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Chapter 1

INTRODUCTION

1.1 Queueing Theory

The study of the congestion in telephone network by A K Er-

lang lead to the origin of Queueing Theory. Over the years, the

subject found its applications in diverse areas like Telecommu-

nications, Traffic flow, Computer networking, Computing etc..

This is a branch of science that deals with the study of wait-

ing lines. When customers/units requiring some kind of service

gather at a service centre, a queue is formed. In Queueing The-

ory, we model such systems mathematically and predict some

characteristics like average waiting time of a customer, average

queue length etc..

The basic features that characterises a queueing system are

the following:

1
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a) Arrival Pattern: This describes the manner in which the

units arrive and join the system. The customers may arrive

in single or in batches. Time interval between any two con-

secutive arrivals is called the inter-arrival time. The arrival

pattern is usually represented by the probability distribution

of the inter-arrival time.

On arrival, if a customer sees a long queue, he may decide not

to join the queue and may leave the station. This customer

behaviour is called balking. Some customers join the queue,

wait for a while but loosing their patience, may leave the

system without waiting further for service. This situation is

referred to as reneging.

If there are more than one queue, customers have a tendency

to switch from one queue to another. This is called jockeying.

b) Service Pattern: This indicates the manner in which the

service is rendered. Like the arrivals, the service also is pro-

vided in single or in batches. The probability distribution of

the service time describes the service pattern.

c) Queue Discipline: Queue Discipline tells us the rule by

which the customers are taken for service. Some of the com-

monly used disciplines include first in first out (FIFO), last in

first out (LIFO), service in random order (SIRO) and server

sharing. In some systems customers may be given priorities

so that the service is rendered in the order of their priorities.

d) Number of service channels: This refers to the number

of servers providing service to the customers in the system.
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e) Capacity of the system: The capacity of the system is the

maximum number of customers it can accommodate. It may

be finite or infinite.

A queueing system is often analysed by modelling it as a Markov

chain. Some basic concepts employed in this direction are given

briefly in the following sections.

1.2 Some basic concepts

1.2.1 Stochastic Process

A stochastic process or a random process is a collection

{X(t)/t ∈ T}

of random variables where T is some index set. The index t

is usually referred to as time. If the index set T is countable,

then the process is called a discrete time process. Otherwise it is

called a continuous time process. The set of all possible values

of X(t) for each t ∈ T is the state space of the process.

1.2.2 Counting Process

A counting process {N(t)/t ≥ 0} is a stochastic process if

N(t) represents the total number of events occurred by time t

such that
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i) N (t) ≥ 0.

ii) N (t) is integral valued.

iii) If s < t, then N(s) ≤ N(t).

iv) For s < t,N(t)−N(s) is the number of events occurred in

the interval (s, t].

A counting process {N(t)/t ≥ 0} is said to be have independent

increments if for all t1, t2, ..., tn, t1 < t2 < ... < tn, the random

variables N(t2) − N(t1), N(t3) − N(t2), ..., N(tn) − N(tn−1) are

independent. It has stationary increments if the distribution of

N(t)−N(s) depends only on t− s.

1.2.3 Markov Process

Definition 1.2.1. A stochastic process {X(t)/t ∈ T} is

called a Markov Process if

P [X(tn) = xn/X(tn−1) = xn−1, X(tn−2) = xn−2, ..., X(t0) = x0]

= P [X(tn) = xn/X(tn−1) = xn−1]

whenever t0 < t1 < ... < tn−1 < tn for every n.

A discrete time Markov Process is called a Markov chain.

Thus a Markov chain is a stochastic process {Xn/n = 0, 1, 2, ...}
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for which

P (Xn = xn/Xn−1 = xn−1, Xn−2 = xn−2, ...., X0 = x0)

= P (Xn = xn/Xn−1 = xn−1)

for x0, x1, ..., xn in the state space.

The probability pn,n+1
i,j = P (Xn+1 = j/Xn = i) is called one

step transition probability of the Markov chain. If the transition

probabilities are independent of time, the chain is said to be

homogeneous. If it depends on time, the chain is called non-

homogeneous. For a homogeneous Markov chain, the one step

transition probabilities are denoted by pi,j. The matrix P = [pi,j]

is called the one step transition matrix of the chain.

More generally the probability that starting from a state i,

the chain reaches the state j in exactly m transitions is called

the m − step transition probability. For a homogeneous chain

this probability is denoted by p
(m)
ij . Thus

p
(m)
ij = P (Xn+m = j/Xn = i) .

A subset C of the state space of a chain is said to be closed

if no state outside C can be reached from any state in C. If

the chain has no proper closed subset other than the state space

itself, it is called an irreducible chain.

A state i is recurrent if and only if, starting from state i,
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the probability of returning to state i after some finite time is

certain. A non-recurrent state is said to be transient. For a

recurrent state if the mean recurrence time is finite, it is called

positive recurrent. The greatest common divisor of the recur-

rence times of a state is called its period. If the period is one,

the state is said to be aperiodic. A positive recurrent aperiodic

state of a Markov chain is said to be ergodic. A Markov chain

is ergodic if all its states are ergodic.

For a homogeneous Markov chain, the vector

π = (π1, π2, π3, ...)

is called a stationary probability vector if for every j in the state

space,

πj =
∑
i

πipij such that 0 ≤ πj ≤ 1 and
∑
j

πj = 1.

An irreducible chain has a stationary distribution if and only

if all of its states are positive recurrent.

The probability vector $ = ($1, $2, ...) is called the limiting

distribution of the chain if p
(n)
ij → $j as n→∞.

If a positive recurrent chain is both irreducible and aperiodic,

it has a limiting distribution.

Theorem 1.2.1. For an irreducible ergodic Markov chain, the

limiting distribution exists and is same as its stationary distri-

bution.
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1.3 Modelling Tools

In this section we describe some tools we used in analysing

the models introduced in this thesis.

1.3.1 Exponential Distribution

A random variable X is said to have an exponential distri-

bution with parameter λ > 0 if it has the probability density

function

f (x) = λe−λx, 0 ≤ x <∞

= 0, x < 0.

Its distribution function is given by F (x) = 1− e−λx, x ≥ 0.

The mean of this distribution is 1
λ

and variance is 1
λ2

. The

moment generating function is MX(t) =
(
1− t

λ

)−1
.

The important properties that make exponential distribution

much useful in modelling queueing systems are the following:-

a) Memoryless property (Non-ageing property): This

property implies that if X denotes the duration of some ac-

tivity, and if the the activity is still going on, the distribution

of the duration of the remaining part of the activity is same

as that of X, no matter when the activity has begun. In

other words the remaining part of the activity can be treated
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as a new activity.

ie; P (X ≥ x+ y|X ≥ x) = P (X ≥ y) .

Exponential distribution is the only continuous distribution

having this property.

b) Minimum of two exponential variables is exponential:

Let X1 and X2 be two exponential random variables with

parameters λ1 and λ2 then min (X1, X2) is exponential with

parameter λ1 + λ2. Also P (Xi < Xj) = λi
λi+λj

.

1.3.2 Poisson Process

A counting process {N(t)/t ≥ 0} is called a Poisson Process

with rate λ > 0 if

i) N (0) = 0.

ii) It has stationary and independent increments.

iii) The distribution of N(t) is Poisson with mean λt.

ie; P (N(t) = n) =
(λt)n

n!
e−λt, n = 0, 1, 2, ... .

.

A detailed description on Poisson process and related distribu-

tions is given in Medhi [53]. We state two important theorems.
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Theorem 1.3.1. For a homogeneous Poisson process with mean

λt, the inter-occurrence times are independently and identically

distributed exponential random variables with mean 1
λ
.

Theorem 1.3.2. If the interval between successive occurrences

of an event E are independently and exponentially distributed

with mean 1
λ

, then the events E will form a Poisson process

with mean λt.

1.3.3 Phase Type Distribution

Consider a Markov Process on the states {1, 2, 3, ...,m,m+ 1}
with the infinitesimal generator

Q =

[
T T 0

0 0

]
(1.1)

where the m×m matrix T satisfies Tii < 0 for 1 ≤ i ≤ m, and

Tij ≥ 0, for i 6= j. Also Te + T 0 = 0. Let initial probability

vector of this process be (α, αm+1) with αe + αm+1 = 1. Also

assume that the states 1, 2, ..,m are transient so that absorption

into the state m+ 1 is certain.

Definition 1.3.1. A probability distribution F (.) on [0,∞)

is said be a phase type distribution (PH-distribution) of order

m with representation (α, T ) if and only if it is the distribution

of the time until absorption of a finite Markov process defined

in (1.1).

If F (.) is a phase type distribution described by the Markov
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process defined in (1.1), then

F (x) = 1− α.exp(Tx)e, for x ≥ 0.

For a PH distribution F (.) with representation (α, T ),

i) The distribution F (.) has a jump at x = 0 of magnitude

αm+1.

ii) The corresponding probability density function f(.) is given

by

f(x) = α.exp(Tx)T 0, x ≥ 0.

iii) The Laplace-Stieltjes transform f(s) of F (.) is given by

f(s) = αm+1 + α(sI − T )−1T 0, for Re(s) ≥ 0.

iv) The ith raw moment µ′i is given by

µ′i = (−1)ii!
(
αT−ie

)
, i = 1, 2, 3, ... .

Example 1.3.1. Erlang distribution

A random variable X is said to follow an Erlang-k distribu-

tion, k = 1, 2, 3, .. if it has the probability density function

f(x) =
(µx)k−1

(k − 1)!
µe−µx.

The mean of this distribution is k
µ

and variance is k
µ2

. Its moment

generating function is MX(t) = (1− t
µ
)−k.
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From the moment generating function it follows that the sum

of k mutually independent exponential random variables, each

with common population mean 1
µ

is an Erlang-k distribution

with mean k
µ
.

Now consider a random variable X with phase type proba-

bility distribution F(.) represented by (α, T ) where

α = (1, 0, 0, ..., 0)1×m and

T =



−µ µ 0 . . . . 0

0 −µ µ 0 . . . 0

0 0 −µ µ 0 . . 0
...

...
...

...
...

...
...

...

0 0 . . 0 . −µ µ

0 0 . . 0 . −µ µ


m

Since the corresponding Markov process always start from

the first phase, the time until absorption, X is the sum of time

spent in each of the m phases. Hence X is the sum of m ex-

ponentially distributed random variables with mean 1
µ
. That is

the distribution of X is Erlang-m. Thus Erlang distribution is

a phase type distribution.

Example 1.3.2. Exponential distribution

When k = 1 the Erlang distribution reduces to Exponential

distribution. Hence Exponential distribution can be considered

as an Erlang-1 distribution. Therefore exponential distribution

is a phase type distribution with a single phase.
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1.4 Matrix Analytic Methods

When Queueing theory found its applications in several new

areas like computer networking, mobile phone communications

etc., the usual methods like Method of generating functions,

Methods using Transforms etc. failed to provide much tractabil-

ity in the analysis of many queueing models especially when the

distribution of inter-arrival time or service time is not exponen-

tial. But the introduction of Matrix analytic methods gave us

the ability to analyse much complicated Stochastic models in an

algorithmic way and to numerically explore the problems more

deeply. In this thesis, the Matrix analytic methods are used to

analyse quasi-birth-and-death processes.

1.4.1 Level independent quasi-birth-and-

death processes

Consider a Markov process with state space

E = {(i, j), i ≥ 0, 1 ≤ j ≤ m} .

We partition the state space as

E =
⋃
i

Ei where Ei = {(i, j), 1 ≤ j ≤ m} .

The states in Ei are said to be in level i. Such a Markov pro-

cess is called a level independent quasi-birth-and-death process
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(LIQBD) if its infinitesimal generator is the irreducible tridiag-

onal matrix Q given by

Q =


B0 A0

B1 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 .

Then we have the following theorem (Neuts [49] ).

Theorem 1.4.1. The process Q is positive recurrent if and only

if, the minimal non-negative solution R to the matrix quadratic

equation

R2A2 +RA1 + A0 = 0 (1.1)

has spectral radius less than one and the finite system of equa-

tions

x0 (B0 +RB1) = 0

x0 (I −R)−1 e = 1

(1.2)

has a unique positive solution for x0. If the matrix A = A0+Al+

A2 is irreducible, then sp(R) < 1 if and only if, πA0e < πA2e,

where π is the stationary probability vector of the matrix A. The

stationary probability vector x = (x0, xl, x2, ...) of Q is given by

xi = x0R
i, i ≥ 0. (1.3)
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To find the solution R of equation(1.1), we use the iterative

formula

Rn = −A0 (A1 +Rn−1A2)
−1 , n = 1, 2, 3, .... (1.4)

with an initial approximation R0. If sp(R) < 1 then Rn con-

verges to R. More powerful iterative methods can be found in

Latouche and Ramaswami [50].

1.4.2 Level dependent quasi-birth-and-death

processes

A Level dependent quasi-birth-and-death process (LDQBD)

is a Markov process with state space

E = {(i, j)/i ≥ 0, 1 ≤ j ≤ ni}

whose infinitesimal generator Q is given by

Q =



A1,0 A0,0

A2,1 A1,1 A0,1

A2,2 A1,2 A0,2

A2,3 A1,3 A0,3

. . . . . . . . .

. . . . . . . . .


.

The state space is partitioned into different levels where level i

is given by Ei = {(i, j)/1 ≤ j ≤ ni} , i = 0, 1, 2, ... . The tran-
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sitions are to the adjacent levels alone. But the transition rate

will depend on the level in which the process is then. Assuming

that the process is irreducible, we have the following theorems

(Latouche and Ramaswami [50]).

Theorem 1.4.2. If an LDQBD is aperiodic and positive recur-

rent, its limiting probability vector π = {π1, π2, π3, ...} satisfies

the relation

πn = πn−1Rn, n ≥ 1

where the matrices Rn are the minimal non-negative solutions

of the system of equations

RnRn+1A2,n+1 +RnA1,n + A0,n = 0.

Theorem 1.4.3. The LDQBD is positive recurrent if and only

if there exists a strictly positive solution of the system

π0 = π0
(
A1,0 +R1A2,1

)
normalized by

π0
∑
n≥0

( ∏
1≤k≤n

Rk

)
e = 1.

To calculate Rn we use Nuets - Rao Truncation method

(Neuts and Rao [51]) for retrial queues. In this method an upper

level N is selected such that the transitions between the levels

higher than N are independent of the level using the approxi-
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mation that

A2,i = A2,N , A1,i = A1,N and A0,i = A0,N for i > N.

For retrial queues this makes sense since if the number of retry-

ing customers are very large, most of the retrials fail. So the

retrials exceeding a large number N will have no effect on the

system. Then RN is the the minimal non-negative solution of

the equation

R2
NA2,N +RNA1,N + A0,N = 0.

Using this RN we can find the steady state vector πN which

converges to π as N →∞.

In more general cases we choose the method proposed by

Bright and Taylor [52].

1.5 Summary of the thesis

In our day to day life, in processes like banking, internet,

business, agriculture, scientific experiments etc., we are faced

with different kinds of interruptions like a power failure affect-

ing a banking procedure or the working of certain machinery.

Though the facilities are improving/increasing each day, which

reduce the severity of interruptions, increasing needs bring them

back.
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For an example consider the following situations. Suppose

we have a computer with a backup of one hour. This backup

is sufficient for many purposes like saving a work that got in-

terrupted due to power failure. However, suppose that we have

to run certain program, which requires more than one hour for

execution on this computer. While running such a program, we

are worried about a power failure. This example applies to many

other situations, as the world is run by computers.

Another example from day to day life: Consider a work per-

son who uses a power tool that runs on electricity, who has more

than one work sites to attend. If a power failure lasts for long

or repeats randomly on one work site, he may choose to shift to

another site with constant power supply.

An emergency call for an ambulance service getting inter-

rupted due to network issues is yet another example for inter-

ruptions in day to day life.

An ideal world, as one would expect, be that which is free

from all types of interruptions. However, as we discussed earlier,

we do not belong there yet. Facing the reality of interruption,

we hope to minimize its severity by introducing some protection

mechanism. Analysis of queueing models with service interrup-

tion and protection is therefore important.

Naturally, researchers got involved in modelling these sce-

narios in a queueing theory perspective. A brief review on the

related works is added in the beginning of each chapter. The



18 Chapter 1. Introduction

abundance of works in this direction tells the practical impor-

tance. This is the reason for the selection of a few systems

in which the service process is susceptible for interruption and

having some measures for immunizing the server from it in this

thesis. The thesis is arranged in 6 chapters including the present

introductory chapter.

In Chapter 2, we consider a single server queueing system

where the service time distribution is phase type. The service

process may face some interruptions during the service. The

interruption occurs according to a Poisson process. Interrup-

tions are assumed to occur only when a service is in progress

and not when the server is idle. The interrupted service is ei-

ther resumed or repeated based on which of the two renewal

processes, started simultaneously with the interruption, renews

first. Customers arrive according to a Poisson process with dif-

ferent means depending on whether the server is interrupted or

not. The customers waiting in the queue for service may leave

the system without waiting further for service while the server

is interrupted. Stability of the above system is analysed and

steady state vector is calculated using Neuts-Rao truncation. A

thorough numerical study of various performance measures such

as mean and variance of waiting time of a customer are carried

out.

Chapter 3 analyses a single server retrial queueing model

with service interruptions, resumption/repeat of interrupted ser-

vice. On arrival if a customer finds an idle server, he is imme-

diately taken for service. If the server is busy when a customer



1.5. Summary of the thesis 19

arrives, this customer goes to an orbit of infinite capacity from

where he makes repeated attempts for service according to a

Poisson process. After an unsuccessful retrial he rejoins the or-

bit with probability p or leaves the system without waiting for

service with probability q = 1− p . The service time durations

follow PH distribution when there is no interruption. The ser-

vice process is subject to interruptions, which occur according

to a Poisson Process. The interrupted service is either resumed

or repeated as in the model described in chapter 2. The sys-

tem is found to be always stable if q > 0. The case q = 0 is

also analysed. Using Matrix analytic method, expressions for

important system characteristics such as expected service time,

expected number of interruptions etc. are obtained. System

performance measures are numerically explored and the effect

of service interruptions in a retrial set up is studied.

Chapter 4 is devoted to a model in which service time dis-

tribution is Erlang of order m. The server is subjected to inter-

ruption. The arrival of customers as well as the occurrence of

interruptions is according to a Poisson Process. The interrupted

server is taken for repair immediately. The repair time follows

exponential distribution. The interrupted service is either re-

sumed or restarted after repair according to the time taken for

repair to be done. As a means to reduce the impact of inter-

ruption, a protective mechanism is employed. To reduce the

chance of a service reaching completion being restarted all over

again, the final n phases of service are immunized from inter-

ruption. Thus a service that completed the first m − n phases
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will no longer face any interruption. The condition for stability

is determined and the service process is thoroughly analysed.

The steady state probabilities are evaluated using Matrix Ana-

lytic method. Many system performance measures like expected

number of customers in the system, expected waiting time, ex-

pected number of interruptions during a service, expected inter-

ruption duration etc. are also investigated. A cost analysis is

done numerically to find the number of phases to be protected

at an optimum cost.

In Chapter 5, we consider a single server queueing system

where customers arrive according to a Poisson process. Service

time distribution is exponential. The service process is subject

to interruptions, which occurs according to a Poisson process.

We assume that during interruption, the customer being served

waits there until his service is completed. The interrupted ser-

vice is restarted after repair. Repair time is exponentially dis-

tributed. To minimize the loss due to the interruptions, some

protection is given to the server. There will be no interruption

if the server is in protected mode. But the way in which the

server is protected differs from the method adopted in the pre-

vious chapter. Here the server is brought to the protected mode

after a random time from the start of the service. Stability of

the above system is analysed and steady state vector is calcu-

lated. Explicit formulas for system performance measures such

as expected number of customers in the system, expected in-

terruption rate, waiting time of a customer in the system etc.

are also obtained. A cost analysis is also done numerically to
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find the time after which the service has to be protected at an

optimum cost.

In Chapter 6, a system similar to one discussed in the pre-

vious chapter is analysed, but in this model the service time has

Erlang-m distribution. The strategy used to protect the service

is the same as the one used in chapter 5. The condition for

stability of the system is obtained. The service process is well

studied and important system performance measures are evalu-

ated. A cost analysis is made to determine the optimum time at

which the protection is to be started in a cost effective manner.

A comparison between the two strategies of protection is also

done.

It may be noted that the protection mechanism introduced

in chapter 4 looks similar to the N-policy in queueing system.

In contrast those introduced in chapters 5 and 6 are similar to

the T-Policy.



22 Chapter 1. Introduction



Chapter 2

A QUEUEING MODEL WITH

INTERRUPTION,

RESUMPTION/REPEAT AND RENEGING

2.1 Introduction

In the fast growing field of communication networks like In-

ternet, Queueing models with interruption have an important

role to play. Service interruption models studied in the liter-

ature include different types of service unavailability that may

be due to server taking vacations, server breakdowns, customer

induced interruptions, arrival of a priority customer etc. Queues

1. Presented in the International Symposium on Probability Theory and
Stochastic Process held in honour of Prof.S R S Varadhan FRS, Feb 6-
9,2009, at Cochin University of Science and Technology, Kochi.
2. Published in Bulletin of Kerala Mathematical Association, Special Issue,
Guest Editor S R S Varadhan 29-45, October 2009.

23



24
Chapter 2. A Queueing Model with

Interruption, Resumption/Repeat and Reneging

with service interruption was first studied by White and Christie

[1] which is an M/M/1 queueing model with exponentially dis-

tributed service interruption durations. They assumed that at

the end of each interruption the service of the interrupted cus-

tomer is resumed (from where it got interrupted). Some of the

earlier papers, which analyse queueing models with service inter-

ruptions, assuming general distribution for the service and inter-

ruption times, are by Jaiswal [2] ,[3], Gaver, Jr. [4], Keilson [5],

Avi-Itzhak and Naor [6] and Thiruvengadam [7]. In all these pa-

pers it is assumed that the arrival of a higher priority customer

interrupts the service of a low priority customer. Some other

papers on service interruption models include Federgruen and

Green [8], Van Dijk [9], Takine and Sengupta [10], Masuyama

and Takine [11]. Among these, Gaver, Jr. [4] considers a pre-

emptive repeat or repeat and re-sampling, whereas Keilson [5]

considers repeat or resumption of the interrupted service. The

rest of the above mentioned works consider pre-emptive resume

discipline.

The queueing model analysed by Krishnamoorthy and Usha

kumari [12] where disaster can occur to the unit undergoing ser-

vice and the one by Wang, Liu and Li [13] with disaster and

unreliable server can be considered as models with service inter-

ruption. Vacation to server can also be considered as a particular

type of service interruption. We refer to Doshi [14] for some gen-

eral decomposition results for vacation models. Takagi [15] gives

a detailed analysis on vacation queueing models. Classical vaca-

tion models assume that the vacation (either single or multiple)
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period starts at a service completion epoch, either due to ab-

sence of customers or when a preassigned number of customers

are already served since the last vacation. Deviating from this

Takagi and Leung [16] analysed a queueing system where the

server takes vacation when the service period exceeds certain

specified duration. The interrupted service is resumed after va-

cation. In a discrete MAP/PH/1 queue analysed by Alfa [17] a

similar situation is considered. During vacation the server may

attend other work. In both the models, vacation has the nature

of a service interruption. Li and Tian [18] introduces a vacation

model where the vacation can be interrupted by assuming that

the server can come back to the normal working level, without

completing the vacation period. Boxma, Mandjes and Kella [19]

study a single server vacation model where the length of vaca-

tion depends on the length of the previous active period. Gray,

Wang and Scot [20] analyse a vacation queueing model where

service breakdowns can occur during a service and the service

is resumed after the repair; nevertheless they assume that the

vacation period starts after a busy period.

In almost all papers on queues with service interruptions, the

service is either resumed or repeated on removal of interruption.

Fiems, Maertens and Bruneel [21], consider a queueing system

with different types of server interruptions, namely destructive

and non-destructive. They assume that the interrupted service

is repeated after a destructive interruption and resumed from

where it stopped in the other case. Following this there has

been an extensive study on such models by numerous authors.
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Recently Krishnamoorthy and co-authors studied a few queueing

models with interruptions, where a special stress was given in

deciding whether to repeat or resume an interrupted service. For

a detailed report on queueing models with interruption, we refer

to the papers by Krishnamoorthy and Pramod [23]. A recent

paper by Krishnamoorthy, Pramod and Deepak [22] considers

a queueing model with service interruption and repair where

the decision on whether to repeat or resume the interrupted

service is taken after completion of interruption according to

the realization of a phase type distributed random variable.

Customer impatience due to waiting long in the queue being

a common phenomena in many queueing systems have attracted

various researchers to consider this while modelling. Pioneering

studies in this direction are by Haight [24],[25] and Barrer [26].

Among these, [24] was on balking of customers and the other

two were on reneging of customers. These studies then followed

by the one due to Ancker Jr.and Gafarian [27], who assumed

negative exponential distribution to model the time to renege

as well as the service time and obtained several important sys-

tem performance measures. Haghighi, Medhi and Mohanty [28]

studied a multi-server queueing system with balking and reneg-

ing. Wang and Chang [29] study a queueing system with balking

reneging and server breakdowns. The studies by Zhang, Yue D

and Yue W [30], Yue D, Yue W and Sun Y [31] and Altman and

Yechiali [32],[33] combines the notions of customer impatience

and server vacations in a queueing model. Baruah, Madan and

Eldabi [34] consider a queueing system, where the customers
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may chose to renege during system break downs and server va-

cations.

The queueing model considered in the present chapter differs

mainly from that discussed in [22] in three aspects: first, here

two random variables compete on the onset of interruption to

decide whether to repeat or resume the interrupted service (as

in [22]); second, no repair time is assumed if the decision is to

repeat the service after the interruption and finally we assume

reneging of customers during a service interruption. Here one

may wonder why two random variables compete to determine

the nature of service to be provided, namely, resumption or rep-

etition. After the interruption if the repair takes too much time

to damage the service rendered till the interruption or to make

the customer impatient, the service is repeated without waiting

for the repair to be completed with another identical server if

necessary. On the other hand if the repair is done quickly, the

service is resumed from where it was interrupted. This policy

differs from that in Fiems, Maertens and Bruneel [21] because in

the latter the nature of the recommenced service on completion

of interruption is determined at the epoch of onset of interrup-

tion. Another feature of the model discussed in this chapter,

unlike many others on service interruption, is that the interrup-

tion may not need repair. This is the case when the interrupted

server is replaced by an identical one instantaneously or the in-

terruption is not due to a server failure. Here we wish to point

out that such a case may arise if we combine the models in Alfa

[17], Takagi and Leung [16], where the service interruption is due
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to vacation, with the model in Li and Tian [18] where a server

on vacation has to come back without completing the vacation

period.

While modelling systems with service interruptions, repeti-

tion of service on completion of an interruption can be one of

the following:

i) Repeat identical: In this case, the service on completion of

interruption has the same distribution as the one offered

prior to the onset of interruption.

ii) repeat same: This is much more complex than the first

case.repeated service has to follow the same pattern as that

prior to the interruption. This means one has to keep all

relevant information about the earlier service.

In the model described here as well as in the other chapters we

consider identical repetition of interrupted service.

One real life situation where the model in this chapter is

appropriate is the following. Consider a person downloading a

software from some site. The downloading may be interrupted

for some reason; may be the server site becoming jammed by

too many users or it may be some ISP problems or virus attack.

Now at this point, the downloading is disrupted and the pa-

tience of the person who is browsing starts to decay and he/she

may decide to repeat the whole downloading process; or it may

happen that before his/her patience reaches the threshold, the
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download may resume from where it stopped. This is a usual

phenomenon for sites which have more visitors than its capacity.

2.2 The mathematical model

We consider a single server queueing system in which the

service time follows PH distribution with representation (α, S)

of order m. The service is interrupted at an exponentially dis-

tributed duration with parameter θ. At the epoch when an in-

terruption occurs, two renewal processes, namely, resume clock

and repeat clock are started, realization times of which follow

exponential distribution with parameters γ and δ, respectively.

If the realization of the resume clock occurs first, the interrupted

service is resumed whereas if the repeat clock realizes first then

the interrupted service has to be repeated. The customers arrive

to the system according to a Poisson process with rate λ1 while

the service is stopped due to an interruption and with rate λ0

otherwise. At the stoppage of a service due to interruption the

customers, except the one being served, may leave the system

without waiting for service. Such reneging of customers is as-

sumed to follow Poisson distribution with rate kβ when there

are k customers waiting for service. Interruptions are assumed

to occur only when a service is in progress and not when the

server is idle. We consider only the case in which, when a ser-

vice is interrupted, no further interruption befalls on that until

the present interruption is cleared. This situation resembles the



30
Chapter 2. A Queueing Model with

Interruption, Resumption/Repeat and Reneging

type I counter (see for example Karlin and Taylor [35]).

A diagrammatic representation of the model is given in Fig-

ure (2.1).

Figure 2.1: An M/Ph/1 Queue with service interruptions.

Let N(t) be the number of customers in the orbit, S(t) the

status of the server which is 0 or 1 according as the server is un-

interrupted or interrupted and J(t) the phase of the service pro-

cess at time t. Then the above model can be represented by the

Markov processX = {X(t)/t ≥ 0} = {(N(t), S(t), J(t)) /t ≥ 0}.
The state space is {0} ∪ ({1, 2, 3, ...} × {0, 1} × {1, 2, 3, ...,m}).

The one step transitions of the above process from a state

are restricted to the states in the same level or to states in one

level up or one level down. The level decreases by one when a

service completion occurs or reneging occurs while the ongoing

service is facing an interruption. The rate at which a service

completion occurs at level k, k ≥ 0 in the phase j is s0j and the
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probability that of the next service starts in the phase i is αi.

Hence the rate at which transitions happens from (k, 0, j) to

(k− 1, 0, i) is αis
0
j . The level goes down by one while a reneging

occurs consequent to the the server being interrupted. Such an

event will not alter the phase of the service. For such transitions

the rate is (k − 1)β. These transitions are depicted in Figure

2.2(a)

The only way the level is increased by one is the arrival

of a customer. As this happens at rate λ1 or λ0 according as

the server is facing an interruption or not and leaves the phase

undisturbed, we see that the transition rate from (k, i, j) to (k+

1, i, j) is λ1while there is an interruption (i = 1) and λ0 otherwise

(i = 0). Figure 2.2(b) illustrates such transitions.

Now the transitions that will not change the level are those

among the phases, given by S, occurrences of interruptions at

the rate θ, realizations of resume clock at the rate γ and that of

repeat clock at the rate δ as shown in Figure (2.2(c))

These transitions can be described by the following matrices

A0 =

[
λ0I 0

0 λ1I

]

A1,k =

[
S − (θ + λ0) I θI

γI + δeα − (γ + δ + (k − 1)β + λ1) I

]
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and

A2,k+1 =

[
S0α 0

0 kβI

]
, k = 1, 2, 3, ... .

(a) From k to k-1 (b) From k to k+1

(c) From k to k

Figure 2.2: State transition diagrams
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Hence the infinitesimal generator matrix Q is given by

Q =


A1,0 A0,0

A2,1 A1,1 A0

A2,2 A1,2 A0

... ... ...

... ... ...


where

A1,0 =
[
−λ0

]
A0,0 =

[
λ0α 0α

]
A2,1 =

[
S0

0

]
.

2.3 Steady State Analysis

2.3.1 Neuts Rao Truncation

Since the model described in the previous section is a level

dependent QBD, We use an algorithmic solution based on Neuts-

Rao Truncation method (Neuts and Rao [51]) for further analy-

sis. Application of this method modifies the process X into the
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process X̃ with infinitesimal generator

Q̃ =



A1,0 A0,0

A2,1 A1,1 A0

A2,2 A1,2 A0

... ... ...

A2,N−1 A1,N−1 A0

A2 A1 A0

A2 A1 A0

... ... ...


where A1 = A1,N and A2 = A2,N .

2.3.2 Stability condition for the truncated sys-

tem

If π = (π0, π1) is the stationary probability vector of the

generator matrix A = A0 + A1 + A2, then we know that the

system is stable if and only if πA0e < πA2e. For the truncated

model described above, we have

A =

[
S − θI + S0α θI

γI + δeα − (γ + δ) I

]

A simple arithmetic using the relations

π0

(
S − θI + S0α

)
+ π1 (γI + δeα) = 0
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θπ0 − (γ + δ)π1 = 0

π0e+ π1e = 1

gives us

πA0e =
(γ + δ)λ0 + θλ1

γ + δ + θ

and

πA2e =
(γ + δ)µ̃− δθ + (N − 1)βθ

γ + δ + θ

where

µ̃ =
1

−α
(
S − δθ

γ+δ
I
)−1

e

Hence we have the following theorem.

Theorem 2.3.1. The system X̃ is stable if and only if

(γ + δ)λ0 + θλ1
(γ + δ)µ̃− δθ + (N − 1)βθ

< 1

The above theorem shows that the mean service rate is δθ
γ+δ

less than that of a service process having phase type represen-

tation
(
α, S − δθ

γ+δ
I
)

and the proportion of time it is available

is γ+δ
γ+δ+θ

. The system remains interrupted for θ
γ+δ+θ

of the time.

The expected number of customers renege during this time is
(N−1)βθ
γ+δ+θ

, which contributes to the outflow from the system.

Thus for large N the system X̃ is stable, irrespective of the

parameters involved. However, as N tends to ∞, the truncated
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system X̃ becomes identical with the original system X . This

leads to

Theorem 2.3.2. The system X is always stable, irrespective of

the parameters involved

2.3.3 Steady state vector

Let x = (x0, x1, x2, ...) be the steady state probability vector

of the Markov process X . We assume that

xN+i = xN−1R
i+1
N , i = 0, 1, 2, 3, ... (2.1)

where RN is the minimal solution of the matrix quadratic equa-

tion

R2A2,N +RA1,N + A0 = 0.

Let ηN be the spectral radius of RN , N > 0.

The truncation level N is so chosen that the stability condition

stated in Theorem 2.3.1 is satisfied and such that |ηN − ηN+1| <
ε, for some preassigned number ε.

Again xQ̃ = 0 leads us to

xN−i = xN−i−1RN−i (2.2)

where

RN−i = −A0(A1,N−i +RN−i+1A2,N−i+1)
−1, i = 1, 2, ..., N − 2
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and

x1 = x0R1 (2.3)

where

R1 = −A0,0(A1,1 +R2A2,2)
−1

Finally x0A1,0 + x1A2,1 = 0. We find x0 as the steady state

distribution of the finite state Markov chain with the generator

A1,0 + R1A2,1. Then using equations (2.1), (2.2) and (2.3), we

find xi for i ≥ 1. Now x can be calculated by dividing each xi

with the normalizing constant
∑∞

i=0 xie.

2.4 Analysis of the service process

2.4.1 Expected service time

The service process with interruption can be viewed as a

Markov process Ψ = ψ (t) = {(S (t) , J (t)) /t ≥ 0} where S (t)

is the status of the server which is 0 if the server is uninter-

rupted and 1 otherwise and J (t) is the phase of the service

process at time t. This process has 2m transient states given by

{0, 1} × {1, 2, 3, ...,m} and one absorbing state ∆. The absorb-

ing state ∆ denotes the service completion. Let T be the time

until absorption of the process Ψ. The infinitesimal generator
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Q̃ of this process is given by

Q̃ =

[
B B0

0 0

]

where

B =

[
S − θI θI

γI + δeα − (γ + δ) I

]
and B0 =

[
S0

0

]

The 2m × 2m matrix B satisfies Bii < 0 for 1 ≤ i ≤ 2m and

Bij ≥ 0 for i 6= j. Also Be+B0 = 0 and the initial probability

vector of the process is (ξ, 0), where ξ = (α, 0α).

The probability distribution function F (.) of T is given by

F (x) = 1− ξ.exp (Bx) e, x ≥ 0

Its density function F ′(x) in (0,∞) is given by

F ′(x) = ξ.exp (Bx)B0.

The Laplace-Stieltjes transform f(s) of F (.) is

f(s) = ξ(sI −B)−1B0, for Re(s) ≥ 0.

The non-central moments µ́i of X are given by

µ́i = (−1)ii!(ξB−ie), i = 1, 2, 3, ...
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In particular we have the following lemma

Lemma 2.4.1. The expected service time is given by

E(T ) = ξ(−B)−1e = −
(

1 +
θ

γ + δ

)
α

(
S +

θδ

γ + δ
(eα− I)

)−1
e

2.4.2 Expected number of interruptions dur-

ing a single service

We have the following lemma, about the expected number

of interruptions during a single service.

Lemma 2.4.2. Expected number of interruptions during a sin-

gle service E(i) is given by,

E (i) =

− θ
γ+δ
α(S − θI)−1(γI + δeα)

[
I + θ

γ+δ
(S − θI)−1(γI + δeα)

]−1
e

Proof. In any particular service, there are no more interrup-

tions before an interrupted service is repaired. So the number

of interruptions faced is independent of the time spend under

interruptions. Therefore in evaluating the number of interrup-

tions the information that whether the server is interrupted or

not at time t is irrelevant.

Hence to get the distribution of the number of interruptions

during a single service, we consider the Markov process χ =
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{(N (t) , J (t)) /t ≥ 0} whereN (t) is the number of interruptions

occurred during the service process till time t and J (t) is the

phase of the service process at time t. This process has the state

space
{

0̂
}
∪{0, 1}×{1, 2, 3, ...,m} where 0̂ is the absorbing state

denoting the service completion. The infinitesimal generator

matrix of this process is given by

K =


0 0 0 0 ....

S0 S − θI C 0 ...

S0 0 S − θI C ...

... ... ... ... ...

... ... ... ... ...


where

C =
θ

γ + δ
(γI + δeα)

Let yk be the probability that the number of interruptions dur-

ing a single service is k. Then yk is the probability that the

absorption occurs from the level k for the process χ. Hence yk

are given by

y0 = −α (S − θI)−1 S0

and for k = 1, 2, 3, ...,

yk = −
(
−θ
γ + δ

)k
α
[
(S − θI)−1 (γI + δeα)

]k
(S − θI)−1 S0

Therefore, the expected number of interruptions during any par-
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ticular service,

E (i) =
∞∑
k=0

kyk

= − θ
(γ+δ)

α(S − θI)−1(γI + δeα)
[
I + θ

γ+δ
(S − θI)−1(γI + δeα)

]−1
e.

Since the mean duration of an interruption is 1
γ+δ

, obviously

we have,

Corollary 2.4.3. The expected time spent under interrup-

tion during each service is

− θ
(γ+δ)2

α(S − θI)−1(γI + δeα)
[
I + θ

γ+δ
(S − θI)−1(γI + δeα)

]−1
e.

2.5 Performance measures

2.5.1 Expected waiting time

For computing expected waiting time of a particular cus-

tomer who joins as the rth customer, r > 0, in the queue, we

consider the Markov process

W (t) = {(N(t);S(t); J(t))/t ≥ 0}

where N(t) is the rank of the customer, S(t) = 1 or 0 accord-

ing as the service is under interruption or not and J(t) is the
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phase of the service process at time t. The rank N(t) of the cus-

tomer is assumed to be i if he is the ith customer in the queue

at time t. His rank may decrease to 1 as the customers ahead

of him leave the system either after completing the service or

due to reneging. Mean while it may happen that the tagged

customer himself may renege from the system. Since the cus-

tomers who arrive after the tagged customer cannot change his

rank, level-changing transitions in W (t) can only take place to

one side of the diagonal. We arrange the state space of W (t)

as {r, r − 1, ..., 2, 1} × {0, 1} × {1, 2, ....,m} ∪
{

0̃
}

, where 0̃ is

the absorbing state denoting that the tagged customer is either

selected for service or he leaves the system without waiting for

service. Thus the infinitesimal generator W of the process W (t)

takes the form

W =

[
T̃ T̃ 0

0 0

]
where

T̃ =



Ã1,r Ã0,r

Ã1,r−1 Ã0,r−1

Ã1,r−2 Ã0,r−2

... ... ...

Ã1,2 Ã0,2

Ã1,1


T̃ 0 =



B̃

B̃

B̃

...

B̃

B̃0


with

Ã1,i =

[
S − θI θI

γI + δeα − (γ + δ + (i− 1)β) I

]
i = 1, 2, 3, .., r.
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Ã0,i =

[
S0α 0

0 (i− 1)βI

]
i = 2, 3, .., r. B̃ =

[
0

βe

]
B̃0 =

[
S0

βe

]
.

Now, the waiting time W of a customer, who joins the queue

as the rth customer is the time until absorption of the Markov

chain W (t). Thus the expected waiting times of this particular

customer according to the phase of the service process at the

time of his arrival are given by the column vector,

E
(r)
W =

[
−A−11,r

(
I +

r−1∑
i=1

(−1)i
i∏

j=1

A0,r+1−jA
−1
1,r−j

)]
e.

The second moments of waiting times of the tagged customer

are given by the column vector Er
W 2 which is the first block of

the matrix 2(−T̃ )−2e.

Hence, the expected waiting time of a general customer in the

queue is,

WL =
∞∑
r=1

x(r)E
(r)
W .

The second moment of W is

W
(2)
L =

∞∑
r=1

x(r)Er
W 2 .
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2.5.2 Expected waiting time of customer who

was served

The expected waiting time of a customer who waited till he

gets the service, is obtained as in the previous section. In this

case the W can be obtained by replacing B̃ and B̃0 with zero

vector and

[
S0

0

]
respectively and adjusting the diagonals so as

to form a generator. Here again we can calculate the first two

moments E
(r)
Ws

and Er
W 2 of waiting time as done earlier. Using

these the expected waiting time W s
L and the variance V s

L are

computed as

W s
L =

∞∑
r=1

x(r)E
(r)
Ws

V s
L = W s(2)

L − (W s
L)2

2.5.3 Other performance measures

The steady state probability vector x = (x0, x1, x2, ...) cal-

culated in section (2.3) can be partitioned by writing xi as

xi = (x′i, x
′′
i ), i = 1, 2, ...

where

x′i = (x′i(1), x′i(2), ..., x′i(m))

and

x′′i = (x′′i (1), xi(2), ..., x′′i (m))
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are steady state probability vectors corresponding to the states

in which the system is not interrupted and is under interruption

respectively with i customers in the system.

• Probability that there is no customer in the system,

PC(0) = x0.

• Probability that there are i customers in the system,

PC(i) = xie.

• Probability that there are i > 1 customers in the system

when system is uninterrupted,

P ′C(i) = x′ie.

• Probability that there are i > 1 customers in the system

when system is under interruption,

P ′′C(i) = x′′i e.

• Expected number of customers in the system,

E(C) =
∞∑
i=0

iPC(i).

• Expected number of customers in the queue

E(Q) =
∞∑
i=0

(i− 1)PC(i).

• Expected number of customers in the system when the

server is uninterrupted,

E ′(C) =
∞∑
i=1

iP ′C(i).
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• Expected number of customers in the system when the

system is under interruption,

E ′′(C) =
∞∑
i=1

iP ′′C(i).

• Variance of the number of customers in the system,

V (C) =
∞∑
i=0

i2PC(i)−

(
∞∑
i=0

iPC(i)

)2

.

• Variance of the number of customers in the system when

the server is not interrupted

V ′(C) =
∞∑
i=0

i2P ′C(i)−

(
∞∑
i=0

iP ′C(i)

)2

.

• Variance of the number of customers in the system when

the system is under interruption,

V ′′(C) =
∞∑
i=0

i2P ′′C(i)−

(
∞∑
i=0

iP ′′C(i)

)2

.

• Probability that the system is under interruption,

PS(I) =
∞∑
i=0

x′′i e.

• Effective interruption rate,

EI =
∞∑
i=0

θx′ie.

• Effective reneging rate,

ER =
∞∑
i=0

(i− 1)βx′′i e.
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• Effective rate of repetition of service,

ERST =
∞∑
i=0

δx′′i e.

• Effective service resumption rate,

ERSM =
∞∑
i=0

γx′′i e.

2.6 Numerical illustration

For numerical study, we have taken λ0 = λ1 = λ. Also we

used the following values: Number of phases of the service pro-

cess = 3

S =

−17 4 7

1 −17 6

4 5 −17

 , S0 =

 6

10

8


α =

[
0.3 0.5 0.2

]
, −αS−1e = 8.2186.

Table 2.1 indicates the variation in the system performance

measures with arrival rate λ. The increase in the values of the

performance measures like expected number of customers in the

system, expected reneging rate and expected waiting time are on

expected lines. Increase in effective interruption rate, effective

resumption rate and effective repeat rate can be due to increase

in number of services. Reneging may be the reason behind the
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increase in variance of number of customers. Same reasoning can

be attributed to the smaller variance in the number of customers

when the server is busy than when the service is interrupted.

Also note that E ′′(C) > E ′(C), as seen from the table, which can

be attributed to the increase in system breakdown probability.

From Table 2.2 we can make the following observations. As

the interruption rate increases, the breakdown probability also

increases and so is the expected resumption and repeat rates.

Because further breakdowns can cause a delay, more customers

accumulate in the queue and so an increased reneging rate can

be expected. Large reneging from the system can cause an in-

creased variance in the number of customers. The more in-

terrupted the service, the more the mean and the variance of

waiting time.

Increase in the rate δ of repetition of service decreases the

expected number of customers, their waiting time and the cor-

responding variances. It makes the system busy for a longer

duration so that E ′(C) increases and E ′′(C)decreases. Also as

δ increases the relation E ′′(C) > E ′(C), gets reversed due to

the decrease in PS(I). As the system becomes busier, the ef-

fective interruption rate increases. The decrease in number of

customers in the queue decreases the effective reneging rate.

Effective repeat rate increases whereas effective resume rate de-

creases. All these can be observed from Table 2.3.

All performance measures except ERST and ERSM show

the same behaviour with increase in resumption rate γ as with
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increase in repeat rate δ. While effective resumption rate in-

creases, effective repeat rate decreases with increase in γ. This

can be seen from Table 2.4.

Table 2.5. shows that, as interruption rate θ tends to zero,

our results agree with corresponding results in the M/PH/1

queue without reneging.

Table 2.1: Variation of the arrival rate λ.

γ =2, δ =1.5, θ = 5, β = 1.0, Expected service time =
0.29554963, Effective service rate = 3.38352656, Expected
number of interruptions during a particular service =
0.608484685.

λ 1 3 5 7 10

E(C) 0.3779903 1.74073625 4.06366062 7.16970205 12.40080
E ′′(C) 0.2329257 1.08578670 2.47443676 4.25922298 7.207237
E ′(C) 0.1450645 0.654949486 1.58922386 2.91047907 5.193565
V (C) 0.5036651 3.09771872 7.56597757 12.23357771 8.93583
V ′′(C) 0.3645396 2.74650860 8.60955811 19.38838964 6.59236
V ′(C) 0.2067040 1.77348113 6.82128763 17.63794524 7.20600
PS(I) 0.1614215 0.402823180 0.531474292 0.576763630 0.587703
ER 0.0715042 0.682963550 1.94296241 3.68245935 6.619534
ERST 0.2421323 0.604234755 0.797211468 0.865145445 0.881555
ERSM 0.3228431 0.805646360 1.06294858 1.15352726 1.175406
EI 0.5649754 1.40988111 1.86016011 2.01867270 2.056962
WL 0.1035736 0.351978898 0.632030845 0.884171963 1.140170
VL 0.0689032 0.208551750 0.334332943 0.449822873 0.644813
W s
L 0.1493769 0.530649960 1.00692415 1.49856973 2.114290

V s
L 0.1440628 0.442976147 0.674007535 0.773701608 0.801752
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Table 2.2: Variation of the interruption rate θ.

γ = 2, δ = 1.5, β = 1.0, λ = 3

θ 3 5 7 9

E(C) 1.33159864 1.74073625 2.06954503 2.33114314
E ′′(C) 0.67691880 1.08578670 1.43486571 1.72605133
E ′(C) 0.65467989 0.65494948 0.63467919 0.60509198
V (C) 2.50664020 3.09771872 3.42105627 3.58161974
V ′′(C) 1.83268714 2.74650860 3.36910987 3.76818156
V ′(C) 1.56028330 1.77348113 1.87330532 1.90227795
PS(I) 0.27052372 0.40282318 0.50353527 0.58035075
ER 0.40639510 0.68296355 0.93133044 1.14570057
ERST 0.40578559 0.60423475 0.75530290 0.87052619
ERSM 0.54104745 0.80564636 1.00707054 1.16070151
EI 0.94683295 1.40988111 1.76237345 2.03122783
WL 0.24848799 0.35197889 0.43808069 0.50836688
VL 0.13973821 0.20855175 0.26554176 0.31274968
W s
L 0.33858171 0.53064996 0.71729731 0.89381492

V s
L 0.25643634 0.44297614 0.63161248 0.81720197
EI 0.36506450 0.60848468 0.85193550 1.0954150
ES 0.22599230 0.29554963 0.36511531 0.43468853
µIS 4.42492962 3.38352656 2.7388608 2.3004977
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Table 2.3: Variation of the repeat rate δ.

γ = 2, λ = 3, θ = 5, β = 1.0

δ 0 1 2 3 4

E(C) 2.29792905 1.88868237 1.61907673 1.43267190 1.29816723
E ′′(C) 1.71670914 1.24744129 0.956216455 0.763889909 0.630068719
E ′(C) 0.581219852 0.641241074 0.662860274 0.668782055 0.668098509
V (C) 3.70396972 3.29580617 2.91606927 2.60717702 2.36347437
V ′′(C) 3.88564682 3.08722901 2.45171666 1.98258507 1.63756526
V ′(C) 1.81389380 1.80839837 1.73202848 1.64634371 1.56780493
PS(I) 0.56100690 0.445889860 0.366695255 0.309857279 0.267497152
ER 1.15570211 0.801551402 0.589521229 0.454032630 0.362571567
ERST 0.00000000 0.445889860 0.733390510 0.929571807 1.06998861
ERSM 1.12201381 0.891779721 0.733390510 0.619714558 0.534994304
EI 1.12201381 1.33766949 1.46678102 1.54928625 1.60498285
WL 0.504173100 0.391752839 0.319675118 0.270985782 0.236557841
VL 0.337761730 0.240672797 0.183276370 0.146600634 0.121784367
W s
L 0.960977197 0.625915349 0.46016511 0.364068389 0.302659810

V s
L 1.08261943 0.565738022 0.359015137 0.254279107 0.193604380
E(i) 0.60836923 0.60846072 0.608502030 0.608525693 0.608540833
E(T ) 0.42585837 0.32451230 0.273825884 0.243410215 0.223131612
µIS 2.3481984 3.08154726 3.65195560 4.10829115 4.48165989
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Table 2.4: Variation of the Resume rate γ.

δ = 2, λ = 3, θ = 5, β = 1.0

γ 0 1 2 3 4

E(C) 2.29874682 1.88897383 1.61907673 1.43250191 1.29789412
E ′′(C) 1.71726036 1.24761605 0.95621645 0.76380670 0.62994641
E ′(C) 0.58148640 0.64135772 0.66286027 0.66869527 0.66794765
V (C) 3.70502734 3.29632473 2.91606927 2.60679483 2.36282945
V ′′(C) 3.88699865 3.08776593 2.45171666 1.98228478 1.63710999
V ′(C) 1.81515551 1.80889547 1.73202848 1.64601791 1.56726182
PS(I) 0.56108725 0.44591891 0.36669525 0.30984091 0.26747170
ER 1.15617311 0.80169719 0.58952122 0.45396575 0.36247471
ERST 1.12217450 0.89183783 0.73339051 0.61968183 0.53494340
ERSM 0.00000000 0.44591891 0.73339051 0.92952281 1.06988680
EI 1.12217450 1.33775675 1.46678102 1.54920459 1.60483015
WL 0.50440818 0.39183455 0.31967511 0.27094003 0.23648545
VL 0.33798757 0.24074511 0.18327637 0.14656364 0.12172775
W s
L 0.96164107 0.62608504 0.46016511 0.36399617 0.30255371

V s
L 1.08377659 0.56596720 0.35901513 0.25420251 0.19349990
E(i) 0.60861176 0.60854083 0.60850203 0.60847747 0.60846072
E(T ) 0.42602813 0.32455506 0.27382588 0.24339097 0.22310221
µIS 2.34726286 3.08114123 3.65195560 4.10861588 4.48225069
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Table 2.5: Variation of the Interruption rate θ.

γ = 2, δ=2, λ = 3, β = 1.0.
For an M/PH/1 queue with above λ, S, S0, the following
results were obtained:
P(1 customer in the system)=0.238256142, P(No customers in
the system)=0.391630888, Exp queue length = 0.945055604,
Exp.No. of customers in the system = 1.55342472, Expected
waiting time in the queue = 0.189011127.

θ 0.1 0.05 0.005 0.0005 0.00005 0

PC(1) 0.23405 0.236195 0.2381349 0.2383294 0.2383489 0.23835110
PC(0) 0.37935 0.385440 0.3910071 0.3915683 0.3916247 0.39163094
E(Q) 1.01428 0.979415 0.9478278 0.9446583 0.9443398 0.94430494
E(C) 1.63493 1.593975 1.5568206 1.553089 1.5527150 1.55267394
E ′′(C) 0.05802 0.028930 0.00288492 .0002884 .000028839 0.00000000
E ′(C) 1.57690 1.565044 1.55393565 1.5528014 1.5526862 1.55267394
V (C) 4.22801 4.096664 3.97532463 3.9630260 3.9617877 3.96165204
V ′′(C) 0.26689 0.132962 .013247648 .00132425 .000132419 0.00000000
V ′(C) 4.14414 4.054256 3 .97104311 3.9625973 3.9617447 3.96165204
PS(I) .017240 .00865576 .000868748 .00008690 .00000869 0.00000000
ER 0.40789 .02027464 .002016178 .00020150 .000020149 0.00000000
ERST .025860 .01298364 .001303123 .00013035 .000013036 0.00000000
ERSM .034480 .01731153 .001737497 .00017381 .000017381 0.00000000
EI .060340 .03029518 .003040620 .00030417 .000030418 0.00000000
WL 0.20285 0.1958831 0.18956555 0.1889316 0.18886804 0.18886101
VL .090564 .08609868 .082032784 .08162374 .081582680 .0 81578128
W s
L 0.20747 0.1981575 0.18978993 0.1889540 0.18887026 0.18886101

V s
L .095844 .08869975 .082289248 .08164934 .081585235 .0 81578128
E(i) .012167 .00608370 .0006083693 .00006083 .000006083 0.00000000
E(T ) 0.12515 0.1234122 0.12184768 0.1216912 0.12167555 0.12167382
µIS 7.99036 8.1029205 8.20696735 8.2175188 8.21857738 8.21869469
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Chapter 3

A RETRIAL QUEUE WITH SERVER

INTERRUPTION RESUMPTION AND

RESTART OF SERVICE

3.1 Introduction

In many real life situations, where a Queue of customers

may develop, often one can see customers who neither like to be

queued up nor want to leave without getting service. Such cus-

tomers may temporarily quit the system for accomplishing some

other goal and may retry for service after some time. Though

we can consider such retrying customers as new arrivals while

modelling, it will be more realistic if we assume that retrials

are happening from a separate pool of customers. This is be-

1. Presented at the 8th International Workshop on Retrial Queues,
July 27 - 29, 2010, Beijing, China.
2. Published in Operational Research Int. Journal (2012) 12 133-149.
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cause the inter-occurrence time distribution between two fresh

arrivals and that between two retrials need not be the same; also

the inter-occurrence time between two retrials generally dimin-

ishes as the number of retrying customers increases. Queueing

models, which allow retrial of customers, are now-a-days very

popular and the literature on such models is vast. We refer

to books by Falin and Templeton [36] and Artalejo and Gmez-

Corral [42], for an extensive analysis of theory, applications and

numerical procedure on retrial queues.

A common situation, which one faces while modelling a queue-

ing system is the possibility of interruptions to an ongoing ser-

vice that may be due to server breakdowns, server going on va-

cations, arrival of priority customers and even customer induced

interruptions. Since interruptions causes a natural increase in

the length of a service, we cannot expect the other customers

to patiently wait in the queue. This is why we included the

possibility of reneging of customers from the queue in the model

described in the previous chapter. But in a system where ser-

vice is subject to interruptions, there is a high possibility that

the customers may choose to leave the system temporarily and

retry for service after some time.

Two retrial systems in which the server is subject to interrup-

tions, one with a finite number of homogeneous and the other

with heterogeneous customers is presented by Almasi, Roszik

and Sztrik [43],[44].Wang, Zhao and Zhang [45] analysed a re-

trial queue with a finite number of sources in which the server is

subject to breakdowns and repairs. Kulkarni and Choi [38] study
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two models of single server retrial queue with server breakdowns.

In the first model, the customer whose service is interrupted ei-

ther leaves the system or joins the orbit; whereas in the second

model the interrupted service is repeated after the repair is com-

pleted. Some other papers which study retrial queues with an

unreliable server include Artalejo [37] Aissani and Artalejo [39],

Artalejo and Gomez-Corral [40], Wang, Cao and Li [41], Artalejo

and Gmez-Corral [42] and Chen, Zhu and Zhang [46].

In this chapter a retrial queueing model with service inter-

ruptions is analysed. More precisely, here we assume that a

customer, encountering a busy or interrupted server, proceeds

to an orbit of infinite capacity and from there retries for service.

We also assume that unsuccessful retrials may lead to customer

leaving the system without receiving the service.

As a motivating example for the present model, consider a

person browsing internet for some purpose like booking a train

ticket. The process of booking the ticket consists of a few steps,

during which it may get interrupted for different reasons like too

many customers login to the same website. After some random

time, it may happen that the interrupted service get resumed

from the same step at which interruption occurred or sometimes

one sees the message like the web page has been expired, forcing

the person to repeat the whole process from the very beginning.

For considering such problems, the model described in this chap-

ter is motivated by the fact that the more apt modelling could

be made by an M/PH/1 retrial queueing system rather than by

the classical M/PH/1 queueing system.
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In this chapter, we extend the model described in chapter 2

to the retrial set up.

3.2 Model description

We consider a single server queueing model in which cus-

tomers arrive according to a Poisson process with parameter λ.

On arrival if a customer finds an idle server, he is immediately

taken for service. If the server is busy when the customer arrives,

the customer goes to an orbit of infinite capacity from where he

makes repeated attempts for service according to a Poisson pro-

cess with parameter β. After an unsuccessful retrial he rejoins

the orbit with probability p or leaves the system without wait-

ing for service with the probability q = 1− p. The service time

follows PH distribution with representation (α, S) of order m.

During service, interruptions to the service process may occur.

The interruptions occur according to a Poisson process with pa-

rameter θ. At the epoch an interruption strikes, two clocks,

namely resume clock and repeat clock are started exactly as in

the model studied in the previous chapter to determine whether

to resume or repeat the interrupted service. Their realization

times follow distinct exponential distributions with parameters

γ and δ respectively. If the resume clock realizes first, the inter-

rupted service is resumed whereas the realization of the repeat

clock before the resume clock prompts the system to repeat the

current service.Figure (3.1) gives a picture of the model
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Figure 3.1: An M/Ph/1 Retrial Queue with service interruptions.

Let N(t) be the number of customers in the orbit, S(t) the

status of the server which is 0, 1 or 2 according as the server is

idle, uninterrupted or interrupted and J(t) the phase of the ser-

vice process at time t. Then the above model can be represented

by the Markov process

X = {X(t)/t ≥ 0} = {(N(t), S(t), J(t)) /t ≥ 0} .

Its state space is given by

({0, 1, 2, 3, ...} × {0})∪({0, 1, 2, 3, ...} × {1, 2} × {1, 2, 3, ...,m}) .

Like the model described in Chapter 2, this process X is

also a QBD. The number of customers in the orbit, N(t) is the

level in which the system is in at time t. In a single step, the
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process can go either one level up or one level down or remain

in the same level. The forward transitions occurs when a new

customer joins the orbit. This will happen only when the server

is busy or is interrupted. The arrival of a customer to the orbit

have no effect on the phase of the ongoing service, the rates at

which the forward transitions occur are given by the entries in

the matrix

A0 =

0 0 0

0 λI 0

0 0 λI

 . (3.1)

These transitions are depicted in Figure (3.2(a)).

A back transition occurs when a customer is selected for ser-

vice after a successful retrial or he leaves the system on failure

of a retrial. After a successful retrial, a new service is begun ac-

cording to the initial probability vector α whereas after a failed

retrial the service process remains in the same phase where it

was. Figure (3.2(b)) illustrates these transitions. The corre-

sponding matrix is

A2,k =

0 kβα 0

0 kqβI 0

0 0 kqβI

 , k = 1, 2, 3, ... . (3.2)

The transitions within the same level are the phase changes

during a service, occurrence of interruptions, realizations of re-

sume/repeat clocks and completion of a service resulting the

server to be in idle state as pictorially represented in Figure
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(3.2(c)). The matrix whose entries are these rates is given by

A1,k =

−(λ+ kβ) λα 0

S0 S − (θ + λ+ kqβ)I θI

0 γI + δeα −(λ+ γ + δ + kqβ)I

 , k = 0, 1, 2, ...

(3.3)

Hence the infinitesimal generator matrix of the process X is

Q =



A1,0 A0

A2,1 A1,1 A0

A2,2 A1,2 A0

A2,3 A1,3 A0

. . .

. . .



3.3 Analysis of the service process

Since the service process for this model is the same as the

one described in the previous chapter, the expressions for the

expected service time, expected number of interruptions and the

expected total duration of interruptions are as those obtained

in Chapter 2 section 2.4.
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(a) From k to k+1 (b) From k to k-1

(c) From k to k

Figure 3.2: State transition diagrams
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3.4 Stability and steady state analy-

sis

3.4.1 Stability analysis

From expressions (3.1) (3.2) and (3.3) we have

A = A2,k + A1,k + A0 =

−(λ+ kβ) (λ+ kβ)α 0

S0 S − θI θI

0 γI + δeα −(γ + δ)I


Let π = (π0,π1,π2), where πi = (πi1, πi2, ..., πim) , i = 0, 1, 2 be

the invariant probability vector of A such that πe = 1.

Thus π0, π1 and π2 satisfy the equations

(λ+ kβ)π0 = π1S
0 (3.1)

θπ1 = (γ + δ)π2 (3.2)

and

π1

[
S0α + S − δθ

γ + δ
(I − eα)

]
= 0 (3.3)

Therefore

πA0e =
λ(γ + δ + θ)

γ + δ
π1e

and

πA2,ke = kqβ +
kpβ

λ+ kβ
π1S

0
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Hence if q 6= 0, then

πA0e

πA2,ke
→ 0 as k →∞.

Hence the system is always stable.

For q = 0 we proceed as follows.

From (3.3)

π1

[
S − Seα− δθ

γ + δ
(I − eα)

]
= 0

π1

[
S − δθ

γ + δ
I

]
[I − eα] = 0

Hence

π1

[
S − δθ

γ + δ
I

]
= $α (3.4)

for some scalar $.

Therefore

π1 = $α

[
S − δθ

γ + δ
I

]−1
Hence

−µ̃π1e = $. (3.5)

where

µ̃ =
1

−α
[
S − δθ

γ+δ
I
]−1

e

Now post multiplying (3.4) by e, we get

−π1S
0 − δθ

γ + δ
π1e = $ (3.6)
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From (3.5) and (3.6), it follows that

π1S
0 =

(
µ̃− δθ

γ + δ

)
π1e (3.7)

But in this case,

πA2,ke = kβ
λ+kβ

π1S
0 → π1S

0 as k →∞.

Hence the condition for stability is

λ(γ + δ + θ)

γ + δ
π1e < π1S

0.

Using (3.7), this condition becomes

λ(γ + δ + θ)

γ + δ
<

(
µ̃− δθ

γ + δ

)
Combining all these together we have the following theorem.

Theorem 3.4.1. The Markov chain X is always stable irre-

spective of the system parameters if q > 0. For q = 0 the chain

is stable if and only if

λ(γ + δ + θ)

γ + δ
<

1

−α
(
S − θδ

γ+δ
I
)−1

e
− θδ

γ + δ

From the stability condition it follows that when q = 0 the

mean service time is θδ
γ+δ

less than that of a phase type service

process with representation
(
α, S − θδ

γ+δ
I
)

. Since the propor-

tion of time an uninterrupted service is available is γ+δ
γ+δ+θ

, the
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effective service rate becomes

γ + δ

(γ + δ + θ)

 1

−α
(
S − θδ

γ+δ
I
)−1

e
− θδ

γ + δ



3.4.2 Steady state analysis

The steady state vector ξ = (ξ0, ξ1, ξ2, ...) is given by

ξQ = 0 (3.8)

Writing ξi = (xi, yi, zi) where xi is the probability that the server

is idle and yi = (yi(1), yi(2), ..., yi(m)) and zi = (zi(1), zi(2), ..., zi(m))

are probability vectors denoting the probabilities that the server

is functioning or is under interruption respectively, with i cus-

tomers in the orbit, we have from (3.8)

xi =
1

λ+ iβ
yiS

0, i = 0, 1, 2, 3, ... (3.9)

Eliminating xis from equation (3.8) using equation (3.9) and

rearranging we see that the vector ζ = (ζ0, ζ1, ζ2, ...) where

ζi = (yi, zi)satisfies the equation

ζB = 0 (3.10)
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where

B =



B1,0 B0

B2,1 B1,1 B0

B2,2 B1,2 B0

B2,3 B1,3 B0

. . .

. . .


in which

B1,k =

[
λ

λ+kβ
S0α+ S − (θ + λ+ qkβ)I θI

γI + δeα −(γ + δ + λ+ qkβ)I

]

B2,k =

[
kβ

λ+kβ
S0α+ qkβI 0

0 qkβI

]
, k = 0, 1, 2, 3, ... and

B0 = λI2m.

For finding the vector ζ, we consider two cases.

Case 1. q > 0.

Here we use Neuts-Rao Truncation (Neuts and Rao [51]) to

determine ζ. In this method, we assume that B1,i = B1,N and

B2,i = B2,N for all i ≥ N. With this approximation, the vector

ζ can be then given by

ζN+i = ζN−1R
i+1
N , i = 0, 1, 2, 3, ...

where RN is the minimal non-negative solution of the matrix

quadratic equation R2B2,N + RB1,N + B0 = 0 and ζN−i =

ζN−i−1RN−i whereRN−i = −B0(B1,N−i+RN−i+1B2,N−i+1)
−1, i =
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1, 2, 3, ..N − 1.(Neuts [49]).

Finally, we have ζ0B10 +ζ1B21 = 0. Substituting ζ1 = ζ0R1,

we get, ζ0 [B10 +R1B21] = 0. We note that the matrix B10 +

R1B21 is an infinitesimal generator and hence we take ζ0 as the

steady state vector of this matrix. Using ζ0, we can find all the

ζi s. Once ζi s are obtained, xi s are given by

xi =
1

λ+ iβ
ζi

[
I

0

]
S0, i = 0, 1, 2, 3, ... .

It remains that the vectors xis and ζis are to be normalized for

finally arriving at the steady state vector ξ and the normalizing

constant is given by
∑
xi +

∑
ζie. Since we do not have the

explicit expressions for the Ri matrices, such an expression for

the normalizing constant seems impossible and therefore it is

obtained numerically only.

Case 2. q = 0

The case q = 0 deserves a special note. In this case, from

equation (3.10), we have the equations,

ζ0B1,0 + ζ1B2,1 = 0

ζi−1B0 + ζiB1,i + ζi+1B2,i+1 = 0, i = 1, 2, 3, ...

A further manipulation of the above equations by post multi-
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plying with the column vector of 1s gives:

λζi−1

[
e

e

]
= ζi

[
iβ

λ+iβ
S0

0

]
, i = 1, 2, 3, ...

These relations help us to write,

ζi = ζi−1Ri, i = 1, 2, 3, ...

where

Ri = −λ

[
S − (θ + λ)I + λeα+ λ

λ+iβ
S0α θI

γI + (δ + λ)eα −(γ + δ + λ)I

]−1
,

i = 1, 2, 3, ... .

As in case 1, the substitution ζ1 = ζ0R1 in the equation

ζ0B1,0 + ζ1B2,1 = 0 implies that ζ0 satisfies the equation

ζ0

[
S − (θ + λ)I + λeα+ S0α θI

γI + (δ + λ)eα −(γ + δ + λ)I

]
= 0

Here also we note that the square matrix in the above equation

is an infinitesimal generator and the same procedure as in case

(1) can be applied for finding the steady state vector.
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3.5 Performance Measures

3.5.1 Expected waiting time of a customer in

the orbit

To find the expected waiting time E(WL) with q ≥ 0, we

consider a system similar to the system we are considering, but

with finite orbital capacity N . If EN(WL) denotes the waiting

time of a customer in the orbit in this finite orbit system, then

E(WL) is obtained as the limit of EN(WL) as N →∞.

The waiting time of a customer, who joins the system with fi-

nite orbit capacity N , is the time until absorption of the Markov

process W (t) = (N(t), S(t), J(t)) where N(t) is the number of

customers in the orbit, S(t) is the status of the server which

is 0, 1 or 2 according as the server is idle, uninterrupted and

busy or interrupted respectively during a service and J(t) is the

phase of the service process at time t. This process has the state

space {1, 2, 3, ..., N} × {0, 1, 2} × {1, 2, 3, ...,m} ∪ {∆} where ∆

is the absorbing state which denotes the event that the tagged

customer is selected for service or leaves the system after an

unsuccessful retrial. The infinitesimal generator of this process

is

W =

[
T̃N T̃ 0

N

0 0

]
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where

T̃N =



A11 A0

A21 A12 A0

A22 A13 A0

. . .

. . .

A2N−1 Ã1N


, T̃ 0

N =



τ

τ

.

.

.

τ


with

τ =

 β

qβe

qβe

 and Ã1N =

−(λ+Nβ) λα 0

S0 S − (θ +Nqβ)I θI

0 γI + δeα −(γ + δ +Nqβ)I


The expected waiting time of a customer in the system with

finite orbital capacity N is then given by

EN(WL) = −ξ(N)T̃N
−1
e

where

ξ(N) = (ξ̃0, ξ̃1, ..., ξ̃N−1)

and

ξ̃i = (0, yi, zi).

The variance in waiting time VN(WL) is given by

VN(WL) = EN(W 2
L)− [EN(WL)]2
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where

EN(W 2
L) = 2ξ(N)

(
−T̃N

−1)2
e

The probability that a customer leaves the system without

completing the service given that the server is busy on his arrival,

PN
L = −ξ(N)T̃−1N T̂ 0

where

T̂ 0 =



τ̂

τ̂

.

.

.

τ̂


with τ̂ =

 0

qβe

qβe

 .

The variance in waiting time of a customer, V (WL) and the

probability PL that a customer may leave the system without

waiting for service given the system was busy at the time of his

arrival, PL are given by

V (WL) = lim
N→∞

VN(WL).

PL = lim
N→∞

PN
L

3.5.2 Other performance measures

The following performance measures are found numerically.
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• Probability that the server is idle,

Pidle =
∞∑
i=1

xi

.
• Probability that the server is interrupted,

Pint =
∞∑
i=1

zie

.
• Probability that the server is uninterrupted,

Punin =
∞∑
i=1

yie

.
• Probability that the server is idle with customers in the

orbit,
Pidle(C) = Pidle − x0

.
• Expected number of customers in the orbit,

EO(C) =
∞∑
i=1

iξie

.
• Expected number of customers in the orbit when the server

is under interruption,

EI
O(C) =

∞∑
i=1

izie

• Expected number of customers in the orbit when the server

is uninterrupted,

EU
O(C) =

∞∑
i=1

iyie
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• Expected number of customers in the orbit when the server

is idle,
EId
O (C) =

∞∑
i=1

ixi

• Effective rate at which the customers leave the system after

unsuccessful retrials,

ELR = β(1− Pidle)

3.6 Numerical illustration

The results of numerical experiments conducted to study the

effect of various parameters on the system performance are anal-

ysed below. For numerical calculations we used the following

values:

Number of phases of the service process = 3

S =

−9 4 2

6 −15 4

3 7 −14

 ,α =
[
0.3 0.5 0.2

]
.

The effect of the retrial rate β on the system performance is

computed in Table 3.1. As the retrial rate β increases, there is

a decrease in the expected number of customers in the orbit. At

the same time there is an increase in the server idle probability.

Together, they point towards the loss of retrying customers from

the system. At this point, it is to be noted that the arrival rate

( = 6.0 ) is greater than the service rate ( = 3.058 ) and so
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a portion of the arrivals must be lost (after retrials) for the

stability of the system. Also notice the increase in the loss rate

ELR in the table. As β tends to infinity, the expected number of

customers in the orbit is tending to 0, while the idle probability

is converging to some value (0.3376 in the table) and the loss rate

ELR is converging to λ−λPidle. That is as β tends to infinity, the

system under study becomes a queueing system where only those

who find an idle server get service. In the table, the fraction of

time the server is found interrupted Pint is slowly decreasing,

with increasing β, before finally converging to some value. This

is due to a decrease in the number of services rendered as a

result of the increased loss of customers from the orbit. Hence

the decrease in Pint is in fact indicating the loss of customers to

the system due to increased reneging rate. Hence a decrease in

the interruption rate is not always a positive sign for the system.

The same reasoning can be made for the decreasing behaviour

in the probabilities Punin and Pidle(C).

As the loss probability q increases, the expected number of

customers in the orbit decreases as in the case of increase in re-

trial rate β; but it is to be noted that in the case of increase in β,

the expected number is converging to 0, whereas even if the loss

probability q is equal to 1, the expected number of customers in

the orbit is converging to that in the corresponding M/PH/1

retrial queue where an orbital customer leaves the system after

one retrial attempt. Because the number of customers decreases,

number of services also decreases and the idle probability of the

server increases. For similar reason, the server interruption prob-
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ability Pint as well as the probability of finding an uninterrupted

server Punint decreases. The increase in the server idle probabil-

ity with customers in the system Pidle(C) is brought by the in-

creased loss rate while the server is busy or uninterrupted. Also

notice the increase in the difference Pidle−Pidle(C) with increase

in q, which also indicates the effect of loss rate of customers on

the server idle probability. Table 3.2 gives the corresponding

numerical values.

Table 3.3 contains the values of various performance mea-

sures for different values of θ. As the interruption rate θ in-

creases, first note the increase in the expected service time E(T );

which leads to an increase in the expected number of customers

EO(C) and EI
O(C). Quite naturally, as the number of interrup-

tions increases, the probability Pint increases and the probabil-

ity Punin decreases. Since the fraction of time the system may

be found uninterrupted decreases, so does the expected number

EU
O(C). The decrease in the sever idle probability is brought by

the increase in the expected service time.

As the realization rate γ of the resume clock increases, first

notice the decrease in the expected service time E(T ), which

follows from the analytical expression

E(T ) = −
(

1 +
θ

γ + δ

)
α

(
S +

θδ

γ + δ
(eα− I)

)−1
e. (3.1)

In the above expression, as γ increases, the quantity 1 + θ
γ+δ

is

clearly decreasing. The remaining part is also decreasing as that
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being the absorption time in an m-dimensional Markov chain

with generator matrix
(
S + θδ

γ+δ
(eα− I)

)
, where the transition

rates in the generator matrix is decreasing with increase in γ.

Thus the decrease in the expected service time with increase

in γ is brought by the decrease in the interruption duration.

From the above expression, we can also infer that the expected

service time is converging to −αS−1e as γ →∞. The decrease

in the interruption duration leads to a small decrease in the loss

rate. The increase in the service rate results in a decrease in the

expected number of customers in the orbit EO(C). Here note

that the expected number of customers in the orbit when the

server is either uninterrupted or is idle is increasing due to the

increase in the corresponding probabilities Punin and Pidle. The

importance of an increased realization rate γ is that it diminishes

the severity of the interruption. These findings are supported

by the numerical results arranged in Table (3.4).

The effect of the realization rate of the repeat clock δ on

the system performance is similar to that of the resume clock

γ, this is so as δ increases, interruption duration decreases and

hence the expected service time E(T ) decreases. Here again

consider the expression for the expected service time E(T ) given

by equation (3.1). As in the case of γ, here also an increase in

the rate δ causes a decrease to E(T ); but it is to be noted that

here the decrease rate also depends on the nature of the initial

probability vector α and on the matrix S. All the performance

measures studied except the expected number of interruptions

E(i) show the same behaviour with increase in δ as in the case
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of increase in γ. This is because in the case of δ, the behaviour

of the expected number of interruptions E(i) depends on the

nature of the phase type distribution. For example here one

can see that E(i) is decreasing slightly but if we consider an

Erlang distribution for the service time, E(i) shows an increase.

Numerical data supporting these findings are tabulated in Table

(3.5).

Table (3.6) considers the case where the probability that the

customer may quit the system after an unsuccessful retrial, q =

0. Note that in this case we have obtained a different stability

condition. For the numerical study for Table (3.6) we have taken

the arrival rate λ = 2.5 and the rest of the parameters are the

same as in other tables. In table 6, we compare the case q = 0

with the case q = 0.3. Note the high values for the expected

number of customers when q = 0. The service rate being the

same in two cases the low values for the expected number of

customers when q = 0.3 reflects the loss of customers from the

orbit. The data emphasize the fact that the increase in idle

probability with increase in retrial rate when customer loss is

allowed is due to the loss of customers and does not indicate an

improvement in the efficiency of the system. Another important

observation is about the waiting time of an orbital customer,

which is very high in the case q = 0 compared to q = 0.3.

Figures (3.3(a)), (3.3(b)), (3.3(c)) and (3.3(d)) illustrate these

points.
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Table 3.1: Effect of the retrial rate β

arrival rate λ = 6, Interruption rate θ = 2.0, Realization rate
of resume clock γ = 3.0, Realization rate of repeat clock δ =
4.0, Probability of customer leaving the system on unsuccessful
retrial q = 0.3

β 1.0 3.0 5.0 7.0 ∞

EO(C) 13.0287 4.3474 2.6112 1.8669 0.0000
EI
O(C) 2.5476 0.8812 0.5445 0.3980 0.0000

EU
O(C) 8.7281 2.9180 1.7594 1.2639 0.0000

Eid
O (C) 1.7530 0.5482 0.3073 0.2050 0.0000

Pidle 0.1440 0.1560 0.1680 0.1792 0.3376
Pint 0.1902 0.1876 0.1849 0.1824 0.1472
Punint 0.6657 0.6564 0.6471 0.6384 0.5152
Pidle(C) 0.1440 0.1457 0.1278 0.1070 0.0000
ELR 3.3827 3.4193 3.4559 3.4901 3.9745
WL 2.1715 0.7246 0.4352 0.3112 0.0000
PL 0.5638 0.5699 0.5760 0.5817 0.6624
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Table 3.2: Effect of q on various performance measures

arrival rate λ = 6, Interruption rate θ = 2.0, Realization rate
of resume clock γ = 3.0, Realization rate of repeat clock δ =
4.0, Retrial rate β = 2

q 0.1 0.3 0.5 0.7 1.0

EO(C) 17.0574 6.5177 4.1938 3.1308 2.2884
EI
O(C) 3.5845 1.2989 0.8120 0.5945 0.4259

EU
O(C) 12.288 4.3690 2.7068 1.9725 1.4079

Eid
O (C) 1.1849 0.8498 0.6750 0.5638 0.4546

Pidle 0.0760 0.1499 0.1885 0.2131 0.2372
Pint 0.2053 0.1889 0.1803 0.1749 0.1695
Punint 0.7187 0.6612 0.6311 0.6120 0.5933
Pidle(C) 0.0759 0.1480 0.1793 0.1924 0.1961
ELR 3.1745 3.4008 3.5188 3.5938 3.6676
WL 2.8429 1.0863 0.6990 0.5218 0.3814
PL 0.5291 0.5668 0.5865 0.5990 0.6113
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Table 3.3: Effect of the Interruption rate θ

arrival rate λ = 6, Realization rate of resume clock γ = 3.0,
Realization rate of repeat clock δ = 4.0, Retrial rate β = 2,
Probability of customer leaving the system on unsuccessful
retrial q = 0.3

θ 1.0 2.0 4.0 6.0 8.0

EO(C) 6.1668 6.5177 7.0610 7.4598 7.7641
EI
O(C) 0.6833 1.2989 2.3441 3.1842 3.8671

EU
O(C) 4.5705 4.3690 3.9741 3.6182 3.3082

Eid
O (C) 0.9130 0.8498 0.7428 0.6575 0.5889

Pidle 0.1703 0.1499 0.1206 0.1006 0.0862
Pint 0.1037 0.1889 0.3198 0.4151 0.4874
Punint 0.7260 0.6612 0.5596 0.4843 0.4264
Pidle(C) 0.1675 0.1480 0.1196 0.1000 0.0858
E(T ) 0.2914 0.3270 0.3981 0.4688 0.5392
ELR 3.1522 3.4008 3.7909 4.0814 4.3052
E(i) 0.2549 0.5087 1.0133 1.5145 2.0129
WL 1.0278 1.0863 1.1768 1.2433 1.2940
PL 0.5254 0.5668 0.6318 0.6802 0.7175
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Table 3.4: Effect of the Realization rate of resume clock
γ

arrival rate λ = 6, Interruption rate θ = 2.0, Probability of
customer leaving the system on unsuccessful retrial q = 0.3,
Realization rate of repeat clock δ = 4.0, retrial rate β = 2

γ 3 5 7 9 ∞

EO(C) 6.5177 6.3695 6.2688 6.1958 5.7422
EI
O(C) 1.2989 1.026 0.8468 0.7204 0

EU
O(C) 4.369 4.4657 4.5257 4.5661 4.7591

Eid
O (C) 0.8498 0.8778 0.8963 0.9093 0.9831

Pidle 0.1499 0.1582 0.164 0.1682 0.1964
Pint 0.1889 0.1531 0.1286 0.1109 0
Punint 0.6612 0.6887 0.7074 0.7209 0.8036
Pidle(C) 0.148 0.156 0.1616 0.1657 0.1923
E(T ) 0.327 0.3112 0.3011 0.2941 0.2556
ELR 3.4008 3.295 3.2235 3.1719 2.8555
E(i) 0.5087 0.5092 0.5096 0.5098 0.5111
WL 1.0863 1.0616 1.0448 1.0326 0.957
PL 0.5668 0.5492 0.5372 0.5287 0.4759
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Table 3.5: Effect of the Realization rate of repeat clock δ

arrival rate λ = 6, Interruption rate θ = 2.0, Probability of
customer leaving the system on unsuccessful retrial q = 0.3,
Realization rate of resume clock γ = 4.0, retrial rate β = 2

δ 4 6 8 10 ∞

EO(C) 6.5177 6.3644 6.2602 6.1848 5.7162
EI
O(C) 1.2989 1.0249 0.8453 0.7187 0

EU
O(C) 4.369 4.4606 4.517 4.5548 4.7291

Eid
O (C) 0.8498 0.8788 0.8979 0.9113 0.9871

Pidle 0.1499 0.1585 0.1645 0.1689 0.1981
Pint 0.1889 0.153 0.1285 0.1108 0
Punint 0.6612 0.6885 0.707 0.7203 0.8019
Pidle(C) 0.148 0.1563 0.1621 0.1663 0.1939
E(T ) 0.327 0.3107 0.3003 0.2931 0.2536
ELR 3.4008 3.2913 3.2174 3.1641 2.8375
E(i) 0.5087 0.5084 0.5081 0.508 0.5071
WL 1.0863 1.0607 1.0434 1.0308 0.9527
PL 0.5668 0.5486 0.5362 0.5273 0.4729
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Table 3.6: Effect of the Realization rate of repeat clock δ

Arrival rate λ = 6, Interruption rate θ = 2.0, Probability of
customer leaving the system on unsuccessful retrial q = 0.3,
Realization rate of resume clock γ = 4.0, Retrial rate β = 2

β
1 5 7 ∞

q = 0 q = 0.3 q = 0 q = 0.3 q = 0 q = 0.3 q = 0 q = 0.3

EO(C) 15.2746 2.9661 7.8039 1.0316 5.6694 0.4644 4.0685 0
EI
O(C) 2.9906 0.4731 1.6333 0.1888 1.2454 0.0962 0.9546 0

EU
O(C) 10.24 1.5548 5.4893 0.5815 4.1319 0.2829 3.1139 0

Eid
O (C) 2.044 0.9382 0.6813 0.2613 0.292 0.0853 0 0

Pidle 0.1824 0.3814 0.1824 0.4091 0.1824 0.4427 0.1824 0.5502
Pint 0.1817 0.1375 0.1817 0.1313 0.1817 0.1238 0.1817 0.1
Punint 0.6359 0.4812 0.6359 0.4596 0.6359 0.4334 0.6359 0.3499
Pidle(C) 0.1792 0.3245 0.1351 0.1662 0.0801 0.0681 0 0
WL 6.1098 1.1864 3.1215 0.4126 2.2677 0.1858 1.6274 0
ELR 0 0.6084 0 0.6932 0 0.7961 0 1.1246
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(a) Retrial Rate V/S Expected
number of customers in the orbit

(b) Retrial Rate V/S Server Idle
Probability

(c) Retrial Rate V/S Waiting time
in the orbit

(d) Retrial Rate V/S Waiting time
in the orbit

Figure 3.3: Comparison of variations in Expected number of cus-
tomers in the orbit, system idle probability, probability that system
is idle with customers in the orbit and expected waiting time in the
orbit for the cases q = 0 and q = 0.3 as retrial rate changes
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Chapter 4

AN M/Em/1 QUEUE WITH PROTECTED

AND UNPROTECTED PHASES FROM

INTERRUPTION

4.1 Introduction

As revealed by the models discussed in the previous chapters,

interruption is a common phenomenon in many fields like indus-

try, health care, education and many more; this makes scientists

to include the possibility of different kinds of interruptions while

modelling a practical situation. In many of these situations the

effect of interruptions may prove to be fatal. An interruption

not only slows down the service rate and makes the system less

efficient but also damages the ongoing service and makes heavy

Presented at the 5th International conference on Queueing Theory and
Network Applications (QTNA 2010), July 24 - 26, 2010, Beijing, China.
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loss to the system. This raised the need of protecting the service

from interruption using some more resources so that the dam-

age caused by the interruption may be minimized. Providing

battery back up to our desk top computers is a good example

for this situation from our daily life.

Klimenok, Kim and Kuznetsov [47] analyses a model with

two types of customers ordinary customers and negative cus-

tomers where a negative customer can eliminate an ordinary

customer in service and a partial protection is provided for or-

dinary customers. A similar system with BMAP input process

is considered in Klimenok and Dudin [48]

In this chapter, we consider a single server queueing system

where the server is subject to interruption. The interrupted

server is taken for repair immediately; where both the interrup-

tion and repair time follow independent exponential distribu-

tions. The service time follows an Erlang distribution with m

phases. As soon as an interruption occurs, a random clock is

started, which runs along with the repair clock. The purpose of

this random clock is to decide whether to repeat or resume the

interrupted service after the completion of repair. If the random

clock realizes before the completion of repair, the interrupted

service needs to be repeated from the first phase, otherwise it is

resumed in the phase at which the interruption occurred. The

highlight of this model is that, here we divide the m phases of

the Erlang service process in to two groups, namely protected

and unprotected, in the sense that no interruption can affect the

server while the service process is in the protected phases. More
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precisely we assume that the final n phases are protected and

the service process will not be interrupted while being in these

phases. The first m − n phases are unprotected and service in

these phases are vulnerable to interruptions.

Interruption being a common phenomenon, the present model

is motivated by the fact that certain stages of services (for ex-

ample in health care) are so important that they cannot afford

an interruption.

4.2 Model Description

Consider a single server queuing system in which the arrival

process is Poisson with rate λ. The service time distribution is

Erlang of order m having density

f(t) =
mµ(mµt)m−1e−mµt

(m− 1)!
, t ≥ 0

with mean 1
µ
.The service time may be assumed to be consist-

ing of m independent exponential stages, each with mean 1
mµ

. A

customer taken for service has to complete these m stages of ser-

vice. Until he has completed all the stages of service, the other

customers in the system have to wait in a queue. The first m−n
stages of the service process are subject to interruptions and the

final n phases are protected in the sense that the service will not

be interrupted while being in these phases. The interruptions oc-

cur according to a Poisson process with mean 1
θ
. The interrupted
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server is taken for repair immediately with repair duration fol-

lowing an exponential distribution with mean 1
δ
. A random clock

is started at the beginning of each repair to decide whether to

restart or resume the service after repair. If the random clock

realizes before a repair, the service needs to be restarted, other-

wise the service is resumed in the phase from where interruption

occurred. The realization time of the random clock also follows

an exponential distribution, with mean 1
γ
. This model is pic-

tured in Figure 4.1. This queueing model can be defined by the

Figure 4.1: An M/Em/1 Queue with Protected and Unprotected
Phases from Interruption

Markov processX = {X(t)/t ≥ 0} = {(N(t), S(t), J(t)) , t ≥ 0}
where N(t) is the number of customers in the system, S(t) is the

status of the server which is 0, 1 or 2 according as the service is

uninterrupted, interrupted with a running clock or interrupted

with a realized clock and J(t) is the phase of the service process

at time t. The state space is given by {0, 1, 2, 3, ...} × {0} ×
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{1, 2, ...,m}∪{0, 1, 2, 3, ...}×{1, 2}×{1, 2, ...,m− n}. the state

transitions are described in the Figure 4.2.

(a) From k to k+1 (b) From k to k-1

(c) From k to k

Figure 4.2: State transition diagrams
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The infinitesimal generator matrix given by

Q =



A10 A00

A21 A1 A0

A2 A1 A0

A2 A1 A0

. . .


where

A10 =
[
−λ
]

A00 =
[
λα 0 0

]
α =

[
1 0 .... 0

]

A0 =

λIm 0 0

0 λI 0

0 0 λI

 A21 =

S
0

0

0

 A2 =

S
0α 0 0

0 0 0

0 0 0



A1 =


S −

[
θI 0

0 0

]
− λIm

[
θI

0

]
0[

δI 0
]

−(γ + δ + λ)I γI

δeα 0 −(δ + λ)I



S0 =



0

0

.

.

.

mµ


S = mµ



−1 1 0

−1 1 0

. . .

. . .

. . .

−1


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and I is the identity matrix of order m− n.

4.3 Steady state Analysis

4.3.1 Stability analysis

LetA = A0+A1+A2 =


S −

[
θI 0

0 0

]
+ S0α

[
θI

0

]
0[

δI 0
]

−(γ + δ)I γI

δeα 0 −δI


and π = (π0, π1, π2) be the vector such that πA = 0 and πe = 1.

Then

π0

(
S −

[
θI 0

0 0

]
+ S0α

)
+ π1

[
δI 0

]
+ π2δeα = 0 (4.1)

π0

[
θI

0

]
− (γ + δ) π1 = 0 (4.2)

γπ1 − δπ2 = 0 (4.3)

Solving we get

π1 =
θ

γ + δ
π0u

and

π2 =
γθ

δ(γ + δ)
π0u
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where π0 = (π0u, π0p). Therefore equation (4.1) reduces to

π0

(
S −

[
θI 0

0 0

]
+ S0α

)
+

δθ

γ + δ
π0u

[
δI 0

]
+

γθ

γ + δ
π0ueα = 0

(4.4)

This leads to π0p = π0,m−n (1, 1, 1, ..., 1) and

π0,m−n−i =

[
1 +

γθ

mµ(γ + δ)

]i
π0,m−n, i = 1, 2, ...,m− n− 1.

Thus

π0,m−n = γθ
mµ(γ+δ)

[
δ+θ
δ

((
1 + γθ

mµ(γ+δ)

)m−n
− 1

)
+ nγθ

mµ(γ+δ)

]−1
It follows that

πA2e = mµπ0,m−n

= γθ
(γ+δ)

[
δ+θ
δ

((
1 + γθ

mµ(γ+δ)

)m−n
− 1

)
+ nγθ

mµ(γ+δ)

]−1
and πA0e = λ Hence the condition for stability is

λ

[
δ + θ

δ

((
1 +

γθ

mµ(γ + δ)

)m−n
− 1

)
+

nγθ

mµ(γ + δ)

]
<

γθ

(γ + δ)

That is ρ < 1 where,

ρ =

[
δ + θ

δ

γ + δ

γθ

((
1 +

γθ

mµ(γ + δ)

)m−n
− 1

)]
+

n

mµ
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If all the phases are protected, then n = m and the sta-

bility condition becomes λ < µ. The reason is trivial since if

all the phases are protected then there will be no interruption

throughout the service and the mean service time is 1
µ
.

4.3.2 Stationary probabilities

The stationary probability vector x is given by xQ = 0,

together with the normalizing condition xe = 1. On partition-

ing the steady state vector as x = (x0, x1, x2, ...), the equation

xQ = 0 reduces to the following equations.

x0A10 + x1A21 = 0

x0A00 + x1A1 + x2A2 = 0

xiA0 + xi+1A1 + xi+2A2 = 0, i = 1, 2, 3, ....

Post multiplying these equations by e, we get

λxie = xi+1

S
0

0

0

 , i = 0, 1, 2, ...

Also note that A2 =

S
0

0

0

[α 0 0
]
.

Solving the above system of equations togethor with the last two

expressions we get
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x0 = 1− ρ, xi = (1− ρ)βRi for i = 1, 2, 3, ...

where β = (α, 0, 0) and R = −λ[A1 + λeβ]−1.

4.4 Analysis of the service process

4.4.1 Expected service time

The service process with the introduction of interruption,

becomes a Markov Process Ψ with 3m − 2n transient states

given by

{1, 2, ...,m} × {0} ∪ {1, 2, ...,m− n} × {1, 2}
and one absorbing state 0̃. The absorbing state denotes the

service completion. The process Ψ can be represented by ψ(t) =

(i, j) where i is the phase of service, j = 0 if the service is

uninterrupted, j = 1 if the service is interrupted with repeat

clock running and j = 2 if the service is interrupted with the

realized repeat clock. Let τ be the time until absorption of the

process Ψ with the initial probability vector β = (α,0,0) . The

infinitesimal generator of this process is given by Q̃ =

[
T T 0

0 0

]
,

where

T =


S −

[
θI 0

0 0

] [
θI

0

]
0[

δI 0
]

−(γ + δ)I γI

δeα 0 −δI

 T 0 =

S
0

0

0

 .
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The expected service time is the time until absorption of the

above process which is given by,

E(τ) = β(−T )−1e

=

δ+θ
δ

[(
1 + γθ

mµ(γ+δ)

)m−n
− 1

]
+ nγθ

mµ(γ+δ)

γθ
γ+δ

=
(δ + θ)

δ

(γ + δ)

γθ

[(
1 +

γθ

mµ(γ + δ)

)m−n
− 1

]
+

n

mµ
.

Let yi be the expected time spent in the state i during a single

service, i = 1, 2, ..., 3m− 2n.

Then β(−T )−1 = (y1, y2, ..., y3m−2n). So we have,

yi =



1
mµ

(
1 + γθ

mµ(γ+δ)

)m−n−i
, i = 1, 2, ...,m− n

1
mµ
, i = m− n+ 1, ...,m

θ
(γ+δ)mµ

(
1 + γθ

mµ(γ+δ)

)2m−n−i
i = m+ 1, ..., 2m− n

γθ
(γ+δ)mµδ

(
1 + γθ

mµ(γ+δ)

)3m−2n−i
, i = 2m− n+ 1, ..., 3m− 2n

Therefore, during a single service

• The expected time spent in each of the n protected phases

is
1

mµ

.
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• The expected time spent in the ith phase is

yi + ym+i + y2m−n+i =
(δ + θ)

mµδ

(
1 +

γθ

mµ(γ + δ)

)m−n−i
,

i = 1, 2, ...,m−n

• Expected time spent in phase i under interruption is

θ

mµδ

(
1 +

γθ

mµ(γ + δ)

)m−n−i
, i = 1, 2, 3, ...,m− n

• Expected duration of interruption is

γ + δ

γδ

[(
1 +

γθ

mµ(γ + δ)

)m−n−i
− 1

]
.

It can be seen that expected time spent in the ith phase increases

with increase in γ. Hence expected service time also increases

as γ increases. This justifies our intuition that a higher clock

realization rate results in more repeat of service on completion

of interruption and results in a longer service time.

A higher value of repair rate δ causes the repair to get fin-

ished before the realization of the clock and hence an interrupted

service can be resumed. So the service time gets lowered. This

follows from the expression for expected time spent in a phase

under interruption.

As expected, increase in the interruption rate θ results in an

increase in the expected interruption duration and so the service
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time also increases.

4.4.2 Expected number of interruptions dur-

ing a single service

To compute the expected number of interruptions faced by

a customer during his service, we consider the Markov process

χ = {(N(t), J(t)) /t ≥ 0} where N(t) is the number of interrup-

tions that occurred up to time t and J(t) is the phase of the

service process at time t. χ has the state space {0, 1, 2, 3, ...} ×
{1, 2, 3, ...,mn} ∪ {∆} where ∆ is the absorbing state which de-

notes that the service process reached the first protected phase

and there will be no more interruption. The infinitesimal gen-

erator Q̃ of this process is

Q =



D2 D1 D0 .

D2 0 D1 D0 .

D2 0 0 D1 D0 .

. . . . .

. . . . . .


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where

D1 =



−mµ− θ mµ 0

−mµ− θ mµ 0

−mµ− θ mµ .

. . .

. . .

−mµ− θ


m−n

D0 =



θ 0 0
γθ
γ+δ

δθ
γ+δ

γθ
γ+δ

0 δθ
γ+δ

.
γθ
γ+δ

0 0 δθ
γ+δ

. .

. . . . . . .


m−n

and D2 =



0

0

0

.

.

mµ


(m−n)×1

If zj is the probability that there are exactly j interruptions

during a single service, then

zj = ζ(−D−11 D0)
j(−D−11 D2), j = 0, 1, 2, ...

where

ζ = (1, 0.0..., 0).
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Expected number of interruptions during a single service,

E(I) =
∞∑
j=0

jzj

= ζ(−D−11 D0)(I −D−11 D0)
−1e

=

(
1 +

δ

γ

)[(
1 +

γθ

mµ(γ + δ)

)m−n
− 1

]

4.5 Performance Analysis

4.5.1 Expected waiting time

For computing expected waiting time of a particular cus-

tomer who joins as the rth customer in the queue, we consider the

Markov processW = {W (t)/t ≥ 0} = {(N(t), S(t), J(t)) /t ≥ 0}
where N(t) is the rank of the customer, S(t) = 0, 1 or 2 accord-

ing as the service is not under interruption or under interruption

with clock running or finished and J(t) is the phase of the service

process at time t. The rank N(t) of the customer is assumed to

be r if he joins as the rth customer in the queue. His rank de-

crease by 1 as one customer ahead of him leaves the system after

completing the service. Since the customers who arrive after the

tagged customer cannot change his rank, level-changing transi-

tions in W (t) can only take place to one side of the diagonal.
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We arrange the state space of W (t) as {r, r − 1, ..., 2, 1}×{0}×
{1, 2, ...,m}∪{r, r − 1, ..., 2, 1}×{1, 2}×{1, 2, ...,m− n}∪{∆}
where ∆ is an absorbing state in the sense that the tagged cus-

tomer is selected for service.

Thus the infinitesimal generator Q̃ of the process W takes

the form

Q̃ =

[
B B0

0 0

]
where B =



T A2

T A2

T A2

. .

. .

T


and B0 =



0

0

.

.

.

S0



Now, the waiting time W of a customer, who joins the queue

as the rth customer is the time until absorption in the Markov

chain W (t). Thus the expected waiting time of this particular

customer is given by the column vector

Er
W = (−B)−1e

= (−T )−1
[
I − (A2T

−1) + (A2T
−1)2 − ...+ (−1)r−1(A2T

−1)r−1
]
e

= (−T )−1e+ (r − 1)E(τ)e
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Hence, the expected waiting time of a general customer,

WL =
∞∑
r=1

x(r)Er
W

=
∞∑
r=1

[
x(r)(−T )−1e+ (r − 1)E(τ)x(r)e

]
= ρσ(−T )−1e+ E(τ)EQ(C)

where σ = β
E(τ)

(−T )−1 and EQ(C) =
∑∞

r=1(r − 1)x(r)e is the

expected number of customers in the queue.

4.5.2 Other performance measures

The steady state probability vector x = (x0, x1, ...) can be

partitioned by writing xi as xi =
(
x
(0)
i , x

(1)
i , x

(2)
i

)
where

x
(0)
i =

(
x
(0)
i (1), x

(0)
i (2), ......, x

(0)
i (m)

)
x
(1)
i =

(
x
(1)
i (1), x

(1)
i (2), ..., x

(1)
i (m− n)

)
x
(2)
i =

(
x
(2)
i (1), x

(2)
i (2), ..., x

(2)
i (m− n)

)
, for i = 1, 2, 3, ...

are steady state probability vectors corresponding to the states

in which the system is working and under interruption with clock

running and finished respectively

• Probability that there is no customer in the system

PC(0) = x0
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.
• Probability that there are i customers in the system,

PC(i) = xie

.
• Probability that there are i customers in the system when

system is under Interruption,

P I
C(i) =

(
x
(1)
i + x

(2)
i

)
e

.
• Probability that there are i customers in the system when

system is uninterrupted,

PB
C (i) = x

(0)
i e

.
• Expected number of customers in the system,

ES(C) =
∞∑
i=0

iPC(i)

• Expected number of customers in the queue,

EQ(C) =
∞∑
i=0

(i− 1)PC(i)

• Expected number of customers in the system when the

system is under interruption,

EI(C) =
∞∑
i=0

iP I
C(i)
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• Expected number of customers in the system when the

server is uninterrupted,

EB(C) =
∞∑
i=0

iPB
C (i)

• Variance of the number of customers in the system,

VS(C) =
∞∑
i=1

i2PC(i)−

(
∞∑
i=1

iPC(i)

)2

• Variance of the number of customers in the system when

the system is under interruption,

V I(C) =
∞∑
i=1

i2P I
C(i)−

(
∞∑
i=1

iP I
C(i)

)2

• Variance of the number of customers in the system when

the server is busy

V B(C) =
∞∑
i=1

i2PB
C (i)−

(
∞∑
i=1

iPB
C (i)

)2

• Probability that the system is under interruption,

PS(I) =
∞∑
i=1

(
x1i + x1i

)
e =

λ

δ
E(I)

• Effective interruption rate,

EI = θ
∞∑
i=1

x
(0)
i e
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• Effective service resumption rate,

ERSM = δ
∞∑
i=1

x
(1)
i e

• Effective rate of repetition of service,

ERPT = δ
∞∑
i=1

x
(1)
i e

• Probability that the system is in protected phase,

Ppr =
∞∑
i=1

m∑
j=m−n+1

x
(0)
i (j) =

nλ

mµ

• Probability that the system is in protected phase given

system is busy,

PB(Pr) =
nλ

ρmµ

4.6 Numerical Illustration

We use the following notations in this section
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ES(C) : Expected number of customers in the system

VS(C) : Variance of number of customers in the system

EQ(C) : Expected number of customers in the queue

EB(C) : Expected number of customers in the system when

the system is uninterrupted

EI(C) : Expected number of customers in the system when

the system is interrupted

PS(I) : Probability that the system is interrupted

Ppr : Probability that the system is in a protected state

PS(idle) : Probability that the system is idle

E(I) : Expected number of interruptions during a service

EI(D) : Expected time spent in interruption during a service

E(τ) : Expected service time

WL : Expected waiting time of a customer in the queue

For numerical study we have taken the number of phases

of the Erlang process, m = 5 and arrival rate λ = 2. Table

4.1 depicts the harm that interruptions can cause to the system

and justifies the need for protected phases. From the table it can

be seen that as the interruption rate θ increases, the expected

service time E(τ) increases. This leads to the increase in the

various expected numbers of customers ES(C), EQ(C), EB(C)

and EI(C). Note that the EQ(C) comes closer to ES(C) as θ

decreases. This indicates how much severe can be the effect of

interruptions. Also note the high increase in the variance VS(C)

of the number of customers in the system with increase in θ. A

similar high rate of increase can be seen in the waiting time of

a customer. The decrease in the server idle probability should

be read together with the increase in the queue length which

indicates that the server may be working in vain instead of a
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constant arrival rate.

The destructive effect of interruptions to the system perfor-

mance has been revealed from the above discussion. To over-

come this we came up with the idea of protection. In Table

4.2, the effect of the introduction of protected phases is stud-

ied. The table shows that by giving protection to sufficient

number of phases, the expected service time can be brought

down to a reasonable level. This decrease in E(τ)in turn causes

a decrease in the expected numbers ES(C), EQ(C), EB(C) and

EI(C). Also note the variance VS(C) of the number of customers

in the system and the ratio ES(C)
EQ(C)

can be lowered to desired

levels in the presence of required number of protected phases.

The high rate of decrease in certain performance measures like

WL, E
I(D), PS(I) etc. show the importance of providing pro-

tection to enough number of phases of a system that is subject

to interruptions.

Table 4.3 shows the effect of service rate µ on various per-

formance measures. The changes are as expected. When µ

increases, expected number of customers in the system and in

the queue will decrease. Here note the difference between these

two quantities that points out the effect of interruption. This

difference decreases as µ increases. EI(C) is another quantity

that reflects the effect of interruption.

Table 4.4 describes the variations in the performance mea-

sures with γ which is narrow. The increase in ES(C), EQ(C), EB(C)

and EI(C) are due to an increase in E(τ). This leads to a nat-
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ural decrease in the server idle probability and the probability

that the system is in an interrupted state. The increase in WL

also is due to the increase in E(τ).

Finally Table 4.5 gives the variation in performance measures

with variation in repair rate δ. The effect of δ is just opposite to

the effect of γ on E(τ): as δ increases, E(τ) decreases. Naturally

the effect of δ on other measures is also opposite to that of γ.

Table 4.1: Effect of the rate of Interruption θ on various
performance measures

Number of protected phases n = 3, Service rate µ = 8.0,
Realizing rate of random clock γ = 3.0, Repair rate δ = 2.0.

θ 1 2 3 4 6

ES(C) 0.454 0.6346 0.8503 1.1114 1.8437
VS(C) 0.83 1.4809 2.3409 3.5063 7.4997
EQ(C) 0.1529 0.2819 0.4447 0.6524 1.2757
EI(C) 0.1147 0.2493 0.4095 0.6034 1.1469
EB(C) 0.3393 0.3855 0.4408 0.5079 0.6969
PS(I) 0.0504 0.1015 0.1534 0.206 0.3135
PS(idle) 0.6989 0.647 0.5944 0.541 0.432
E(I) 0.0504 0.1015 0.1534 0.206 0.3135
EI(D) 0.0252 0.0507 0.0767 0.103 0.1568
E(τ) 0.1506 0.1765 0.2028 0.2295 0.284
WL 0.0764 0.1409 0.2223 0.3262 0.6379
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Table 4.2: Effect of the number of protected phases n on
various performance measures

Interruption Rate θ = 1, Service rate µ = 5.0, Realizing rate of
random clock γ = 3.0, Repair rate δ = 2.0.

n 1 2 3 4 5

ES(C) 1.5136 1.1768 0.9204 0.72 0.56
VS(C) 4.7508 3.0963 1.994 1.2279 0.6773
EQ(C) 0.936 0.6481 0.4376 0.28 0.16
EI(C) 0.5481 0.3602 0.2136 0.096 0
EB(C) 0.9655 0.8166 0.7069 0.624 0.56
PS(I) 0.1659 0.1229 0.081 0.04 0
Ppr 0.08 0.16 0.24 0.32 0.4
PS(idle) 0.4224 0.4713 0.5171 0.56 0.6
E(I) 0.1659 0.1229 0.081 0.04 0
EI(D) 0.0829 0.0615 0.0405 0.02 0
E(τ) 0.2888 0.2644 0.2414 0.22 0.2
WL 0.468 0.324 0.2188 0.14 0.08

4.7 Analysis of a Cost Function

From our discussion, it follows that to nullify the adverse

effect of interruptions to the system there are three alternatives:

Increase the repair rate, choose a higher service rate or protect

the critical phases of service from interruptions. The first op-

tion is expensive and less efficient as there will always be some

repair work to do during a service process. The second one also

is expensive. The server has to work more for nothing. The

efficiency is reduced in the sense that the number of customers
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Table 4.3: Effect of the rate of service µ on various per-
formance measures

Number of protected phases n = 3, Interruption Rate θ = 1.0,
Realizing rate of random clock γ = 3.0, Repair rate δ = 2.0.

µ 5 8 10 12

ES(C) 0.9204 0.454 0.3412 0.2737
VS(C) 1.994 0.83 0.5993 0.4696
EQ(C) 0.4376 0.1529 0.1005 0.0732
EI(C) 0.2136 0.1147 0.0885 0.0722
EB(C) 0.7069 0.3393 0.2527 0.2015
PS(I) 0.081 0.0504 0.0402 0.0335
Ppr 0.24 0.15 0.12 0.1
PS(idle) 0.5171 0.6989 0.7593 0.7995
E(I) 0.081 0.0504 0.0402 0.0335
EI(D) 0.0405 0.0252 0.0201 0.0168
E(τ) 0.2414 0.1506 0.1204 0.1003
WL 0.2188 0.0764 0.0503 0.0366

served is the same in spite of the high service rate. Here is the

importance of the third alternative

When we choose this option, the questions naturally arise

are which are the phases to be protected and how many of them

should be protected. For the first question the answer is to

protect the critical phases. For an Erlang process these are

the final phases. Now about the number of phases. Of course

protecting every phase is a nice idea but it may be too expensive.

The cost of protection depends on various system costs. Based

on these costs we have to find an optimum number of phases
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Table 4.4: Effect of the rate of Realization of the random
clock γ on various performance measures

Number of protected phases n = 3, Service rate µ = 5.0,
Interruption Rate θ = 1.0, Repair rate δ = 2.0.

γ 3 4 6 10

ES(C) 0.9204 0.9221 0.9242 0.926
VS(C) 1.994 2.001 2.0088 2.0159
EQ(C) 0.4376 0.4389 0.4406 0.442
EI(C) 0.2136 0.2141 0.2147 0.2152
EB(C) 0.7069 0.7081 0.7095 0.7108
PS(I) 0.081 0.0811 0.0812 0.0813
PS(idle) 0.5171 0.5168 0.5164 0.516
E(I) 0.081 0.0811 0.0812 0.0813
EI(D) 0.0405 0.0405 0.0406 0.0407
E(τ) 0.2414 0.2416 0.2418 0.242
WL 0.2188 0.2195 0.2203 0.221

to be protected. This is explained by the following numerical

experiment

For checking the optimality of the number of unprotected

phases, we first study, how this parameter affects different per-

formance measures. Table 4.6 below shows that as the number

of unprotected phases increases, expected interruption rate in-

creases. As a consequence there is an increase in the expected

number of customers in the system, in the expected resume

rate, and in the expected repeat rate. This was expected as

the number of unprotected phases increases, the possibility of

interruption increases and therefore there will be an increase in



4.7. Analysis of a Cost Function 113

Table 4.5: Effect of the rate of Repair δ on various per-
formance measures

Number of protected phases n = 3, Service rate µ = 5.0,
Interruption Rate θ = 1.0, Realizing rate of random clock γ =
3.0.

δ 3 4 6 10

ES(C) 0.7533 0.6892 0.6362 0.6011
VS(C) 1.2315 1.0006 0.8413 0.7549
EQ(C) 0.2983 0.2479 0.2086 0.1845
EI(C) 0.1148 0.0767 0.0452 0.0244
EB(C) 0.6385 0.6125 0.591 0.5767
PS(I) 0.0538 0.0403 0.0268 0.0161
PS(idle) 0.545 0.5587 0.5724 0.5834
E(I) 0.0806 0.0805 0.0804 0.0803
EI(D) 0.0269 0.0201 0.0134 0.008
E(τ) 0.2275 0.2207 0.2138 0.2083
WL 0.1491 0.124 0.1043 0.0923

the expected repeat/resume rates and also in the queue size. In

contrast to this, the fraction of time, the service is in protected

phases decreases with an increase in the number of unprotected

phases. Hence to find an optimal value for the number of un-

protected phases, we construct the following cost function

CF = CRPT × ERPT + CRSM × ERSM

+ CHOLD × ES(C) + CINT × EI

+ CP × Ppr
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where CRPT and CRSM are the unit time costs for repeating

or resuming an interrupted service respectively. CHOLD is the

holding cost per unit time per customer and CINT is the cost

per unit time per interruption. Finally CP is the unit time cost

for giving service in the protected phases.

In table 4.7 the behaviour of cost function is shown. It follows

from the table that, when the protection cost CP is 600, the

optimal number of unprotected phases is 1 whereas when this

cost is increased to 650, the optimal value is 4; further if we

increase this cost to 700, the optimal value becomes 7. Though

these optimal values depend on the system parameters and costs,

table 4.7 shows that we can have a control over the number of

unprotected phases in favour of the system.

Table 4.6: Effect of the number of protected phases n
on various performance measures involved in the cost
function

No. of phases of the Erlang process m = 10, Arrival Rate λ =
1.5, Service Rate µ = 2.1, Interruption Rate θ = 1.0, Realizing
rate of random clock γ = 1.0, Repair rate δ = 10.0.

n 9 8 7 3 2 1

ERPT 0.0065 0.013 0.02 0.046 0.053 0.059
ERSM 0.065 0.13 0.196 0.46 0.527 0.595
ES(C) 1.753 1.815 1.885 2.253 2.376 2.517
EI 0.071 0.143 0.215 0.506 0.58 0.654
Ppr 0.643 0.571 0.5 0.214 0.143 0.071
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Table 4.7: Effect of the number of protected phases n on
the cost function

CRSM = 100, CRPT = 400, CINT = 400, CHOLD = 100,
No. of phases of the Erlang process m = 10, Arrival Rate λ =
1.5, Service Rate µ =2.1, Interruption Rate θ = 1.0, Realizing
rate of random clock γ = 1.0, Repair rate δ = 10.0.

No of
Protected Cost

Phases

CP= 600 CP=650 CP=700

1 598.7 630.8 663
2 599.9 628.4 657
3 601.9 626.9 652
4 604.9 626.4 647.8
5 609 626.9 644.7
6 614.3 628.6 642.9
7 621 631.7 642.4
8 629.3 636.4 643.5
9 639.4 643 646.6
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Chapter 5

AN M/M/1 QUEUE WITH

INTERRUPTION AND PROTECTION

5.1 Introduction

In chapter 4 we described a model in which the final few

phases of the service is protected from interruptions so as to

improve the system performance. This runs parallel to the N-

policy. However, if the chance of interruption is considerably

large, this method may not be fruitful enough. In such cases it

may take much time to finish the unprotected phases. Here pro-

tecting more phases may not be a good idea. Moreover, in many

real life situations, the instant at which protection is needed may

vary from customer to customer. For example, in the treatment

of chronic diseases, patients undergo a series of phases and dur-

ing some of these phases the risk is higher. So patients in the

117
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risky phases should be given additional attention. The time to

reach a serious phase depends on the physical condition of the

patients. So one cannot insist that special attention (Protection)

will begin only at a particular phase. Some patients may require

protection soon after they develop the disease while some others

can withstand for a long duration. This procedure of protecting

a service is similar to the T-policy in Queueing theory.

Motivated by this chronic care model, we introduce a sys-

tem in which the server is protected from interruptions after a

random time from the start of each service.

5.2 Model Description

We consider a single server queueing model in which cus-

tomers arrive according to a Poisson process with parameter λ.

The service time follows exponential distribution with mean 1
µ

. While rendering service the server may face some interrup-

tions. The interruptions occur according to a Poisson process

with parameter θ . The interrupted service restarts after a re-

pair and the repair time follows exponential distribution with

mean 1
δ
. To diminish the effect of interruptions a protection

mechanism is arranged. Once the protection mechanism is on,

the service will continue without any further interruptions. This

mechanism is provided after getting an uninterrupted service for

a random time. This is done with the help of a random clock

whose realization time is exponentially distributed with mean
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1
ϕ

. The clock is started simultaneously with the service process.

If there were no interruptions until the realization of the clock,

the protection for the service is provided at the epoch of the

realization of the clock. If there is any interruption before the

realization of the clock, it is reset and started again with the

restart of the service. This model is described in Figure 5.1

Figure 5.1: An M/M/1 Queue with Interruption and Protection

5.3 Mathematical Model

The system described in the previous section can be mathe-

matically modelled as a Markov process

X = {X(t)/t ≥ 0} = {(N(t), C(t), J(t)) /t ≥ 0}

where N(t) is the number of customers in the system , C(t) is

the status of the clock; it is 0 if clock is running and 1 if the clock

is realized and J(t) is the state of the server which is 0 if server

is not interrupted and 1 if it is interrupted. The state space of
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the process is given by {0}∪({1, 2, 3, ...} × {0, 1} × {0, 1}). The

infinitesimal generator matrix of the process is given by

Q =



A10 A00

A21 A1 A0

A2 A1 A0

A2 A1 A0

... ... ...

... ... ...


where

A10 =
[
−λ
]
A00 =

[
λ 0 0

]
A21 =

µ0
µ



A2 =

µ 0 0

0 0 0

µ 0 0

 , A1 =

− (µ+ θ + ϕ+ λ) θ ϕ

δ − (δ + λ) 0

0 0 − (µ+ λ)


and A0 = λI.

5.4 Stability Analysis

Let A = A0 + A1 + A2 =

− (θ + ϕ) θ ϕ

δ −δ 0

µ 0 −µ

 and π =

(π1, π2, π3) be the invariant vector of A such that πe = 1. Then

the system is stable if and only if πA0e < πA2e Hence we have
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the following theorem.

Theorem 5.4.1. The system X is stable if and only if

λ

µ
<

(
1 +

ϕ

µ

)(
1 +

ϕ

µ
+
θ

δ

)−1

5.5 Steady State Analysis

The steady state probability vector is obtained from the

equation xQ = 0. Writing x = (x0, x1, x2, ...) , a matrix geo-

metric solution of the above equation is given by

x0 = 1− ρ

xi = (1− ρ)αRi, i = 1, 2, 3, ...

where

ρ =
λ

µ+ ϕ

(
1 +

ϕ

µ
+
θ

δ

)

R =
λ

µ (µ+ λ+ ϕ)

µ+ λ θ(µ+λ)
δ+λ

ϕ

µ+ λ θ(µ+λ)
δ+λ

+ µ(µ+λ+ϕ)
δ+λ

ϕ

λ θλ
δ+λ

µ+ λ


and α = (1, 0, 0) .
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5.6 Analysis of the Service Process

Obviously we can see that the service time follows phase type

distribution with representation (α, S) where α = (1, 0, 0) and

S =

− (µ+ θ + ϕ) θ ϕ

δ −δ 0

0 0 −µ


The following results can be easily derived.

• The expected service time, E(τ) = 1
µ

+ θ
µ+ϕ

1
δ

• Increase in service time due to interruption = θ
µ+ϕ

1
δ

• During a service, the time spent in the unprotected unin-

terrupted state = 1
µ+ϕ

• Time spent in the protected state = ϕ
µ+ϕ

1
δ

• Probability that the service is completed before protection

starts = µ
µ+ϕ

5.6.1 Expected number of interruptions dur-

ing any particular service

Let N(t)be the number of interruptions during a particular

service at time t. Let J(t) be the status of the server at time
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t. Then Y = {(N(t), J(t)) /t ≥ 0} is a Markov Process whose

infinitesimal generator matrix is given by

Q̃ =



0 0 0

S2 S1 S0

S2 0 S1 S0

S2 0 0 S1 S0

... ... ...

... ... ...


where

S0 =

[
µ+ ϕ

0

]
, S1 =

[
− (µ+ θ + ϕ) 0

0 −δ

]
and S2 =

[
0 θ

δ 0

]
.

Let yk be the probability that there are exactly k interruptions

during a service. Then

y0 = α(−S1)
−1S2

and

yk = α
[
(−S1)

−1S0

]k
(−S1)

−1S2, k = 1, 2, 3, ... .

Simplifying we get,

yk =
µ+ ϕ

µ+ ϕ+ θ

(
θ

µ+ ϕ+ θ

)k
, k = 0, 1, 2, ... .

Theorem 5.6.1. The mean number of interruptions occur dur-
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ing a single service is

E(I) =
θ

µ+ ϕ
.

Proof. The mean number of interruptions,

E(I) =
∞∑
k−0

kyk =
θ

µ+ ϕ

5.7 Expected Waiting Time

Consider a customer who joins as the rth customer in the

queue, r > 0. The waiting time of this customer may be de-

scribed as the time until absorption of a Markov Chain W =

{W (t)/t ≥ 0} = {(N(t), C(t), J(t)) /t ≥ 0} where N(t) is the

rank of the tagged customer, C(t) is 0 if the service is un-

protected and 1 otherwise and J(t) is 1 if the service is inter-

rupted and 0 otherwise at time t. Thus the waiting time of the

tagged customer has a phase type distribution with representa-

tion (β,B) where

B =


S S0α

S S0α

· · · · · ·
S


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and β is the initial probability vector which ensures that the

chain always starts from level r.

Therefore the expected waiting time of the tagged customer

according to the state of the server at the time of joining the

queue,

Er
W = −B−1e

= −S−1
[
I − S0αS−1 + .....+ (−1)r−1

(
S0αS−1

)r−1]
e

= −S−1e+
r − 1

µ+ ϕ

(
1 +

θ

δ

ϕ

µ

)
e

= −S−1e+ (r − 1)E(τ)e.

Hence the expected waiting time of a customer who has to wait

is

E(W ) =
∞∑
r=1

xrE
r
W .

5.8 Some Performance Measures

• Probability that the system is idle,

Ps(idle) = 1− ρ

• Probability that the system is busy and uninterrupted

without protection on

λ

µ+ ϕ

• Probability that the system is in interruption,



126
Chapter 5. An M/M/1 Queue with

Interruption and Protection

θ

µ+ ϕ

λ

δ

• Probability that the system is under protection,

ϕ

µ+ ϕ

λ

µ

• Expected number of customers in the system

ρ+
λ

1− ρ

[
ρ

µ
+
λθ (µ+ ϕ+ θ + δ)

(µ+ ϕ)2δ2

]

5.9 Numerical Illustration

A numerical study of the effect of various parameters in-

volved on various performance measures is carried out in this

section.

Table 5.1 shows the effect of ϕ, the rate of realization of the

protection clock. As ϕ increases the service is protected from

interruption that much quicker and hence reduces the chance of

being interrupted. This improves the performance of the system.

As the expected number of interruptions is decreased, the service

time is reduced. This results in a reduction of expected number

of customers in the system and expected waiting time. When

ϕ→∞, the system reduces to an ordinary M/M/1 queue.

In Table 5.2, the effect of interruption rate θ on various per-

formance measures is illustrated. As expected, an increase in

θ increases the probability that the system is interrupted and

hence the service time increases. As a consequence, the ex-
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pected number of customers in the system and expected waiting

time are also increased.

Table 5.3 explains the effect of the repair rate δ on the per-

formance of the system.As the repair rate increases, the time

spent in the interrupted state decreases and results in a higher

service rate. This explains the changes in different measures. If

δ is very large, the repair is done instantaneously and the time

spent in the interrupted state becomes zero.

Table 5.1: Variation in different performance measures
with the rate of realization of protection clock

Arrival Rate λ = 3, Service Rate µ = 10, Interruption Rate θ
= 3, repair rate δ = 5.

ϕ Ps(Idle) Ps(Prot) Ps(I) Es(C) E(W ) E(Ser) E(I)

1 0.4818 0.0273 0.2182 0.8166 0.1827 0.1727 0.3636
2 0.5000 0.0500 0.2000 0.7200 0.1567 0.1667 0.3333
3 0.5154 0.0692 0.1846 0.6458 0.1370 0.1615 0.3077
4 0.5286 0.0857 0.1714 0.5873 0.1217 0.1571 0.2857
5 0.5400 0.1000 0.1600 0.5400 0.1095 0.1533 0.2667
6 0.5500 0.1125 0.1500 0.5011 0.0995 0.1500 0.2500
7 0.5588 0.1235 0.1412 0.4687 0.0913 0.1471 0.2353
8 0.5667 0.1333 0.1333 0.4412 0.0845 0.1444 0.2222
9 0.5737 0.1421 0.1263 0.4176 0.0786 0.1421 0.2105
10 0.5800 0.1500 0.1200 0.3972 0.0736 0.1400 0.2000

large 0.7000 0.3000 0.0000 0.1286 0.0129 0.1000 0.4000
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Table 5.2: Variation in different performance measures
with the interruption rate

Arrival Rate λ = 3, Service Rate µ = 10, Protection clock
realization rate ϕ = 4 Rate θ = 3, repair rate δ = 5.

θ Ps(Idle) Ps(Prot) Ps(I) Es(C) E(W ) E(Ser) E(I)

1 0.6571 0.0857 0.0429 0.2124 0.0316 0.1143 0.0714
2 0.6143 0.0857 0.0857 0.3140 0.0551 0.1286 0.1429
3 0.5714 0.0857 0.1286 0.4371 0.0845 0.1429 0.2143
4 0.5286 0.0857 0.1714 0.5873 0.1217 0.1571 0.2857
5 0.4857 0.0857 0.2143 0.7714 0.1690 0.1714 0.3571
6 0.4429 0.0857 0.2571 0.9995 0.2297 0.1857 0.4286
7 0.4000 0.0857 0.3000 1.2857 0.3086 0.2000 0.5000
8 0.3571 0.0857 0.3429 1.6509 0.4125 0.2143 0.5714
9 0.3143 0.0857 0.3857 2.1273 0.5524 0.2286 0.6429
10 0.2714 0.0857 0.4286 2.7677 0.7456 0.2429 0.7143

5.10 Analysis of Cost Function

The results in the previous sections show the effect of inter-

ruptions on the system performance and the extend to which it

can be minimized through giving protection. The cost of service

will increase due to the introduction of protection. Longer the

time the service is protected the more will be the cost. So a

question naturally arises about the epoch at which the protec-

tion starts so that the service cost is optimum. For checking

this optimality we consider the following factors:- The expected

number of interruptions E(I),The fraction of time in which the

system is protected T (Pr), The fraction of time in which the

system is unprotected T (unpr), The number of customers in



5.10. Analysis of Cost Function 129

Table 5.3: Variation in different performance measures
with the repair rate

Arrival Rate λ = 3, Service Rate µ = 10, Protection clock
realization rate ϕ = 5 Interruption rate θ = 3.

δ Ps(Idle) Ps(Prot) Ps(I) Es(C) E(W ) E(Ser) E(I)

1 0.1000 0.1 0.6000 25.5000 8.2300 0.3000 0.2
2 0.4000 0.1 0.3000 1.9500 0.5300 0.2000 0.2
3 0.5000 0.1 0.2000 0.8600 0.2033 0.1667 0.2
4 0.5500 0.1 0.1500 0.5455 0.1143 0.1500 0.2
5 0.5800 0.1 0.1200 0.4076 0.0771 0.1400 0.2
6 0.6000 0.1 0.1000 0.3333 0.0578 0.1333 0.2
7 0.6143 0.1 0.0857 0.2880 0.0464 0.1286 0.2
8 0.6250 0.1 0.0750 0.2580 0.0391 0.1250 0.2
9 0.6333 0.1 0.0667 0.0341 0.2368 0.1222 0.2
10 0.6400 0.1 0.0600 0.2213 0.0306 0.1200 0.2

large 0.7000 0.1 0.0000 0.1286 0.0129 0.1000 0.2

the system Es(C).

Each time an interruption occurs, the repair has to be done

and let RC be the repair cost. Let PC be the unit time cost of

running the server with protection and UPC be that without

protection. Let HC be the holding cost for retaining a customer

for unit time. Then the service cost per unit time is given by

C = E(I)×RC +Es(C)×HC +T (pr)×PC +T (upr)×UPC.

The variation in cost with the time to start protection when

µ = 10,λ = 3, θ = 4 and δ =5 with costs RC = 4,HC = 0.5,

PC = 20 and UPC= 2.5 is given in Table 5.4. In this case the

optimum value for ϕ is 6
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Table 5.4: The variation in cost with the time to start
protection

Arrival Rate λ = 3, Service Rate µ = 10, Interruption rate θ =
4, repair rate δ = 5.

ϕ 2 3 4 5 6 7 8 9

C 5.985 5.9768 5.9722 5.97 5.9693 5.9696 5.9706 5.972

Figure 5.2: Variation in Cost with ϕ



Chapter 6

AN M/Em/1 QUEUE WITH PROTECTION

BASED ON T-POLICY

6.1 Introduction

In the last chapter we analysed a queueing model having a

service process with interruption and a time based method of

protection, some thing like a T-policy. But the service time, if

there were no interruption was assumed to be exponential. In

many practical situations as pointed out in chapter 4, the service

process may consist of more than one phase. In such systems,

the repeat and resumption of service have distinct roles to play.

The chance of repeating an interrupted service makes this T-

policy protection very interesting.

Moreover, we have already introduced a method of protecting

some phases of the service process from interruption, say an N-

131
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policy. It would be meaningful to compare the two types of

protection. This is one of the motive of this chapter

6.2 Model Description

Consider a single server queuing system in which the arrival

process is Poisson with rate λ. The service time distribution

is Erlang of order m with mean 1
µ
. Interruptions occurs to the

service process at an exponentially distributed time durations

with mean 1
θ
. As in the previous models, the interrupted server

is taken for repair immediately with repair duration follows an

exponential distribution with mean 1
δ
. A random clock is started

at the beginning of each repair to decide whether to restart or re-

sume the service after repair. If the random clock realizes before

a repair, the service needs to be repeated, otherwise the service

is resumed in the phase at which the interruption occurred. The

realization time of the random clock also follows an exponential

distribution, with mean 1
γ
. To avoid the situation where the

system is interrupted while the service nearing completion, and

had to repeat the service from the beginning, a protective mech-

anism is provided. To minimize the cost of running the system,

this mechanism will be used only while the service is continued

for sufficiently long time. Thus a clock is started simultaneously

with the beginning of a new or an interrupted service. The pro-

tection is provided for the part of the service that remains after

the realization of this random clock. The realization time of this
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clock is assumed to be an exponential variable with mean 1
ϕ
. In

effect we extend the service protection mechanism introduced in

Chapter 5 to Erlang distributed service time.

This queueing model can be defined by the Markov process

X = {X(t)/t ≥ 0} = {(N(t), P (t), S(t), J(t)) , t ≥ 0} whereN(t)

is the number of customers in the system, P (t) is the status of

the protective mechanism which is 0 or 1 according as the mech-

anism is off or on, S(t) is the status of the server which is 0, 1 or

2 according as the service is uninterrupted, interrupted with a

running clock or interrupted with a realized clock and J(t) is the

phase of the service process at time t. The state space is given

by {0, 1, 2, 3, ...} × {0, 1} × {0} × {1, 2, ...,m} ∪ {0, 1, 2, 3, ...} ×
{0}×{1, 2}×{1, 2, ...,m} and the infinitesimal generator matrix

given by

Q =



A10 A00

A21 A1 A0

A2 A1 A0

A2 A1 A0

. . .


where

A10 =
[
−λ
]

A00 =
[
λα 0 0 0

]
α =

[
1 0 .... 0

]
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A0 = λI4m

A21 =


S0

0

0

S0

 A2 =


S0α 0 0 0

0 0 0 0

0 0 0 0

S0α 0 0 0



A1 =


S − (θ + ϕ+ λ)I θI 0 ϕI

δI −(γ + δ + λ)I γI 0

δeα 0 −(δ + λ)I 0

0 0 0 S − λI



S0 =



0

0

.

.

.

mµ


S = mµ



−1 1 0

−1 1 0

. . .

. . .

. . .

−1


and I is the identity matrix of order m.

6.3 Analysis of the service process

6.3.1 Expected service time

The service process with the introduction of interruption,

becomes a Markov Process Ψ with 4m transient states given by

{0, 1, 2, 3} × {1, 2, ...,m}
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and one absorbing state 0̃. The absorbing state denotes the

service completion. The process Ψ can be represented by ψ(t) =

(i, j) where i = 0 if the service is uninterrupted, i = 1 if the

service is interrupted with restart clock running i = 2 if the

service is interrupted with a finished restart clock and i = 3

if the service is protected and j is the phase of service. The

initial probability vector is β = (α, 0, 0, 0) Let τ be the time

until absorption of the process Ψ. The infinitesimal generator

of this process is given by Q̃ =

[
T T 0

0 0

]
, where

T =


S − (θ + ϕ) I θI 0 ϕI

δI −(γ + δ)I γI 0

δeα 0 −δI 0

0 0 0 S

 T 0 =


S0

0

0

S0



β(−T )−1 = (y1, y2, ..., y4m) gives us the time spend in each

state in a single service and can be calculated as

yi =



[
1
mµ

(
mµ+ ϕ+ γθ

γ+δ

)]m−i
ω, i = 1, 2, ...,m

θ
γ+δ

[
1
mµ

(
mµ+ ϕ+ γθ

γ+δ

)]m−i
ω, i = m+ 1, ..., 2m

γθ
δ(γ+δ)

[
1
mµ

(
mµ+ ϕ+ γθ

γ+δ

)]m−i
ω, i = 2m, ..., 3m

ϕ
mµ

(∑m−1
j=4m−i

[
1
mµ

(
mµ+ ϕ+ γθ

γ+δ

)]j)
ω, i = 3m+ 1, ..., 4m.
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where

1

ω
= mµ+ ϕ

m−1∑
j=0

[
1

mµ

(
mµ+ ϕ+

γθ

γ + δ

)]j
Therefore, during a single service

• The expected time spent in the protected phases is

ϕ

mµ

(
m∑
j=1

j

[
1

mµ

(
mµ+ ϕ+

γθ

γ + δ

)]j−1)
ω.

• The expected time spent in the uninterrupted unprotected

phases is(
m∑
j=1

[
1

mµ

(
mµ+ ϕ+

γθ

γ + δ

)]j−1)
ω.

• Expected interruption duration is

θ

δ

(
m∑
j=1

[
1

mµ

(
mµ+ ϕ+

γθ

γ + δ

)]j−1)
ω.

The expected service time is the expect time until absorption of

the above process which is given by,

E(τ) = β(−T )−1e

=

(
1 +

θ

δ

)( m∑
j=1

[
1

mµ

(
mµ+ ϕ+

γθ

γ + δ

)]j−1)
ω
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+
ϕ

mµ

(
m∑
j=1

j

[
1

mµ

(
mµ+ ϕ+

γθ

γ + δ

)]j−1)
ω.

6.3.2 Expected number of interruptions dur-

ing a single service

To compute the expected number of interruptions faced by

a customer during his service, we consider the Markov process

χ = {(N(t), J(t)) /t ≥ 0} where N(t) is the number of interrup-

tions that occurred up to time t and J(t) is the phase of the

service process at time t. χ has the state space {0, 1, 2, 3, ...} ×
{1, 2, 3, ...,m} ∪ {∆} where ∆ is the absorbing state which de-

notes that the service process reached the first protected phase

and there will be no more interruptions. The infinitesimal gen-

erator Q̃ of this process is

Q =



D2 D1 D0 .

D2 0 D1 D0 .

D2 0 0 D1 D0 .

. . . . .

. . . . . .


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where

D1 = −mµ



−1 1 0

−1 1

−1

. . .

. . 1

−1


m

− (θ + ϕ) Im

D0 =


θ 0 0 .
γθ
γ+δ

δθ
γ+δ

0 .
γθ
γ+δ

0 δθ
γ+δ

.

. . . . . . .
γθ
γ+δ

0 0 . . . δθ
γ+δ


m

and D2 =



ϕ

ϕ

ϕ

.

.

mµ+ ϕ


(m−n)×1

If zj is the probability that there are exactly j interruptions

during a single service, then

zj = ζ(−D−11 D0)
j(−D−11 D2), j = 0, 1, 2, ...

Expected number of interruptions during a single service,

E(I) =
∞∑
j=0

jzj

= ζ(−D−11 D0)
[
I −

(
−D−11

)
D0

]−1
e

= θ (κm − 1)

(
ϕκm +

γθ

γ + δ

)−1
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where

κ = 1 +
ϕ

mµ
+

γθ

mµ (γ + δ)

6.4 Steady state Analysis

6.4.1 Stability analysis

LetA = A0+A1+A2 =


S − (θ + ϕ)I + S0α θI 0 ϕI

δI −(γ + δ)I γI 0

δeα 0 −δI 0

S0α 0 0 S


and π = (π0, π1, π2, π3) be the vector such that πA = 0 and

πe = 1. Then

π0
(
S − (θ + ϕ)I + S0α

)
+ δπ1 + π2δeα+ π3S

0α = 0 (6.1)

θπ0 − (γ + δ)π1 = 0 (6.2)

γπ1 − δπ2 = 0 (6.3)

ϕπ0 − π3S = 0 (6.4)

From the above equations, we get

π0

[(
S + S0α

)
−
(

γθ

γ + δ
+ ϕ

)
(I − eα)

]
= 0
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Solving, we get

π0 = σ(1, k, k2, ..., km−1)

where σ is a non-zero constant and k = 1
mµ

(
mµ+ ϕ+ γθ

γ+δ

)
.

Therefore using equations (6.1), (6.2) and (6.3) we have,

π0e = (1 + k + k2 + ...+ km−1)σ

π1e =
θ

γ + δ
(1 + k + k2 + ...+ km−1)σ

π2e =
γθ

δ(γ + δ)
(1 + k + k2 + ...+ km−1)σ

π3e =
ϕ

mµ
(1 + 2k + 3k2 + ...+mkm−1)σ

and

πe =
[(

1 + θ
γ+δ

+ γθ
δ(γ+δ)

)
(1 + k + k2 + ...+ km−1) + ϕ

mµ
(1 + 2k + 3k2 + ...+mkm−1)

]
σ

Therefore

σ =
[(

1 + θ
γ+δ

+ γθ
δ(γ+δ)

)
(1 + k + k2 + ...+ km−1) + ϕ

mµ
(1 + 2k + 3k2 + ...+mkm−1)

]−1
Also it follows that πA2e = [ϕ (1 + k + k2 + ...+ km−1) +mµ]σ

and πA0e = λ Hence the condition for stability is

λ

[(
1 +

θ

γ + δ
+

γθ

δ(γ + δ)

)(
1 + k + k2 + ...+ km−1

)
+

ϕ

mµ
(1 + 2k + 3k2 + ...+mkm−1)

]
< ϕ

(
1 + k + k2 + ...+ km−1

)
+mµ (6.5)
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6.4.2 Stationary probabilities

The stationary probability vector x is given by xQ = 0,

together with the normalizing condition xe = 1. On partition-

ing the steady state vector as x = (x0, x1, x2, ...), the equation

xQ = 0 reduces to the following equations.

x0A10 + x1A21 = 0

x0A00 + x1A1 + x2A2 = 0

xiA0 + xi+1A1 + xi+2A2 = 0, i = 1, 2, 3, .... .

Also λxie = xi+1A21, i = 0, 1, 2, ... and A2 = A21

[
α 0 0 0

]
Solving we get x0 = 1−ρ, xi = (1−ρ)βRi for i = 1, 2, 3, ...where

β = (α, 0, 0, 0) , R = −λ[A1 + λeβ]−1. and ρ = −λαT−1e.

6.5 Performance Analysis

6.5.1 Expected waiting time

The expected waiting time WL of a customer in the queue is

found by the tagged customer method as in section (4.5.1).Thus

WL is given by

WL = λβ(−T )−2e+ E(τ)EQ(C)
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where EQ(C) =
∑∞

r=1(r − 1)x(r)e is the expected number of

customers in the queue and E(τ) is the expected service time.

6.5.2 Other performance measures

Each probability vector xi except x0 in the steady state prob-

ability vector

x = (x0, x1 , x2, .........)

can be partitioned as

xi =
(
x
(0)
i , x

(1)
i , x

(2)
i , x

(3)
i

)
where

x
(j)
i =

(
x
(j)
i (1), x

(j)
i (2), ..., x

(j)
i (m)

)
, j = 0, 1, 2, 3 and i = 1, 2, 3, ... .

With this notation, we have the following results.

• Probability of no customer in the system,

PC(0) = x0.

• Probability of i customers in the system,

PC(i) = xie.
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• Expected number of customers in the system,

ES(C) =
∞∑
i=0

iPC(i).

• Expected queue length,

EQ(C) =
∞∑
i=0

(i− 1)PC(i).

• Probability that there are i customers in the system when

the server is interrupted,

P I
C(i) =

(
x
(1)
i + x

(2)
i

)
e.

• Expected number of customers in the system when the

system is under interruption,

EI(C) =
∞∑
i=0

iP I
C(i).

• Probability that there are i customers in the system when

the server is uninterrupted,

P I
C(i) =

(
x
(0)
i + x

(3)
i

)
e.

• Expected number of customers in the system when the
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server is uninterrupted,

EB(C) =
∞∑
i=0

iPB
C (i).

• Variance of the number of customers in the system,

VS(C) =
∞∑
i=0

i2PC(i)−

(
∞∑
i=0

iPC(i)

)2

.

• Probability that the system is under interruption,

PS(I) =
∞∑
i=0

P I
C(i).

• Probability that the system is protected state,

Ppr =
∞∑
i=1

x
(3)
i e.

• Effective interruption rate,

EI = θ
∞∑
i=1

x
(0)
i e.

• Effective rate of service resumption,

ERSM = δ

∞∑
i=1

x
(1)
i e.
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• Effective rate of repetition of service,

ERSM = δ
∞∑
i=1

x
(2)
i e.

6.6 Numerical Study of the Model

This section a numerical analysis of the model is done. This

will be helpful in understanding the effect of various parameters

in the performance of the system. In this examination, we con-

sider a service process in which the service time distribution is

Erlang-5. The arrival rate is assumed to be 2. For the easiness

of comparison, we use the same notations used in section 4.6.

The results of the study with different values of θ is given in

Table 6.1. The value of θ is increased from 0 to 6. As θ increases,

the interruption occurs more frequently. Thus the number of in-

terruptions per service as well as the duration of interruption

during a service are increased. This results in an increase in the

service time. This explains the changes in the other measures

like expected number of customers, the waiting time, probabil-

ity that the system is interrupted and the probability that the

system is idle.

One would be interested to see what happens to the system

when rate of realization of protection clock ϕ is increased. Table

6.2 gives us an idea about this. As ϕ increases, the system

gets protected sooner. So the probability of being interrupted
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decreases, resulting in a faster service. Hence the service time

is lowered and so is the number of customers in the system and

the waiting time. Also note the increase in idle probability with

increase in ϕ.

Next we will see how the rate of realization of repeat clock, γ

acts on the system performance measures. Table 6.3 comprises

of the numerical results obtained. As the possibility of repeat-

ing the service increases with increase in γ, the service rate is

slightly increased. So there is more chance that the system will

be protected. This is the reason why the change in service rate

is small. Because of the same reason the number of interruption

during a service remains almost unchanged as the interruption

duration. Increase in service time results in increased number

of customers waiting and longer waiting times.

Our Numerical experiment shows heavy dependency of the

system performance measures on the rate of repair γ as shown

in Table 6.4. As γ increases, the interruptions are repaired

quickly so the duration of each interruption decreases. Also

the chance that an interrupted service is resumed from where

it was interrupted increases. Due to these reasons the service

time decreases. The service may be completed even before it is

protected. So the probability that the system is protected is de-

creased slightly. Due to the increased service rate, the number

of customers in the system, average queue length and the wait-

ing time are decreased. Changes in the number of interruptions

during a service and probability that system is idle are to be

noted.
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Variations in the service rate µ have a direct impact on the

performance of the system. As the expected service time de-

creases with increase in µ, the system behaves in a nice way

with high values for µ as illustrated in Table 6.5

6.7 Comparison of the models described

in chapter 4 and chapter 6

The difference in the models described in chapter 4 and chap-

ter 6 is in where and when the protection is applied. In the first

model the final n phases are protected in a deterministic way,

irrespective of the circumstances. But in the latter, protection

is given only if the service could not be completed in a reason-

able time. Thus in this case, we wait for a while after the start

of a new service and if it seems that the service may go long

due to interruption, the protection is given to the rest of the

service. Hence any number of phases may be protected. The

protection can start even from the middle of a phase. In the

first model we have no control over the time to complete the

unprotected phases whereas the second model has a handicap

of protecting unnecessary phases. The two types of protection

methods have some similarity to the N-policy and T-Policy in

queueing systems.

Table 4.1 and Table 6.1 can be compared to get a glimpse of

the behaviour of the two systems with respect to the interrup-

tion rate θ. It may be noted that, for the ’N-Policy’ model the
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probability that the system is protected remains constant with

respect to θ. This is because we protect only the last n phases of

the service process, whatever may be the value of θ. Hence the

protection cost remains the same. But in the ’T-Policy’ model

as θ increases the chance that the system is protected increases.

This means that the protection is started at an earlier phase for

high values of θ compared to the N-Policy model. This increases

the cost of protection. But the values of the expected service

times from these tables shows that even though more protection

is is provided in the T-Policy model, the N-Policy model has the

lowest service time for large values of θ. In the T-Policy model

to start the protection, we wait until we get an uninterrupted

service for sufficiently long duration. For large values of θ it

takes long to fulfil this condition as follows from the high values

of E(I) and EI(D). So much time is elapsed before switching

the protection on. This results in a high service time. This is

reflected in the values of the number of customers in the system

and their waiting time. Thus the comparison of these tables re-

veals that when the chance of interruption is small, the T-Policy

would be beneficial, but for large values of θ, the N-Policy model

dominates the other.

A comparison of Table 4.2 and Table 6.2 gives us a relation

between the number of protected phases in the N-Policy model

and the rate of realization of the protection clock in the corre-

sponding T-Policy model. For the choice of other parameters,

it can be seen that an N-Policy model with 1 protected phase

performs almost similarly to a T-Policy model with ϕ = 2.
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The role of the service rate µ in the performance of the two

systems is revealed in the comparison of Table 4.3 and Table 6.5.

It can be seen that the probability Ppr is decreases considerably

as µ increases for both the models. For the N-Policy model this

decrement is due to the increase in the speed of service. But

for the T-Policy model there is one more reason other than this.

As the service is rendered quickly, most part of service might

have completed before giving protection. So for high values of

µ we are not getting the benefit of protection. This is why the

expected number and duration of interruptions is more for the

T-Policy model. This is reflected in the number of customers and

their waiting time also. So we conclude that for large values of

µ, the N-Policy is better.

The role of the repeat rate γ on the two models can be un-

veiled on the comparison of Table 4.4 and Table 6.3. With

high repeat rate, most of the interrupted services have to be

repeated. So the time to reach the protected phases is more for

the N-Policy model. There fore the service time increases with

increase in repeat rate. The effect of γ on the T-Policy model

is the same. With a proper choice of ϕ both the models give

almost the same performance.

On the other hand, a high repair rate δ forces most of the

interrupted services to be resumed. Hence in an N-Policy model,

the service process reaches the protected phases quickly lowering

the service time. So the model performs better with high repair

rate. See Table 4.5for numerical illustration.
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But for the T-Policy model, with a high repair rate, though

the repair is done very fast, the probability further interrup-

tions denies a customer uninterrupted service for sufficient time

to switch on the protection. Hence it may take long to get the

service protected. As a result the service time will not be de-

creased in spite of high repair rate. Thus we conclude that with

a high repair rate, N-Policy model is superior to the N-Policy

model.

6.8 Cost analysis

In systems with interruptions, the interruptions is a cause of

loss. We introduce protection to minimize the loss due to in-

terruption. To protect the server from interruptions, additional

resources might be used. This adds to the cost of service. So

one must me interested to know the time to start the protection

so that the cost of running the system is minimum.

we conducted a numerical experiment with the same cost

function used in chapter 4, given by

CF = CRPT × ERPT + CRSM × ERSM

+ CHOLD × ES(C) + CINT × EI

+ CP × Ppr.

where CRPT and CRSM are the unit time costs for repeating

or resuming an interrupted service respectively. CHOLD is the

holding cost per unit time per customer and CINT is the cost
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per unit time per interruption. Finally CP is the unit time cost

for giving service in the protected phases.

The results obtained for two different costs of protection are

given in Table 6.6 and Table 6.7 with the values of the parame-

ters involved. For this analysis we took

λ = 1.5,m = 10, µ = 5.0, θ = 1.0, γ = 1.0δ = 10.0

The results shows that for CP = 600, the optimum duration

until protection is 42.5 and forCP = 650, the optimal value is

6.505. This assures that we can control the value of ϕ in favour

of the system.
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Table 6.1: Effect of interruption rate.

Service rate, µ = 8, Repair rate, δ = 2 Rate of realization of
the repeat clock, γ = 3, Rate of realization of the protection
clock, ϕ = 15.

θ 0 1 2 3 4 5 6

ES(C) 0.3 0.4669 0.6648 0.9030 1.1953 1.5625 2.0377
VS(C) 0.3267 0.8717 1.5890 2.5557 3.8962 5.8216 8.7121
EQ(C) 0.05 0.1613 0.3030 0.4845 0.7196 1.0291 1.4460
EI(C) 0 0.1229 0.2682 0.4426 0.6563 0.9241 1.2701
EB(C) 0.3 0.3440 0.3966 0.4603 0.5390 0.6384 0.7675
PS(I) 0 0.0534 0.1074 0.1620 0.2171 0.2728 0.3290
PS(idle) 0.75 0.6944 0.6382 0.5815 0.5243 0.4666 0.4083
E(I) 0 0.0534 0.1074 0.1620 0.2171 0.2728 0.3290
EI(D) 0 0.0267 0.0537 0.0810 0.1086 0.1364 0.1645
E(τ) 0.1250 0.1528 0.1809 0.2092 0.2379 0.2667 0.2958
Ppr 0.1438 0.1454 0.1469 0.1485 0.1500 0.1515 0.1530
WL 0.0250 0.0807 0.1515 0.2422 0.3598 0.5145 0.7230



6.8. Cost analysis 153

Table 6.2: Effect of Realization rate of protection clock.

Service rate, µ = 5, Repair rate, δ = 2 Rate of realization of
the repeat clock, γ = 3, Interruption rate, θ = 1.

ϕ 0 2 5 10 15 20 10000

ES(C) 1.9719 1.5227 1.1869 0.9372 0.8218 0.7575 0.5604
VS(C) 7.3757 4.7936 3.1326 2.0508 1.5960 1.3557 0.6785
EQ(C) 1.3424 0.9435 0.6556 0.4499 0.3580 0.3079 0.1603
EI(C) 0.7972 0.5482 0.3602 0.2189 0.1529 0.1159 0.0002
EB(C) 1.1747 0.9746 0.8267 0.7183 0.6688 0.6416 0.5601
PS(I) 0.2098 0.1649 0.1219 0.0821 0.0606 0.0475 0.0001
PS(idle) 0.3705 0.4208 0.4687 0.5127 0.5362 0.5504 0.5999
E(I) 0.2098 0.1649 0.1219 0.0821 0.0606 0.0475 0
EI(D) 0.1049 0.0825 0.0609 0.0410 0.0303 0.0237 0
E(τ) 0.3147 0.2896 0.2656 0.2437 0.2319 0.2248 0.2001
Ppr 0 0.0844 0.1656 0.2411 0.2821 0.3073 0.3998
WL 0.6712 0.4718 0.3278 0.2249 0.1790 0.1539 0.0801
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Table 6.3: Effect of rate of realization of repeat clock.

Service rate, µ = 5, Repair rate, δ = 2 Rate of realization of
the protection clock, ϕ = 15, Interruption rate, θ = 1.

γ 1 3 4 6 10 15 20

ES(C) 0.8142 0.8218 0.8234 0.8253 0.827 0.828 0.8285
VS(C) 1.5672 1.596 1.6014 1.6074 1.6126 1.6152 1.6166
EQ(C) 0.3519 0.358 0.3592 0.3606 0.3619 0.3626 0.363
EI(C) 0.1521 0.1529 0.1531 0.1533 0.1535 0.1536 0.1536
EB(C) 0.6621 0.6688 0.6703 0.672 0.6736 0.6744 0.6749
PS(I) 0.0604 0.0606 0.0606 0.0606 0.0606 0.0607 0.0607
PS(idle) 0.5377 0.5362 0.5358 0.5353 0.5349 0.5346 0.5345
E(I) 0.0604 0.0606 0.0606 0.0606 0.0606 0.0607 0.0607
EI(D) 0.0302 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303
E(τ) 0.2311 0.2319 0.2321 0.2323 0.2326 0.2327 0.2328
Ppr 0.2809 0.2821 0.2824 0.2828 0.2832 0.2834 0.2835
WL 0.176 0.179 0.1796 0.1803 0.181 0.1813 0.1815
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Table 6.4: Effect of rate of repair.

Service rate, µ = 5, Rate of realization of the repeat clock,
γ = 3, Rate of realization of the protection clock, ϕ = 15,
Interruption rate, θ = 1.

δ 1 3 4 6 10 15 20

ES(C) 1.4027 0.7044 0.6577 0.6183 0.5918 0.5802 0.5747
VS(C) 5.7409 1.0776 0.9137 0.7985 0.735 0.7112 0.7011
EQ(C) 0.8775 0.2614 0.2251 0.1964 0.1785 0.1712 0.168
EI(C) 0.4978 0.0837 0.0563 0.0334 0.0181 0.0114 0.0083
EB(C) 0.905 0.6207 0.6014 0.5849 0.5737 0.5687 0.5664
PS(I) 0.1212 0.0403 0.0302 0.0201 0.0121 0.0081 0.006
PS(idle) 0.4747 0.5569 0.5674 0.578 0.5867 0.591 0.5932
E(I) 0.0606 0.0605 0.0605 0.0604 0.0604 0.0604 0.0604
EI(D) 0.0606 0.0202 0.0151 0.0101 0.006 0.004 0.003
E(τ) 0.2626 0.2215 0.2163 0.211 0.2067 0.2045 0.2034
Ppr 0.2828 0.2817 0.2814 0.2809 0.2805 0.2802 0.28
WL 0.4387 0.1307 0.1126 0.0982 0.0892 0.0856 0.084
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Table 6.5: Effect of service rate.

Repair rate, δ = 2, Rate of realization of the repeat clock,
γ = 3, Rate of realization of the protection clock, ϕ = 15,
Interruption rate, θ = 1.

µ 3 5 8 10 12 15 20

ES(C) 2.2076 0.8218 0.4669 0.3696 0.3077 0.2472 0.1872
VS(C) 6.3922 1.596 0.8717 0.6926 0.5802 0.4702 0.36
EQ(C) 1.472 0.358 0.1613 0.1189 0.0946 0.0727 0.0528
EI(C) 0.2368 0.1529 0.1229 0.11 0.0996 0.0871 0.0719
EB(C) 1.9708 0.6688 0.344 0.2596 0.2082 0.1601 0.1153
PS(I) 0.0647 0.0606 0.0534 0.049 0.0451 0.0401 0.0337
PS(idle) 0.2644 0.5362 0.6944 0.7493 0.7868 0.8255 0.8656
E(I) 0.0647 0.0606 0.0534 0.049 0.0451 0.0401 0.0337
EI(D) 0.0324 0.0303 0.0267 0.0245 0.0226 0.0201 0.0169
E(τ) 0.3678 0.2319 0.1528 0.1254 0.1066 0.0873 0.0672
Ppr 0.5415 0.2821 0.1454 0.1037 0.0779 0.0541 0.0333
WL 0.736 0.179 0.0807 0.0594 0.0473 0.0364 0.0264

Table 6.6: Time to Protection versus Cost
Cost of protection per unit time = 600

ϕ ERPT ERSM ES(C) EI Ppr Cost

35.0 0.0004 0.0390 2.0303 0.0429 0.7073 648.5794
40.0 0.0003 0.0341 2.0248 0.0375 0.7126 648.5721
42.0 0.0003 0.0325 2.0229 0.0357 0.7144 648.5716
42.5 0.0003 0.0321 2.0225 0.0353 0.7148 648.5715
43.0 0.0003 0.0317 2.0221 0.0349 0.7152 648.5716
45.0 0.0003 0.0303 2.0205 0.0333 0.7167 648.5722
50.0 0.0003 0.0273 2.0171 0.0300 0.7201 648.5758
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Table 6.7: Time to Protection versus Cost
Cost of protection per unit time = 600

ϕ ERPT ERSM ES(C) EI Ppr Cost

6.000 0.0021 0.2111 2.2686 0.2322 0.5204 679.9899
6.300 0.0020 0.2027 2.2551 0.2230 0.5295 679.9660
6.490 0.0020 0.1977 2.2472 0.2175 0.5349 679.9617
6.500 0.0020 0.1975 2.2468 0.2172 0.5352 679.9617
6.505 0.0020 0.1973 2.2466 0.2171 0.5353 679.9616
6.510 0.0020 0.1972 2.2464 0.2169 0.5354 679.9617
6.520 0.0020 0.1970 2.2460 0.2167 0.5357 679.9617
7.000 0.0019 0.1853 2.2278 0.2039 0.5483 679.9832
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CONCLUSION

In this thesis we discussed a few queueing models involving

interruption of service and protection against interruption. Sec-

ond and third chapters where on interruption without protection

of service . As a consequence service of a customer has to be

resumed or repeated depending on factors deciding which one

to opt. Chapters 4, 5 and 6 introduced protection mechanism

against interruption. The protection mechanism of chapter 4

has the flavour of N-policy where as those in chapters 5 and 6

have the flavour of T-policy.

The applications of the models discussed in this thesis are

numerous, some of which are indicated in the introduction and

in the relevant chapters. The results of chapters 4 and 6 are

compared for efficiency.

The models discussed in this thesis can be extended to Marko-

vian arrival process and arbitrarily distributed service time with

rational Laplace Stieltjes transform. Several other variations

and generalizations are on the anvil.
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