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Preface

Study on variable stars is an important topic of modern astrophysics. After

the invention of powerful telescopes and high resolving powered CCD’s, the

variable star data is accumulating in the order of peta-bytes. The huge amount

of data need lot of automated methods as well as human experts. This thesis

is devoted to the data analysis on variable star’s astronomical time series data

and hence belong to the inter-disciplinary topic, Astrostatistics.

For an observer on earth, stars that have a change in apparent brightness

over time are called variable stars. The variation in brightness may be regular

(periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and

are caused by various reasons. In some cases, the variation is due to some

internal thermo-nuclear processes, which are generally known as intrinsic vari-

ables and in some other cases, it is due to some external processes, like eclipse

or rotation, which are known as extrinsic variables. Intrinsic variables can

be further grouped into pulsating variables, eruptive variables and flare stars.

Extrinsic variables are grouped into eclipsing binary stars and chromospheri-

cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV

Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae,

supernovae, etc., which rarely occurs and are not periodic phenomena. Most

of the other variations are periodic in nature.

Variable stars can be observed through many ways such as photometry,

spectrophotometry and spectroscopy. The sequence of photometric observa-
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tions on variable stars produces time series data, which contains time, magni-

tude and error. The plot between variable star’s apparent magnitude and time

are known as light curve. If the time series data is folded on a period, the plot

between apparent magnitude and phase is known as phased light curve. The

unique shape of phased light curve is a characteristic of each type of variable

star. One way to identify the type of variable star and to classify them is by

visually looking at the phased light curve by an expert. For last several years,

automated algorithms are used to classify a group of variable stars, with the

help of computers.

Research on variable stars can be divided into different stages like observa-

tion, data reduction, data analysis, modeling and classification. The modeling

on variable stars helps to determine the short-term and long-term behaviour

and to construct theoretical models (for eg:- Wilson-Devinney model for eclips-

ing binaries) and to derive stellar properties like mass, radius, luminosity, tem-

perature, internal and external structure, chemical composition and evolution.

The classification requires the determination of the basic parameters like pe-

riod, amplitude and phase and also some other derived parameters. Out of

these, period is the most important parameter since the wrong periods can

lead to sparse light curves and misleading information.

Time series analysis is a method of applying mathematical and statistical

tests to data, to quantify the variation, understand the nature of time-varying

phenomena, to gain physical understanding of the system and to predict future

behavior of the system. Astronomical time series usually suffer from unevenly

spaced time instants, varying error conditions and possibility of big gaps. This

is due to daily varying daylight and the weather conditions for ground based

observations and observations from space may suffer from the impact of cosmic

ray particles.

Many large scale astronomical surveys such as MACHO, OGLE, EROS,
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ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke-

pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even

though their primary intention is not variable star observation. Center for

Astrostatistics, Pennsylvania State University is established to help the astro-

nomical community with the aid of statistical tools for harvesting and analysing

archival data. Most of these surveys releases the data to the public for further

analysis.

There exist many period search algorithms through astronomical time se-

ries analysis, which can be classified into parametric (assume some underlying

distribution for data) and non-parametric (do not assume any statistical model

like Gaussian etc.,) methods. Many of the parametric methods are based on

variations of discrete Fourier transforms like Generalised Lomb-Scargle peri-

odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by

Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi-

sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994)

etc.

Even though most of the methods can be brought under automation, any of

the method stated above could not fully recover the true periods. The wrong

detection of period can be due to several reasons such as power leakage to

other frequencies which is due to finite total interval, finite sampling interval

and finite amount of data. Another problem is aliasing, which is due to the

influence of regular sampling. Also spurious periods appear due to long gaps

and power flow to harmonic frequencies is an inherent problem of Fourier

methods. Hence obtaining the exact period of variable star from it’s time

series data is still a difficult problem, in case of huge databases, when subjected

to automation. As Matthew Templeton, AAVSO, states “Variable star data

analysis is not always straightforward; large-scale, automated analysis design

is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of



xvi

huge amount of data in these databases is quite challenging, even when looking

at seemingly small issues such as period determination and classification”.

It will be beneficial for the variable star astronomical community, if basic

parameters, such as period, amplitude and phase are obtained more accurately,

when huge time series databases are subjected to automation. In the present

thesis work, the theories of four popular period search methods are studied, the

strength and weakness of these methods are evaluated by applying it on two

survey databases and finally a modified form of cubic spline method is intro-

duced to confirm the exact period of variable star. For the classification of new

variable stars discovered and entering them in the “General Catalogue of Vari-

able Stars” or other databases like “Variable Star Index“, the characteristics

of the variability has to be quantified in term of variable star parameters.

Chapter 1 gives a brief account of variable stars, their types, sampling

constraints in astronomical time series, challenges in astro-time series analysis

and some problems faced under automation. A short review of the existing

period search methods are also included. Some of the characteristic light curves

are also shown.

Chapter 2 reviews the parametric period search methods such as Gener-

alised Lomb-Scargle periodogram(GLSP) and Significant Spectrum(SigSpec).

We show the results of applying GLS periodogram and SigSpec on some sample

data and justify the need for improvement of methods, while doing automa-

tion. For our convenience, we have re-coded SigSpec package into FORTRAN

and is given in appendix A.1.

Chapter 3 reviews the non-parametric period search methods such as

Phase Dispersion Minimisation and Cubic Spline method. Cubic spline method

is modified with unequally spaced knots, which is used for period confirmation.

The Modified Cubic Spline(MCS) method is coded in FORTRAN and is given

in appendix B.1.
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Chapter 4 shows the results of sequential application of PDM method

and MCS method, for the period search of ASAS (All Sky Automated Survey)

database. The new results include improved periods, entirely different periods

and harmonic periods, when compared to the published catalogue. The results

are tabulated and the corresponding light curves are shown.

Chapter 5 shows the results of application of the SigSpec/GLSP followed

by MCS for the period search of CRTS (Catalina Real-Time Transient Survey)

database. The results are tabulated and the corresponding light curves are

plotted.

Chapter 6 summarizes the substantial findings of the works presented in

the thesis and suggests future scopes of the work.

• Appendix A.1 contains the SigSpec method used for the automated

period search, written in FORTRAN. This program can be run by the

script in appendix C.1

• Appendix B.1 contains the modified cubic spline method written in

FORTRAN, used for the automated period confirmation.

• Appendix B.2 contain phase folding program written in FORTRAN,

which is needed for the automated running of MCS.

• Appendix C.1 is a bash script, used for the automated running of

SigSpec program written in appendix A.1.

• Appendix C.2 is a bash script used to select the best period from the

output file produced by sigspecf.for given in appendix A.1.

• Appendix C.3 is a bash script used to automate the running of MCS

program given in appendix B.1.

• Appendix C.4 is bash script for checking the time series input files for

any possible errors and to clean the data.
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Chapter 1

Variable stars and Light curves

1.1 Introduction

In this chapter, variable stars are briefly introduced, types of variable stars are

described, some typical light curves are shown, various astronomical surveys, which

produces variable star data are mentioned, astronomical time series are introduced.

Finally various period search methods are briefly discussed. Some common problem

faced by the data analyst, while doing period search are discussed.

1.2 Variable stars

For an observer on earth, stars that have a change in apparent brightness over time

are called variable stars. Theoretically saying, all stars becomes variable stars at

least a few times during their evolution. All stars display variations in brightness

during birth time and also at the death time. In between this evolution, stars will

change its position from the main sequence to the final stage, in the H-R diagram.

Even though our parent star, Sun exhibits minor spectroscopic and flare type varia-

tions, Sun is not considered as a variable star for us. But finally Sun will move from

the main sequence to become a red giant star and even well before that the human

beings has to be anticipate about this, for sustaining ‘life’in the universe. Studying

the variations on Sun-like stars will help to predict the future evolution of our Sun

from the current state.

In olden days, a star is considered variable, if the magnitude variation is de-

tectable to human eye and the order of the period is average human life. But with

the advent of modern sophisticated observation and detection techniques, the mag-

nitude of variable stars under study is extended to vary from 0.001 to 20 and the

period from seconds to several years. Also the depth of observation extends into
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other galaxies and globular clusters.

The variation in brightness may be regular (periodic), quasi periodic (semi-

periodic) or irregular manner (aperiodic) and are caused by various reasons. In

some cases, the variation is due to some internal thermo-nuclear processes, which

are generally known as intrinsic variables and in some other cases, it is due to some

external processes, like eclipse or rotation, which are known as extrinsic variables.

Intrinsic variables can be further grouped into pulsating variables, eruptive vari-

ables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and

chromospherical stars. Pulsating variables can again categorized into Cepheids, RR

Lyrae, RV Tauri, Delta Scuti, Mira etc, whose light variations are periodic in nature.

The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely oc-

curs and also not a periodic phenomenon. Most of the other variations are periodic

in nature.

International Astronomical Union (IAU) Division G Commission 27 (variable

star) and 42 (close binary star) are exclusively for Variable Stars and responsible

for maintaining General Catalogue of Variable Stars (GCVS), located at Sternberg

Astronomical Institute, Moscow. Information Bulletin of Variable Stars (IBVS),

Konkoly, Hungary periodically produces supplements to GCVS. The latest edition

of the General catalogue of Variable Stars (GCVS, 2013 [68]) lists nearly 47,969

variable stars. There are some dedicated variable star groups in other parts of the

world like AAVSO (American Association of Variable Star Observers), BAAVSS

(British Astronomical Association Variable Star Section).

1.2.1 Nomenclature of variable stars

Historically there were many schemes for naming variable stars, one of the most pop-

ular method of naming a variable star was using the Roman capital letters, starting

from R to Z (R,S,T,U,V,W,X,Y,Z), followed by Latin name of the constellation. For

example, W UMa (W Ursae Majoris). Thus initially there were only 9 options for

each constellation. Then the scheme is extended into RR to RZ, SS to SZ, etc., with

the condition that the second alphabet should be higher than the first alphabet.

Then total options became 54. Further extension of the scheme into AA to AZ, BB

to BZ, etc., omitting J, total options became 334 for each constellation. Most of the

variable star types are popular by this scheme. In this thesis, we use the position of

star, RA±DEC combination as variable star-ID and use the above discussed scheme

to identify the type of variable star.
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1.2.2 Importance of variable star research

Variable stars are speaking to us, about the mysteries of universe, as [43] says, by

changing their magnitude in a particular way. Those who study variable stars, tries

to understand the content of the speech, and interprets the hidden secrets of the stars

and universe. Our universe is not static and every change in the universe in any scale

is important in understanding the structure of universe. Determining the short-term

and long-term behaviour of stars is important in stellar astrophysics. Constructing

theoretical models (Wilson-Devinney model for eclipsing binaries) helps to derive

stellar properties like mass, radius, luminosity, temperature, internal and external

structure, chemical composition and evolution. Studying sun-like variable stars will

help us to predict the evolution of our sun, the variations on which will greatly

affect the human life on earth. These kind of predictions will be much benefited for

the future generations on earth. Another important usage is to classify the variable

stars into different categories, which is an indication of our broad knowledge about

the universe.

1.2.3 Astronomical time series

Variable stars can be observed through many ways such as photometry, spectropho-

tometry and spectroscopy. A sequence of photometric observations produce a

time series with three columns data with time, magnitude and error. SExtrac-

tor(Source Extractor) (astromatic.net/software/sextractor) is a program that

builds a catalogue of objects from an astronomical image. ISIS(image-subtraction)

(http://www2.iap.fr/users/alard/package.html) is a package to process a se-

ries of CCD images using the image subtraction method to generate time series and

light curves. By analysing this astronomical time series, the period, amplitude and

the phase of variable star oscillations can be estimated. Spectroscopic observations

on variable stars reveal the spectral type, chemical composition, luminosity class

etc.

Astronomical time is usually recorded in Julian date(JD) format or other vari-

ations of it like Modified Julian date(MJD) or Heliocentric Julian date(HJD). The

Julian date format is “JD” followed by 7 digits, then a decimal point, followed by 6

digits. JD is continuous count of days and fractions since noon at Greenwich on 1

January 4713 BC, before which, it is believed that no scientific observations exist. JD

2450000.000000 corresponds to year 1995 and 2460000.000000 corresponds to year

2023, hence for observations during these years, JD245 is usually not recorded and

only the remaining 4 digits, decimal point and remaining 7 digits are only recorded.

Apparent magnitude (mostly V magnitude) is measured by comparing brightness
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with magnitude of a nearby non-variable star of known magnitude. Error is related

with various conditions of measuring magnitudes. In astronomy, an ‘epoch’ is a

moment in time for which celestial coordinates or orbital elements are specified. In

the case of celestial coordinates, the position at other times can be computed by

taking into account precession and proper motion.

1.2.4 Time series analysis

Time series analysis is the application of mathematical and statistical tests on time

varying data, to quantify the variation through the extraction of some parameters,

and to use that parameters to learn something about the behaviour of the system. In

other words, the goal of time-series analysis is to gain some physical understanding of

the system under observation: what makes the system time variable?, what makes

this system different than other systems with similar variability?, etc. Once the

current state of the system is well understood, then the next aim is to forecast or

predict future behavior of the system. If the system deviates from the prediction,

then the reasons for the deviation has to be found out and corrections has to be

added recursively for further forecasting of time varying systems. In the real world,

there are many types of time series, like economic time series, marketing time series,

climate time series, time series in communication and digital signal processing etc.

There are many statistical methods and standard tools like R-package, SPSS, PSPP

etc. for analysing these time series.

1.2.5 Problems with astronomical time series

The astronomical time series is significantly different from the usual statistical time

series mainly due to the unevenly spaced time instants, varying error conditions and

also due to the possibility of big gaps. The majority of astronomical measurements

cannot be taken continuously and evenly over long periods of time due to several

reasons. For ground based observations, daily varying daylight and the weather

conditions are unavoidable sources of varying errors. If the observation is taken

from space, the measured magnitude may suffer from the impact of cosmic ray

particles on CCD. These kinds of stray light corruptions occasionally producing

data points beyond repair [62], [26]. Also when observations taken at different times

and various geographically located telescopes are combined, then also long time

gaps and normalisation problem can appear in the resulting time series. Hence the

commonly available statistical time series analysis methods can’t be directly applied

on astronomical time series and extract correct information from it. Obtaining

the exact period and other parameters of variable star from it’s luminosity-time
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series data is still a difficult problem, in case of huge databases, when subjected to

automation [25].

1.2.6 Light curve (LC) and Phased Light curve (PLC)

A light curve (LC) is a X-Y plot of a variable star’s apparent magnitude versus time,

with the time is plotted on the X-axis and the inverted magnitude is plotted on the

Y-axis. Then the increase along the Y-axis shows increase in brightness and the

maxima (highest points) correspond to the brightest magnitudes the star attains.

The time required for one complete oscillation of the light curve is known as the

period T .

If the period T is known or assumed, then the time series can be folded on period

T , so that the phase is given by

phase =
(tk − t0)

T
− Integer part of

(

tk − t0
T

)

= Fractional part of

(

tk − t0
T

)

where t0 is the initial epoch of the variable star observation and tk is the time instants

of observations. Phase is defined as the fractional portion of the number of periods,

which have elapsed since a given epoch. The value of phase Φ now will be in between

0.0(start of a period) and 1.0(end of a period). Now the plot between phase and

inverted magnitude is known as phased light curve (PLC). Usually phase is extended

beyond 0.0 or 1.0, by simply repeating the structure, so that any discontinuity at

the boundaries can be checked.

If the folded period T is exact, good shaped, minimum scattered PLC is ob-

tained. The shape of PLC is a unique characteristic of each type of variable star.

Familiarising the shape of the PLC and identifying the variability type is one of the

criterion for showing the experience of a variable star researcher.

1.2.7 Astronomical variability surveys

There exist huge amount of observational time series data of variable stars, from

various survey observations, which are given below. Even though some of these

survey data are collected for different purposes, they also produce variable star

time series data. The data analysis on these time series can lead to the discovery

of interesting new objects and variable stars. In the near future, more data are

expected to come from many surveys and astro-time series data analysis is expected

to be a prospectus research area.

• ASAS (All Sky Automated Survey – detection of photometric variability)

(astrouw.edu.pl/asas/ ).
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• MACHO (MAssive Compact Halo Objects – search for dark matter by gravi-

tational lensing) (macho.anu.edu.au/ ).

• EROS (Expérience pour la Recherche d’Objets Sombres – search for and study

of dark stellar bodies by their gravitational microlensing effects on stars)

(eros.in2p3.fr/ ).

• OGLE (Optical Gravitational Lensing Experiment – search for dark matter

by gravitational microlensing) (ogle.astrouw.edu.pl/ ).

• ROTSE (Robotic Optical Transient Search Experiment – searching gamma-ray

bursts)(rotse.net/ ).

• The PLANET Collaboration (Probing Lensing Anomalies NETwork – detect-

ing and characterising microlensing anomalies) (bustard.phys.nd.edu/MPS/

).

• MISAO Project (Multitudinous Image-based Sky-survey and Accumulative

Observations – making use of images in the world for new object discover-

ies and data acquisition of known objects)(aerith.net/misao/ ).

• Pan-STARRS(Panoramic Survey Telescope And Rapid Response System - as-

teroids, comets, variable stars)(pan-starrs.ifa.hawaii.edu/public/ ).

• PASS (Permanent All Sky Survey)(iac.es/proyecto/pass/).

• XO Project (Photometric search for Jovian planets transiting very bright

stars)(http://www-int.stsci.edu/ pmcc/xo/index.shtml).

• LINEARdb (The LINEAR Survey Photometric

Database)(https://astroweb.lanl.gov/lineardb/).

• NSVS (Northern Sky Variability Survey) (http://skydot.lanl.gov/nsvs/nsvs.php).

• HATNet (Hungarian-made Automated Telescope)

(https://www.cfa.harvard.edu/ gbakos/HAT/index.html).

• SuperWASP (Wide Angle Search for Planets) (superwasp.org/index.html).

• MOA (Microlensing Observations in Astro-

physics)(www.physics.auckland.ac.nz/moa/).

• MEGA (Microlensing Exploration of the Galaxy Andromeda – microlensing

search targeting M31) (http://user.astro.columbia.edu/ arlin/MEGA/).
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• SAVS (Semi-Automatic Variability Search)

(astri.uni.torun.pl/ gm/SAVS/).

• LSST (Large Synoptic Survey Telescope - variable sources, Transient

alerts)(lsst.org/lsst ).

• ESA mission Gaia (Global Astrometric Interferometer for

Astrophysics – three-dimensional map of the Milky Way)

(sci.esa.int/science-e/www/area/index.cfm?fareaid=1 ).

• HIPPARCOS (HIgh Precision PARallax COllecting

Satellite – mission of the European Space Agency)

(rssd.esa.int/index.php?project=HIPPARCOS&page=index).

• CoRoT (COnvection ROtation et Transits planetaires)

(esa.int/Our Activities/Space Science/COROT).

• Kepler mission by NASA (http://kepler.nasa.gov/).

• The CRTS(Catalina Real-Time Transient Survey – large scale synoptic survey,

to detect and classify all types of variability’s in the sky) (crts.caltech.edu).

1.2.8 Taxonomy of variable stars

Variable stars are grouped according to the astrophysical reasons for variability, light

curve shapes and other characteristic parameters. Generally variable stars divided

into two groups: intrinsic and extrinsic.

The stars, which vary in brightness, due to some internal process belong to

intrinsic groups. Stars in this group vary in brightness as they expand and contract,

heat and cool. Examples are eruptive variables like supernovae, novae, dwarf novae

and pulsating variables.

If the brightness variation is due to some external influence, they belong to

extrinsic groups, which include eclipsing binary and rotating variables.

The intrinsic groups can be again categorized into periodic, non-periodic and

semi-periodic variables. The periodic variables are those stars, whose brightness

varies in a regular, repeated way as a function of time. Intrinsic periodic variables

are the pulsating stars like Cepheid, RR Lyrae stars etc. All extrinsic variables are

generally periodic.

Non-periodic or irregular variable stars are those stars, whose brightness varies

irregularly with time, such as supernovae, novae etc. Irregular variables have no

apparent periodicity in their light curves



8 Variable stars and Light curves

Semi-periodic variables are stars having some irregularity and also periodicity.

Example is Z UMa. The semi-regular class of variable stars are long period variables

whose light curves exhibit additional complexities beyond those of the well-behaved

regular variables. For instance, a semi-regular variable might have an average period

of 150 days, meaning that on an average, successive maxima are roughly 150 days

apart. Here some maxima separation might be 100 days, while others might be 200

days.

The most abundant types of variable stars are eruptive variables, pulsating vari-

ables, rotating variables, cataclysmic variables, and eclipsing binary systems. Ac-

cording to fourth edition of GCVS catalogue, there are 7 types of variable stars and

within each type, there exist many sub-types[68] as shown below.

• Eruptive (FU, GCAS, I, IA, IB, IN, INA, INB, INT, IT, IN(YY), IS, ISA, ISB,

RCB, RS, SDOR, UV, UVN, WR)

• Pulsating (ACYG, BCEP, BCEPS, CEP, CEP(B), CW, CWA, CWB, DCEP,

DCEPS, DSCT, DSCTC, GDOR, L, LB, LC, M, PVTEL, RPHS, RR, RR(B),

RRAB, RRC, RV, RVA, RVB, SR, SRA, SRB, SRC, SRD, SXPHE, ZZ, ZZA,

ZZB),

• Rotating (ACV, ACVO, BY, ELL, FKCOM, PSR, SXARI)

• Cataclysmic (explosive and nova-like) variables (N, NA, NB, NC, NL, NR, SN,

SNI, SNII, UG, UGSS, UGSU, UGZ, ZAND)

• Eclipsing binary systems (E, EA, EB, EW, GS, PN, RS, WD, WR, AR, D,

DM, DS, DW, K, KE, KW, SD)

• Intense variable X-ray sources (X, XB, XF, XI, XJ, XND, XNG, XP, XPR,

XPRM, XM)

• Other symbols (BLLAC, CST, GAL, L:, QSO, S, *, +, :)

• The new variability types (ZZO, AM, R, BE, LBV, BLBOO, EP, SRS, LPB)

for more details see GCVS [68]. Several types of variable stars are briefly described

below with some of the characteristic light curves.

1.2.9 Pulsating variables

Pulsating stars undergo periodic expansion and contraction of their surface layers

called pulsations. The pulsations may be radial or non-radial. A radially pulsating



1.2 Variable stars 9

star remains spherical in shape, while in the case of non-radial pulsations the star’s

shape periodically deviates from a sphere, and even neighboring zones of its surface

may have opposite pulsation phases. Depending on the period, mass and evolution-

ary status of the star, and also on the scale of pulsational phenomena, the pulsating

variables can be again sub-classified into Mira’s and semi regular variables, Cepheids,

RV Tauri stars, RR Lyrae, RV Tauri, δ-Scuti etc (astro.utoronto.ca/ percy/var.html).

• Cepheids: These stars have periods of 1-70 days with amplitudes of variation

from 0.1 to 2.0 magnitudes. Cepheids obey a strict period-luminosity rela-

tionship, with higher luminosity Cepheids having longer periods. Therefore,

by measuring the period of a Cepheid variable, its luminosity is obtained and

from the relation between apparent brightness and luminosity, the distance be-

tween observer and Cepheid is calculated. This is the method used to measure

distance to the galaxies and globular clusters and hence Cepheids are known

as standard candles of the universe. The typical light curve of a Cepheid is

shown in Figure 1.1.

• RR Lyrae stars: These stars have periods of 0.2-1.2 days with amplitudes of

variation from 0.3 to 2 magnitudes. These pulsating variables are white giant

stars. These can again sub-divided into RRab, RRc etc. The typical light

curve of a normal RR Lyrae is shown in Figure 1.2.

• RV Tauri stars: These stars have periods of 30-150 days with amplitudes of

variation up to 3.0 magnitudes. They are yellow supergiants.

• Long Period Variables (Mira): These stars have periods of 80-1000 days with

amplitudes of variation from 2.5 to 5.0 magnitudes. They are giant red vari-

ables.

• Delta Scuti variables: They are low amplitude variables. Some have ampli-

tudes of nearly one magnitude and regular light curves like some of the RR

Lyrae stars and Cepheid variables. Others have complex LC’s and multiple

periods with milli-magnitude light variations. The pulsations of delta scuti

stars are important in studying the interior structure of the star and comes

under asteroseismology. The typical light curve of a delta scuti is shown in

Figure 1.3.

• Semi regular stars: These stars have periods of 30-1000 days with amplitudes

of variation from 1.0 to 2.0 magnitudes. They are giants and supergiants

displaying periodicity superimposed with intervals of irregular light variation.



10 Variable stars and Light curves

Figure 1.1: Light curve of Cepheid: Courtsey Google

• Small-Amplitude Pulsating Red Giants (SAPRGs): These stars have periods

of 5-100 days with amplitudes of variation from 0.05 to 1 magnitude. As their

name (also called small-amplitude red variables) suggests, these stars are red

giants. Due to their instability, a majority of red giants physically expand

and contract (pulsate) periodically as a result of convective processes. The

pulsations may be radial or non-radial and these stars may be multi-periodic.

Type Period in
days

Amplitude
in mag

Cepheid 1-70 0.1-2.0
RR Lyrae 0.2-1.2 0.3 to 2
RV Tauri 30-100 up to 3.0
Mira 80-1000 2.5-5.0
Semiregular 30-1000 1.0-2.0

Table 1.1: Typical period and amplitude range of some type of variable stars

1.2.10 Eruptive stars

These stars show brightness variation because of violent processes and flares occur-

ring in their chromospheres and coronae, usually accompanied by shell ejections or
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Figure 1.2: Light curve of RR Lyrae: Courtsey CRTS

Figure 1.3: Light curve of δ-Scuti : Courtsey CRTS
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mass outflow in the form of stellar winds of variable intensity and/or by interaction

with the surrounding interstellar medium. The most common types of eruptive vari-

ables are: Supernovae, Novae, Recurrent Novae, Dwarf Novae, Symbiotic Stars, R

Coronae Borealis Stars, Flare Stars, T Tauri variables.

• Supernovae: These stars show sudden, dramatic, and final magnitude increases

as a result of a catastrophic stellar explosion. Thus, there is no period, and

amplitudes of variation are 20+ magnitudes.

• Novae: These close binary systems consist of a main sequence, Sun-like star

and a white dwarf. They increase in brightness by 7 to 16 magnitudes in a

matter of one to several hundred days. After the outburst, the star fades slowly

to its initial brightness over several years or decades. Periods are typically 1-

300+ days, and amplitudes of variation are 7-16 magnitudes.

• Recurrent Novae: These objects are similar to novae, but have two or more

slightly smaller-amplitude outbursts during their recorded history. Periods are

1-200+ days, and amplitudes of variation are 7-16 magnitudes.

• Dwarf Novae: These are close binary systems made up of a Sun-like star, a

white dwarf, and an accretion disk surrounding the white dwarf. The accretion

disk ”erupts” every few weeks. The typical light curve of a Dwarf Novae is

shown in Figure 1.4.

• Symbiotic Stars: These close binary systems consist of a red giant and a hot

blue star, both embedded in nebulosity. They show nova-like outbursts, up to

three magnitudes in amplitude, and are semi-periodic.

• R Coronae Borealis Stars: These are rare, luminous, hydrogen-poor, carbon-

rich, variables that spend most of their time at maximum light, occasionally

fading as much as nine magnitudes at irregular intervals. They then slowly

recover to their maximum brightness after a few months to a year.

• Flare Stars: Also known as UV Ceti stars, these are intrinsically faint, cool,

red, main-sequence stars that undergo intense outbursts from localized areas of

the surface. The result is an increase in brightness of two or more magnitudes

in several seconds, followed by a decrease to its normal minimum in about 10

to 20 minutes.
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Figure 1.4: Light curve of dwarf novae : Courtsey CRTS

1.2.11 Rotating variables

These variables have non-uniform surface brightness and/or ellipsoidal shapes, whose

variability is caused by axial rotation with respect to the observer. The non-

uniformity of surface brightness distributions may be caused by the presence of

spots or by some thermal or chemical inhomogeneity of the atmosphere caused by a

magnetic field whose axis is not coincident with the rotation axis. These stars can

be subdivided into various types. eg: pulsars, elliptical stars and magnetic variables.

In rotating variable stars, variation in brightness is usually small and results in the

rotation of the star exposing dark or bright spots, or patches (”starspots”) on its

surface.

1.2.12 Cataclysmic (explosive and nova-like) variables

Cataclysmic variables show outbursts caused by thermonuclear bursts on their sur-

face layers (novae) or deep in their interiors (supernovae). It is often referred as

“nova-like” for variables that show nova-like outbursts caused by rapid energy re-

lease in the surrounding space (UG-type stars) and also for objects not displaying

outbursts but resembling explosive variables at minimum light by their spectral

characteristics. Most of cataclysmic variables are close binary systems which com-

ponents have strong mutual influence on the evolution of each star. Generally hot,

dwarf component is surrounded by an accretion disk made from the matter lost

by its cooler and more extended companion. Eg: dwarf novae, classic novae and

supernovae.
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1.2.13 Eclipsing variables

Two or more stars revolving around common centre of mass, sometimes eclipse one

another, for an observer on earth. In the case of two component stars or binary

stars, the orbital plane should be close to the observer’s line of sight so that the

components periodically eclipse each other. Consequently, the observer finds changes

of the apparent combined brightness of the system with the period coincident with

that of the components orbital motion. There are three ways of classifying eclipsing

binary systems taking into account shape of the light curve, physical characteristics

of components (their luminosity classes) and degree of their Roche lobe filling as

follows.

• EA ( Detached eclipsing binary, Algol, β−Persei) Binaries with spherical or

ellipsoidal components. Since they are detached, it is possible to specify, from

their light curves, the moments of the beginning and end of the eclipses. Be-

tween eclipses the light remains almost constant because of reflection effects

or physical variations. Secondary minima may be absent. An extremely wide

range of periods is observed, from 0.2 to 10000 days. Light amplitudes are also

quite different and may reach several magnitudes. The typical light curve of

an Algol is shown in Figure 1.7.

• EB ( Semi detached eclipsing binary, β−Lyrae) These are eclipsing binaries

having ellipsoidal components and light curves for which it is impossible to

specify the exact times of onset and end of eclipses, since they are semi-

detached. The secondary minimum is observed in all cases, whose depth is

considerably smaller than that of the primary minimum. The periods are

larger than 1 day. The light amplitudes are usually less than 2 magnitude in

V band. The typical light curve of a β−Lyrae is shown in Figure 1.6.

• EW (Contact eclipsing binary, W Ursae Majoris) These are having periods

shorter than 1 day and consisting of ellipsoidal components almost in contact.

From the light curves, it is impossible to specify the exact times of onset and

end of eclipses, since they are contact binaries. The depths of the primary

and secondary minima are almost equal. The light amplitudes are usually less

than 0.8 mag in V band. The typical light curve of a W UMa is shown in

Figure 1.5.
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Figure 1.5: Light curve of contact eclipsing binary : Courtsey CRTS

Figure 1.6: Light curve of semi detached eclipsing binary : Courtsey CRTS
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Figure 1.7: Light curve of detached eclipsing binary : Courtsey CRTS

1.2.14 X-ray variables

These are formed by close binary systems which are sources of strong variable X-ray

emission, which can’t be attributed to any other variable star mechanism and most

often, they are optically variable too. The primary component is a hot compact

object (white dwarf, neutron star, or a black hole). The X-ray emission is caused

by matter falling onto the compact object or its accretion disc. The X-rays then

irradiate the companion star causing a variety of effects such as bursts, spectral

variations or even eclipses.

1.2.15 Unique variables

In addition to the variable-star types described above, rest of the variables belong

to unclassified variables, which do not have a generalized behaviour.

1.3 Various period search methods

Efficiency of period search methods can be evaluated according [42] to the following

criteria:

• Is the method based on the Fourier analysis or based on the folding process

with trial periods?

• Is the method depend on prior information of the statistical distributions of

time series?
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• How much percentage of data is used by the method?

• Is the method addresses the non-harmonicity, multi-periodicity, drifts, trends

etc., which may contribute to frequency dependent spectra?

• How the irregularities in the data spacing (especially long gaps) influence spec-

tra?

• How the regularities in the input data (periodic gaps) influence spectra?

• How the method treats the gaps in phase distributions?

• How precisely the period estimates can be computed?

• Can the method be used for searching complex patterns on the phase diagram?

• Is it possible to use weights to take into account different quality of data

points?

• How robust is the method against outliers in the data?

• Is the numerical computation allows easy programming and modifications?

• What is the average time, required for the analysis of one time series data?

It is found that designing a period search method, which will consider all the

above criteria, will be extremely complicated. Most of the existing period search

methods are based on a compromise between speed, flexibility, robustness and sen-

sitivity of the algorithms.

Most of the approaches existing at present to extract frequencies from a variable

star’s time series data are listed at the Geneva University website1. Many of them

are based on the Discrete Fourier Transform (DFT) or variations of it, which can

be regarded as a correlation between the measured time series and trigonometric

functions – sines and cosines, with frequency as the independent parameter. The

consideration of cosine and sine to represent a two-dimensional Fourier vector defines

the Fourier space, and the normalisation of the cosine and sine covariances provides

the length of the Fourier vector to return the signal amplitude. A plot of amplitude

versus frequency is termed as the amplitude spectrum of the time series. Peaks

in an amplitude spectrum indicate frequencies where the data set correlates better

with the trigonometric functions than elsewhere, and the idea of period detection

is to assume that the highest peaks indicate signals produced by the star, whereas

the lower peaks are due to random measurement errors and are frequently called

1obs.unige.ch/~eyer/VSWG/tools.html
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noise. The simplest method to distinguish between signal and noise is to average

the amplitudes over a certain frequency range and to compare the peak amplitude

to this environmental mean (Breger et al. [17] ). One of the potential drawbacks

of employing such a signal-to-noise ratio is that it depends on the frequency range

used for averaging and – more critically – on (yet) unresolved signal components

hidden in the noise.

The problem of finding the appropriate noise level in the amplitude spectrum –

or the degree of randomness in a time series – was addressed by several authors pro-

viding different solutions. Some introduce corrections to the DFT itself, such as the

Lomb-Scargle Periodogram ([49], [70]) or the Date Compensated DFT ([34]), others

apply statistical methods such as ANOVA analysis ([72],[73]). Several variations of

Lomb-Scargle Periodogram exists, such as Generalized Lomb-Scargle Periodogram

(GLS) introduced by Zechmeister [82], which is also a very useful implementation.

Francois Mignard’s FAMOUS(ftp://ftp.obs-nice.fr/pub/mignard/Famous/ is a

method, which uses a sinusoidal model to fit the data with the amplitude coefficients

being either constant or a polynomial in time. The string-length method was intro-

duced by Lafler and Kinman ([46]), which minimized the length of the light curve.

A completely different way of period detection is the systematic examination of

phased light curves modulo different periods and to determine the best-fitting pe-

riod by minimising the intrinsic scatter of the phase plot. The most common formal

representation is the Phase Dispersion Minimization (PDM) by Stellingwerf ([77]).

This method does not require any initial assumption on the shape of the periodicity

and works also for non-trigonometric signals.

There are some useful software packages like

• PERIOD04 (www.univie.ac.at/tops/Period04/)

• PERANSO (www.tonnyvanmunster.ipage.com/peranso/downloads.htm)

• AVE (www.astrogea.org/soft/ave/aveint.htm)

• Vstar (www.citizensky.org/content/vstar)

• VARTOOLS (www.astro.princeton.edu/∼jhartman/vartools/vartools1.202.tgz)

• MUFRAN (www.konkoly.hu/tifran)

But they require human supervision and intervention in between, so that they be-

come extremely time-consuming if applied to huge time series databases.
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1.4 Problems with detected periods

Whatever be the period detection technique, if the detected period is exact, the

intrinsic scatter of a phased light curve will attain a minimum and gives better light

curves. Most of the methods described above are effective upto certain extend in

finding the “true” or “exact” periods, but the final results are mixed with spurious,

alias or harmonic periods with highly significant statistic. The irregular sampling

can eliminate the aliasing and well defined statistic may eliminate spurious periods.

The sub-harmonic averaging introduced in PDM by Stellingwerf([77]) in the latest

version, can eliminate the wrong harmonic periods. But when a common method is

applied to all data files in a database, under automation, the individual monitoring of

time series data becomes time consuming and laborious and most of these problems

persist in the output.

In the case of eclipsing binaries, the work by [25] shows that the improvement in

the fifth decimal place in the period value, can give well defined phased light curve,

atleast in some cases.

Several authors select few known (for eg: Huijse([41]) choose a subset of 3 types)

types of variable stars from a database and achieved the high automation accuracy.

But our attempt is to design a general method and use the total database for the

period search on any type of variable stars.

This thesis work is an attempt to confirm the exact period of any type of variable

stars, with the modified cubic spline method, when applied to huge databases, under

automation. The detected exact period permits to identify the type and amount

of variability and also to deduce many other important astrophysical parameters.

The Fourth Variable Star Working Group meeting held at Geneva Observatory,

Switzerland in 2005, specified about the period search benchmarks [33]2, which

includes the format of time series data, various period search methods, classification

methods and tools and documents. Several papers (Blomme([14]),Dubath([31]) and

Debosscher[26]) state that pre-processing such as de-trending the time series and

removing the outliers will improve the period detection. [26]

1.5 Sampling constraints and Period search range

For an ideal time series, the data should be sampled in a moderate way. The under

sampling may cause to skip the real period and oversampling wastes CPU time.

Even sampling causes aliasing (daily observation causes 1 cycles per day alias) and

uneven sampling or gaps produce spurious effects. Most of the statistical time series

2obswww.unige.ch/~eyer/VSWG/tools.html
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analysis tools developed without anticipating the non-uniform sampling as in the

case of astronomical observations. As per Templeton M. 3, the total time span of

the time series and the average sampling interval are the factors deciding the period

search range and resolution. In astronomical time series, the observers have no

control over the observation and has to deal with the obtained time series.

1.6 Conclusion

In this chapter, the scope and importance of variable star research and period anal-

ysis methods are discussed. Even with all constraints on astro-time series data, the

data analyst has to recover exact information through time series analysis, which re-

quire statistical, numerical and computational skills are required, in addition to the

domain knowledge from astrophysics. Also the automated period search methods

are required in the modern era of peta-bytes of variable star data.

3aavso.org



Chapter 2

Parametric period search

methods

2.1 Introduction

In this chapter, the popular period search method Lomb-Scargle periodogram (LSP)

is derived in two different ways. First the LSP is derived as least squares trigonomet-

ric fitting, similar to the efforts by Scargle [70] and Zechmeister [82] and secondly,

on the basis of discrete Fourier transform(DFT) and probability theory, as pointed

out by Reegen [62]. Then the equations for generalised Lomb-Scargle periodogram

(GLSP) and Significant Spectrum (SigSpec) are given. The three methods LSP,

GLSP and SigSpec are used for the period search, and the results are given in chap-

ter 4 and chapter 5. The SigSpec method is coded in FORTRAN and is given in

Appendix A.1. The script for automated running of SigSpec is given in Appendix

C.1 and C.2.

In order to analyse gaped and distorted astronomical time series data, the widely

used method is the periodogram analysis. The periodogram is like an amplitude

power spectrum, which gives the dominant frequencies (and hence periods) present

in the unevenly spaced and gaped time series data. The periodogram was first

introduced by Arthur Schuster [71] as an estimate of the spectral intensity of a

signal. Later it was re-defined by Barning [11], Lomb [49], and then modified by

Scargle [70] and is known as LSP. There exist many variations of LSP, which are used

for period detection of variable stars and also for identifying exact signal frequencies

in many types of time-varying processes.
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2.2 Periodogram as least-squares sine fitting

Consider the time series tk, yk, ǫk, where tk is the time 1, yk is the apparent magnitude

of the variable star, ǫk is the error in the magnitude measurement and k = 1 . . . N ,

where N is the total number of measurements. Consider the most general oscillatory

or periodic model function 2, which is also suitable for the periodic time series.

y(tk) = A cos (ωtk − θ) (2.1)

where ω = 2πf so that f is the frequency corresponding to the variable star’s

oscillations or variations (so that period T=1/f , A is the amplitude of variation and

θ is the phase of the oscillation. By taking a = A cos θ and b = −A sin θ, the model

function eq.(2.1) becomes,

y(tk) = a cosωtk + b sinωtk (2.2)

Note that both the model functions eq.(2.1) and eq.(2.2), are mathematically

same. The least-squares error E(ω), which is the squared difference between the

data yk and the model function y(tk) is,

E(ω) =

N
∑

k=1

[yk − y(tk)]
2 (2.3)

has to be minimized for the best fit. For the minimum E(ω) the first partial deriva-

tives should vanish and we have,

∂E

∂a
= −

N
∑

k=1

2[yk − y(tk)] cosωtk = 0 (2.4)

∂E

∂b
= −

N
∑

k=1

2[yk − y(tk)] sinωtk = 0 (2.5)

1Usually the observational astronomical time stamping tk is in Julian date (JD) format as dis-
cussed in 1

2Zechmeister[82] introduced an additional offset c in the model y(tk) = a cosωtk + b sinωtk + c.
Instead of the offset c, the arithmetic mean ȳ of the data may be substituted, then the mean
subtracted data has to be used for computation of periods.
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N
∑

k=1

yk cosωtk =
N
∑

k=1

y(tk) cosωtk (2.6)

N
∑

k=1

yk sinωtk =

N
∑

k=1

y(tk) sinωtk (2.7)

Substituting from eq.(2.2), eq.(2.6) and eq.(2.7) becomes,

N
∑

k=1

yk cosωtk =
N
∑

k=1

(a cosωtk + b sinωtk) cosωtk (2.8)

N
∑

k=1

yk sinωtk =

N
∑

k=1

(a cosωtk + b sinωtk) sinωtk (2.9)

These equations can be written as,

Y C = aCC + bCS (2.10)

Y S = aCS + bSS (2.11)

where the following notations3 are used.

Y C =
N
∑

k=1

yk cosωtk, Y S =
N
∑

k=1

yk sinωtk (2.12)

CC =
N
∑

k=1

cos2 ωtk, SS =
N
∑

k=1

sin2 ωtk (2.13)

CS =

N
∑

k=1

cosωtk sinωtk (2.14)

The eq.(2.10) and eq.(2.11) can be written in matrix form as,

[

CC CS

CS SS

][

a

b

]

=

[

Y C

Y S

]

(2.15)

Solving for a and b, we get,

a =
Y C.SS − Y S.CS

CC.SS − CS.CS
=

Y C.SS − Y S.CS

|D| (2.16)

b =
Y S.CC − Y C.CS

CC.SS − CS.CS
=

Y S.CC − Y C.CS

|D| (2.17)

3Similar notations are used by Barning[11], Lomb [49], Scargle[70], Zechmeister [82]
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where

|D| =
∣

∣

∣

∣

∣

CC CS

CS SS

∣

∣

∣

∣

∣

= CC.SS − CS2 (2.18)

The minimum error E(ω) from eq.(2.3) can be written as,

E(ω) =

N
∑

k=1

[yk − y(tk)] [yk − y(tk)] (2.19)

=

N
∑

k=1

[yk − y(tk)] yk −
N
∑

k=1

[yk − y(tk)] y(tk) (2.20)

Using eq.(2.4) and eq.(2.5) the second term in the above equation should vanish

and we get

N
∑

k=1

[yk − y(tk)] y(tk) = 0 (2.21)

Therefore eq.(2.20) becomes,

E(ω) =

N
∑

k=1

[yk − y(tk)] yk (2.22)

=

N
∑

k=1

[yk − (a cosωtk + b sinωtk)] yk (2.23)

= Y Y − aY C − bY S (2.24)

where Y Y =
∑N

k=1 y
2
k. Substitute for a and b from eq.(2.16) and eq.(2.17), we get,

E(ω) = Y Y −
(

Y C2.SS + Y S2.CC − 2Y S.CS.Y C

|D|

)

(2.25)

The normalised periodogram is given by,

P (ω) =
Y Y − E(ω)

Y Y
=

(

Y C2.SS + Y S2.CC − 2Y S.CS.Y C

|D| .Y Y

)

(2.26)

=
1

Y Y. |D|
[

SS.Y C2 + CC.Y S2 − 2.CS.Y C.Y S
]

(2.27)

where |D| is given by eq.(2.18). One essential property of periodogram is that it

should be invariant 4 under time translation[70]; i.e. if the time tk is replaced by

4This is also an inherent property of Fourier transform
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(tk−τ), the periodogram should remain unchanged, where τ is a suitable offset time.

Thus to make eq. (2.27) time invariant and also in order to facilitate the statistical

description of the LSP spectrum, we will choose τ such that

CSτ = 0 (2.28)

After the introduction of τ , for every term, τ is used as subscript. Under the

condition CSτ = 0, the eq.(2.27) reduces to,

P (ω) =
1

Y Yτ . |D|
[

SSτ .Y C2
τ + CCτ .Y S2

τ

]

(2.29)

and the eq. (2.18) becomes,

|D| = CCτ .SSτ (2.30)

Substituting eq.(2.30) in eq.(2.29)

P (ω) =
1

Y Yτ

[

Y C2
τ

CCτ
+

Y S2
τ

SSτ

]

(2.31)

P (ω) =
1

∑N
k=1 y

2
k







[

∑N
k=1 yk cosω (tk − τ)

]2

∑N
k=1 cos

2 ω (tk − τ)
+

[

∑N
k=1 yk sinω (tk − τ)

]2

∑N
k=1 sin

2 ω (tk − τ)






(2.32)

by using the notations from eq.(2.14). This is the same periodogram given by Scargle

[70], except the normalisation factor 1/
(

∑N
k=1 y

2
k

)

instead of 1/2. Also when time

tk is replaced by (tk − τ), the time translation invariance is achieved as in Scargle

[70]. Then expression for τ is given by eq.(2.35).

2.2.1 Derivation of time-shift τ

From (2.28) CSτ = 0 implies,

CSτ =
N
∑

k=1

cosω(tk − τ) sinω(tk − τ) = 0 (2.33)

N
∑

k=1

(cosωtk cosωτ + sinωtk sinωτ)× (sinωtk cosωτ − cosωtk sinωτ) = 0 (2.34)



26 Parametric period search methods

Multiplying and simplifying, we get,

tan 2ωτ =

∑N
k=1 sin 2ωtk

∑N
k=1 cos 2ωtk

(2.35)

The effect of introducing time delay τ is that this pair of sinusoid would be

mutually orthogonal at sample times tk, and also adjusted for the potentially unequal

powers of these two basis functions, to obtain a better estimate of the power at

a frequency ω. The frequency ω with maximum P (ω) is taken as the strongest

frequency component, corresponding to the exact period.

2.3 Discrete Fourier transform

In this section, we review the basics of Fourier analysis, Fourier coefficients, Fourier

transform and Discrete Fourier transform (DFT) of a time series.

2.3.1 Fourier series and Fourier transform

Any finite single valued periodic function f(t), which is either continuous or pos-

sesses a finite number of finite discontinuities can be represented as the sum of

trigonometric functions as,

f(t) =
a0
2

+

∞
∑

n=1

[

an cos

(

2πnt

T

)

+ bn sin

(

2πnt

T

)]

(2.36)

This is known as Fourier series for f(t). The coefficients a0, an and bn are known

as Fourier coefficients and are given by

a0 =
2

T

∫ T

0
f(t)dt (2.37)

an =
2

T

∫ T

0
f(t) cos

(

2πnt

T

)

dt (2.38)

bn =
2

T

∫ T

0
f(t) sin

(

2πnt

T

)

dt (2.39)

Fourier series can be expressed in exponential form also as,

f(t) =
+∞
∑

n=−∞

dne
i 2πnt

T (2.40)
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where 2dn = an − ibn, d0 =
a0
2 . Substituting for an and bn, we get,

dn =
1

T

∫ T

0
f(t)e−i 2πnt

T dt. (2.41)

Using eq.(2.41) in eq.(2.40) we get

f(t) =

+∞
∑

n=−∞

[

1

T

∫ T

0
f(t′)e−i 2πnt′

T dt′
]

ei
2πnt
T . (2.42)

Since f(t) is periodic, the limits 0 to T can be replaced by −T/2 to −T/2, so

that,

f(t) =
+∞
∑

n=−∞

[

1

T

∫ T
2

−T
2

f(t′)e−i 2πnt′

T dt′

]

ei
2πnt
T (2.43)

When time period T → ∞, the pulse will not be repeated for a finite time. The

pulse under this condition behaves like an isolated pulse. As T → ∞, the frequency

ν = 1
T

→ 0. The frequency becomes infinitesimally small and may be written as

∆ω. Then, ω = 2πn
T

and ∆ω = 2π
T
.

f(t) =

+∞
∑

n=−∞

[

∆ω

2π

∫ T
2

−T
2

f(t′)e−iωt′dt′

]

eiωt. (2.44)

In the limit T → ∞, the sum represented by
∑

n is replaced by an integral as

the unit change in n produces infinitesimal changes in ω and the eq.(2.44) becomes,

f(t) =
1

2π

∫ +∞

−∞
dω

[
∫ +∞

−∞
f(t′)e−iωt′dt′

]

eiωt (2.45)

This is known as Fourier integral and let the term inside the square bracket is

denoted by F (ω). Then,

f(t) =
1

2π

∫ +∞

−∞
F (ω)eiωtdω (2.46)

F (ω) =

∫ +∞

−∞
f(t)e−iωtdt (2.47)

and F (ω) is the Fourier transform of f(t).
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2.3.2 Impulse function

The impulse function or Dirac function is defined such that,

δ (x) = 0, x 6= 0 (2.48)
∫ +∞

−∞
δ (x) dx = 1 (2.49)

This δ (x) function can be used in case of peak-like functions. Some important

properties of the δ (x) function are,

• Shifting property
∫ +∞

−∞
δ (x− a) f (x) dx = f (a) (2.50)

• Symmetry property

δ (x) = δ (−x) (2.51)

• Scaling property

δ (ax) =
1

|a|δ (x) (2.52)

2.3.3 Fourier transform (FT)

Time series can be viewed from two complementary standpoints:

• The time domain

• The frequency domain

The observer views and records the variable star magnitude variations in the time

domain. But the mathematical analysis becomes simpler under frequency domain.

This is true with most of the phenomena in the nature. Any complex signal can be

fully described in either of these domains and we can go between the two domains

with the help of Fourier transform.

Let f (t) be arbitrary complex valued generalized function of a real argument t.

Then its Fourier transform is defined as,

F (ν) =

∫ +∞

−∞
f (t) e−i2πtνdt (2.53)

In general F (ν) is also complex valued generalized function, but the argument

ν is still real. Corresponding inverse Fourier transform is defined as,

f (t) =

∫ +∞

−∞
F (ν) ei2πνtdν (2.54)
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Thus f (t) are now described as integrals (or sums in case of discrete valued

functions) over the peaks in F (ν). The Fourier transform is thus an algorithm to

analyse peaks F (ν) and inverse Fourier transform synthesizes f (t) from peaks.

In the case of variable star observations, the obtained data is in the form of

sampled or discretised waveforms, and hence finite sums has to be used instead of

integrals, then it is known as DFT.

2.3.4 Fourier coefficients of disrete-time Fourier series

A real, N−periodic, discrete-time signal y[n] can be represented by a linear combi-

nation of the complex exponential signals

ej0ω0n = 1, ejω0n, ej2ω0n, · · · , ej(N−1)ω0n

as

y[n] =
N−1
∑

k=0

cke
jkω0n (2.55)

In these expressions,j =
√
−1 , and the discrete-time fundamental frequency

is ω0 = 2π
N
. This discrete-time Fourier series representation provides notions of

frequency content of discrete-time signals, and it is very convenient for calcula-

tions involving linear, time-invariant (LTI) systems because complex exponentials

are eigenfunctions of LTI systems. The complex coefficients c0, c1, · · · , cN−1can be

calculated from the expression

{ck} =
1

N

N−1
∑

n=0

y(n)e−jkω0n, k = 0, 1, 2, · · · , N − 1 (2.56)

The c′ks are called the spectral coefficients of the signal y[n]. A plot of |ck|
versus k is called the magnitude spectrum of y[n], and a plot of arg|ck| versus k is

called the phase spectrum of y[n]. These plots, particularly the magnitude spectrum,

provide a picture of the frequency composition of the signal. Notice that the spectral

coefficients repeat as k is varied. In particular, for any value of k,
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{ck+N} =
1

N

N−1
∑

n=0

y(n)e−j(k+N)ω0n (2.57)

=
1

N

N−1
∑

n=0

y(n)e−jkω0ne−jN 2π
N

n (2.58)

=
1

N

N−1
∑

n=0

y(n)e−jkω0n (2.59)

= ck (2.60)

The Fourier coefficients ck can be split as

a(ω) =
N−1
∑

k=0

yk cosωtk (2.61)

b(ω) =
N−1
∑

k=0

yk sinωtk (2.62)

The corresponding variances are,

〈

a2
〉

(ω) =
〈

y2
〉

(

N−1
∑

k=0

cosωtk

)2

(2.63)

〈

b2
〉

(ω) =
〈

y2
〉

(

N−1
∑

k=0

sinωtk

)2

(2.64)

2.4 Time series and Probability theory

In this section, assume that the time series is generated by a Gaussian random

process with population variance 5
〈

y2
〉

. In time-domain, the characteristic equation

for Gaussian distributed probability density function (here after PDF) φ (yk) is,

φ (yk) =
1

√

2π 〈y2〉
e
−

(

y2
k

2〈y2〉

)

(2.65)

where
√

〈y2〉 is the standard deviation σ or
〈

y2
〉

is the variance σ2 as the usual

notation. The discrete Fourier transform (DFT) of the time series produces a 2-

5This assumption is for using the definition of false alarm probability, where the null hypothesis
is that time series data consists of white noise only
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dimensional vector (a, b), in the frequency domain, known as Fourier coefficients.

The Fourier coefficients can be interpreted as a periodic sequence of same periodicity

as the discrete time series data. These Fourier coefficients are not orthogonal to

each other or in other words they are generally correlated. Hence the PDF in

the frequency domain will be bi-variate function of these coefficients. The Fourier

coefficients with unit normalisation, in the frequency domain are,

a(ω) =

N
∑

k=1

yk cosωtk (2.66)

b(ω) =

N
∑

k=1

yk sinωtk (2.67)

Here normalizations are taken as unity and summation is changed from 1 to N for

simplicity. Rotating the Fourier space coordinates by an angle θ0 will transform the

correlated Fourier coefficients a and b into uncorrelated coefficients α and β with

zero covariance.

α (ω, θ0) =

N
∑

k=1

yk [cos (ωtk − θ0)] (2.68)

β (ω, θ0) =

N
∑

k=1

yk [sin (ωtk − θ0)] (2.69)

the variance of α and β are,

〈

α2
〉

(ω, θ0) =
〈

y2
〉

N
∑

k=1

[cos (ωtk − θ0)]
2 (2.70)

〈

β2
〉

(ω, θ0) =
〈

y2
〉

N
∑

k=1

[sin (ωtk − θ0)]
2 (2.71)

If two variables are uncorrelated, their covariance 〈αβ〉 should vanish. Thus for the

covariance to be zero,

〈αβ〉 =
〈

y2
〉

N
∑

k=1

[cos (ωtk − θ0)]×
N
∑

l=1

[sin (ωtl − θ0)] = 0 (2.72)
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Solving for θ0, we get 6

tan 2θ0 =
2
∑N

k=1 sinωtk
∑N

k=1 cosωtk

(
∑N

k=1 cosωtk)
2 − (

∑N
k=1 sinωtk)

2
(2.73)

Since (α, β) are the corresponding two uncorrelated Gaussian variables with vari-

ances
〈

α2
〉

and
〈

β2
〉

respectively, their combined bi-variate Gaussian distributed

PDF is given by,

φ (α, β) =
1

2π
√

〈α2〉 〈β2〉
e
− 1

2

(

α2

〈α2〉
+ β2

〈β2〉

)

(2.74)

Thus in order to make the Fourier coefficients uncorrelated of each other, we have

to rotate Fourier space coordinates through an angle θ0. This rotation transforms the

Fourier coefficients (a, b) into (α, β) with zero covariance, as required. The rotation

can be easily implemented as subtraction of θ0 from θ. The Cartesian coordinates

(α, β) are transformed into polar coordinates (A, θ) as area element transforms as

(dα dβ) ⇒ (A dA dθ).

In order to obtain the transformation, consider the DFT of a time series yk

consists of both amplitude A and phase angle θ. To transform the eq.(2.74) from

Cartesian coordinates into polar coordinates (A, θ), substitute,

α =
A

2
cos (θ − θ0) (2.75)

β =
A

2
sin (θ − θ0) (2.76)

Then the Jacobian determinant, which does the transformation is,

∣

∣

∣

∣

∣

∂α
∂A

∂α
∂θ

∂β
∂A

∂β
∂θ

∣

∣

∣

∣

∣

(2.77)

which become after substituting from eq. (2.76) in eq. (2.77),

A

4
cos2 (θ − θ0) +

A

4
sin2 (θ − θ0) =

A

4

Then eq. (2.74) in polar coordinates becomes,

φ (A, θ|ω) = A

4

1

2π
√

〈α2〉 〈β2〉
e
− 1

2

(

A2 cos2(θ−θ0)

4〈α2〉
+

A2 sin2(θ−θ0)

4〈β2〉

)

6Note that this is same as eq.(2.35), which shows that the time translation in time domain
(Cartesian space) corresponds to rotation in the frequency domain (Fourier space).
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Inside the parenthesis, (A, θ|ω), the left side of | symbol has random variables

and right side constants.

On simplifying, we get,

φ (A, θ|ω) = A

8π
√

〈α2〉 〈β2〉
e
−A2

8

(

cos2(θ−θ0)

〈α2〉
+

sin2(θ−θ0)

〈β2〉

)

(2.78)

where θ is the phase.

Here φ (A, θ|ω) is a bi-variate PDF of amplitude and phase, which is difficult

to manipulate mathematically. Hence we will convert it into φ (A|ω, θ), which is a

uni-variate function of amplitude by changing the normalization condition.

∫∫

φ (A, θ|ω) dAdθ = 1 (2.79)

into

∫

φ (A|θ, ω) dA = 1 (2.80)

The normalisation condition is that the PDF, when integrated over complete

amplitude range (from 0 to ∞), has to be unity. Using the transformation equation

from bi-variate to uni-variate as,

φ (A|θ, ω) = φ (A, θ|ω)
φ (θ|ω) (2.81)

Using the result
∫∞
0 ye−(κy

2)dy = 1
2κ and substitute eq.(2.78) in eq.(2.79), we

get,

φ (θ|ω) =

∫ ∞

0
φ (A, θ|ω) dA (2.82)

=
1

2π

(

√

〈α2〉 〈β2〉
〈β2〉 cos2 (θ − θ0) + 〈α2〉 sin2 (θ − θ0)

)

φ (A|θ, ω) = A
[〈

β2
〉

cos2 (θ − θ0) +
〈

α2
〉

sin2 (θ − θ0)
]

4 [〈α2〉 〈β2〉]

×e
−A2

8

(

cos2(θ−θ0)

〈α2〉
+

sin2(θ−θ0)

〈β2〉

)

(2.83)



34 Parametric period search methods

Let,

R2 =

〈

α2
〉 〈

β2
〉

〈β2〉 cos2 (θ − θ0) + 〈α2〉 sin2 (θ − θ0)
(2.84)

then,

φ (A|θ, ω) = A

4R2
e−

A2

8R2 (2.85)

Here φ is a function of random variable A only, since θ and ω are constants. Thus

eq.(2.85) represents the probability density of amplitude for a particular frequency,

at a constant phase. It will be interesting to note that, geometrically eq.(2.84)

represents an ellipse7 in polar coordinates, with semi-major axis
√

〈α2〉 and semi-

minor axis
√

〈β2〉. Thus from eq.(2.84),

R(θ) =

√

〈α2〉 〈β2〉
〈β2〉 cos2 (θ − θ0) + 〈α2〉 sin2 (θ − θ0)

(2.86)

Here θ0 represents the orientation of the ellipse in Fourier space, which in turn

depends on the frequency. The normalisation of uncorrelated random variables α

and β gives,

α (ω, θ0) =
N
∑

k=1

yk [cos (ωtk − θ0)]

β (ω, θ0) =
N
∑

k=1

yk [sin (ωtk − θ0)] (2.87)

with variances,

〈

α2
〉

(ω, θ0) =
〈

y2
〉

N
∑

k=1

[cos (ωtk − θ0)]
2

〈

β2
〉

(ω, θ0) =
〈

y2
〉

N
∑

k=1

[sin (ωtk − θ0)]
2 (2.88)

From these equations, the semi-major and semi-minor axes of the ellipse are

7For an ellipse y2

a2 + y2

b2
= 1,put x = r cos θ and y = r sin θ, then

r2
(

b2 cos2 θ+a2 sin2 θ

a2b2

)

= 1 so that r2 = a2b2

b2 cos2 θ+a2 sin2 θ



2.4 Time series and Probability theory 35

chosen as,

α0 (ω, θ0) =

√

〈α2〉
〈y2〉 =

√

√

√

√

N
∑

k=1

cos2 (ωtk − θ0)

β0 (ω, θ0) =

√

〈β2〉
〈y2〉 =

√

√

√

√

N
∑

k=1

sin2 (ωtk − θ0) (2.89)

Substituting these equations into eq.(2.86), we get,

1

R2
=

1

〈y2〉

(

cos2 (θ − θ0)

α2
0

+
sin2 (θ − θ0)

β2
0

)

(2.90)

θ0, α0 and β0 denotes the 2-dimensional PDF for Gaussian noise in Fourier space

and periodogram is based on these quantities.

2.4.1 Cumulative Distribution Function (CDF) and False Alarm

Probability (FAP)

The Cumulative Distribution Function (CDF) of a continuous random variable is

described as the probability that a variate Y takes on a value less than or equal to

a number y and is defined as,

Prob(Y ≤ y) =

∫ y

−∞
f(t)dt

where f is the PDF. Hence CDF is obtained by integrating the eq. (2.85),

Φ (A|ω, θ) =
∫ A

0
φ (a|ω, θ) da =

∫ A

0

a

4R2
e−

a2

8R2 da (2.91)

let x = a2, dx = 2ada, then upper limit becomes A2,

Φ (A|ω, θ) = 1

8R2

∫ A2

0
e−

x

8R2 dx = 1− e

(

− A2

8R2

)

Scargle in (1982) and later by Horne & Baliunas (1986) defined False-Alarm

Probability assuming that, the power at a given frequency is exponentially dis-

tributed and also based on the null hypothesis that, the time series data is only due

to white noise. If the frequency ω in the power spectrum is derived from normally

distributed random noise (white noise), the probability P (ω) is of amplitude z or
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higher is,

Prob(P (ω) ≥ z) = e−z

Thus z is the largest peak out of Mi independent frequencies. Then the proba-

bility that the particular frequency is smaller than z is (1 − e−z). Then the prob-

ability that each Mi independent frequency is smaller than z is (1 − e−z)Mi . Then

the False-Alarm Probability (FAP) is defined as the probability that atleast one

out of Mi independent peaks is expected to be larger than the given value z as

ΦFAP = 1 − (1 − e−z)Mi . Thus if false alarm probability is small, the null hypoth-

esis is invalid, and the corresponding signal peak is not due to noise. Thus the

false-alarm probability for an amplitude level to exceed a value A,

ΦFAP (A|ω, θ) = 1−
(

1− e
−
(

A2

8R2

))

= e

(

− A2

8R2

)

(2.92)

This is the false-alarm probability for an amplitude level to exceed a value A, at

phase θ and frequency ω.

2.4.2 Periodogram

The periodogram of a DFT amplitude spectrum is defined as the negative logarithm

of false alarm probability,

P (A|ω, θ) = − logeΦFAP (A|ω, θ) = A2

8R2

=
A2

8 〈y2〉

(

cos2 (θ − θ0)

α2
0

+
sin2 (θ − θ0)

β2
0

)

(2.93)

by using eq.(2.90). The Cartesian representation of eq.(2.93) is,

P (a, b|ω) =
1

2 〈y2〉

(

A2 cos2 (θ − θ0)

4α2
0

+
A2 sin2 (θ − θ0)

4β2
0

)

=
1

2 〈y2〉

(

α2

α2
0

+
β2

β2
0

)

(2.94)

where substitution is made from eq.(2.76). Then,

P (ω) =
1

2 〈y2〉







(

∑N
k=1 yk [cos (ωtk − θ0)]

)2

∑N
k=1 cos

2 (ωtk − θ0)
+

(

∑N
k=1 yk [sin (ωtk − θ0)]

)2

∑N
k=1 sin

2 (ωtk − θ0)






(2.95)
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where
〈

y2
〉

is the variance. This is the periodogram ( θ0 is given by eq. (2.73),

which is re-defined by Scargle (1982), and the major difference is that here, the

normalization factor is 1
2〈y2〉

, whereas in Scargle definition the normalisation factor

is 1
2 . Also we can see that the time translation invariance in the Cartesian space

corresponds to the rotational invariance in Fourier space. In eq. (2.73), if θ0 is

replaced by (ωτ), the time shift is obtained as in eq. (2.35). Once exact period or

frequency is known, the next two important parameters are phase and amplitude of

the signal.

2.5 Phase θ

Using the notation, (ωtk − θ) ≡ φk, the least square fit for amplitude A and phase

θ is given by the condition

∂

∂A

N
∑

k=1

{yk −A cosφk}2 = 0 (2.96)

∂

∂θ

N
∑

k=1

{yk −A cosφk}2 = 0 (2.97)

From eq.(2.96), we get,

2

N
∑

k=1

{yk −A cosφk} × (−) cosφk = 0

N
∑

k=1

{−yk cosφk +A cos2 φk} = 0

N
∑

k=1

yk cosφk = A

N
∑

k=1

cos2 φk (2.98)

From eq.(2.97),

2
N
∑

k=1

{yk −A cosφk} ×A sinφk = 0
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N
∑

k=1

yk sinφk = A
N
∑

k=1

cosφk sinφk (2.99)

Dividing eq.(2.98) by eq.(2.99), we get,

∑N
k=1 yk cosφk

∑N
k=1 yk sinφk

=

∑N
k=1 cos

2 φk
∑N

k=1 cosφk sinφk

Cross multiplying and simplifying, we get,

N
∑

k=1

yk cosφk

N
∑

l=1

cosφl sinφl −
N
∑

k=1

yk sinφk

N
∑

l=1

cos2 φl = 0

N
∑

k,l=1

yk
{

cosφk cosφl sinφl − sinφk cos
2 φl

}

= 0

N
∑

k,l=1

yk cosφl {cosφk sinφl − sinφk cosφl} = 0

N
∑

k,l=1

yk cosφl sin(φl − φk) = 0

substituting back the notation φk ≡ (ωtk − θ) and φl ≡ (ωtl − θ)

N
∑

k,l=1

{sinω (tl − tk)} yk cos (ωtl − θ) = 0

which finally reduces to,

N
∑

k,l=1

{sinω (tl − tk)} yk [cosωtl cos θ + sinωtl sin θ] = 0

N
∑

k,l=1

{sinω (tl − tk)} yk cosωtl cos θ +
N
∑

k,l=1

{sinω (tl − tk)} yk sinωtl sin θ = 0
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tan θ = −
∑N

k,l=1 {sinω (tl − tk)} yk cosωtl
∑N

k,l=1 {sinω (tl − tk)} yk sinωtl

tan θ = −
∑N

k,l=1 {sinωtl cosωtk − cosωtl sinωtk} yk cosωtl
∑N

k,l=1 {sinωtl cosωtk − cosωtl sinωtk} yk sinωtl

tan θ = −{∑N
l=1 sinωtl cosωtl}

∑N
k=1 cosωtk − {∑N

l=1 cos
2 ωtl}

∑N
k=1 sinωtk

{∑N
l=1 sin

2 ωtl}
∑N

k=1 cosωtk − {∑N
l=1 cosωtl sinωtl}

∑N
k=1 sinωtk

replacing l index by k and apply -ve sign

tan θ =
{
∑N

k=1 sinωtk cosωtk}
∑N

k=1 cosωtk − {
∑N

k=1 cos
2 ωtk}

∑N
k=1 sinωtk

{∑N
k=1 cosωtk sinωtk}

∑N
k=1 sinωtk − {∑N

k=1 sin
2 ωtk}

∑N
k=1 cosωtk

(2.100)

From which, the phase can be calculated.

2.6 Amplitude A

If frequency ω and phase θ is known, the amplitude can be calculated from eq.(2.98),

A =

∑N
k=1 yk cosφk
∑N

k=1 cos
2 φk

(2.101)

or from eq.(2.99),

A =

∑N
k=1 yk sinφk

∑N
k=1 sinφk cosφk

(2.102)

where φk ≡ (ωtk − θ).

2.7 Generalized Lomb-Scargle periodogram (GLSP)

Zechmeister(2009) introduced a variation of Lomb-Scargle periodogram as,

P (ω) =
1

σ2

[

[
∑N

k=1 yk cosω (tk − τ)]2
∑N

k=1 cos
2 (ωtk − τ)

+
[
∑N

k=1 yk sinω (tk − τ)]2
∑N

k=1 sin
2 ω (tk − τ)

]

(2.103)
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where σ is the standard deviation and the normalisation factor is 1/σ2. The time

shift τ is defined by,

tan 2ωτ =

∑N
k=1 sin 2ωtk − 2

∑N
k=1 cosωtk

∑N
k=1 sinωtk

∑N
k=1 cos 2ωtk −

(

∑N
k=1 cosωtk

)2
+
(

∑N
k=1 sinωtk

)2 (2.104)

2.8 Spectral Significance (SigSpec)

The principle of SigSpec (Significance Spectrum) is described by Reegen (2007). The

method is based on the analytical solution for the frequency-domain Probability

Density Function (PDF) of white noise, which depends on amplitude, frequency and

phase. Instead of the common signal-to-noise ratio criterion, the spectral significance

of a DFT amplitude spectrum is defined as,

Sig =
N log e

〈y2〉

[

(

azm cos θ0 + bzm sin θ0
α0

)2

+

(

azm sin θ0 − bzm cos θ0
β0

)2
]

(2.105)

where
〈

y2
〉

is the variance and ω = 2πf , where f is the frequency. The zero mean

corrected Fourier coefficients are given by,

azm =
1

N

N
∑

k=1

yk

[

cosωtk −
1

N

N
∑

l=1

cosωtl

]

(2.106)

bzm =
1

N

N
∑

k=1

yk

[

sinωtk −
1

N

N
∑

l=1

sinωtl

]

(2.107)

where α0 and β0 are given by,

α0 =

√

√

√

√

√

2

N2







N

N
∑

k=1

cos2 (ωtk − θ0)−
[

N
∑

l=1

cos (ωtl − θ0)

]2






(2.108)

β0 =

√

√

√

√

√

2

N2







N

N
∑

k=1

sin2 (ωtk − θ0)−
[

N
∑

l=1

sin (ωtl − θ0)

]2






(2.109)
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and θ0 is given by,

tan 2θ0 =
N
∑N

k=1 sin 2ωtk − 2
∑N

k=1 cosωtk
∑N

k=1 sinωtk

N
∑N

k=1 cos 2ωtk −
(

∑N
k=1 cosωtk

)2
+
(

∑N
k=1 sinωtk

)2 (2.110)

From the output file produced by SigSpec, the period with maximum significance

is chosen as the exact period. According to Reegen (2007), one of the advantage of

SigSpec is that it takes into effect the phase factor, which permits to identify the most

reliable period without any statistical bias. Through an iterative procedure, SigSpec

detects the most significant frequency component and performs the corresponding

pre-whitening to find the next dominant frequency. Thus SigSpec is also suitable for

multi-periodic search, especially in Astro-seismological applications.

2.8.1 Normalisation factor

In the first LSP derivation the normalisation factor is 1/
(

∑N
k=1 y

2
k

)

whereas

the Scargle [70] normalisation factor is 1/2. In the second derivation of LSP,

when the mean subtracted data is used, the normalisation factor is 1/2
〈

y2
〉

. In

literature[70],[11], we can see various forms for the normalisation factor and cor-

responding arguments that, which normalisation factor will correctly retrieve the

signal from the noise. In the above two derivations, two theoretically possible nor-

malisation factors are obtained.

2.9 Application of parametric methods

In order to show the failure of these parametric methods in some cases, we select

the first star 005759+0034.7 from the ASAS a2perlc database, which is an eclipsing

binary with published period of 1.596059 days. The time series data is shown in

Figure (2.1). The published light curve is shown in the Figure (2.2). The PDM /

GLSP / SigSpec gave almost half of the published period and light curve from GLSP

is shown in Figure (2.3). GLSP give a period of 0.797991 days, PDM give a period

of 0.789295 days and SigSpec give a period of 0.798033530207 days. Hence all three

methods could not find the exact period, and so these methods need improvement,

while automating. The Θ statistic from PDM is shown in the Figure (2.4), the GLSP

periodogram peak is shown in Figure (2.5) and the SigSpec spectral significance is

shown in Figure (2.6).
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0 0.5 1 1.5 2

Phase-> 

Tnew= 0.797991 days

Figure 2.3: Light curve of 005759 + 0034.7 obtained from GLSP. The light curve
misses one peak, compared to the Figure 2.2. PDM and SigSpec give similar light
curves.
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2.10 Conclusion

In this chapter, the LSP is derived in two ways, first as Least squares trigono-

metric fitting and secondly on the basis of discrete Fourier transform(DFT)

and probability theory. Then the features of GLSP and SigSpec methods

are compared. Finally the results based on LSP, GLSP and SigSpec on

sample data are compared, which shows the need for improvement in pe-

riod detection. The SigSpec method is coded in FORTRAN. The GLSP

FORTRAN program can be downloaded from (http://www.astro.physik.uni-

goettingen.de/ zechmeister/gls.php) and SigSpec C program can be downloaded from

(http://homepage.univie.ac.at/peter.reegen/download.html).





Chapter 3

Non-Parametric period search

methods

3.1 Introduction

In this chapter, another two popular period search methods

• Phase dispersion minimisation (PDM),

• Method based on cubic spline (CS) interpolation,

are discussed. The principle of both methods are almost similar, in the sense that,

both tries to draw a smooth mean curve, through the phase-folded light curve on

an assumed period and the period corresponding to the minimum scattered light

curve is chosen as the best possible period. Finally the cubic spline interpolation

method is modified with unevenly spaced knots and used for period confirmation.

The modified cubic spline (MCS) method is coded in FORTRAN and is given in

Appendix B.1. The script for automated running of MCS is given in Appendix C.3

3.2 Phase dispersion minimization (PDM)

According to Stellingwerf [77], in the PDM method, the time series data (tk, yk)

with N observations, is folded over a trial period and this phased data is divided

into several bins (optimum 10 bins). It is a least square fit to the mean curve, which

is determined by the data. The total variance of the data is given by,

σ2 =

∑N
k=1(yk − ȳ)2

N − 1
(3.1)
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Here the mean ȳ = 1
N

∑N
k=1 yk. If M is the number of bins, then the variances in

each bin sj
2, j = 1, . . . ,M are calculated as

s2j =

∑nj

i=1(yi − ȳ)2

nj − 1
(3.2)

where nj is the number of data in jth bin and bin mean ȳ = 1
nj

∑nj

k=1 yk. The overall

variance for all the bins is given by,

S2 =

∑M
j=1(nj − 1)sj

2

∑M
j=1(nj −M)

(3.3)

where S is sj summed over M bins. The approximate value of period is obtained by

minimizing the statistic, over a fixed number of data points. The PDM statistic Θ

is the ratio between the sum of the bin variances and the total variance of the data.

Θ =
S2

σ2
(3.4)

The Θ value is found for trial periods continuously in a range, as in other methods

and the period corresponding to minimum value of Θ is taken as the best period. Θ

corresponds to the dispersion along the mean curve through the phased data. This

method is also known as ‘Fourierogram’.

In order to speed up the computation, the PDM method initially runs through

a rough cut values and then the same process is repeated around the approximate

period, with a finer spacing and by including the whole data. Thus more accurate

period is obtained by minimising the same statistic Θ. The PDM software can be

downloaded from (stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=34).

3.3 Cubic spline interpolation

The mathematical concept of cubic spline interpolation is adopted from the engi-

neer’s tool, which is used to draw smooth curve through a number of points, with

any complex pattern. The spline consists of weights attached to a flat surface at the

points to be connected. A flexible strip is then bent across each of these weights,

which produces a smooth curve. In mathematical spline, the weights are the co-

efficients of the cubic polynomial, used to interpolate the numerical data. These

coefficients bend the line, so that it passes smoothly through all the points. The

basic idea is to fit the data with a piecewise polynomial function of degree three.
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3.3.1 Linear Spline

For a tabulated function fk ≡ f(tk), k = 0, . . . N a spline is a piecewise polyno-

mial between each pair of points, whose coefficients are determined with the help

of neighboring points. The contributions from nearby points are included in order

to guarantee global smoothness in the interpolated function, up to some order of

derivatives. If there are N + 1 points, there are N intervals and out of these, con-

sider one particular interval (tk, tk+1). The Lagrange’s piecewise linear interpolation

formula in that interval is [80],

f = Afk +Bfk+1 (3.5)

where

A ≡ tk+1 − t

tk+1 − tk
(3.6)

B ≡ 1−A =
t− tk

tk+1 − tk
(3.7)

In the case of linear spline, if all the piecewise polynomials are combined for all

intervals, the fit is poor because, the first derivatives of the interpolating polynomial

functions need not be continuous at the piece boundaries.

3.3.2 Natural cubic spline

The aim of cubic spline interpolation is to get an appropriate polynomial interpo-

lation function, which is continuous and both the first and second derivatives are

continuous. Thus cubic spline interpolation will give a smoother function better

than piecewise linear or quadratic interpolations.

Consider a function f(t), which is tabulated at N+1 points such that fk = f(tk),

where k = 0, 1, . . . , N . Let the values for the functions second derivatives f
′′

k are

known. Then within each interval (tk, tk+1), a cubic polynomial term is added on

the right-hand side of eq.(3.5), whose second derivative varies linearly from a value

f
′′

k on the left, to a value f
′′

k+1 on the right. Such a function can be constructed by

replacing eq. (3.5) by[80],

f = Afk +Bfk+1 + Cf
′′

k +Df
′′

k+1 (3.8)



50 Non-Parametric period search methods

where A and B are given in eq.(3.6) and eq.(3.7) and C and D are given by,

C ≡ 1

6
(A3 −A)(tk+1 − tk)

2 (3.9)

D ≡ 1

6
(B3 −B)(tk+1 − tk)

2 (3.10)

Since A and B are linearly dependent on t, then C and D (through A and B) have

cubic t−dependence. Also f
′′

is the second derivative of the new interpolating poly-

nomial. By taking the first derivative of eq. (3.8) with respect to t, and substituting

for dA
dt
, dB
dt
, dC
dt

and dD
dt

we get,

df

dt
=

fk+1 − fk
tk+1 − tk

− 3A2 − 1

6
(tk+1 − tk)f

′′

k +
3B2 − 1

6
(tk+1 − tk)f

′′

k+1 (3.11)

and the second derivative is,

d2f

dt2
= Af

′′

k +Bf
′′

k+1 (3.12)

Since A = 1 at tk and A = 0 at tk+1 , and B = 0 at tk and B = 1 at tk+1,

eq.(3.12) shows that f
′′

is the tabulated second derivative, and also that the second

derivative will be continuous across the boundary between two intervals (tk−1, tk)

and (tk, tk+1). The most important idea of a cubic spline is to ensure the continuity

across the boundaries, by matching the first derivative (slope) f
′

(tk) and the second

derivative (curvature) f
′′

k . The required equations are obtained by setting eq. (3.11)

evaluated for t = tk in the interval (tk−1, tk) and equating to the same equation

evaluated for t = tk, but in the interval (tk, tk+1). This gives,

tk − tk−1

6
y
′′

(tk−1) +
tk+1 − tk−1

3
y
′′

(tk) +
tk+1 − tk

6
y
′′

(tk+1) =

y(tk+1)− y(tk)

tk+1 − tk
− y(tk)− y(tk−1)

tk − tk−1
(3.13)

for k = 1, 2, . . . , N − 1. These are (N − 1) linear equations in the (N +1) unknowns

f
′′

i , i = 0, 1, . . . , N . For having (N +1) unknowns and a unique solution, the bound-

ary conditions are set at t1 and tN by equating both f(t1) and f(tN ) equal to zero,

giving the natural cubic spline, which has zero second derivatives on both of its

boundaries. Thus the solution for f
′′

k , where k = 0, 1, . . . , N is obtained and this can

be substituted back into eq. (3.8) to give the cubic interpolation formula in each

interval (tk, tk+1).
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3.3.3 B-splines

Instead of using the functional form eq. (3.8) and also using the constraints (f
′

k

continuous at interval boundaries) to solve for f
′′

k for getting the natural interpo-

lating splines, it is possible to use a set of piecewise cubic polynomials defined on

some sub-interval of t0), t1, . . . tN , which are by construction, continuous upto the

second derivative at the boundaries of intervals. They would form a set of basis func-

tions, since linear combinations of these functions would also satisfy the continuity

properties at the boundaries between adjacent intervals.

A B-spline or basis spline [23] is a piecewise polynomial function of degree k in

the variable t. It is defined over a range (t0 ≤ t ≤ tN ), N = k + 2. The points ti,

where the values of the function are tabulated for fi = f(ti) are known as knots or

break-points and the knots must be in ascending order. Each piece of the function

is a polynomial of degree k between and including adjacent knots. A B-spline is a

continuous function at the knots and when all knots are distinct, its derivatives are

also continuous up to the derivative of degree k − 1.

For any given set of knots, the B-spline is unique. The usefulness of B-splines

lies in the fact that any spline function of degree k on a given set of knots can be

expressed as a linear combination of B-splines. Now to construct cubic spline over

the whole range [t0, tN ], it is only needed to match the sum of the basis functions

with tabulated values of fi at the interpolating nodes ti, i = 0, 1, . . . , N . The B-

splines are the basis functions that satisfy the specified continuity conditions. For

the whole range interpolation, this can be achieved by defining B0(t) as,

B0(t) =











































0, t ≤ (t0 − 2h)
1
6(2h+ (t− t0))

3, (t0 − 2h) ≤ t ≤ (t0 − h)
2h3

3 − 1
2(t− t0)

2(2h+ (t− t0)), (t0 − h) ≤ t ≤ t0
2h3

3 − 1
2(t− t0)

2(2h− (t− t0)), t0 ≤ t ≤ (t0 + h)
1
6(2h− (t− t0))

3, (t0 + h) ≤ t ≤ (t0 + 2h)

0, t ≥ t0 + 2h

(3.14)

where h = (tk+1 − tk) = (tN − t0)/N is the width between interpolating nodes (here

assumed to be equal). Thus B0 has non-zero values over four intervals and satisfy

the continuity conditions at the boundaries of the intervals. i.e. B0, B
′

0 and B
′′

0 are

continuous at −2h,−h, 0, h and 2h. If the B0(t) functions are shifted to the right

by k nodes, we will get Bk(t) = B0(t− kh+ t0).

The cubic spline function, S3(t) for the whole interval [t0, tN ] is written as the
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linear combination of the Bk’s,

S3(t) =
N+1
∑

k=−1

ckBk(t) (3.15)

The sum is from −1 to N + 1, since B−1 is non-zero in the interval (t0, t1), and

BN+1 is also non-zero in the interval (tN−1, tN ). In order to uniquely define a

cubic spline, 4 conditions (coefficients) have to be specified and hence in the whole

interval [t0, tN ], there are N intervals and total of 4N conditions are to be specified.

The continuity conditions are automatically satisfied in the (N − 1) interior points,

since the Bk’s satisfy the continuity conditions (i.e. 3(N − 1) conditions). The

other requirement is that S3 must match the tabulated points, i.e. S3(tk) = f(tk)

for k = 0, 1, . . . , N .i.e. (N + 1 conditions). Now there are two more unspecified

conditions, which are obtained by taking S
′′

3 (t0) = S
′′

3 (tN ) = 0 (i.e.,the curvature

equals zero at the boundaries, which is the condition for natural spline). Now S3(t)

at tk is,

S3(tk) = ck−1Bk−1(tk) + ckBk(tk) + ck+1Bk+1(tk) + ck+2Bk+2(tk) = f(tk) (3.16)

All other Bk’s are zero. From the definitions of Bk(t) and B0(t), we get,

Bk(tk) = B0(t0) =
2h3

3
(3.17)

Bk−1(tk) = B0(t0 + h) =
h3

6
(3.18)

Bk+1(tk) = B0(t0 − h) =
h3

6
(3.19)

Bk+2(tk) = B0(t0 − 2h) = 0 (3.20)

Substituting into eq.(3.16), the recurrence relation for the coefficients ck is,

ck−1 + 4ck + ck+1 =
6

h3
f(tk) (3.21)

for k = 0, 1, . . . , N . At the boundaries, let S
′′

3 (t0) = S
′′

3 (tN ) = 0. Differentiating

S3(t) gives,

S
′′

3 (t) =
N+1
∑

k=−1

ckB
′′

k (t) (3.22)
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To find the second derivatives of Bk, differentiate B0 twice and we get

B
′′

0 (t) =











































0, t ≤ (t0 − 2h)

2h+ (t− t0), (t0 − 2h) ≤ t ≤ (t0 − h)

−2h− 3(t− t0), (t0 − h) ≤ t ≤ t0

−2h+ 3(t− t0), t0 ≤ t ≤ (t0 + h)

2h− (t− t0), (t0 + h) ≤ t ≤ (t0 + 2h)

0, t ≥ t0 + 2h

(3.23)

Hence,

0 = S
′′

3 (t0) = c−1B
′′

−1(t0) + c0B
′′

0 (t0) + c1B
′′

1 (t0) + c2B
′′

2 (t0)

= c−1B
′′

0 (t0 + h) + c0B
′′

0 (t0) + c1B
′′

0 (t0 − h)

= hc−1 − 2hc0 + hc1

= c−1 − 2c0 + c1 (3.24)

From eq.(3.16),

c−1 + 4c0 + c1 =
6

h3
f(t0) (3.25)

Subtract (3.24) from (3.25), we get,

c0 =
1

h3
f(t0) (3.26)

Similarly we can find

cN =
1

h3
f(tN ) (3.27)

The matrix equation to solve for the coefficients c0, . . . , cN , becomes


























1 0 0 ... 0 0 0

1 4 1 ... 0 0 0

0 1 4 ... 0 0 0

. . . ... . . .

0 0 0 ... 4 1 0

0 0 0 ... 1 4 1

0 0 0 ... 0 0 1





















































c0

c1

c2

.

cN−2

cN−1

cN



























= 1
h3



























f(t0)

6f(t1)

6f(t2)

.

6f(tN−2)

6f(tN−1)

f(tN )



























This set of equa-

tions is tri-diagonal and can be solved in O(N) operations by the tridiagonal algo-
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rithm. Final two coefficients to completely determine S3 are,

c−1 = 2c0 − c1 (3.28)

cN+1 = 2cN − cN−1 (3.29)

3.3.4 Modified cubic spline (MCS) interpolation method

This section introduces cubic spline interpolation with unevenly spaced knots (mod-

ified cubic spline (MCS) interpolation) for confirming the exact period of variable

star’s oscillation or rotation. Given the values yk for tk, k = 1, 2, . . . N , using the

cubic splines Bi(t) we can construct an interpolated function S(t) as follows:

S(t) =

ns
∑

i=1

ciBi(t) (3.30)

where ns is the number of splines used and ci are the undetermined coefficients. In

order to construct the cubic splines, the knot points τi, i = 1, 2 . . . ns + 4 has to

be chosen so that τi+1 > τi. In our case, corresponding to the phase folded data,

the interval [0, 1] are divided into n unequal intervals in general such that τ4 = 0,

τns+4 = 1, τ3 = −τ5, τ2 = −τ6 and τ1 = −τ7. Given the knot points, the splines can

be calculated using the following general equations:

Bi(t) =











































0, t < τi

−(τi+4 − τi)
(

α1,i(τi − t)3
)

, τi ≤ t < τi+1

−(τi+4 − τi)
(

α1,i(τi − t)3 − α2,i(τi+1 − t)3
)

, τi+1 ≤ t < τi+2

(τi+4 − τi)
(

α4,i(τi+3 − t)3 + α5,i(τi+4 − t)3
)

, τi+2 ≤ t < τi+3

(τi+4 − τi)
(

α5,i(τi+4 − t)3
)

, τi+3 ≤ t < τi+4

0, t ≥ τi+4

(3.31)

where the coefficients αν,i, ν = 1, 2, . . . , 5 and i = 1, 2, . . . , ns are given by,

αν,i =

5
∏

β 6=6−ν

1

(τi+5−β − τi+ν−1)
(3.32)

To confirm the period, we use cubic B-spline to represent the light curve as,

y(t) =

ns
∑

ν=1

cνBν(t) (3.33)

where ns is the number of splines used to interpolate the light curve and cν ’s are

the undetermined coefficients. These coefficients can be determined by minimizing



3.3 Cubic spline interpolation 55

the dispersion relation
∑

k[y(tk)− yk]
2 = 0, i.e. the coefficients cµ’s are such that,

∂

∂cµ

∑

k

[y(tk)− yk]
2 = 0, µ = 1, 2, . . . , ns (3.34)

Using (3.33) in (3.34), we get,

∑

ν

Mµνcν = Nµ (3.35)

where,

Mµν =
∑

k

Bµ(tk)Bν(tk)

and,

Nµ =
∑

k

Bµ(tk)yk

By solving the linear algebraic eq. (3.35), the coefficients cµ’s are obtained.

3.3.5 Application of modified cubic spline analysis

The statistical, non-parametric cubic spline method with equally spaced knots was

introduced for period searching and/or confirming the exact period, by Akerlof

et.al.(1994). We have modified it to unequally spaced knots as follows. The data is

folded over the period, as in the PDM method and the phased data is divided into

certain number of bins. The number of bins is varying from 2 to 12, which depends

on the number of data points in the time series data. If the number of data is 10

or less, the number of bins is 2 and if the number of data is greater than 1000, the

number of bins is 10. If the number of data is in between, the number of bins is

assigned accordingly. This kind of implementation makes it sure that the bins never

become empty, even though there are gaps in the folded data.

After fixing the number of bins, the overall average of the data and the bin

average of the data is calculated and according to their difference, the number of

knots in each bin is selected. The difference will have larger value at the peaks,

which is scaled to the nearest integer value and taken as the number of knots in the

bin. This procedure produces unequally spaced knots, with more number of knots

around the peaks and less number of knots at the flatter regions.

For solving the linear algebraic equation (3.35), we have used the subroutine

from LAPACK 1.

1LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley,
Univ. of Colorado Denver and NAG Ltd
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Tnew= .513131 days

0 0.5 1 1.5 2

Phase-> 

0 0.5 1 1.5 2

Star ID :- 075021-0114.6

Tcrts = .338760 days

Figure 3.1: Phased light curve of the RR Lyrae star 075021-0114.6, along with the
modified cubic spline curve is plotted for the both published period 0.338760 days
and newly detected period 0.513131 days. It is clear that newly detected period
gives better light curve

.

The method is demonstrated on the ASAS RR Lyrae star 075021-0114.6, with

the number of observations 198, the published period 0.338760 days and newly

detected period 0.513131 days 2. The Figure 3.1 shows the fitted spline curve, su-

perimposed over the phased light curve for both periods. It is clear that the light

curve corresponds to the newly detected period is better. The modified cubic spline

method is used only to confirm the exact period, over the PDM / GLSP/ SigSpec

results, including the checking for possible double harmonics. The fitting is tested

by the least square-square minimum and the corresponding period is taken as the

best reliable period. The least square-square error E is,

E =

N
∑

k=1

[y(tk)− yk]
2 (3.36)

where y(tk) is the interpolated magnitude value and yk is the observed apparent

magnitude.

3.4 Conclusion

Both methods are robust enough to apply on periodic as well as semi-periodic vari-

able star light curves. One of the disadvantage is the excess time taken by MCS

method, compared to the parametric methods, which is not a considerable problem

2Note that all the periods shown in this thesis are in days
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with the modern powerful computers. Another possibility is that, sometimes solu-

tion can get trapped into local minimum, instead of global minimum as pointed by

[52]. Due to these reasons, we have used the MCS method only to confirm the exact

period, instead of using it for searching the period.





Chapter 4

Application to ASAS database

4.1 Introduction

The All Sky Automated Survey (ASAS) project is dedicated to constant photometric

monitoring of the whole available sky, which is approximately 107 stars, brighter than

14 magnitude [57], [58]. The ultimate goal is detection and investigation of any kind

of the photometric variability and also to find and catalog variable stars.

ASAS survey has discovered more than 50000 variables and produced catalogue

of variable stars (ACVS) of the southern hemisphere (Declination < +28 deg) and

the photometric V-band data of the southern hemisphere until December 2009 are

available. (http://www.astrouw.edu.pl/asas/?page=main).

4.2 Application to ASAS Database

In order to apply the modified cubic spline period confirmation method, we chose

the ASAS project database1, which contains time series data files of nearly 50,000

variable stars. The ASAS1 and ASAS2 periodic variables were classified by Eyer[33]

and Richards[65]. Out of these, we chose two databases named a2perlc and var3,

which contains 385 and 3169 time series data files respectively, which are cataloged

by the ASAS team.

Initially the above specified time series files are subjected to PDM / GLS /

SigSpec and the obtained frequencies are compared with published frequencies. The

unmatched frequencies are then subjected to the modified cubic spline analysis,

which finally compares the new frequency with that of published value and takes

the frequency with minimum least square as the better frequency. The light curves

are plotted after removing the few extreme outliers, using the DEBiL method by

1astrouw.edu.pl/asas
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Table 4.1: Published periods from a2perlc are not available for comparison with
newly detected periods for 4 variable stars. The corresponding new light curves are
shown in the Figure 4.1

.

Star−ID new T Star−ID new T

112422-6123.3 38.821121 114127-6216.1 5.894262
112756-6123.6 1.744592 170022-2145.0 101.40923

Devor[29]. We also visually examined the new light curves and compared with the

published ones, to make sure that the new results are genuine.

We have automated the whole process of time series analysis so that no manual

interruption or intervention is required in between the steps of computations involved

in period search and plotting of light curves. We should able to detect nearly 5 to

6% new better periods. Some periods are improved, some new periods are entirely

different from the published periods and some new periods are harmonics (integral

or half-integral multiples) of the published periods.

The a2perlc database consists of 385 time series files. From this database we

have discovered 4 variable stars, which are missing from the catalog. Their periods

are given in the table 4.1 and the corresponding new light curves are shown in

Figure 4.1. The table 4.2 contains the published periods from a2perlc database,

which are compared with new different periods for 14 variable stars and these light

curves are shown in Figure 4.2.The table 4.3 is the published periods from a2perlc

database and compared with new harmonic periods for 15 variable stars and these

light curves are shown in Figure 4.3. The total detection of new better periods are

33 (4+14+15).

The var3 database, which contains 3169 time series data and we have got 245

better periods and corresponding light curves.The table 4.4 contains the published

periods from var3 database, which are compared with new periods for 200 variable

stars with different periods. These 200 light curves are shown in Figure 4.4. The

table 4.5 shows the published periods from var3 database, which are compared with

new periods for 45 variable stars with harmonic periods (double, triple or half etc).

These 45 light curves are shown in Figure 4.5.

Detection of exact periodicity will help to identify the type of variability and

classify the variable stars, in accordance with the shape and other features of the

light curve.

4.3 Results from a2perlc and var3 databases
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0 0.5 1 1.5 2

Tnew= 38.821121001 days

Star ID :- 112422-6123.3, Phase -> 

0 0.5 1 1.5 2

Tnew= 1.7445920621 days

Star ID :- 112756-6123.6, Phase -> 

0 0.5 1 1.5 2

Tnew= 5.8942624005 days

Star ID :- 114127-6216.1, Phase -> 

0 0.5 1 1.5 2

Tnew= 101.4092301914 days

Star ID :- 170022-2145.0, Phase -> 

Figure 4.1: Light curve of the four stars 112422-6123.3, 112756-6123.6, 114127-6216.1
and 170022-2145.0, which are not published by ASAS in the a2perlc database
.
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Table 4.2: Published periods from a2perlc database, which are compared with new
different periods for 14 variable stars. The corresponding light curves are shown in
the Figure 4.2

.

Star−ID Tasas Tnew Star−ID Tasas Tnew

015647−0021.2 0.351447 0.542709 075021−0114.6 0.338760 0.513148
103609−5203.9 24.18321 0.956172 112301−6146.8 2.676421 3.953892
113457−6157.6 198.9680 12.51002 113916−6026.1 7.011300 0.872959
114619−6440.7 59.66783 0.980366 114726−6132.9 78.39775 5.141568
123639−6344.8 1.503000 0.600461 175630−3548.2 85.94261 0.988364
183736−0040.7 63.96056 0.983132 184435−0049.4 63.69426 0.982352
193640+0053.7 2.001650 0.666427 200208−1958.8 0.956967 22.14830

Table 4.3: Published periods from a2perlc database, which are compared with new
harmonic periods for 15 variable stars. These light curves are shown in the Figure 4.3

.

Star−ID Tasas Tnew Star−ID Tasas Tnew

045128-0032.7 3.618900 1.563815 045511-0101.7 3.136200 1.512603
050818-6846.8 30.43856 60.71933 050920-7027.4 37.48828 74.72229
060241-0051.7 3.857475 7.725706 065032+0000.4 7.095586 14.19883
065627-0017.4 1.177400 2.354870 104838-5245.7 1.157240 2.315714
112826-5929.4 4.499000 2.250337 113318-6306.2 0.168483 0.336968
113840-6117.9 1.195500 2.390514 113916-6026.1 7.011300 1.745793
124351-6305.2 12.51597 6.240672 124435-6331.7 2.565139 1.283260
125124-6404.7 6.281812 3.146894
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0 0.5 1 1.5 2

Phase-> 

Tnew= .542709 days

0 0.5 1 1.5 2

Star ID :- 015647-0021.2

Tasas = .351447 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .513148 days

0 0.5 1 1.5 2

Star ID :- 075021-0114.6

Tasas = .338760 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .956172 days

0 0.5 1 1.5 2

Star ID :- 103609-5203.9

Tasas = 24.183212 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 3.953892 days

0 0.5 1 1.5 2
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Figure 4.2: The newly detected periods and LC’s are entirely different from the
published periods.
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Fig. 4.2 continued ...
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Fig. 4.2 ends here
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Figure 4.3: The newly detected periods are integral or half integral multiples of the
published periods.
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Fig. 4.3 continued ...
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Fig. 4.3 ends here
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Table 4.4: Published periods var3 compared with new periods for 200 variable stars
with different periods. The corresponding light curves are shown in the Figure 4.4

.

Star−ID Tasas Tnew Star−ID Tasas Tnew

000155−6707.7 228.0000 45.07371 000239−1926.7 72.80000 136.4999
000309−1050.5 68.19999 77.82857 000316−1125.1 0.368920 0.269316
000602−3654.3 0.439110 0.784811 000636−3235.6 71.30000 134.7888
000659−0846.7 43.09999 0.974734 000739+0120.8 1.939900 0.083111
000815−2414.7 0.262427 0.393644 000819−4949.0 59.50000 146.1962
001330−7010.3 28.11000 37.68832 001513−6851.0 34.86000 0.969629
001549−7625.8 46.20000 73.67661 001654−3013.8 171.0000 142.1415
001724−7559.4 41.59999 0.975012 001854−7401.9 43.90000 0.976079
002023−2323.0 97.69999 231.4472 002102−7547.6 0.239260 0.747184
002108−4802.6 350.0000 2.000966 002334−1751.5 29.12000 223.1910
002458−7041.8 32.79000 0.329437 002656−7933.0 103.1999 192.8253
002941−2034.8 46.79999 227.6681 003510−5020.1 8.354000 1.136182
003613−5231.2 39.20000 106.2726 003615−1711.0 44.20000 0.975221
003629−2011.7 0.245848 0.197227 003629−3020.0 51.40000 0.665974
004237−6740.4 78.80000 68.72750 004409−0214.8 73.00000 266.0754
010029−4404.2 0.325583 0.197082 010431−7032.4 47.20000 109.4948
010534−1131.9 48.59999 0.066458 010906−7238.5 85.09999 241.2081
011022−5433.7 24.43000 216.4467 011339−2617.2 50.70000 72.36817
011415−0210.7 325.0000 0.332937 011725−7343.6 38.90000 198.9687
012222−2906.9 0.205090 0.170175 012438−5733.8 33.66999 0.968879
012514−4555.6 29.18000 211.2805 012850−2729.1 31.04000 0.967104
012943−4900.0 0.572510 11.74276 013404−4314.5 53.20000 0.978479
013407−2246.7 21.24000 0.956155 013608−3511.2 127.0000 101.9447
014049−6729.7 1.122800 17.85914 014224−4640.9 319.0000 281.9445
014226−3027.6 0.273712 0.377304 014318−3618.9 83.59999 0.199425
014435−7745.3 0.205717 13.61339 014508−1914.2 2.523200 1.648250
014820−8300.1 138.0000 251.8810 014945−7134.3 99.00000 0.986851
015254−7209.2 51.90000 116.3482 015417−7622.8 62.40000 101.2127
015452−6616.0 58.29999 0.989579 015757−2628.9 79.50000 195.6078
015825−2422.7 91.40000 0.333915 015827−3648.9 100.5000 211.0648
020219−2751.6 107.0000 196.0925 021029−1835.8 72.80000 111.6817
021411−8143.8 129.0000 104.3307 021741−5639.9 81.90000 185.4553
021829−6821.1 68.69999 176.0447 022808−5542.4 36.70000 235.6146
024258−2607.1 90.50000 197.4380 024415−5418.1 64.59999 225.5781



70 Application to ASAS database

Star−ID Tasas Tnew Star−ID Tasas Tnew

024506−4128.3 0.101698 0.127706 024528−1359.5 75.80000 0.200089
024754−4546.7 0.134506 0.155477 024840−3309.2 0.352050 0.641299
024943−6948.7 59.50000 0.980476 025347−1307.7 0.185929 0.228547
025858−1320.7 51.29999 44.43615 030615−2612.8 0.406140 0.288577
030754−2709.0 30.33000 0.967850 030954−2731.4 117.0000 206.8280
031002−4047.7 61.90000 0.981542 031115−5701.5 10.60800 0.911403
031124−3719.5 0.322599 0.243749 031320−1726.8 0.262896 0.208033
031336−0239.5 46.00000 0.976666 031555−7636.3 56.29999 67.09867
031618−2727.3 50.90000 0.111154 032038−5902.4 0.354960 0.301314
032336−1953.0 80.09999 193.6298 032719−0730.7 75.50000 181.5049
032846−6041.4 93.59999 204.9276 033219−3539.3 0.060689 0.054113
033630−3219.6 40.90000 35.87755 033719−5225.5 53.00000 221.8075
034103−3029.6 32.09000 0.967104 034136−3750.4 151.0000 0.249205
034234−1450.7 54.70000 135.4731 034418−3739.0 31.35000 0.198410
034534−1123.2 0.132551 0.180437 035027−8608.5 41.70000 108.9684
035442−2914.4 42.50000 103.7475 035504−4710.2 127.0000 145.1198
040019−0623.1 22.83000 0.197966 040031−1559.5 45.20000 53.45301
040404−3801.0 6.307000 0.863288 040418−2036.7 39.20000 0.974013
040602−0915.7 50.40000 0.978034 040717−2800.5 44.50000 0.975849
040936−8151.3 9.685000 329.9542 041038−8647.1 45.70000 82.14008
041443−1852.2 60.29999 0.981245 041521−0630.3 41.50000 0.251843
041704−1213.3 69.80000 0.982740 041957−7046.7 175.0000 0.249316
041958−1843.3 78.59999 120.3035 042142−6339.5 72.59999 90.22408
042144−1403.8 271.0000 186.2696 042351−7654.7 0.651920 1.883532
042515−5128.3 0.200940 26.11445 042525−1136.9 68.59999 144.5836
042559−3618.3 110.0000 205.3067 042640−3618.6 0.386530 0.631308
042917−8448.3 50.79999 189.2825 043358−5147.1 35.50000 188.1361
043701−2945.7 81.00000 198.8178 043812−6218.2 96.50000 212.7863
043924−5212.0 80.19999 97.73649 043930−3233.1 0.357980 4.716863
044142−3314.9 98.80000 261.4868 044325−1028.9 0.188280 0.302218
044526−4906.8 0.201264 0.167461 044704−1819.1 33.41999 215.6656
045213−4100.3 29.10000 0.167429 045426−2810.0 161.0000 186.4880
045550−2742.2 24.15000 0.960614 045742−6517.0 20.82000 178.2709
045833−7020.8 0.973410 35.66350 050247−2944.1 108.0999 148.9985
050300−5405.9 42.70000 202.6619 050324−1630.6 16.44000 180.8750
050415−6715.1 42.59999 204.6315 050737−0140.1 6.416000 0.862664

Table 4.4 continued...
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Star−ID Tasas Tnew Star−ID Tasas Tnew

050816−5013.1 63.40000 159.7113 050911−6936.2 99.00000 163.6492
051218−3438.3 20.26000 0.327305 051448−6911.5 63.50000 218.6949
051535−5309.4 80.09999 0.984621 051600−0948.6 41.20000 99.52346
051605−6006.9 1.070320 0.936245 051614−2955.1 0.156993 0.186336
051757−6808.7 410.0000 0.332503 052222−3030.7 49.40000 41.51421
052234−4635.3 0.443420 0.665069 052320−2428.1 99.40000 0.986254
052422−1020.8 54.20000 0.111069 052632−1659.4 63.09999 173.8745
052901−4821.8 52.40000 0.331986 052908−6912.3 253.0000 220.7868
052921−6847.5 104.4000 194.0727 052931−5402.8 42.20000 48.33171
053019−7302.1 161.0000 200.2298 053022−6919.7 66.90000 0.332129
053031−1303.4 74.69999 130.3753 053114−1028.8 129.0000 156.0513
053118−7900.5 11.10000 0.917295 053230−2226.2 37.40000 55.71995
053255−2646.1 57.40000 190.2430 053512−5801.2 0.104758 0.064278
053940−5934.1 0.158203 0.136602 053955−4504.2 39.20000 0.052451
054057−1810.6 0.160241 0.190926 054059−6918.6 188.0000 166.0495
054232−1914.0 33.63999 191.0070 054324−1444.0 86.69999 192.3820
054530−1903.5 57.70000 193.5326 054648−1204.0 77.69999 108.4950
054747−6022.1 79.09999 92.39866 054841−7003.2 79.09999 128.5948
055137−1432.2 1.082590 0.341310 055406−2509.2 42.09999 53.67042
055430−0343.2 279.0000 0.249587 055451−1526.2 78.59999 138.1432
055648−5925.4 74.50000 199.1041 055742−1916.3 77.50000 189.3144
060130−2527.9 90.90000 81.62194 060151−2127.7 64.40000 219.0475
060524−5729.6 127.0000 195.4714 060617−0705.9 336.0000 0.985932
060810−1406.8 49.00000 81.64902 060848−1302.4 150.0000 196.7356
125353−8727.4 54.50000 191.4580 140041−8519.4 20.20000 48.09371
140634−8522.9 26.79999 0.124526 170225−8703.3 32.45999 119.0846
171030−8623.0 222.0000 272.2056 222201−8440.0 310.0000 190.3982
231708−8548.1 79.00000 124.0942 233524−5503.1 39.79999 182.7891
233614−8331.0 86.59999 240.5640 234708−4548.9 78.90000 219.9647
235007−1417.8 84.69999 59.34230 235054−3517.8 159.0000 113.0367

Table 4.4 ends here
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Figure 4.4: The light curves shown above are from the var3 database. Newly de-
tected light curves are on the left and published light curves on the right. Periods
in days are given at the top of each figure. The newly detected periods are entirely
different from the published periods.



4.3 Results from a2perlc and var3 databases 73

0 0.5 1 1.5 2

Phase-> 

Tnew= 134.78886 days 

0 0.5 1 1.5 2

Star ID :- 000636-3235.6 

Tasas = 71.300003 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .974734 days

0 0.5 1 1.5 2

Star ID :- 000659-0846.7

Tasas = 43.099998 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .083111 days

0 0.5 1 1.5 2

Star ID :- 000739+0120.8

Tasas = 1.939900 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .393644 days

0 0.5 1 1.5 2

Star ID :- 000815-2414.7

Tasas = .262427 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 146.19621 days 

0 0.5 1 1.5 2

Star ID :- 000819-4949.0 

Tasas = 59.500000 days 

Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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0 0.5 1 1.5 2

Star ID :- 013404-4314.5

Tasas = 53.200001 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .956155 days

0 0.5 1 1.5 2

Star ID :- 013407-2246.7

Tasas = 21.240000 days
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0 0.5 1 1.5 2

Phase-> 

Tnew= 101.94474 days 

0 0.5 1 1.5 2

Star ID :- 013608-3511.2 

Tasas = 127.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 17.859142 days

0 0.5 1 1.5 2

Star ID :- 014049-6729.7

Tasas = 1.122800 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 281.94451 days 

0 0.5 1 1.5 2

Star ID :- 014224-4640.9 

Tasas = 319.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .377304 days

0 0.5 1 1.5 2

Star ID :- 014226-3027.6

Tasas = .273712 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .199425 days

0 0.5 1 1.5 2

Star ID :- 014318-3618.9

Tasas = 83.599998 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 13.613390 days

0 0.5 1 1.5 2

Star ID :- 014435-7745.3

Tasas = .205717 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 1.648250 days

0 0.5 1 1.5 2

Star ID :- 014508-1914.2

Tasas = 2.523200 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 251.88101 days 

0 0.5 1 1.5 2

Star ID :- 014820-8300.1 

Tasas = 138.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .986851 days

0 0.5 1 1.5 2

Star ID :- 014945-7134.3

Tasas = 99.000000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 116.34829 days 

0 0.5 1 1.5 2

Star ID :- 015254-7209.2 

Tasas = 51.900002 days 
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0 0.5 1 1.5 2

Phase-> 

Tnew= 101.212723 days

0 0.5 1 1.5 2

Star ID :- 015417-7622.8

Tasas = 62.400002 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .989579 days

0 0.5 1 1.5 2

Star ID :- 015452-6616.0

Tasas = 58.299999 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 195.607834 days

0 0.5 1 1.5 2

Star ID :- 015757-2628.9

Tasas = 79.500000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .333915 days

0 0.5 1 1.5 2

Star ID :- 015825-2422.7

Tasas = 91.400002 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 211.06485 days 

0 0.5 1 1.5 2

Star ID :- 015827-3648.9 

Tasas = 100.50000 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 196.09252 days 

0 0.5 1 1.5 2

Star ID :- 020219-2751.6 

Tasas = 107.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 111.68176 days 

0 0.5 1 1.5 2

Star ID :- 021029-1835.8 

Tasas = 72.800003 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 104.33077 days 

0 0.5 1 1.5 2

Star ID :- 021411-8143.8 

Tasas = 129.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 185.45538 days 

0 0.5 1 1.5 2

Star ID :- 021741-5639.9 

Tasas = 81.900002 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 176.044739 days

0 0.5 1 1.5 2

Star ID :- 021829-6821.1

Tasas = 68.699997 days
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0 0.5 1 1.5 2

Phase-> 

Tnew= 235.61467 days 

0 0.5 1 1.5 2

Star ID :- 022808-5542.4 

Tasas = 36.700001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 197.438049 days

0 0.5 1 1.5 2

Star ID :- 024258-2607.1

Tasas = 90.500000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 225.578140 days

0 0.5 1 1.5 2

Star ID :- 024415-5418.1

Tasas = 64.599998 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .127706 days

0 0.5 1 1.5 2

Star ID :- 024506-4128.3

Tasas = .101698 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .200089 days

0 0.5 1 1.5 2

Star ID :- 024528-1359.5

Tasas = 75.800003 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .155477 days

0 0.5 1 1.5 2

Star ID :- 024754-4546.7

Tasas = .134506 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .641299 days

0 0.5 1 1.5 2

Star ID :- 024840-3309.2

Tasas = .352050 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .980476 days

0 0.5 1 1.5 2

Star ID :- 024943-6948.7

Tasas = 59.500000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .228547 days

0 0.5 1 1.5 2

Star ID :- 025347-1307.7

Tasas = .185929 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 44.436157 days 

0 0.5 1 1.5 2

Star ID :- 025858-1320.7 

Tasas = 51.299999 days 
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0 0.5 1 1.5 2

Phase-> 

Tnew= .288577 days

0 0.5 1 1.5 2

Star ID :- 030615-2612.8

Tasas = .406140 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .967850 days

0 0.5 1 1.5 2

Star ID :- 030754-2709.0

Tasas = 30.330000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 206.82803 days 

0 0.5 1 1.5 2

Star ID :- 030954-2731.4 

Tasas = 117.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .981542 days

0 0.5 1 1.5 2

Star ID :- 031002-4047.7

Tasas = 61.900002 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .911403 days 

0 0.5 1 1.5 2

Star ID :- 031115-5701.5 

Tasas = 10.608000 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .243749 days

0 0.5 1 1.5 2

Star ID :- 031124-3719.5

Tasas = .322599 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .208033 days

0 0.5 1 1.5 2

Star ID :- 031320-1726.8

Tasas = .262896 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .976666 days

0 0.5 1 1.5 2

Star ID :- 031336-0239.5

Tasas = 46.000000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 67.098671 days 

0 0.5 1 1.5 2

Star ID :- 031555-7636.3 

Tasas = 56.299999 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .111154 days

0 0.5 1 1.5 2

Star ID :- 031618-2727.3

Tasas = 50.900002 days
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0 0.5 1 1.5 2

Phase-> 

Tnew= .301314 days

0 0.5 1 1.5 2

Star ID :- 032038-5902.4

Tasas = .354960 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 193.62988 days 

0 0.5 1 1.5 2

Star ID :- 032336-1953.0 

Tasas = 80.099998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 181.50491 days 

0 0.5 1 1.5 2

Star ID :- 032719-0730.7 

Tasas = 75.500000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 204.92762 days 

0 0.5 1 1.5 2

Star ID :- 032846-6041.4 

Tasas = 93.599998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .054113 days

0 0.5 1 1.5 2

Star ID :- 033219-3539.3

Tasas = .060689 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 35.877556 days 

0 0.5 1 1.5 2

Star ID :- 033630-3219.6 

Tasas = 40.900002 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 221.80758 days 

0 0.5 1 1.5 2

Star ID :- 033719-5225.5 

Tasas = 53.000000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .967104 days 

0 0.5 1 1.5 2

Star ID :- 034103-3029.6 

Tasas = 32.090000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .249205 days

0 0.5 1 1.5 2

Star ID :- 034136-3750.4

Tasas = 151.000000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 135.47316 days 

0 0.5 1 1.5 2

Star ID :- 034234-1450.7 

Tasas = 54.700001 days 
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0 0.5 1 1.5 2

Phase-> 

Tnew= .198410 days

0 0.5 1 1.5 2

Star ID :- 034418-3739.0

Tasas = 31.350000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .180437 days

0 0.5 1 1.5 2

Star ID :- 034534-1123.2

Tasas = .132551 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 108.96843 days 

0 0.5 1 1.5 2

Star ID :- 035027-8608.5 

Tasas = 41.700001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 103.74752 days 

0 0.5 1 1.5 2

Star ID :- 035442-2914.4 

Tasas = 42.500000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 145.11987 days 

0 0.5 1 1.5 2

Star ID :- 035504-4710.2 

Tasas = 127.00000 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .197966 days

0 0.5 1 1.5 2

Star ID :- 040019-0623.1

Tasas = 22.830000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 53.453011 days 

0 0.5 1 1.5 2

Star ID :- 040031-1559.5 

Tasas = 45.200001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .863288 days

0 0.5 1 1.5 2

Star ID :- 040404-3801.0

Tasas = 6.307000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .974013 days 

0 0.5 1 1.5 2

Star ID :- 040418-2036.7 

Tasas = 39.200001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .978034 days

0 0.5 1 1.5 2

Star ID :- 040602-0915.7

Tasas = 50.400002 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .975849 days

0 0.5 1 1.5 2

Star ID :- 040717-2800.5

Tasas = 44.500000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 329.95428 days 

0 0.5 1 1.5 2

Star ID :- 040936-8151.3 

0 0.5 1 1.5 2

Phase-> 

Tnew= 82.140083 days 

0 0.5 1 1.5 2

Star ID :- 041038-8647.1 

Tasas = 45.700001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .981245 days

0 0.5 1 1.5 2

Star ID :- 041443-1852.2

Tasas = 60.299999 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .251843 days

0 0.5 1 1.5 2

Star ID :- 041521-0630.3

Tasas = 41.500000 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .982740 days

0 0.5 1 1.5 2

Star ID :- 041704-1213.3

Tasas = 69.800003 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .249316 days

0 0.5 1 1.5 2

Star ID :- 041957-7046.7

Tasas = 175.000000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 120.30358 days 

0 0.5 1 1.5 2

Star ID :- 041958-1843.3 

Tasas = 78.599998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 90.224083 days 

0 0.5 1 1.5 2

Star ID :- 042142-6339.5 

Tasas = 72.599998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 186.26968 days 

0 0.5 1 1.5 2

Star ID :- 042144-1403.8 

Tasas = 271.00000 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 1.883532 days

0 0.5 1 1.5 2

Star ID :- 042351-7654.7

Tasas = .651920 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 26.114454 days

0 0.5 1 1.5 2

Star ID :- 042515-5128.3

Tasas = .200940 days

0 0.5 1 1.5

Phase-> 

Tnew= 144.58366 days 

0 0.5 1 1.5 2

Star ID :- 042525-1136.9 

Tasas = 68.599998 days 

0 0.5 1 1.5

Phase-> 

Tnew= 205.30673 days 

0 0.5 1 1.5 2

Star ID :- 042559-3618.3 

Tasas = 110.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .631308 days

0 0.5 1 1.5 2

Star ID :- 042640-3618.6

Tasas = .386530 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 189.28259 days 

0 0.5 1 1.5 2

Star ID :- 042917-8448.3 

Tasas = 50.799999 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 188.13615 days 

0 0.5 1 1.5 2

Star ID :- 043358-5147.1 

Tasas = 35.500000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 198.81787 days 

0 0.5 1 1.5 2

Star ID :- 043701-2945.7 

Tasas = 81.000000 days 

0 0.5 1 1.5

Phase-> 

Tnew= 212.78634 days 

0 0.5 1 1.5 2

Star ID :- 043812-6218.2 

Tasas = 96.500000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 97.736496 days 

0 0.5 1 1.5 2

Star ID :- 043924-5212.0 

Tasas = 80.199997 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 4.716863 days

0 0.5 1 1.5 2

Star ID :- 043930-3233.1

Tasas = .357980 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 261.48687 days 

0 0.5 1 1.5 2

Star ID :- 044142-3314.9 

Tasas = 98.800003 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .302218 days

0 0.5 1 1.5 2

Star ID :- 044325-1028.9

Tasas = .188280 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .167461 days

0 0.5 1 1.5 2

Star ID :- 044526-4906.8

Tasas = .201264 days

0 0.5 1 1.5

Phase-> 

Tnew= 215.66560 days 

0 0.5 1 1.5 2

Star ID :- 044704-1819.1 

Tasas = 33.419998 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .167429 days

0 0.5 1 1.5 2

Star ID :- 045213-4100.3

Tasas = 29.100000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 186.48808 days 

0 0.5 1 1.5 2

Star ID :- 045426-2810.0 

Tasas = 161.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .960614 days

0 0.5 1 1.5 2

Star ID :- 045550-2742.2

Tasas = 24.150000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 178.27099 days 

0 0.5 1 1.5 2

Star ID :- 045742-6517.0 

Tasas = 20.820000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 35.663502 days 

0 0.5 1 1.5 2

Star ID :- 045833-7020.8 

Tasas = .973410 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 148.99859 days 

0 0.5 1 1.5 2

Star ID :- 050247-2944.1 

Tasas = 108.09999 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 202.66192 days 

0 0.5 1 1.5 2

Star ID :- 050300-5405.9 

Tasas = 42.700001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 180.87509 days 

0 0.5 1 1.5 2

Star ID :- 050324-1630.6 

Tasas = 16.440001 days 

0 0.5 1 1.5

Phase-> 

Tnew= 204.63157 days 

0 0.5 1 1.5 2

Star ID :- 050415-6715.1 

Tasas = 42.599998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .862664 days

0 0.5 1 1.5 2

Star ID :- 050737-0140.1

Tasas = 6.416000 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 159.71139 days 

0 0.5 1 1.5 2

Star ID :- 050816-5013.1 

Tasas = 63.400002 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 163.64924 days 

0 0.5 1 1.5 2

Star ID :- 050911-6936.2 

Tasas = 99.000000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .327305 days

0 0.5 1 1.5 2

Star ID :- 051218-3438.3

Tasas = 20.260000 days

0 0.5 1 1.5

Phase-> 

Tnew= 218.69490 days 

0 0.5 1 1.5 2

Star ID :- 051448-6911.5 

Tasas = 63.500000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .984621 days

0 0.5 1 1.5 2

Star ID :- 051535-5309.4

Tasas = 80.099998 days

Fig. 4.4 continued...*
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0 0.5 1 1.5 2

Phase-> 

Tnew= 99.523468 days 

0 0.5 1 1.5 2

Star ID :- 051600-0948.6 

Tasas = 41.200001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .936245 days

0 0.5 1 1.5 2

Star ID :- 051605-6006.9

Tasas = 1.070320 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .186336 days

0 0.5 1 1.5 2

Star ID :- 051614-2955.1

Tasas = .156993 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .332503 days

0 0.5 1 1.5 2

Star ID :- 051757-6808.7

Tasas = 410.000000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 41.514214 days 

0 0.5 1 1.5 2

Star ID :- 052222-3030.7 

Tasas = 49.400002 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .665069 days 

0 0.5 1 1.5 2

Star ID :- 052234-4635.3 

Tasas = .443420 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .986254 days 

0 0.5 1 1.5 2

Star ID :- 052320-2428.1 

Tasas = 99.400002 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .111069 days

0 0.5 1 1.5 2

Star ID :- 052422-1020.8

Tasas = 54.200001 days

0 0.5 1 1.5 2

Phase-> 

Tnew= 173.87452 days 

0 0.5 1 1.5 2

Star ID :- 052632-1659.4 

Tasas = 63.099998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .331986 days

0 0.5 1 1.5 2

Star ID :- 052901-4821.8

Tasas = 52.400002 days

Fig. 4.4 continued...
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0 0.5 1 1.5

Phase-> 

Tnew= 220.78680 days 

0 0.5 1 1.5 2

Star ID :- 052908-6912.3 

Tasas = 253.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 194.07272 days 

0 0.5 1 1.5 2

Star ID :- 052921-6847.5 

Tasas = 104.40000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 48.331715 days 

0 0.5 1 1.5 2

Star ID :- 052931-5402.8 

Tasas = 42.200001 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 200.22981 days 

0 0.5 1 1.5 2

Star ID :- 053019-7302.1 

Tasas = 161.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .332129 days

0 0.5 1 1.5 2

Star ID :- 053022-6919.7

Tasas = 66.900002 days

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= 130.37538 days 

0 0.5 1 1.5 2

Star ID :- 053031-1303.4 

Tasas = 74.699997 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 156.05137 days 

0 0.5 1 1.5 2

Star ID :- 053114-1028.8 

Tasas = 129.00000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= .917295 days 

0 0.5 1 1.5 2

Star ID :- 053118-7900.5 

Tasas = 11.100000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 55.719952 days 

0 0.5 1 1.5 2

Star ID :- 053230-2226.2 

Tasas = 37.400002 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 190.24307 days 

0 0.5 1 1.5 2

Star ID :- 053255-2646.1 

Tasas = 57.400002 days 

Fig. 4.4 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .064278 days

0 0.5 1 1.5 2

Star ID :- 053512-5801.2

Tasas = .104758 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .136602 days

0 0.5 1 1.5 2

Star ID :- 053940-5934.1

Tasas = .158203 days

0 0.5 1 1.5 2
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 continued...
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Fig. 4.4 ends here
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Table 4.5: Published periods from var3 database compared with newly detected
periods for 45 variable stars with nearly harmonic periods (double, triple or half
etc.). The corresponding light curves are shown in the Figure 4.5

.

Star−ID Tasas Tnew Star−ID Tasas Tnew

005618−4122.0 0.335374 0.167015 051512−3523.6 0.245344 0.482269
051714−1142.0 0.236170 0.121319 053022−3234.8 0.233120 0.137078
055322−5417.9 0.245298 0.141195 000142−4229.3 32.43999 261.3117
001201−2434.0 101.1999 198.0760 001215−8312.0 27.290001 108.9761
010029−4404.2 0.325583 0.651159 010520−8152.6 48.70000 93.99372
013407−2246.7 21.24000 65.639420 013503−8255.7 49.20000 98.82673
014438−7722.2 46.50000 93.661087 014508−1914.2 2.523200 0.621234
015452−6616.0 58.29999 120.84420 015656−4149.0 2.559900 0.717422
015756−7830.5 31.15000 91.244102 020801−3619.1 66.19999 204.3466
023237−1643.6 65.19999 127.48300 030311−2660.0 66.50000 133.6750
030842−7547.4 85.69999 176.61300 032512−7839.9 50.40000 100.4208
033029−7150.4 53.50000 108.06099 033425−2537.7 106.5999 208.6163
033516−5105.8 64.50000 126.99870 040719−6026.8 65.50000 134.9145
042401−6707.1 99.90000 204.60330 042756−2912.8 49.7999 100.7442
043658−2403.0 54.79999 110.48280 051135−3120.4 21.37000 193.3045
051952−1752.4 365.0000 173.83740 052612−5336.6 36.20000 179.9676
052802−6607.4 433.0000 197.57110 052946−6905.8 100.3000 296.7796
053022−6919.7 66.90000 205.06289 053232−6549.6 53.09999 108.9712
053246−2800.8 260.0000 133.98590 053450−2704.3 43.29999 86.10275
053451−3828.8 23.79000 48.247551 053832−4547.8 101.5999 201.2456
054754−1737.6 44.00000 89.370743 055103−1930.9 69.00000 135.1347
055717−1317.3 52.00000 107.26930 230856−8425.8 80.59999 244.2481
235010−8651.1 68.69999 137.70910
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Figure 4.5: Newly detected light curves are on the left and published light curves
are on the right. Periods in days are given at the top of each figure. All the above
light curves are from the var3 database. It is found that the newly detected periods
are harmonics of the published periods.
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Fig. 4.5 continued...
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Fig. 4.5 continued...
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Fig. 4.5 continued...



4.3 Results from a2perlc and var3 databases 117

0 0.5 1 1.5 2

Phase-> 

Tnew= 176.613007 days 

0 0.5 1 1.5 2

Star ID :- 030842-7547.4 

Tasas = 85.699997 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 100.420898 days 

0 0.5 1 1.5 2

Star ID :- 032512-7839.9 

Tasas = 50.400002 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 108.060997 days 

0 0.5 1 1.5 2

Star ID :- 033029-7150.4 

Tasas = 53.500000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 208.616394 days 

0 0.5 1 1.5 2

Star ID :- 033425-2537.7 

Tasas = 106.599998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 126.998703 days 

0 0.5 1 1.5 2

Star ID :- 033516-5105.8 

Tasas = 64.500000 days 

Fig. 4.5 continued...
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Fig. 4.5 continued...
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Fig. 4.5 continued...
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Fig. 4.5 continued...



4.3 Results from a2perlc and var3 databases 121

0 0.5 1 1.5 2

Phase-> 

Tnew= 89.370743 days 

0 0.5 1 1.5 2

Star ID :- 054754-1737.6 

Tasas = 44.000000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 135.134796 days 

0 0.5 1 1.5 2

Star ID :- 055103-1930.9 

Tasas = 69.000000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 107.269302 days 

0 0.5 1 1.5 2

Star ID :- 055717-1317.3 

Tasas = 52.000000 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 244.248199 days 

0 0.5 1 1.5 2

Star ID :- 230856-8425.8 

Tasas = 80.599998 days 

0 0.5 1 1.5 2

Phase-> 

Tnew= 137.709106 days 

0 0.5 1 1.5 2

Star ID :- 235010-8651.1 

Tasas = 68.699997 days 

Fig. 4.5 ends here





Chapter 5

Application to CRTS database

5.1 Introduction

The Catalina Real-Time Transient Survey CRTS (http://crts.caltech.edu/) is a re-

cent synoptic astronomical exploration that covers thirty three thousand square

degrees of the sky in order to discover rare and interesting transient phenomena.

CRTS that consists of all photometry from seven years of photometry taken with

the three telescopes. This data release encompasses the photometry for 500 million

objects (∼ 40 billion measurements) with V magnitudes between 11.5 and 21.5 from

an area of 33,000 square degrees. The CRTS team has made the entire photometric

data set public as a service to the astronomical community.

5.2 Application to CRTS database

The CRTS recently released nearly 12000 RRab star’s (RR Lyrae type, which oscil-

lates in fundamental mode, Light curve shows a rapid increase to the peak, with a

relatively slow decrease) time series data along with the catalogue. These stars have

periods in the range between 0.4 to 0.8 days. We re-analysed the database, with

this prior knowledge using SigSpec and got 44 new better periods. Also hundreds

of published periods got improved from second and third decimal digital onwards.

Out of these, one example for improved period is shown in the Figure (5.1) for star

ID 1104076049945 (5th decimal place improvement). By the decimal place improve-

ment of periods, the type of the star does not change in this database and hence

will not be much useful for classification purpose, but definitely useful for modeling

of light curves and extracting the features of individual stars.
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0 0.5 1 1.5 2
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Tnew= .582704 days

0 0.5 1 1.5 2

Star ID :- 1104076049945

Tcrts = .582742 days

Figure 5.1: Period improvement in the 5th decimal place.

5.3 Results and Conclusion

The Since CRTS is a recent survey and use latest software pipeline, we have got small

percentage of entirely new periods. The newly obtained period and corresponding

folded light curves (left side) are shown below, along with published periods and

corresponding light curves (right side) for comparison. Tnew is the new period

detected and Tcrts is the CRTS Published period in days. As in the Chapter 4, the

light curves are plotted after removing the few extreme outliers, using the DEBiL

method by Devor[29]. Also we have visually examined the new light curves and

compared with the published ones, to make sure that the new results are genuine.
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Table 5.1: Newly detected periods and CRTS published periods for 44 variable stars.
The corresponding phased light curves are shown in the Figure 5.2

Star−ID Tnew Tcrts Star−ID Tnew Tcrts

1001010056005 0.505981 0.431235 1004073027603 0.505709 0.855231
1004085006979 0.759415 0.531987 1004089050719 0.452869 0.829589
1004090073356 0.490005 0.680319 1004091062574 0.633507 0.546297
1004093132546 0.564659 0.500184 1004116029017 0.407765 0.689753
1007029026267 0.539783 0.635778 1007033074479 0.597016 0.434509
1007047048820 0.554810 0.831158 1007084084733 0.458631 0.849127
1007114034537 0.546930 0.849455 1009032027855 0.621345 0.703380
1009087064076 0.461758 0.859941 1009088108206 0.798656 0.570580
1012055030221 0.466053 0.752115 1012073036637 0.475419 0.908466
1012079068260 0.554563 0.831816 1012089038408 0.662515 0.507995
1015081068674 0.407401 0.664602 1015105046482 0.432534 0.589502
1101083007954 0.576220 0.681087 1109044069434 0.630695 0.465836
1109068056519 0.492714 0.559968 1109093050668 0.641525 0.466515
1112066021993 0.498926 0.762737 1115054045334 0.415073 0.649162
1115067032610 0.420435 0.726873 1118027006983 0.490679 0.551302
1121064046205 0.408653 0.675226 1121085087608 0.641356 0.491003
1123062053146 0.418621 0.720000 1129082102332 0.519875 0.766972
1135002071490 0.599550 0.502907 1135081074235 0.667168 0.544994
1140076060784 0.579143 0.439200 1143037025595 0.768135 0.858729
1152047005361 0.788642 0.440379 1155055016689 0.446929 0.809873
1157022072330 0.592799 0.860527 1157028035996 0.490420 0.444617
1160021002958 0.433543 0.667280 2003191004685 0.596239 0.498063
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Figure 5.2: The above shown 44 light curves are obtained from the CRTS database.
The newly detected periods give better light curves than the published periods.
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Fig. 5.2 continued...
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0 0.5 1 1.5 2

Star ID :- 1007084084733

Tcrts = .849127 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .546930 days

0 0.5 1 1.5 2

Star ID :- 1007114034537

Tcrts = .849455 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .621345 days

0 0.5 1 1.5 2

Star ID :- 1009032027855

Tcrts = .703380 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .461758 days

0 0.5 1 1.5 2

Star ID :- 1009087064076

Tcrts = .859941 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .798656 days

0 0.5 1 1.5 2

Star ID :- 1009088108206

Tcrts = .570580 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .466053 days

0 0.5 1 1.5 2

Star ID :- 1012055030221

Tcrts = .752115 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .475419 days

0 0.5 1 1.5 2

Star ID :- 1012073036637

Tcrts = .908466 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .554563 days

0 0.5 1 1.5 2

Star ID :- 1012079068260

Tcrts = .831816 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .662515 days

0 0.5 1 1.5 2

Star ID :- 1012089038408

Tcrts = .507995 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .407401 days

0 0.5 1 1.5 2

Star ID :- 1015081068674

Tcrts = .664602 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .432534 days

0 0.5 1 1.5 2

Star ID :- 1015105046482

Tcrts = .589502 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .576220 days

0 0.5 1 1.5 2

Star ID :- 1101083007954

Tcrts = .681087 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .630695 days

0 0.5 1 1.5 2

Star ID :- 1109044069434

Tcrts = .465836 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .492714 days

0 0.5 1 1.5 2

Star ID :- 1109068056519

Tcrts = .559968 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .641525 days

0 0.5 1 1.5 2

Star ID :- 1109093050668

Tcrts = .466515 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .498926 days

0 0.5 1 1.5 2

Star ID :- 1112066021993

Tcrts = .762737 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .415073 days

0 0.5 1 1.5 2

Star ID :- 1115054045334

Tcrts = .649162 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .579143 days

0 0.5 1 1.5 2

Star ID :- 1140076060784

Tcrts = .439200 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .768135 days

0 0.5 1 1.5 2

Star ID :- 1143037025595

Tcrts = .858729 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .788642 days

0 0.5 1 1.5 2

Star ID :- 1152047005361

Tcrts = .440379 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .446929 days

0 0.5 1 1.5 2

Star ID :- 1155055016689

Tcrts = .809873 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .592799 days

0 0.5 1 1.5 2

Star ID :- 1157022072330

Tcrts = .860527 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .490420 days

0 0.5 1 1.5 2

Star ID :- 1157028035996

Tcrts = .444617 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .433543 days

0 0.5 1 1.5 2

Star ID :- 1160021002958

Tcrts = .667280 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .596239 days

0 0.5 1 1.5 2

Star ID :- 2003191004685

Tcrts = .498063 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .420435 days

0 0.5 1 1.5 2

Star ID :- 1115067032610

Tcrts = .726873 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .490679 days

0 0.5 1 1.5 2

Star ID :- 1118027006983

Tcrts = .551302 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .408653 days

0 0.5 1 1.5 2

Star ID :- 1121064046205

Tcrts = .675226 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .641356 days

0 0.5 1 1.5 2

Star ID :- 1121085087608

Tcrts = .491003 days

Fig. 5.2 continued...
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0 0.5 1 1.5 2

Phase-> 

Tnew= .418621 days

0 0.5 1 1.5 2

Star ID :- 1123062053146

Tcrts = .720000 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .519875 days

0 0.5 1 1.5 2

Star ID :- 1129082102332

Tcrts = .766972 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .599550 days

0 0.5 1 1.5 2

Star ID :- 1135002071490

Tcrts = .502907 days

0 0.5 1 1.5 2

Phase-> 

Tnew= .667168 days

0 0.5 1 1.5 2

Star ID :- 1135081074235

Tcrts = .544994 days

Fig. 5.2 ends here.



Chapter 6

Summary and Conclusions

6.1 Introduction

Many of the existing period search methods were studied in detail and four popular

methods were compiled for automated period search of variable stars. The theory

of Lomb-Scargle periodogram and cubic spline interpolation using B-splines, were

studied in detail. In brief,

• LSP/GLSP - The derivation is consolidated in two different ways.

• SigSpec - Method is re-coded in FORTRAN.

• PDM - Automated the method.

• MCS - The theory modified with unevenly spaced knots, coded in FORTRAN.

The developed automated method applied on the following two databases.

• ASAS - Re-analysed the database.

• CRTS - Re-analysed the database.

Our strategy was to use the above specified first three methods on the data for

the initial period search and the results are compared with the published periods.

Those results, which are different from the published periods are subjected to the

MCS interpolation method, including the harmonics of the newly detected period.

The period corresponding to the minimum least square error is taken as the newly

detected best period. In order to confirm this, we have visually examined all these

light curves. We have applied this strategy to two databases ASAS and CRTS,

which are available to the public.
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It has been found that, in the case of ASAS database, we have detected nearly

5% better periods than the published periods. In the case of CRTS database, we

have detected 44 entirely different periods and many decimal place improved periods.

This is due to the fact that, CRTS uses latest classification method and also only

one type of variable star data (i.e. RRab type) is used. The results obtained to us

show that, the period search methods are to be improved to get 100% exact periods

of variable stars, when the data is subjected to automation. This is the need of time,

since large scale variability surveys are producing lot of time series data and many

of these data is available to the public. The computers are getting more powerful,

storage media is becoming cheaper and long lasting, Internet becoming faster, the

data analysis on astro-time-series becomes a prospectus research area in the near

future.

The knowledge wise required skills for this kind of data analysis research are as

follows. Some domain knowledge about the variability, variable stars, astro-time-

series, light curves are required. The statistical knowledge about various statistics

used to assess the quality of the data as well as the obtained results are required. The

numerical methods and programming in few languages are also needed. The bash

or any other scripting language should be known, which will help the automation of

methods, by which lot of time can be saved. Finally the interpretation of the results

require some experience with the shape and other properties of the characteristic

light curve of variable stars.

6.2 Summary : Comparison of 3 methods and improve-

ment by MCS interpolation method

It has been found that the automated methods are required, for analysing thousands

of light curves. Also our analysis on two databases shows that some of the published

periods are not correct. This is because, usually one method is used for period

confirmation. But we have used two methods in sequence, one for detection and

another for period confirmation. This kind of implementation takes little more time

than a single method, but some good results obtained shows that, such strategies can

be used for re-analysing the published results. The table below shows the results of

the 3 popular period search methods applied on ASAS a2perlc data, which contain

384 time series data files. The table (6.2) shows that, the modified cubic spline

(MCS) interpolation method improved the period detection rate nearly by 5 − 6%

during automation.
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Method Success
rate

+MCS

GLSP 81% 88%
SigSpec 85% 91%
PDM 79% 84%

Table 6.1: The sequential application of MCS improves the detection by 5− 6%

6.3 Future prospectus

In view of above results, we can point some interesting problems that can be ad-

dressed in the future.

• Improve the method, so that full automation along with maximum success

rate is obtained.

• Apply the automated methods of period detection to other available databases.

• Extract other features from the light curve.

• Extension into other time series for short term and long term periodicity pre-

dictions.

• Error analysis on the obtained periods.

• Classify the variable stars using supervised/unsupervised classification meth-

ods, Gaussian mixture model and Random forest automated classification

methods, using minimum parameters.





Appendix A

Significant Spectrum - SigSpec

A.1 SigSpec-F

SigSpec program for finding periods of variable stars, which can be automated in
combination with the script in Appendix C.1

! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

! _ _ _ _ _ _ _ _ _ _

! / / / / / SigSpec-F / / / / /

!

! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

!

!SigSpec-F is for Period analysis of variable stars from their time series

!Expects a time series text file with 3 columns for

!time, magnitude and error as input and each separated by space or 2 columns

!Time in Julian Date.

!The extension of file is .lc. If extension is different, change it in the

!script startsigspecf.sh

!This program is written for full automation, hence nothing has to be given as input

!The script does everything. Copy and name this program as sigspecf.for

!Just keep all data files (*.lc) in a folder along with this program and script

!startsigspecf.sh

!and compile this fortran program from the same folder terminal. Use latest compiler

!gfortran -o sigspecf sigspecf.for . Uses dynamical memory allocation by fortran

!Then run the script as ./startsigspecf.sh

!The entire files in the folder are processed one by one.

!The output is written to ’result.txt’ as 7 column text file

!Output columns are freq, sig, amp, phase, rms dev, p2p scatt, csig

!Original version is written by Piet Reegen, Vienna, Austria in C Language

!SigSpec-Fortran version is written by Shaju K.Y. and Ramesh Babu Thayyullathil

!Cochin University of Science and Technology, Kochi, Kerala, India 682022

!January 2009

!For any queries or bugs, please contact shajuky@gmail.com

!Good Luck in astro computing !!!
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!

PROGRAM SIGSPECF

IMPLICIT NONE

!Program starts here. The total number of observations read here

!The number of lines in input file is read by script startsigspecf.sh and

!produce file ’forin.dat’

INTEGER line

OPEN(unit = 17,file = ’forin.dat’,status = ’unknown’)

READ(17,*),line

CALL firstfn(line)

CLOSE(17)

STOP

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE firstfn(N)

IMPLICIT NONE

! Here data input files are read

! Initial parameters are calculated by calling Initial_Par

! Then calls SigSpec_Cascade to proceed

! Below number of iterations are to be given corresponding

! to the number of frequencies to be determined as iter

! file read subroutine is taken from GLS by Zechmeister

INTEGER N,i,ri,nspr,iter,IO_ERR/0/

CHARACTER name*60,line*1024

DOUBLE PRECISION y(N),t(N),err(N),tspan

DOUBLE PRECISION lf,uf,fs,tstart,tmin,tmax

DOUBLE PRECISION freq,amp,theta,PI

nspr = 0

lf = 0.d0

uf = 0.d0

fs = 0.d0

tspan = 0.d0

tmin = 0.d0

tmax = 0.d0

tstart = 0.d0

!@@@@@@@@@@@@@@@

iter = 10 ! here give number of periods to be detected, after pre-whitening

!@@@@@@@@@@@@@@@

69 OPEN (unit = 18, file = "input.txt", status = ’old’ )

WRITE(*,*) ’The number of lines is ’,N

DO i = 1,N

74 READ (18,’(a)’,END = 73) line ! reading line from datafile

IF (index(line,’#’).GT.0) GOTO 74 ! skip line if comment line found

IF (lnblnk(line).EQ.0) GOTO 74 ! skip if blank line found
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READ(line,*,IOSTAT = IO_ERR) t(i),y(i),err(i) ! here actual READing

IF (IO_ERR.NE.0 ) THEN

READ(line,*,IOSTAT = IO_ERR) t(i),y(i) ! Reading if there are only 2 columns

IF (IO_ERR.NE.0 ) THEN

WRITE(6,*) "Something is wrong with input data file !!!"

WRITE(6,*) " Please check the format of file"

IF (err(i).EQ. 0.) IO_ERR = -2

CLOSE(18)

GOTO 67 ! unexpected termination of SigSpec-F, due to file problem

ENDIF

ENDIF

ENDDO

73 CLOSE (18)

tmin = t(1)

tmax = t(N)

tspan = tmax-tmin

print *, "Time Span ",tspan, "days"

CALL Initial_Par(t,N,tspan,lf,uf,fs,nspr)

WRITE(*,*)’Period search between ’,lf, ’and’,uf

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

CALL SigSpec_Cascade(t,y,N,lf,uf,nspr,fs,iter)

WRITE(*,*)’Finished SigSpec-F Successfully’

67 END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Initial_Par(t,N,tspan,lf,uf,fs,nspr)

IMPLICIT NONE

INTEGER N,fi,err,h0,nspr

DOUBLE PRECISION ufbk/-1.d0/,fres,tspan,os,t(N)

DOUBLE PRECISION lf,uf,fs,nyfreq,nycoef

nyfreq = 0.d0

nycoef = 0.9d0 ! increase nycoef here for higher uf

os = 20.d0

fres = 1.d0/tspan

lf = 10.d0*fres

! IF (nycoef .LT. 0.5d0) nycoef = 0.5d0

CALL Nyquist_Freq(t,N,tspan,nycoef,nyfreq)

ufbk = nyfreq

WRITE(*,*)’upper frequency limit as sigspec’, ufbk

uf = ufbk

fs = fres / os

h0 = INT(FLOOR((lf / fs)))

WRITE(*,*)’h0=’,h0

lf = h0 * fs

nspr = INT(CEILING((uf - lf)/fs + .5d0)) ! instead of ceil
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uf = lf + (nspr - 1.d0) * fs

! nspr=nspr/20 ! For faster calculation, but less accuracy

WRITE(*,*)’********************************’

WRITE(*,*)’Rayleigh frequency resolution’, fres

WRITE(*,*)’oversampling ratio’, os

WRITE(*,*)’frequency spacing’, fs

WRITE(*,*)’lower frequency limit’, lf

WRITE(*,*)’upper frequency limit’, uf

WRITE(*,*)’Nyquist coefficient’, nycoef

WRITE(*,*)’number of frequencies’, nspr

WRITE(*,*)’********************************’

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SigSpec_Cascade(t,y,N,lf,uf,nspr,fs,it)

IMPLICIT NONE

! This is the main subroutine which calls all other subroutines

INTEGER N,i,nspr,it,im,ik,h

DOUBLE PRECISION y(N),t(N),rsd(it),rppsc(it),period(it),fsd(it)

DOUBLE PRECISION lf,uf,fs,sd,ppsc,sig,freq,amp,theta,torig(N)

DOUBLE PRECISION proft0(nspr),profa0(nspr),profb0(nspr),a(3),th

DOUBLE PRECISION yorig(N),origsd,csig(it),shift,oshift

DOUBLE PRECISION rfreq(it),rsig(it),ramp(it),rtheta(it),ofreq

DOUBLE PRECISION nfreq,namp,ntheta

OPEN(unit = 19,file = ’result.txt’,status = ’unknown’)

!*******************************************

sd = 0.d0

ppsc = 0.d0

origsd = 0.d0

sig = 0.d0

freq = 0.d0

amp = 0.d0

theta = 0.d0

ofreq = 0.d0

nfreq = 0.d0

namp = 0.d0

ntheta = 0.d0

DO im = 1,it

rsig(im) = 0.d0

rfreq(im) = 0.d0

ramp(im) = 0.d0

rtheta(im) = 0.d0

csig(im) = 0.d0

rsd(im) = 0.d0

fsd(im) = 0.d0
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rppsc(im) = 0.d0

ENDDO

!*******************************************

CALL Stat_ZeroMean(y,N)

CALL stat_ppscatter(y,N,ppsc)

CALL Stat_SD(y,N,origsd)

CALL t_Mean(t,N,shift)

DO i = 1,N

yorig(i) = y(i) ! backing original time series

torig(i) = t(i)

ENDDO

!////////////////////////////////////////////////////////////////////

DO im = 1,it

CALL Stat_ZeroMean(y,N)

CALL stat_ppscatter(y,N,ppsc)

rppsc(im) = ppsc

CALL Stat_SD(y,N,sd)

rsd(im) = sd

!*******************************************

!Profile_SigSpec needs to be calculated once, serendipity

IF (im .EQ. 1) then

CALL Profile_SigSpec(t,y,N,lf,uf,nspr,fs,profa0,profb0,proft0)

ENDIF

!*******************************************

CALL SigSpec_SigSpec(t,y,N,lf,nspr,fs,sd,freq,profa0,

* profb0,proft0,sig,im)

! WRITE(*,*)’freq sig’,freq,sig

CALL SigSpec_MaxSig(t,y,N,freq,sig,amp,theta,fs,sd)

WRITE(*,*)’###freq amp phase before rmsdev’,freq,amp,theta

rsig(im) = sig

rfreq(im) = freq

ramp(im) = amp

rtheta(im) = theta

oshift = shift

WRITE(*,*)’###freq amp phase before MSN’,freq,amp,theta

CALL MultiSine_Newton(t,y,N,ramp,rfreq,rtheta,rsig,yorig,

* origsd,im,shift)

shift = oshift

WRITE(19,900)rfreq(im),rsig(im),ramp(im),rtheta(im),

* rsd(im),rppsc(im),csig(im)

!*******************************************

WRITE(*,*)’*********************************************’

WRITE(*,*),im,’freq,sig,amp,ph,rms,nrms,ppsc csig’

WRITE(*,900)rfreq(im),rsig(im),ramp(im),rtheta(im),

* rsd(im),rppsc(im),csig(im)

WRITE(*,*)’*********************************************’
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900 FORMAT(F24.18,1X,F16.8,1X,F24.18,1X,F24.18,1X,F24.18,1X,

* F24.18,1X,F16.8)

IF (im .EQ. 1) then

csig(im) = rsig(im)

ELSE

CALL Sigspec_Csig(rsig,csig,im)

ENDIF

ENDDO

CLOSE(19)

!*******************************************

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE amplitude(t,y,N,freq,theta,amp)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION theta,xcos,xsin,cos2t,sin2t,sint2,cost2

DOUBLE PRECISION y(N),t(N),amp,ampli,freq,om,PI

xcos = 0.d0

xsin = 0.d0

cos2t = 0.d0

sin2t = 0.d0

sint2 = 0.d0

cost2 = 0.d0

PI = 4.d0 * DATAN(1.d0)

om = 2.d0 * PI * freq

! Finding amplitude

DO i = 1,N

xcos = xcos + y(i) * DCOS(om * t(i)-theta)

cos2t = cos2t + (DCOS(om * t(i)-theta))**2

cost2 = cost2 + DCOS(om * t(i)-theta)

! Finding amplitude another method

! xsin = xsin + y(i) * DSIN(om * t(i)-theta)

! sin2t = sin2t + DCOS(om * t(i)-theta) * DSIN(om * t(i)-theta)

! sint2 = sint2 + (DSIN(om * t(i)-theta))

ENDDO

amp = xcos/(cos2t-cost2**2/(DBLE(N)))! eq 52 from 45

IF (amp .LT. 0.0) THEN

IF (theta .GT. 0.0) THEN

theta = theta - PI

ELSE

theta = theta + PI

ENDIF

amp = -amp

ENDIF
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! write (*,*) ’Values of amp is’,amp,’phase’,theta

! amplit = xsin/(sin2t-cost2 * sint2/(DBLE(N)))

! write (*,*) ’Values of amplit is’,amplit

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE phase(t,y,N,freq,theta)

IMPLICIT NONE

INTEGER N,i,k,l,m

DOUBLE PRECISION t(N),y(N),om,co,si,cosin,PI,freq

DOUBLE PRECISION p1,p2,p3,cos2,sin2,theta,ycos,ysin

! DOUBLE PRECISION num,den,theta1

DOUBLE PRECISION csum,ssum,xcsum,xssum,cssum,c2sum,s2sum

csum = 0.d0

ssum = 0.d0

xcsum = 0.d0

xssum = 0.d0

cssum = 0.d0

c2sum = 0.d0

s2sum = 0.d0

co = 0.d0

si = 0.d0

ycos = 0.d0

ysin = 0.d0

cosin = 0.d0

cos2 = 0.d0

sin2 = 0.d0

PI = 4.d0 * DATAN(1.d0)

om = 2.d0 * PI * freq

! Finding phase

DO i = 1,N

co = co + DCOS(om * t(i))! cos wt

si = si + DSIN(om * t(i)) ! sin wt

ycos = ycos + y(i) * DCOS(om * t(i))! y cos wt

ysin = ysin + y(i) * DSIN(om * t(i)) ! y sin wt

cosin = cosin + 0.5d0 * DSIN(2.d0 * om * t(i))

cos2 = cos2 + (DCOS(om * t(i)))**2

sin2 = sin2 + (DSIN(om * t(i)))**2

ENDDO

p1 = DBLE(N) * cosin - co * si

p2 = DBLE(N) * cos2 - co * co

p3 = DBLE(N) * sin2 - si * si

! theta = DATAN2((p1 * ycos - p2 * ysin),(p1 * ysin - p3 * ycos))

! IF (theta .LT. 0.d0) theta = theta + PI

! IF (theta .GT. 2.d0 * PI) theta = theta - PI

! write(*,*)’p1 p2 p3 = ’,p1, p2, p3
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! write(*,*)’theta value is = ’,theta

DO i = 1,N

csum = csum + DCOS(om * t(i))! cos wt

ssum = ssum + DSIN(om * t(i)) ! sin wt

xcsum = xcsum + y(i) * DCOS(om * t(i))! y cos wt

xssum = xssum + y(i) * DSIN(om * t(i)) ! y sin wt

cssum = cssum + 0.5d0 * DSIN(2.d0 * om * t(i))

c2sum = c2sum + (DCOS(om * t(i)))**2

ENDDO

cssum = cssum - csum * ssum / N

s2sum = N - c2sum - ssum * ssum / N

c2sum = c2sum - csum * csum / N

theta=DATAN2((cssum*xcsum-c2sum*xssum),(cssum*xssum-s2sum*xcsum))

! write(*,*)’sigspec theta value is = ’,theta

! Finding phase theta directly

! num = 0.d0

! den = 0.d0

! DO k = 1,N

! DO l = 1,N

! DO m = 1,N

! num = num + (DSIN(om*(t(l)-t(k)))-DSIN(om*(t(m)-t(k))))*

! 5 y(k) * DCOS(om*t(l))

C write(*,*)’Numerator value is = ’,num

! den = den + (DSIN(om*(t(l)-t(k)))-DSIN(om*(t(m)-t(k))))*

! 6 y(k) * DSIN(om*t(l))

C write(*,*)’Denominator value is = ’,den

! ENDDO

! ENDDO

! ENDDO

! theta1 = -datan2(num,den)

! IF (theta1 .LT. 0.d0) theta1 = theta1 + PI

! IF (theta1 .GT. 2.d0* PI) theta1 = theta1-PI

! write(*,*)’### theta1 value is = ’,theta1

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C finding significance

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE rmsdev(t,y,N,frequ,ampl,thet,h)

IMPLICIT NONE

INTEGER N,i,j,k,c,h

DOUBLE PRECISION t(N),y(N),ffreq(h),aamp(h),ttheta(h)

DOUBLE PRECISION rms(h),PI,err,ofreq,tth,aam

DOUBLE PRECISION frequ,ampl,thet,mrms

OPEN(unit = 23,file = ’rms.dat’,status = ’unknown’)

ofreq = 0.d0
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DO i = 1,h

ffreq(i) = 0.d0

aamp(i) = 0.d0

ttheta(i) = 0.d0

ENDDO

k = 0

frequ = frequ/4.d0

DO i = 1,h

tth = 0.d0

aam = 0.d0

ofreq = frequ * DBLE(k+1)

CALL phase(t,y,N,ofreq,tth)

CALL amplitude(t,y,N,ofreq,tth,aam)

ffreq(i) = ofreq

ttheta(i) = tth

aamp(i) = aam

WRITE(*,*)’freq’,ffreq(i),’amp’,aamp(i),’phase’,ttheta(i)

k = k + 1

ENDDO

PI = 4.d0 * DATAN(1.d0)

DO j = 1,h

rms(j) = 0.d0

DO i = 1,N

rms(j) = rms(j) + (y(i) - aamp(j) * DCOS(2.d0 * PI * ffreq(j)

& * t(i)-ttheta(j)))**2 + (y(i)- aamp(j+1) * DCOS(2.d0 *

& PI * ffreq(j+1) * t(i)-ttheta(j+1)))**2

ENDDO

ENDDO

! sorting to get min rms value

mrms = rms(1)

c = 1

DO j = 2,h

IF ( rms(j) .LT. mrms ) THEN

mrms = rms(j)

c = j

ENDIF

ENDDO

frequ = ffreq(c)

ampl = aamp(c)

thet = ttheta(c)

! IF (rmsd .LT. err) freq(im) = freq(im) / 2.d0

CLOSE(23)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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SUBROUTINE Profile_SigSpec(t,y,N,lf,uf,nspr,fs,profa0,

* profb0,proft0)

IMPLICIT NONE

INTEGER N,i,ri,fi,nspr

DOUBLE PRECISION y(N),t(N)

DOUBLE PRECISION curcos,cursin,ddcos,ddsin,dbuf

DOUBLE PRECISION proft0(nspr),sinth0(nspr),costh0(nspr)

DOUBLE PRECISION df,LG_E,PI,axis1(nspr),axis2(nspr)

DOUBLE PRECISION lf,fs,sd,uf,profa0(nspr),profb0(nspr)

df = (uf - lf) / (nspr - 1.d0)

WRITE(*,*) ’sampling profile: initialise arrays’

curcos = 0.d0

cursin = 0.d0

ddcos = 0.d0

ddsin = 0.d0

dbuf = 0.d0

PI = 4.d0*DATAN(1.d0)

LG_E = DLOG10(DEXP(1.d0))

DO fi = 1,nspr

sinth0(fi) = 0.d0

costh0(fi) = 0.d0

proft0(fi) = 0.d0

profb0(fi) = 0.d0

axis1(fi) = 0.d0

axis2(fi) = 0.d0

ENDDO

WRITE(*,*)’sampling profile: orientation of rms error ellipse’

!*******************************************

DO ri = 1,N

curcos = DCOS(2.d0 * PI * lf * t(ri))

cursin = DSIN(2.d0 * PI * lf * t(ri))

ddcos = DCOS(2.d0 * PI * df * t(ri))

ddsin = DSIN(2.d0 * PI * df * t(ri))

DO fi = 1,nspr

axis1(fi) = axis1(fi) + curcos ! SUM cos wt

axis2(fi) = axis2(fi) + cursin ! SUM sin wt

proft0(fi) = proft0(fi) + (curcos*curcos - cursin*cursin)

profb0(fi) = profb0(fi) + curcos * cursin

dbuf = curcos * ddcos - cursin * ddsin

cursin = cursin * ddcos + curcos * ddsin

curcos = dbuf ! cos wt cos dwt - sin wt sin dwt

!WRITE(*,*)’sampling profile: orientation of rms error ellipse’,nspr * n

ENDDO

WRITE(6,"(A)",ADVANCE=’NO’)’=’

FLUSH 6

ENDDO
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!*******************************************

DO fi = 1,nspr

sinth0(fi) = 0.d0

costh0(fi) = 0.d0

sinth0(fi) = sinth0(fi) + 2.d0 * (DBLE(N) * profb0(fi) -

* axis1(fi)*axis2(fi))!piet reegen

costh0(fi) = costh0(fi) + DBLE(N) * proft0(fi) -

* (axis1(fi)**2) +(axis2(fi)**2)

ENDDO

!*******************************************

! calculates theta0

WRITE(*,*)

WRITE(*,*)’sampling profile: axes of rms error ellipse’

DO fi = 1,nspr

proft0(fi) = 0.d0

proft0(fi) = 0.5d0 * DATAN2(sinth0(fi), costh0(fi))

IF (proft0(fi) .LT. 0.d0) proft0(fi) = proft0(fi) + PI

sinth0(fi) = 0.d0

costh0(fi) = 0.d0

ENDDO

!*******************************************

curcos = 0.d0

cursin = 0.d0

ddcos = 0.d0

ddsin = 0.d0

dbuf = 0.d0

!*******************************************

DO fi = 1,nspr

axis1(fi) = 0.d0

axis2(fi) = 0.d0

profb0(fi) = 0.d0

ENDDO

!*******************************************

DO ri = 1,N

curcos = DCOS(2.d0 * PI * lf * t(ri))

cursin = DSIN(2.d0 * PI * lf * t(ri))

ddcos = DCOS(2.d0 * PI * df * t(ri))

ddsin = DSIN(2.d0 * PI * df * t(ri))

DO fi = 1,nspr

dbuf = curcos * DCOS(proft0(fi)) + cursin * DSIN(proft0(fi))

axis1(fi) = axis1(fi) + dbuf

axis2(fi) = axis2(fi) + (cursin * DCOS(proft0(fi))-curcos*

* DSIN(proft0(fi)))

profb0(fi) = profb0(fi) + (dbuf*dbuf)

dbuf = curcos * ddcos - cursin * ddsin

cursin = cursin * ddcos + curcos * ddsin
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curcos = dbuf

! WRITE(*,*) ’sampling profile: axes of rms error ellipse’,nspr*n

ENDDO

WRITE(6,"(A)",ADVANCE=’NO’)’=’

FLUSH 6

ENDDO

!*******************************************

DO fi = 1,nspr

sinth0(fi) = 0.d0

costh0(fi) = 0.d0

costh0(fi) = costh0(fi)+DABS(profb0(fi)-(axis1(fi)**2/DBLE(N)))

sinth0(fi)=sinth0(fi)+DABS(N-profb0(fi)-(axis2(fi)**2)/DBLE(N))

ENDDO

WRITE(*,*)

WRITE(*,*)’sampling profile: finalise’

!*******************************************

DO fi = 1,nspr

! IF (lf + fs * fi .EQ. 0.) then

! profa0(fi) = 0.d0

! profb0(fi) = 0.d0

! proft0(fi) = 0.d0

! ELSE

IF (DABS(costh0(fi)) .GT. DABS(sinth0(fi))) then

profa0(fi) = DSQRT(2.d0 * DABS(sinth0(fi)) /DBLE(N))

profb0(fi) = DSQRT(2.d0 * DABS(costh0(fi)) /DBLE(N))

proft0(fi) = proft0(fi) + .5 * PI

ELSE

profa0(fi) = DSQRT(2.d0 * DABS(costh0(fi)) /DBLE(N))

profb0(fi) = DSQRT(2.d0 * DABS(sinth0(fi)) /DBLE(N))

ENDIF

DO WHILE (proft0(fi) .LT. 0.)

proft0(fi) = proft0(fi) + PI

ENDDO

DO WHILE (proft0(fi) .GT. PI)

proft0(fi) = proft0(fi) - PI

ENDDO

! WRITE(*,*)’sampling profile: finalise’,fi + 1,nspr

ENDDO

!*******************************************

END

!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

!!! here starts sigpspec calculation !!!!!!!!!!!!!!!!!!

!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SigSpec_SigSpec(t,y,N,lf,nspr,fs,sd,fmax,profa0,

* profb0,proft0,sigmax,nof)

IMPLICIT NONE
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INTEGER N,i,ri,nspr,fi,nf,in,nof

DOUBLE PRECISION y(N),t(N),fharm(nspr),sharm(nspr),fharm1(nspr)

DOUBLE PRECISION curcos,cursin,fmax,norm,dbuf,ddcos,ddsin

DOUBLE PRECISION sigmax,freq(nspr),LG_E,PI,lf,fs,sd,sigcut

DOUBLE PRECISION a(nspr),b(nspr),sig(nspr),sharm1(nspr)

DOUBLE PRECISION proft0(nspr),profa0(nspr),profb0(nspr)

! OPEN(unit = 20,file = ’harm.dat’,status = ’unknown’)

! OPEN(unit = 21,file = ’spectrum1.dat’,status = ’unknown’)

! OPEN(unit = 22,file = ’spectrum2.dat’,status = ’unknown’)

in = 0

curcos = 0.d0

cursin = 0.d0

ddsin = 0.d0

ddcos = 0.d0

dbuf = 0.d0

sigmax = 0.d0

sigcut = 0.d0

fmax= -1.d0

PI = 4.d0*DATAN(1.d0)

LG_E = DLOG10(DEXP(1.d0))

DO fi = 1,nspr

a(fi) = 0.d0

b(fi) = 0.d0

freq(fi) = 0.d0

sig(fi) = 0.d0

ENDDO

!*******************************************

WRITE(*,*)

WRITE(*,*)’significance spectrum: Fourier Coefficients’

DO ri = 1,N

curcos = y(ri) * DCOS(2.d0 * PI * lf * t(ri)) /DBLE(N)

cursin = y(ri) * DSIN(2.d0 * PI * lf * t(ri)) /DBLE(N)

ddcos = DCOS(2.d0 * PI * fs * t(ri))

ddsin = DSIN(2.d0 * PI * fs * t(ri))

DO fi = 1,nspr

a(fi) = a(fi)+ curcos

b(fi) = b(fi)+ cursin

dbuf = curcos * ddcos - cursin * ddsin

cursin = cursin * ddcos + curcos * ddsin

curcos = dbuf

!WRITE(*,*)’SigSpec spectrum: Fourier Coefficients’,ri*nspr+fi,’%’,n*nspr)

ENDDO

WRITE(6,"(A)",ADVANCE=’NO’)’=’

FLUSH 6

ENDDO

!*******************************************
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WRITE(*,*)’sd = ’,sd

norm = LG_E * N / (sd*sd)

WRITE(*,*)

WRITE(*,*)’norm =’,norm

! freq(1) = lf

DO fi = 1,nspr

freq(fi) = 0.d0

sig(fi) = 0.d0

freq(fi) = lf + fs * in

! IF ((freq .GT. 0.99) .and.(freq .LT. 1.01)) goto 47

sig(fi) = norm * ((((a(fi) * DCOS(proft0(fi))+

# b(fi) * DSIN(proft0(fi))) / profa0(fi))**2) + (((b(fi) *

# DCOS(proft0(fi)) - a(fi) * DSIN(proft0(fi))) / profb0(fi))**2))

! 47 continue

IF (sig(fi) .GT. sigmax) then

fmax = freq(fi)

sigmax = sig(fi)

ENDIF

! if (nof .EQ. 1) WRITE(21,*),freq(fi),sig(fi)

! if (nof .EQ. 2) WRITE(22,*),freq(fi),sig(fi)

in = in + 1

ENDDO

!*******************************************

WRITE(*,*)

WRITE(*,*)’fmax sigmax’,fmax,sigmax

sigcut = sigmax * 0.5d0

IF (sigcut .GT. 5.d0) THEN

DO fi = 1,nspr

fharm1(fi) = 0.d0

sharm1(fi) = 0.d0

ENDDO

nf = 0

DO fi = 1,nspr

IF (sig(fi) .GT. sigcut) THEN

fharm1(fi) = freq(fi)

sharm1(fi) = sig(fi)

nf = nf+1

ENDIF

ENDDO

WRITE(*,*)’Number of frequencies selected above cutoff’,nf

ri=1

DO fi = 1,nspr

IF (sig(fi) .GT. sigcut) THEN

fharm(ri) = fharm1(fi)

sharm(ri) = sharm1(fi)

! WRITE(20,*),fharm(ri),sharm(ri)



A.1 SigSpec-F 155

ri=ri+1

ENDIF

ENDDO

ENDIF

! CLOSE(20)

! CLOSE(21)

! CLOSE(22)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CC INCREASING ACCURACY OF FREQUENCY BY CHECKING FOR MAX.SIG WITH FINER

CC NEIGHBOURING VALUES

SUBROUTINE SigSpec_MaxSig(t,y,N,freq,sig,amp,th,fs,sd)

IMPLICIT NONE

INTEGER N,i,kount

DOUBLE PRECISION y(N),t(N)

DOUBLE PRECISION freq,fs,prevf,psig,sig,nextf,nsig,rsig

DOUBLE PRECISION amp,th,sd,ppsc,origfs

prevf = 0.d0

nextf = 0.d0

sig = 0.d0

psig = 0.d0

rsig = 0.d0

nsig = 0.d0

amp = 0.d0

th = 0.d0

kount=1

origfs = fs

IF (freq .GT. fs) fs = fs/2.d0

prevf = freq - fs

CALL SigSpec_Sig(t,y,N,prevf,psig,amp,th,sd)

CALL SigSpec_Sig(t,y,N,freq,rsig,amp,th,sd)

nextf = freq + fs

CALL SigSpec_Sig(t,y,N,nextf,nsig,amp,th,sd)

!NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

! here specify accuracy of frequency

DO WHILE (fs .GT. 0.00000000000001)

! WRITE(*,*)’Doing this loop’,kount,’times’

fs = fs/2.d0

! WRITE(*,*)’frequency spacing is ’,fs

IF ((rsig .ge. psig) .and. (rsig .ge. nsig)) then

prevf = freq - fs

CALL SigSpec_Sig(t,y,N,prevf,psig,amp,th,sd)

nextf = freq + fs

CALL SigSpec_Sig(t,y,N,nextf,nsig,amp,th,sd)

ELSE IF (psig .GT. nsig) then

nextf = freq
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nsig = rsig

freq = freq - fs

CALL SigSpec_Sig(t,y,N,freq,rsig,amp,th,sd)

ELSE

prevf = freq

psig = rsig

freq = freq + fs

CALL SigSpec_Sig(t,y,N,freq,rsig,amp,th,sd)

ENDIF

kount=kount+1

ENDDO

!NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

! return frequency after maximizing sig

sig = rsig

fs = origfs ! backing up original fs ..otherwise low value goes

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C finding significance as sigspec program

SUBROUTINE SigSpec_Sig(t,y,N,freq,newsig,sigamp,th,sd)

IMPLICIT NONE

INTEGER N,i,hi,ri,si

DOUBLE PRECISION y(N),t(N),norm

DOUBLE PRECISION cossum,cossum2,sinsum,sinsum2,xcossum,xsinsum

DOUBLE PRECISION a,b,sin2th0,cos2th0,newsig,om,LG_E,PI

DOUBLE PRECISION a0,b0,freq,sigamp,t0,th,sd,axis1,axis2

ri = 1

CALL Stat_ZeroMean(y,N)

newsig = 0.d0

sigamp = 0.d0

th = 0.d0

sin2th0 = 0.d0

cos2th0 = 0.d0

a = 0.d0

b = 0.d0

cossum = 0.d0

cossum2 = 0.d0

sinsum = 0.d0

sinsum2 = 0.d0

xcossum = 0.d0

xsinsum = 0.d0

t0 = 0.d0

PI = 4.d0*datan(1.d0)

LG_E = DLOG10(DEXP(1.d0))

om = 2.d0*PI*freq
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DO ri = 1,N

cossum = cossum + DCOS(om * t(ri))

sinsum = sinsum + DSIN(om * t(ri))

cossum2 = cossum2 + DCOS(2.d0 * om * t(ri))

sinsum2 = sinsum2 + DSIN(2.d0 * om * t(ri))

xcossum = xcossum + y(ri) * DCOS(om * t(ri))

xsinsum = xsinsum + y(ri) * DSIN(om * t(ri))

ENDDO

a = a + xcossum

b = b + xsinsum

sin2th0 = sin2th0 + (N * sinsum2 - 2.d0 * cossum * sinsum)

cos2th0 = cos2th0 + (N * cossum2 - (cossum**2) + (sinsum**2))

a = a / DBLE(N)

b = b / DBLE(N)

sigamp = 2.d0 * DSQRT(a**2 + b**2)

th = DATAN2(b,a)

t0 = .5d0 * DATAN2(sin2th0, cos2th0)

IF (t0 .LT. 0.d0) t0 = t0 + PI

axis1 = 0.d0

axis2 = 0.d0

cossum = 0.d0

cossum2 = 0.d0

sinsum = 0.d0

sinsum2 = 0.d0

a0 = 0.d0

b0 = 0.d0

DO ri = 1,N

cossum = cossum + DCOS(om * t(ri) - t0)

cossum2 = cossum2 + (DCOS(om * t(ri) - t0))**2

sinsum = sinsum + DSIN(om * t(ri) - t0)

ENDDO

sinsum2 = DBLE(N) - cossum2

axis1 = axis1 + cossum2 - (cossum**2) /DBLE(N)

axis2 = axis2 + sinsum2 - (sinsum**2) /DBLE(N)

IF (DABS(axis1) .GT. DABS(axis2)) then

a0 = 2.d0 /DBLE(N) * DABS(axis2)

b0 = 2.d0 /DBLE(N) * DABS(axis1)

IF (t0 .LT. .5d0 * PI) then

t0 = t0 + .5d0 * PI

ELSE

t0 = t0 - .5d0 * PI

ENDIF

ELSE

a0 = 2.d0 /DBLE(N) * DABS(axis1)

b0 = 2.d0 /DBLE(N) * DABS(axis2)

ENDIF
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norm = LG_E*N/(sd*sd)

newsig = norm *(((a*DCOS(t0)+b*DSIN(t0))**2/a0) + ((a*DSIN(t0)-

$ b * DCOS(t0))**2/b0))

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE MultiSine_Newton(t,y,N,ramp,rfreq,rth,rsig,yorig,

* origsd,ik,shift)

IMPLICIT NONE

INTEGER N,i,ri,kall,ii,ik,kount,ir,j

DOUBLE PRECISION y(N),t(N),sd,var1,var2,rsig(ik)

DOUBLE PRECISION var1f(ik),var2f(ik),var1amp(ik)

DOUBLE PRECISION ramp(ik),rfreq(ik),rth(ik),var1th(ik),PI

DOUBLE PRECISION var2amp(ik),var2th(ik),shift,cond1,cond2

DOUBLE PRECISION yorig(N),var2a0(ik),var2b0(ik),oldsd

DOUBLE PRECISION origsd,newsd,newppsc,torig(N)

DO ii = 1,ik

var1f(ii) = 0.d0

var2f(ii) = 0.d0

var1amp(ii) = 0.d0

var2amp(ii) = 0.d0

var1th(ii) = 0.d0

var2th(ii) = 0.d0

ENDDO

kall = 0

kount = 0

oldsd = origsd

newsd = origsd

PI=4.d0*DATAN(1.d0)

DO i = 1,N

torig(i) = t(i)

ENDDO

shift = -shift

CALL TS_TimeShift(t,N,shift)

DO ir = 1,ik

CALL Result_TimeShift(t,N,rfreq,shift,rth,ir)

ENDDO

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

DO WHILE (kall .EQ. 0)

kount = kount+1

CALL MultiSine_Derive(t,N,ramp,rfreq,rth,var1f,var2f,var1amp

1 ,var2amp,var1th,var2th,yorig,ik)

!***************************************

DO i = 1,N

y(i) = yorig(i)
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ENDDO

!YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

DO ii = 1,ik

!***************************************

rfreq(ii) = rfreq(ii) - var1f(ii) / var2f(ii)

!***************************************

ramp(ii) = ramp(ii) - var1amp(ii) / var2amp(ii)

IF (ramp(ii) .LT. 0.d0) then

ramp(ii) = -ramp(ii)

rth(ii) = rth(ii) - PI

ENDIF

!***************************************

rth(ii) = rth(ii) - var1th(ii) / var2th(ii)

DO WHILE (rth(ii) .LT. 0.d0)

rth(ii) = rth(ii) + 2.d0 * PI

ENDDO

DO WHILE (rth(ii) .ge. (2.d0 * PI))

rth(ii) = rth(ii) - 2.d0* PI

ENDDO

!***************************************

! Pre-Whitening here

DO ri = 1,N

y(ri) = y(ri)-ramp(ii)*DCOS(2.d0*PI*rfreq(ii)*t(ri)-rth(ii))

ENDDO

cond1 = DABS(var1f(ii) / var2f(ii))

cond2 = 0.000001d0 * (1.d0/DSQRT(rsig(ii))) / (t(N)-t(1))

IF (cond1 .GT. cond2) kall = 0

ENDDO

!YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

CALL Stat_ZeroMean(y,N)

oldsd = newsd

CALL Stat_SD(y,N,newsd)

IF ((1.d0 - newsd / oldsd) .LT. 0.000001) kall = 1

! Terminating Condition

WRITE(*,*)’ MultiSine fit: iteration’,kount,’rms res ’,newsd

ENDDO

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CALL stat_ppscatter(y,N,newppsc)

shift = -shift

CALL TS_TimeShift(t,N,shift)

DO ir = 1,ik

CALL Result_TimeShift(t,N,rfreq,shift,rth,ir)

ENDDO

END ! MultiSine_Newton

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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SUBROUTINE MultiSine_Derive(t,N,mdamp,mdfreq,mdth,var1f,var2f

* ,var1amp,var2amp,var1th,var2th,yorig,it)

IMPLICIT NONE

INTEGER N,i,ri,it,ii

DOUBLE PRECISION y(N),t(N),yorig(N)

DOUBLE PRECISION sine,cosine,hsin,hcos,tsin,rcos

DOUBLE PRECISION var1f(it),var2f(it),var1th(it),var2th(it),PI

DOUBLE PRECISION var2a0(it),var2b0(it),var1amp(it),var2amp(it)

DOUBLE PRECISION mdfreq(it),mdamp(it),mdth(it)

DO ii = 1,it

ENDDO

DO i = 1,N

y(i) = yorig(i)

ENDDO

PI=4.d0*DATAN(1.d0)

!***************************************

DO ii = 1,it

DO ri = 1,N

y(ri)=y(ri)-mdamp(ii)*DCOS(2.d0*PI*mdfreq(ii)*t(ri)-mdth(ii))

ENDDO

ENDDO

!***************************************

CALL Stat_ZeroMean(y,N)

!MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

DO ii = 1,it

tsin = 0.d0

sine = 0.d0

cosine = 0.d0

rcos = 0.d0

var2a0(ii) = 0.d0

var2b0(ii) = 0.d0

var1th(ii) = 0.d0

var2th(ii) = 0.d0

var1amp(ii) = 0.d0

var2amp(ii) = 0.d0

var1f(ii) = 0.d0

var2f(ii) = 0.d0

!OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

DO ri = 1,N

hsin = 0.d0

hcos = 0.d0

sine = DSIN(2. * PI * mdfreq(ii) * t(ri) - mdth(ii))

cosine = DCOS(2. * PI * mdfreq(ii) * t(ri) - mdth(ii))

hsin = hsin + mdamp(ii) * sine

hcos = hcos + mdamp(ii) * cosine
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rcos = y(ri) * cosine

var1th(ii) = var1th(ii) - mdamp(ii) * y(ri) * sine

var1amp(ii) = var1amp(ii) - rcos

var2a0(ii) = var2a0(ii) + cosine

var2b0(ii) = var2b0(ii) + sine

var2amp(ii) = var2amp(ii) + (cosine * cosine)

var2th(ii) = var2th(ii)+(mdamp(ii)*sine)**2 + mdamp(ii)*rcos

var1f(ii) = var1f(ii) + y(ri) * t(ri) * hsin

var2f(ii) = var2f(ii)+(t(ri)**2)*(hsin**2+y(ri)*hcos)

tsin = tsin + t(ri) * hsin

ENDDO

!OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

var2f(ii) = var2f(ii) - (tsin ** 2) /DBLE(N)

var2amp(ii) = var2amp(ii) - (var2a0(ii) ** 2) /DBLE(N)

var2th(ii) = var2th(ii)-((mdamp(ii)*var2b0(ii))** 2)/DBLE(N)

var1f(ii) = var1f(ii) * 4.d0 * PI /DBLE(N)

var2f(ii) = var2f(ii) * 8.d0 * PI * PI /DBLE(N)

var1amp(ii) = var1amp(ii) * 2.d0 /DBLE(N)

var1th(ii) = var1th(ii) * 2.d0 /DBLE(N)

var2amp(ii) = var2amp(ii) * 2.d0 /DBLE(N)

var2th(ii) = var2th(ii) * 2.d0 /DBLE(N)

ENDDO

!MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Result_TimeShift(t,N,tsfreq,shift,rsth,ir)

IMPLICIT NONE

INTEGER N,ir

DOUBLE PRECISION t(N),shift,PI,tsfreq(ir),rsth(ir)

!PARAMETER(PI = 3.14159265358979323846264)

PI = 4.d0 * DATAN(1.d0)

rsth(ir) = rsth(ir) + 2. * PI * tsfreq(ir) * shift

DO WHILE (rsth(ir) .LT. 0.d0)

rsth(ir) = rsth(ir) + 2.d0 * PI

ENDDO

DO WHILE (rsth(ir) .ge. (2.d0 * PI))

rsth(ir) = rsth(ir) - 2. * PI

ENDDO

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE TS_TimeShift(t,N,shift)

IMPLICIT NONE
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INTEGER N,i

DOUBLE PRECISION t(N),shift

DO i = 1,N

t(i) = t(i)+shift

ENDDO

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Stat_SD(y,N,sd)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),cvar,sd

sd = 0.d0

CALL Stat_Variance(y,N,cvar)

sd = DSQRT(cvar)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C average is subtracting from magnitude

SUBROUTINE Stat_ZeroMean(y,N)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),ymean

ymean = 0.d0

CALL Stat_Mean(y,N,ymean)

DO i = 1,N

y(i) = y(i)-ymean

ENDDO

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Stat_Variance(y,N,bvar)

IMPLICIT NONE

C this is 1/n of sum over (x-xbar) all square

INTEGER N,i

DOUBLE PRECISION y(N),b(N),bbar,bvar,bi2,mean

bi2 = 0.d0

bbar = 0.d0

bvar = 0.d0

mean = 0.d0

CALL Stat_Mean(y,N,bbar)

DO i = 1,N

b(i) = y(i)



A.1 SigSpec-F 163

b(i) = b(i)-bbar

bi2 = bi2+b(i)*b(i)

ENDDO

bvar = bi2/DBLE(N)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Stat_Mean(y,N,ybar)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),ybar

C Finding Mean of y

ybar = 0.d0

DO i = 1,N

ybar = ybar+y(i)

ENDDO

ybar = ybar/DBLE(N)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE t_Mean(t,N,tbar)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION t(N),tbar

C Finding Mean of t

tbar = 0.d0

DO i = 1,N

tbar = tbar+t(i)

ENDDO

tbar = tbar/DBLE(N)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE stat_ppscatter(y,N,ppscatter)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),sumsq,ppscatter

sumsq = 0.d0

ppscatter = 0.d0

DO i = 1,N-1

sumsq=sumsq+0.25d0*(y(i+1)-y(i))**2

ENDDO

sumsq = sumsq+0.25d0*((y(N)-y(1))**2)
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ppscatter = DSQRT(sumsq/DBLE(N))

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Nyquist_Coef(t,N,nyfreq,nycoef)

IMPLICIT NONE

DOUBLE PRECISION t(N),nycoef,nyfreq,nf

INTEGER N,i,kount

kount = 0

DO i = 1,N-1

IF ((t(i+1)-t(i)) .LE. .5/nyfreq) kount = kount+1

ENDDO

nycoef = (DBLE(kount)/DBLE(N))

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Nyquist_Freq(t,N,tspan,nc,nyfreq)

IMPLICIT NONE

DOUBLE PRECISION t(N),nyfreq,tspan,step,test,nc,tdiff

DOUBLE PRECISION l/99999999.d0/,u/-99999999.d0/

INTEGER N,i,kount/0/

nyfreq = 0.d0

step = 0.d0

kount = 0

DO i = 1,N

IF (t(i) .LT. l) l = t(i)

IF (t(i) .GT. u) u = t(i)

ENDDO

DO WHILE (kount .LT. INT(N*(1.d0-nc)))

test = u-l

kount = 0

DO i = 1,N-1

tdiff = t(i+1)-t(i)

IF ((tdiff .LT. test) .AND. (tdiff .GT. step)) test = tdiff

ENDDO

DO i = 1,N-1

IF ((t(i+1)-t(i)) .LE. test) kount = kount+1

ENDDO

step = test

ENDDO

nyfreq = .5d0/step

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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! csig finds from second freq. onwards for first freq it is same as sig

SUBROUTINE Sigspec_Csig(rsig,csig,ct)

IMPLICIT NONE

INTEGER ct

DOUBLE PRECISION rsig(ct),csig(ct)

csig(ct-1) = rsig(ct)

sig = -sig

csig = -dlog10(1.d0 - (1.d0- (10**(-csig)))*(1.d0-(10 ** -sig)))

csig(ct) = -DLOG10(1.d0-(1.d0-(10.d0**(-csig(ct-1))))*(

* (1.d0-(10.d0**(-rsig(ct))))))

IF (csig(ct) .GT. rsig(ct)) csig(ct) = rsig(ct)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC





Appendix B

Spline and phase folding
programs

B.1 Spline program

Program for confirming period using modified cubic spline method, which can be
automated in combination with the script Appendix C.3

! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

! _ _ _ _ _ _ _ _ _ _

! / / / / / SPLINE / / / / /

!

! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

!spline.for is for Period confirmation of variable stars from

!the results of SigSpec/GLS/PDM

!This program is written for full automation, hence no values

!has to be given as input

!name this program as spline.for

!Keep all data files (*.lc) and the results of SigSpec/GLS/PDM

!in a folder along with

!this program and script startspline.sh

!and compile this fortran program from the same terminal, as

!gfortran -o spline spline.for in the same folder.

!Then run the script as ./startspline.sh

!The entire files in the folder are processed one by one.

!SPLINE Fortran program is written by Shaju K.Y. and

!Ramesh Babu Thayyullathil

!Cochin University of Science and Technology, Kochi, Kerala,

!India 682022

!June 2010

!For any queries or bugs, please contact shajuky@gmail.com

PROGRAM MAIN
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IMPLICIT NONE

!Program starts here. The total number of observations read here

!The number of observations read by script and produce file forin.dat

!based on the testing period, the data should be folded and given

!as phase.txt

!phase.txt file is produced by phase.for, given at the end of this file.

!The phase.for should be separated before compiling this file.

INTEGER LINE,NBIN

DOUBLE PRECISION PERIOD

OPEN(unit = 17,file = ’forin.dat’,status = ’unknown’)

READ(17,*) LINE,PERIOD

NBIN=1

IF (LINE .GT. 10) NBIN=2

IF (LINE .GT. 50) NBIN=3

IF (LINE .GT. 100) NBIN=6

IF (LINE .GT. 500) NBIN=8

IF (LINE .GT. 1000) NBIN=10

IF (LINE .GT. 2000) NBIN=12

IF (LINE .GT. 3000) NBIN=12

IF (LINE .GT. 4000) NBIN=14

IF (LINE .GT. 5000) NBIN=16

CALL FIRSTFN(LINE,PERIOD,NBIN)

CLOSE(17)

STOP

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE FIRSTFN(ND,PERIOD,NHBIN)

IMPLICIT NONE

INTEGER I,ND,NHBIN,IO_ERR/0/

INTEGER NS,NSP(NHBIN),NK,NKC,NW,BD(NHBIN)

DOUBLE PRECISION TD(ND),YD(ND),PERIOD,DEL(NHBIN),T0,TM,DELBIN

CHARACTER line*1024

OPEN (unit = 18,file="phase.txt",status=’unknown’)

DO I = 1,ND

READ (18,’(a)’,END = 73) line ! reading line from datafile

READ(line,*,IOSTAT = IO_ERR) TD(I),YD(I) ! here actual READing

IF (IO_ERR.NE.0 ) THEN



B.1 Spline program 169

WRITE(6,*) "Something is wrong with input data file !!!"

WRITE(6,*) " Please check the format of file"

CLOSE(18)

GOTO 67 ! INPUT FILE PROBLEM

ENDIF

ENDDO

73 CLOSE (18)

T0=TD(1)

TM=TD(ND)

! call BINAVERAGE or KURTOSIS for unevenly spaced knots

CALL BINAVERAGE(TD,YD,ND,T0,TM,NHBIN,DEL,NSP,NK,BD)

! CALL KURTOSIS(TD,YD,ND,NHBIN,DEL,NSP,NK,BD)

NS=NK-4

NKC=5

NW=((NS+1)*NS)/2

CALL SUBRMS(TD,YD,ND,T0,TM,NS,NKC,NK,NW,NHBIN,DEL,PERIOD,NSP,BD)

RETURN

67 END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE BINAVERAGE(TD,YD,ND,T0,TM,NHBIN,DELTBIN,NSP,NK,BD)

IMPLICIT NONE

INTEGER I,J,L,M,ND,NS,NHBIN,NK0,BD(NHBIN),NSP(NHBIN),TOTALN,NK

INTEGER YY,NN,KURT

DOUBLE PRECISION TD(ND),YD(ND),YDEN(NHBIN),YBINAVE(NHBIN)

DOUBLE PRECISION FL,SL,TOTALY,YAVE,STEP,YMAX,YMIN,YDIFF,YDIF

DOUBLE PRECISION DELTA,T0,TM,DELBIN,YBDIFF(NHBIN)

DOUBLE PRECISION DELTBIN(NHBIN),KNOTP,YSEG

TOTALN=0

TOTALY=0.D0

YAVE=0.D0

YMAX=0.D0

YMIN=99.D0

DELBIN=(TM-T0)/DBLE(NHBIN)

FL=T0

SL=T0+DELBIN

NK0=1 ! OFFSET

DO I=1,ND
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IF (YD(I) .LT. YMIN) YMIN=YD(I)

IF (YD(I) .GT. YMAX) YMAX=YD(I)

ENDDO

YDIFF=YMAX-YMIN

YSEG=YDIFF/5.D0 ! DIVIDING Y VALUES INTO 5

DO J=1,NHBIN

BD(J)=0

YDEN(J)=0.D0

YBINAVE(J)=0.D0

YBDIFF(J)=0.D0

NSP(J)=0.D0

DO I=1,ND

IF ((TD(I).GT.FL) .AND. (TD(I).LE.SL)) THEN

BD(J)=BD(J)+1

YDEN(J)=YDEN(J)+YD(I)

ENDIF

ENDDO

FL=SL

SL=SL+DELBIN

ENDDO

BD(1)=BD(1)+1 ! COMPENSATING FIRST DATA

YDEN(1)=YDEN(1)+YD(1)

DO J=1,NHBIN

IF (BD(J) .NE. 0) YBINAVE(J)=YDEN(J)/DBLE(BD(J))

TOTALY=TOTALY+YDEN(J)

TOTALN=TOTALN+BD(J)

ENDDO

YAVE=TOTALY/TOTALN

DO J=1,NHBIN

YBDIFF(J)=DABS(YBINAVE(J)-YAVE)*200

NSP(J)=INT(DABS(YBDIFF(J)))

IF(YBDIFF(J).GT.NINT(10.D0*YSEG)) NSP(J)=2

IF(YBDIFF(J).GT.NINT(20.D0*YSEG)) NSP(J)=2

IF(YBDIFF(J).GT.NINT(30.D0*YSEG)) NSP(J)=4

IF(YBDIFF(J).GT.NINT(40.D0*YSEG)) NSP(J)=4

IF(YBDIFF(J).GT.NINT(50.D0*YSEG)) NSP(J)=4

IF (NSP(J) .EQ. 0) NSP(J)=1

IF (NSP(J) .NE. 0) DELTBIN(J)=DELBIN/DBLE(NSP(J))

ENDDO

NK=4
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DO I=1,NHBIN

DO J=1,NSP(I)

NK=NK+1

ENDDO

ENDDO

NK=NK+3

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE KURTOSIS(TD,YD,ND,NHBIN,DELTBIN,NSP,NK,BD)

IMPLICIT NONE

INTEGER I,J,ND,ST,EN,NHBIN,NSP(NHBIN),BD(NHBIN),NK

DOUBLE PRECISION TD(ND),YD(ND),SUM2,MEAN,KURT,T0,TM,DELBIN,FL,SL

DOUBLE PRECISION DELTBIN(NHBIN),VARIA,SD,DIFF

T0=TD(1)

TM=TD(ND)

DELBIN=(TM-T0)/DBLE(NHBIN)

FL=T0

SL=T0+DELBIN

EN=0

DO J=1,NHBIN

BD(J)=0

DO I=1,ND

IF ((TD(I).GT.FL) .AND. (TD(I).LE.SL)) BD(J)=BD(J)+1

ENDDO

NSP(J)=1

FL=SL

SL=SL+DELBIN

ENDDO

BD(1)=BD(1)+1

DO J=1,NHBIN

SUM2=0.D0

MEAN=0.D0

VARIA=0.D0

KURT=0.D0

SD=0.D0

ST=EN+1

EN=BD(J)+ST-1
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DO I=ST,EN

SUM2 = SUM2 + YD(I)

ENDDO

MEAN = SUM2/DBLE(EN-ST+1)

DO I=ST,EN

DIFF= YD(I) - MEAN

VARIA=VARIA + DIFF**2

KURT= KURT + DIFF**4

ENDDO

VARIA=VARIA/DBLE(EN-ST)

SD=DSQRT(VARIA)

KURT= KURT/ DBLE(EN-ST)

KURT=KURT/(SD**4) - 3.D0

IF (KURT .GT. 0.D0 ) NSP(J)=4

IF (KURT .GT. 1.D0) NSP(J)=3

IF (KURT .GT. 2.D0 ) NSP(J)=1

IF (KURT .GT. 3.D0 ) NSP(J)=1

IF (KURT .LE. 0.D0) NSP(J)=4

IF (KURT .LT. -1.D0) NSP(J)=2

IF (KURT .LT. -2.D0) NSP(J)=1

IF (KURT .LT. -3.D0) NSP(J)=1

IF (NSP(J) .NE. 0.D0) DELTBIN(J)=DELBIN/DBLE(NSP(J))

ENDDO

NK=4

DO J=1,NHBIN

DO I=1,NSP(J)

NK=NK+1

ENDDO

ENDDO

NK=NK+3

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SUBRMS(TD,YD,ND,T0,TM,NS,NKC,NK,NW,NHBIN,DEL,

*PERIOD,NSP,BD)

IMPLICIT NONE

INTEGER ND,NS,NKC,NK,NW,NG,I,J,M,L,NHBIN,NSP(NHBIN)

INTEGER NPLOT,BD(NHBIN)

DOUBLE PRECISION TD(ND),YD(ND),T0,TM,TT(ND),YY(ND)

DOUBLE PRECISION CS(NKC,NK),TK(NK),A(NS,NS),C(NS)

DOUBLE PRECISION SPLINT,LSQ,INTFUN,d,v,DEL(NHBIN)
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DOUBLE PRECISION T,TSTSUM,PERIOD,DELBIN,DELPLT,LN

OPEN (unit = 19,file="splineout.txt",status=’unknown’)

LSQ = 0.D0

LN = 0.D0

CALL KNOT(T0,TM,TK,TD,YD,ND,NK,NHBIN,NSP,DEL,BD)

CALL SPLCO(TK,CS,NS,NKC,NK)

CALL SPLMAT(YD,TD,ND,A,C,NS,CS,TK,NKC,NK)

CALL LINEQ(A,C,NS,NW)

CALL LESQR(TD,YD,ND,C,NS,CS,TK,NKC,NK,LSQ)

10 FORMAT(F14.6,1X,F14.6)

NPLOT=NK

IF (NPLOT .LT. 10) NPLOT=10

DELPLT=(TM-T0)/DBLE(NPLOT)

DO I=1,NPLOT+1

T=T0+DELPLT*DBLE(I-1)

TSTSUM=INTFUN(T,C,NS,CS,TK,NKC,NK)

WRITE(19,20)T,TSTSUM

ENDDO

NG=NK/3

! CALL LENGTH(C,NS,CS,TK,NKC,NK,NG,LN)

WRITE(6,20)PERIOD,LSQ

20 FORMAT(F14.6,1X,F14.6)

CLOSE(19)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE KNOT(T0,TM,TK,TD,YD,ND,NK,NHBIN,NSP,DELTBIN,BD)

IMPLICIT NONE

INTEGER NK,ND,I,J,K,L,U,LT,NHBIN,NSP(NHBIN),NKIJ,BD(NHBIN)

DOUBLE PRECISION T0,TM,DELBIN,DELTBIN(NHBIN)

DOUBLE PRECISION TK(NK),TD(ND),YD(ND),TEMP

DELBIN=(TM-T0)/DBLE(NHBIN)

NKIJ=4

DO I=1,NHBIN

DO J=1,NSP(I)

NKIJ=NKIJ+1

TK(NKIJ)=T0+DELBIN*DBLE(I-1)+DELTBIN(I)*DBLE(J)

ENDDO
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ENDDO

TK(1)=T0-TK(7)

TK(2)=T0-TK(6)

TK(3)=T0-TK(5)

TK(4)=T0

TK(NK-2)=TK(NK-3)+DELTBIN(NHBIN)

TK(NK-1)=TK(NK-3)+2.D0*DELTBIN(NHBIN)

TK(NK)=TK(NK-3)+3.D0*DELTBIN(NHBIN)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SPLCO(TK,CS,NS,NKC,NK)

IMPLICIT NONE

INTEGER NS,NKC,NK,I,J,K

DOUBLE PRECISION FA,PRD

DOUBLE PRECISION CS(NKC,NK),TK(NK)

DO I=1,NS

DO J=1,5

PRD=1.D0

DO K=1,5

IF((6-K).EQ.J)FA=1.D0

IF((6-K).NE.J)FA=TK(I+5-K)-TK(I+J-1)

PRD=PRD/FA

ENDDO

CS(J,I)=PRD

ENDDO

ENDDO

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DOUBLE PRECISION FUNCTION SPLINT(I,T,CS,TK,NKC,NK)

IMPLICIT NONE

INTEGER NKC,NK,I

DOUBLE PRECISION T,FA

DOUBLE PRECISION CS(NKC,NK),TK(NK)

IF((T.LT.TK(I)).OR.(T.GE.TK(I+4)))FA=0.D0

IF((TK(I).LE.T).AND.(T.LT.TK(I+1)))FA=-CS(1,I)*(TK(I)-T)**3

IF((TK(I+1).LE.T).AND.(T.LT.TK(I+2)))
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* FA=-CS(1,I)*(TK(I)-T)**3-CS(2,I)*(TK(I+1)-T)**3

IF((TK(I+2).LE.T).AND.(T.LT.TK(I+3)))

* FA=CS(4,I)*(TK(I+3)-T)**3+CS(5,I)*(TK(I+4)-T)**3

IF((TK(I+3).LE.T).AND.(T.LT.TK(I+4)))FA=CS(5,I)*(TK(I+4)-T)**3

SPLINT=(TK(I+4)-TK(I))*FA

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DOUBLE PRECISION FUNCTION DSPLIN(I,T,CS,TK,NKC,NK)

IMPLICIT NONE

INTEGER NKC,NK,I

DOUBLE PRECISION T,FA

DOUBLE PRECISION CS(NKC,NK),TK(NK)

IF((T.LT.TK(I)).OR.(T.GE.TK(I+4)))FA=0.D0

IF((TK(I).LE.T).AND.(T.LT.TK(I+1)))FA=3.D0*CS(1,I)*(TK(I)-T)**2

IF((TK(I+1).LE.T).AND.(T.LT.TK(I+2)))

* FA=3.D0*CS(1,I)*(TK(I)-T)**2+3.D0*CS(2,I)*(TK(I+1)-T)**2

IF((TK(I+2).LE.T).AND.(T.LT.TK(I+3)))

* FA=-3.D0*CS(4,I)*(TK(I+3)-T)**2 -3.D0*CS(5,I)*(TK(I+4)-T)**2

IF((TK(I+3).LE.T).AND.(T.LT.TK(I+4)))

* FA=-3.D0*CS(5,I)*(TK(I+4)-T)**2

DSPLIN=(TK(I+4)-TK(I))*FA

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SPLMAT(YD,TD,ND,A,C,NS,CS,TK,NKC,NK)

IMPLICIT NONE

INTEGER ND,NS,NKC,NK,BETA,NU,I

DOUBLE PRECISION YD(ND),TD(ND),A(NS,NS),C(NS),CS(NKC,NK),TK(NK)

DOUBLE PRECISION SPLINT

DO BETA=1,NS

C(BETA)=0.D0



176 Spline and phase folding programs

DO I=1,ND

C(BETA)=C(BETA)+YD(I)*SPLINT(BETA,TD(I),CS,TK,NKC,NK)

ENDDO

DO NU=1,BETA

A(BETA,NU)=0.D0

DO I=1,ND

A(BETA,NU)=A(BETA,NU)+SPLINT(BETA,TD(I),CS,TK,NKC,NK)*

$ SPLINT(NU,TD(I),CS,TK,NKC,NK)

ENDDO

A(NU,BETA)=A(BETA,NU)

ENDDO

ENDDO

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE LINEQ(A,C,N,NW)

IMPLICIT NONE

INTEGER N,NW,INFO

INTEGER IPIV(N)

DOUBLE PRECISION A(N,N),C(N),WORK(NW)

CALL DSYSV( ’U’,N,1,A,N,IPIV,C,N,WORK,NW,INFO)

! WRITE(*,1004)INFO

1004 FORMAT(3X,’LINEQ INFO=’,I3)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE LESQR(TD,YD,ND,C,NS,CS,TK,NKC,NK,LSQ)

IMPLICIT NONE

INTEGER ND,NS,NKC,NK,I

DOUBLE PRECISION TD(ND),YD(ND),C(NS),CS(NKC,NK),TK(NK),LSQ

DOUBLE PRECISION INTFUN,YID(ND),SD,DIFF

OPEN (unit = 29,file="splineout.txt",status=’unknown’)

LSQ=0.D0

CALL Stat_SD(YD,ND,SD)

DO I=1,ND

YID(I)=INTFUN(TD(I),C,NS,CS,TK,NKC,NK)

ENDDO

DO I=1,ND
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WRITE(29,20)TD(I),YID(I)

ENDDO

20 FORMAT(F14.6,1X,F14.6)

DO I=1,ND

WRITE(31,20) YD(I),YID(I),YD(I)-YID(I)

LSQ=LSQ+((YD(I)-YID(I))**2)

ENDDO

CLOSE(29)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DOUBLE PRECISION FUNCTION INTFUN(T,C,NS,CS,TK,NKC,NK)

IMPLICIT NONE

INTEGER NS,NKC,NK,I

DOUBLE PRECISION T,C(NK),CS(NKC,NK),TK(NK),SPLINT

INTFUN=0.D0

DO I=1,NS

INTFUN=INTFUN+C(I)*SPLINT(I,T,CS,TK,NKC,NK)

ENDDO

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DOUBLE PRECISION FUNCTION DINTFU(T,C,NS,CS,TK,NKC,NK)

IMPLICIT NONE

INTEGER NS,NKC,NK,I

DOUBLE PRECISION T,C(NK),CS(NKC,NK),TK(NK),DSPLIN

DINTFU=0.D0

DO I=1,NS

DINTFU=DINTFU+C(I)*DSPLIN(I,T,CS,TK,NKC,NK)

ENDDO

c DINTFU=DSINH(T)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE LENGTH(C,NS,CS,TK,NKC,NK,NG,TLN)
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IMPLICIT NONE

INTEGER NS,NKC,NK,NG

DOUBLE PRECISION C(NK),CS(NKC,NK),TK(NK),TLN

INTEGER I,J

DOUBLE PRECISION X(NG),W(NG),T,WJ,DYBYDT,DINTFU

CALL GAUSPT(X,W,NG)

TLN=0.D0

DO I=1,NK-7

DO J=1,NG

T=.5D0*(TK(4+I)+TK(3+I)+(TK(4+I)-TK(3+I))*X(J))

WJ=.5D0*(TK(4+I)-TK(3+I))*W(J)

DYBYDT=DINTFU(T,C,NS,CS,TK,NKC,NK)

TLN=TLN+DSQRT(1.D0+DYBYDT*DYBYDT)*WJ

ENDDO

ENDDO

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE GAUSPT(X,W,N)

IMPLICIT NONE

DOUBLE PRECISION PI,Z,P1,P2,P3,DJ,PP,Z1

INTEGER M,I,J,N

DOUBLE PRECISION X(N),W(N)

PI=4.D0*DATAN(1.D0)

M=(N+1)/2

DO I=1,M

Z=DCOS(PI*(I-.25D0)/(N+.5D0))

IF(DABS(Z).LE.1.D-15)Z=0.D0

1 CONTINUE

P1=1.D0

P2=0.D0

DO J=1,N

P3=P2

P2=P1

DJ=DFLOAT(J)

P1=((2.D0*DJ-1.D0)*Z*P2-(DJ-1.D0)*P3)/DJ

ENDDO

PP= DFLOAT(N)*(Z*P1-P2)/(Z*Z-1.D0)

Z1=Z

Z=Z1-P1/PP
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IF(DABS(Z-Z1).GT.5.D-15)GOTO 1

X(I)=-Z

X(N+1-I)=Z

W(I)=2.D0/(1.D0-Z*Z)/PP/PP

W(N+1-I)=W(I)

ENDDO

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Stat_SD(y,N,sd)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),cvar,sd

sd = 0.d0

CALL Stat_Variance(y,N,cvar)

sd = DSQRT(cvar)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Stat_Variance(y,N,bvar)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),b(N),bbar,bvar,bi2,mean

bi2 = 0.d0

bbar = 0.d0

bvar = 0.d0

mean = 0.d0

CALL Stat_Mean(y,N,bbar)

DO i = 1,N

b(i) = y(i)

b(i) = b(i)-bbar

bi2 = bi2+b(i)*b(i)

ENDDO

bvar = bi2/DBLE(N)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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SUBROUTINE Stat_Mean(y,N,ybar)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),ybar

C Finding Mean of y

ybar = 0.d0

DO i = 1,N

ybar = ybar+y(i)

ENDDO

ybar = ybar/DBLE(N)

END
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From here use any Linear algebra routine to solve A * X = B

for example, we have used the following from LAPACK

CALL DSYSV( ’U’,N,1,A,N,IPIV,C,N,WORK,NW,INFO)

*> DSYSV computes the solution to a real system of linear equations

*> A * X = B,

*> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS

*> matrices.

*>

*> The diagonal pivoting method is used to factor A as

*> A = U * D * U**T, if UPLO = ’U’, or

*> A = L * D * L**T, if UPLO = ’L’,

*> where U (or L) is a product of permutation and unit upper (lower)

*> triangular matrices, and D is symmetric and block diagonal with

*> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then

*> used to solve the system of equations A * X = B.

*> \endverbatim

*

* Arguments:

* ==========

*

*> \param[in] UPLO

*> \verbatim

*> UPLO is CHARACTER*1

*> = ’U’: Upper triangle of A is stored;

*> = ’L’: Lower triangle of A is stored.

*> \endverbatim

*>

*> \param[in] N

*> \verbatim
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*> N is INTEGER

*> The number of linear equations, i.e., the order of the

*> matrix A. N >= 0.

*> \endverbatim

*>

*> \param[in] NRHS

*> \verbatim

*> NRHS is INTEGER

*> The number of right hand sides, i.e., the number of columns

*> of the matrix B. NRHS >= 0.

*> \endverbatim

*>

*> \param[in,out] A

*> \verbatim

*>A is DOUBLE PRECISION array, dimension (LDA,N)

*>On entry, the symmetric matrix A. If UPLO = ’U’, the leading

*>N-by-N upper triangular part of A contains the upper

*>triangular part of the matrix A, and the strictly lower

*>triangular part of A is not referenced. If UPLO = ’L’, the

*>leading N-by-N lower triangular part of A contains the lower

*>triangular part of the matrix A, and the strictly upper

*>triangular part of A is not referenced.

*>

*>On exit, if INFO = 0, the block diagonal matrix D and the

*>multipliers used to obtain the factor U or L from the

*>factorization A = U*D*U**T or A = L*D*L**T as computed by

*>DSYTRF.

*> \endverbatim

*>

*> \param[in] LDA

*> \verbatim

*> LDA is INTEGER

*>The leading dimension of the array A. LDA >= max(1,N).

*> \endverbatim

*>

*> \param[out] IPIV

*> \verbatim

*>IPIV is INTEGER array, dimension (N)

*>Details of the interchanges and the block structure of D, as

*>determined by DSYTRF. If IPIV(k) > 0, then rows and columns

*>k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1

*>diagonal block. If UPLO = ’U’ and IPIV(k) = IPIV(k-1) < 0,

*>then rows and columns k-1 and -IPIV(k) were interchanged and

*>D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = ’L’ and

*>IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and

*>-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
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*>diagonal block.

*> \endverbatim

*>

*> \param[in,out] B

*> \verbatim

*>B is DOUBLE PRECISION array, dimension (LDB,NRHS)

*>On entry, the N-by-NRHS right hand side matrix B.

*>On exit, if INFO = 0, the N-by-NRHS solution matrix X.

*> \endverbatim

*>

*> \param[in] LDB

*> \verbatim

*>LDB is INTEGER

*>The leading dimension of the array B. LDB >= max(1,N).

*> \endverbatim

*>

*> \param[out] WORK

*> \verbatim

*>WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))

*>On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*> \endverbatim

*>

*> \param[in] LWORK

*> \verbatim

*>LWORK is INTEGER

*>The length of WORK. LWORK >= 1, and for best performance

*>LWORK >= max(1,N*NB), where NB is the optimal blocksize for

*>DSYTRF.

*>for LWORK < N, TRS will be done with Level BLAS 2

*>for LWORK >= N, TRS will be done with Level BLAS 3

*>

*>If LWORK = -1, then a workspace query is assumed; the routine

*>only calculates the optimal size of the WORK array, returns

*>this value as the first entry of the WORK array, and no error

*>message related to LWORK is issued by XERBLA.

*> \endverbatim

*>

*> \param[out] INFO

*> \verbatim

*>INFO is INTEGER

*>= 0: successful exit

*>< 0: if INFO = -i, the i-th argument had an illegal value

*>> 0: if INFO = i, D(i,i) is exactly zero. The factorization

*> has been completed, but the block diagonal matrix D is

*> exactly singular, so the solution could not be computed.

*> \endverbatim
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*

* Authors:

* ========

*

*> \author Univ. of Tennessee

*> \author Univ. of California Berkeley

*> \author Univ. of Colorado Denver

*> \author NAG Ltd.

*

*> \date November 2011

*

*> \ingroup doubleSYsolve

*

* =====================================================================

SUBROUTINE DSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,

$ LWORK, INFO )

*

* -- LAPACK driver routine (version 3.4.0) --

* -- LAPACK is a software package provided by Univ. of Tennessee, --

* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--

* November 2011

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

B.2 Phase folding program

Program for phase folding on given period.

C This is for phase folding, save as phase.for

C Compile as gfortran -o phase phase.for and put in same folder

C The file ’forin.dat’ is created by the script.

PROGRAM MAIN

IMPLICIT NONE

INTEGER line

DOUBLE PRECISION period

CHARACTER *13 fname

OPEN(unit = 17,file = ’forin.dat’,status = ’unknown’)

READ(17,*),line,period,fname

CALL firstfn(line,period)

CLOSE(17)

STOP

END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE firstfn(N,period)

IMPLICIT NONE

INTEGER N

DOUBLE PRECISION YD(N),TD(N),period

CALL fileread(TD,YD,N)

CALL phasefold(TD,YD,N,period)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE fileread(t,y,N)

IMPLICIT NONE

INTEGER N,i,IO_ERR/0/

CHARACTER name*60,line*1024

DOUBLE PRECISION y(N),t(N),err(N),tspan

DOUBLE PRECISION tstart,tmin,tmax

tspan = 0.d0

tmin = 0.d0

tmax = 0.d0

tstart = 0.d0

69 OPEN (unit = 18, file = "input.txt", status = ’old’ )

DO i = 1,N

74 READ (18,’(a)’,END = 73) line ! reading line from datafile

IF (index(line,’#’).GT.0) GOTO 74! skip line if comment line found

IF (lnblnk(line).EQ.0) GOTO 74 ! skip if blank line found

READ(line,*,IOSTAT = IO_ERR) t(i),y(i),err(i) ! here actual READing

IF (IO_ERR.NE.0 ) THEN

READ(line,*,IOSTAT = IO_ERR) t(i),y(i)

IF (IO_ERR.NE.0 ) THEN

WRITE(6,*) "Something is wrong with input data file !!!"

WRITE(6,*) " Please check the format of file"

IF (err(i).EQ. 0.) IO_ERR = -2

CLOSE(18)

GOTO 67 ! unexpected termination

ENDIF

ENDIF

ENDDO

73 CLOSE (18)

tmin = t(1)
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tmax = t(N)

tspan = tmax-tmin

67 END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE phasefold(t,y,N,period)

IMPLICIT NONE

INTEGER N,i,j,bin(10)

DOUBLE PRECISION y(N),t(N),ph(N),period,bb

OPEN(unit = 13,file = ’phase.txt’,status = ’unknown’)

DO i = 1,N

ph(i) = ((t(i)-t(1))/period)-INT((t(i)-t(1))/period)

WRITE(13,900),ph(i),y(i)

ENDDO

900 FORMAT(F24.18,1X,F24.18)

CLOSE(13)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Stat_ZeroMean(y,N)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),ymean

ymean = 0.d0

CALL Stat_Mean(y,N,ymean)

! WRITE(*,*)’Value of ymean ’,ymean

DO i = 1,N

y(i) = y(i)-ymean

ENDDO

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE Stat_Mean(y,N,ybar)

IMPLICIT NONE

INTEGER N,i

DOUBLE PRECISION y(N),ybar
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C Finding Mean of y

ybar = 0.d0

DO i = 1,N

ybar = ybar+y(i)

ENDDO

ybar = ybar/DBLE(N)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC



Appendix C

Bash scripts used for
automation

C.1 startsigspecf.sh

Script for automated running sigspecf.for

#!/bin/bash

echo

echo ’******************’

echo ’Running SigSpec-F’

echo ’******************’

rm -f forin.dat

touch forin.dat

START=$(date +%s)

echo ’Starting time :’ $(date +%T)

date -R

count=$(ls *.lc | wc -l)

#searches for files with extension .lc recursively

for file in $(find $temp -type f -iname ’*.lc’ | sort -n); do

before="$(date +%s)"

echo ’processing’ $file ’please wait ....’

rm -f forin.dat

#creates a folder with data file name for storing

#the output and removes the extension lc

dire=${file/.lc/}

#mv $file ${file/.lc/}

rm -rf $dire

mkdir $dire

sort -n $dire.lc -k1 -o $dire.dat

ln=‘wc -l "$dire.lc" | awk ’{print $1’}‘

nn=0;mm=0;t1=0;t2=0;line=1

IMM=‘sed -n $line’p’ $dire.dat‘

set -- "$IMM"
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IFS=" "; declare -a datas=($*)

echo "initial time is = ${datas[$nn]}"

t1=${datas[$nn]}

INN=‘sed -n $ln’p’ $dire.dat‘

set -- "$INN"

IFS=" "; declare -a datas1=($*)

echo "final time is = ${datas1[$mm]}"

t2=${datas1[$mm]}

lf=$( echo "scale=4; 10/($t2-$t1)" | bc -l)

uf=$( echo "scale=4; 1000*$lf" | bc -l)

###############################

### if there is + or - sign in the filename.

if [[ "$dire" =~ "+" ]]

then

cp "$file" "${dire%%+*}"

ra=${dire%%+*}

dec=${dire#*+}

fi

if [[ "$dire" =~ "-" ]]

then

cp "$file" "${dire%%-*}"

ra=${dire%%-*}

dec=${dire#*-}

fi

ra=‘echo $ra | sed -e ’s,./\(.*\)$,\1,g’‘

echo " ra = $ra"

echo "dec = $dec"

####################################

# sorts the file on the basis of Julian

#date, first column k1

sort -n $file -k1 -o $dire.dat

line_num=‘wc -l $dire.dat‘

line_num=${line_num%%$dire.dat}

cp $dire.dat input.txt

echo "$line_num" >> forin.dat

# runs the main sigspec program

./sigspecf

echo

mv out.txt $dire

mv harm.dat $dire

mv spectrum*.dat $dire

mv rms.dat $dire

mv result.txt $dire

#mv phase.txt $dire

rm -f $ra

rm -f $dire.dat
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rm -f forin.dat

rm -f input.txt

let count=$count-1

echo "remaining $count data files"

after="$(date +%s)"

elapsed_seconds="$(expr $after - $before)"

echo ’Time taken for ’$dire’ file:’ $elapsed_seconds ’Seconds’

echo

done #outer loop closes

echo ’Ending Time’ $(date +%T)

date -R

END=$(date +%s)

DIFF=$(( $END - $START ))

echo

echo "Total Time Taken $DIFF Seconds"

C.2 sigfoneperiodonly.sh

Script for selecting the best period from the output produced by sigspecf.for. Also
removes 1 cycles/day alias.

#!/bin/bash

# this script reads periods from file, does not run sigspecf

rm -f result_final.dat

touch result_final.dat

#searches for files with extension .lc recursively

for file in $(find $temp -type f -iname ’*.lc’); do

echo ’processing’ $file ’please wait ..’

#removes the extension lc

dire=${file/.lc/}

n=0; a=2; line=1

# removing alias frequecies between cond1 and cond2

cond1=0.99

cond2=1.01

while read inputline

do

#read periods from file

IN=‘sed -n $line’p’ $dire/result.txt‘

set -- "$IN"

IFS=" "; declare -a results=($*)

echo "frequency is = ${results[$n]}"

fname=‘echo $dire | sed -e ’s,./\(.*\)$,\1,g’‘

if [ $(echo "${results[$n]} < $cond1 "|bc) -eq 1 ]

|| [ $(echo " ${results[$n]} > $cond2"|bc) -eq 1 ]; then

period=$(echo "scale=10; 1/${results[$n]}" | bc -l)

echo "period is = $period"
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echo "$fname $period ${results[$n]}" >> result_final.dat

break

fi

let line=$line+1

done < $dire/result.txt #inner loop closes

done #outer loop closes

C.3 startspline.sh

Bash script for automated running spline.for

# change the name of file result-compared.dat to

#result-compared-different.dat,

# with only the periods to be checked.

#!/bin/bash

# this script is for checking the output of

#SigSpec/pdm/GLS by spline

rm -f result_final_sorted.dat

touch result_final_sorted.dat

count=$(ls *.lc | wc -l)

# input file name

filee=result-compared-different.dat

f=0

p=1

n=2

line=1

while read inputline

do

rm -f forin.dat

touch -f forin.dat

rm -f input.txt

rm -f res_spline.dat

rm -f result_spline.dat

#read periods from file

IN=‘sed -n $line’p’ $filee‘

set -- "$IN"

IFS=" "; declare -a array=($*)

fname=${array[$f]}

echo "file name is = $fname.lc"

pp=$(echo "scale=6; ${array[$p]}" | bc -l)

echo "published period is = $pp"

np=$(echo "scale=6; ${array[$n]}" | bc -l)

echo "New period is = $np"

echo ’processing’ $fname ’please wait ..’

touch forin.dat

touch res_spline.dat



C.3 startspline.sh 191

cp $fname.lc input.txt

sort -n input.txt -k1 -o input.txt

line_num=‘wc -l input.txt‘

line_num=${line_num%%input.txt}

rm -f $fname/*.dat

rm -f $fname/*.ps

echo "$line_num $pp $fname" > forin.dat

./phase

sort -k1 -n phase.txt -o phase.txt

./spline >> res_spline.dat

mv splineout.txt splineoutu.txt

mv phase.txt pphase.txt

mv forin.dat forinu.dat

touch forin.dat

echo "$line_num $np $fname" > forin.dat

./phase

sort -k1 -n phase.txt -o phase.txt

./spline >> res_spline.dat

mv splineout.txt splineoutm.txt

mv phase.txt mphase.txt

mv forin.dat forinm.dat

cp pphase.txt $fname/ph-"$pp".dat

cp mphase.txt $fname/ph-"$np".dat

mv splineoutu.txt $fname/sp-"$pp".dat

mv splineoutm.txt $fname/sp-"$np".dat

sort -k2 -n res_spline.dat -o result_spline.dat

p=1

nn=0

linee=1

IN=‘sed -n $linee’p’ ./result_spline.dat‘

set -- "$IN"

IFS=" "; declare -a true_per=($*)

echo "True period is = ${true_per[$nn]}"

freq=$(echo "scale=6; 1/${true_per[$nn]}" | bc -l)

fname=‘echo $fname | sed -e ’s,./\(.*\)$,\1,g’‘

echo "$fname ${true_per[$nn]} $freq" >> result_final_sorted.dat

mv res_spline.dat $fname

mv result_spline.dat $fname

rm -f input.txt

let count=$count-1

echo

echo "remaining $count files"

let line=$line+1

done < $filee #outer loop closes
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C.4 Data file cleaner script

Script for cleaning data files by removing comment lines starting with # and for
replacing ’nan’ in the error column, if any.

#!/bin/sh

# extract and replaces all gzip files to the same folder

for file in $(find $temp -type f -iname ’*.lc.gz’ | sort -n); do

gunzip -r $file

done

rm -f flist_tredu.txt

rm -f flist_nan.txt

# removes the comment lines beginning with #

for file in $(find $temp -type f -iname ’*.lc’| sort -n); do

rm -f tempnew

rm -f tempnews

sort -k1 -o $file $file

line_num=‘wc -l $file‘

line_num=${line_num%%$file}

echo "line number = $line_num"

echo " removing comments from $file. wait please... "

while read line

do

case $line in

\#*)

continue

;;

esac

# set the SECTION

case $line in

SECTION*)

hdr="$line"

continue

;;

esac

pr="$hdr"

pr="$pr $line"

echo "$pr" >> tempnew

done < $file

cp tempnew $file

n=0; a=1;line=1;e=2;linee=2

while read inputline

do

#read periods from file

IN=‘sed -n $line’p’ $file‘

set -- "$IN"
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IFS=" "; declare -a results=($*)

# echo "time is = ${results[$n]}"

# fname=‘echo $dire | sed -e ’s,./\(.*\)$,\1,g’‘

IM=‘sed -n $linee’p’ $file‘

set -- "$IM"

IFS=" "; declare -a resultss=($*)

# echo "time is = ${resultss[$n]}"

#removes nan from error column if any

if [ $(echo "${results[$e]} == "nan"" |bc) -eq 1 ]; then

results[$e]=0.001 # substitute this value

echo "$file">> flist_nan.txt

fi

if [ $(echo "${results[$n]} != ${resultss[$n]}"|bc) -eq 1 ]; then

if [ $(echo "$line < $line_num"|bc) -eq 1 ]; then

#echo "line = $line"

# star_ID period frequency

echo "${results[$n]} ${results[$a]} ${results[$e]}" >> tempnews

fi

fi

let line=$line+1

let linee=$linee+1

done < $file #inner loop closes

#simply flushes the last line, since it skips

echo "${results[$n]} ${results[$a]} ${results[$e]}" >> tempnews

cp tempnews $file

line_numb=‘wc -l $file‘

line_numb=${line_numb%%$file}

echo "new line number = $line_numb"

if [ $(echo "$line_num != $line_numb"|bc) -eq 1 ]; then

echo "$file">> flist_tredu.txt

fi

done

rm -f tempnew

rm -f tempnews
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