameters are insufficient to explain the 

biogeochemical character of these fragile ecosystems effectively. Bulk 

geochemical parameters such as biochemical composition, elemental 

composition and stable carbon isotope ratio are relatively reliable proxies of 

organic matter origin. More specific information on organic carbon dynamics 

can be assessed through effective tools like molecular level characterisation.  

Cochin estuarine system, a highly productive tropical wetland (Ramsar 

site No. 1214) play an important role  as a nursery ground for a number of  

species of fishes, molluscs and crustaceans. Patches of mangroves distributed 

around the estuary create shelter to juveniles of many important species.  But 

the developmental activities around Cochin estuarine system have added to the 

complexities and environmental alterations. The estuary is under the influence 

of severe contamination in connection with the release of untreated effluents 

from industries and domestic sectors. Moreover, indiscriminate reclamation of 

land has declined the area of this unique tropical wetland from 365 to 265 km2 

(Gopalan et al., 1983). Extensive research on the physical, chemical and 

biological characteristics of Cochin estuary have been attempted by scientific 

community during the past decades, on account of its economical as well as 

environmental relevance. A number of studies have focussed on various 

physical, chemical and biological characteristics of this tropical wetland which 

have clearly evaluated the productivity, nutrient enrichment and heavy metal 

contamination (Balachandran et al., 2005; Deepulal et al., 2011, Selvam et al., 

2012). Severe encroachment, developmental and demographic pressure have 

exerted marked fluctuations in ecological functions.  

Studies on hydrodynamic conditions of Cochin estuary carried out in 

the last four decades have revealed drastic alterations in hydrological, 

biological and geological conditions (Qasim, 1980; Lakshmanan et al., 1982; 
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Joseph and Kurup, 1990; Menon et al., 2000; Balachandran, 2001; Joseph and 

Ouseph, 2009; Revichandarn et al., 2012). Total organic content in sediments 

play a significant role in the biogeochemical cycles and its degradation causes 

the production CO2 and other green house gases, which can trigger climatic 

changes. Therefore, degradation state of OM in sediments constitute an 

integral processes of estuarine ecosystem dynamics. Review of literature 

reveals that the characterisation of organic matter and the associated 

biogeochemical processes using amino acids and carbohydrates is poorly 

studied in this highly dynamic ecosystem. In this context, the present 

investigation intend to unravel the nature, preservation and degradation state 

of sedimentary organic matter in the surface sediments of Cochin estuary.  

Organic matter content in sediments is the most significant variable in 

biogeochemistry which regulates the distribution of other significant variables in 

the aquatic environment. Therefore, the quality and quantity of organic matter 

has to be assessed to have a better understanding of the biogeochemical cycling 

of carbon and other associated elements. Organic matter content in estuarine 

sediments are either originated from in situ primary production or by 

allochthonous inputs, resulting in a highly complex nature. The origin, 

distribution and degradation state of organic matter in sediments can be 

evaluated either by bulk parameters and molecular level approaches. The 

present study employed the bulk organic matter parameters like elemental ratios, 

stable carbon isotope and biochemical composition for source characterisation. 

The productive nature of the estuary was unravelled by biopolymeric carbon 

which categorised the stations as oligotrophic (unproductive), mesotrophic 

(intermediate productivity) and eutrophic (highly productive) states.   

Since nutrient content is directly linked with primary productivity, 

nutrient fractionation studies was carried out to assess concentration of 
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bioavailable N and P in the sedimentary environment as well as nutrient 

enrichment.  Although, there have been numerous works that attempted to 

trace the source of organic matter in estuarine systems (Akhil et al., 2013; 

Gireeshkumar et al., 2015), the degradation status of organic matter has not 

been investigated yet now. Molecular level detection and concentration of  

amino acids was utilised to describe the distribution, quality and degradation 

status of sedimentray organic matter in the estuarine system under 

investigation.  Degradation status of the sediments is a useful criteria while 

evaluating the carbon budget of aquatic environments. Since carbohydrates 

form an integral part of estuarine organic matter, distribution and content of  

free sugars in sediments was also analysed to establish the productive nature 

of the estuary. Understanding the biogeochemical processes is a fundamental 

aspect of scientific investigations to put forward strategies to conserve 

vulnerable ecosystems and to implement proper management practices and 

therefore the study implies the social relevance to the public. 

Objectives of the present study 

 To find the nutrient enrichment in the estuarine sediments using 

phosphorous and nitrogen fractionation. 

 To assess the spatio-temporal variations, nature and quality of bulk 

sedimentary organic matter as well as the benthic trophic status of the 

estuary.  

 Extraction, quantification and distribution of free sugars in sedimentary 

organic matter and its implications on productivity. 

 Distribution pattern and diagenetic process of amino acids in order to 

unravel the quality of estuarine sedimentary organic matter. 
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2.1 Description of the study region 

Cochin estuarine system (Latitude: 9° 40’ & 10° 12’ N and Longitude: 

76° 10’ & 76° 30’ E) forms a complex, network of shallow brackish water 

environment (250 km2) running parallel to the Kerala coast, with two 

permanent openings to the Arabian Sea. It is one of the most productive 

estuarine ecosystems (Qasim, 2003) and has been designated as a ‘Ramsar 

site’ (No. 1214). This tropical aquatic system is under the profound influence 

of monsoon, which contributes to about 71% of the annual rainfall 

(Jayaprakash, 2002) and accordingly there are three seasonal conditions 

prevailing viz. monsoon (June-September), post-monsoon (October-January) 

and pre-monsoon (February-May). Tides occurring in this estuary are of a 

mixed semi-diurnal type, exhibiting a maximum spring tide range of 

approximately1m (Srinivas et al., 2003). Constant mixing with seawater 

through tidal exchanges has provided the characteristics of a tropical estuary 

(Balchand and Nair, 1994; Ajith and Balchand, 1996). Investigations on 

hydrobiological aspects of the estuary pointed out the fact that high flushing 
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process during monsoon completely transforms the estuary into a freshwater 

habitat (Menon et al., 2000). Six rivers (namely: Periyar, Muvattupuzha, 

Pamba, Manimala, Meenachil and Achencovil) discharge about 20000 x 106 

m3 of fresh water into the estuary annually  (Srinivas, 1999) and variation in 

the river discharge induces a salinity gradient, which in turn causes remarkable 

diversity in plankton population. Moreover the circulation patterns in the 

northern and southern arms of the Cochin estuary are distinctly different, 

ascribed to the peculiar topography. The north-western part frequently 

develops flow restrictions due to converging tides entering from two adjacent 

inlets, whereas the southern arm experiences tidal amplification (Balachandran 

et al., 2008). 

Cochin estuarine system, the well-known biodiverse wetland is under the 

threat of severe ecological degradation due to massive reclamation (Gopalan et 

al., 1983), increased industrialisation and urbanisation (Menon et al., 2000; Qasim 

2003). The major industries located around the study region include: Fertilizers 

and Chemicals Travancore Ltd. (FACT), oil refinery (Bharath Petroleum 

Corporation Limited- Kochi Refinery), rare earth processing plant (Indian Rare 

Earth limited), mineral sand rutile plant, zinc smelter plant (Binani Zinc), 

insecticide manufacturing unit (Hindustan Insecticides Limited) and organic 

chemical plant (Hindustan Organic Chemicals Limited). The hydraulic barriers 

constructed on the southern limb of the estuary at Thanneermukkam region to 

prevent saline ingression into the upstream agricultural fields has imposed severe 

flow restrictions and increased sedimentation in the estuary (Menon et al., 2000). 

 

 



Materials and methods 

39 

2.2 Sampling, storage and analytical methods 

The water and sediment samples from nine stations situated along the 

Cochin estuary were collected in five sampling campaigns viz., April 2009 

(pre monsoon 2009: PRM09), August 2009 (monsoon 2009: MON09), 

January 2010 (post monsoon 2009: POM09), April 2010 (pre monsoon 2010: 

PRM10) and September 2012 (monsoon 2012: MON12). As the estuary has 

been continuously subjected to severe deterioration, on account of 

urbanisation and industrialisation, a regular monitoring of the physicochemical 

variables is an essential requirement to assess the variability in parameters and 

ecological health. Monsoon bring about heavy rainfall and the terrestrial run 

off delivers  huge loads of allochthonous materials to the estuary, causing wide 

fluctuations in physicochemical variables. Hence to understand   the recent 

state of the system and to gather an updated information on the 

biogeochemical status of the estuarine system, sampling during the monsoon 

2012 (MON12) was also carried out.    

The exact geographical location of sampling points and their 

characteristic features are depicted in Figure 2.1 and Table 2.1. Among the 

stations, Karippadam (S1), Murinjapuzha (S2), Perumbalam (S3) are river 

influenced with thickly populated banks and characterised by input of 

domestic wastes. Meanwhile fishing activities are prevailing at stations 

Thevara (S4), Marine Science Jetty (S5), Bolghatty (S6), Mulavukad (S7), and 

Cheranellur (S8) and are contaminated with domestic sewage. Inland 

navigation and tourism activities are prevalent at S8 and S9, while industrial 

belt (Northern part of the study area) include the station Eloor (S9), severely 

contaminated with untreated industrial effluents.  



Chapter 2 

40 

 

 

 

 
Figure 2.1 Location map of the sampling stations 
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2.2.1 Analysis of general hydrographical parameters 

Water samples (both surface and bottom) were collected using a Niskin 

Sampler (GO-FLO, USA). Sub sampling for determination of pH and DO was 

done in situ. The remaining portion of the water samples from Niskin Sampler 

were transferred carefully to pre-cleaned polythene bottles for the analysis of 

nutrients and other water quality variables. The water samples were kept in ice 

boxes and carried to the laboratory carefully without contamination. The analyses 

of nutrients were performed in the laboratory on the same day of sampling 

without delay. General hydrographical parameters and nutrients of the surface 

waters were analysed using standard methods. pH of the surface and bottom water 

samples was measured in situ using portable pH meter (Eutech, pH Tester 10). 

Salinity of the water samples was estimated by Mohr- Knudsen method (Muller, 

1999). Modified Winkler method was used for the estimation of dissolved oxygen 

(Hansen, 1999). Alkalinity of the water samples was estimated by the method of 

Koroleff  (Anderson et al., 1999). The concentration of nutrients (ammonia, 

nitrite, nitrate, phosphate and silicate) was  estimated using spectrophotometric 

methods (Grasshoff et al., 1983). Ammonia reacts in moderately alkaline solution 

with hypochlorite to give monochloramine which, in the presence of phenol, 

catalytic amounts of nitroprusside ions and excess of  hypochlorite, gives 

indophenol blue; its absorbance is measured using UV visible spectrophotometer 

(Genesys 10 UV Thermospectronic) at wavelength of 630 nm. Nitrite was 

converted to an azo dye with sulphanilamide and N- (1-naphthyl) ethylene 

diamine (Grasshoff et al., 1999). Nitrate was reduced to nitrite using copper-

coated Cd granules and estimated as nitrite (Grasshoff et al., 1999). Determination 

of inorganic phosphate was based on the reaction of ortho phosphate ions with 

acidified molybdate reagent to yield a phosphor molybdate heteropoly acid, which 

is then reduced to a blue coloured compound (Grasshoff et al., 1999). Silicate was 
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analysed by converting it into silicomolybdate complex, which is reduced, using 

ascorbic acid and oxalic acid, to produce a blue solution (Grasshoff et al., 1999). 

Light and dark bottle method (APHA, 1995) was used for the estimation of 

primary productivity. The “Winkler” method for determining dissolved oxygen is 

normally used in the ‘light and dark bottle’ technique for the measurement of 

primary productivity. 

Quantitative determination of chlorophyll pigments (chlorophyll-a.b,c) 

and phaeophytin in water samples was done by spectrophotometric analysis 

(APHA, 1995). For the estimation of chlorophyll, the water sample was 

filtered through GF/C glass fibre filter paper and a thin bed of magnesium 

carbonate was applied to the filter paper. The filter paper containing the 

pigments were transferred to a clean beaker and added 5 ml of 90 % acetone, 

and the beaker was wrapped with aluminium foil, kept overnight at 4oC in a 

refrigerator. The contents were macerated and made up the extract solution to 

10ml .The absorbance at wave lengths of 750 nm, 665 nm, 645 nm, 630 nm 

and 450 nm of the resulting acetone. Concentration of phaeophytin was 

determined by adding 2 drops of  0.5 N HCl to the same sample and measurement 

of absorbance were performed at wavelengths 750 nm and 665 nm.  

2.2.2 Analysis of sedimentary parameters 

Sediment samples were collected using a stainless steel van Veen Grab 

(0.042 m2) and stored in polythene bags and kept deep frozen till analyses. pH of 

the sediments was determined in situ using a portable pH meter (Eutech, pH 

Tester 10). Redox potential of the fresh wet sediments was measured in situ by 

portable Eh meter (Eutech, ORP Tester 10) which was calibrated with Zobell 

solution (Brassard, 1997).  The sediment texture ( contents of sand, silt and clay) 

was determined by pipette analysis (Krumbein and Pettijohn, 1938), based on 
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Stoke’s law after removing the inorganic carbonates using 10% HCl and organic 

matter using 15% H2O2. Sediment was dispersed in sodium hexametaphoshate 

overnight and then wet sieved through a 63 μm sieve to collect the sand fraction. 

The mud fraction was divided into silt and clay fractions by the timed gravimetric 

extraction of dispersed sediments (Folk, 1974). Sediment samples were freeze-

dried and finely powdered using agate mortar and pestle for further analyses. 

Total carbon, total nitrogen (TN) and total sulphur were determined using CHNS 

analyser (Vario EL III). Total organic carbon (TOC) was estimated by TOC 

analyzer (VARIO TOC SELECT- Elementar), after removing inorganic carbon 

using 2M HCl. The amount of total organic matter (TOM) was obtained by 

multiplying the organic carbon values with 1.724 (Nelson and Sommers, 1996). 

Stable carbon isotope analysis of Total Organic Matter (δ13C TOM) was carried 

out using Flash EA interfaced with IRMS (FINNIGAN DELTA PLUS XP, 

Thermo Electron Corporation). Stable carbon isotope abundance are presented as 

δ13C values and are expressed relative to the PDB (Pee Dee Belemnite) standard:  

13 12
Sample13

13 12
Standard

C / C 
C { 1} X 100

C / C PDB 
δ = −  

2.2.3 Fractionation of phosphorous in sediments 

Method of sequential extraction proposed by Golterman (1996) employs 

chelating agents for the determination of different phosphorus fractions (Figure 

2.2). Iron bound phosphorous (Fe(OOH)-IP) was leached with buffered Ca-

EDTA/dithionite and calcium bound fraction (Ca CO3-IP) subsequently with Na-

EDTA. In the next step, acid soluble organic phosphorous (ASOP) was eluted 

with H2SO4 and then alkali soluble organic phosphorous (Alkali-OP) with 2M 

NaOH at 90°C for 2 hours. Residual organic phosphorous (R-OP) was measured 

after 1 hour K2S2O8 digestion in acid medium.  
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Figure 2.2 Sequential extraction scheme for phosphorus fractionation 

2.2.4 Fractionation of nitrogen in sediments  

The scheme for nitrogen fractionation in sediments is shown in Figure 

2.3. The extraction and estimation of nitrite, nitrate, ammonia and urea were 

carried out by the KCl equilibrium extraction method (Agemian, 1997). 

Sediment samples were shaken with a solution of KCl (2N) at room 

temperature for a period of one hour followed by filtration through Whatmann 

42 filter paper. The filtrate containing the dissolved nitrogen was stored at 4oC 

until analysis. From the filtrate the nitrite, nitrate, ammonia and urea were 

quantitatively estimated by spectrophotometric analyses (Grasshoff et al., 

1999). For the estimation of total nitrogen, sediment samples were digested in 

H2SO4 in the presence of potassium sulphate and copper catalyst (Selenium 

Reagent mixture-MERCK) (Agemian, 1997). Organic compounds of nitrogen 

constituent as well as free inorganic forms were thus converted to ammonium 

ions which is determined spectrophotometrically using indophenol blue 

method  (Grasshoff et al., 1999). Kjeldahl extraction technique determines the 

concentrations of nitrogen apart from nitrate-N and nitrite-N. The sum of the 
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concentration of nitrate-N, nitrite-N and Kjeldahl-N gives an estimate of the 

total nitrogen. The difference between the total nitrogen and the sum of nitrate-

N, nitrite-N, ammonia-N and urea-N in sediments is expressed as  residual N. 

 

Figure 2.3 Sequential extraction scheme for nitrogen fractionation 

2.2.5 Analysis of biochemical composition in sediments 

Spectrophotometric methods were employed for the determination of 

biochemical constituents in sediments. Extraction and estimation of total protein 

(PRT) in sediments were carried out as per the standard methods (Lowry et al., 

1951; Rice, 1982), with albumin as the calibration standard. The quantity of 

protein nitrogen was obtained by multiplying protein with a factor of  0.16 (Mayer 

et al., 1986). Total carbohydrates (CHO) were analysed according to Dubois et al 

(1956), using glucose as the calibration standard. Analysis of total lipids (LPD) 

was carried out spectrophotometrically using cholesterol as the calibration 

standard (Bligh and Dyer, 1959; Barnes and Blackstock, 1973). The sum of all 

PRT, CHO and LPD was defined as the labile or easily assimilable organic 

fraction (Danovaro et al., 1993; Cividanes et al., 2002). PRT, CHO and LPD 

concentrations were converted to carbon equivalents by using the following 

conversion factors: 0.49, 0.40 and 0.75 g of C/g, respectively (Fabiano and 
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Danovaro, 1994). The sum of PRT, CHO and LPD carbon is referred to as 

biopolymeric carbon (BPC) (Fichez, 1991; Fabiano et al., 1995).  

Tannin and lignin in sediments were extracted using 0.05M NaOH at 60o 

for 90 minutes and estimated spectrophotometrically by the sodium tungstate-

phosphomolybdic acid method (Nair et al., 1989; APHA, 1995), using tannic acid 

as the calibration  standard. The principle involved is the development of a blue 

colour on reduction of Folin phenol reagent by the aromatic hydroxyl groups 

present in tannin and lignin. The effects of Mg and Ca hydroxides and/or 

bicarbonates present in the water samples were suppressed by the addition of 

trisodium citrate solution (Nair et al., 1989). 

Analysis of chlorophyll and phaeopigments in sediments of the study area 

was carried out according to standard procedures (Lorenzen and Jeffrey, 1980; 

APHA, 1995). Pigments in sediments were extracted with 90 % acetone (24 hrs in 

the dark at 4 °C). After centrifugation, the supernatant was used to determine 

chlorophyll pigments (chl-a, chl-b and chl-c) and there after acidified with 0.1N 

HCl to estimate the concentration of phaeophytin. Details of the 

spectrophotometric measurements are provided at section 2.2.1. 

2.2.6 Analysis of free sugars in sediments 

Finely powdered sediments (10g) were suspended in aqueous ethanol 

(70%, 2 h, thrice) and stirred continuously at room temperature. It was then 

centrifuged  (KUBOTA 6500, Japan) and the pooled extracts (free sugars) 

were deionized by passage through Dowex-50 (H+) and Dowex-1 (OH−) 

resins to remove cationic as well as anionic contaminants. The purified sugars 

were concentrated by rotary evaporator (Heidolph, Germany). The deionised 

samples dissolved in known volume of distilled water were analysed by high-
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performance liquid chromatography (HPLC) method (Vallentyne and Bidwell, 

1956; Suhasini, et al., 1997; Revanappa, 2009) [Shimadzu LC 2020 equipped 

with RID 10A detector and SUPELCOSIL LC-NH2 column (purchased from 

Sigma Aldrich)]. The separation was done at 30ºC with the mobile phase 

acetonitrile: water (8:2) with a flow rate of 0.8 ml per minute.  

The identification of individual compounds was done by comparison of 

retention time with those of standard compounds. The calibration curve was 

plotted using varying concentrations of the standards starting from 5 ppm to 

100 ppm. The concentration of the free sugars in the sample was determined 

from the peak area of the detected sugar. 

2.2.7 Analysis of amino acid in sediments 

Total hydrolysable amino acid (THAA) were extracted by adding 5ml HCl 

(6M) to freeze dried homogenized sediment (100 mg) in pre-cleaned and muffled 

(450oC for 3 hrs) glass vials, and purging the headspace with N2. The vials were 

kept in an oven at 110oC for 24h. The extracts were then centrifuged at a speed of 

5000 rpm for 10 min (KUBOTA 6500, Japan) and for neutralisation, it was 

washed with distilled water, HCl content in extract was removed (Stevenson and 

Cheng, 1970; Cheng, 1975) using rotary evaporator (Heidolph, Germany). For the 

detection and quantification of the extracted amino acids, pre-column 

derivatisation with phenyl isothiocyanate (PITC) (Bidlingmeyer et al., 1984) was 

used. In this technique, dried samples (HCl removed) were dissolved in 20 

μmol/L of ethanol : water : triethylamine (TEA) (2:2:1) and dried again under 

vacuum. Then to the dried sample, 20 µl freshly prepared reagent consisted of 

ethanol : water : TEA : PITC (7:1:1:1) were added under nitrogen atmosphere and 

sealing them for 30 minutes at room temperature. The reagents were then 
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removed under vacuum at 45o C to reduce the evaporation time without any 

significant sample difference in comparison to drying at lower temperatures (the 

dried derivatives could be kept dried and frozen for several weeks without 

significant degradation). The individual amino acids (AAs) - aspartic acid (Asp), 

glutamic acid (Glu), serine (Ser),  glycine (Gly), histidine (His), arginine (Arg), 

threonine (Thr), alanine (Ala), proline (Pro), tyrosine (Tyr), valine (Val), 

methionine (Met), cysteine (Cys), isoleucine (Ile), leucine (Leu), phenyl alanine 

(Phen) and lysine (Lys) were quantified according to Lindorth and Mopper (1979) 

by HPLC (Shimadzu LC 2020).  

The proposed solvent system consisted of two eluents. Solvent A, an 

aqueous buffer, was a solution of 50 mM sodium acetate containing TEA as 

modifier. The solution was degassed before the addition of TEA. The pH was 

adjusted to the desired value (6.8) using glacial acetic acid, and the solution 

was filtered through a 0.2 µm membrane filter. Solvent B consisted of water, 

acetonitrile, and methanol. Aqueous solutions containing acetonitrile and 

methanol are the most common solvents used in amino acid analysis in HPLC 

(Bidlingmeyer et al., 1984; Hariharan et al., 1993). The pH and TEA content 

of solvent A, the composition of solvent B, the temperature, and the mobile 

phase flow rate are specified as required for the experimental design. 

Ultraviolet spectrophotometric detection was carried out at 254 nm. Before 

starting the gradient for a certain run, the column was equilibrated for 30 

minutes as required with the associated experimental design. 

Prior to HPLC, the derivatised forms of the standard amino acid 

mixture and the individual amino acids were first dissolved separately in 12 µl 

of a 60% solution of acetonitrile and mixed thoroughly (ROTEK CYCLO-
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vortex mixer). Then, 113 µl of the corresponding solvent A was added to each 

sample and mixed well using vortex mixer.  

Instrument: High pressure Liquid chromatograph (Shimadzu Ultrafast LC 

2020) equipped with UV&RI detector. Column C18 (octadecayl Cilane) 

25cm*2.1mm* (particle size: 5µm diameter). Temperature: room temperature, 

flow rate 1 ml/minute. Calibration range:  0.0087 µmol/ml to 0.14 µmol/ml.  

The computation of amino acid carbon to TOC (THAA-C %) and amino 

acid nitrogen to TN (THAA-N %):- 

First calculate the C, N and Molecular weight (Mol.Wt.) for each 
individual amino acid (AAs) of standard used as given below: 
 
AAs          C          N       Mol.Wt. 

Lysine    72          28      146.20 

Tyrosine 108      14       181.20 

Average   ?            ?            ? 

Then take the average of C, N and Mol. Wt. for all AAs 

Now Average C value divided by Average Mol. Wt. that will give 

carbon content in AAs. The nitrogen content in AAs was calculated in 

the similar way. 

Now to calculate THAA-C% in terms of TOC THAA concentration, 

THAA-C and TOC  

1) THAA-C= THAA conc.  x Carbon content in AA  

2) THAA-C%= THAA-C/TOC X 100 

Similarly, THAA-N% in terms of TN can be computed as follows.  

     1) THAA-N= THAA conc.  x Nitrogen content in AA 

     2) THAA-N% = THAA-N/TN X 100 
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2.3 Statistical analysis 

All the estimations were carried out in triplicates and the average value 

are reported. Relevant data were subjected to statistical analysis wherever 

necessary. Pearson correlations were determined to find out the inter relations 

between different parameters. Statistical significance of the observed spatial 

and temporal variations in sediments was checked using two way ANOVA 

(stations x seasons). Principal component analysis was carried out using the 

software (SPSS 15.0) to find out the biogeochemical processes governing the 

distribution of estimated variables in the study area.  

2.4 Quality control 

All the bottles and collecting containers were acid washed and thoroughly 

rinsed with Milli-Q water before use. Chemicals/solvents used for the analysis of 

various parameters were purchased from Merck (India/Germany). Caliberation 

standards for amino acids and carbohydrates were purchased from Sigma-Aldrich 

(USA). All the glass wares were cleaned by ultra sonic bath followed by heating 

at high temperature in oven. 

2.5 Results of general hydrographic parameters 

The main factors which influence the hydrographic conditions of an 

estuary are the saline water ingression from ocean associated with tides and 

influx of fresh water brought in by the rivers. The bottom topography and 

geographical shape also play an important role in controlling the hydrographic 

regime of an estuary. The variability in physical, chemical and biological 

processes in estuarine salinity gradient has considerable impact on the 
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composition and distribution of sedimentary organic matter (Carreira et al., 

2011; Costa et al., 2011). The general hydrographic parameters and nutrients 

in water column have a direct control over the in situ primary production, 

distribution and fate of sedimentary organic matter. Therefore, a brief 

description of the spatio-temporal variation and concentration of water quality 

variables is presented in this section.   

The spatial and seasonal variation of different hydrographical parameters 

of surface and bottom waters are represented in Figures 2.4, 2.5 and 2.6. 

Terrestrial run off associated with monsoon rainfall creates remarkable seasonal 

variations in the hydrographical parameters in Cochin estuarine system. Present 

investigation recorded a variation in pH from 6.70±0.19 (S2; MON12) to 

8.10±0.14 (S6; POM09) in surface and 6.50±0.17 (S8; MON12) to 8.40±0.12 

(S5; PRM09) in bottom. Observed salinity ranged from 0.04±0.01 to 29.93±2.60 

psu and 0.04±0.02  to 33.50± 3.10 psu for surface and bottom waters respectively. 

The maximum salinity was recorded during POM09 and PRM10 at stations S6 

(surface) and S5 (bottom) respectively, which are located at the confluence of 

estuarine mouth. Present study revealed an alkalinity ranging from 6.40±0.67 mg 

CaCO3/l (S5; POM09) to 112.70± 12.67 mg CaCO3/l (S5; PRM09) for surface 

and 6.40±0.56 mg CaCO3/l (S5; POM09) to 105.80± 11.56 mg CaCO3/l (S5; 

PRM09) (mg CaCO3/l) for bottom waters (Figure 2.4). 

The maximum concentration for inorganic nitrite was observed at S9 

(PRM09; surface) and S4 (PRM10; bottom). The observed variation from 0.02 

to 1.01 µmol/l (surface) and 0.01 to 1.10 µmol/l (bottom); with an estimated 

average of 0.31±0.22 μmol/l. The observed nitrate content varied from 
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0.93±0.04 µmol/l (S3; PRM10) to 32.51±0.70 µmol/l (S1, MON09) in surface 

waters and 0.79±0.03 µmol/l (S6, PRM10) to 41.80±0.56 µmol/l (S2; 

MON09) in bottom waters. The ammonia recorded its maximum concentration 

at S4 (410.50±0.70 µmol/l) during PRM10 and minimum recorded at S1 

(0.02±0.01 µmol/l) during MON12 for surface water. However in the case of 

bottom water, maximum concentration was displayed at S7 (132.80±0.70 

µmol/l, PRM10) and minimum at S1 (0.03±0.01 µmol/l, MON12) (Figure 2.5). 

During the pre-monsoon season, when river run off weakens, no 

vertical stratification was observed and fresh water conditions were prevalent 

during the monsoon season. However, stratification was seen during the post-

monsoon season. Wide fluctuation was exhibited by dissolved oxygen (DO) 

and its concentrations were in the range: 3.32±0.33 to 7.20±0.11 mg/l 

(surface) and 2.24±0.03 to 7.92± 0.04 mg/l (bottom). The observed maximum 

DO was noted at stations S1 (surface) and S9 (bottom) during MON12. The 

estimated inorganic phosphate content ranged from 0.01±0.03 µmol/l (S2; 

PRM10) to 3.06±0.05 µmol/l (S6; PRM09) (surface) and 0.03±0.04 µmol/l 

(S3; POM09) to 4.16±0.05 µmol/l (S4; PRM09) (bottom). The concentration 

of silicate in surface water samples varied from 8.53±0.05 to 121.10±0.06 

µmol/l, while in bottom samples it ranged between 10.00±0.45 and 

118.90±0.55 µmol/l. The maximum content for silicate (Figure 2.6) was 

recorded for surface water at S6 (POM09) and bottom water at S9 (POM09).  
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Figure 2.4 Distribution of pH, alkalinity and salinity in the water samples 
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Figure 2.5 Spatio-temporal variations of inorganic nitrite, nitrate and ammonia in water samples 
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Figure 2.6 Concentration of dissolved oxygen, silicate and inorganic phosphate in water samples 
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Anthropogenic activities have remarkable influences on the water 

quality of aquatic ecosystems (Siddiqui, 2011; Clemente et al., 2012; Kiteresi 

et al., 2012). The stability of the ecosystem is influenced by salinity, grain 

size, nutrient content and dynamics, physiological tolerance, predation and 

competition at local level (Smith et al., 2003). Despite the fact that nutrients in 

the tropical marine ecosystems are generally low (Qasim and Wafar, 1990). 

Salinity showed minimum value during monsoon season (Figure 2.4) due to 

fresh water runoff. The maximum was reported from station S6, due to the 

peculiar geographical location in the vicinity of Arabian Sea and the tidal 

activity altered the salinity of the other estuarine stations significantly (Manju 

et al., 2012). In aquatic systems, oxygenation is the result of an imbalance 

between the process of photosynthesis, degradation of organic matter, 

reaeration (Granier et al., 2000), and physicochemical properties of water 

(Aston, 1980). The anoxic conditions observed at various stations were 

attributed to the higher concentration of organic matter and salinity variations. 

In the present study nitrate exhibited higher concentration during 

monsoon in both surface and bottom water and lower content was found 

during premonsoon (Figure 2.5). Distribution of nitrogen content in water 

column is controlled by the balance between assimilation, mineralisation, 

nitrification, denitrification and nitrogen fixation (Solanki et al., 2010). 

Stations S1, S2, S8 and S9 received large quantities of sewage and industrial 

wastes resulting in the creation of reducing environment and recorded elevated 

levels of nutrients. 

Comparatively higher content of phosphate was recorded during 

PRM09. During the study period (in MON09 and PRM09 season) nitrate and 

phosphate in water body considerably increases due to land drainage and 

anthropogenic activities. The lower content of these nutrients observed in the 
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study period (Figure 2.5 and 2.6) might be due to the decreased runoff, 

adsorption on to sediments, and utilisation by phytoplankton (Ramakrishnan et 

al., 1999). Higher concentration of silicate in surface and bottom water was 

observed at stations S6 and S9 respectively during POM09 (Figure 2.6) 

attributed to the riverine input. Meanwhile, lower content was observed at 

stations S9 (surface water-MON09) and S6 (bottom water-PRM09). 

Weathering process and land run-off largely contribute to silicate 

concentration of these estuarine ecosystems (Manju et al., 2012). 

Various chemical processes affect diurnal variation of nitrogenous 

nutrients in the system is depicted in Table 2.2. Nutrient distribution and 

variation in estuarine systems are generally controlled by a variety of physical, 

chemical and biological processes (Pritchard and Schubel, 1981). The negative 

correlation (Table 2.2) between salinity and nutrients (nitrate and silicate) 

within the estuary indicated that the nutrient levels are controlled by the 

discharge inputs. From the interrelationships between nutrients (Table 2.2), it 

could be inferred that they were originated from the same source. Comparing 

the hydrographical data of the present study with those of previous 

investigations (Table 2.3), revealed that the system maintains its unique 

character.  

Table 2.2 Correlation matrix of the various hydrographical parameters in water column (n=45) 
 pH DO Salinity Alkalinity Phosphate Silicate Nitrate Nitrite Ammonia 
pH  1         

DO  -0.52(**) 1        

Salinity  -0.49(**) 0.63(**) 1       

Alkalinity  0.52(**) -0.28(**) -0.20 1      

Phosphate  -0.59(**) 0.12 0.23(*) -0.48(**) 1     

Silicate  0.53(**) -0.31(**) -0.41(**) 0.26(*) -0.44(**) 1    

Nitrate  0.53(**) -0.26(*) -0.41(**) 0.36(**) -0.54(**) 0.26(*) 1   

Nitrite  -0.45(**) 0.41(**) 0.31(**) -0.34(**) 0.39(**) -0.31(**) -0.37(**) 1  

Ammonia  0.09 -0.23 -0.04 0.08 0.07 -0.04 -0.26 0.31(*) 1 
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Table 2.3 Earlier studies of important water quality parameters in Cochin estuary 

Parameters Concentration Reference 
Salinity 0.5-34 Ramamirtham and Jayaraman, 1963 
Phosphate 0.22-2.90 µg/L Ansari and Rajagopal, 1974 
Salinity ῀33 (maximum) Kunjukrishnan Pillai, et al., 1975 
DO 5.9 µg/L 
Phosphate 32 µg/L 
Nitrite ῀2.6 µg/L (maximum) 
Nitrite ῀2.6 µg/L (maximum) 
Salinity 0.30-35.50 MadhuPratap, 1978 
DO 0.5-5 mg/L 
Salinity 0.21-34.30 Remani et al., 1983 
DO 0.05-4. 4 mg/L 
pH 6.08-8.15 (surface) 

5.95-8.77 (bottom) 
Ratheeshkumar et al., 2010 
 

Salinity 6.08-8.15 (surface) 
5.95-8.77 (bottom) 

DO 4.57-7.68 mg/L (surface) 
3.04-8 mg/L (bottom) 

Alaklinity 12-314 mg/L (surface) 
16-208 mg/L (bottom) 

Phosphate 5.29-49.73 µmol/l 
Silicate 3.55-63 µmol/l 
Slicate 3.2-123.50µM Selvam et al., 2011 
pH 6.3-8.3 
Salinity 5.4-28.40 
DO 4.3-8.6 mg/l 
Salinty 0.01-32.95 Renjith et al., 2012 
DO 1.96-10.16 mg/l 
Nitrite 0.11-4.65 µM 
Nitrate 0.97-49.96 µM 
Ammonia BDL-253.70µM 
Phosphate BDL-13.70µM 
Salinity 0.04±0.01 to 29.93±2.60 (surface) 

0.04±0.02 to 33.50± 3.1 (bottom) 
Present study 

pH 6.70±0.19-8.10±0.14 (surface) 
6.50±0.17-8.40±0.12 (bottom) 

DO 3.32±0.33 to 7.20±0.11 mg/l (surface) 
2.24±0.03 to 7.92± 0.04 mg/l (bottom) 

Alaklinity 6.40±0.67-112.70± 12.67 mgCaCO3/l (surface) 
6.40±0.56 - 105.80± 11.56 mgCaCO3/l   (bottom) 

Nitrite 0.02 to 1.01µmol/l (surface) 
0.01 to 1.10 µmol/l (bottom) 

Nitrate 0.93±0.04- 32.51±0.70 µmol/l (surface) 
0.79±0.03 - 41.80±0.56 µmol/l (bottom) 

Ammonia 0.02± 0.01-410.50±0.70 µmol (surface) 
0.03±0.0-132.80±0.70 µmol /l(bottom) 

Phosphate 0.01±0.03 - 3.06±0.05 µmol/l(surface) 
0.03±0.04 - 4.16±0.05 µmol/l (bottom) 

Silicate 8.53±0.05 to 121.10±0.06 µmol/l (surface) 
10.00±0.45-118.90±0.55 µmol/l (bottom) 
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3.1 Introduction  

Biologically available nitrogen (N) and phosphorous (P) play a key role 

in determining the ecological status of aquatic systems (Jarvie et al., 1998). 

Both N and P can act as limiting element for primary production in most 

marine and coastal ecosystems (Thingstad et al., 1998; Mortimer et al., 1999). 

The benthic release of N could play a prominent role in sustaining the 

productivity of estuarine ecosystems (Renjith et al., 2011). In aquatic 

environments, N and P exchange at the water-sediment interface is controlled 

by many complex physicochemical and biological processes. Nutrient sources 

to estuaries vary with inputs associated with freshwater flow (Peierls et al., 

1991), atmospheric deposition (Paerl et al., 2002), submarine groundwater 

discharge (Santos et al., 2008), and nitrogen fixation (Gardner et al., 2006; 

Fulweiler et al., 2007). Anthropogenic impacts including rising nutrient loads 

in rivers and estuaries from fertiliser application, rapid development of 

aquaculture facilities and urbanisation (Zhang etal., 1996; Li et al., 2002; Liu 
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et al., 2009) can alter the nutrient content in sediments. The impacts of these 

anthropogenic activities on aquatic systems include: shifts in the composition 

of plankton species (Sanders et al., 1987; Oviatt et al., 1989) and the 

enhancement of primary production, which results in increased respiration, 

leading to the formation of oxygen deficient zones (Diaz and Rosenberg, 

2008; Zhang et al., 2010). A major fraction of the growth limiting elements in 

the aquatic environment is reversibly associated with surficial sediment, hence 

the evaluation of nutrient dynamics in sediments can be used as a tool to 

describe the general geochemical setting and the health of the estuarine 

system. This Chapter, focussed on the distribution of the different fractions of 

N (Nitrite-N, Nitrate-N, Urea-N, ammonia-N, Kjeldahl-N and Residual-N) and 

P (Iron bound inorganic-P  (Fe(OOH)–IP), Calcium bound Inorganic-P 

(CaCO3-IP), Acid soluble organic-P, Alkali soluble organic-P, Residual 

organic-P), in the sediments of Cochin estuary to assess their geochemical 

implications. 

3.2 Results 

3.2.1 General sediment characteristics 

Wide fluctuations intexture (sand, clay and silt) were observed in the 

sediments of the study region (Figure 3.1). The content of sand ranged from 

0.38±0.01% (S8; MON12) to 99.14±0.06% (S9; MON09) and exhibited 

significant seasonal variations. Similarly clay content also displayed seasonal 

variation (p<<0.01) and ranged from 0.10±0.01% (S9; MON09) to 

47.59±1.21% (S8; MON12). Meanwhile, in the case of silt, the observed 

variation was from 0.24±0.02 % (S9; MON09) to 86.60±1.45% (S4; POM09). 
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Sediment pH (Table 3.1) showed slightly alkaline nature during the 

investigation with its minimum and maximum was recorded at S8 (6.65±0.12; 

PRM10) and S5 (8.30±0.11; PRM09) respectively. Characteristic reducing 

conditions was indicated by Eh values (Table 3.1); which displayed a range of 

-345±1.5 mV (S6; PRM09) to -29.78±1.7 mV (S9; MON12).  

 

 

 

 
Figure 3.1 Grain size variations in surface sediments of the study area 
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3.2.2 Phosphorous fractions in sediments 

The various fractions ofphosphorous in the surface sediments of the 

study area are depicted in Table 3.2. Concentration of total phosphorous-TP 

(sum of all P fractions) in the estuarine sediments ranged from 

222.92±3.89µg/g (S9; POM09) to 4348.66±15.35µg/g (S8; PRM10). Fe 

(OOH) -IP recorded its maximum, during POM09 at S8 (2724.66± 2.86 µg/g) 

while the minimum was noticed during MON12 at S9 (115.27±1.27 µg/g). The 

content of CaCO3-IP recorded its maximum at S8 (2726.76±12.23 µg/g; 

PRM10) and minimum at S9 (20.39±0.54 µg/g; MON12) during the study period. 

Acid soluble organic phosphorous (ASOP) found to vary from 

10.29±0.17µg/g(S9; MON12) to 555.42±2.87µg/g(S8; PRM10). Meanwhile, 

alkali soluble organic-P (Alkali-OP) in the sediments ranged between 

0.96±0.12µg/g(S3; POM09) and 3242.40±11.96µg/g(S9; MON09). Residual 

organic phosphorous (R-OP) in the study region varied from 0.39 ± 

0.02µg/g(S2; POM09) to 148±2.23µg/g(S8; PRM09). 

Table 3.2.Various phosphorous fractions (µg/g) in the sediments of the study area 
P- fraction Stations PRM09 MON09 POM09 PRM10 MON12 

Fe
(O

OH
)-I

P 

S1 513.36±5.15 666.37± 6.22 731.69±7.82 622.29±8.78 661.34±6.11 
S2 187.79±2.38 378.42±6.78 286.34±8.32 880.16±8.43 369.04±3.21 
S3 1024.83±7.89 348.14±7.48 282.93±7.63 1024.03±9.67 336.83±2.25 
S4 523.17±4.78 333.60±3.56 1320.17±6. 29 1017.76±11.42 317.41±2.18 
S5 1088.73±8. 56 1095.86±4.42 1142.62± 7.26 1358.70±10.23 1081.61±8. 43 
S6 1192.74±4.79 843.65±5.22 1128.19±5.48 1144.88±8.94 827.86±4.39 
S7 858.83±5.78 526.26±6.73 538.12± 5.97 1024.94±9.69 514.16±1.55 
S8 1237.93±6.74 916.01±5.65 2724.66±2.86 738.22±11.21 916.00±1.33 
S9 754.68±3.54 123.06±4.32 136.93±3.76 148.98± 1.12 115.27±1.27 

Ca
CO

3-I
P 

S1 435.75±7.66 133.67±5.73 143.07±7.27 217.39±2.48 127.67±1.06 
S2 363.19±6.98 76.02±3.78 43.16±4.56 129.08±1.22 70.02±1.18 
S3 410.10±5.87 88.68±2.56 40.45±3.21 159.13±1.31 82.68±1.02 
S4 183.17±3.86 229.04±3.28 226.42±7.67 187.36±1.13 223.04±1.33 
S5 652.13±4.62 537.07±3.19 180.13±6.59 194.34±2.21 531.07±1.12 
S6 439.55±6.28 519.31±4.54 290.87±4.89 242.08±2.15 513.31±0.94 
S7 238.37±4.72 265.68±2.43 222.72±3.65 164.00±1.73 259.68±0.28 
S8 996.84±3.95 1359.93±12.34 997.34±5.89 2726.76±12.23 1353.93±1.32 
S9 109.12±2.43 26.39±1.87 58.71±3.33 161.83±1.43 20.39±0.54 
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AS
OP

 

S1 118.61±6.39 103.98±2.11 152.15±4.53 153.38±1.25 97.98±0.28 

S2 77.29±2.31 79.29±1.13 67.95± 4.26 112.77±1.11 73.29±1.01 

S3 149.26±3.29 26.15±0.56 29.51±1.78 101.38±1.82 20.15±0.79 

S4 182.63±3.45 119.81±0.78 156.40±2.34 121.32±1.43 113.81±0.77 

S5 255.99±3.67 231.09±2.19 146.40 ±3.57 134.12±1.58 225.09±1.28 

S6 216.19±4.41 296.65±1.87 209.06±6.88 162.21±2.12 290.65±0.97 

S7 148.09±3.97 241.89±1.59 189.57±5.68 204.50±4.19 235.89±0.89 

S8 418.45±4.25 287.92±1.94 346.71±6.97 555.42±2.87 281.92±0.27 

S9 220.42±3.47 16.29±1.19 25.42±3.94 54.16±1.13 10.29±0.17 

Al
ka

li-
OP

 

S1 341.37±2.36 94.40±1.11 180.43±8.93 350.24±1.28 88.40±0.08 

S2 870.23±3.14 128.03±1.18 2.20±0.89 81.52±1.56 122.03±1.17 

S3 922.17±4.11 24.77±1.32 0.96±0.12 92.17±0.96 18.77±1.01 

S4 306.06±2.24 821.96±1.78 10.55±0.77 90.50±1.21 815.96±0.88 

S5 616.77±1.15 268.45±3.22 12.45±0.58 106.76±0.95 262.45±1.32 

S6 675.22±1.27 341.11±2.75 13.34±0.48 135.69±0.91 335.11±1.07 

S7 1184.75±3.47 200.38±3.18 11.05±0.85 127.48±0.50 194.38±1.03 

S8 613.44±3.65 412.06±2.43 26.84±1.01 313.12±1.26 406.06±0.85 

S9 203.69±1.74 3242.40±11.96 1.45±0.06 53.51±2.27 3236.40±10.06 

R-
OP

 

S1 46.29±1.27 131.76±1.94 13.79±0.18 40.34±0.78 125.76±1.21 

S2 45.80±2.23 69.84±1.21 0.39±0.02 3.06±0.82 63.84±0.88 

S3 130.05±1.71 47.71±1.98 0.75±0.03 3.34±0.18 41.71±0.95 

S4 77.00±1.15 57.37±1.45 2.10±0.01 5.37±0.21 51.37±0.67 

S5 131.74±1.94 75.65±2.23 1.47±0.05 0.73±0.05 69.65±0.59 

S6 90.82±2.11 62.20±1.87 5.33±0.28 20.35±1.15 56.20±0.62 

S7 78.20±1.35 49.62±1.65 1.03±0.08 2.02±0.08 43.62±0.48 

S8 148.00±2.23 114.62±2.27 1.16±0.03 15.13±0.25 108.62±0.54 

S9 81.47±2.36 24.33±2.19 0.41±0.02 0.77±0.07 18.33±0.95 

TP
 

S1 1455.38±2.34 1130.17±2.36 1221.13±6.98 1383.65±11 1099.19±6.93 

S2 1544.30±4.41 731.60±1.86 400.04±5.96 1206.59±8.12 700.62±5.19 

S3 2636.40±23.42 535.44±2.43 354.61±4.87 1380.05±9.45 504.46±5.28 

S4 1272.03±12.48 1561.78±3.18 1715.64±11.02 1422.31±8.44 1530.80±6.74 

S5 2745.35±10.05 2208.11±2.87 1483.06±10.22 1794.65±6.87 2177.13±10.05 

S6 2614.52±8.74 2062.91±3.82 1646.79±8.93 1705.23±9.58 2031.93±8.94 

S7 2508.25±6.83 1283.83±4.18 962.50±7.45 1522.93±10.34 1252.85±9.48 

S8 3414.66±9.56 3090.54±3.85 4096.71±6.89 4348.66±15.35 3059.56±11.21 

S9 1369.38±7.93 3432.46±4.46 222.92±3.89 419.24±5.88 3401.48±18.32 
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3.2.3 Nitrogen fractions and total sulphur in sediments 

The different fractions of nitrogen estimated in the sediments of the 

estuary were: nitrite-N, nitrate-N, ammonia-N, Kjeldahl-N, urea-N, total-N and 

residual-N. The spatial and temporal distribution of various N fractions in 

sediments is presented in Table 3.3. Concentration of sedimentary nitrite-N 

recorded its maximum (13.88± 0.19 µg/g) at S9 during POM09, while minimum   

(0.71± 0.15 µg/g) was noted at S8 during POM09, and also exhibited strong 

spatial variation (p<0.05). While the maximum content of nitrate-N was observed 

at S7 (2700.50±8.43 µg/g) and the minimum was recorded at S4 (28.32±1.83 

µg/g) during the period of PRM10 and MON09 respectively with seasonal 

variation (p<0.01). It was observed that ammonia-N recorded its maximum at S2 

(3.60± 0.21 µg/g) and the minimum was observed at S8 (0.06±0.02µg/g) during 

POM09 and MON12   respectively, with significant spatial and seasonal variation 

(p<<0.01). Meanwhile the Kjeldahl-N (Kj-N) during the study period ranged 

between 35.30 ± 1.58 µg/g (S9; MON09) and 12886.44 ± 9.65 µg/g(S7; PRM10) 

and revealed significant seasonal variation (p<0.01). The urea-N fluctuated 

between 0.45±0.03µg/g (S1; PRM09) and 6.22±0.07 µg/g (S5; MON12), with the 

spatial and seasonal variations (p<0.01).  In the case of residual-N (subtracting 

sum of nitrite, nitrate, ammonia, and urea nitrogen from total-N), the maximum 

was observed at S4 (8898.66±12.32µg/g; MON12) and minimum at S9 

(33.40±1.43 µg/g; MON09) with seasonal variation (p<0.01). The observed 

variation in total-N (TN = Kj-N + Nitrate-N + Nitrite-N) was from 294.75±1.18 

µg/g(S9; MON09) to 15594.43±13.22 µg/g(S7; PRM10) and exhibited spatial 

and seasonal variations (p<0.01). The total sulphur (TS) in the sediments of the 

study area varied from 0.06 % (S4; MON12) to 3.10 % (S4; PRM10) with 

significant spatial variation (p<<0.01). 
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Table 3.3 Various nitrogen fractions (µg/g) and total sulphur (%) in surface sediments of the study area 
Nitrogen 
fraction Stations PRM09 MON09 POM09 PRM10 MON12 

Ni
tri

te
-N

 

S1 10.08±1.12 7.65±0.19 13.33±1.19 7.14±0.21 5.21±0.32 

S2 8.72±0.78 5.51±1.12 5.71±0.84 7.26±0.34 6.25±0.52 

S3 4.96±0.29 1.22±0.76 2.62±0.05 6.78±0.56 3.45±0.05 

S4 6.64±0.18 4.08±0.28 3.09±0.08 2.62±0.07 2.95±0.04 

S5 5.76±0.22 2.14±0.41 2.38±0.03 7.74±0.17 6.99±0.21 

S6 6.20±0.24 2.86±0.09 2.14±0.03 3.81±0.26 8.03±0.34 

S7 4.32±0.17 3.47±0.04 9.40±0.17 7.50±0.28 4.88±0.28 

S8 11.60±0.78 3.16±0.11 0.71±0.15 5.36±0.31 7.48±0.21 

S9 5.33±0.05 10.47±0.28 13.88±0.19 7.67±0.27 6.74±0.31 

Ni
tra

te
-N

 

S1 511.00±3.72 475.64±3.18 2379.49±10.16 2593.88±6.74 784.80±1.11 

S2 409.90±2.11 235.25±3.29 1074.50±4.93 753.57±1.23 571.33±1.29 

S3 308.29±2.19 138.78±2.19 810.40±2.73 363.24±1.31 176.61±0.91 

S4 83.12±1.78 28.32±1.83 1258.03± 8.87 1572.27±7.56 397.05±2.73 

S5 226.25±2.25 291.14±1.58 873.16±2.11 697.60±6.21 999.82±8.11 

S6 429.41 ±1.83 147.87±1.93 246.53±1.18 558.27±2.92 1700.93±8.96 

S7 344.76±1.74 234.24±2.18 186.59 ± 2.17 2700.50±8.43 1644.89±7.48 

S8 191.56±1.28 664.85±3.19 870.56±1.92 805.34±5.81 982.83±8.14 

S9 246.53±1.83 248.98±3.34 296.43±6.68 600.84±4.97 201.17±3.18 

Am
mo

nia
-N

 

S1 0.25±0.04 1.13±0.14 2.13±0.18 0.25±0.03 0.57±0.02 

S2 1.38±0.03 3.38±0.11 3.60±0.21 1.63±0.02 2.82±0.04 

S3 1.25±0.04 2.50±0.06 2.70±0.12 1.38±0.03 1.94±0.03 

S4 0.25±0.12 0.88±0.03 0.90±0.07 0.25±0.02 0.32±0.04 

S5 0.50±0.08 1.13±0.05 1.63±0.13 0.25±0.02 0.65±0.02 

S6 0.50±0.04 1.13±0.06 1.40±0.07 0.50±0.01 0.46±0.03 

S7 0.38±0.03 0.90±0.02 1.00±0.09 0.38±0.02 0.34±0.01 

S8 0.50±0.04 0.63±0.04 0.90±0.03 0.50±0.03 0.06±0.02 

S9 0.38±0.05 1.13±0.06 2.40±0.12 0.50±0.01 0.23±0.02 

Kj
eld

ah
l-N

 

S1 997.83±1.28 1880.67±4.76 2971.31±8.39 1964.87±8.93 712.61±3.43 

S2 327.76±1.76 995.08±2.19 826.05±4.19 1725.66±7.95 1083.21±6.83 

S3 2267.38±1.47 945.01±3.18 867.71±3.35 1665.47±9.92 1340.00±6.97 

S4 756.38±1.82 910.46±3.11 2260.40±14.18 1295.65±10.17 8900.00±9.93 

S5 2051.87±9.94 1839.93±7.29 1665.19±8.73 1217.60±13.14 2461.60±11.31 

S6 1568.78±11.19 2061.83±8.38 1938.55±7.49 1585.00±10.23 1749.12±12.26 

S7 354.84±2.85 859.10±2.84 797.72±3.92 12886.44±9.65 960.00±6.79 

S8 4604.69±8.93 4006.00±8.83 3529.60±10.52 2748.04±12.86 4457.46±10.93 

S9 252.11±1.17 35.30±1.58 281.75±1.12 100.85±7.67 113.20±4.50 
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Ur
ea

- N
 

S1 0.45±0.03 1.29±0.45 2.87±0.18 2.43±0.24 1.87±0.18 

S2 1.89±0.05 0.69±0.05 4.20±0.11 1.55±0.11 1.52±0.13 

S3 1.77±0.18 2.97±0.11 3.60±0.25 1.26±0.08 1.68±0.05 

S4 0.87±0.07 1.45±0.18 0.87± 0.03 0.50±0.01 1.03±0.03 

S5 0.65±0.08 1.66±0.29 1.88±0.01 2.74±0.88 6.22±0.07 

S6 0.69±0.07 0.61±0.08 1.67±0.02 1.03±0.05 1.77±0.17 

S7 0.89±0.09 1.18±0.02 1.37±0.03 2.02±0.18 1.89±0.04 

S8 0.95±0.03 1.14±0.04 1.30±0.01 1.83±0.04 1.57±0.05 

S9 0.56±0.03 0.78±0.05 2.80±0.08 0.80±0.02 0.49±0.02 

Re
sid

ua
l-N

 

S1 997.13±2.18 1878.26±11.23 2966.32±10.81 1962.19±8.94 710.17±3.76 

S2 324.50±3.74 991.02±3.48 818.25±5.19 1722.49±10.23 1078.87±8.76 

S3 2264.36±8.81 939.54±3.82 861.41± 6.11 1662.84±7.49 1336.38±8.37 

S4 755.26±4.19 908.13±2.84 2258.63±8.93 1294.90±10.11 8898.66±12.32 

S5 2050.72±9.65 1837.15±3.88 1661.68±10.21 1214.62±9.34 2454.73±8.93 

S6 1567.60±4.79 2060.10±8.72 1935.48±8.72 1583.48±7.94 1746.89±8.38 

S7 353.58±5.82 857.02±4.83 795.36±3.30 12884.05±8.87 957.77±6.92 

S8 4603.24±8.25 4004.24 ± 10.82 3527.40±8.36 2745.72±3.85 4455.82±4.18 

S9 251.17±2.19 33.40±1.43 276.55±7.49 99.55±1.16 112.48±2.18 

TN
 

S1 1518.92±13.18 2363.97±10.94 5364.13±13.51 4565.89±9.77 1502.61±7.88 

S2 746.38±6.12 1235.84±8.79 1906.27±10.81 2486.50±8.92 1660.78±9.48 

S3 2580.64±14.12 1085.01±7.43 1680.73±8.92 2035.49±6.32 1520.06±4.57 

S4 846.14±4.82 942.86±3.68 3521.52±7.96 2870.53±7.38 9300.00±6.94 

S5 2283.88±7.85 2133.22±3.84 2540.73±5.82 1922.94±12.11 3468.41±10.37 

S6 2004.39±8.50 2212.56±3.81 2187.22±8.76 2147.08±10.34 3458.09±10.18 

S7 703.92±3.91 1096.80±3.92 993.71±5.92 15594.43±13. 22 2609.77±11.02 

S8 4807.85±15.82 4674.02±4.13 4400.87±10.85 3558.73±10.94 5447.77±8.99 

S9 503.97±4.92 294.75±1.18 592.07±7.28 709.35±9.32 321.11±4.89 

TS
 

S1 0.72±0.01 1.51±0.04 2.24±0.03 2.51±0.04 0.46±0.07 

S2 0.26±0.04 0.52±0.01 0.55±0.02 0.41± 0.36±0.03 

S3 1.41±0.02 0.46±0.02 0.40±0.01 0.51±0.08 0.16±0.03 

S4 0.61±0.03 0.36±0.03 2.52±0.05 3.10±0.04 0.06±0.01 

S5 1.78±0.05 1.64±0.05 1.66±0.08 1.45±0.05 1.11±0.01 

S6 1.34±0.09 1.38±0.01 1.46±0.08 1.81±0.03 1.12± 

S7 0.30±0.07 0.77±0.02 0.80±0.05 0.92±0.1 0.47±0.02 

S8 2.06±0.03 2.15±0.04 2.07±0.03 1.91±0.02 0.80±0.03 

S9 0.50±0.1 0.16±0.1 0.19±0.02 0.31±0.03 0.10±0.01 

 

 



Chapter 3 

78 

3.3 Discussion 

The texture of the sediment displayed distinct spatial as well as 

seasonal variation (p<<0.01). Increased river runoff associated with high 

precipitation during monsoon season (Menon et al., 2000), resulted in higher 

sand content, which was more pronounced at Eloor (S9; MON09, Figure 3.1). 

Fine grained fractions of sediments viz., silt and clay displayed positive 

correlations with most of the sedimentary variables, while sand exhibited strong 

negative correlations (Table 3.4). This observation revealed the fact that the grain 

size of the sediments have a profound role in the distribution pattern of 

geochemical parameters of the sediments in the study area (Prasad and 

Ramanathan, 2008; Wen et al., 2008; Renjith et al., 2011). Sediments from the 

majority of the stations exhibited significant fluctuation in textural 

characteristics indicating the discharge dependency in riverine and estuarine 

zones (Saraladevi et al., 1992; Muraleedharan Nair and Ramachandran, 2002). 

A gradual downstream decrease in sand content denoted textural maturity of 

the sediments. Northern side of the study region was characterised by sandy 

sediments. The complex current pattern prevalent in the area and dredging also 

influence the varying textural characteristics of the sediments.The physical 

processes of transportation and deposition can alter the grain size of 

sediments. Depending on the competency of flow, finer material gets entrained 

in the runoff, thus leaving behind the coarser sediments, resulting in the 

predominance of sand in the upper reaches of the study area.On account of the 

slackening of river flow while nearing the confluence results in incompetence 

to carry coarser material leading to the fining of sediment grain size. Another 

important factor that influences sediment texture in the estuarine region is the 

fine material transfer from seaside associated with the flood tide. In addition to 
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this, random water movements arising from tidal cycles also control the 

sediment distribution pattern.  

Elemental ratios: Stoichiometric nutrients ratios are utilised to determine the 

origin and transformation of organic matter in sediments (Yamamuro, 2000). 

Redfield (1958) proposed a TOC/TP ratio of 7 for algal input. Wide range of 

TOC/TP (28 - 56) and TN/TP (4 -9) ratios in aquatic sediments can still obey 

Redfield ratio (Hecky et al., 1993). The TOC/TP ratios (Figure 3.2) displayed 

large variations in the study region which varied from 0.47 (S9; MON09) to 

47.27 (S1; POM09). The TN/TP ratios were very low and did not exhibit 

much variation in the study region, exhibiting a range of 0.09 (S9; MON12) to 

10.24 (S7; PRM10). Meanwhile depleted TN/TP ratio reflected enrichment of 

phosphorus as well as higher benthic nitrogen recycling. Denitrification and 

the benthic release of nitrogen also play a significant role in sustaining the 

productivity of the system (Renjith et al., 2011). The TOC/TP and TN/TP 

ratios were lower than the Redfield ratio (Hecky et al., 1993), pointed out the 

fact that the organic matter was enriched with P and tends to accumulate in 

sediments. 

 

 
Figure 3.2Bulkelemental ratios (TN/TP and TOC/TP) in the sediments of the study area 
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3.3.1 Biogeochemistry of phosphorous fractions in the sediments 

Chemistry of phosphorous in sediments is largely governed by redox 

conditions, and the redox cycle of Fe greatly affects P geochemistry after 

burial (Slomp et al., 1996; Cha et al., 2005). Fractions of phosphorous undergo 

a wide range of chemical and biological transformations along the salinity 

gradient of estuaries. A substantial portion of released P contributes to the 

formation of authigenic P minerals and thereby immobilised in the sediments 

(Ruttenburg and Berner, 1993; Schuffert et al., 1994; Kim et al., 1999; Cha et 

al., 2005). 

 The involvement of Fe in the dynamic equilibrium between the sediment 

bound and dissolved PO4
3- levels implied that the Fe dependent threshold limit 

exists for the sediment to bind phosphate (Sondergaard et al., 2003). Present study 

recorded a Fe/TP ratio ranging from 1.61 (S9; MON09) to 56.41 (S2; MON12). 

The Fe/TP ratios were considered as a measure of free sorption sites for PO4
3- ion 

on iron hydroxides (Jensen and Thamdrup, 1993; Coelho et al., 2004). In order to 

regulate P release in sediments, Fe/TP ratio should exceed 10 (Caraco et al., 

1990). Fe/TP ratios lacked seasonal variations in the study region, but displayed 

significant spatial variation (Figure 3.3). The river influenced areas showed higher 

Fe/TP indicating the presence of enough Fe in surface sediments to bind with P, 

while lower ratios obtained towards the seaward sites suggest the saturation of 

sorption sites or less capacity to bind with PO4
3- which leads to the transfer of   P 

from the sediment to the water column.Fe(OOH)-IP exhibited positive 

correlations with silt (r=0.59), clay (r=0.43), TOC (r=0.53), TN (r=0.40), Fe 

(r=0.57), TS (r=0.65) and TP (r=0.50), which reflected granulometric dependence 

on the distribution pattern (Table 3.4). The main inorganic forms of P are the 

fraction associated with Al, Fe and Mn oxides and hydroxides. Phosphorus and 

iron are usually strongly associated with sediments; P being adsorbed onto iron 
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compounds with the formation of iron phosphate complexes. The content of 

FeOOH is therefore one of the major factor controlling P release from 

sediment.Fe(OOH)-IP is more important than CaCO3-IP  in terms of the potential 

availability of phosphorous under the redox variations observed in the sediments 

(Caraco et al., 1989; Silva and Mozeto, 1997). Significant positive correlation of 

CaCO3-IP with sulphur (Table 3.4), the redox indicator pointed out that there is 

preferential accumulation of CaCO3-IP  under reducing conditions. Generally, the 

release of this phosphate fraction from the sediment is controlled by sulphate 

reduction (Caraco et al., 1989) and is considered more bioavailable under the 

redox variations (Caraco et al., 1989; Silva and Mozeto, 1997). Sulphide 

produced from sulphate reduction may reduce the iron-oxides and thus promote  

the release of iron-bound phosphorous (Jensen et al., 1995; Howarth et al., 1995).  

 

 

 
Figure 3.3Variation of Fe/TP ratio in the sediments of the study area 
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Total phosphorousin sediments displayed both spatial and seasonal 

variations in the study area (p<0.01). The distribution of various P fractions 

and other geochemical parameters in the surface sediments of CES displayed 

significant relationship with texture. Content of TP displayed an increasing 

trend from fresh water region to saline area (Figure 3.4).  Correlation analysis 

(Table 3.4) revealed that silt and clay fractions possess remarkable positive 

correlations with most of the sedimentary parameters, which indicate the fact 

that the main factor influencing the geochemistry of sediments in the study 

region could be sediment texture. These high correlations of P-fractions with 

fine grained sediments (silt+clay) may have resulted from the greater surface 

area of fine particles, providing more adsorption sites for phosphate ions (Liu 

et al., 2002; Zhou et al., 2005). It is well documented that organic carbon and 

nutrients are enriched in silt and clay fractions compared to sand (Krishna 

Prasad and Ramanathan, 2008; Wen et al., 2008; Renjith et al., 2011). 

ANOVA indicated that Fe(OOH)-IP possess significant spatial 

variation (p<0.01) but devoid of seasonal variations. During the monsoon 

seasons (both MON09 and MON12), the estuary is virtually transformed to a 

freshwater basin (Menon et al., 2000; Renjith et al., 2011). During post 

monsoon, river discharge gradually declines and tidal activity attains 

momentum as the estuarine conditions changes to a partially mixed type, 

which weakens stratification. In PRM09 and PRM10, the river discharge is 

minimised and seawater influence was maximum in the study area and the 

estuary was well-mixed, similar to the previous observation (Menon et al., 

2000). Oxidative decomposition of organic matter and reductive dissolution of 

Fe(OOH)-IP releases the phosphorous to the sediment interstitial water and a 

portion of released P may return to the water column. The seasonal 

distribution of Fe(OOH)-IP followed the pattern: POM09>PRM10> PRM09> 

MON09>MON12. From the Figure 3.4, it is clear thatfrom station S5 to 
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S8higher concentration of Fe(OOH)-IP was noticed, but at the sanddominated 

station (S9) lower content was found. The increased pH and salinity in those 

stations may inhibit phosphate adsorption onto Fe oxides/hydroxides and by 

altering the surface charge on the Fe oxides and hydroxides (Lebo, 1991; 

Zwolsman, 1994). Moreover, the concentration of Fe oxides and hydroxides 

reduced in sulphide rich environments by the formation of solid Fe sulphides 

and the sulphate reduction rate may be more pronounced at stations with 

higher salinity (Paludan and Morris, 1999; Hou et al., 2009). 

Carbonate-adsorbed P has been regarded as most dominant phase of P in 

carbonate-rich sediments, owing to the greater adsorption capacity of carbonates 

(Short et al., 1990; Millero et al., 2001). CaCO3-IP exhibited significant spatial 

difference in the study region recording higher concentrations at S8 (PRM10) and 

did not display any seasonal variation. CaCO3-IP displayed strong positive 

correlation with salinity (Table 3.4) and its concentration increased towards the 

zones with high salinity, ie; from southern to northern side (Figure 3.4).The 

maximum content of calcium-bound P in sediments of the regionswith higher 

salinity, might be resulted from the favourable accumulation of CaCO3under 

alkaline pH providing adsorption sites for phosphorous ions (Huanxin et al., 1994; 

Zwolsman, 1994; Silva and Mozeto, 1997). A similar trend is reported in marine 

sediments presumably by the accumulation of calcium under high salinity, which 

favours apatite formation (Ryden et al., 1997). The increased concentration of 

CaCO3-IP (S5 to S8; Figure 3.4) caused by the interactions between PO4
3- and 

CaCO3 with increasing salinity (Coelho et al., 2004; Anshumali and Ramanathan, 

2007; Hou et al., 2009; Hartzell and Jordan,2010). Calcite in estuarine 

environment is produced at higher salinities through precipitation reactions and 

biological activity forming an adsorption substrate for dissolved phosphate 

(Coelho et al., 2004). CaCO3-IP also exhibited strong positive correlation with 

ASOP which may have resulted from the mineralisation of organic-P. During 
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microbial decomposition, organic P may have transformed into 

authigenicfluroapatite (Anshumali and Ramanathan, 2007; Katsaounos et al., 

2007; Hou et al., 2009). The southern part of the study region is well known for 

the black Clam fishery (Lakshmilatha and Appukuttan, 2002) and the shell of the 

black Clams is thick as well as rich (93.3 to 95.8%) in calcium carbonate (Kripa et 

al., 2004). Apart from live Clam beds, the estuary has extensive sub fossil 

deposits (Renjith et al., 2011). The periodical tidal ingression in the estuary 

favours the formation of calcite which can bind with P results in the enhanced 

levels of this fraction during non monsoon seasons.CaCO3-IP positively correlate 

with silt, clay and Fe(OOH)-IP, while negatively correlated with sand (r=-0.40) 

(Table 3.4) revealed the dependence of texture. 

ASOP includes apatite-bound phosphate and biochemical components 

such as nucleic acids, lipids, and sugars that are bound to phosphate (De 

Groot, 1990). ASOP exhibited spatial (p<0.01) variation with maximum 

concentrations in the PRM10, and displayed an increasing trend towards the 

regions with higher salinity (Figure 3.4). The degradation of ASOP 

compounds release phosphate which become readily bioavailable to 

phytoplankton. ASOP exhibited a highly significant positive correlation with 

total sulphur(Table 3.4) indicated that reducing environment favour the 

retention of ASOP in sediments. 

The main component of Alkali-OP has been reported ashumic 

substances (Golterman, 2001). Phosphorous associated with humic acids has 

been considered either to be an integral part of humic acids or as a 

phosphate/organic matter complex (Stevens and Stewart, 1982). This fraction 

also contains phytate, an organic phosphate commonly occuring in plants and 

sediments (De Groot and Golterman, 1993; Dvorakova, 1998). Alkali-OP does 

not display any seasonal or spatial variation during the study period and 
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recorded differences inconcentration with maximum at S9 (3242.40±11.96µg/g; 

MON09) and minimum at S3 (0.96±0.12µg/g; POM09). Higher Alkali-OP 

concentrations were observed in some stations (Figure 3.4) of the study region, 

may be due to the flocculation and precipitation processes involving humic 

acids, Fe/Al oxides and dissolved reactive P complexes by advection (Coelho 

et al., 2004).  

Generally, organic bound phosphorus accounted for 6 to 19% of the 

total-P in coastal sediments (Hirata, 1985). The minimum content of residual 

organic phosphorous recorded was 0.39±0.02µg/g(S2; POM09) and a maximum 

of 148±2.23 µg/g(S8; PRM09) during the study period. Organic phosphorus is a 

complex fraction, the exact nature of which is not clearly described yet (Reitzel 

et al., 2007). As a result of diageneticreorganisation of phosphorus within 

sediments, organic-P concentrations gradually decreases and it is ultimately 

transformed to authigenic-P during diagenesis (Ruttenberg and Berner, 1993; 

Andersen et al., 2001). Residual organic-P (R-OP) was the smallest fraction 

estimated in sediments from estuarine stations and the lower content of this 

fraction might be attributed to diagenesis. Degradation of organic P compounds 

also releases phosphate, making it available to bacteria and algae. Bacteria are 

generally considered to be the catalysts that accelerate the solubilization of P 

(Gachter and Meyer, 1993) and the processes of anoxic mineralization of 

phytate (Golterman et al., 1998) could release organic P buried during monsoon 

season. The higher concentration of organic bound phosphorus (R-OP) recorded 

during PRM09 (S3, S5 and S8), MON09 (S1 and S8) and MON12 (S1 and S8), 

indicated that mineralisation of P was less. It has been well documented that 

mineralisation of organic P and C/P ratio is stronglycorrelated under anaerobic 

conditions compared to aerobic conditions (Bridgam et al., 1998; Reddy and 

Delaune, 2008). Highly depleted redox potential at certain stations (S4, S5, S6 

and S7-PRM09; S5, S6 and S7-POM09) results in higher mineralisation and 
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subsequentlylower the concentration of organic phosphorus. The higher content 

of inorganic phosphorus in the estuary seems to be a signal of higher levels of 

diagenetic activity. In the case of organic-P in sediment, very low concentration 

was noted compared to other P fractions (Figure 3.4). Degradation of organic P 

compounds also releases phosphate, making it available to bacteria and algae. 

Some worldwide reference values of different P fractions in sediments 

arefurnished in Table 3.5. 

 

 

 

 

  
Figure 3.4. Various phosphorous fractions in the sediments of the study area 
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Table 3.5Worldwide reference values of different phosphorous fractions in sediments 
Aquatic system Concentration of various phosphorous fractions References 

Southwest coast of India 
( different extraction 
techniques) 

Ca bound P 
Exchangeable-P 
Fe/Al bound P 

2.0–44.3 
11.8–59.4 
12.4–34.6 

µg/g 
µg/g 
µg/g 

Nair et al., 1993 

Bay of Seine, France 

Fe/Al bound P 
Ca bound P 
Exchangable-P 
Organic-P 
TP 

0.04 – 4.25 
0.1- 9.2 

0.03- 2.16 
0.27- 4.37 
0.3- 18.60 

µmol/g 
µmol/g 
µmol/g 
µmol/g 
µmol/g 

Andrieux and Aminot, 
1997 

Morales Stream, Argentina 

Fe bound P 
Ca bound P 
ASOP 
Alkali-P 
TP 

˜440 
˜400 
˜170 
˜210 
˜600 

mg/kg 
mg/kg 
mg/kg 
mg/kg 
mg/kg 

Garcia and de Iorio,  
2003 

Cochin estuary, India 

Fe bound P 
Ca bound P 
ASOP 
Alkali-OP 
R-OP 
TP 

5.04-474.24 
11.16-826.09 
22.22-365.86 

51.92-1002.45 
29.27-279.83 

319.54-2,938.83 

μg/g 
μg/g  
μg/g  
μg/g  
μg/g  
μg/g 

Renjith et al., 2011 

Dianchi Lake, China 

Fe bound P 
Ca bound P 
Residual-P 
TP 

210.19-441.45 
188.38 -899.71 
359.12-1304.15 

1465.27-2544.73 

mg/kg 
mg/kg 
mg/kg 
mg/kg 

Li et al., 2012 
 

Cochin estuary, India 

Fe bound P 
Ca bound P 
ASOP 
Alkali-OP 
R-OP 
TP 

33-963 
17-1355 
17-207 

72-1492 
2-142 

313-2383 

mg/kg 
mg/kg 
mg/kg 
mg/kg 
mg/kg 
mg/kg 

Gireeshkumar  et al., 
2013 

 Zhujiang (Pearl) River 
Estuary, China. 
 

Fe/Al bound P 
Ca bound P 
Inorganic-P 
Organic-P 
TP 

˜100- 480 
˜100- 300 
˜450-650 
˜120-320 

˜650-1075 

mg/kg 
mg/kg 
mg/kg 
mg/kg 
mg/kg 

Wang Lili et al., 2013 

Changjiang estuary (China) 

Detrital-P 
Refractory-P 
Organic-P 
TP 

6.6-13.2 
1.72-3.93 
0.82-4.27 
15-21.40 

µmol/g 
µmol/g 
 µmol/g 
µmol/g 

JiaMeng et al., 2014 

 Santos–Sao Vicente Estuary, 
Brazil 

Fe bound P 
TP 

1.29-34.17 
3.57 - 74.11 

µmol/g 
µmol/g 

Berbel  et al., 2015 

Cochin Estuary 

Fe (OOH) –IP 
CaCO3-IP  
ASOP  
Alkali-OP 
R-OP 
TP 

115.27±1.27-2724.66± 2.86 
20.39±0.54-2726.76±12.23 
10.29±0.17- 555.42±2.87 

0.96±0.12- 3242.40±11.96 
0.39 ± 0.02 - 148±2.23 

222.92±3.89-4348.66±15.35 

µg/g 
µg/g 
µg/g 
µg/g 
µg/g 
µg/g 

Present study 
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Bioavailable phosphorous (BAP) in the sediment can be defined as the 

sum of immediately available phosphorus and potential phosphorus that can 

be transformed into an available form by naturally occurring physical, 

chemical and biological processes (Wang et al., 2009). Fe(OOH)-IP, CaCO3-

IP and ASOP were considered as the source of BAP for phytoplankton 

(Diaz-Espejo et al., 1999). Knowledge of P fractions is of utmost importance 

in determining the upper limit of the potentially BAP in aquatic ecosystems 

(Hou et al., 2009). The bioavailability of Fe(OOH)-IP depends primarily on 

redox potential of the sediment (Andrieux and Aminot, 1997; Rozan et al., 

2002; Alvarez-Rogel et al., 2007). In the areas characterised by frequent 

change of sediment redox potential, Fe(OOH)-IP can occasionally be 

reduced and released from sediments to the water column (Jensen and 

Thamdrup, 1993; Coelho et al., 2004). Organic P could become bioavailable 

by microbial remineralisation (Andrieux and Aminot, 2001; Hou et al., 

2009). The spatial and seasonal variation of BAP is depicted in Figure 3.5. 

The concentration of BAP ranged from 145.94 µg/g(S9; MON12) to 4068.71 

µg/g(S8; POM09). Two way ANOVA revealed that BAP in surface sediments 

displayed significant seasonal (p<0.05) and spatial (p<0.01) variations. The 

Figure 3.5, displayed that the BAP exhibit an increasing trend from southern 

side (S1) to the northern side (S9). BAP was relatively higher in the Cochin 

estuary, which also revealed that the sediment can act as an important internal 

source of P. Fe(OOH)-IP displayed highly significant positive correlations with 

other two bioavailable fractions (CaCO3-IP and ASOP). The P-fractions available 

for biological uptake are all well correlated (Table 3.4) indicating a common 

biogeochemical balance. 
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Figure 3.5 Concentration of bioavailable phosphorous (BAP) in the sediments of the study area  

Principal component analysis (PCA) of geochemical parameters was 

carried out to discover and interpret various geochemical variables and thereby 

identifying the major geochemical processes acting in the estuary (Table 3.6).  

Varimax rotation was applied in order to identify the variables that are more 

significant to each factor based on the significance of their correlations that are 

expressed as factor loading (Buckley et al., 1995; Davis, 2002). The various 

biogeochemical processes acting along the salinity gradients strongly depend on 

the hydrodynamic conditions prevailing in the water column.  

Factor analysis provided three components for the monsoon season 

with a total cumulative variance of 71.50 %. The component1 accounted for 

a total variance of 42.15% and exhibited strong positive loadings on silt, 

clay, Fe(OOH)-IP, Fe and TP. The close association of clay particles with 

organic matter and P fractions indicate the granulometric factor. The 

physical adsorption on organic matter and subsequent sinking to the surface 

sediments are significant geochemical processes governing the concentration 

of various P fractions in sediments. 
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Component 2 consists of CaCO3-IP, ASOP, salinity, TOC, TS and TP 

contributing 29.35% of total variance, indicated that salinity has a direct 

control on the concentration of CaCO3-IP in sedimentary phase of the study 

area. The major role of salinity is the creation of alkaline conditions favouring 

the formation of CaCO3 which provide adsorption sites for phosphorous. The 

enhanced flocculation and sedimentation of organic matter is also resulting 

from the salinity gradient. The complete flushing of the estuary takes place 

during the peak monsoon period (Revichandran et al., 2012) and the salinity 

variation can cause strong hydrodynamic forcing. The positive loading of 

sulphur also gives an indication of the diagenetic processes acting on the 

surface sediments. Diagenesis, a redox process, largely mediated by 

microorganisms and the in turn suitable indicators of this process are TOC, TN 

and TS.   

Grouping of salinity and phosphate with moderate negative loading of 

Fe(OOH)-IP suggests the desorption and reductive dissolution of Fe(OOH) in 

the stations with high salinity and release of Fe(OOH)-IP to the water column. 

Reducing condition prevails in the surface sediments during the pre monsoon 

season and the P fractionation indicated lowest concentrations of Fe(OOH)-IP 

in surface sediments during this period. The high temperature induces greater 

bacterial activity in sediments and together with the high salinity initiate 

sulphate reduction, denitrification and iron involved redox reactions (iron 

cycling) in sediments. These processes results in the formation of sulphide 

minerals such as greigite (Fe3S4) and mackinawite (FeS) in sediments, which 

grows as a precursor to pyrite during early diagenetic sedimentary sulphate 

reduction (Sobrinho et al., 2011).  
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Table 3.6Results of Principal Component Analysis 

Factor loadings for N fraction Factor loadings for P Fraction 
Parameters PC1 PC2 PC3 Parameters PC1 PC2 

Sand -0.665 -0.413 0.22 Sand -0.436 -0.092 

Silt 0.753 0.504 0.02 Silt 0.384 0.087 

Clay 0.776 0.445 -0.048 Clay 0.401 0.053 

Salinity 0.125 0.665 -0.051 Fe(OOH)-IP 0.207 0.191 

TOC 0.78 -0.048 -0.097 CaCO3-IP 0.275 0.243 

Residual-N 0.915 0.166 0.141 ASOP 0.203 0.247 

Nitrite-N -0.171 -0.628 -0.137 Alkali-OP -0.098 0.083 

Nitrate-N 0.516 -0.647 0.205 R-OP 0.203 -0.206 

Ammonia-N -0.279 0.152 0.825 Salinity 0.046 0.28 

Urea-N 0.225 -0.151 0.79 TOC 0.153 0.055 

Kjeldahl-N 0.916 0.165 0.142 TN 0.027 0.023 

TN 0.929 -0.084 0.146 Fe 0.143 0.055 

TS 0.754 -0.033 -0.224 TS 0.223 0.251 

- - - - TP 0.053 0.159 

% of  Variance 44.40 15.30 11.85 - 42.15 29.35 

3.3.2 Biogeochemistry of nitrogen fractions in sediments  

Nitrogen is a key nutrient element which governs the functions of 

estuarine ecosystems by limiting the biological growth and is capable of 

driving eutrophication (Montagna et al., 2002;Gruber and Galloway, 2008). 

The relative importance of sediments as nitrogen source is greatly understood 

by its fractionation. Various fractions of nitrogen in sediments of the study 

area include: nitrite (NO2
-), nitrate (NO3

-), ammonia (NH3), and urea 

(CO(NH2)2). The first three are the most significant inorganic forms and urea 

is a significant organic form of the element. The content of various nitrogen 

fractions estimated are given in Table 3.3.  
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The concentrations of nitrite-N in the sediment ranged from 0.71± 0.15 

to 13.88± 0.19 mg/kg with significant spatial variation (p<0.05). During the 

study period its seasonal concentration followed the trend: 

POM09>PRM09>MON09>MON12>PRM10 (Figure 3.6). Enhanced levels of 

nitrite-N were found at region with lower salinity and their significant 

concentration was recorded in the sediments of the riverine region. The depleted 

concentrations of nitrite-N in the sediments, (S3; MON09) and (S8; POM09) 

revealed the fact that the nitrite-N is intermediate in oxidation state between 

ammonia and nitrate, and as such it can appear as a transient species in both the 

oxidation of ammonia and the reduction of nitrate. In certain stations, the 

concentration of nitrite-N was slightly lower during monsoon period (MON09: 

S3 to S8 as well as MON12: S1, S3, S4 and S7). Several aerobic and anaerobic 

microbial processes contribute to the production of nitrogen compound 

especially NO2
-, including denitrification and nitrifier-denitrification (Wrage et 

al., 2001), nitrification and dissimilatory nitrate reduction to ammonium (Smith 

and Zimmerman, 1981).  

Figure 3.6, clearly demonstrates that the distribution of nitrite-N and 

nitrate-N in surface sediments of the estuary was not uniform. ANOVA revealed 

that the nitrate-N during the study period varied significantly (p<<0.01) without 

any spatial variation. The maximum content for nitrate-N was found during the 

period of PRM10 and followed the trend POM09> MON12>MON09>PRM09. 

The concentration of nitrate-N in sediments were comparatively higher than 

nitrite-N at all stations. The higher levels of nitrate-N are related to more intense 

mixing of the upper layers of the water column due to rain, land run off and 

increased rate of river discharges. Nitrification, the conversion of ammonia 

(NH3) to nitrate (NO3
–) via nitrite (NO2

-), is an essential part of the  
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nitrogencycle in aquatic environments (Urakawa et al., 2006). According to Al 

Bakri and Chowdhury (2006) bottom sediments act as a source of ammonia 

nitrogen and function as a sink for nitrate-N. The higher content of sedimentary 

nitrate-N recorded in the present study indicates a higher rate of nitrification and 

less denitrification owing to the periodically fluctuating oxic/anoxic conditions. 

When the dissolved oxygen in water column gets used up for the degradation of 

organic matter, substitute source for oxygen are sulphate and nitrate. On the 

other hand, during the monsoon period, the concentrations of nitrate-N was 

comparatively lower than non-monsoon period. This may be due to the anoxic 

condition created by the oxidation of large quantities of allochthonous organic 

matter deposited in sediments via land runoff.  The elevated levels of nitrate-Nin 

the sediments of thestudy area (Figure 3.6) might be due to the influence of 

agriculture, industries and waste water and also the physical degradation of the 

land area.  

Biological nitrogen fixation, the conversion of atmospheric N2 to NH4
+, 

is an important source of new nitrogen in the sedimentary environment. Organic 

nitrogen mineralisation in sediments can be a significant source of ammonia-N 

to the overlying water. Nitrification and denitrification are often tightly coupled 

near the oxic-anoxic boundary of the sediment with little loss of fixed nitrogen 

(NOx and NH4
+) to the overlying water (Thamdrup and Dalsgaard, 2008). It has 

been proposed that NH4
+ can be anaerobically oxidized to N2, NO2

- or NO3
− by 

Mn (hydr) oxides or organic complexes of Fe(III) and Mn (III/IV), which are 

ubiquitous and abundant in sediments (Luther et al., 1997; Hulth et al., 1999; 

Madison et al., 2011). Compared to other seasons, concentrations of ammonia-N 

in sediments were found to be higher at all locations during POM09 (Figure 

3.6). Meanwhile, at S2 and S3 (region with lower salinity), the higher 
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concentration of ammonia-N was observed throughout the study period. The 

higher concentration of ammonia-N was observed in POM09 and its content 

followed the trend of MON09>MON12>PRM10>PRM09 during the study 

period. It could be seen that during the study period, the ammonia-N varied 

spatially and seasonally (p<<0.01). From the Figure 3.6, it is clear that stations 

with higher salinity had a lower content of ammonia-N in all seasons. The lower 

concentrations of ammonia in sediments provide a site for denitrification, which 

along with nitrogen fixation and other processes determines available nutrient 

ratios (McCarthy et al., 2007).  During periods of hypoxia and anoxia, the 

ammonium from sediments usually gets released (Berman et al., 1999). The 

Figure 3.6 indicates that, during monsoon and non-monsoon seasons, the 

stations from S4 to S8 exhibitedsimilar trendin the concentration of ammonia-N. 

Dissimilatory nitrate reduction to ammonium was the dominant process 

compared to denitrification. The anoxic conditions were more favourable in 

maintaining higher NH3/NH4
+levels as the conversion of NH4

+to nitrate by 

nitrification is less due to the absence of dissolved oxygen under these 

conditions. Ammonium is the end product of organic nitrogen decomposition in 

anaerobic condition and a portion of ammonium also gets assimilated in 

bacterial cells (Blackburn, 1980). The rate of sedimentary nitrification 

(oxidation of ammonium into nitrate) is generally regulated by the availability 

of oxygen and ammonium for nitrifying bacteria, and the supply of both 

components is commonly highest in the top layer of sediment (Henriksen and 

Kemp, 1988).Positive correlations of ammonia-N with sand and negative 

correlation with silt and clay (Table 3.7) suggest the desorption process 

occurring in sediments. 
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Urea-N in the sediments of the study area exhibited 

elevatedconcentrations at four stations (S1, S2, S3 and S9), during POM09. The 

maximum concentration was noted at S5 during MON12 (Figure 3.6), 

suggesting the influence of river discharges in transporting urea from land 

during rain and getting engulfed in sediments. The levels of urea-N varied 

remarkably at the majority of the stations; while a similar pattern of distribution 

was observed at S7 and S8 in each season (Figure 3.6). The sand dominated 

station S9 recorded the minimum concentration of urea-N during all the seasons. 

The urea usually gets released from sediments by similar mechanisms as for 

ammonium (Berman et al., 1999). The fluctuating urea-N levels in sediments 

will increase the potential for sediment associated contaminant fluxes and have 

a direct effect on the distribution of organisms which in turn affect the water 

quality. Kjeldahl-N positively correlated with clay, residual-N, nitrate-N, but 

negatively correlated with sand, indicating the adsorption on fine grained 

sediment fraction.  

The estimated residual nitrogen mainly consists of organic forms (other 

than urea) such as proteins, lipids, etc. During the study period S2, S3 and S9 

recorded lower level of residual-N in most of the season and the maximum 

was noted at S7 (Figure 3.6). With the onset of monsoon season (MON09 and 

MON12), in most of the stations (except S8-MON09 andS4, S5, S8-MON12) 

depleted levels of residual-N was observed. Residual-N dynamics in sediments  

can strongly affect the total N pool because small changes in concentration can 

impart measurable changes in the biogeochemical environment. From the 

Table 3.7, it is clear that residual-N correlated negatively with sand and 

positively with clay, indicating the influence of texture on its distribution 

pattern.  
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In the case of total-N in sediments,an inconsistent trend was observed, 

where its maximum content was recorded at S7 (Figure 3.6). As can be seen 

from Figure 3.6, in most of the stations, the higher abundance of TN was 

observed during non-monsoon period (POM09 and PRM10), while at stations 

S4, S5, S6 and S8 during MON12, the higher abundance of TN was 

recorded.The loss of total nitrogen from the sediments, induced by benthic 

macrofauna has already been reported in estuarine environments (Clavero et 

al., 1994). Station S8 recorded a consistent trend in concentration of TN 

during the study period. The observed deviations at other stations could be 

because of the nature of local input from land, and also due to the influence of 

suspended particulate which are rapidly removed from the water column into 

the sediments associated with salinity gradient. In addition to this, during all 

seasons, the lowest mean concentration of TN was found at S9, where the 

sandy nature of the sediments results in very poor retention of N contents. 

Station S7 recorded the maximum during PRM10, where the fine grained 

sediments accumulatesthe N compoundstransported through rivers. Moreover, 

the observed wide fluctuations in the distribution of total N may be due to the 

variations in magnitude of discharges from land. With the increase of 

industrialisation and human interventions, inflow water can carry high 

concentrations of nutrients that arise from sewage disposal. The fertiliser 

industries located on the northern arm of the estuary acts as a point source of 

nutrients to the estuary. Data onfractions of nitrogen in sediments from the 

different parts of the world are furnished in Table 3.8. 
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Figure 3.6 Various nitrogen fractions in surface sediments of the CES 
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Nitrification coupled with denitrification converts biologically 

available N forms (NH4
+ and NO3

– respectively) to N2 gas and may reduce the 

effects of excessive N inputs and eutrophication. Nitrate for coupled 

denitrification derive from organic matter mineralization to NH4
+ followed by 

nitrification. Under oxic conditions, nitrifying bacteria convert ammonium 

(NH4
+) to nitrite (NO2

-) and subsequently to NO3
-, while in anoxic zones, 

denitrifying bacteria convert NO3
-or NO2

- into gaseous forms, either 

dinitrogen (N2) or nitrous oxide (N2O).Benthic nitrification and denitrification 

influence the inorganic nitrogen budget of estuaries. Microbial processes 

regulate the availability of nutrients in the estuarine water column by 

mediating the balance among inputs, recycling and removal to sediments. 

In estuarine systems, nitrogen often limits primary production (Capone et 

al., 2008), and coastal eutrophication, resulting from nitrogen loading to rivers 

and estuaries and hence is a growing global concern (Cloern, 2001; Capone et 

al., 2008; Breitburget al., 2009). Distribution of nitrogen fractions in estuaine 

sediments results from interacting physical processes (advection, diffusion), 

biological phenomena (uptake, recycling) and reactions with the solid phase 

(adsorption-desorption) (Treguer and Queguiner, 1989). Due to the wide 

variations in input and frequent interconversions, principal component analysis 

(PCA) was carried out to assess the factors controlling the distribution pattern of 

various nitrogen fractions (Table 3.6). PCA revealed three components which 

accounted for 71.55% of total variance. Component 1 consisted of negative 

loadings of sand, positive loadings of silt, clay, TOC, residual-N, nitrate-N, 

Kjeldahl-N, TN and TS indicating granulometric dependence. Inorganic 

nutrients (primarily NH4
+, NO3

−, and NO2
−) in pore waters, generated from 

diagenetic transformation of organic matter, have been important sources of 

nitrogen for phytoplankton and benthic macroalgae/microphytobenthos in 
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estuarine environments (Christensen et al., 1987; Cerco and Seitzinger, 1997; 

Risgaard-Petersen, 2003). The distribution and cycling of N-fractions in 

sediments has been primarily attributed to various bacterial metabolic processes 

(Fenchel and Blackburn, 1979). Parameters included in component 2 consisted 

of silt, salinity and negative loadings of nitrite-N and nitrate-N. This factor 

denotes a periodically varying redox condition generated by tidal ingression 

from the Arabian Sea as well as riverine input, which controls the 

interconversion of nitrite and nitrate. Important factors controlling the content of 

nitrogen fractions in sediments include seasonality of freshwater flows, nutrient 

loading, organic matter deposition from phytoplankton blooms and DO content.  

3.4 Conclusion 

Texture analysis revealed the dominance of sand at the riverine regions of 

the study area; while the silt and clay content was more pronounced at the 

estuarine stations. Sand and clay displayed marked seasonal variations (p<<0.01). 

Sediment pH was slightly alkaline during the investigation with its minimum and 

maximum value was recorded at S8 and S5 respectively. The surface sediments in 

the entire estuarine region remain oxic during the monsoon season and gradually 

become reducing during the post monsoon season, which in turn shifts to strongly 

reducing conditions during the premonsoon season. Characteristic reducing 

conditions were indicated by Eh values.Sequential chemical extraction of P and N 

were used for a better understanding of the nutrient enrichment of the estuary. An 

abrupt increase in the concentration of TP with an increase in salinity was 

observed in the study region. 

Among the various fractions of phosphorous, Fe(OOH)-IP was the most 

dominant component observed in the sediment. The processes of reductive 

dissolution of iron hydroxides and biogenic or geochemical formation of 
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calcium carbonate minerals in the saline areas can be inferred from the 

distribution dynamics of Fe(OOH)-IP and CaCO3-IP in the estuary. The input of 

organic matter enriched with P from rivers and from different industrial, 

agricultural and aquaculture activities lead to a large scale accumulation of 

refractory organic P in the surface sediments of the estuary.During the study 

period, nitrogen compounds followed the trend: residual-N> nitrate-N> nitrite-

N> urea-N> ammonia-N. Among the P fractions, Fe(OOH)-IP exhibited a 

distinct seasonal distribution pattern with maximum content displayed during 

the monsoon, when estuary act as a fresh water environment.  Fractionation of P 

in sediments of the study area,resulted in a mixed or metastable digenetic 

character with strong seasonal signatures. The PCA results generated by 

considering various P fractions and N fractions support the periodic interchange 

of oxic/anoxic character of the surface sediments. Intense land use change, 

unscientific agriculture practices and population growth have significantly 

altered river fluxes of nutrients. Hence it can be deduced that the major factors 

controlling the spatio-temporal distribution of N and P fractions in sediments 

was the  salinity, granulometry,OM content, adsorption, desorption, redox status 

and microbial process. 
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4.1 Introduction 

Biogeochemical processes associated with organic matter remineralisation 

in sediments depend greatly on its quality. Redox conditions prevailing in aquatic 

environment is closely linked with organic matter dynamics. The components of 

organic detritus comprise of planktonic materials, faecal pellets of animals and 

vascular plant debris which display diverse reactivity to leaching and 

remineralisation processes.  Quantity and the composition of organic matter in 

sediments is strongly influenced by heterotrophic microorganisms (Findlay et al., 

1992; Tremblay and Benner, 2006). Bulk sediment parameters are available for 

the evaluation of sources of organic matter and its fate within marine sediments; 

which include biochemical composition, elemental and stable isotope ratios. 

Among the bulk parameters, biochemical composition has been commonly  

utilised to achieve  vital informations on the origin  and parameters governing the 

diagenetic fate of sedimentary organic matter. The major applications of organic 

molecules to studies of natural systems are their use as source and process 

indicators. The total concentrations of  proteins, carbohydrates and lipids in 

sediments are generally referred to as biochemical composition and  has already 
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been established  as a reliable methodology  for the assessment  of nature and 

quality of sedimentary organic matter (Colombo et al., 1996; Dell’ Anno et al., 

2002; Pusceddu et al., 2009;  2011; Venturni et al., 2012). Sources of the organic 

matter and the significant  processes involved in the transformation of organic 

matter has been reported in terms of bulk parameters such as  elemental ratios 

(Tan et al., 1991; Thornton and Mc-Manus, 1994; Mitchell et al., 1997; Andrews 

et al., 1998; Graham et al., 2001). Stable carbon isotope ratios (δ13C) of the 

various carbon inputs are usually different, making them powerful tracers to 

differentiate between allochthonous as well as autochthonous organic carbon 

inputs (Middelburg et al., 1997; Bianchi et al., 2002).  

Detailed information on the nature, quality and the relative contribution of 

different sources (in situ production versus terrestrial input) is of immense 

importance in understanding the organic carbon dynamics in estuaries. Literature 

review suggested that huge quantities of sewage and other untreated pollutants 

have been discharged into Cochin estuarine system, which results in significant 

impact on the aquatic environment (Balachandran et al., 2005; 2008). Besides 

detailed investigations on organic geochemical aspects of sediments in Cochin 

estuary are limited (Aneeshkumar and Sujatha, 2012; Renjith et al., 2012; 

Gireeshkumar et al., 2012), which prompted to carry out a long term assessment 

of bulk organic matter parameters, to unravel the nature of organic matter and its 

origin. This Chapter therefore, intends to focus on the nature and quality of 

organic matter in the surface sediments of CES and attempts to unfold the 

sources of sedimentary organic matter by the application of bulk organic matter 

techniques.  

4.2 Results  

Spatial and seasonal variation in biochemical components in the surface 

sediments of the study area is depicted in Figure 4.1 and Appendix 1.1. Total 
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organic carbon (TOC) in the estuarine sediment during the study period varied 

from 0.16±0.02 % (S9) to 6.89 ±0.21 % (S8) during MON09 and MON12 

respectively.  Figure 4.1, revealed that at estuarine stations S1 and S8, higher 

content of TOC, while at S9 (sand dominated station) lower concentration of 

TOC was observed. Total organic matter (TOM) content in the sediments 

varied from 0.29±0.01 % to 12.27±0.18 % during MON09 and MON12 at S9 

and S8 respectively. Estimated protein (PRT) concentrations ranged from 

110.67±7.77 µg/g to 15250±35.32 µg/g at S4 (PRM09) and S1 (POM09) 

respectively. Stations with more salinity and also sand dominated station (S9) 

recorded lower concentration of PRT. While higher concentration of PRT was 

observed during POM09 (S1), PRM10 (S8) and MON12 (S8) seasons 

compared to MON09 and PRM09. Carbohydrate (CHO) level in the sediments 

ranged from 434.19±8.74 µg/g (S9; POM09) to 13285±10.33 µg/g (S8; 

MON12). CHO exhibited decreasing trend from riverine region to estuarine 

region (Figure 4.1). While at S9, predominance of sand and an associated 

lowering of CHO content was noticed. Concentration of total lipids (LPD) in the 

sediments ranged from 115.29±4.25 µg/g (S9) to 5795.62±10.58 µg/g (S8) 

during POM10 and MON09 respectively. LPD revealed its maximum content 

at S1 and S8 during PRM10 and MON09 respectively. Biopolymeric carbon 

(BPC) content in the sediments varied from 0.02±0.01 % to 1.13±0.03 % at S9 

(POM09) and S8 (MON12). Meanwhile, tannin and lignin (TL) in the study 

area ranged from 97.42±1.25 µg/g (MON12) to 4207±5.48 µg/g (PRM10) at 

stations S9 and S1 respectively. ANOVA for tannin and lignin revealed highly 

significant spatial and seasonal variations (p<<0.01).  
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Figure 4.1.Spatial and seasonal variation of biochemical components in the sediments of the study area 

The spatial and seasonal variations in chlorophyll-a (chl-a), chlorophyll-
b (chl-b), chlorophyll-c (chl-c) and phaeophytin (Phe) are presented in Figure 
4.2 and Appendix 1.2. Concentrations of chl-a in the sediments ranged from 
0.37±0.03 µg/kg (S9; MON09) to 16.89±1.34 µg/kg (S4; POM09) and revealed 
highly significant spatial variation (p<<0.01). Higher content of chl-a was 
noticed at S3 (PRM10), S4 (POM09) and S8 (MON09), while lower 
concentration of chl-a was observed at sand dominated station-S9. Chlorophyll-
b content ranged between 0.23±0.01 µg/kg (S9) and 7.34±0.43 µg/kg (S4) 
during MON12 and POM09 respectively. In the case of chlorophyll-b, the 
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higher content was recorded at S4 and S5 during POM09 and MON09 seasons 
respectively. From the results (Figure 4.2), it was noted that chl-b displayed 
highly significant spatial variations (p<0.001) in the study region but devoid of 
seasonal variation. Maximum content for chl-c recorded in the sediments during 
the present investigation was 7.10±0.61 µg/kg (S4; POM09); while minimum 
was 0.22±0.05 µg/kg (S9; MON12). The lower concentration of chl-c was 
observed at S9 throughout the study period. However in the case of chl-c 
remarkable differences among sampling sites (p<0.05) was noticed. 
Concentration of phaeophytin in the sediments ranged from 0.55 ±0.02 µg/kg 
(S9; MON12) to 28.98±2.18 µg/kg (S3; POM09). Phaeophytin recorded its 
higher concentration at S3 (PRM09, POM09 and PRM10), S4 (POM09), S5 
(MON09, MON12) and S8 (MON09, MON12), while lower content was 
observed at S9 (during all seasons). However, ANOVA displayed highly 
significant spatial (p<<0.01) variation but seasonal variation was absent.  

 

 

 
Figure 4.2 Distribution of pigments in the sediments of the study region 
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4.3 Discussion 

4.3.1 Composition of sedimentary organic matter 

Organic carbon exhibited higher concentrations in the river dominated regions (S1 

and S8) on account for the transport of allochthonous material from the catchment 

area via terrestrial run-off  (Martin et al., 2010; Renjith et al., 2012; Gireeshkumar 

et al., 2012), while at sand dominated station (S9) lower TOC content was 

observed. Organic matter, the integral part of aquatic sediments, exhibited a 

strong spatial variability (p<<0.01). Surface sediments collected from CES 

exhibited a moderate level of  TOC (Figure 4.1), which was in good agreement 

with earlier investigations (Balachandran et al.,  2005; Joseph et al., 2008; Martin 

et al., 2010; Deepulal et al., 2012; Gireeshkumar et al., 2012; Renjith et al., 2012; 

Akhil et al., 2013). TOC content in the study region was noted to be controlled by 

the in situ primary production, addition of terrestrial materials, deposition rate and 

texture of the sediments. Textural control over TOC was suggested by the 

correlation of TOC with sand, silt and clay. In the estuarine sediments, TOC 

exhibited significant positive correlation (Table 4.3) with both silt (r = 0.32) and 

clay (r = 0.25) and an inverse relationship with that of sand (r = -0.33). According 

to previous study (Table 4.3), positive relationship of TOC with clay and silt 

implies its size dependent scavenging nature (Muraleedharan Nair and 

Ramachandran, 2002). Furthermore, organic matter adsorbed onto clay minerals 

prominently influence the size distribution and sedimentation (Cotano and Villate, 

2006; Ramaswamy et al., 2008). The observed concentration of TOC in the 

sediments of CES during the present study was also comparable with the 

estuarine data from other regions of the world (Table 4.1).  
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Organic detritus in aquatic sediments has long been documented for its 

influence on the biogeochemical cycles and its importance as a benthic food 

resource (Mann and Lazier, 1991; Bianchi and Bauer, 2011). Predominance of 

carbohydrates in the study region and the estimated contents were comparable 

with data from other estuaries in the world (Table 4.1). Decay of floating plants in 

the estuary greatly contributes to the comparatively higher concentration of 

carbohydrates. Increased levels of CHO in the sediments of the study region could 

have also been attributed to the accumulation of aged organic detritus owing to  

faster utilisation of proteins compared to carbohydrates, by microbial processes 

(Joseph et al., 2008; Venturini et al., 2012). The enhanced CHO content was 

recorded at stations S1 and S8 (Figure 4.1), which are located in the upstream 

locations of the study area, implying greater contribution of vascular plant debris 

to sedimentary OM (Cowie and Hedges, 1984). The season wise variation in the 

content of biochemical components in sediments of CES was in the order: 

PRM09-CHO>PRT>LPD, MON09-CHO>LPD>PRT, POM09-PRT>CHO>LPD, 

PRM10 - PRT>CHO>LPD, MON12 - CHO>PRT>LPD. The dominance of CHO 

over PRT and LPD during PRM09, MON09 and MON12 pointed out the input of 

terrestrially derived OM and also implied the detrital-heterotrophic nature of CES 

(Danovaro, 1996; Renjith et al., 2012). The observation is comparable with the 

previous records of this wetland ecosystem (Joseph et al., 2008; Renjith et al., 

2012; Akhil et al., 2013).  

Compared to other seasons, the MON12 displayed higher concentration of 

protein in most of the stations except S1 and S8 (Figure 4.1).  The increased levels 

of total protein (comparable with other studies- see Table 4.1), in sediments of the 

study area revealed the productive nature of the estuary and the better preservation 

potential of this class of compounds (Nguyen and Harvey, 2001; Knicker and 
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Hatcher, 2001). Proteins in sediments constitute a significant portion of labile 

organic matter, originating from either autochthonous or via allochthonous inputs. 

Wide fluctuations in PRT content were noticed in the estuary; with strong spatial 

variability (p<0.01) and the maximum was noted at southern arm (S1) of CES. 

Fish processing industries  situated on the banks of CES release bulk quantities of 

waste materials into the estuary contributing OM enriched with protein, which 

ultimately adsorbed/settled in the sediment (Vasudevan, 2000; Balasubramanian 

et al., 2012).  

Lipids are produced by living organisms and comprise of a major 

fraction of dissolved and particulate organic matter in aquatic ecosystems 

(Borsheim et al., 1999; Burdige et al., 2000). Elevated levels of total lipid 

recorded in the present study (during PRM10, Figure 4.1) reflected the 

biological activity together with the highly productive nature of the estuarine 

environment (Gremare et al., 1997; Akhil et al., 2013). The influx of surplus 

quantities of allochthonous OM into the Cochin estuary has already been 

reported (Balachandran et al., 2003; Babu et al., 2006; Thottathil et al., 2008; 

Martin et al., 2010). Comparatively higher concentrations of dissolved and 

particulate organic carbon were reported from the central part of CES (Martin 

et al., 2010) which implied sewage derived OM delivered from various 

channels of Cochin city. Thus the general distribution pattern of lipid revealed 

higher content during the investigation period at stations S1, S5, S6 and S8 

indicating terrestrial runoff coupled with industrial input. LPD constitutes a 

significant portion of the labile OM and provide useful informations on 

meiofauna abundance and biomass (Cartes et al., 2002; Gremare et al., 2002). 

The southern arm of the estuary receives sewage enriched from aquaculture, 

agricultural fields and coconut husk retting yards, which ultimately increases 
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the organic carbon level in sediments (Thomson, 2002; Babu et al., 2006; 

Martin et al., 2010). Besides the enriched content of lipids in the sediments 

also pointed towards the greater availability of labile organic matter (Cartes et 

al., 2002; Gremare et al., 2002).The concentration of total lipids recorded in 

the present study was comparable with the previous investigations (Table 4.1). 

Tannin and lignin, well known aromatic polycyclic phenolic compounds 

biosynthesised by higher plants (Finar, 1976; Field and Lettinga, 1987; Hernes 

and Hedges, 2000), which have been  delivered to aquatic environment through 

terrestrial run off. These form a major fraction of refractory OM and its 

quantitative determination provides valuable information on the input of 

terrestrially derived organic detritus in to the sediments (Lin et al., 2006). The 

enhanced levels of tannin and lignin observed  in the sediments of  CES (Figure 

4.1), seemed to be originated from terrestrial vascular plant debris, accumulated 

in sediments by land runoff. The successful application of these unique class of 

phenolic compounds as biomarkers of terrestrial organic matter has already been 

documented in Cochin estuary (Renjith et al., 2012; Akhil et al., 2013). 

Evaluation of the nature of organic matter (labile or refractory), is an 

inevitable part of organic geochemical research, which can be achieved by the use 

of biochemical composition. Labile organic matter can be defined as the sum of 

all proteins, carbohydrates and lipids (Danovaro et al., 1993; Cividanes and 

Souza, 2003). Labile fraction denotes the easily assimilable portion of organic 

matter that is easily available for the use of aquatic organisms including benthos. 

The labile organic matter (LOM) content in sediments recorded a remarkable 

variation from 746.48±4.86 µg/g to 26687.23±9.78 µg/g (Figure 4.3) and its 

contribution to TOM varied from 7.05±0.22 % to 45.14±3.12 %. The river and 

industrial area (Figure 4.3) indicated higher contribution of  LOM to TOM and 
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the elevated values establish enhanced productivity, coupled with external supply 

of terrigenous materials. Previous investigations from the CES recorded 

contribution of LOM to TOM ranging from 9.43 % to 31.10 % (Joseph et al., 

2008), pointed out the fact that a significant fraction of TOM represented 

refractory material.  

 
 

Figure 4.3 Distribution of LOM and percentage contribution of LOM to TOM in surface sediment 

4.3.2 Phyto pigments in sediments 

Concentration of chlorophyll pigments in the sediments followed the 

trend: chl-a >chl-b >chl-c. The ratio of chl-a/chl-a+Phe, ranged from 0.17 to 

0.45 at S3 and S9 respectively and did not exhibit any spatial and temporal 

variations (Figure 4.4). The enhanced values of this ratio supported rapid and 

recent deposition of phytoplankton in sediments (Josefson and Conley, 1997; 

Hagy et al., 2005). Autochthonous inputis a significant contributor of sedimentary 

chl-a (Szymczak-Zyła and Kowalewska, 2007) and allochthonous inputs include 

terrestrial plants. 

Previous investigations  established the fact that eutrophic systems have a 

tendency to accumulate organic matter having refractory nature (Pusceddu et al., 
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2009; Pusceddu et al., 2011; Venturini et al., 2012) and the results of the present 

study were in good agreement with these observations. Chlorophyll-a content 

obtained were comparable with those reported from the other estuaries 

(Fabiano and Danovaro, 1994; Liu et al., 2006; Venturini et al., 2012). Various 

biotic and abiotic factors affect the spatio-temporal variations of chlorophyll 

pigments in the sediments (Moreno and Niell, 2004). Chlorophyll-a content in 

sediment displayed distinct spatial variations with maximum content observed 

during POM09 and minimum during MON09 (Figure 4.2). Apart from these, 

the depleted levels of pigments during monsoon seasons (MON09 and 

MON12) in most of the stations might also be due to high flushing which 

results in the faster removal of phytoplankton to the coastal regions 

(Jyothibabu et al., 2006). Light availability and dissolved oxygen content in 

the water column have been regarded as the key factors controlling the 

concentration of phytopigments in sediments (Kowalewska and Szymczak, 

2001; Kowalewska et al., 2004). The light attenuation is in turn controlled by 

the fluctuations in the prevailing hydrodynamic conditions (Moreno and Niell, 

2004). Decreased daily total solar insolation resulting from cloud cover during 

the monsoon is a general phenomenon in the study region (Qasim, 2003). 

Furthermore, the monsoon season causes the transportation of suspended 

particulate matter to the estuary via river run off which bring about enhanced 

water column turbidity and causes poor light penetration. The higher turbidity 

and reduced solar insolation, limit the primary production in water column 

as well as in the benthic compartments. 
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Figure 4.4 Spatio-temporal variation of pigment ratios in sediments of the study area  

4.3.3 Nutritional quality 

Concentration of lipid and lipid to carbohydrate ratio have been 
employed as suitable index to unravel the food quality of the sedimentary 
organic matter (Fabiano and Pusceddu, 1998; Gremare et al., 2002). It has 
been well documented that lipid content in sediments can function as an 
effective methodology to describe the benthic trophic state (Danovaro et al., 
1999; 2000; Dell’ Anno et al., 2002). The higher lipid content estimated in 
sediments of most of the stations resulted in higher LPD/CHO ratio and the 
improved nutritional quality of labile organic matter to support benthic fauna 
of the estuary. The LPD/CHO ratio ranged from 0.04 to 3.34 and displayed 
highly significant spatio-temporal variability (p<0.01) with a maximum value 
at S5 (POM09), which also indicates the freshness of sedimentary OM (Figure 
4.5). These observed values of LPD/CHO ratio were comparable with the 
previous reports from CES (Joseph et al., 2008; Renjith et al., 2012). 
Furthermore, significantly lower ratios observed during the monsoon season 
(p<0.01), provided a clear evidence of lower productivity and higher 
allochthonous organic input associated with land runoff (Jacob et al., 2008; 
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2009). The contribution of labile organic matter to total organic matter was 
very high in most stations, arising from input of bulk quantities of sewage 
(Vasudevan, 2000; Balasubramanian et al., 2012). 

PRT/CHO ratio has been used as an index to assess  the origin of 
materials present and to differentiate between the fresh  and aged organic 
matter in sediments (Danovaro et al., 1993; Cividanes et al., 2002). PRT/CHO 
ratio > 1 indicates recently deposited fresh organic matter, while PRT/CHO ratio 
<1 suggest the predominance of aged organic matter in sediments (Danovaro et 
al., 1993). Marked variation in PRT/CHO, from 0.08 (S2; MON09) to 2.34 
(S4; POM09), was noticed in the study area (Figure 4.5). It has been well 
documented that proteins are more readily utilised by bacteria compared to 
carbohydrates (Williams and Carlucci, 1976; Newell and Field, 1983). The 
observed increased values of PRT/CHO ratios (Figure 4.5) suggested freshly 
deposited detritus in sediments (Danovaro, 1996), during the seasons PRM09 
(S3), POM09 (S1, S3, S4 and S6) and MON12 (except S5 and S8). The 
present investigation revealed the dominance of carbohydrates and lower 
PRT/CHO ratio (<1) during MON09 and PRM10 (see Figure 4.5), pointing 
out  a detrital heterotrophic environment (Danovaro, 1996).   

 

 
Figure 4.5 Variation of LPD/CHO and PRT/CHO ratios in sediments 
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4.3.4 Trophic status 

Cochin estuarine system possesses a positive net ecosystem production 

(Qasim, 2003); but as the consequence of terrestrial organic matter input a 

seasonal shift in net pelagic production to heterotrophic conditions has been 

treated (Thottathil et al., 2008). Assessment of trophic state in aquatic 

environments is crucial in understanding food web linkages as well as 

biogeochemical characteristics (Smith, 2003). Similar to other ecosystems, 

estuaries have a biotic community that depends on carbon resource to fuel 

food webs and maintain the organisms that inhabit in them. General 

classification of trophic status of aquatic environments is as follows: 

oligotrophic (unproductive), mesotrophic (intermediate productivity) and 

eutrophic (highly productive). According to Dodds and Cole (2007), the nature 

of the trophic state can be influenced by light, external carbon source, 

nutrients, hydrology and food web structure. The indiscriminate and 

unscientific application of fertilisers, industrial input and domestic sewage had 

introduced bulk quantities of nutrients into the estuary which have affected the 

food web structure and alterations in trophic state. In the present investigation, 

evaluation of trophic state was carried out based on biopolymeric carbon 

(BPC) and the algal contribution to BPC as per the methods prescribed by 

Pusceddu et al (2011). The BPC was estimated as the sum of protein, 

carbohydrate and lipid carbon and has been reported as bioavailable fraction to 

the benthic consumers (Pusceddu et al., 2009). 

In the present investigation, BPC exhibited marked variations, which 

might be accredited to the changes in organic matter deposition associated 

with the strong river discharge from upper reaches of the estuary. Algal 

contribution to BPC was also calculated as the percentage of chlorophyll-a to 

BPC concentrations, after converting chlorophyll-a concentrations into carbon 
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equivalents (chlorophyll carbon) using a mean value of 40 (Pusceddu et al., 

2009). In general, the ratio of chlorophyll carbon to chlorophyll-a in sediments  

range  from 10 to >100 (De Jonge, 1980) and using this mean value, 

comparison of the present data with literature information from other marine 

and coastal areas was possible (Pusceddu et al., 1999; 2009; 2011). Algal 

contribution to BPC ratio in the study area recorded maximum at S6 (41.73 %) 

and minimum at S9 (1.76 %) during PRM09 and MON12 respectively; 

revealed distinct spatio-temporal variability (p<<0.01) during the study period. 

BPC (mgC/g) showed maximum during MON12 (S8) and minimum during 

POM09 (S9) with highly significant spatial and seasonal variability 

(P<<0.001) (Table 4.2). The trophic classification (Pusceddu et al., 2011) 

based on BPC concentrations and the algal contribution to BPC was employed 

in the present study (eutrophic→ BPC>3 mgC/g, algal fraction <12 % of 

BPC), (mesotrophic→ BPC = 1-3 mgC/g, algal fraction = 12-25 % of BPC), 

(oligotrophic→ BPC <1 mgC/g, algal fraction >25 % of  BPC). Based on these 

criteria, present investigation categorised the stations under eutrophic, 

mesotrophic and oligotrophic classes. PRM09 was characterised by eutrophic 

(S3 and S8), mesotrophic (S5) and oligotrophic states (S6). Meanwhile during 

MON09, stations revealed mesotrophic condition (S1 and S6), oligotrophic 

level (S2, S3, S4) and eutrophic state (S8). During POM09, S1 displayed 

eutrophic level, but S2, S3, S6 and S8 were categorised under mesotrophic 

classes. Eutrophic state was assigned for S1, S6 and S8 during PRM10, while 

S4 and S5 were ranked as mesotrophic. While during MON12, all stations 

except S9 displayed the eutrophic level (Martin et al., 2011).Seasonal and 

spatial variation was recorded for the benthic trophic state of the estuarine 

system. 
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Table 4.2 Algal contribution to BPC% (A) and BPC concentration-mgC/g (B) estimated in the 
sediments of the study area 

St
at

io
ns

 

PRM09 MON09 POM09 PRM10 MON12 

A B A B A B A B A B 

S1 10.10 1.63 13.90 2.47 3.76 9.42 5.06 5.67 5.50 5.68 

S2 13.61 0.64 27.75 0.84 16.44 1.15 13.41 3.87 3.62 5.55 

S3 16.52 3.75 28.86 0.81 12.42 1.90 17.24 3.84 4.51 4.51 

S4 8.60 1.56 24.95 0.60 14.62 4.62 17.73 2.70 2.76 4.34 

S5 17.83 2.73 27.66 2.19 17.65 3.15 18.48 2.86 11.90 4.83 

S6 41.73 1.04 16.90 2.14 16.48 2.90 11.47 3.77 6.82 4.85 

S7 9.11 0.91 4.75 2.53 23.12 0.61 7.77 1.38 2.21 4.04 

S8 7.45 5.17 9.27 7.09 24.75 2.06 2.49 10.84 5.52 11.35 

S9 6.04 0.94 2.56 0.58 9.56 0.25 3.19 0.93 1.76 0.93 
  

4.3.5 Elemental ratios 

The total sulphur (TS) in study area varied from 0.06 % (S4; MON12) to 

3.10 % (S4; PRM10) with significant spatial variation (p<<0.01; Figure 4.6). 

Origin and transformation of organic matter can be aseesed by the application of 

bulk parameters such as stoichiometric elemental ratios (Yamamuro, 2000). 

According to Raiswell et al (1987), qualitative evaluation of the redox status of 

the sedimentary environment can be achieved using total organic carbon to 

sulphur ratios. Under normal conditions, TOC/TS ratios > 5 has been categorised 

as oxic sediment with oxygenated bottom water, TOC/TS = 1.5-5 indicates 

sediments deposited under periodic anoxia and TOC/TS < 1.5 reflects anoxic 

sediment with anoxic water (Raiswell et al., 1987). TOC/TS ratio varied from 

0.41 (S4; PRM10) to 22.39 (S4; MON12) provides a qualitative indication of the 

redox status of the environment of deposition, when TS concentrations are higher 

(Raiswell et al., 1987). The observed  average TOC/TS values in the study region 
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can be included in the second category (periodic anoxia) (except at S3-PRM10 

and S4, S8, S9-MON12, Figure 4.6), which implied the fact  that the sediments 

undergo sulphate reduction below an oxygenated water column (Hedges and Keil, 

1995; Niffy Benny, 2009; Renjith et al., 2012; Akhil et al., 2013).  

Organic carbon to nitrogen ratios have been used as an effective tool to 

trace the organic matter sources  based on the fact that   marine and terrestrial 

derived organic matters have a TOC/TN ratio of 5-8 and >15 respectively 

(Meyers, 1997). Typically lower TOC/TN ratio (between 4 and 10) is assigned 

for bacteria and algae; but higher values >20 have been displayed by vascular 

land plants (Hedges et al., 1988; Hedges and Oades, 1997). During the present 

investigation, TOC/TN ratio recorded its higher values at S1 (35.11; MON12) 

and minimum was found at S7 (0.39; PRM10) and was comparable with other 

studies (Table 4.1). Intermediate values for TOC/TN ratios recorded  in the 

present study (Figure 4.6), signalled a combined input of both autochthonous 

and terrestrial organic matter to the estuarine sediments (Verma and 

Subramanian, 2002; Muri et al., 2004; Gireeshkumar et al., 2012). 
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Figure 4.6 Variations of TOC/TS, TOC/TN and TS in surface sediment 

4.3.6 Stable carbon isotope ratio 

Organic matter of marine origin typically possess δ13C values which  
for terrestrial C3 plants (-26‰ to -28‰) and phytoplankton (-19‰ to -22‰), 
has successfully been used to evaluate the sources of organic matter in 
estuarine sediments (Gearing et al., 1977; Meyers, 1997; Bianchi et al., 2002). 
The sediment δ13C values determined in the present investigation ranged 
between -32.34±1.25 ‰ (S2; MON09) and -25.07±1.02 ‰ (S4; MON09). 
River dominated stations (S1, S8 and S9) exhibited  more depleted δ13C 
values, suggesting  a major  input of terrestrial higher plant debris to 
sedimentary organic matter. The stable carbon isotope ratios recorded in the 
present investigation was comparable with data reviewed from different 
estuaries in the world (Table 4.1).  
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4.3.7 Pearson correlation 

Grain size of sediment was found to be the main factor controlling the 

organic matter accumulation in the  sediments of the study region. The study 

revealed a strong correlation  of organic carbon with silt and clay  (Table 4.3) 

which could be attributed to the relatively high adsorptive capacity of fine 

particles for organic matter (Cotano and Villate, 2006; Ramaswamy et al., 2008). 

Fine grained fractions of the sediment (silt and clay) exhibited highly 

significant positive correlation with various biochemical constituents, which 

reflected the influence of granulometry on their distribution. The strong 

relationships of TOC (with CHO, PRT, LPD, tannin and lignin, chlorophyll 

a,b, c and phaeophytin), TN (with LPD and CHO) and total sulphur (with LPD 

and CHO and other variables) pointed towards the adsorption and diagenetic 

process which control the distribution of the biochemical components in the 

estuarine sedimentary environment. In the present study, chlorophyll pigments 

exhibited highly significant positive correlation with fine grained sediments 

(silt+clay) (Table 4.3) implied the effect of grain size on the pigment distribution 

in sediments (Colijn and Dijkema, 1981; Moreno and Niell, 2004). Strong 

correlations between biochemical constituents and chloropigments in the 

sediments (Table 4.3) indicated a major contribution of phytobenthic 

populations and their associated detritus to the bulk organic matter (Fabiano 

and Danovaro, 1994; Danovaro et al., 2000). The interrelationship among the 

biochemical components with each other pointed towards a common origin 

and the similar behaviour in the estuarine environment. 

4.3.8 Principle component analysis 

In aquatic environments, biogeochemical processes are responsible for 

the variation in sedimentary variables and therefore statistical tools such as  
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principal component analysis (PCA) can be utilised to examine  the controlling 

factors. Significant biogeochemical processes that can operate on the organic 

matter in sedimentary environment include diagenesis, bioturbation, 

allochthonous and autochthonous additions and sorption/desorption. As shown 

in Figure 4.7, PCA revealed three factors that accounted for 69 % of the total 

variance. The first factor consisting of TOC, LPD, chlorophyll-a and total 

sulphur describe the productive nature of the estuarine system and the 

preservation of lipid compounds in the periodically fluctuating anoxic 

environment. Strong positive loadings for clay, silt, TOC, TN, TS, PRT, CHO, 

LPD, tannin and lignin, Eh and pH observed in factor 2, explained 23% of 

total variance, inferred  sorption of organic matter on fine grained sediments. 

The relation of sedimentary parameters to the grain size gives indication of the 

sorption/desorption processes. Significant positive loadings (factor 3) for 

redox indicators like total sulphur, organic carbon and total nitrogen revealed 

that the major process that can operate in the system can be attributed to 

diagenesis (Joseph et al., 2008). 

 
Figure 4.7 Principal component analysis representing loading pattern of different sedimentary 

parameters in the estuary 
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4.4 Conclusion 

The higher lipid content and LPD/CHO ratio pointed towards the food 
quality that supports benthic fauna and accumulation of increased levels of 
lipid compounds in the sedimentary environment. Lower PRT/CHO ratio 
estimated in the sediments pointed towards a detrital heterotrophic 
environment and the addition of carbohydrates from terrigeneous input. The 
higher values of this ratio observed at various stations indicated freshly 
deposited OM in sediments. Biopolymeric carbon and the algal contribution to 
BPC provided significant information on the better understanding of the 
trophic status of the estuarine system.TOC/TS ratio inferred periodic anoxia 
and the estimated TOC/TN ratios implied the combined input of both 
terrestrial and autochthonous organic matter to sediments. TOC and TN 
concentrations strongly depend on the grain size of the sediments in the study 
region. Ratio of chlorophyll-a / (chlorophyll-a + phaeopigment) revealed rapid 
and recent deposition of phytoplankton detritus to sediments. The contribution 
of labile organic matter to total organic matter varied from 7.05 to 45.14 %. 
The predominance of carbohydrates over sedimentary protein indicates faster 
mineralisation of proteinaceous organic matter in sediments and the estuary 
behaves as a detrital trap for the accumulation of aged organic matter. The 
depleted δ13C values in sediments indicated a combined input of autochthonous 
as well as terrestrial organic matter and this fact was confirmed by the higher 
concentration of tannin and lignin in sediments. The overall analysis revealed 
the fact that the combined input of organic matter from organic detritus 

generated by in situ primary production land runoff, industrial, agricultural 
and domestic sectors resulting in the accumulation of bulk quantities of 
organic matter in the estuarine sediments. Over all bulk parameters analysis 
pointed out the fact that molecular level indices have to be employed to 

achieve more specific information on origin and fate of organic matter in 
complex ecosystems like Cochin estuary. 
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5.1 Introduction  

Free sugars are constituents of carbohydrate class of organic compounds 

occurring in water column as well as sedimentary phase, and represent an 

important fraction oforganic matter. These form a significant fraction of 

carbohydrates which are delivered to the estuaries via land run off (allochthonous) 

and in situ primary production (autochthonous). Monosaccharides serves as an 

important fraction of labile organic matter (Ittekkot and Arain, 1986) and their 

composition in sediments could reflect the biological origin of organic matter 

(Cowie and Hedges, 1984; Nierop et al., 2001; da Cunha et al., 2002).They may 

be originated directly via insitu production or through hydrolysis of structural and 

storage polysaccharides. In marine sediments, carbohydrates typically account for 

3 to 10 % of TOC (Skoog and Benner, 1997; Bergamaschi et al., 1999; Burdige et 

al., 2000; Kerherve et al., 2002). According to Benner and Opsahl (2001) and Keil 

et al (1998)molecular composition and quantification of these groups of 

carbohydrates in estuarine sediments would provide insights into the 

biogeochemical processes operating in the sediments. 
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Eventhough free sugars constitute a significant fraction of total organic 
matter, no systematic study on the spatio-temporal distribution pattern has 
been reported in the sediments of Cochin estuary till now. Chlorophyll 
containing organisms are responsible for the photosynthetic production of 
organic matter and therefore, chlorophyll pigments in the water column can be 
used as a suitable indicator for the assessment of the productivity of estuarine 
systems and earlier reports of Moreno and Niell (2004) were available in this 
context. Therefore, in this chapter, an attempt was made to   identify and 
quantify the free sugars to study their distribution and assess the implications 
on ecosystem productivity. 

5.2 Results 

Sediment samples were extracted with aqueous ethanol (70%, 2 h), 

centrifuged and deionised to remove cationic as well as anionic contaminants. 

The extract were dissolved in a known volume of distilled water, and analysed 

by HPLC method (detailed procedure for the extraction and analysis are 

furnished in Chapter 2).  

HPLC technique revealed the presence of different types of free sugars 
in the sediment extracts of the study area. The chromatograms of the various 
selected samples are furnished in Appendix 2.1. A total of ten free sugars viz., 
ribose (Rib), xylose (Xyl), arabinose (Ara), fructose (Fru), mannose (Man), 
glucose (Glu), galactose (Gal), sucrose (Suc), maltose (Mal) and lactose (Lac) 
were estimated in the sediment extracts. These free sugars were categorised as 
aldohexoses (glucose, galactose, and mannose), aldopentoses (arabinose, 
xylose, and ribose), ketohexoses (fructose) and disaccharides (sucrose, 
maltose, lactose). The concentration and spatio-temporal variation of different 
classes of free sugars are illustrated below. 
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5.2.1 Aldohexoses 
Glucose 

 
During the study period, glucose recorded its maximum concentration at 

station S5 (2.63±0.09 µg/g) in MON09. Meanwhile in both pre monsoons of the 
years as: PRM09 and PRM10, exhibited the highest concentration at stations S6 
(1.29±0.02 µg/g) and S9 (0.07±0.45 µg/g) respectively. During both seasons, 
POM09 (1.86±0.06µg/g) and MON12 (0.77±0.03 µg/g), the highest 
concentration of glucose was recorded at the same station S4 (Table 5.1). 

Galactose 

 

Maximum concentration of galactose (C6H12O6), was found at S4 
(2.0±0.07 µg/g, PRM09) during the study period and also it was observed to 
be high during all seasons. Among the monsoon seasons, MON09 and 
MON12, galactose recorded the higher concentrations at S8 (1.33±0.08 µg/g) 
and S3 (0.43±0.01 µg/g) respectively. Furthermore, during POM09 (1.43±0.06 
µg/g) and PRM10 (0.89±0.03 µg/g) the maximum content of galactose was 
also observed at station S4 (Table 5.1). 
Mannose 

 

In the sediments of Cochin estuary, maximum concentration for mannose 
was observed at S5 (10.92±0.15 µg/g, PRM10) during the study period (Table 
5.1). Eventhough in the consecutive seasons, PRM09 and MON09, mannose was 
abundant at station S3 (0.52±0.02 µg/g) and S5 (8.57±0.13 µg/g) respectively. In 
POM09, it was higher at S6 (1.25±0.10 µg/g), while during MON12, highest 
content was recorded at S6 (0.13±0.01 µg/g).  
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Table 5.1 Distribution of aldohexosesin surface sediments of CES 

Free sugars 
(µg/g) Stations PRM09 MON09 POM09 PRM10 MON12 

 Glucose 
  
  
  

S1 Nd Nd 0.18±0.02 Nd Nd 

S2 Nd Nd Nd Nd 0.18±0.02 

S3 0.29±0.03 Nd Nd Nd 0.08±0.01 

S4 0.29±0.02 Nd 1.86±0.06 Nd 0.77±0.03 

S5 0.13±0.01 2.63±0.09 Nd Nd Nd 

S6 1.29±0.02 Nd 0.47±0.02 Nd 0.01±0.001 

S7 Nd 0.06±0.001 Nd Nd Nd 

S8 Nd Nd 0.05±0.03 0.01±0.001 0.15±0.02 

S9 Nd Nd 0.01±0.001 0.07±0.45 Nd 

  
Galactose 
  
  
  
  

S1 1.18±0.05 0.23±0.02 0.31±0.02 Nd 0.18±0.02 

S2 0.87±0.03 0.62±0.03 0.19±0.6 Nd 0.34±0.01 

S3 0.96±0.02 0.4±0.01 0.05±0.29 Nd 0.43±0.01 

S4 2.0±0.07 0.16±0.02 1.43±0.06 0.89±0.03 0.31±0.04 

S5 0.35±0.02 Nd 0.6±0.03 Nd 0.18±0.50 

S6 0.8±0.40 0.44±0.03 Nd Nd 0.11±0.02 

S7 0.57±0.45 0.1±0.001 0.41±.04 0.39±0.05 0.12±0.03 

S8 1.6±0.05 1.33±0.08 Nd 0.39±0.04 0.23±0.02 

S9 0.15±0.01 0.1±0.01 0.07±0.25 0.1±0.001 0.08±0.002 

  
Mannose  
  
 

S1 Nd 0.01±0.001 0.24±0.02 Nd 0.02±0.001 

S2 Nd 0.45±0.04 0.22±0.01 0.3±0.02 Nd 

S3 0.52±0.02 0.01±0.001 Nd 0.69±0.04 0.02±0.001 

S4 Nd 0.04±0.007 Nd Nd 0.04±0.02 

S5 Nd 8.57±0.13 0.13±0.02 10.92±0.15 0.03±0.01 

S6 Nd Nd 1.25±0.10 Nd 0.13±0.01 

S7 0.22±0.03 Nd Nd 0.47±0.03 Nd 

S8 Nd 0.47±0.02 0.4±0.40 0.1±0.001 Nd 

S9 0.01±0.001 0.01±0.001 Nd 0.09±0.01 0.03±0.01 

Nd-not detected 

5.2.2 Aldopentoses 

Arabinose  
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In the study period, arabinose exhibited its maximum abundance at S6 

(6.88±0.34 µg/g) during PRM10 (Table 5.2) and exhibited lack of significant 

seasonal variation (p>0.01) as observed from ANOVA. Table 5.2, reveals both 

monsoon seasons (MON09 and MON12), highest abundance of arabinose was 

noticed at S5 (6.20±0.33 µg/g) and S8 (0.72±0.33 µg/g) respectively, while in 

PRM09 and POM09 seasons, the maximum content was recorded at S2 

(3.75±0.29 µg/g) and S4 (4.92 ±0.35µg/g). 

Xylose 

 

The spatio-temporal variation of xylose is depicted in Table 5.2.Xylose, 

recorded its maximum concentration at S4 (4.75±0.23 µg/g; POM09), while in 

both monsoon seasons the maximum concentration of xylose was observed at 

S5 (3.74±0.33µg/g; MON09) and S2 (2.07±0.24 µg/g; MON12). It can be 

observed from Table 5.2, that during the pre monsoon seasons (PRM09 and 

PRM10), the maximum content was recorded at station S4 (2.15±0.24µg/g) 

and S2 (0.85±0.04µg/g) respectively.  

Ribose 

 

During the study period, maximum abundance of free sugar, ribose was 

found at S4 (19.84±0.35 µg/g, POM09). In both pre monsoon seasons, PRM09 

and PRM10 highest concentration of ribose was recorded at stations S1 

(4.22±0.32 µg/g) and S5 (16.04±0.45 µg/g) respectively. Further, among the 



Chapter 5 

160 

two monsoon seasons, MON09 and MON12, the higher abundance of ribose 

was observed at S5 (9.82±0.61 µg/g) and S2 (2.72±0.23 µg/g) respectively.  

Table 5.2 Spatio-temporal variation of aldopentoses in surface sediments of CES 

Free sugars 
(µg/g) Stations PRM09 MON09 POM09 PRM10 MON12 

 Arabinose   

S1 Nd 0.6±0.02 Nd 3.23±0.13 0.46±0.08 

S2 3.75±0.29 1.24±0.22 0.51±0.11 Nd Nd 

S3 1.21±0.12 1.23±0.16 Nd 1.19±0.22 0.45±0.09 

S4 Nd 0.4±0.04 4.92 ±0.35 Nd 0.44±0.05 

S5 0.72±0.02 6.20±0.33 0.54±0.01 Nd Nd 

S6 2.54±0.13 Nd 0.81±0.12 6.88±0.34 Nd 

S7 1.53±0.14 Nd Nd 0.88±0.14 0.46±0.08 

S8 1.44±0.23 2.02±0.22 Nd 1.08±0.08 0.72±0.33 

S9 Nd 0.28±0.32 Nd 0.21±0.08 Nd 

 Xylose 

S1 1.58±0.12 0.21±0.24 Nd Nd 0.2±0.01 

S2 Nd 0.36±0.04 Nd 0.85±0.04 2.07±0.24 

S3 0.98±0.01 Nd 0.12±0.001 0.49±0.17 1.45±0.08 

S4 2.15±0.24 0.14±0.19 4.75±0.23 Nd 1.23±0.12 

S5 0.64±0.01 3.74±0.33 Nd Nd 0.23±0.23 

S6 Nd Nd 0.66±0.12 Nd 0.11±0.12 

S7 0.69±0.04 0.1±0.001 Nd Nd 0.21±0.09 

S8 0.4±0.02 Nd 0.3±0.001 0.35±0.07 Nd 

S9 0.17±0.03 0.14±0.01 0.18±0.12 Nd Nd 

 Ribose 

S1 4.22±0.32 Nd Nd Nd 0.38±0.03 

S2 Nd 0.74±0.017 1.1±0.13 Nd 2.72±0.23 

S3 0.87±0.04 Nd 0.26±0.11 Nd 1.67±0.14 

S4 Nd 0.28±0.16 19.84±0.35 Nd 1.34±0.12 

S5 0.75±0.05 9.82±0.61 0.73±0.04 16.04±0.45 0.74±0.13 

S6 Nd Nd 1.54±0.03 Nd Nd 

S7 2.9±0.06 Nd 8.49±0.12 Nd 0.43±0.22 

S8 1.02±0.13 Nd Nd 0.73±0.08 0.44±0.21 

S9 0.37±0.12 0.19±0.11 Nd 0.16±0.02 0.5±0.26 

Nd-not detected 
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5.2.3 Ketohexose  

Fructose  

 
The maximum concentration of fructose during the course of study was 

recorded at S4 (4.50±0.22 µg/g; POM09) (Table 5.3). During MON09, its 

presence was detected only at S8 (0.31±0.32 µg/g), while during MON12 

maximum concentration of fructose was observed at S2 (1.01±0.23 µg/g). 

Comparing both the pre monsoon seasons (PRM09 and PRM10), its highest 

concentration was observed at stations S6 (0.48±0.21 µg/g) and S4 (0.49±0.34 

µg/g) respectively. 
Table 5.3 Distribution of ketohexose in surface sediments of the study area 

Free sugar 
(µg/g) Stations PRM09 MON09 POM09 PRM10 MON12 

Fructose 

S1 Nd Nd 0.05±0.002 0.40±0.01 Nd 
S2 0.04±0.001 Nd 0.32±0.12 0.08±0.01 1.01±0.23 
S3 0.12±0.11 Nd 0.09±0.001 Nd 0.87±0.13 
S4 0.00 Nd 4.50±0.22 0.49±0.34 0.91±0.11 
S5 0.04±0.01 Nd Nd Nd Nd 
S6 0.48±0.21 Nd Nd 0.35±0.13 Nd 
S7 Nd Nd 0.12±0.11 Nd 0.31±0.12 
S8 Nd 0.31±0.32 Nd Nd Nd 
S9 Nd Nd 0.03±0.001 Nd Nd 

Nd-not detected 

5.2.4 Disaccharides 

Sucrose 

 
Sucrose, in surface sediments displayed its maximum abundance at S5 

(24.81±0.45 µg/g, PRM10). Sediments at stations S1, S5, S6 and S9 recorded 
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sucrose during  all the seasons (Table 5.4). In both monsoon seasons  (MON09 

and MON12), the higher concentration of sucrose was observed at S5 

(3.66±0.44 µg/g) and S4 (0.42±0.13 µg/g), while in PRM09 (1.34±0.23 µg/g) 

and POM09 (2.75±0.14µg/g) the peak concentration of sucrose was observed 

at S4 and S6 respectively (Table 5.4). 

Maltose 

 

Maximum concentration (Table 5.4) of maltose was recorded at S5 

(3.34±0.34 µg/g; PRM10) during the study period. In PRM09 and POM09, 

highest content of this disaccharide was noticed at S6 (2.18±0.24 µg/g) and S7 

(1.17±0.31 µg/g) respectively. Meanwhile, in MON09 and MON12, its highest 

concentration was observed at S5 (2.82±0.35 µg/g) and S8 (0.29±0.25 µg/g) 

respectively. 

Lactose 

 

During the study period, concentration maximum (1.47±0.13 µg/g, 

PRM10) of lactose was recorded at S6. In the case of monsoon seasons (MON09 

and MON12), the enhanced contents of lactose was recorded at S6 and S3 

respectively. While during PRM09 and POM09, the higher levels was recorded at 

S2 (1.3±0.22µg/g) and S7 (1.08±0.21µg/g) respectively (Table 5.4). 
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Table 5.4 Concentration of disaccharides in the surface sediments of CES 

Carbohydrates 
(µg/g) Stations PRM09 MON09 POM09 PRM10 MON12 

Sucrose 

S1 1±0.02 0.19±0.01 0.55±0.01 0.29±0.04 0.11±0.001 

S2 0.6±0.04 0.31±0.02 0.15±0.03 0.27±0.05 Nd 

S3 0.4±0.01 0.31±0.019 0.04±0.009 0.52±0.06 Nd 

S4 1.34±0.23 Nd 0.33±0.01 2.25±0.02 0.42±0.13 

S5 0.4±0.01 3.66±0.44 0.64±0.04 24.81±0.45 0.11±0.001 

S6 0.9±0.03 0.41±0.03 2.75±0.14 4.49±0.05 0.1±0.002 

S7 Nd 0.09±0.03 0.27±0.07 0.14±0.09 0.32±0.004 

S8 0.2±0.01 0.48±0.04 Nd Nd 0.19±0.008 

S9 0.1±0.001 0.07±0.001 0.04±0.001 0.06±0.001 0.05±0.001 

Maltose 

S1 1.3±0.03 0.24±0.01 0.17±0.01 0.56±0.01 0.21±0.003 

S2 0.9±0.01 0.47±0.02 0.16±0.001 0.32±0.02 Nd 

S3 0.5±0.02 0.87±0.03 0.06±0.003 1.53±0.08 0.13±0.002 

S4 1.8±0.01 0.16±0.001 0.82±0.01 0.33±0.19 0.22±0.001 

S5 0.4±0.009 2.82±0.35 0.66±0.02 3.34±0.34 0.23±0.004 

S6 2.18±0.24 0.79±0.02 0.73±0.03 2.18±0.06 0.15±0.001 

S7 0.7±0.01 0.13±0.05 1.17±0.31 0.12±0.001 0.22±0.002 

S8 0.4±0.02 1.04±0.07 0.2±0.004 0.61±0.01 0.29±0.25 

S9 0.2±0.01 0.12±0.01 0.04±0.003 0.1±0.001 0.1±0.001 

Lactose 

S1 1.1±0.01 0.12±0.04 0.15±0.001 0.23±0.002 Nd 

S2 1.3±0.22 0.23±0.001 0.08±0.001 Nd Nd 

S3 Nd 0.21±0.01 0.05±0.004 0.38±0.004 0.33±0.12 

S4 0.8±0.01 0.07±0.001 0.49±0.2 0.44±0.001 0.21±0.001 

S5 0.2±0.001 Nd 0.82±0.07 1.23±0.02 0.11±0.008 

S6 1±0.01 0.29±0.22 0.35±0.03 1.47±0.13 0.06±0.007 

S7 0.7±0.01 0.06±0.001 1.08±0.21 0.09±0.001 Nd 

S8 0.2±0.001 0.25±0.01 0.13±0.01 0.22±0.005 0.13±0.005 

S9 Nd 0.05± 0.09±0.001 0.05±0.001 0.08±0.006 
Nd-not detected 

5.2.5 Chlorophyll pigments in water column 

The spatio-temporal variation of chlorophyll pigments in the water 
samples collected from the various stations of the Cochin estuary is furnished in 
Table 5.5. Among the various seasons, during PRM09 chlorophyll-a (chl-a) 
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content ranged between 0.7±0.05 (S1) and 5.4±0.14 μg/l (S4). Meanwhile, in 
MON09 it ranged from 1.63±0.27 (S9) to 4.75±0.31 μg/l (S3). In POM09, the 
maximum content of chl-a, was observed at S7 (19.13±1.12μg/l) and minimum 
was recorded at S5 (3.11μg/l). However during PRM10, it fluctuated from 
3.37±0.32 (S2) to 21.38±0.18 μg/l (S4). While during MON12, maximum 
concentration of chl-a was found at S7 (4.12±0.26μg/l) and minimum was 
observed at S1 (1.4±0.25μg/l). During the entire investigation period, chl-a 
exhibit highly significant spatio-temporal variability according to ANOVA. 

Chlorophyll-b (chl-b) ranged from 0.72±0.15to 2.88±0.31 μg/l in 
PRM09 at S5 and S7 respectively, meanwhile during MON09 it varied from 
0.79±0.11 (S1) to 16.23±1.24μg/l (S5). In the case of POM09, it ranged 
between 1.12±0.19(S8) and 4.78±0.21μg/l (S5), however, during PRM10, it 
displayed maximum at S4 (2.95μg/l) and minimum at S5 (0.81±0.19μg/l). 
During MON12, it varied from 0.69±0.15(S1) to 2.56±0.29μg/l (S7).  

During the study period chlorophyll-c (chl-c) ranged from 1±0.18μg/l 
(S5) to 2.97±0.15 μg/l (S6) in PRM09, meanwhile during MON09 it ranged 
between 0.34±0.21 μg/l (S4) and 6.75±0.17μg/l (S2). However during 
POM09, it recorded minimum at S9 (0.24±0.15μg/l) and maximum at S4 
(6.38±0.9μg/l), however, during PRM10, it displayed the maximum content at 
S4 (10.03±1.16μg/l) and minimum at S2 (0.56±0.09μg/l). During MON12, it 
varied from 0.68±0.03μg/l(S4) to 7.09±0.22μg/l (S2).  

Phaeophytin (Phe) in the water samples, during PRM09 varied from 
0.85±0.32 μg/l (S4) to 2.67±0.17 μg/l (S3). During MON09, it exhibited 
minimum value of 1.05±0.11 μg/l and a maximum of 7.66±0.27 μg/l at stations 
S2 and S9 respectively. Meanwhile, in POM09 it ranged between 0.86±0.37 
μg/l (S3) and 3.2±0.11μg/l (S6) in the study area. However, during PRM10, it 
displayed minimum at station S1 (0.85±0.21 μg/l) and maximum at station S8 
(11.29±1.92μg/l). While during MON12, minimum content of phaeophytin 
recorded as 0.94±0.32 μg/l (S4) and maximum as 3.98±0.31 μg/l (S1). 
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Table 5.5 The spatio-temporal distribution of chlorophyll pigments (μg/l) in water samples 

 Component  Stations PRM09 MON09 POM09 PRM10 MON12 

chl-a 

S1 0.70±0.05 1.80±0.17 4.81±0.22 6.24±0.21 1.40±0.25 
S2 1.21±0.29 2.15±0.17 6.29±0.23 3.37±0.32 1.89±0.18 
S3 1.82±0.27 4.75±0.31 6.94±0.22 7.49±0.19 3.50±0.15 
S4 5.40±0.14 2.57±0.11 9.91±0.15 21.3±0.18 2.12±0.20 
S5 1.83±0.11 3.08±0.18 3.11±0.21 3.55±0.27 3.44±0.18 
S6 4.68±0.16 2.65±0.21 5.36±0.23 13.33±1.17 2.23±0.11 
S7 2.17±0.23 4.38±0.29 19.13±1.12 9.31±0.73 4.12±0.26 
S8 1.27±0.52 2.41±0. 16 5.24±0.43 4.75±0.14 2.60±0.15 
S9 1.81±0.22 1.63±0.27 4.36±0.24 4.12±0.18 1.45±0.17 

chl-b 

S1 1.27±0.22 0.79±0.11 3.64±0.16 1.48±0.32 0.69±0.15 
S2 0.93±0.18 1.03±0.41 2.35±0.21 1.55±0.33 0.98±0.20 
S3 1.47±0.43 1.00±0.21 3.86±0.49 1.41±0.22 1.20±0.72 
S4 2.12±0.19 2.50±0.26 2.40±0.17 2.95±0.61 2.00±0.33 
S5 0.72±0.15 16.23±1.24 4.78±0.21 0.81±0.19 0.71±0.11 
S6 1.18±0.21 2.32±0.14 3.09±0.29 1.21±0.27 1.30±0.22 
S7 2.88±0.31 2.36±0.29 1.40±0.18 1.56±0.38 2.56±0.29 
S8 1.21±0.65 1.49±0.34 1.12±0.19 1.53±0.22 1.18±0.38 
S9 2.00±0.43 1.83±0.28 1.74±0.71 0.96±0.27 1.89±0.22 

chl-c 

S1 1.13±0.18 1.28±0.12 5.56±0.27 2.49±0.44 1.62±0.32 
S2 1.06±0.31 6.75±0.17 3.51±0.15 0.56±0.09 7.09±0.22 
S3 1.91±0.34 0.44±0.07 5.23±0.18 3.69±0.26 0.78±0.18 
S4 1.61±0.22 0.34±0.21 6.38±0.9 10.03±1.16 0.68±0.03 
S5 1.00±0.18 0.45±0.28 5.66±0.15 1.31±0.26 0.79±0.22 
S6 2.97±0.15 4.25±0.27 0.32±0.11 4.89±0.27 4.59±0.73 
S7 2.21±0.17 0.88±0.11 3.36±0.43 3.13±0.21 1.22±0.20 
S8 1.56±0.29 0.57±0.19 0.49±0.11 1.74±0.28 0.91±0.25 
S9 2.34±0. 51 0.65±0.14 0.24±0.15 1.22±0.64 0.99±0.43 

 
 

Phe 

S1 1.30±0.35 4.03±0.42 2.88±0.27 0.85±0.21 3.98±0.31 
S2 2.22±0.19 1.05±0.11 1.81±0.15 2.67±0. 42 2.00±0.15 
S3 2.67±0.17 2.67±0.21 3.20±0.11 1.63±0.24 2.40±0.18 
S4 0.85±0.32 7.21±0.28 1.61±0.42 1.31±0.26 0.94±0.32 
S5 1.31±0.41 4.03±0.43 1.85±0.45 1.76±0.41 1.20±0.34 
S6 1.31±0.54 1.39±0.52 0.86±0.37 1.27±0.31 1.11±0.27 
S7 2.22±0.24 1.73±0.41 1.50±0.21 1.05±0.32 2.12±0.54 
S8 1.63±0.28 1.94±0.38 0.94±0.45 11.29±1.92 1.43±0.21 
S9 2.53±0.31 7.66±0.27 2.71±0.21 2.67±0.54 2.12±0.22 
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5.3 Discussion 

5.3.1 Distribution of free sugars in sediments 

In the present study, the seasonal distribution of the average free sugar 

content (Figure 5.1) in the sediments followed the trend:   

PRM09: Arabinose > Ribose >Galactose> Maltose > Fructose > mannose > 

Xylose > Lactose > Sucrose > Glucose. 

MON09: Arabinose > Ribose > mannose > Maltose > Sucrose > Xylose 

>Galactose> Glucose > Lactose > Fructose. 

POM09: Ribose > Arabinose > Xylose > Fructose > Sucrose > Maltose > 

Lactose >Galactose> Glucose > mannose. 

PRM10: Sucrose > Ribose > Arabinose > Mannose > Maltose > Lactose 

>Galactose> Xylose > Fructose > Glucose. 

MON12: Ribose > Xylose > Fructose > Arabinose >Galactose> Maltose > 

Sucrose > Glucose > Lactose > Mannose. 

 
Figure 5.1 Average concentrations of free sugars occuring in the surface sediments of CES 
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Aldohexose: During the study period, abundance of glucose was observed at 

station S5 during MON09 (Figure 5.2). It has been established that the 

occurrence of glucose, the most important carbohydrate, has been recorded in 

both terrestrial and marine derived organic matter (Cowie and Hedges, 1984). 

The observations recorded in the present study implies both autochthonous as 

well as allochthonous sources contribute to the estuarine sedimentary organic 

matter wich correlates well with the above statement. Generally, the yield of 

carbohydrate from terrestrial plant tissue is higher than that of aquatic 

organisms (Cowie and Hedges,1984; Kogel-Knabner, 2002). The high 

productivity enables estuaries to act as a major source of these organic 

compounds to sediments. Neutral aldohexoses such as glucose are typical 

exudates of recent photosynthesis (Biersmith and Benner, 1998; Kirchman et 

al., 2001). Aquatic organisms and microbes contain significantly higher levels 

of these monosaccharides than terrestrial plants (Ogier et al., 2001). Most of 

the stations recorded depleted levels of glucose during all seasons on account 

of bacterial respiration process.In the course of sedimentogenesis, the reserve 

carbohydrate of marine organisms are more degradable compared to the 

structural carbohydrates (Kodina and Galimov, 1984), but they may be 

partially preserved in the sediments under the protection of a mineral matrix. 

The carbohydrates of the bottom sediments interact with each other and with 

the products of the destruction of other biopolymers to form geopolymers 

under natural conditions (Lazareva and Romankevich, 2012). Moreover the 

decrease in concentration of glucose was associated with increase in higher 

concentration of arabinose, xylose, mannose and galactose. These are 

combined with structural hetero-polysaccharides of microorganisms, including 

diatoms (Hecky et al., 1973; Haug and Myklestad, 1976), and terrestrial plants 

(Opsahl and Benner, 1999). Meanwhile, at S6 (PRM09), S5 (MON09) and S4 
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(POM09), a significantly higher concentration of glucose was observed 

(Figure 5.2). This might have been derived from the free sugars of higher plant 

tissues or else from the breakdown of polysaccharides of either algae or higher 

plants (Vallentyne and Bidwell, 1956); while not found any spatio-temporal 

variation (p>0.05).  Glucose displayed a significant positive correlation with 

silt (r=0.37) and chlorophyll (r=0.34) indicating a close relationship of their 

formation by primary productivity as well as adsorption on fine grained 

sediments. Whereas highly significant positive correlation with other free 

sugars occurring in the sediment except sucrose, lactose and galactose 

indicates a common origin, behavioural resemblances and  common pattern of 

distribution (Table 5.6). 

The free sugar mannose exhibited higher abundance at S5 during  both 

seasons of PRM10 (10.92±0.15 µg/g) and MON09 (8.57±0.13 µg/g), (Figure 

5.2) and varied among the sampling sites (p<0.01). Angiosperm-derived 

hemicellulose is characterised by high concentration of xylose units, although 

this macromolecule derived from gymnosperm is relatively rich in mannose 

(Cowie and Hedges, 1984; Hedges, 1990). The mannose is a structural 

component of hetero polysaccharides in microorganisms, including diatoms 

(Hecky et al., 1973; Haug and Myklestad, 1976), and terrestrial plants (Opsahl 

and Benner, 1999). Mannose displayed significant positive correlation (Table 

5.6) with ribose (r=0.60), glucose(r=0.40), sucrose(r=0.83), maltose(r=0.70) 

and chl-a (r=0.29), indicating involvement of pigments in the enhancement of 

the productivity and subsequent formation of carbohydrates (Devassy and 

Goes, 1989). 

During PRM09 galactose exhibited maximum concentration at station 

S4 (2.0±0.07 µg/g) and higher content were obtained at stations S1 and S8. 

Similar trend was also observed during MON09 (S8) and POM09 (S4); while 
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sediments collected from some stations, galactose was not detected (Figure 

5.2). The galactose recorded highly significant (p<<0.01) seasonal and spatial 

variations. Pectin is found in non-woody plant materials (Sjostrom, 1981; 

Kogel-Knabner, 2002), which is a source of galactose; contributedto the 

increased content in the sediments. Another important source ofgalactose is 

the structural hetero polysaccharides of microorganisms, including diatoms 

(Hecky et al., 1973; Haug and Myklestad, 1976), and terrestrial plants (Opsahl 

and Benner, 1999; Stibal et al., 2010). In the present study galactose displayed 

significant positive correlation (Table 5.6) with silt (r=0.32), xylose (r=0.35), 

fructose (r=0.31) and lactose (r=0.32); describes the adsorption on fine grained 

sediments as well as similar behavioral resemblance with these sugars. 

Among the aldohexoses(glucose, galactose and mannose), 

galactosefound to exhibit higher content in most of the stations. While in 

MON09, majority of stations recorded lower levels of aldohexoses, except S5 

(where mannose and glucose was relatively higher). In the case of POM09, 

glucose (S4), galactose (S1, S3, S7 and S9) and mannose (S2, S6 and S8) were 

enriched at respective stations. During PRM10, most of the stations exhibited 

lower levels of aldohexoses, while at S5, the concentration of mannose was 

projected. From the Figure 5.2, it is clear that during MON12, among the 

aldohexoses, galactose was high in all station except S4, where glucose was 

the most abundant free sugar. 
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Figure 5.2 Variation of aldohexose (glucose, mannose and galactose) in the sediments 

Aldopentoses: The observed free sugars such as arabinose exhibited its 

maximum concentration during PRM10 at S6 (6.88±0.34 µg/g), while a 

remarkable concentration was also observed during POM09 (S4; 4.92 ±0.35 

µg/g) and MON09 (S5; 6.20±0.33 µg/g) (Figure 5.3). These stations were 

noted for domestic waste disposals and sewage outfall. These waste materials 

contain non-woody plant materials which is typically rich in pectin compared 

to woody plant materials. Pectinconstitute amajor portion ofarabinose 

composition (Sjostrom, 1981; Kogel-Knabner, 2002). No significant spatial or 

seasonal variation was observed during the investigation. Arabinose displayed 

strong positive correlation with ribose (r=0.32), fructose (r=0.37), lactose 
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(r=0.36), chl-a (r=0.32), chl-b (r=0.37), chl-c (r=0.36), xylose(r=0.40), glucose 

(r=0.58) and maltose (r=0.51) which implied the potential of photosynthetic 

activity (Table 5.6).  

Xylose recorded its maximum value at S4 during POM09 (4.75±0.23 

µg/g) and its spatio-temporal variation was insignificant (p>0.05). Enhanced 

level of xylose was observed during MON09 at station S5 and this indicated 

the presence of terrestrial organic matter derived from angiosperm plants 

(Guggenberger et al., 1994b; Biersmith and Benner, 1998; Khodse andBhosle, 

2012). Terrestrial materials enriched with carbohydrates can be derived from 

angiosperm and gymnosperm plants. Xylose is more enriched in angiosperm 

tissues as compared to gymnosperm tissues (Cowie and Hedges, 1984). It is 

well known that in continental aquatic ecosystems, pentose is mainly derived 

from vascular plants (da Cunha et al., 2002). Sugars such as rhamnose, fucose, 

arabinose, xylose, mannose and galactose are associated with structural hetero 

polysaccharides of microorganisms, including diatoms (Hecky et al., 1973; 

Haug and Myklestad, 1976), and terrestrial plants (Opsahl and Benner, 1999). 

This site (S4) was found to be severely deteriorated with sewage out fall.  A 

number of fish peeling and processing units are situated on the banks of the 

Cochin estuary delivering organic rich wastematerialsin to the water body 

(Vasudevan, 2000; Balasubramanian et al., 2012). Xylose exhibited significant 

negative correlation with sand, while displayed highly significant positive 

correlation with silt (r=0.42) and ribose (r=0.62), reflecting the influence of 

granulometry.  

Higher concentration of ribose was observed at S4 (19.84±0.35µg/g) 

and S5 (16.04±0.45 µg/g) during POM09 and PRM10 respectively (Figure 
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5.3). These are abundant constituents of storage and structural polysaccharides 

in bacteria, fungi and diatoms (Percival, 1970; Cowie and Hedges, 1984; 

Moers et al., 1989). Bacteria, fungi and phytoplankton are enriched with 

rhamnose, fucose and ribose (Cowie and Hedges, 1984; Moers et al., 1989; 

Hicks et al., 1994; D’Souza, 2004). Aldose sugars such as arabinose, fucose, 

galactose, glucose, mannose, rhamnose, ribose and xylose are commonly 

found in dissolved and particulate organic matter and in terrestrial and marine 

organisms (Cowie and Hedges, 1984; Mopper et al., 1995; Borch and 

Kirchman, 1997; D’ Souza and Bhosle, 2001), which results in the elevated 

levels. Ribose displayed significant positive correlation with silt and all other 

free sugars except lactose (Table 5.6).  

Among the three aldopentoses, arabinose (S2, S3 and S8) and ribose 

(S1, S5, S7 and S9) were enriched at respective stations in PRM09, while at 

S4, xylose was enriched (Figure 5.3). Meanwhile, in MON09 and POM09, a 

noticeable concentration of three aldopentoses was found only at stations S5 

and S4 respectively (Figure 5.3), among three aldopentoses, ribose was 

relatively enriched in both stations. During PRM10, ribose and arabinose was 

more abundant at respective stations S5 and S6. Ribose content was dominant 

at S2 to S5 during MON12, while arabinose was enriched at S1, S7 and S8. 
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Figure 5.3 Concentration of arabinose, xylose and ribose in surface sediment of CES 

Ketohexose: ANOVA revealed that the free sugar, fructose possess no spatial 

or seasonal variation and the maximum concentration was observed at station 

S4 during POM09. Figure 5.4, revealed that fructose exhibit non-detectable 

levels in many of the stations. On the basis of a sestonic origin, sedimentary 

sugars like glucose and fructose could originate directly from the free sugars 

of living plants or polysaccharide breakdown (Vallentyne and Bidwell, 1956). 

Fructose exhibited strong positive correlation with silt (r=0.31), arabinose 

(r=0.37), galactose (r =0.31), ribose (r=0.62), xylose (r=0.67) and glucose 

(r=0.50) implied its dependence on grain size of sediments and common 

behaviour similar to other carbohydrates. 
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Figure 5.4 Distribution of ketohexose (fructose) in surface sediment of CES 

Disaccharides: The highest concentration of maltose was observed at station 

S5 (3.34±0.34 µg/g) in PRM10. The Figure 5.5, suggested that maltose display 

a remarkable concentration at all stations compared to other disaccharides. 

Minor concentrations of maltose has been reported in Haematococcus and 

Spirogyra, and larger content in Pontidis(Norris et al., 1955). Granulometric 

dependence on the distribution and similar behaviour was detected by 

correlation; significant negative correlation with sand (r=-0.36), while positive 

correlation with silt (r=0.37), clay (r=0.30), ribose (r=0.50) and arabinose 

(r=0.51). 

Among the free sugars, sucrose displayed its highest abundance at S5 

(24.81±0.45µg/g) during PRM10. The peculiarity of this free sugar was that 

during all the seasons, majority of stations recorded surplus levels (Figure 

5.5). Origin of sucrose in sediments is attributed mainly to the living plants 

(Oades, 1984; Guggenberger et al.,1994a), recorded strong positive correlation 

with ribose (r=0.55), mannose (r=0.83), maltose (r=0.67) and lactose (r=0.43), 

indicating the similarity in origin and behavior. 
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The concentration of lactose in the study period, was maximum 

(1.47±0.13µg/g) at S6 during PRM10 (Figure 5.5). From the Figure 5.5, it is 

clear that abundance of lactose was observed at the estuarine region (S3 to 

S7). The concentration of lactose displayed seasonal variations (p<0.01) but 

did not exhibit any variation among the sampling sites. Lactose, a hetero-

disaccharide of glucose and galactose observed in sediment samples (Cowie 

and Hedges, 1984; Hamilton and Hedges, 1988) implies inputs from both 

microorganisms such as diatoms and terrestrial plants (Hecky et al., 1973; 

Haug and Myklestad, 1976; Opsahl and Benner, 1999). Lactose was found to 

exhibit positive relationships with ribose (r=0.31), arabinose (r=0.36), galactose 

(r=0.32), sucrose (r=0.43) and maltose (r=0.67), indicate behavior resemblances. 

Among the three disaccharides, maltose was enriched in most of the 

stations during POM09, except stations S2 and S7. While during MON09, 

maltose was enriched in most of the stations (except S5). In POM09, high 

concentrations of sucrose (S1 and S6), maltose (S2, S3, S4, S7 and S8) and 

lactose (S5 and S9) were observed among the three disaccharides in the 

respective stations of the study area (Figure 5.5). Meanwhile, during PRM10, 

a remarkable concentration of these three disaccharides were observed only at 

S5 and S6, since sucrose was enriched in the sediments of those stations 

compared to other disaccharides. Among three disaccharides, maltose was 

more concentrated in majority of stations during MON12; while sucrose was 

enriched at S4 (Figure 5.5). 
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Figure 5.5 Concentration and variation of disaccharides in the sediments of CES 

5.3.2 Free sugars in sediments and the primary productivity 

Photosynthetic fixation of inorganic carbon and nutrients into plant 

biomass is the primary source of organic matter within estuaries. 

Carbohydrates in aquatic system (Kirchman et al., 2001) are associated with 

recent production by photosynthesis or chemosynthesis (Jansen et al., 1982; 

Biersmith and Benner, 1998).These class of organic compounds serve as an 

important energy source for heterotrophic organisms in the water column and 

sediments (Decho, 1990). Primary productivity is an important factor for 

controlling the distribution of organic molecules in sediments. Carbohydrates 
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synthesised by primary producers are classified as storage and structural 

polymers. Storage carbohydrates are labile and gets rapidly utilisedinsitu by 

heterotrophic organisms. The rate of photosynthetic activity depends on 

distribution of phytoplanktons which represent an important source of 

sedimentary organic matter. The dominant classes of phytoplankton in Cochin 

estuary includes: Bacillariophyceae, Dinophyceae, Chlorophyceae, 

Cyanophyceae, Chrysophyceae, Dictyophyceae and Zygnematophycea(Radhika, 

2013; Dayala et al., 2014). Benthic macroalgae and microphytobenthos are also 

another important sources of primary production in estuaries (Bianchi, 1988; 

Pinckney and Zingmark, 1993; de Jonge and Colijn, 1994).  

During the study period, gross primary productivity of the estuary 

found to vary from 0.02 to 0.63 gC/m3/day, with significant seasonal and 

spatial variations (p<<0.01) (Figure 5.6). The comparison of the data on 

productivity recorded only slight deviations from previous studies (0.24-3.0 

gC/m3/day- Meera and Bijoy, 2010; 0.753 gC/m3/day-Selvaraj et al., 2003). In 

general, monsoon recorded lower productivity due to decreased light 

penetration and greater turbidity in water column generated by land runoff. 

Enhanced turbidity in shallow regions from resuspension events can limit light 

penetration; thus, the most effective time for primary production occurs during 

daytime exposure periods (Guarini et al., 2000; 2002). Sudden changes in the 

hydrographic features and the mixing process caused by strong wave action 

during premonsoon, results in declining the primary productivity (Selvaraj et 

al., 2003). Seasonal changes in phytoplankton abundance and composition in 

estuaries are governed by changes in riverine inputs, nutrients, tidal variability, 

algal respiration, light availability, horizontal exchanges, and consumption by 

grazers (O’Donohue and Dennison, 1997; Thompson, 1998; Lucas and Cloern, 

2002).Eventhough, surplus amount of nutrients is available via anthropogenic 
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input; the growth of phytoplanktons might have been declined due to the 

reduced light availability as a result of dredging (Cole and Cloern, 1987). The 

nutrient distribution in the sedimentary phase revealed sufficient levels of 

bioavailable forms to sustain an optimum rate of primary production in the 

estuary. 

 

 
Figure 5.6Spatio-temporal variation of gross primary productivity in CES 

The increased total carbohydrate content and their strong correlation 
(r=0.41) with primary productivity (PP) is a direct indication of the enhanced 
productivity of this ecosystem. Strong positive correlation of PP with chlorophyll 
pigments (Table 5.6) also inferred the increased rate of photosynthesis taking 
place in the estuarine system. The unusual hike in the chlorophyll-a values 
observed during May-June, which was proportionately reflected in the primary 
productivity values. Photosynthesis by primary producers have generated 
carbohydrates consisting of monosaccharides/ structural polysaccharides. Each of 
the free sugars estimated in the sediments of the study area might be generated via 
autochthonous or allochthonous pathway. Allochthonous input of organic matter 
is evident from the characteristic TOC/TN ratios, and depleted δ13C values 
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(described in chapter 4). It is well accepted that river derived nutrients are 
important in controlling phytoplankton abundance and composition;enhanced 
phytoplankton productivity arisedue to an import of coastal phytoplankton 
associated with high salinity (Hickey and Banas, 2003). Significant correlation of 
nutrients [TP with PP (r=0.42) and TOC (r=0.33)] indicated the involvement of 
nutrients in the formation of organic matter. The increase in anthropogenic 
loading of nutrients results in uncontrolled proliferation of primary producers as 
per previous observations (Rosenberg and Ramus, 1984; Duarte, 1995; Kamer et 
al., 2001). 

5.3.3 Chlorophyll pigments as indicator of primary productivity 

The lower values of primary productivity observed during MON12 at 
most of the stations (Figure 5.6) was due to freshwater discharges from the 
rivers, land runoff, leading to turbidity and less availability of light(Kawabata 
et al., 1993; Godhataraman, 2002; ThillaiRajasegar et al., 2005). Moreover, 
the wash out of phytoplankton by the monsoonal floods followed by  reduction 
in salinity influence the phytoplankton population and lowers the PP during 
the monsoon season (MON12), similar  phenomena was observed in previous 
investigations (Rajasegar et al., 2000, Gowda et al., 2001; ThillaiRajasekar et 
al., 2005). ANOVA revealed significant spatial and seasonal variation  
(p<0.01) in surface waters. The higher primary productivity at S7, S8 and S9 
during the study period (Figure 5.6) could be attributed to high light intensity, 
clarity of water column and nutrient availability as reported in the previous 
investigations (Gopinathan et al., 1994; ThillaiRajasegar et al., 2005).  

Chlorophyll pigments have been recognised as a marker of organic 
carbon (Bianchi et al., 1995) and could be used as a measure of changes in 
their biomass. Phytopigments such as chl-a, chl-b, chl-c and phaeophytin are 
useful indicators of different processes taking place in the water column 
(Welschmeyer and Lorenzen, 1985). Phytoplankton biomass contains chl-a, 
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chl-b, chl-c and its degradation products, phaeophytin. The depleted levels of 
pigments observed during monsoon seasons (MON09 and MON12, Figure 
5.7) at most of the stations might also be due to high flushing which results 
in the faster removal of phytoplankton to the coastal regions (Jyothibabu et 
al., 2006). Enriched levels of nutrients in water columnfavoursthe growth of 
large phytoplankton, while the production of small phytoplankton is mainly 
controlled by grazing of microzooplankton (Jyothibabu et al., 2006). 

Chlorophyll-a is a ubiquitous pigment and can be used as a global algal 
biomass indicator. It occurs in all groups of photosynthetic organisms except 
some bacteria (Moss, 1968). Content of chlorophyll-awas maximum during 
PRM10 at S4, which is a thickly populated semi urban area influenced by 
sewage disposal and noted lowest value at S1 (riverine area) during PRM09 
(Figure 5.7). The variation in concentration of this pigment in the present 
study was generally associated with environmental factors, especially inflow 
of freshwater during rainy season, light and nutrient availability. Earlier 
studies revealed that mean chl-a concentration in the estuarine and coastal 
waters vary with respect to other aspects (Selveraj et al., 2003; Renjith, 2006). 
Chlorophyll-a content recorded in the Cochin estuary include: 2 to 21μg/l 
(Nair et al., 1975), 4.93 to 8.93 μg/l (Selveraj et al., 2003) and 1 to 34.61 μg/l 
(Renjith, 2006), 2.75 to 17.97 μg/l (Aneeshkumar, 2009). The estimated chl-a 
value recorded in the present study revealed comparatively lower values with 
the earlier reports (Figure 5.7). The higher chlorophyll content during POM09 
and PRM10 seasons (Figure 5.7) was comparable with earlier observations 
recorded in Cochin estuary (Gopinathan, 1972; Devessy and Bhattathiri,1974; 
Martin et al., 2012). In addition to these reports Nair et al (1975) have 
estimated an overall range of 1.5-18 mg/m3 for chl-a. Maximum content for 
chl-a in pelagic flora occurs during monsoon (Joseph and Pillai,1975); 
whereas for benthic microflora the maximum were reported during 
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premonsoon and monsoon (Sivadasan and Joseph, 1995). The higher chl-a in 
the study area (S3 to S7; Figure 5.7) can be attributed to the enrichment of 
nutrients contributed by industrial and domestic activities (Jyothibabu et al., 
2006; Madhu et al., 2007). Moreover, the higher organic productions are not 
transferred to the higher trophic level due to the lack of effective grazers, 
which leads to settling of the excess chlorophyll to the sediments (Jyothibabu 
et al., 2006). 

Chlorophyll-b, also exhibited comparatively similar pattern of 
distribution, in the entire sampling sites with slight variations. Moderately 
higher concentration was observed at all stations during all seasons under 
investigation. The environmental factors that strongly influence pigment 
composition of phytoplankton are irradiance, spectral distribution of light, day 
length, diurnal cycle, nutrient status  (Partensky et al., 1993; Schluter et al., 
2000; Henriksen et al, 2002; Tukaj et al., 2003), Fe content (Van Leeuwe  et 
al., 1998) and growth phase (Schluter et al., 2000). The concentration of 
pigments and nutrients in the water column are the key factors for determining 
the biological productivity and potential resources. The transparency and the 
nutrient level indicated the fertility of the water body for the enhancement of 
primary productivity and the availability of the photosynthetic pigments and 
phytoplankton.Correlation between nutrients and primary production was 
insignificant suggesting that instantaneous concentration of nutrients has lesser 
influence (Varshneyet al., 1982). Insignificant correlation between nitrogen and 
primary production pointed out the fact that in spite of the higher 
concentration of available nutrients in water column; the productivity was 
declined by factors like transparency and other meteorological factors.  
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Figure 5.7 Distribution of chlorophyll-a,b,c and phaeophytin in water samples of the study area 

Principal Component Analysis: PCA of the estimated variables (Table 5.7) 

established four components explaining 75.17% of total variance. First 

component account for 42.48% of total variance and exhibited positive 

loadings on TOC, chlorophyll pigments, TS and TN. It denoted 

autochthonous/allochthonous addition of photosynthetic pigments to the 

sedimentary phase. Since the factor contains TOC, TS and TN, the major 

process that can operate in the system is the diagenesis (Joseph et al., 2008). 

Variables included in component 2 exhibited strong positive loading on silt, 

clay, salinity, chlorophyll-a, b, c and accounted for 15.92% of total variance. It 
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also indicated adsorption of chlorophyll pigments on fine grained sediments 

which was assisted by the periodically varying salinity gradient. Component 3 

explained 9.1% of total variance and consisted of PP, CHO, TS, TN and TP 

suggested enhanced primary production occurring in the estuary promoted by 

the surplus nutrients input through the river run-off. Meanwhile, component 4 

explained 7.67% of total variance and consisted of Eh, pH, salinity and total 

free sugars. The concentration and spatial-temporal distribution of free sugars 

in the study area are mainly controlled by granulometry of sediments and 

salinity of the water column.  

Table 5.7 Results of principal component analysis 

Parameters Components 
1 2 3 4 

pH 0.047 0.009 0.055 0.743 

Eh 0.017 -0.593 0.155 -0.476 

Sand -0.361 -0.885 -0.165 -0.022 

Silt 0.355 0.871 0.092 0.051 

Clay 0.317 0.778 0.265 -0.030 

Salinity 0.348 0.484 -0.456 0.529 

TOC 0.600 0.174 0.643 -0.138 

PP -0.134 -0.015 0.776 0.152 

CHO 0.324 0.131 0.753 -0.321 

Chl-a 0.911 0.310 0.069 0.053 

Chl-b 0.889 0.384 0.019 0.141 

Chl-c 0.870 0.395 0.048 0.149 

Phe 0.898 0.257 -0.021 0.046 

TS 0.764 0.131 0.306 0.104 

TN 0.490 -0.211 0.405 -0.011 

TP 0.173 0.284 0.627 0.162 

Sum of free sugars 0.099 0.049 0.056 0.709 

% of variance 42.48 15.92 9.10 7.67 
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5.4 Conclusion 

The seasonal average concentration of free sugars in the sediments was 

as follows: arabinose (PRM09 and MON09), ribose (POM09 and MON12) 

and sucrose (PRM10). During the study period, most of the stations recorded 

depleted levels of glucose during all seasons, while at S5 maximum content 

was observed during MON09. In the case of mannose, its higher abundance 

was observed at S5 (both PRM10 and MON09). Among three aldohexoses 

(glucose, galactose and mannose), galactose was found to be higher in most of 

the stations. Among the three aldopentoses (ribose, xylose and arabinose), 

arabinose (S2, S3 and S8) and ribose (S1, S5, S7 and S9) were enriched at 

respective stations in PRM09, while at station S4, xylose was enriched. It is 

clear that fructose was almost absent in many of the stations. Among the three 

disaccharides-sucrose, maltose and lactose, maltose was enriched in most of 

the stations during POM09. The significant positive correlation of glucose 

with silt and chlorophyll pigments, suggests a strong relation to their 

formation by primary productivity as well as adsorption on fine grained 

sediments. Meanwhile, a highly significant positive correlation with other free 

sugars present in the sediment except sucrose, lactose and galactose which 

reveals a common origin and similarity in behaviour and distribution pattern. 

The general positive relationship between phosphate and chlorophyll pigments 

confirmed the fact that nutrient availability of the water column governs the 

instantaneous rates of chlorophyll and carbon production. The surplus levels of 

chlorophyll pigments in water column have imparted high rate of productivity 

of the estuarine system.  The estimated contents of free sugar in sediments of 

the study area has been attributed to both autochthonous as well as 

allochthonous input as evident from stable carbon isotope ratio and TOC/TN 

ratio.The overall examination implied that the biogeochemistry of free sugars 
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and the productivity of Cochin estuary were influenced by the interactions 

between nutrient, chlorophyll, TOC and other physicochemical variables. The 

concentration and spatio-temporal distribution of free sugars in the study area 

are mainly controlled by granulometry of sediments, salinity of the water 

column, in situ production as well as terrestrial allochthonous inputs. 
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6.1 Introduction 

Amino acids (AAs) are the structural components of proteins which 

have been recognised as the largest reservoir of organic nitrogen in marine 

organisms (Kaiser and Benner, 2008). This particular class of organic 

compounds are important constituents of living and dead organic matter 

(Cowie and Hedges, 1992), and represent a major fraction of bioactive OM 

preserved in the marine sediments (Keil et al., 2000; Vandewiele et al., 2009). 

Moreover amino acids play an important role as an intermediate in the marine 

nitrogen cycle (Capone et al., 2008) and act as one of the most labile fraction 

of OM in marine sediments (Ittekkot and Zhang, 1989; Spitzy and Ittekkot, 

1991; Duan and Bianchi, 2007). 

A better understanding ofabundance of amino acids and their 
composition will provide an insight into the sources and biogeochemical 
cycling of organic matter (Ittekkot and Arian, 1986; Hedges et al., 1994; 
Aufdenkampeet al., 2001; Jianfang Chen et al. 2004). The degradation state of 
the estuarine sedimentary environment can be evaluated using the contribution 
of amino acid carbon to total organic carbon (THAA-C%)  and amino acid 



Chapter 6 

200 

nitrogen to total nitrogen (THAA-N%) (Cowieand Hedges, 1994; Dauwe et 
al., 1999; Davis et al., 2009). The content and compositions of total 
hydrolysable amino acids (THAA) have been utilised as diageneticindicators 
on account of their selective decomposition or preferential preservation during 
diagenesis (Keil et al., 2000; Amon et al., 2001; Vandewiele et al., 2009). 
Amino acid-based degradation index (DI) has been successfully employed to 
characterise the diagenetic status of OM in estuarine sediments (Dauwe and 
Middelburg, 1998; Lomstein et al., 2006).  

A mixture of nitrogen compounds like proteins and amino acid 
degradation products occur in the estuarine sediments (Nunn and Keil, 
2004).Autochthonous as well as allochthonous processes can contribute 
nitrogen in the form of amino acids, and hence sediments can act as a large 
reservoir of amino acids.Previous studies in Cochin estuary focussed mainly 
on the distribution and source characterisation of organic matter (Balachandran 
et al.,  2005; Joseph et al., 2008; Martin et al., 2010; Gireeshkumaret al., 2012; 
Renjith et al., 2012; Akhilet al., 2013); but evaluation of the degradation state of 
organic matter using amino acids is not attempted yet.  Therefore, the present 
study investigates the spatio-temporal distribution pattern and degradation 
status of amino acids to evaluate the quality of organic matter and diagenetic 
process in sediments sampled from Cochin estuarine system. 
6.2 Results 

Total hydrolysable amino acid (THAA) were extracted by adding HCl 
(6M) to freeze dried homogenised sediment  in pre-cleaned and muffled glass 
vials, and purging the headspace with N2. The individual amino acids were 
quantified according by HPLC method (detailed procedure for the extraction and 
analysis are furnished in Chapter 2). 

A total of seventeen amino acids were identified from the surface sediment 
extracts of the study area. The chromatograms of the various selected samples in 
each season are presented in Appendix 3.1. The detected AAs included  aspartic 
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acid (Asp), glutamic acid (Glu), serine (Ser),  glycine (Gly), histidine (His), 
arginine (Arg), threonine (Thr), alanine (Ala), proline (Pro), tyrosine (Tyr), 
valine(Val), methionine (Met), cysteine (Cys), isoleucine (Ile), leucine (Leu), 
phenylalanine (Phen) and lysine (Lys). The sum of the concentrations of all the 
identified amino acids expressed as total hydrolysable amino acid (THAA), and 
the relative abundance of individual amino acids is expressed as mole% of THAA 
[percentage of (concentration of individual amino acid/ sum of total amino acids 
in sediment extract)] is presented in Table 6.1.  

Table 6.1 Distribution of THAA, THAA-N and THAC-C in surface sediments of CES 

Parameter Stations PRM09 MON09 POM09 PRM10 MON12 
THAA-N% S1 43.71 47.21 10.58 15.36 39.08 

S2 50.12 74.43 8.69 42.93 73.21 
S3 28.69 86.72 34.74 38.78 26.07 
S4 64.57 87.71 20.67 25.39 27.81 
S5 8.40 39.87 30.62 70.45 24.39 
S6 72.22 75.72 25.91 30.66 15.91 
S7 34.52 18.95 42.49 6.03 5.09 
S8 62.81 30.06 22.53 16.23 16.76 
S9 62.54 41.49 15.50 14.43 16.24 

THAA-C% S1 16.23 7.25 5.05 19.99 4.38 
S2 20.60 23.61 9.99 33.52 24.48 
S3 7.42 24.33 37.51 7.74 7.62 
S4 12.31 37.00 9.08 29.24 18.19 
S5 2.75 10.38 12.24 23.59 10.59 
S6 19.35 20.73 6.66 7.96 5.55 
S7 18.14 4.73 6.55 33.89 2.99 
S8 14.47 7.44 5.68 3.69 5.52 
S9 27.02 29.94 6.82 8.63 4.44 

THAA (µmol/g) S1 36.90 54.79 40.78 57.65 33.06 
S2 22.55 51.64 14.08 69.36 69.10 
S3 32.18 38.87 41.50 39.42 18.21 
S4 17.88 41.32 38.56 62.20 32.90 
S5 11.77 45.99 41.50 92.20 57.70 
S6 66.41 87.32 26.74 43.30 32.24 
S7 12.03 10.04 16.80 32.45 9.56 
S8 124.54 65.02 48.70 29.90 58.70 
S9 18.27 10.00 3.72 8.84 4.14 

The maximum concentration of THAA was recorded at S8 during 
PRM09 (124.54 µmol/g) while the minimum content was observed at S9 during 
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POM09 (3.72µmol/g). THAA concentration exhibited highly significant spatial 
(p<0.01) differences with lack of seasonal variation. THAA-C% and THAA-
N% (Table 6.1) varied from 2.75 % (S5; PRM09) to 37.51% (S3; POM09) and 
5.09% (S7; MON12) to 87.71% (S4; MON09) respectively. Meanwhile, 
THAA-N% recorded a significant seasonal (p<0.01) variation. 

The relative abundance of various individual amino acids in the 
sediment extracts of the study area are summarised here.  

6.2.1 Aliphatic (glycine, alanine, proline, valine, isoleucine, leucine) 
and aromatic (tyrosine, phenylalanine) neutral amino acids 

Distribution of various aliphatic and aromatic neutral amino acids in 
surface sediments of Cochin estuary is depicted in Figure 6.1 

Glycine: Maximum relative abundance of glycine was noted at S8 
(19.10±0.07 mole%; PRM09). During PRM10, higher abundance was 
recorded at station S1 (13.94±0.52 mole%). In MON09 and MON12, higher 
abundance of glycine was observed at stations S2 (14.05±0.32 mole%) and S6 
(16.47±0.33 mole%); while during POM09, relative abundance of glycine was 
observed at station S3 (3.13±0.24 mole%).  

Alanine: It recorded maximum relative abundance at station S8 (9.36±0.47 
mole%) during PRM10. During MON09 and MON12,the higher abundance of 
alanine was recorded at stations S5 (4.13±0.09 mole%) and S7 (7.96±0.54 
mole%) respectively. Meanwhile during PRM09 and POM09, station S4 
recorded its higher abundance.  

Proline: Maximum relative abundance of proline was observed at station S3 
(24.10±0.49 mole%) during POM09. Station S2 exhibited maximum 
concentration of proline (23.07±0.47 mole%) during PRM10; while, during 
PRM09, MON09 and MON12 relatively high  abundance of proline was 
recorded at stations S9 (5.70±0.49 mole%), S2 (7.86±0.26 mole%) and S8 
(12.44±0.31 mole%) respectively. 
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Valine: Maximum mole% of valine was noted at station S6 (46.19±0.35 mole%) 
during  PRM10. Higher abundance of valine was recorded at station S6 
(22.59±0.42 mole%) and S3 (9.88±0.62 mole%) during PRM09 and POM09 
respectively. Meanwhile during MON09 and MON12, stations S5 (0.83±0.23 
mole%) and S2 (36.18 ±0.55 mole%) recorded its higher abundance.  

Isoleucine: Maximum relative abundance of isoleucine was recorded at station S4 
during MON09 with a strong spatial variation (p<0.01). At stations S5 (3.32±0.22 
mole%) and S4 (4.50±0.30 mole%),the maximum relative  abundance was 
recorded during PRM09 and PRM10. Meanwhile, in the case of POM09 and 
MON12, stations S6 (1.05±0.17mole%) and S4 (3.71±0.50 mole%) recorded  
higher  relative abundance of isoleucine respectively. 

Leucine:In sediments collected fromstations S1 and S9, leucine was identified 
in all seasons and maximum abundance was found at station S3 
(63.43±0.31mole%:  PRM09). In MON09 and MON12, leucine recorded high 
relative abundance at station S5 (13.23±0.16 mole%) and S2 (7.96±0.54 
mole%) respectively. Meanwhile, comparing POM09 and PRM10, the highest 
abundance of leucine was recorded as 27.88±0.62 mole% (S2) and 16.10±0.64 
mole% (S3) respectively.  

Tyrosine:During the present investigation, stations S5, S7 and S9 recorded 
tyrosine at all seasons.  Maximum abundance of tyrosine was observed at station 
S4 (MON09).  In PRM09 (6.41±0.29 mole%) and PRM10 (10.70±0.50 mole%), 
highest abundance was observed at stations S9  and S8 respectively. Meanwhile, 
maximum abundance of tyrosine was observed at station S7 during two seasons 
viz.,POM09 (12.50±0.57mole%)and MON12 (25.13±0.45 mole%). 

Phenylalanine: The maximum abundance of phenylalanine was observed at 
station S1 (51.44±0.31 mole%)  during  MON12 and exhibited seasonal 
variations (p<0.01).  In the case of PRM09 and PRM10, the higher abundance 
of phenylalanine was recorded at stations S7 and S9 respectively. During 
MON09 and POM09, highest abundance of phenylalanine was recorded at 
stations S7 (35.89±0.63 mole%) and S5 (34.22±0.51 mole%) respectively. 
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Figure 6.1 Spatial and seasonal variations of aliphatic and aromatic neutral amino acids in the sediments of CES 
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6.2.2 Acidic amino acids (aspartic acid and glutamic acid) 

Aspartic acid: The spatio-temporal variation of aspartic acid is depicted in Figure 

6.2, and the maximum concentration was noticed at station S5 (47.49±0.34 

mole%) during MON12. The seasons PRM09 and PRM10 recorded higher 

abundance of aspartic acid at stations S6 (21.85±0.60 mole%) and S9 (44.20±0.50 

mole%) respectively. MeanwhileduringMON09 and MON12,the higher 

abundance of this amino acid was observed at stations S6 (38.94±0.67 mole%) 

and S5 (47.49±0.34 mole%) respectively. Moreover, comparing the abundance 

during the entire period, an increased level of aspartic acid was observed during 

monsoon seasons. Figure 6.2, revealed that during POM09 higher abundance was 

observed at station S5 (29.16±0.46 mole%).  

Glutamic acid: Figure 6.2 illustrates the variations of glutamic acid at 

different seasons.  Higher relative abundance of glutamic acid was noticed at 

stations S8 (4.80±0.28 mole%) and S2 (3.47±0.33 mole%) during MON09 and 

MON12 respectively. During PRM09, maximum abundance was noticed at 

station S5 and exhibited significant seasonal variation (p<0.01). Besides, the 

seasons POM09 (7.14±0.24 mole%) and PRM10 (16.25±0.18  mole%), 

exhibited remarkably higher abundance of glutamic acid at station S7. 

 

 
Figure 6.2 Distribution of aspartic acid and glutamic acid in surface sediments of Cochin estuary 
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6.2.3 Basic amino acids (histidine, lysine and arginine) 

Histidine: The spatio-temporal variation ofhistidine during the study period is 

depicted in Figure 6.3. The maximum abundance was recorded at station S7 

during POM09 (48.21±14.65 mole%). MON09 and MON12 reveled higher 

abundance of histidine at stations S9 (32.41±0.29 mole%) and S6 (43.73± 0.51 

mole %) respectively. While in PRM09 and PRM10 higher mole% abundance 

was recorded at stations S8 (7.93 mole%) and S3 (36.34±0.81 mole%) 

respectively. 

Lysine: Lysine recorded its maximum abundance at station S1 (64.62±0.44 

mole%) during POM09. Both MON09 and MON12 recordedhigher abundance 

of lysine at stations S5 (41.32±0.23 mole%) and S3 (54.91±0.65 mole%) 

respectively. Meanwhile in both pre monsoon seasons (PRM09 and PRM10), 

it recorded higher abundance (Figure 6.3) at stations S9 (33.46±0.33 mole%) 

and S2 (17.30±0.57 mole%) respectively. 

Arginine:  The spatio-temporal variationsof arginine is depicted in Figure 6.3. 

During both monsoon seasons, highest abundance of arginine was observed at 

stations S8 (24.79±0.56 mole%; MON09) and S7 (4.50±0.36 mole%; 

MON12) while, recorded its maximum abundance at station S9 (41.65±0.46 

mole%) during PRM09 (Figure 6.3). However POM09 (8.01±0.29 mole%) 

and PRM10 (14.38±0.48 mole%), recorded its higher abundance at same 

station S8. 
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Figure 6.3 Spatial and seasonal variations of histidine, lysine and arginine in the sediments of the study area 

6.2.4 Hydroxy amino acids (serine and threonine) 

Serine:The maximum abundance of serine during the study period was 

observed at station S8 (27.09±0.70 mole%; PRM10). It was observed that 

during consecutive seasons PRM09 and MON09, serine was abundant at 

stations S4 (20.37±0.26 mole%) and S1 (11.47±0.33 mole%) respectively. 

Meanwhile, during MON12, serine recorded its highest abundance 

(16.29±0.56mole%) at station S5 (Figure 6.4). 

Threonine: Threonine displayed seasonal variation (p<0.05), with its 

maximum abundance (3.17±0.12 mole%; PRM09)noticed at station S2 during 

the course of study (Figure 6.4). Meanwhile, during POM09, it was not 

detected in sediments of the study area. Comparing the both monsoon seasons, 

the presence of threonine was noticed (2.00±0.21 mole%) only at station S8 
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during MON09; whileamaximum abundance (2.70±0.49 mole%) was recorded 

at station S6  for MON12. 

 

 
Figure 6.4 Distributions of serine and threonine in sediments of Cochin estuary 

6.2.5 Sulphur containing amino acids (methionine and cysteine) 

Methionine: Figure 6.5, clearly illustrates the variations of methionine during 

the study period. Maximum abundance of this amino acid was found in station 

S3 (35.30±0.50 mole%; MON09). During all seasons, the occurrence of 

methionine was observed at station S1. Among the premonsoon seasons, 

PRM09 and PRM10, methionine recorded its highest abundance at stations S1 

(23.04±0.17 mole%) and S5 (19.52±0.37 mole%) respectively. Meanwhile, 

during POM09 and MON12 the higher abundance was found at stations S9 

(26.88±0.62 mole%) and S3 (23.23±0.59 mole%) respectively.  

Cysteine:Maximum relative abundance of cysteine, during the investigation 

was observed at station S7 (14.85±0.60 mole%; PRM10). In the case of 

monsoon seasons, cysteine recorded its higher relative abundance at stations 

S1 (0.70±0.14 mole%; MON09) and S8 (1.53±0.38 mole%; MON12).Besides 

PRM09 and POM09recorded its maximum abundance (Figure 6.5) at stations 

S2 (2.31±0.22mole%) and S3 (6.27±0.19mole%) respectively. 
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Figure 6.5 Spatial and seasonal variations of methionine and cysteine in surface sediments of study area 

6.3 Discussion 

6.3.1 Seasonal variability and biogeochemical implications of amino 

acids in sediments 

Seventeen amino acids (AAs) were identified in the sediment extracts 

of the study area, did not differ much in their composition, but differed in their 

relative abundance. The observed higher abundance of these AAs and low 

mole% of glycine during the study period may be due to the presence of 

terrestrial OM in sediments (Fernandes, 2011). These amino acids are found to 

be more abundant in vascular plant tissues as compared to phytoplankton 

(Cowie and Hedges, 1992; Wu et al., 2007). Moreover amino acids such as 

glutamic acid, aspartic acid, isoleucine, valine, tyrosine, and phenylalanine are 

usually enriched in the cell plasma of diatoms (Hecky et al., 1973; Dauwe and 

Middelburg, 1998). These AAs are abundant in freshly derived marine OM 

and are found to be easily susceptible to degradation. These amino acids 

exhibited strong depletion with increasing state of decomposition. Most of the 

AAs are enriched in the cell wall protein of the diatoms and hence considered 

to be selectively preserved by the protein-silica complex of diatom cell walls. 
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In the overall distribution, the higher abundance of AAs in sediments of CES 

(Table 6.2) followed the trend: 

PRM09-Leucine > Phenylalanine > Arginine > Lysine 

MON09-Lysine > Aspartic acid >Histidine> Tyrosine > Phenylalanine 

POM09-Lysine >Histidine> Phenylalanine  >Leucine> Methionine > Serine 

>Proline> Aspartic acid 

PRM10-Valine > Aspartic acid >Histidine> Phenylalanine > Serine >Proline 

MON12-Lysine > Phenylalanine > Aspartic acid >Histidine>Valine> Tyrosine 

> Methionine  

A comparison of these results were made with otherimportant 

worldwide studies and are presented in Table 6.3. 

Amino acid such as glycine, serine and threonine are known to be 

enriched in cell walls of diatoms (Hecky et al., 1973). The association of these 

amino acids with the cell wall protects them from degradation, resulting in 

their accumulation in the degraded organic matter (Dauwe and Middelburg, 

1998). The photorespiration also causes the release of glycine and serine by 

growing algal cells (Ogren and Chollet, 1982). Generally higher content of 

glycine in sediments could be due to the fact that it is a short chain amino acid, 

having minor food value and synthesis from other AAs during heterotrophic 

metabolism (Fernandes et al., 2014). According to Dauwe et al (1999), the 

observed elevated levels of glycine and alanine in the sediments implied 

degraded state of OM. Hence, the presence of glycine along with alanine in 

POM09 (stations S5 and S8), MON09 (stations S2 and S4), POM09 (S3), 

PRM10 (majority of the stations except S4 and S9) and MON12 (stations S4, 

S6 and S7) indicates the presence of partially degraded OM in the estuary 

(Table 6.2).  
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The presence of phenylalanine during PRM09 (at all stations), MON09 

(at all stations), POM09 (except S7),PRM10 (except S3, S5, S6 and S8) and 

MON12 (except S6) reflects inputs from cell plasma (Haugen and 

Lichtentaler, 1991; Cowie and Hedges, 1992). Meanwhile, higher mole% of  

lysine observed at stations S2, S6, S7 and S9during PRM09 might be due to 

the presence of phytoplankton, zooplankton and bacteria (Larsen et al., 2015). 

The higher abundance of lysine in sediment was observed at stations (S2, S3, 

S5 and S7; MON09), (S1; POM09) and (S3; MON12), pointed out the 

influence of marine organisms in the surface sediments and 

similarobservations has already been quoted (Flynn, 1990; Cowie and Hedges, 

1992).   

 In the present study, aspartic acid dominated at stations S1 and S6 

during MON09. The high relative abundance of aspartic acid (S6) and serine 

(S8) recorded in POM09 may be due to the input from vascular plant tissues 

into the sediments (Cowie and Hedges, 1992). Meanwhile serine and aspartic 

acid dominated at stations S8 and S9 respectively during PRM10, however 

aspartic acid was enriched at stations S5, S8 and S9 during MON12.  This 

might be attributed either to phytoplankton contribution or high plant input, 

because amino acids like aspartic acid, serine, arginine, alanine and leucine 

occur in plants as well as phytoplankton according to earlier research reports 

(Cowie and Hedges, 1992; Dauwe and Middelburg, 1998). 

The variation of individual amino acid abundance depends on their 

association with cell wall and cytoplasm (Cowie and Hedges, 1996). Previous 

investigations suggest that AAs such as glutamic acid, glycine, alanine, leucine, 

arginine and lysine are abundant in marine phytoplankton, zooplankton and 

bacteria (Flynn, 1990; Cowie and Hedges, 1992; Unger et al., 2005). The high 

relative abundance of leucine at stations S3 (PRM09) and S2 (POM09) and 
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arginine at station S9 during PRM09 which confirms the input of these AAs 

from marine phytoplankton, zooplankton and bacteria. 

The higher relative abundance of tyrosine, histidine and phenylalanine 

was noticed during MON09 at stations S4, S9 and S8 respectively. During 

POM09,the enrichment of AAs such as lysine, leucine and prolinewere 

recorded at stations S1, S2 and S3 respectively. Meanwhilethe dominance of 

histidine at station S7 (POM09) and at stations S1, S3 and S7 (PRM10) can be 

attributed to the input of microorganisms (Dauwe and Middelburg, 1998). 

From the Table 6.2, it is clear that aspartic acid, glutamic acid, serine, alanine 

and leucineoccured at all stations during POM09.  The increase in the mole % 

of proline at stations S2 and S5 during PRM10 might be due to the presence of 

marine bacteria (Brown and Stanley, 1972; Stanley and Brown, 1976;Henrich 

et al., 1984). Moreover the presence of AAs like aspartic acid, serine, glycine, 

histidine and proline in the study area (Table 6.2), might be due to the 

combined input of heterotrophic organisms as well as microorganisms (Dauwe 

andMiddelburg, 1998).  Previous investigations suggests that significant 

quantities of AAs like aspartic acid, lysine, glutamic acid, isoleucine, valine, 

tyrosine occurs in the cells of aquatic organisms (Dauwe and Middelburg, 

1998). This might be the reason for elevated abundance of valine (S2) and 

lysine (S3) during MON12. The similar implications isalso applicable to the 

higher abundance of valine at stations S4 and S6 during PRM10.  
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The sum of basic AAs (Arg+His+Lys) were found to be more abundant 
than the acidic amino acids (Asp+Glu) in PRM09 at all stations except S1, S3 
and S5, while acidic AAs were high during MON09 at S1, S4 and S6. During 
POM09, the content of acidic amino acids was found to be higher than the 
basic AAs except at S1, S3, S7 and S9. From S1 to S5, it can be observed that, 
the basic AAs were found to be enriched compared to the acidic amino acids 
during PRM10. Meanwhile, during MON12, the concentration of basic AAs 
were found to be more enhanced  than the acidic amino acids (Figure 6.6)  at 
all stations except S1, S2, S5, S8 and S9. 

 

 

 
Figure 6.6 Sum of acidic (Asp+Glu) and basic (Arg+His+Lys) amino acids in sediments of the study area 
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Among the acidic amino acids, aspartic acid was relatively more 

enriched in sediments of all the stations during PRM09, MON09, PRM09, 

PRM10 (except S3) and MON12 (Table 6.2). Of the three basic amino acids 

(Arg, His, Lys), lysine was found to be relatively abundant except at stations S4 

and S9 during PRM09. MON09 was characterised by the enriched levels of 

lysine content (except at stations S8 and S9) in the sediment extracts. Amongthe 

basic AAs, during POM09, lysine was found to be highly abundant (except at 

S3, S7, S8 and S9). Meanwhile during PRM10, among these basic AAs in the 

sediments, histidine was found to be more enriched (except at S2, S4, S8 and 

S9). MON12 was characterised by remarkable occurrence of all basic amino acids 

at station S7; among these lysine was found to be more dominating (Table 6.2). 

The average contribution of the neutral aliphatic AAs (valine, proline, 

leucine, isoleucine, glycine and alanine) to the estuarine sediments were: 19.81 

mole% (PRM09), 17.77 mole% (MON09), 15.81 mole% (POM09), 32.25 

mole% (PRM10) and 17.18 mole% (MON12). While the average contribution 

of neutral aromatic AAs (tyrosine and phenylalanine) were: (PRM09-26.27 

mole %);(MON09-24.69mole%);(POM09-18.97 mole%); (PRM10-8.59 

mole%) and (MON12-28.93 mole%). However, the average contribution of 

other AAs (serine, threonine, cysteine and methionine) accounted in each 

seasons were: 13.61 mole % (PRM09), 15.87 mole % (MON09), 15.78 mole 

% (POM09), 15.10 mole % (PRM10) and 16.65 mole % (MON12).  

In order to simplify and create a generalized outline of the distribution 

pattern of AAs, the entire study area was categorised into three zones based on 

salinity. They are Fresh water zone (S1, S2), Estuarine zone (S3, S4, S5, S6) 

and Riverine /Industrial zone (S7, S8, S9). The average relative abundance of 

AAs in each zones of CES, during the study period followed the trend: 
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Fresh water zone:-Phenylalanine > Lysine > Aspartic acid > Methionine 

>Valine ῀ Leucine>Proline>Histidine> Glycine > Serine > Glutamic acid > 

Tyrosine > Arginine > Alanine > Threonine > Cysteine > Isoleucine.  

Estuarine zone:-Lysine > Aspartic acid >Phenylalanine 

>Leucine>Valine>Histidine> Methionine >Tyrosine > Serine > Glutamic acid 

>Proline>Glycine  > Arginine > Alanine > Isoleucine > Cysteine  > 

Threonine. 

Riverine /Industrial zone:-Phenylalanine > Lysine > Aspartic acid >Histidine> 

Serine > Arginine > Tyrosine  >Leucine> Methionine >  Glutamic acid >  Alanine 

> Glycine  > Cysteine  >Proline> Isoleucine > Threonine >Valine. 

6.3.2 Degradation state of estuarine sedimentary organic matter  

The organic carbon in marine sediments has a profound influence on 

biogeochemical cycles, and acts as a sink of greenhouse gases such as CO2 

and CH4 (Larsen et al., 2015). The formation and degradation of OM in 

sediments are an integral process of estuarine ecosystem dynamics, preferably 

at the intermediate stage of degradation (Cowie and Hedges, 1994).A major 

portion of the sedimentary organic matter derived from primary production is 

ultimately oxidised to CO2 and a significant fraction gets preserved (Cowie 

and Hedges, 1994). Moreover compared to bulk sedimentary organic matter, 

amino acids undergo degradation at a faster rate (Cowie and Hedges, 1992; 

1994; Wakeham and Lee, 1993). Preferential consumption of amino acids 

results in the contribution of amino acid nitrogen to total nitrogen in the 

sedimentary OM (Lee, 1988). The organic C and N supplied to the benthic 

boundary layers are associated in a complex mixture of living and dead 

organic material that undergoes continuous alteration and degradation (Boski 

et al., 1998). These degradations support both microbial production and 
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regeneration of nitrogenous nutrient fractions such as NO3
-, NO2

- and NH4
+ in 

the estuarine sediments (Middelboe et al., 1995; Burdige and Zheng, 1998; 

Stepanauskas and Leonardson, 1999). The labile amino acids undergo 

decomposition easily, whereas refractory ones will remain in the system. 

These refractory AAs are assumed to be either nonreactive or degraded at 

slower rates than labile amino acids.  Selective microbial utilisation of 

individual amino acids will also affect the concentration of AAs in the 

sediments (Burdige and Martens, 1988). The overall analysis revealed the fact 

that a major fraction of the organic matter in the sediments of the study region 

is at intermediate stage of degradation (Zhang et al., 2012).  

Information on the degradation state of sedimentary organic matter is 

provided by the relationship between degradation index (DI) with total 

hydrolysable AAs. The contribution of amino acid carbon to total organic carbon 

(THAA-C%)  and amino acid nitrogen to total nitrogen (THAA-N%) and relative 

proportion of individual amino acids are useful diagenetic indicators (Cowie and 

Hedges, 1994; Dauwe et al., 1999; Davis et al., 2009). By applying THAA-C%, 

THAA-N%, and DI and its relation with THAA,a better knowledge on the 

relative diagenetic stage and reaction potential of sedimentary organic matter can 

be achieved (Cowie and Hedges, 1994; Keil et al., 2000;Pantoja and Lee, 2003; 

Lomstein et al., 2006; Fernandes et al., 2014). In this investigation, THAA-C% 

yield in surface sediments of CES, recorded a fluctuating trend (Figure 6.7). The 

percentage contributions of AAs carbon (THAA-C) to TOC in surface sediments 

of the study area varied significantly from 2.75 % (S5; PRM09) to 37.51 % (S3; 

POM09). During PRM09, most of the stations recorded high yield of THAA-C%. 

While, during MON09, low yield ofTHAA-C% was noticed at stations S1, S5, S7 

and S8 and remaining stations recorded higher yield. During POM09, high yield 

of THAA-C% was observed at S3. Meanwhile in PRM10 higher yield of THAA-
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C% was pronounced at stations S1, S2, S4, S5 and S7, but the other stations 

exhibited lower yield. MON12, recorded higher yield of THAA-C% atstations S2 

and S4 with a decreasing trend towards the northern arm of the estuary.Low 

THAA-C% levels are indicative of terrigenous OM, which consist of high lignin 

or carbohydrate content than marine OM (Rashid, 1985; Verma and 

Subramanian, 2002).  According to Cowie and Hedges (1992), the fluctuated 

yield in THAA-C% during the course of study might be due to the selective 

removal of amino acids relative to TOC. This result indicated that amino acids 

comprises of the labile fraction present in OM in sediment; whereas THAA-C% 

are generally indicative of the proportion of OM that has undergone biological 

degradation at certain stations (Figure 6.7) of CES (Yamashita and Tanoue, 

2003b). 

It has been established that percentages of total N as THAA are 

diagenetically sensitive and have generally been observed to be declined with 

progressive degradation (Henrichs et al., 1987; Keil et al., 2000; Pedersen et al., 

2001; Lomstein et al., 2006). During the study period, percentage of AAs nitrogen 

to TN (THAA-N%)  was found to vary from 5.09 % (S7, MON12) to 87.71% 

(S4, MON09) with significant seasonal variations (Figure 6.7). In the surface 

sediments collected from CES, THAA-N % was in the range: 8.40 to 72.22 % 

(PRM09), 18.94 to 80.70 % (MON09), 8.68 to 42.49 % (POM09), 6.03 to 70.45 

% (PRM10) and 5.08 to 73.21 % (MON12) in the respective seasons (Figure 6.7). 

From the Figure 6.7, it is clear that during MON09, atstations S3 and S4, THAA-

N% increased drastically. This may be due to nitrogen fixation in the sediments 

by adsorption/absorption into the brackish and marine regions of the estuary 

(Verma and Subramanian, 2002).The Figure 6.7, revealed that decreasing trend as 

well as higher yield for THAA-N% was observed during the study period. This 

fluctuated yield of THAA-N% indicated selective removal of amino acids relative 
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to the other organic nitrogen compounds. Meanwhile, fluctuating trendsof 

THAA-N% and THAA-C% occurs as a result of slight degradation of OM in 

sediments (Alkhatib et al., 2012a). THAA-C% and THAA-N% (Figure 6.7) 

recorded higher ranges compared to the similar investigations in sediments of  

Taihu River (China) and reported values of  18.04-33.05% for THAA-N%  and 

4.6-12.6% for THAA-C% (Yao et al., 2012). According to Suthhofet al (2000) 

the observed range of THAA-N% was 23- 38%; meanwhile THAA-C% recorded 

a range of 10-18% in the surface sediments of continental margin of Pakistan. 

Similarly, THAA-C/TOC reported from Southern Ocean varied from 6 to 23%. 

Moreover, values of 20-70% of THAA-N% in sediments wasreported from 

Peruvian upwelling region (Henrichs et al., 1984). In view of the overall 

observations, the percentage of AAs-N to TN and AAs-C to TOC in most of the 

stations in the present study were higher, indicating the fact that OM in sediments 

of CES was not significantly degraded. 

 
Figure 6.7 Spatial and seasonal variations of THAA-C% and THAA-N% in sediment extracts of the study area 

Degradation index (DI): The molar percentage of the seventeen AAs is used 
to calculate the degradation index (Dauwe and Middelburg, 1998; Dauwe et 
al., 1999) to assess the diagenetic alteration of a sample by comparing it to a 
set of 45 samples of different degradation states and environments. Molar 
percentages of individual AAs are standardised by the mean and standard 
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deviations of the 45-sample data set. The DI then integrates the AAs weighed 
by the factor coefficients for the first axis of the principal component analysis 
(PCA) of Dauwe et al (1999) according to the formula:  

var AVG varDI = fac.coef.
STD var
i i

i
i i

−
×∑  

 Where vari = mole% of amino acid; AVGvari=mean amino acid 
mole%; STDvari= standard deviation of amino acid mole%; and fac.coef.i = 
PCA derived loading of amino acids (factor coefficient of the first axis). The 
more negative the DI value, the more degraded the sample, while positive DI 
values are indicative of fresh materials (Dauwe et al., 1999; Duan and Bianchi, 
2007). The amino acid based degradation index indicated that OM of the 
surface sediments of shallow stations was relatively fresher than that of deeper 
stations (Fernandes et al., 2014). 

A number of studies have proved that, DI is a reliable and robust index to 
unravel the extent of diagenetic alteration in sediments (Dauwe and Middelburg, 
1998; Keil et al., 2000; Lomstein et al., 2006; Vandewiele et al., 2009). The 
consistent trend of DI and TOC/TN ratio in the OM revealed that the bulk 
elemental parameter could also be usedto indicate the diagenetic history of OM. 
Therefore, the study employed amino acid based DI to assess the quality of the 
sedimentary OM in CES.  In contrast, other amino acids such as phenylalanine, 
glutamic acid, tyrosine, leucine, and isoleucine become depleted with increasing 
degradation state. The DI values reported by Dauwe and Middelburg (1998) and 
Lomstein et al (2006), ranged from -2.2 in strongly degraded sediment to 1.5 for 
fresh phytoplankton. In the present investigation, most of the stations were 
categorised under this range (Figure 6.8) and varied from -1.81 (MON12, S5) to 
2.35 (PRM10, S8). The positive DI indicated more fresh organic matter in the 
estuarine sediments (Dauwe et al., 1999; Duan and Bianchi, 2007). In CES, a 
distinct seasonal difference (p<0.01) for DI was observed during the study 
period (Figure 6.8). 
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The yields and compositions of total hydrolysable amino acid (THAA) 
have been widely utilised as diagenetic indicators, because they are selectively 
decomposed or preferentially preserved during diagenesis (Keil et al., 2000; 
Amon et al., 2001; Vandewiele et al., 2009). The changes in the amino acid 
composition during OM decomposition depend primarily on the amino acids 
and their association with cell wall, cell membrane or cell plasma, and/or 
sorption onto mineral surfaces (Aufdenkampe et al., 2001). Most of the 
organic matter in the sediments of the study area is at intermediate stage of 
degradation (Cowie and Hedges, 1994). In addition, several studies of amino 
acids in sediments (Henrichs et al., 1984; Cowie and Hedges, 1992; Sugai and 
Henrichs, 1992; Boski et al., 1998; Dauwe and Middelburg, 1998) have 
indicated that the relative contribution of individual amino acids to total 
hydrolysable amino acids (THAA) changes during OM mineralisation. 

 

 
Figure 6.8 Degradation index and Total hydrolysable amino acid in the sediments ofthestudy area 
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Positive DI and high THAA, suggested the presence of fresh OM in 

surface sediments of the estuarine system while, negative DI and low THAA 

yields,indicated the presence of degraded OM in surface sediments of 

estuarine system (Pantoja and Lee, 2003; Lomstein et al., 2006; Fernandes et 

al., 2014). In this study, during PRM09, the stations S1, S3, S6 and S8 

exhibited positive DI (ranged from -0.60 to 1.78) and high THAA yield, which 

reflects the presence of fresh OM deposition at these stations during the study 

period. Minimum value of THAA was observed at station S5 (11.77 µmol/g) 

and maximum was reported at station S8 (124.54µmol/g) (Figure 6.8) during 

PRM09. The positive DI with higher THAA yield was found at stations S1, 

S3, S5, S6 and S8 during MON09, indicated freshness of OM. Meanwhile, 

negative DI with low THAA observed atstations S2, S4 and S7 during the 

same period indicated those stations of the CES settled with aged OM. The 

observed decrease in concentration and yield of THAA in certain stations of 

the CES suggested their utilisation by heterotrophic microorganisms 

(Fernandes et al., 2014). During POM09 stations S2, and S6 provide low 

THAA with negative DI, which might be due to decomposition by benthic 

macro and microorganisms (Lomstein et al., 2006), while, stations S3, S4 and 

S8 recorded positive DI with high THAA (Figure 6.8). During PRM10, most 

of the stations except S4, S8 and S9, displayed positive DI with high THAA. 

Stations S1and S2exhibited positive DI with higher THAA yield during 

MON12, suggested newly deposited OM at these stations (Bourgoin and 

Tremblay, 2010).The sediments with low or negative DI values indicated more 

refractory organic matter dominated in certain stations (Figure 6.8) of the 

study area (Chen et al., 2004), and DI generally decreased with decreasing 

sediment grain sizes (Dauwe et al., 1999). 
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 The negative DI with lower THAA value at various stations (Figure 

6.8) revealed the presence of degraded OM in surface sediments of CES due to 

the continued preferential loss of planktonic material (Cowie and Hedges, 

1992). In general, DI as a function of THAA concentration viewed a positive 

relationship; ie., for low values of  DI, concentrations of THAA was lower. 

However as an exception, high THAA concentration with low DI values were 

also observed in the study area (Figure 6.8) and this could be explained by two 

possible causes. One is the input of the larger amount of allochthonous THAA 

derived from terrestrial organic matter or diffusion from sediment pore waters 

(Bauer and Druffel, 1998; Raymond and Bauer, 2001; Yamashita and Tanoue, 

2003a).  

Lower THAA yields at stations S7 and S9 (Figure 6.8) indicated that the 

OM was substantially degraded. The observed lower THAA yield during the 

study period was attributed to the presence of degraded terrestrial OM or 

retarded growth of phytoplankton (Cowie and Hedges, 1992; Hedges et al., 

1997). Another reason for the lower THAA yield was the presence of terrestrial 

OM, which contains less amino acid compared to phytoplankton. In contrast, the 

improved light conditions, that favoured the growth of in situphytoplankton, 

resulted in the higher THAA concentrations of the study area. This reflects that 

OM was relatively fresh and of phytoplankton origin, during pre-monsoon 

season. This was also supported by a positive relationship (Table 6.4) between 

THAA and chl-a(r = 0.54). Abundance of amino acid in the sediments of CES 

was significantly affected by the variations in the stations (p< 0.01). THAA 

account for a major fraction of the freshly produced OM, and are relatively 

labile compared to bulk OM (Ittekkot and Arain, 1986; Cowie and Hedges, 

1994). During OM degradation THAA yields decreases and therefore highly 
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suitable to assess the degradation status of OM in the study area (Cowie and 

Hedges, 1992; Davis et al., 2009).  

From the Figure 6.8, it is clear that,  in most of the seasons of study site  

(S1-PRM09, MON09, PRM10 and MON12; S2-PRM10 and MON12; S3-

PRM09, MON09, POM09 and PRM1O; S4-POM09; S5 -MON09 and PRM10; 

S6 -PRM09, MON09 and PRM10; S7-PRM10; S8-PRM09, MON09 and 

POM09) recorded positive DI and higher  THAA concentration with significant  

spatial variation of  THAA (p<0.01) and seasonal variation of  DI (p<0.01). The 

presence of OM in surface sediments was relatively fresh in most of the seasons, 

which points towards bacterial influence in the stations (Jorgensen et al., 1990; 

Fernandes, 2011). From the support of above observations, it can be concluded 

that estuarine zone recorded fresh OM than fresh water zone and 

riverine/industrial zone. This fact was further supported by TOC/TN ratio, where 

higher TOC/TN values (evidence that degraded OM and low TOC/TN ratio), in 

turn supports the relatively fresh OM (Goni and Hedges, 1995; Meyers, 1997; 

Zimmerman and Canuel, 2001; Bashkin, 2002; Gordon and Goni, 2003). The 

high TOC/TN ratio (> 20) implies the terrestrial derived OM while, low TOC/TN 

ratio (<13) recorded marine OM (Meyers, 1997). In view of this, the low 

TOC/TN values strongly suggested the enrichment of bacterial-N in the 

sedimentary OM. The biodegradation of terrestrial OM results in bacterial 

enrichment (Tremblay and Benner, 2006) andmay reduce thedifferences in 

bacterial-N contribution during the study period.As discussed in Chapter 4, most 

of the stations recorded low TOC/TN ratios (<13) (Figure 4.6), supporting the 

freshness of OM in the sedimentary system. Apart from this, intermediate values 

of TOC/TN ratios signalled a combined input of both autochthonous and 

terrestrial OM to the estuarine sediments under investigation (Muriet al., 2004).  
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The correlation analysis of various amino acids are given in (Table 

6.4). TOC exhibited strong positive correlation with various classes of amino 

acids such as aliphatic neutral AAs (r = 0.34), acidic AAs (r = 0.39), hydroxy 

AAs (r = 0.38) and sulphur containing AAs(r = 0.29). The influence of 

granulometry on the distribution of AAs was evident from correlations of 

aliphatic neutral AAs and aromatic neutral AAs with clay as well as 

correlations of basicAAs and sulphur containing AAs with silt. The transport 

of lithogenic material brought about by five rivers flowing in to the estuary 

enhances sedimentation process. Induced primary production together with 

terrestrial material usually results in the increasedremoval of freshly generated 

organic matter from water column to the sediments (Jacob et al., 2008). 

Furthermore, factors like higher sinking speeds and clay minerals can also 

reduce the time for degradation in the water column (Sirocko and Ittekkot, 

1992). The combined effects of sediment grain size, minerals, increased levels 

of TOC and periodically varying anoxic conditions accelerates the 

preservation of amino acids in the sediments of study area. It has already been 

established that OM complex with minerals is less degradable (Fernandes et 

al., 2014). Pearson correlation revealed strong positive correlation of aliphatic 

neutral AAs with THAA (Table 6.4). Significant negative correlation between 

aliphatic neutral AAs and aromatic neutral AAs (r = -0.44), aromatic neutral 

AAs and basic AAs (r = -0.33), basic AAs and hydroxy AAs (r = -0.29), 

sulphur containing AAs and acidic AAs (r = -0.33) indicated diverse origin 

and dissimilarity in their behaviour.  

Principal component analysis (PCA) 

PCA, which is widely used to evaluate the natural and anthropogenic 

processes, was applied to explore the origin and geochemical factors 

influencing AAs distribution in sediments. The Varimax rotation provided a 
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clear description of the overall behaviour of various parameters and the factors 

are given in Table 6.5. Component 1 explained 37.371 % of total variance 

which includes silt clay, total sulphur, acidic amino acids, basic and hydroxy 

amino acid. This indicated the role of granulometry (adsorption process) as the 

controlling factor for the distribution of variables. Meanwhile component 2, 

described 21.172 % of the total variance and composed of TS, TN, TOC 

reflected the origin of the AAs (via autochthonous or allochthonous) and form 

the part of organic matter and ultimately settled in sediments. This component 

also infers thediagenesis (since it contains redox indicators like TS and TN) 

involving microbial activity which ultimately controls the distributional 

characteristics of amino acids in sediments (Yamashita and Tanoue, 2003a; 

Zeena, 2005). 

Table 6.5 Results of principal component analysis 

Parameters 
Components 

1 2 
Sand -0.965 -0.129 

Silt 0.917 0.098 

Clay 0.902 0.163 

TS 0.430 0.698 

TN 0.246 0.681 

TOC 0.452 0.643 

Alinu AAs 0.018 0.887 

AronuAAs 0.033 0.521 

Acid AAs 0.709 0.335 

Basic AAs 0.668 0.141 

Hyd AAs 0.831 -0.019 

Sulf AAs 0.298 -0.697 

% of Variance 37.371 21.172 
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6.4 Conclusion 

Season wise relative abundance of AAs in the estuarine sediments followed 

the trend: 

PRM09- Leucine> Phenylalanine > Arginine > Lysine 

MON09- Lysine > Aspartic acid >Histidine> Tyrosine > Phenylalanine 

POM09- Lysine >Histidine> Phenylalanine >Leucine> Methionine > Serine 

>Proline> Aspartic acid 

PRM10- Valine> Aspartic acid >Histidine> Phenylalanine > Serine >Proline 

MON12- Lysine > Phenylalanine > Aspartic acid >Histidine>Valine> 

Tyrosine > Methionine. 

Based on zones of the study area, relative abundance of AAs in the 

sediments were in the order:  

Fresh water zone:- Phenylalanine > Lysine > Aspartic acid > Methionine 

>Valine ῀ Leucine>Proline>Histidine> Glycine > Serine > Glutamic acid > 

Tyrosine > Arginine > Alanine > Threonine > Cysteine > Isoleucine.  

Estuarine zone:-Lysine > Aspartic acid > Phenylalanine 

>Leucine>Valine>Histidine> Methionine >  Tyrosine  > Serine > Glutamic 

acid >Proline> Glycine  > Arginine > Alanine > Isoleucine > Cysteine  > 

Threonine. 

Riverine /Industrial zone:- Phenylalanine > Lysine > Aspartic acid >Histidine> 

Serine > Arginine > Tyrosine  >Leucine> Methionine >  Glutamic acid >  Alanine 

> Glycine  > Cysteine  >Proline> Isoleucine > Threonine >Valine. 

Glutamic acid, aspartic acid, isoleucine, valine, tyrosine, and 

phenylalanine are enriched in diatom cell plasma and are found to be easily 

susceptible to degradation and their abundance in sediments indicated freshly 
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derived organic matter. Vascular plant input to sedimentary OM was evident 

from the relative abundance of aspartic acid. Contribution of microorganisms 

was inferred from the dominance of histidine at S1 and S7. The sum of basic 

AAs (Arg+His+Lys) were found to be more abundant than the acidic amino 

acids (Asp+Glu) during PRM09, MON09 and PRM10, meanwhile during 

POM09 and MON12 acidic amino acids dominated in surface sediments.  

Among the two acidic amino acids, aspartic acid was found to be relatively 

more enriched than glutamic acid in all stations during PRM09, MON09, 

PRM09, PRM10 and MON12 seasons; while basic amino acid lysine was 

found to be relatively abundant during PRM09, MON09, POM09 and 

MON12. POM09 was characterised by higher abundance of arginine,while 

during PRM10 histidine was relatively enriched. The percentage contributions 

of THAA-C% and THAA-N% exhibited fluctuating trends as a result of slight 

degradation. The observed THAA-C% and THAA-N% in sediments were at 

higher ranges compared to other estuaries, indicating that OM in sediments of 

CES was not highly degraded. Stations of the study area recorded positive DI 

values and higher THAA concentration with remarkable spatial and seasonal 

variations during most of the seasons, indicating fresh input of OM with 

bacterial signals. The estuarine zone of the study area recorded fresh OM than 

fresh water and riverine/industrial zones.Thelower or negative DI values 

implied accumulation of refractory material in the estuarine sedimentary 

organic matter. DI generally decreased with decreasing sediment grain sizes 

suggesting the role of texture in the distribution and preservation of amino 

acids in sediments. Multivariate statistical analysis pointed out the 

involvement of sediment texture, TOC, redox state and microbial processes on 

the dispersal pattern of amino acids in the study area.  
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Cochin estuarine system is among the most productive aquatic 

environment along the Southwest coast of India, exhibits unique ecological 
features and possess greater socioeconomic relevance. Serious investigations 
carried out during the past decades on the hydro biogeochemical variables 
pointed out variations in the health and ecological functioning of this ecosystem. 
Characterisation of organic matter in the estuary has been attempted in many 
investigations. But detailed studies covering the degradation state of organic 
matter using molecular level approach is not attempted. The thesis entitled 
Provenance, Isolation and Characterisation of Organic Matter in the Cochin 
Estuarine Sediment-“ a Diagenetic Amino Acid Marker Scenario” is an 
integrated approach  to evaluate the source, quantity, quality, and degradation 
state of the organic matter in the surface sediments of Cochin estuarine system 
with the combined application of bulk and molecular level tools. 

Sediment and water samples from nine stations situated at Cochin 
estuary were collected in five seasonal sampling campaigns, for the 
biogeochemical assessment and their distribution pattern of sedimentary organic 
matter. The sampling seasons were described and abbreviated as follows: April-
2009 (pre monsoon: PRM09), August-2009 (monsoon: MON09), January-2010 
(post monsoon: POM09), April-2010 (pre monsoon: PRM10) and September-
2012 (monsoon: MON12). The objectives of the present study were: i) To find 
the nutrient enrichment in the estuarine sediments using phosphorous and 
nitrogen fractionation. ii) To assess the spatio-temporal variation, nature and 
quality of bulk sedimentary organic matter as well as the benthic trophic status 
of the estuary. iii) Extraction, quantification and distribution of free sugars in 
sedimentary organic matter and its implications on productivity. iv) Distribution 
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pattern and diagenetic process of amino acids in order to unravel the quality of 
estuarine sedimentary organic matter were also encountered. 

In order to evaluate the general environmental conditions of the estuary, 
water samples were analysed for water quality parameters, chlorophyll pigments 
and nutrients by standard methods. Investigations suggested the fact that 
hydrographical variables and nutrients in Cochin estuary supports diverse species 
of flora and fauna. Moreover the sedimentary variables such as pH, Eh, texture, 
TOC, fractions of nitrogen and phosphorous were determined to assess the 
general geochemical setting as well as redox status. The periodically fluctuating 
oxic/ anoxic conditions and texture serve as the most significant variables 
controlling other variables of the aquatic environment. The organic matter in 
estuary comprise of a complex mixture of autochthonous as well as allochthonous 
materials. Autochthonous input is limited or enhanced by the nutrient elements 
like N and P (in their various fractions), used as a tool to evaluate their 
bioavailability. Bulk parameter approach like biochemical composition, 
stoichiometric elemental ratios and stable carbon isotope ratio was also employed 
to assess the quality and quantity of sedimentary organic matter in the study area.  
Molecular level charactersation of free sugars and amino acids were carried out 
by liquid chromatographic techniques. Carbohydrates are the products of primary 
production and their occurrence in sediments as free sugars can provide 
information on the estuarine productivity. Amino acid biogeochemistry provided 
implications on the system productivity, nature of organic matter as well as 
degradation status of the sedimentary organic matter in the study area.   

pH of  the sediments was slightly alkaline during the investigation and 
its maximum was observed at S8. Values of Eh in sediments remain oxic 
during the monsoon and exhibited reducing condition during the post 
monsoon and pre-monsoon. Analysis of sediment texture revealed the 
dominance of sand at the confluence of the riverine portion of the study area. 
In the case of silt and clay fractions enhanced levels towards the estuarine 
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stations were also observed. Total organic carbon content in the sediments of 
the study region was controlled mainly by the rate of supply of terrestrial 
materials, rate of deposition of organic to inorganic constituents, primary 
productivity, redox conditions as well as texture of sediments. 

Sequential chemical extraction of P and N provided a better 
understanding of the nutrient enrichment in the estuary. An abrupt increase in 
the concentration of total phosphorous with increase in salinity was 
observed in the study region. The processes of reductive dissolution of iron 
hydroxides and formation of calcium carbonate minerals were the major 
factors governing the distribution of both Fe bound and Ca bound P in the 
estuary. Concentration of Ca bound P was more pronounced at the regions 
with higher salinity of the study area since the formation of CaCO3 is favoured 
by the more alkaline pH. During the study period, nitrogen compounds 
followed the trend: residual-N> nitrate-N> nitrite-N> urea-N> ammonia-N. 
Among the P fractions, Fe bound P exhibited a distinct seasonal distribution 
pattern with maximum content displayed during the monsoon. Results of 
multivariate statistical analysis indicated that P fractions and N fractions 
supported the periodic interchange of oxic /anoxic character of the surface 
sediments. Intense land use change, unscientific agriculture practices and 
population growth have significantly altered river fluxes of nutrients. TOC/TS 
ratio inferred periodic anoxia, while TN/TP and TOC/TP ratios revealed 
enrichment of P in the Cochin estuarine system.  

The predominance of carbohydrates over protein indicated faster 
mineralisation of proteinaceous organic matter in sediments and the estuary 
behaves as a detrital trap for the accumulation of aged organic matter. The 
higher lipid content and LPD/CHO ratio pointed towards the better food quality 
that supports benthic fauna and better accumulation of lipid compounds in the 
sedimentary environment. Allochthonous addition of carbohydrates via 
terrestrial run off was responsible for the lower PRT/CHO ratio estimated in the 
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sediments and the lower ratios also denoted a detrital heterotrophic 
environment. Biopolymeric carbon and the algal contribution to BPC provided 
important information on the better understanding the trophic state of the 
estuarine system and the higher values of chlorophyll-a to phaeophytin ratio 
indicated deposition of phytoplankton to sediment at a rapid rate.  

The estimated TOC/TN ratios implied the combined input of both 
terrestrial and autochthonous organic matter to sediments. TOC and TN 
concentrations strongly depend on the grain size of sediments in the study 
region. The more depleted δ13C value (-32.34 to -25.07 ‰) in the sediments 
indicated terrestrial input consisting of vascular plant debris. Terrestrial input 
was also testified by higher concentration of tannin and lignin in the sediments 
of the estuary. Rapid and recent deposition of phytoplankton detritus to 
sediments was inferred from chlorophyll-a / (chlorophyll-a + phaeopigment) 
ratios. Bulk parameter approach revealed a combined input of organic matter 
from in situ primary production, land runoff, industrial, agricultural and 
domestic sewage in the estuarine sediments.   

Among the free sugars, depleted levels of glucose in sediments in most 
of the stations and abundance of mannose at station S5 was observed during 
the present investigation. Among aldohexoses, concentration of galactose was 
found to be higher in most of the stations. PRM09 was characterised by the 
abundance of aldopentose- arabinose (S2, S3 and S8) and ribose (S1, S5, S7 
and S9) at respective stations, while enrichment of xylose was noted at S4. 
Enrichment of the disaccharide- maltose was noticed in most of the stations 
during POM09. Correlation analysis implied the role of primary productivity 
on organic matter production, similarity in behaviour and distribution pattern 
of free sugars. The strong relationship between phosphate and chlorophyll 
pigments confirmed the fact that nutrient availability in the water column 
governs the instantaneous rates of chlorophyll and organic matter production. 
The enhanced level of chlorophyll pigments in water column have imparted 
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higher rate of productivity of the estuarine system.  The free sugar content has 
been attributed to both autochthonous as well as allochthonous input as 
evident from stable carbon isotope ratio and TOC/TN ratio. The overall 
examination revealed that the biogeochemistry of free sugars and the 
productivity of Cochin estuary were influenced by the interactions between 
nutrient content, chlorophyll, TOC and other physicochemical variables. 
Multivariate statistical analysis indicated that concentration and spatio-
temporal distribution of frees sugars in the study area are regulated by grain 
size of sediments, salinity of the water column, in situ primary production, 
allochthonous input, nutrient levels and redox status. 

Relative abundance of AAs in the estuarine sediments based on seasons 
followed the trend: PRM09-Leucine > Phenylalanine  > Argine > Lysine, 
MON09-Lysine > Aspartic acid  > Histidine > Tyrosine > Phenylalanine, 
POM09-Lysine > Histadine > Phenyalanine > Leucine > Methionine > Serine > 
Proline > Aspartic acid, PRM10-Valine > Aspartic acid > Histidine > 
Phenylalanine > Serine > Proline, MON12-Lysine > Phenylalanine > Aspartic 
acid > Histidine > Valine > Tyrsine > Methionine.  

The classification of study area into three zones based on salinity was 
employed in the present study for the sake of simplicity and generalized 
interpretations. The distribution of AAs in the three zones followed the trend: 

Fresh water zone (S1, S2):- Phenylalanine > Lysine > Aspartic acid > Methionine > 
Valine ῀ Leucine > Proline > Histidine > Glycine > Serine > Glutamic acid > 
Tyrosine > Arginine > Alanine > Threonine > Cysteine > Isoleucine.  

Estuarine zone (S3, S4, S5, S6):- Lysine > Aspartic acid > Phenylalanine > 
Leucine > Valine > Histidine > Methionine > Tyrosine > Serine > Glutamic acid 
> Proline > Glycine  > Arginine > Alanine > Isoleucine > Cysteine  > Threonine.

Riverine /Industrial zone (S7, S8, S9):- Phenylalanine > Lysine > Aspartic acid > 
Histidine > Serine > Arginine > Tyrosine > Leucine > Methionine > Glutamic 
acid > Alanine > Glycine > Cysteine > Proline > Isoleucine > Threonine > Valine. 
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The abundance of AAs like glutamic acid, aspartic acid, isoleucine, valine, 
tyrosine, and phenylalanine in sediments of the study area indicated freshly 
derived organic matter. Vascular plant input to sedimentary OM was evident from 
the relative abundance of aspartic acid. The input of AAs from microorganisms 
was testified by the dominance of histidine at S1 and S7. The sum of basic AAs 
(Arg+His+Lys) were found to be more abundant than the acidic amino acids 
(Asp+Glu) during PRM09, MON09 and PRM10, besides, in POM09 and 
MON12 acidic amino acids dominated in surface sediments. Abundance of 
aspartic acid than glutamic acid was formed in all stations during PRM09, 
MON09, PRM09, PRM10 and MON12 seasons. Among the three basic amino 
acids, lysine was found to be relatively abundant during PRM09, MON09, 
POM10 and MON12. POM10 was characterised by higher mole% of arginine, 
while during PRM10 histidine was relatively abundant. The percentage 
contributions of THAA-C% and THAA-N% exhibited fluctuating trends as a 
result of slight degradation. Observed THAA-C% and THAA-N% in sediments 
were found at higher ranges as compared to other estuaries, indicating that OM in 
sediments of CES was not highly degraded. The positive degradation index and 
higher concentration of THAA in sediments implied the fact that OM was 
relatively fresh and had bacterial contributions at the studied area. According to 
the zone wise categorization, the estuarine zone of the study area recorded more 
recent OM than fresh water and riverine/industrial zones. 

Within the time constraints, the investigation was effective in 
unraveling the nature, source, degradation state and various interrelated 
biogeochemical processes involved in the organic matter dynamics of the 
estuary. Source specific indices like molecular biomarkers, compound specific 
isotope analysis are recommended to achieve more information on origin and 
fate of organic matter in complex ecosystems like Cochin estuary.  

……… ……… 
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Appendix 1.1: Spatio-temporal variation of biochemical components present in the study area 

Parameters Stations PRM09 MON09 POM09 PRM10 MON12 

TOC (%) 

S1 1.57±0.21 4.78±0.23 5.77±0.44 1.68±0.13 5.28±0.24 

S2 0.72±0.04 1.31±0.17 1.02±0.16 1.21±0.16 1.81±0.22 

S3 2.74±0.18 1.12±0.12 0.74±0.13 3.02±0.11 1.62±0.18 

S4 0.96±0.03 0.75±0.06 2.87±0.12 1.26±0.12 1.25±0.14 

S5 2.95±0.19 2.93±0.16 2.38±0.21 2.24±0.21 3.43±0.25 

S6 2.21±0.29 2.96±0.22 2.67±0.32 2.88±0.25 3.46±0.22 

S7 0.50±0.06 1.58±0.11 1.68±0.12 0.61±0.04 2.08±0.24 

S8 5.44±0.27 6.39±0.14 5.56±0.10 4.98±0.22 6.86±0.21 

S9 0.56±0.04 0.16±0.02 0.36±0.05 0.72±0.05 0.66±0.04 

LPD (mg/kg) 

S1 1494.39±11.21 1313.27±18 1945.25±7.38 5018.69±7.39 717.41±5.58 

S2 357.91±9.34 756.84±7.92 764.26±9.76 3268.37±5.87 204.71±4.12 

S3 1475.27±7.48 594.32±5.95 1477.75±8.72 3454.82±7.63 335.67±2.91 

S4 1498.09±5.87 475.95±2.96 3169.81±6.94 2533.33±7.85 412.56±3.59 

S5 2591.79±8.94 1948.49±21 2964.81±7.38 2500.00±6.88 539.63±4.56 

S6 796.99±9.92 1754.92±12 1912.80±18.49 3371.95±7.38 440.48±5.18 

S7 239.66±5.72 2233.23±7.41 491.64±7.35 1143.10±6.98 564.23±4.17 

S8 3055.39±11 5795.62±10.58 1376.59±14.18 3981.37±11.12 757.02±3.06 

S9 755.95±6.19 461.02±9.92 115.29±4.25 688.72±8.93 134.56±4.55 

CHO (mg/kg) 

S1 2611.36±6.98 6185.29±7.59 9491.98±7.39 3310.27±5.94 4379.53±3.94 

S2 1002.45±9.93 1977.39±11.53 1487.40±6.92 3885.56±11 5384.11±9.37 

S3 2005.65±11.22 2159.61±6.99 500.00±9.89 1440.08±7.84 3425.43±8.09 

S4 1151.26±9.27 1653.79±7.72 1263.08±5.99 955.07±5.67 3988.78±7.32 

S5 1946.06±4.38 4550.48±7.92 887.14±6.93 891.88±6.69 5075.00±4.82 

S6 2451.43±5.44 3568.73±6.96 1327.83±9.82 3382.70±5.49 4626.42±6.84 

S7 2073.74±7.93 1925±7.17 1309.20±8.95 1523.21±9.87 4564.23±7.93 

S8 4700±8.32 8887.16±8.62 6130.00±10.11 6680±8.49 13285±10.33 

S9 1033.94±5.45 618.61±7.83 434.19±8.74 657.26±4.93 658.50±2.84 
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PRT (mg/kg) 

S1 233.41±15.11 2355.41±98.12 15250.00±35.32 1280.48±56.11 6912.19±36.23 

S2 558.78±44.12 156.51±4.23 788.84±23.12 1221.43±34.12 6617.83±33.13 

S3 4628.74±19.12 442.78±1.12 850.00±11.32 765.87±3.34 5897.33±21.45 

S4 110.67±7.77 248.93±12.34 2953.43±5.65 329.83±2.85 4978.23±5.65 

S5 271.87±4.24 480.04±3.53 357.07±4.94 716.51±4.24 4887.83±15.23 

S6 490.86±4.12 775.16±20.12 2015.48±2.82 814.49±9.89 5438.83±5.65 

S7 1370.00±9.89 600.70±7.77 234.10±4.97 470.47±9.19 4544.43±7.07 

S8 4305.56±5.67 2642.71±10.78 1396.52±8.98 14000.00±16.34 11157.00±8.48 

S9 366.78±7.77 189.22±6.36 196.99±4.24 447.01±4.94 1163.46±6.36 

BPC (%) 

S1 0.16±0.03 0.25±0.03 0.94±0.04 0.57±0.04 0.57±0.03 

S2 0.06±0.01 0.08±0.01 0.12±0.02 0.39±0.07 0.55±0.04 

S3 0.37±0.03 0.08±0.03 0.19±0.03 0.38±0.12 0.45±0.05 

S4 0.16±0.02 0.06±0.04 0.46±0.04 0.27±0.11 0.43±0.12 

S5 0.27±0.05 0.22±0.10 0.31±0.06 0.29±0.07 0.48±0.17 

S6 0.10±0.02 0.21±0.05 0.29±0.10 0.38±0.03 0.48±0.20 

S7 0.09±0.03 0.25±0.04 0.06±0.02 0.14±0.04 0.40±0.15 

S8 0.52±0.02 0.71±0.11 0.21±0.02 1.08±0.21 1.13±0.03 

S9 0.09±0.03 0.06±0.01 0.02±0.01 0.09±0.02 0.09±0.01 

TL (mg/kg)  

S1 2025.74±9.54 3957.45±12.31 3326.19±10.32 4207.59±5.48 3859.45±10.54 

S2 644.63±6.75 1015.05±15.58 792.57±6.47 1666.87±8.73 917.05±9.93 

S3 495.26±9.92 572.56±6.98 341.58±4.81 1140.99±7.45 474.56±8.48 

S4 126.26±8.83 113.54±7.96 244.81±9.48 635.67±5.63 145.43±8.94 

S5 236.00±7.89 772.50±8.93 504.79±10.51 660.93±6.19 674.50±7.91 

S6 199.37±8.94 938.31±6.83 802.65±9.71 1244.62±5.92 840.31±9.65 

S7 254.51±7.48 1294.99±7.54 804.26±8.94 844.90±5.39 1196.99±9.47 

S8 2648.60±8.95 3668.89±6.73 2175.57±6.59 3126.35±6.97 3570.89±8.49 

S9 547.56±7.93 195.42±8.87 496.83±5.63 839.19±7.39 97.42±1.25 
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Appendix 1.2: Seasonal and spatial distribution of Chlorophyll pigments (µg/kg) present in the study area 

Parameters Stations PRM09 MON09 POM09 PRM10 MON12 

Chl-a 

S1 4.11±0.23 8.59±0.32 8.85±0.65 7.17±0.42 7.81±0.93 
S2 2.18±0.32 5.80±0.42 4.74±0.52 12.98±0.44 5.02±0.25 
S3 15.49±0.58 5.87±0.35 5.89±0.43 16.54±0.53 5.09±0.17 
S4 3.35±0.12 3.77±0.31 16.89±1.34 11.97±0.58 2.99±0.13 
S5 12.17±0.22 15.14±1.02 13.88±0.17 13.21±0.63 14.36±0.47 
S6 10.86±0.27 9.04±0.33 11.96±0.33 10.82±1.02 8.26±0.53 
S7 2.08±0.29 3.01±0.12 3.54±0.11 2.68±0.78 2.23±0.17 
S8 9.63±0.31 16.44±1.11 12.76±0.27 6.75±0.32 15.66±1.13 
S9 1.42±0.41 0.37±0.03 0.59±0.36 0.74±0.11 0.41±0.04 

Chl-b 

S1 2.14±0.21 3.49±0.32 3.29±0.22 2.99±0.28 3.04±0.72 
S2 1.20±0.11 2.16±0.15 2.40±0.18 5.47±0.17 1.71±0.25 
S3 5.77±0.17 2.39±0.21 3.30±0.31 6.72±0.31 1.94±0.16 
S4 2.26±0.25 2.00±0.16 7.34±0.43 4.81±0.33 1.55±0.11 
S5 5.73±0.15 7.01±0.24 6.60±0.23 4.83±0.21 6.56±0.31 
S6 6.02±0.22 4.28±0.31 6.55±0.17 5.59±0.43 3.83±0.18 
S7 1.23±0.31 1.58±0.17 2.32±0.14 1.89±0.15 1.13±0.08 
S8 5.49±0.56 6.60±0.24 5.83±0.22 3.02±0.31 6.15±0.43 
S9 0.87±0.18 0.24±0.06 0.75±0.04 0.54±0.22 0.23±0.01 

Chl-c 

S1 2.70±0.13 4.45±0.43 3.92±0.37 2.91±0.21 3.96±0.22 
S2 1.30±0.07 2.66±0.21 2.46±0.18 6.23±0.32 2.17±0.18 
S3 5.81±0.55 2.36±0.32 3.50±0.26 7.04±0.37 1.87±0.24 
S4 3.66±0.16 2.74±0.27 7.10±0.61 4.74±0.33 2.25±0.43 
S5 5.86±0.34 6.92±0.18 6.73±0.33 4.57±0.35 6.43±0.41 
S6 6.49±0.26 4.21±0.13 6.87±0.38 6.68±0.22 3.72±0.14 
S7 1.64±0.14 1.85±0.21 2.99±0.39 2.70±0.06 1.36±.12 
S8 5.77±0.28 6.58±0.24 6.42±0.17 4.05±0.26 6.09±0.51 
S9 1.03±0.22 0.23±0.07 0.89±0.03 0.51±0.31 0.22±0.05 

Phe 

S1 7.05±0.23 14.39±1.33 14.49±0.27 12.86±1.18 13.61±1.22 
S2 3.35±0.15 9.83±0.55 9.72±0.21 21.03±1.55 9.05±0.63 
S3 28.18±0.27 9.51±0.41 28.98±2.18 28.28±2.33 8.73±0.48 
S4 6.29±0.33 5.38±0.36 28.28±0.31 18.75±2.78 4.60±0.36 
S5 21.22±1.27 25.38±0.37 21.47±0.34 22.34±2.18 24.60±0.18 
S6 21.59±2.17 15.21±0.44 22.71±0.32 18.13±2.64 14.43±1.11 
S7 3.82±0.14 5.38±0.35 6.95±0.16 4.68±2.35 4.60±0.18 
S8 15.13±0.22 26.18±0.27 22.02±0.18 13.30±3.18 25.40±0.33 
S9 1.75±0.34 1.33±0.31 1.75±0.23 2.21±0.33 0.55±0.02 

……… ……… 
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Appendix 2.1 Chromatogram of free sugars in selected stations of Cochin estuary (season wise) 

CHROMATOGRAM DURING PRM09 
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CHROMATOGRAM DURING MON09 
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CHROMATOGRAM DURING POM09 
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CHROMATOGRAM DURING PRM10 
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CHROMATOGRAM DURING MON12 
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Appendix 3.1 Chromatogram of amino acids in selected stations of Cochin estuary (season wise) 

CHROMATOGRAM DURING PRM09 
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CHROMATOGRAM DURING MON09 
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CHROMATOGRAM DURING POM09 
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CHROMATOGRAM DURING PRM10 
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CHROMATOGRAM DURING MON12 
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