

RReelliiaabbiilliittyy EEssttiimmaattiioonn ooff OOppeenn SSoouurrccee
SSooffttwwaarree bbaasseedd CCoommppuuttaattiioonnaall SSyysstteemmss

Thesis submitted to

CCoocchhiinn UUnniivveerrssiittyy ooff SScciieennccee aanndd TTeecchhnnoollooggyy
in partial fulfillment of the requirement

for the award of the Degree of

DDooccttoorr ooff PPhhiilloossoopphhyy iinn EEnnggiinneeeerriinngg
UUnnddeerr tthhee FFaaccuullttyy ooff EEnnggiinneeeerriinngg

By

SSHHEELLBBII JJOOSSEEPPHH
(Reg No. 3382)

Under the Guidance of

DDrr.. JJAAGGAATTHHYY RRAAJJ VV..PP

SScchhooooll ooff EEnnggiinneeeerriinngg

CCoocchhiinn UUnniivveerrssiittyy ooff SScciieennccee aanndd TTeecchhnnoollooggyy

CCoocchhiinn --668822002222

June 2014

RReelliiaabbiilliittyy EEssttiimmaattiioonn ooff OOppeenn SSoouurrccee SSooffttwwaarree
bbaasseedd CCoommppuuttaattiioonnaall SSyysstteemmss

Ph.D. Thesis under the Faculty of Engineering

Author

Shelbi Joseph
Research Scholar
School of Engineering
Cochin University of Science and Technology
Kochi - 682022
Email: shelbi@cusat.ac.in

Supervising Guide

Prof. (Dr.) Jagathy Raj V. P.
School of Engineering
Cochin University of Science and Technology
Kochi - 682022
Email: jagathyrajvp@gmail.com

Co- Guide

Dr. P. S. Sreejith
Professor
School of Engineering
Cochin University of Science and Technology
Kochi - 682022

June 2014

SScchhooooll ooff EEnnggiinneeeerriinngg

CCoocchhiinn UUnniivveerrssiittyy ooff SScciieennccee aanndd EEnnggiinneeeerriinngg
CCoocchhiinn --668822002222

Certified that the work presented in this thesis entitled “Reliability

Estimation of Open Source Software based Computational Systems”

is a bonafide work done by Mr. Shelbi Joseph under my supervision and

guidance in the Division of School of Engineering , Cochin University of

Science and Technology and that this work has not been included in any

other thesis submitted previously for the award of any degree.

Dr. Jagathy Raj V. P Dr. P.S. Sreejith

 (Supervising Guide) (Co- Guide)

Kochi- 22
Date:

I hereby declare that the work presented in this thesis entitled

“Reliability Estimation of Open Source Software based Computational

Systems” is based on the original work done by me under the guidance

of Dr. Jagathy Raj V.P, Professor, School of Management Studies,

Cochin University of Science and Technology, and that this work has

not been included in any other thesis submitted previously for the award

of any degree.

Kochi- 22 Shelbi Joseph
Date:

IInn mmeemmoorryy ooff mmyy ffaatthheerr…………

At the outset, I thank God Almighty for providing me the great
opportunity to do this research work and complete it within the stipulated time.
It is only He who has led me to the most appropriate personalities for the same,
and made me withstand the stress during the course, without my losing
confidence and motivation.

I have great pleasure in expressing my profound gratitude to my guide,
Dr.Jagathy Raj V.P., Professor, Cochin University of Science and Technology,
for the motivation and guidance provided throughout this research work. I
appreciate his approachability and the trust bestowed on my research efforts.
Consistent support and sincere encouragement provided throughout the period
are gratefully acknowledged.

I wish to express my sincere gratitude to Dr. Sreejith P.S., Professor and
Principal, School of Engineering, Cochin University of Science and Technology,
for his guidance, help and encouragement throughout the period of this work.
He has been my co-guide and friend as well.

I am highly indebted to Dr. G Santhosh Kumar, Assistant Professor,
Cochin University of Science and Technology and Dr. P. V. Shouri , Associate
Professor, Model Engineering College , Cochin for helping me to conceive the
appropriate approach to the whole work and contributing significantly to the
formulation of the precise methodology. Only because of their willingness to
share their knowledge and having fruitful and meaningful discussions with me,
I could complete this research work in such a good manner. Sparing innumerable
collection of literature and the whole hearted involvement, demonstrated an
incredible level of perseverence and affirmation. I gratefully acknowledge their

willingness to spare valuable time to make this thesis, a technically correct one.
Their systematic and perfect way motivated and helped me to improve my academic
and personal qualities.

I take this opportunity to acknowledge the support and assistance
extended by Dr. David Peter, Professor, School of Engineering, and for the
promptness and sincerity offered in dealing with things.

I am thankful to Dr. Gopikakumari, Professor and Head, Division of
Electronics and Communication Engineering, School of Engineering, and also
my doctoral committee member, for giving valuable guidance at the time of
interim presentations.

I have no words to express my deep sense of gratitude to my colleagues
and well-wishers at Information Technology Division, School of Engineering,
Cochin University of Science and Technology, for helping me to complete this
effort, by offering generously to share my work at the college.

I express deep gratitude towards Sariga Raj, research scholar, Cochin
University of Science and Technology and Renumol .V.G, research scholar,
IIT Madras, for the efforts they have spared in making the numerous collection
of literature available to me from time to time, during the entire period.

I gratefully remember the support and encouragement extended by
Dr. K.A.Zakkariya, Associate Professor, School of Management Studies.
His timely suggestions made me do things effectively. I thank him at this
moment.

My sincere thanks to all non teaching staff of my department for their
cordial relations, sincere co-operation and valuable help, especially so, to
Shiji.S.H and Shibu A.S.

I thank all the faculty members of the School of Engineering, for the co-
operation extended towards me.

I also wish to place on record my sincere thanks to my parents and family
for the co-operation and support extended towards me.

Finally I wish to place on record my sincere thanks to one and all, who
have helped me in the completion of this work.

Shelbi Joseph

Software systems are progressively being deployed in many facets
of human life. The implication of the failure of such systems, has an
assorted impact on its customers. The fundamental aspect that supports a
software system, is focus on quality. Reliability describes the ability of
the system to function under specified environment for a specified
period of time and is used to objectively measure the quality. Evaluation
of reliability of a computing system involves computation of hardware
and software reliability. Most of the earlier works were given focus on
software reliability with no consideration for hardware parts or vice
versa. However, a complete estimation of reliability of a computing
system requires these two elements to be considered together, and thus
demands a combined approach. The present work focuses on this and
presents a model for evaluating the reliability of a computing system.
The method involves identifying the failure data for hardware
components, software components and building a model based on it, to
predict the reliability. To develop such a model, focus is given to the
systems based on Open Source Software, since there is an increasing
trend towards its use and only a few studies were reported on the
modeling and measurement of the reliability of such products. The
present work includes a thorough study on the role of Free and Open
Source Software, evaluation of reliability growth models, and is trying
to present an integrated model for the prediction of reliability of a
computational system. The developed model has been compared with
existing models and its usefulness of is being discussed.

Key Words: Failure rate, hardware reliability, mean time between failures,
open source software, software reliability

The reliability of computation systems involves, failure-free operation
of the software as well as hardware components. A lot of software models are
available, and Software Reliability Engineering (SRE) is a skill to be more
competitive in the environment of globalization and outsourcing. Customers
want a more reliable software that is faster and cheaper. SRE is a practice
that is standard, proven, and widely applicable. It is low in cost and its
implementation has virtually no schedule impact (Musa [2005]). The
hardware reliability can be evaluated from the available field failure data
of the components. Constant Hazard model is widely used in the literature
for evaluation of hardware reliability.

Software development is very competitive and there are a lot of
developers in a given domain. It is not sufficient that a software works,
but it is important that it meets the customer-defined criteria. Surveys
reveal that the most important quality characteristics are reliability,
availability, rapid delivery and low cost. These are primarily user-
oriented rather than developer-oriented attributes. A large sampling of
software developers indicates that the most important problem facing
them, is how to resolve conflicting demands that customers place on
them for important quality characteristics of software based systems. For
a long time quantitative measures have existed for delivery time and
cost. Reliability suffers when it competes for attention against schedule
and cost. In fact, this may be the principal reason for well known
existence of reliability problems in many software products. Engineering
software reliability involves developing a product in such a way that the
product reaches the market at the right time, at an acceptable cost and
with expected reliability.

The SRE process consists of defining the product, implementing
operational profiles, and engineering the just right reliability. The cost of
applying SRE is low and its impact on schedule is minor. However, the
benefits are large. The aim of software reliability engineering is to model
the failure behavior of software systems to estimate and forecast
reliability. Software reliability estimating serve many purposes. For
instance, software reliability estimates can allow a contractor and a
buyer to contractually agree to some tangible measure of reliability
performance that a software system is expected to achieve. Also,
software reliability estimates can allow software users to be selective
about the software they purchase by considering the advertised software
reliability (Jean and Terry [1995]).

The development of integrated hardware-software reliability is very
difficult. Mark and Christine [1995] brought out some of the differences
between hardware and software reliability modeling which make
integrating together very difficult. The present work assumes significance in
that, a simplified model has been proposed that incorporates both hardware
and software reliabilities.

The proposed thesis presented in eight chapters, deals with the
work carried out in designing and developing Reliability Estimation of
Open Source Based Computational Systems by Integrating Hardware
and Software Components.

The thesis is organized as follows:

Chapter 1 introduces the area of reliability and open source software.

Chapter 2 is a systematic survey of existing reliability models used in the
industry for hardware and software (both closed source as well as open

source software). It also mentions some new techniques and technologies
for measuring and improving software reliability and a frame work to
enable the early prediction of software reliability, incorporating
reliability measurement in each stages of the software development.

Chapter 3 discusses the scheme of research work and methodology
which involves studying the effects of failure of actual software
packages and working towards formulating a reliability model taking
into consideration the hardware issues.

Chapter 4 elaborates the study and analyzes the role of Free and Open
Source Software (FOSS) in different communities.

Chapter 5 focuses on the study and evaluation of existing open source
software and arrives at a reliability growth model.

Chapter 6 formulates an algorithm for estimating software reliability and
the development of a simplified model.

Chapter 7 details the evaluation and comparison of the developed model
with the application of a simplified model and its application in real time
situation.

Chapter 8 recapitulates the thesis and mentions conclusions and research
findings. Some of the results have been published in international
journals and in the proceedings of various national and international
conferences.

Chapter 1

IInnttrroodduuccttiioonn-- 0011 -- 3311
1.1 Introduction -- 01
1.2 Reliability -- 03
1.3 Hardware reliability --- 06
1.4 Software Reliability --- 08
1.5 Open source software -- 12
1.6 Reliability Approaches within the phases of Software

Life Cycle. -- 14
1.7 Consequence of Reliability and its Impact on Software

Industry --- 19
1.8 Need for Early Prediction of Software Reliability ------------ 22
1.9 Integrated Software Hardware Reliability ------------------- 23
1.10 Motivation-- 25
1.11 Objectives -- 26
1.12 Methodology --- 27
1.13 Outline of the thesis --- 30

Chapter 2

AA SSuurrvveeyy ooff RReelliiaabbiilliittyy MMooddeellss --3333 -- 6688
2.1 Introduction -- 33
2.2 Reliability Growth Models ------------------------------------ 34

2.2.1 Software Reliability Growth Models ------------------------- 37
2.2.2 Hardware Reliability Growth Models ----------------------- 47
2.2.3 Reliability Models for Open Source Software ------------ 55

2.3 Computational System Reliability ---------------------------- 57
2.4 A Framework to enable the early prediction of

software Reliability. -- 59
2.4.1 Background -- 60
2.4.2 Reliability Prediction --- 61
2.4.3 The Framework --- 62

2.5 Techniques and Technologies for Measuring and
Improving Software Reliability.------------------------------- 65

2.6 Conclusion --- 68

Chapter 3

SScchheemmee ooff RReesseeaarrcchh WWoorrkk aanndd MMeetthhooddoollooggyy ----------------6699 -- 7799
3.1 Introduction -- 69
3.2 The Methodology for Model Development------------------ 71

3.2.1 Analysis Phase --- 75
3.2.2 Data Collection -- 75
3.2.3 Data Preprocessing-- 76
3.2.4 Data Analysis and Interpretation ---------------------------- 77

3.3 Algorithm Development-- 78
3.4 Model Development -- 78
3.5 Comparison of Developed Model with Other Existing

Models -- 78
3.6 Conclusion --- 79

Chapter 4

RRoollee ooff CCoommmmuunniittyy aanndd
OOppeenn SSoouurrccee SSooffttwwaarree --AA CCaassee SSttuuddyy -------------------------------- 8811 -- 110011

4.1 Introduction -- 81
4.2 How Free and Open Source Software Helps Project

Manager -- 84
4.3 Integration of Free and Open Source Software with

Closed Source Software -- 85
4.4 Pros and Cons of Free and Open Source Software

Development --- 86
4.5 Case Study --- 87

4.5.1 Common User’s Community --------------------------------- 88
4.5.1.1 Intended Audience and Their Back Ground Who

Are the Members of the Community ------------------------ 88
4.5.1.2 Participant’s Knowledge ------------------------------- 89
4.5.1.3 Attitude Towards Open Source Software------------- 90

4.5.2 Business Community --- 92
4.5.3 Government -- 94

4.6 Analysis -- 98
4.7 Importance of Open Source Software. ----------------------- 99
4.8 Conclusion -- 100

Chapter 5

RReelliiaabbiilliittyy ooff OOppeenn SSoouurrccee SSooffttwwaarree PPrroojjeeccttss ---------- 110033 -- 111199
5.1 Introduction --- 103
5.2 Background --- 105
5.3 Data Collection and Analysis --------------------------------- 108
5.4 Conclusion -- 118

Chapter 6

AA SSiimmpplliiffiieedd MMooddeell ffoorr EEvvaalluuaattiinngg RReelliiaabbiilliittyy ooff
aa CCoommppuuttiinngg SSyysstteemm -- 112211 -- 113388

6.1 Introduction -- 121
6.2 Reliability Measures --- 122
6.3 Probability Density Function --------------------------------- 128
6.4 An Algorithm for Estimating Software Reliability -------- 130
6.5 Development of a Simplified Model ------------------------ 135
6.6 Conclusion -- 138

Chapter 7

TThhee EEvvaalluuaattiioonn aanndd CCoommppaarriissoonn ooff tthhee DDeevveellooppeedd
MMooddeell --113399 -- 115522

7.1 Introduction --- 139
7.2 Application of Simplified Model----------------------------- 139
7.3 Application of Simplified Model in a Real Time Situation --- 143
7.4 Conclusions --- 151

Chapter 8

CCoonncclluussiioonn aanndd RReesseeaarrcchh FFiinnddiinnggss ------------------------------------ 115533 -- 115577
8.1 Introduction --- 153
8.2 Research findings and Outcome------------------------------ 153
8.3 Research Contributions -- 154

8.3.1 Contributions towards Practitioners ----------------------- 155
8.3.2 Contributions towards Researchers ------------------------ 155

8.4 Limitations and Further Scope ------------------------------- 156
8.5 Conclusions --- 156

LLiisstt ooff PPuubblliiccaattiioonnss -- 115599 –– 116600

RReeffeerreenncceess -- 116611 -- 118800

AAppppeennddiicceess -- 118811 –– 119955

Table 5.1 Estimated Parameters and R-square ------------------------ 110

Table 6.1 Algorithm for Estimating Software Reliability ----------- 133

Table 7.1 Hardware Component Failures ----------------------------- 140

Table 7.2 Software Component Failures ------------------------------ 140

Table 7.3 Software Failure Data Analysis ----------------------------- 144

Table 7.4 Hardware Component Failure Rate ------------------------ 146

Table 7.5 Reliability and Failure Density----------------------------- 149

Figure 1.1 Classification of Software Reliability Models Based
on Software Life- cycle Phases ------------------------------- 17

Figure 1.2 Research Methodology --- 28
Figure 2.1 Taxonomy of Software Reliability Models ------------------ 36
Figure 2.2 Appropriateness of Software Reliability Growth Models ---- 47
Figure 2.3 Bath- tub Curve for Hardware --------------------------------- 49
Figure 2.4 Variation of Failure Rate, Reliability, Probability of

Failure, and Failure Density for a Constant Hazard
Model --- 52

Figure 2.5 Variation of Failure Rate, Reliability, Probability of
Failure, and Failure Density for a Linearly Increasing
Hazard Model -- 53

Figure 2.6 Variation of Reliability in the Case of Weibul Model ------ 55
Figure 2.7 Prediction Method -- 62
Figure 2.8 Detailed Software Reliability Prediction Frame-work ----- 63
Figure 2.9 Software Reliability Engineering Process Overview ------- 67
Figure 3.1 Design and Development Phases in the Study--------------- 70
Figure 3.2 Methodology for Model Development ----------------------- 74
Figure 4.1 Participant’s Age-group vs Number of Users in the

Survey --- 89
Figure 4.2 Knowledge Level of Users ------------------------------------ 90
Figure 4.3 Users Satisfaction Towards the OSS Features--------------- 92
Figure 4.4 Factors Influencing in the Business Industry ---------------- 93
Figure 4.5 Factors Influencing Different Government to adopt

OSS -- 95
Figure 5.1 Weibull PDF for Several Shape Values when α =1 ------ 107
Figure 5.2 Bug Arrival Frequency for Six Projects -------------------- 109
Figure 5.3 Failure Rate and Predicted – Project I ---------------------- 111
Figure 5.4 Failure Rate and Predicted – Project II --------------------- 111
Figure 5.5 Failure Rate and Predicted – Project III -------------------- 112

Figure 5.6 Failure Rate and Predicted – Project IV -------------------- 112
Figure 5.7 Failure Rate and Predicted – Project V -------------------- 113
Figure 5.8 Failure Rate and Predicted – Project VI -------------------- 113
Figure 5.9 Time VS Reliability for Different Projects ---------------- 115
Figure 5.10 Time VS Reliability Project I -------------------------------- 115
Figure 5.11 Time VS Reliability Project II ------------------------------- 116
Figure 5.12 Time VS Reliability Project III ------------------------------ 116
Figure 5.13 Time VS Reliability Project IV ------------------------------ 117
Figure 5.14 Time VS Reliability Project V ------------------------------- 117
Figure 5.15 Time VS Reliability Project VI ------------------------------ 118
Figure 6.1 Reliability Block Diagram of a System having n

Components Connected in Series --------------------------- 124
Figure 6.2 Reliability Block Diagram of a System having n

Components Connected in Parallel ------------------------- 126
Figure 6.3 Probability Density Function -------------------------------- 128
Figure 6.4 Flowchart for the Systematic Procedure-------------------- 131
Figure 6.5 Reliability Block Diagram for the Computing System --- 135
Figure 7.1 Software Reliability Calculated with the Developmental

Values of MTBF. --- 141
Figure 7.2 Reliability Comparison. -------------------------------------- 142
Figure 7.3 Error Involved in Reliability Estimation. ------------------ 142
Figure 7.4 Software Failure Rate --- 145
Figure 7.5 Variation of Reliability with Time -------------------------- 147
Figure 7.6 Error Involved in Computational Reliability Calculations ---- 147
Figure 7.7 Comparison of Reliability Obtained Using Different

Models ---150
Figure 7.8 Variation of Failure Density with Time -----------------------150
Figure 7.9 Error Analysis -- 151

Software Reliability Engineering (SRE)
Open Source Software (OSS)
Free and Open Source Software (FOSS)
Information Technology (IT)
Hardware Reliability Growth Model(HRGM)
Information Technology Enabled Services (ITES)
Computational Annual Growth Rate(CAGR)
Closed Source Software (CSS)
Open Source Observatory and Repository(OSOR)
Software Reliability Growth Models (SRGMs)
Non Homogeneous Poisson Process(NHPP)
Goel-Okumoto NHPP Model (G-O)
Software Reliability Growth Model (SRGM)
Musa-Okumoto Logarithmic Poisson Model(M-O)
The Indian software and Information Technology Enabled Services (ITES)
Compounded Annual Growth Rate (CAGR)
Cumulative Distribution Function (CDF)
Mean Time To Failure (MTTF)
Bug Tracking System (BTS)
Mean Time Between Failures (MTBF)
Reliability Block Diagram (RBD).
Failure Density (fd)
Failure Rate (Z)
Reliability (R)

….. …..

Introduction

 1

CChhaapptteerr 11		

IInnttrroodduuccttiioonn

1.1 Introduction
1.2 Reliability
1.3 Hardware Reliability
1.4 Software Reliability
1.5 Open Source Software
1.6 Reliability Approaches within the Phases of Software

Life Cycle
1.7 Consequence of Reliability and its Impact on Software

Industry
1.8 Need for Early Prediction of Software Reliability
1.9 Integrated Software Hardware Reliability
1.10 Motivation
1.11 Objectives
1.12 Methodology
1.13 Outline of the Thesis

1.1 Introduction

The quality of a software product decides its acceptance or fate in

the software development life cycle. High developmental costs and

increasing global competition have intensified the pressures to quantify

software systems quality, and the need to measure and control the level of

quality delivered. Reliability is the most important and most measurable

aspect of software systems quality, and is customer- oriented. It is the

capability of a system to deliver results accurately every time the user

C
on

te
n

ts

Chapter -1

 2

requests it. The performance of a system is largely affected by its failure

to deliver or downtime. Therefore, a system is considered to be reliable

if it can rectify its failure at minimum time, thereby ensuring guaranteed

results to the user. It is a measure of how well the product functions, to

meet its operational requirements. In other words, it decides the software

product’s acceptance or fate in the life cycle. It ensures the products

capability to rectify its failure.

In a computer system, hardware and software are interdependent.

Without hardware, the software system is an abstraction, which is simply

a representation of some human knowledge and ideas. Without software,

hardware is a set of inert electronic devices. However when they are put

together to form a system, a machine is created that can carry out

complex computation, and deliver the results of these computations to its

user. Systems have properties that only become apparent when their

components are integrated and operated together. Hardware failure can

generate spurious signals that are outside the range of inputs expected by

the software. The software can then behave unpredictably and produce

unexpected outputs. So, a hardware failure may lead to software

problems that could overload the hardware, causing more failures. Thus

the initial failure which might be recoverable, can rapidly lead to

developing into a serious problem that may result in the complete

shutdown of the system.

Until the late 1960’s, attention was almost solely on hardware

related performance of the system. In the early 1970’s, software also

Introduction

 3

became a matter of concern, primarily due to a continuing increase in the

cost of software relative to hardware, in both the development of the

system and its operational phases.

Many models where put forward to address the reliability of the

computer system, considering software and hardware components

independently. The total performance of the system can be modeled only by

considering these components together. Many successful software products

were developed following Free and Open Source Software Development

(FOSS) methodology. The development model used in this scenario are

entirely different from traditional software development (closed source). So,

the reliability models developed for closed source software cannot be used for

FOSS, moreover, the dearth of valuable models call for studies in this area.

This study tries to put forward a model for the estimation of the

reliability of a computer system, by integrating hardware and software

components, especially FOSS.

In this chapter, the basic notions of reliability is introduced,

reliability approaches during software life cycle phases, along with

discussions on consequences of reliability and its impact on software

industry. The research motivation and objectives are listed further,

followed by the outline of the thesis.

1.2 Reliability

Reliability is a measure of continuous delivery of the correct

service or equivalent of the time of failure (Jean and Terry [1995]).

Chapter -1

 4

Software being a complex intellectual product, some errors are

inevitable during requirements formation as well as during designing,

coding, and testing the product. The development process for high-

quality software includes measures that are intended to discover and

correct the faults resulting from these errors, including reviews, audits,

screening by language-dependent tools, and several levels of tests.

Managing these errors involves describing the errors, classifying the

severity and criticality of their effects and modeling the effects of the

remaining faults in the delivered product, and thereby working with

designers to reduce their number of errors and their criticality(IEEE Std

1413-[2010]).

The reliability definitions given in the literature vary between

different practitioners as well as researchers. The generally accepted

definition is as follows:

Definition: Reliability is the probability of success or the

probability that the system will perform its intended function under

specified design limits. More specifically, reliability is the probability

that a product or part will operate properly for a specified period of time

(design life) under the design operating conditions such as temperature,

voltage etc., without failure. In other words, reliability may be used as a

measure of the system’s success in providing its function properly.

Reliability is one of the quality characteristics that consumers require

from the manufacturer of products.

Introduction

 5

Reliability can also be defined as the probability that an item can

perform a required function for a specified period of time under the

specified operating conditions (Kumar et. al. [1992], Goel et. al. [2002],

Patrick [2002] , Charles [2000], Srinath [1991]). This definition has four

key elements: The quantification of reliability in terms of probability. A

statement defining the required function – as the function is defined in

detail, it becomes more clear, which product failures impair the success

of the mission and which do not. A statement specifying the period of

time – deterioration of materials and parts with time is natural, and

consequently the performance level of the unit will also go down with

time. If the time period is not specified, probability is a meaningless

number for time oriented products, and a simpler statement defining the

operating condition

Product failures cost money has an impact on the development

schedules and system performance through the increased use of

computer resources such as memory, CPU time, and peripheral

requirements. Consequently, there can be too much as well as too little

effort spent dealing with faults. The system engineer along with

management can use reliability estimation and assessment to understand

the current status of the system and make trade-off decisions. The basic

objective is to identify required elements for an understandable, credible

reliability prediction, which will provide sufficient information to the users to

evaluate the effective use of the prediction results. A reliability prediction

should have sufficient information concerning inputs, assumptions, and

Chapter -1

 6

uncertainty, so that the risk associated with using the prediction

results would be understood. To analyze the reliability characteristics

further, it is necessary to look at the hardware and software reliabilities

separately.

1.3 Hardware Reliability

Hardware reliability is nothing but the ability of hardware to perform

its functions for some specific duration of time and is expressed as mean

time between failures (MTBF). Computer systems, whether hardware or

software, are subject to failure. A failure may be produced in a system or

product when a fault is encountered resulting in the non operation or

disability of the required function and a loss of the expected service to the

user (Norman [2008]).The field of hardware reliability has been established

for some time, which is related to software reliability and the division

between hardware reliability and software reliability is somewhat artificial

and both may be defined in the same way. Therefore, it is possible to

combine both hardware and software component reliabilities to get system

reliability (Musa [1980]).

Usually, hardware design failures are low because hardware is

generally less complex than software. Engineers have not applied the

reliability concepts to hardware to any extent. The probability of failure due

to wear and tear and other physical causes has usually been much greater,

than failures due to an unrecognized design problem. Hardware design

failures had to be kept low because, retrofitting of manufactured items in

the field was very expensive. The advancement of research work has shown

Introduction

 7

that parallels can be drawn between software engineering and chip design.

This is mainly attributed to the realization of the importance of relationship

between software reliability and hardware reliability (Musa [1980],

Shooman [1986] and Lloyd and Lipow [1977]).

1.3.1 Reasons for Hardware Failure

The risk of hardware failure is the most commonly talked-about

reason to perform backups. The worst kind of failure is the unrecoverable

hard disk failure as the hard disk is the main storage of a system.

However, there are other hardware problems that can cause permanent

data loss, and some of these can be rather hard to figure out. Memory

errors, system timing problems, resource conflicts and power loss are

some of them (www.pcguide.com/care/bu/risksHardware-c.html).

Both software and hardware reliabilities depend on the environment.

The source of failure in hardware is physical deterioration, whereas, that in

software is design faults. The concepts and theories developed for software

reliability could be really applied to any design activity including hardware

design. Once a software design defect is properly fixed, it is in general fixed

for all time. Failure usually occurs only when a program design is exposed to

an environment that was not tested or developed. Although manufacturing

can affect the quality of physical components, the replication process for

software design is trivial, and can be performed to very high standards of

quality (Musa [2005]).

Chapter -1

 8

1.4 Software Reliability

The IEEE defines software reliability as the probability that

software will not cause the failure of a system for a specified time under

specified conditions [IEEE Std 982.2-1988]. Software reliability denotes

the probability that a software product in a pre-defined condition

performs its tasks without malfunctioning for a specified period of time.

Software Reliability is important for many sectors of the software

industry. Besides knowing how to achieve reliability, the most important

thing is to know the actual reliability achieved in a specific software

product. Assessing the reliability of software- based systems is increasingly

necessary because of the survival of companies and at times the lives and

limbs of people on the service they expect from the software. Sound

decision-making requires some understanding of the uncertainties thus

incurred. Meanwhile, software complexity increases and progress in

development tools enables more lesser- trained people to build software-

based systems. The short term economic incentive to use off-the-shelf

software, even in sensitive applications, imposes new requirements to

evaluate the risk thus assumed. The pressure on vendors to guarantee some

level of quality of service will thus also increase, extending from bespoke

software to off-the-shelf software and from mission-critical to productivity-

critical software.

A Software reliability model specifies the general form of the

dependence of the failure process on the principal factors that affect it;

fault introduction, fault removal, and the operational environment. The

Introduction

 9

failure rate of a software system generally decreases due to fault

identification and removal. It is possible to observe the history of failure

rate by statistically estimating the parameters associated with the

selected model. The purpose of the model is twofold. Firstly, to estimate

the extra execution time during the test required to meet a specified

reliability objective and secondly to identify the expected reliability of

the software when the product is released (IEEE Std 1413-[2010]).

Apart from classical hardware reliability, software reliability has a

different nature (Rosenberg and Hammer [1998], Musa [1975]). While

the reliability of hardware continues to change even after the product is

delivered, the reliability of software is improved throughout the

development process, until the product is delivered.

After the delivery, a change in reliability level is possible only if

maintenance action is performed to either compensate for defects in the

software or to catch up with technological advances. Another major

difference between software reliability and hardware reliability is that

software reliability is not a function of how frequent that specific

software is used, whereas hardware is subject to wear out (Musa [1975]).

Moreover, software being conceptual, documentation is considered as an

integral part of software and software reliability.

1.4.1 Reasons for Software Failure

Octavio [2008] suggests the reasons based on his professional

experience, to explain what causes software failure. According to him,

Chapter -1

 10

the main reasons are software complexity, commercial deadlines and market

competence, competences and skills of the teamwork, underestimating good

software engineering design, and poor quality control. Software

complexity is increased when a software application is conceptually

flooded with a lot of features. The Windows Vista was delayed because

of its inherent complexity and over ambition to incorporate a lot of

features.

 Commercial deadlines and market competence are odd factors that

impact software development. Most of the software commercially

released, goes to the market prematurely in order to catch customer

mindshare, achieve a competitive advantage and earn market share.

Unfortunately, premature go-to-market may hurt the possibility of any

software application by being competitive in the long term in an aggressive

and crowded market.

Competencies and skills of the teamwork are two of the most

important factors that are needed to succeed in management activities

and development issues typically found in big software development

projects, that are ambitious and highly complex.

One common pitfall with odd consequences in software development

activities happens with an ill-devised design and a poor conceptual

model to make savings and go ahead according to a wrongly designed

schedule. By underestimating software engineering and design, it is very

hard to develop a software project on schedule with world-class quality

Introduction

 11

and achieve satisfactory financial outcomes from a long term perspective.

Usually, systematic and well developed beta testing of the software is cut

down and minimized to privilege a faster release to market. Thus the overall

quality of the software is seriously compromised, the customer base gets

angry for the unresponsiveness of the product, and in the long term,

financial profits may be hurt.

Error-free software release is practically impossible and really

counter-economical due to the inherent complexity of the involved code

and inherent design. Thus, the users are working as beta testers by using a

software application prematurely released to the production environment.

Octavio [2008] states that software failures are due to unclear

business requirements and Scope Creep. A project without proper

business requirements and specifications are doomed to fail. It is either

due to little information provided to the system analysts for them to

come up with concrete business requirements and specifications, or lots

of assumptions about the clients by the system analysts.

Scope creep is the state in which the customers always ask for

some new requirement, some new feature and focus on it so much that it

shifts the focus from the core requirements and off course the customer

is the king and that the project starts lagging and they start realizing that

core functions are still outstanding.

Dzumbu [2008], an Analyst at AEL Mining Services shares his

experience with respect to software failure as less testing and assumptions.

Chapter -1

 12

Due to the demand from managers and owners to get the software

deployed, and running the developers, usually deploy things without

proper and extensive testing. At most, they do optimistic testing that

does not address unfriendly hostile environments that are much more

realistic than their test environments.

It should not be assumed that the user will follow certain steps in

using the software. It is learned that the moment the user figures out a

different route which is not anticipated, problems may be created. This

of course boils down to testing, the test scenarios sometimes do not

cover all possible scenarios and this leads to surprise behavior that can

lead to the collapse of the whole system.

1.5 Open Source Software

Open Source Software (OSS) has created an interest in the

software development circle. It is an emerging software development

environment, where the design and development strategy is radically

different from the closed development counter parts. The success of an

OSS is often related to the number of developers it can attract. This

larger community of developers called the ‘Bazzar’, identifies and

eliminates software defects and adds more features through a peer-

review process. The phase where the number of active developers and

the actual work performed on the system is constant and is termed as the

“Cathedral” (Capiluppi and Michlmayr [2007]).

Introduction

 13

Open source development is an area where people develop and

distribute their products by downloading free source code available

under a license. In closed source environment, the development process

is a systematic approach following system study, design, coding, Testing

and maintenance. In this the reliability estimation is based on stable

programs that are not undergoing design changes and are completely

integrated. (Musa and Iannino [1981]). But in reality it is not the case, as in

custom developed software, it is difficult to have programs not undergoing

design changes. Usually it is only after the first run, customers come to

know of their actual necessities, so it is essential that design changes are

needed. Further, it is assumed that all codes are being executed at one time

or more, to make sure that the resulting requirements are met, but the

customer may not be satisfied with these outcomes, and might need more.

Another thing is that in the development phase, the outcome is correct in

one way, but logically, it may not be the case.

Free and Open Source Software (FOSS) refers to those categories

of software products that allow users to use, modify and redistribute the

software without the need to pay a royalty fee to the author of the

product[www.gnu.org, www.opensource.org]. FOSS product includes

both system and application software like GNU/Linux, Apache Web

Server, Postgresql, OpenOffice, Gimp, OrangeHRM etc. (Smrithy et. al.

[2009]). Universities and colleges spend a huge sum on laboratories and

software. The huge software installation costs can be cut down by using

FOSS alternatives, instead of proprietary software [www.osalt.com].

Chapter -1

 14

Since a lot of people are working on OSS, and they are making use

of it to develop their own required products and which is useful for the

human beings, the importance of its quality and hence the reliability is

an important factor to be considered. Literature study reveals that a lot of

people are using OSS products for their daily life activities, but relevant

works to model the reliability of OSS is not sufficient and hence an

attempt to do so will be a useful work, and this work attempts to develop

a model for the same.

1.6 Reliability Approaches within the Phases of Software
Life Cycle Phases.
A competitive and mature software development organization

targets a high reliability objective from the very beginning of software

development. Generally, the software life cycle is divided into the

following phases:

Requirements and definition: In this phase, the developing

organization interacts with the customer organization to specify the

software system to be built. Ideally, the requirements should define the

system completely and unambiguously. In actual practice, there is often

a need to do corrective revisions during software development. A review

or inspection during this phase is generally done by the design team to

identify conflicting or missing requirements. A significant number of

errors can be detected by this process. A change in the requirements in

the later phases can cause increased defect density (Cleland and King

[1992]).

Introduction

 15

In the Design phase, the system is specified as an interconnection of

units, such that each unit is well defined and can be developed and tested

independently. The design is reviewed to recognize errors.

With the Coding phase, the actual program for each unit is written,

generally in a higher-level language. Occasionally, assembly level

implementation may be required for high performance or for

implementing input-output operations. The code is analyzed in a team

meeting to identify errors.

The Testing phase is a critical part of the quest for high reliability

and can take 30%–60% of the entire development time. It is often

divided into the following four sub phases. Unit test: In this phase of

testing, each unit is separately tested, and changes are done to remove

the defects found. As each unit is relatively small, and can be tested

independently, they can be exercised much more thoroughly than a large

program. Integration testing: During integration, the units are gradually

assembled, and partially assembled subsystems are tested. Testing

subsystems allows the interface among modules to be tested. By

incrementally adding units to a subsystem, the unit responsible for a

failure can be identified more easily. System testing: The system as a

whole is exercised during system testing. Debugging is continued until

some exit criterion is satisfied. The objective of this phase is, to find

defects as fast as possible. In general, the input mix may not represent

what would be encountered during the actual operation. Acceptance

testing: The purpose of this test phase is to assess the system reliability

Chapter -1

 16

and performance in the operational environment. This requires collecting

or estimating information on how the actual users would use the system.

This is also called a-testing. This is often followed by b-testing, which

involves the use of the b-version by the actual users.

Operational use and maintenance: Once the software developer

has determined that an appropriate reliability criterion is satisfied, the

software is released. Any bugs reported by the users are recorded, but

are not fixed until the next patch or bug-fix. In case a defect discovered

represents a security vulnerability, a patch for it needs to be released as

soon as possible.

A general classification of software reliability models based on the

software life cycle phases are as shown in Fig 1.2 (Sharma et. al. [2010],

Popstajanova and Trivedi [2001], Pham [2003], Huang et. al. [2003],

Smidts at. al[1998]). This is a generalized classification starting from the

requirement analysis, design, implementation, testing and validation

operations that exists, in the different phases of the software development

process.

Introduction

 17

Fi
gu

re
 1

.1
 C

la
ss

ifi
ca

tio
n

of
 s

of
tw

ar
e

re
lia

bi
lit

y
m

od
el

s
ba

se
d

on
 s

of
tw

ar
e

lif
e

cy
cl

e
ph

as
es

 (S
ha

rm
a

et
. a

l.
[2

01
0]

, P
ha

m

[2
00

3]
, H

ua
ng

 e
t.

al
. [

20
03

],
Sm

id
ts

 a
t.

al
 [1

99
8]

).

Chapter -1

 18

Reliability growth for software is the positive improvement of

software reliability over time, accomplished through the systematic

removal of software faults. The rate at which the reliability grows

depends on how fast faults can be uncovered and removed. A software

reliability growth model allows project management to track the

progress of the software’s reliability through statistical inference and to

make projections of future milestones. If the assessed growth falls short

of the planned growth, the management will have sufficient notice to

develop new strategies, such as the re-assignment of resources to attack

identified problem areas, adjustment of the project time frame, and re-

examination of the feasibility or validity of requirements.

Measuring and projecting software reliability growth requires the

use of an appropriate software reliability model, that describes the

variation of software reliability with time. The parameters of the model

can be obtained either from the prediction performed during the period

preceding system test, or, from the estimation performed during the

system test. Parameter estimation is based on the times at which failures

occur.

The use of a software reliability growth-testing procedure to

improve the reliability of a software system to the defined reliability

goal implies that, a systematic methodology will be followed for a

significant duration. In order to perform software reliability estimation, a

large sample of data must be generated with a reasonable degree of

confidence.

Introduction

 19

1.7 Consequence of Reliability and its Impact on Software
Industry
The invention of computer system and its use in the daily life of

human beings has created the advancement of the hardware as well as

software in computer systems. Today, computer hardware and software

permeates our modern society. The newest cameras, VCRs, and

automobiles can not be controlled and operated without computers.

Computers are embedded in wristwatches, telephones, home

appliances, buildings, and aircraft. Today, technology demands high-

performance hardware and high-quality software for making

improvements and breakthroughs. Industries like automotive, avionics, oil,

telecommunications, banking, semiconductor and pharmaceutics all rely

on computers for their functioning.

The size and complexity of computer-intensive systems have

grown dramatically and these can be found in projects under taken by

NASA, aviation industry and telecom industries among others.

NASA projects including space shuttle launching consumes

approximately 500,000 lines of software code that is on board, and

3.5 million lines of code for ground control. Projects like these

demand high accuracy and reliability with zero tolerance to faults

[http://www.cse.cuhk.edu.hk/~lyu/book/reliability/introduction.html].

Similarly, the avionics industry extensively uses embedded software.

It is a huge mix of hardware and software in action for processing each

flight, landing, and take off. This again calls for accurate working of these

Chapter -1

 20

systems with no failures. Other fields of intensive computer systems are the

telecom industry, catering to millions of users day and night. Fault free

delivery of services is a major concern for all telecoms.

The concern arises mainly due to the unbalanced development of

hardware and software. Even though it is the software that has the

integrating potential which gives the designer the edge to design

complex systems, it is this very software that might be responsible for

the majority of failures. Though there has been rapid advancements in

hardware technology, the proper development of software technology

has failed to keep pace with it in all measures including quality

productivity, cost and performance.

Software engineers, when determining the quality of the software,

feel that software reliability is one of the important factors which affects

the system performance. Software problems are the main causes of

system failures today. There are many well-known cases of the tragic

consequences of software failures. In critical systems, very high

reliability is naturally expected. Studies have shown that reliability is

regarded as the most important attribute by potential customers. All

software developed will have a significant number of defects. All

programs constituting the software must be tested and debugged, until a

sufficiently high reliability is achieved. It is not possible to ensure that

all the defects in a software system have been found and removed;

however, the number of remaining bugs must be very small. For

software systems, quantitative methods for achieving and measuring

Introduction

 21

reliability are coming in use, because of the emergence of well-

understood and validated approaches. Enough industrial and

experimental data are available to develop and validate methods for

achieving high reliability. The defect or fault or bug refers to an error in

system implementation that can cause a failure during execution. Defects

with very low testability can be very difficult to detect. The software

reliability improves during testing, as bugs are found and removed. Once

the software is released, its reliability is fixed as long as the operating

environment remains the same (Musa [1987]).

Over the past decade, information technology(IT) industry has

become one of the fastest growing industries in India. Strong demand

over the past few years has placed India amongst the fastest growing IT

market in the Asia-Pacific region. The Indian software and information

technology enabled services (ITES) industry has been a remarkable

success story. It has grown at a compounded annual growth rate (CAGR)

of 28 percent during the last few years (Subash [2006]).

The Indian software industry is more service oriented rather

than product oriented. It is heavily export-oriented and is largely

managed by professionals. Although the industry has grown in a

spectacular fashion, sustaining this performance will pose a number

of challenges, of which improving the reliability of the product is the

most important one.

Chapter -1

 22

1.8 Need for Early Prediction of Software Reliability

Software intensive systems are influencing the development of all

the facets of human society. The developmental activities of such

systems are mainly performed in a labour-intensive way. Introduction of

various faults in the software system are inevitable and may cause failure

in near future. The impact of such failures may have critical consequences

for infrastructure, economy or even the safety of human lives. Both the

cost of software development and losses from its failure are expensive.

Therefore, there is a growing need to ensure reliability of these software

systems as early as possible. Prediction of faults in each stage of software

development becomes important since earlier a fault is identified, the

better and more cost-effectively it can be fixed. This means that the

reliability of software systems is of primary importance.

Error prevention, fault detection and its removal are the major

activities that follow to achieve reliability in software. There are many

matrics proposed in literature to maximize the reliability of a software

system specifically measures above mentioned activities (Vinay Tiwari

and Pandey [2012]). Brooks [1995], has made an observation related to

software development as the total cost of maintaining a software system

is typically 40 % or more of the cost of its development. This observation

demands the early detection of bugs and a model to predict the reliability

of a software system. FOSS development is usually carried out by a

community, the development pace and the quality depends on percentage

of developers who are actually using the software. There is a chance

Introduction

 23

that most of the possible bugs are reported at the early stages of the

development and most of them get fixed at the same time. This

dynamics is important to predict quality of the system being developed.

Data on this behaviour is readily available in various repositories and

project development web sites. This will enable a quantitative approach

towards measuring the reliability of FOSS.

Many organizations including Government are adopting FOSS

based solutions to minimize the cost of the software. It is difficult to

select an appropriate open source based software to the existing

infrastructure without conducting a detailed study on the behaviour of

the software. The reliability study proposed in this work will suggest

some pointers in the decision making on selection of the appropriate

software.

1.9 Integrated Software Hardware Reliability

Computer systems, whether hardware or software, are subject to

failure. The classical reliability theory can be extended in order to be

interpreted from both hardware and software viewpoints and is referred

to as X-ware (Laprie and Kanoun [1992]). There are at least two

significant differences between hardware reliability and software

reliability. Firstly, a software does not wear out or fatigue. Secondly, due

to the accessibility of software instructions within computer memories,

any line of code can contain a fault that, upon execution, is capable of

producing a failure. The development of an integrated hardware software

reliability model is a difficult task. The model can be developed by

Chapter -1

 24

collecting the failure behavior of both software and hardware (Boyd

and Monahan [1995]). The progressively increasing use of computer

controlled systems, where software and hardware play an equally

important role, is increasing. That is, the reliability of both software

and hardware is important as the overall performance of the system.

This is particularly significant to safety critical systems, such as some

that may be found on commercial aircraft. Usually as per the literature,

studies on hardware reliability or software reliability are carried out

separately. That is, a separate analysis is done for each often. The

main drawback here is that, there are no widely accepted standard

methods for combining results of separate hardware and software

reliability analyses together into a meaningful composite result. This is

because, when a program is executed, its performance is dependent on

both the underlying hardware as well as the software engineering

methods adopted. Hence the best approach would be to use a method

which models both hardware and software reliability in one integrated

system model.

The development of system reliability models which accurately

represent the failure behavior of both hardware and software

components, is a difficult task. The job is complicated by the fact that

the failure processes of hardware and software are intrinsically

different. Furthermore, the topic of how to accurately model software

reliability and hardware reliability and to integrate it into a system

reliability aspect, is difficult. The main reason is that the failure

Introduction

 25

processes for hardware and software are completely different in nature.

Increased use of firmware and embedded software is blurring the

boundary line between software and hardware. Software is not

hardware, software does not break or wear out over time like hardware

(Debra and David[1999]).

1.10 Motivation

In the past few decades there is a dramatic growth in size and

complexity of software systems developed. The reliability of the systems

is becoming more important, as the failures of such systems impact

heavily on the business performance. Despite the body of knowledge

evolved in the area of reliability, challenges and open questions do still

exist. There are several models developed to explain the reliability of the

end product, but not considering each stages of the process models

followed. Developing reliability models, incorporating failure data from

each stage of the process, will accurately predict the reliability of the

software developed.

There is an obvious trend towards the adoption of FOSS even for

critical applications such as data centers and commercial aircraft. It will

be interesting to study why various sectors of information technology are

lining up behind the use of FOSS and the benefits of adoption of FOSS

for building their custom products. The reliability study of FOSS

systems are attracted researchers recently and only a few models were

suggested. The failure data of many FOSS systems are available openly

Chapter -1

 26

and can be utilized to develop a model to increase the reliability of the

software that is being developed.

Reliability theories developed over the years have successfully

allowed hardware systems to be built with high reliability requirements

and the final system reliability to be evaluated with acceptable accuracy.

In recent years, however, many of these systems have come to depend

on software for their correct functioning. So the reliability of software

has become more and more important. As the software is becoming

increasingly complex, different models are required to study the

reliability of such software systems. Further, it is important that the

software reliability be integrated with hardware as a computing system,

which is made up of both these components.

1.11 Objectives

The existing reliability models have been studied and an attempt

has been made to develop a new methodology towards measuring and

improving software reliability. Existing reliability models do not address

reliability aspects in all stages of software development. It is difficult to

predict the reliability of the end product. The proposed work is an

attempt to make such a frame work to enable early prediction of

software reliability incorporating reliability measurement in each stage

of the software development. The main objective of the research is to

develop a model to represent reliability of a computing system by

considering both hardware and software failure impacts. More specifically,

the objectives of the research are as follows:

Introduction

 27

1) To study the existing reliability models

2) To explore techniques and technologies for measuring and

improving software reliability.

3) To develop a framework to enable the early prediction of

software reliability incorporating reliability measurement in

each stage of the software development.

4) To study and analyze the role of Free and Open Source

Software (FOSS) in different communities.

5) To study and evaluate existing open source software and to

arrive at a reliability growth model.

6) To develop a model for estimation of computational reliability

by incorporating both software and hardware components.

7) To evaluate and compare the actual reliability with the

developed model and other existing models.

1.12 Methodology

The research work that is to be carried out for accomplishing the

objectives as mentioned earlier, follows the methodology as depicted in

Fig 1.2.

Chapter -1

 28

Figure 1.2 Research Methodology

Introduction

 29

The first phase of the work is the study of the existing reliability

models. In this phase the hardware reliability models, software reliability

models and open source software reliability models are discussed. A

systematic survey of existing reliability models used in the industry for

hardware and software both closed source as well as open source software,

was attempted. Then a trial to explore techniques and technologies for

measuring and improving software reliability and a framework is proposed

to enable the early prediction of software reliability incorporating reliability

measurement in each stage of the software development. The second phase

involves the study and analysis of the role of Free and Open Source

Software (FOSS) in different communities. A comprehensive survey has

been conducted for studying why individual programmers, the government

and many of the IT firms are lining up towards FOSS and the benefits by

adopting FOSS for building their custom products have been studied. The

analysis of the results are presented. This will be useful to the project

managers for taking a decision for the adoption of FOSS. These can identify

the constraints and in adopting the FOSS in the existing environment of an

organization. The third phase is to study and evaluate existing FOSS and to

arrive at a reliability growth model. The next phase is to develop an

algorithm and a model for the estimation of computational reliability by

incorporating both software and hardware components. The generated

model is then compared with the theoretical and existing models; it has

been and concluded that the model developed is a reliable one at the final

phase. The entire process is detailed in chapter 3, the scheme of research

work and methodology.

Chapter -1

 30

1.13 Outline of the Thesis

The rest of the thesis is organized as follows

Chapter 2 is a systematic survey of existing reliability models used in

the industry for hardware and software both closed source as

well as open source software. Then a trial to explore techniques

and technologies for measuring and improving software

reliability and a frame work is proposed to enable the early

prediction of software reliability, incorporating reliability

measurement in each stage of the software development.

Chapter 3 discusses the scheme of the research work and the methodology

which involves studying the effects of failure of an actual

software package and working towards formulating a reliability

model taking into consideration the hardware issues.

Chapter 4 elaborates the study and analyses the role of Free and Open

Source Software (FOSS) in different communities.

Chapter 5 focuses on the study and evaluation of existing OSS to arrive

at a reliability growth model.

Chapter 6 formulates an algorithm for estimating software reliability

and development of a simplified model.

Chapter 7 details the evaluation and comparison of the developed

model with the application of a simplified model and its

application in real time situation.

Introduction

 31

Chapter 8 recapitulates the thesis and provides conclusions and research

findings. Some of the results have been published in

international journals and in the proceedings of various

national and international conferences.

….. …..

A Survey of Reliability Models

 33

CChhaapptteerr 22		

AA SSuurrvveeyy ooff RReelliiaabbiilliittyy MMooddeellss

2.1 Introduction
2.2 Reliability Growth Models
2.3 Computational System Reliability
2.4 A Framework to Enable the Early Prediction of

Software Reliability.
2.5 Techniques and Technologies for Measuring and

Improving Software Reliability.
2.6 Conclusion

2.1 Introduction

Reliability modeling is the process of predicting or understanding

the reliability of a component or system prior to its implementation. Two

types of analyses that are often used to model a complete system

availability behavior are, Fault Tree Analysis and Reliability Block

diagrams. The Reliability growth models are categorized as hardware

models and software models. Hardware Reliability Growth Models

(HRGM) are generally categorized as probabilistic models and statistical

models. In probabilistic reliability growth models – because of no unknown

parameters associated with these models, the data obtained during the

program cannot be incorporated (www.urel.feec.vutbr.cz/.../459.pdf).

Statistical reliability growth models – unknown parameters are associated

C
on

te
n

ts

Chapter -2

 34

with these models. In addition, these parameters are estimated throughout

the development of the product in question.

In this chapter, we will be discussing in detail the software reliability

growth models, hardware reliability growth models and open source

software reliability models. And finally a frame work is proposed to

enable the early prediction of software reliability as well as techniques

and technologies for measuring and improving it.

2.2 Reliability Growth Models

A Reliability growth model provides a systematic way of assessing

and predicting system reliability based on certain assumptions about the

fault in the system in a usage environment. It involves comparing

measured reliability at a number of points of time, with known functions

that show possible changes in reliability. A reliability growth model is a

model of how the system reliability changes over time during the testing

process. As system failures are discovered, the underlying faults causing

these failures are repaired so that the reliability of the system should

improve during system testing and debugging. To predict reliability, the

conceptual reliability growth model must then be translated into a

mathematical model. Reliability growth models can therefore be used to

support project planning.

A variety of models are available for the estimation of reliability in

the case of software as well as hardware. The role that software plays as a

support to modern societal activities cannot be underestimated. However,

A Survey of Reliability Models

 35

the ability to predict software reliability is still not well understood and it

needs further study. Although a number of software reliability models have

been developed till date, none has been universally accepted in the field

(Smidts and Li [2002], Li and Smidts [2003]).

A taxonomy of reliability models is as shown in the Fig.2.1. The

figure shows present hardware, closed source software and open source

software reliability models. The hardware reliability models include

Weibull model, Constant hazard model and Linearly increasing model.

The closed source software models are generally classified as failure rate

models and Non Homogeneous Poisson Process (NHPP) models. The

failure rate models are again divided as general and bayesian models.

There are assessment and predictive models in the general category. In

the case of OSS there are certain studies which concludes that the

Weibull distribution can be used as a model.

Chapter -2

 36

Fi
gu

re
 2

.1
 T

ax
on

om
y

of
 so

ftw
ar

e
re

lia
bi

lit
y

m
od

el
s

A Survey of Reliability Models

 37

2.2.1 Software Reliability Growth Models

Software Reliability is considered as part of software quality

assurance and have many attributes including usability, capability,

performance, functionality, documentation, maintainability and reliability.

It is essentially being able to deliver usability of the services while

assuring the constraints of the system. Software reliability modeling

surprisingly to many, has been around since the early 1970s, with

pioneering works by (Moranda[1972], Moranda[1975], Shooman[1972],

Shooman[1973], Shooman[1976], Shooman[1977], Coutinho [1973]).

The basic approach is to model past failure data to predict future

behavior. The models fall into two basic classes namely failures per time

period and time between failures.

A software reliability growth model provides a systematic way of

assessing and predicting software reliability based on certain

assumptions about the fault in the software and fault exposure in a

given usage environment (Joe et. al [1993]). The reliability growth for

software is the positive improvement of software reliability over time,

accomplished through the systematic removal of software faults. The

rate at which the reliability grows depends on how fast faults can be

uncovered and removed. A software reliability growth model allows

project management to track the progress of the software’s reliability

through statistical inference, and to make projections of future

milestones (Lakey [1997], Musa and Okumoto [1983]). Models are

classified in terms of five different attributes. Time domain: Wall clock

Chapter -2

 38

versus Execution time. Category: Total number of failures that can be

experienced in finite or infinite time. Class/Finite failure category:

Functional form of the failure intensity expressed in terms of time.

Family/Infinite failure category: Functional form of the failure intensity

function expressed in terms of the expected number of failures

experienced. Type: The distribution of the number of the failures

experienced by time t. Poisson and Binomial are the two important

types.

A systematic frame work designed to predict software reliability

from software engineering measures was summarized as follows (Li and

Smidts [2000], Li and Smidts [2003], Smidts and Li [2000]). Research

activities in software reliability engineering have been conducted over

the past two decades and many Software Reliability Growth Models

(SRGMs) have been proposed for the estimation of software reliability

and number of faults remaining in the software (Goel and Okumoto

[1979] , Hossain and Dhahiya [1993], Leung [1992], Ohba[1984], Pham

[1993], Yamada [1985]). Most of the SRGMs assume that each time a

failure occurs, the error which caused it, is immediately removed and no

new errors are introduced (Hoang Pham and Xuemei Zhang [1999]).

Most models make some assumptions about the software failure

process so that the model becomes mathematically tractable (Pankaj and

Rajib [2011], Goel [1985]) has given the typical assumptions made in

Software Reliability Model with its limitations. Reliability models have

been proposed by Goel and Okumoto [1979], Jelinski and Moranda

A Survey of Reliability Models

 39

[1972] , Littlewood and Verrall [1973] Musa and Okumoto [1984],

and Shooman [1972]. To employ a model for reliability prediction, value

of some of the parameters need to be specified. These are typically

determined by analyzing the past failure data of the software.

The J-M model proposed by Jelinski and Moranda [1972] is one of

the simplest and earliest of the software reliability models. The J-M

model assumes that times between failures are independent random

variables following exponential distributions, there are finite number of

faults at the beginning of the test phase, and that the failure rate is

uniform between successive failures and is proportional to the current

error content(number of faults remaining) of the program being tested.

This model is very simple to use. It is also fairly accurate for some data

sets, but sometimes leads to inaccurate predictions. (Pankaj and Rajib

Ghosh [2011]).

The basic execution model proposed by Musa et. al.[1987] make

assumptions similar to the above model except that the process modeled is

the number of failures in specified execution time intervals. There are a

finite number of faults in the beginning of the test phase, and the times

between failures are exponential, the failure rate being uniform between

successive failures. He also provides a systematic approach for converting

the model so that it can be applicable for the calendar time as well.

The Littlewood and Verrall model [1973] assumes exponential

distribution for the random variable representing the failure interval time.

Chapter -2

 40

But the failure intensity is regarded as a stochastically decreasing

function with gamma distribution, implying that the fault fixing process

is not considered as perfect, and that faults are of different sizes. A user-

controlled function determines the nature of the reliability growth. This

model requires complex statistical inference for determining the

parameters.

The Goel and Okumoto (G-O) model [1979] considers the software

failure process as a Non Homogeneous Poisson Process (NHPP) with a

mean function µ(t). This model treats initial error contents as a random

variable.

The M-O model proposed by Musa and Okumoto [1984] views

failure process as an NHPP like G-O model. But Unlike G-O model it

assumes reduction in failure rates are greater for the earlier fixes. MO

model assumes failure rate to be an exponential function of the expected

number of failures. Input to the model is in the form t1,t2,……,where each tj

represents the execution time. Execution time is related to calendar time

through some suitable assumption and further computation.

As we can see, the basic input to all these models is the times of

past failures, or times between consecutive failures. These data are used

to determine the value of parameters, and then to predict the reliability of

the given software. Most of the models use calendar time, and where

execution time is used, suitable methods are used to convert it to

calendar time.

A Survey of Reliability Models

 41

Goel and Okumoto proposed an imperfect debugging model called

Goel and Okumoto Imperfect Debugging Model (Amrit and Goel

[1985]), which assumes that faults are removed with certainty when

detected, is not always the case. In this model, the number of faults in

the system at time t, X(t), is treated as a Markov process whose transition

probabilities are governed by the probability of imperfect debugging.

Times between the transitions of X(t) are taken to be exponentially

distributed with rates dependent on the current fault content of the system.

The hazard function during the interval between the (i-1)st and ith failures

is given by

Z(ti) = [N – p(i-i)]λ.

where N is the initial fault content of the system, p is the probability of

imperfect debugging, and λ is the failure rate per fault.

Littlewood/Verrall Bayesian Model took a different approach to

the development of a model for times between failures (Amrit and Goel

[1985]). The times between failures are assumed to follow an exponential

distribution but the parameter of this distribution is treated as a random

variable with a gama distribution, viz.

ƒ(ti/ λi) = λi e- λi ti. And

ƒ (λi/α, Ψ(i)) = [Ψ(i)] α λi α-1 e- Ψ(i) λi / Г(α).

where Ψ(i) represents the quality of the programmer, and the difficulty

of the programming task. It is claimed that the failure phenomena in

Chapter -2

 42

different environments can be explained by this model by taking

different forms for the parameter Ψ(i). This is a software reliability

growth model based on stochastic differential equations for the

integration testing phase of distributed development environment

(http://www.coverity.com). This model has a simple structure, hence it is

easily applied. This is very useful for software developers in distributed

development environment in terms of practical reliability assessment.

Jelinnski - Moranda de-eutrophication model is an exponential

Failure Time Class Model (Michael [1995]). The de-eutrophication

model, developed by Jelinnski and Moranda, is still being applied today.

The elapsed time between failures is taken to follow an exponential

distribution with a parameter that is proportional to the number of

remaining faults in the software, ie. The mean time between failures at

time t is 1/ф(N-(i-1)). Here t is any point in time between the

occurrence of the (i-1)st and the ith fault occurrence. The quantity ф is

the proportionality constant, and N is the total number of faults in the

software from the initial point in time at which the software is

observed. This is a binomial type model as per Musa and Okumoto’s

classification.

The Schneidewind’s model is based on the fact that the current

fault rate might be a better predicator of the future behavior than the

observed rates in the distant past (Michael [1995]). The failure rate

process may be changing over time and there are three forms of the

model. Model 1: utilizes all of the fault counts from the n periods. This

A Survey of Reliability Models

 43

reflects the view that all of the data points are of equal importance.

Model 2: ignores the fault counts completely from the first through the s-

1 time periods. ie. Use only the data from period s through n. This

reflects the view that the early time periods contribute little if anything,

in predicting future behavior. Model 3 is an approach intermediate

between the first two, which reflects the belief that a combination of the

first s-1 period is indicative of the failure rate process during the later

stages.

The Geometric model is an infinite failure category model, and

this is a variation from the Jelinski-Moranda model and was proposed by

Moranda (Michael[1995]). The time between failures is taken to be an

exponential distribution, whose mean decreases in a geometric fashion.

The discovery of the earlier faults is taken to have a larger impact on

reducing the hazard rate than the later ones. As failures occur, the hazard

rate decreases in a geometric progression. The function is initially a

constant, D, but it decreases geometrically (0<ф<1), as each failure

occurs. The change in the reduction of the function is seen to get smaller

as more failures occur, reflecting the smaller impact of the later-

occurring faults.

Thomson and Chelson Model is a Bayesian Model category

(Lakey et. al. [1997]). The hazard function for this model is defined as

(fi+f0+I)/(Ti+T0). Where, fi is the number of failures detected in each

interval, and Ti is the length of testing time for each interval i.

Chapter -2

 44

Musa Execution Time Model assumes that there are N software

faults at the start of testing, each is independent of others, and is equally

likely to cause a failure during testing. A detected fault is removed with

certainty in a negligible time, and no new faults are introduced during

the debugging process. The process modeled is the number of failures in

specified execution time intervals (Amrit and Goel [1985]). The failure

rate, or the hazard function for this model is given by

Z(τ) = фƒ(N-nc)

Where, τ is the execution time utilized in executing the program up to

the present, ф is a proportionality constant, which is a fault exposure

ratio that relates fault exposure frequency to the linear execution

frequency, ƒ is the linear execution frequency, N is the initial fault content

of the system and nc is the number of faults corrected during (0, τ). One of

the main features of this model is that it explicitly emphasizes the

dependence of the hazard function on execution time. Musa also

provides a systematic approach for converting the model so that it can be

applicable for calendar time as well.

Ohbas Inflection S Model is fairly a general model (Ying and

Joseph [2005]). It allows forecasts to be made early in the test stage

with percentiles that take into account the subjective judgment of the

engineer with accuracy. The mean value function for Ohba’s model is -

m(t) = N (1 – e-Фt/1+φ e-Фt)

where,

A Survey of Reliability Models

 45

N = total number of failures that would occur in infinite time

Ф = failure detection rate

φ = inflection parameter

Musa-Okumoto Logarithmic Poisson Execution Time Model is

similar to Goel Okumoto model, with the number of failures by some

time τ is assumed to be a NHPP(non homogeneous poison process) with

a mean value function.

Weibull distribution family is the most widely used lifetime

distribution model (Ying and Joseph [2005]). The 2-parameter

Weibull distribution has long been used to model reliability patterns

due to its ability in describing failure modes like initial, random and

wear-out.

The Weibull two-parameter, cumulative distribution function

(CDF): (Richard and Ray [2002]).

F(t) = 1- e-(t/η)β

Where F(t) = fraction of parts failing

t = failure time

η = characteristic life or scale parameter (MTTF)

β = slope or shape parameter

e = pi or 2.718281828

AMSAA Model is a NHPP model represented as: (Richard and Ray

[2002]).

Chapter -2

 46

ρ(t) = λβt β-1,t>0, λ>0, β>0

Where, the ρ(t) is an intensity function (ie. The probability of a system

failure in the interval (t, t+Δt).

With the discussion of different models, an appropriateness of

model usage can be summarized. Based on the failure intensity vs

cumulative failures increasing, decreasing or a combination, we can

suggest the appropriate models (Lakey et. al. [1997]). If it is

increasing, the S-shaped and Weibull models can be used. If

decreasing and the software has been in operation for some time

without a failure, the Thompson Chelson Model can be used. Further

classification can be done from the historical or collected data such as

initial failure rate, estimated number of inherent faults, or the

expected rate of the failure intensity. From the initial failure rate data,

Musa Logarithmic model can be applied, Goel Okumoto model and

Musa Logarithmic model can be applied on the inherent faults, and

rate of change of failure intensity data collected as shown in the

Fig. 2.2 (Lakey et. al [1997]).

A Survey of Reliability Models

 47

Figure 2.2 Appropriateness of Software Reliability Growth Models

2.2.2 Hardware Reliability Growth Models

 A hardware reliability growth model is used to mention product

reliability in the period during which, the observed reliability advances

towards the inherent reliability of the product. Hardware and software

reliability predictions adjusted by their respective growth models to

coincide with the same point in time can be combined to obtain a

Chapter -2

 48

prediction of the overall system reliability. There were a number of

reliability growth models suggested for hardware reliability in the

literature. In this section, we outline important models that discuss

hardware reliability. Understanding the dynamic behavior of system

reliability becomes an important issue in either scheduling the

maintenance activities or dealing with the improvement in the revised

system design. In doing so, the failure or hazard rate function should be

addressed. Bathtub curve is usually adopted to represent the general

trend of hazard rate function as shown in Fig. 2.3. This curve exhibits

three distinct zones. The first is, the short initial period called variously

the early failure, infant mortality, or the burn in period. The decreasing

but greater failure rate early in the life of the system is due to one or

more of several potential causes. The causes include inadequate testing

or screening of components during selection or acceptance, damage to

components during production, assembly, or testing, and choice of

components which have too great a failure variability. It shall be a

specific goal of the supplier to ensure that the early failure period is

rigorously controlled and covered by a suitable warranty (Shooman

[1968], Thomas [1973].

A Survey of Reliability Models

 49

Figure 2.3 Bath Tub Curve for Hardware

The failures in the second zone are termed service failures. During

this period, the failure or hazard rate is constant and it represents the

effective life of the product.

The failures in the third zone are the wear-out failures. The

incidence of failure in this zone is high since most of the components

will have exceeded their service life, and consequently would have

deteriorated. Hence, they are appropriately called wear-out failures.

Many studies were concentrated on depicting the geometric shape

of the bathtub curve. The early contributors in this area include , Bain

[1974], Smith &Bain [1975], Gaver [1979], Hijroth [1980], Dhillon

[1981], Lawless [1982], Jaisingh et. al. [1987], Haupt & Schabe [1992],

Schabe [1994], Xie and Lai [1996], Edelstein [1998]. Wang et. al.

[2002]) proposed a general form of bathtub shape hazard function in

terms of reliability. The relation between hazard rate and reliability of a

system follows the definition (Wang et. al. [2002]).

Chapter -2

 50

dt
tdR

tR
tZ)(

)(
1)(−= ------------------------------------- (2.1)

Usually the reliability decreases monotonically with time and thus

there is a one to one correspondence between reliability and time. That

is, the hazard rate function can also be expressed as

)(
)(/

1
)(

1)(RZ
tdRdttR

tZ =−= ------------------------ (2.2)

Thus, instead of the usual procedure of estimating Z(t) the

relationship of Z(R) based on the available data was defined. The change

of expression Z (t) to Z(R) has certain advantages. First, the equation of

dynamic reliability takes an autonomous form; particularly it belongs to

a general type of logistic equation encountered very often in ecological

science (Edelstein [1988]). Therefore good experience can be guided

from these studies. Secondly, the hazard rate is investigated in finite

domain (1, 0) as compared with that in infinite domain of time sequence.

Wang et. al. [1993] developed reliability models that can be

applied for the development of a new mechanical product with modified

function requirements. Wang et. al. [1996] also developed reliability

models for material fracture due to crack growth.

The data obtained from failure tests can be analyzed to obtain

reliability, failure density, hazard rate and other necessary information

(Srinath [1991]). Obviously, the behavioral characteristics exhibited by one

class of components differ from those exhibited by another class of

A Survey of Reliability Models

 51

components. In order to compare different behavioral characteristics and

also to draw general conclusions from behavioral patterns of similar

components, a mathematical model representing the failure characteristics

of the components becomes necessary. The procedure involves assuming

a function for hazard rate, and thereby obtaining reliability and failure

density by using this failure rate function. The assumed function for the

hazard rate will be the hazard model. Some of the common hazard models

are discussed below:

One of the most commonly used models is the constant hazard

model. Here the failure rate is assumed to remain constant with time.

That is, λ=)(tZ , a constant (Musa [2005]).

[]{ } ()tddZtR t
tt

λλξξλξξ −=−=
⎭
⎬
⎫

⎩
⎨
⎧
−=

⎭
⎬
⎫

⎩
⎨
⎧
−= ∫∫ expexpexp)(exp)(0

00

That is, for a constant hazard model, Reliability, tetR λ−=)(

Probability of failure, tetRtF λ−−=−= 1)(1)(

Failure density, t
d etRtZtf λλ −==)()()(

The variation of failure rate, reliability, probability of failure, and

failure density with respect to time for a constant hazard model is shown

in the following figure Fig. 2.4 (Srinath [1991]).

Chapter -2

 52

Figure 2.4 Variation of Failure Rate, Reliability, Probability of Failure,

and Failure Density for a Constant Hazard Model (Srinath
[1991])

It can be seen that, for a constant hazard model the mean time to

failure is the reciprocal of failure rate.

That is,

{ } ()
λλλλ

λ
λ 11011)(0

000

=−−=−−=⎥
⎦

⎤
⎢
⎣

⎡
−=== ∞−

∞−∞
−

∞

∫∫ eeedtedttRMTTF
t

t

The constant hazard model is also known as exponential reliability case.

In the case of linearly increasing hazard model the hazard rate is

assumed to increase linearly with time. That is, KttZ =)(, where K is a

constant

A Survey of Reliability Models

 53

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−=

⎭
⎬
⎫

⎩
⎨
⎧
−=

⎭
⎬
⎫

⎩
⎨
⎧
−= ∫∫ 2

exp
2

expexp)(exp)(
2

0

2

00

KtKdKdZtR
ttt ξ

ξξξξ

That is, for a linearly increasing hazard model, Reliability, 2

2

)(
Kt

etR
−

=

Probability of failure, 2

2

1)(1)(
Kt

etRtF
−

−=−=

Failure density, KttRtZtf d ==)()()(2

2Kt

e
−

The variation of failure rate, reliability, probability of failure, and

failure density with respect to time for a linearly increasing hazard

model is shown in the following figure Fig. 2.5 (Srinath [1991]).

Figure 2.5 Variation of Failure Rate, Reliability, Probability of Failure,

and Failure Density for a Linearly Increasing Hazard Model
(Srinath [1991])

Chapter -2

 54

It can be seen from the failure density curve that the curve has a

slope equal to K at time 0=t . Also the value of)(tf d reaches a

maximum of
e
K at time

K
t 1
= , and tends to zero as t becomes larger.

Another very popular model is the Weibull Model (Srinath [1991])

and is expressed as 1,)(−>= mKttZ m

Here K and m are parameters and if these are chosen appropriately,

a variety of failure-rate situations can be covered, including both the

constant hazard and linearly increasing hazard conditions.

If 0=m ; KtZ =)(and refers to a constant hazard model

If 1=m ; KttZ =)(and refers to a Linearly increasing model

The reliability can be expressed as

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

−=
⎭
⎬
⎫

⎩
⎨
⎧
−=

⎭
⎬
⎫

⎩
⎨
⎧
−=

++

∫∫ 1
exp

1
expexp)(exp)(

1

0

1

00 m
Kt

m
KdKdZtR

mtmt
m

t ξξξξξ

That is, in case of Weibull model, Reliability, 1

1

)(+
−

+

= m
Kt m

etR

Probability of failure, 1

1

1)(1)(+
− +

−=−= m
Kt m

etRtF

Failure density, m
d KttRtZtf ==)()()(1

1

+
−

+

m
Kt m

e

Following figure Fig. 2.6 shows the variation of reliability in case

of Weibull model for various values of K and m (Srinath [1991]).

A Survey of Reliability Models

 55

Figure 2.6 Variation of Reliability in case of Weibull Model

2.2.3 Reliability Models for Open Source Software

The OSS development mainly depends on the practice of

welcoming every enthusiastic individual who would like to contribute to

the project. On top of this, the freedom of using, modifying and

distributing OSS leads to more robust software and more diverse

business models (Wu and Lin [2001]). Software reliability models are

useful to assess the reliability for quality management and testing

progress control of software development. Although open source

practices have been remarkably successful in recent years, the open

source development model faces a number of product quality challenges.

Rare open source projects have been archived successfully as a high

level quality end product. However, these mature and successful projects

face quality problems too. Even though lots of models and tools have

Chapter -2

 56

been suggested for reliability checking, very few models are applied and

tested in this case.

One of the recent studies by Coverity Inc [http://www.coverity.com]

on measuring reliability of open source software claims that the LAMP

stack – Linux, Apache, MySQL, and Perl/PHP/Python – showed

significantly better software quality above the baseline with an average

of 0.290 defects per thousand lines of code, compared to an average of

0.434 for the 32 open source software projects analyzed. One of their

goals of research on software quality, was to define a baseline so that

people can measure software reliability in both open source and

proprietary software projects.

Luyin and Sebastian [2000] discussed how quality assurance

activities are performed within the OSS development. They pointed out

that OSS development is very different from the traditional software

development used in most of the software industry. Moreover, the

quality assurance activities are also performed in a different fashion.

Martin et.al. [2005] have done exploratory interviews with free

and open source developers to study the common quality practices

among the developers to implement a quality process improvement

strategy. They found that even though development of OSS projects

share common practices the quality of the resulting products needs

further empirical evaluation. This implies that we have to look into

reliability models for open source software development.

A Survey of Reliability Models

 57

An empirical study towards open source software reliability model

was conducted by Ying and Joseph [2005]. They have collected data

from eight active open source projects from “SourceForge.net” and

reliability analysis was done based on the bug arrival rate. They claim

that general Weibull distribution is a possible way to establish the

reliability model. Further, in contrast with closed source projects, it is

unlikely to find a Rayleigh curve, to model all open source projects.

In a recent study on Xface desktop environment, an open source

distributed project, Yoshinobu and Shigeru [2006], attempted an evaluation

under Mozilla public license by applying various reliability growth models.

Conventional models like exponential growth model, delayed S-shaped

model, inflection S-shaped model and logarithmic Poisson execution time

model were considered and goodness-of-fit comparison were done. Various

software reliability assessment measures were derived from the non-

homogeneous Poisson process (NHPP) models. It has been concluded that

the logarithmic Poisson execution time model fits better than the other

software reliability growth models for the actual data set.

2.3 Computational System Reliability

Computational system reliability is concerned with hardware

reliability, software reliability, reliability of interaction between hardware

and software and reliability of interaction between the system and the

operator. In general, a system may be required to perform various

functions, each of which may have a different reliability. In addition, at

different times, the system may have a different probability of successfully

Chapter -2

 58

performing the required function under stated conditions. The analysis of

the reliability of a system must be based on precisely defined concepts.

Software intensive systems are increasingly used to support critical

business and industrial processes, such as in business information

systems, e-business applications, or industrial control systems. Reliability

engineering gains its importance in the development process. Reliability is

compromised by faults in the system and its execution environment,

which can lead to different kinds of failures during service execution:

Software failures occur due to faults in the implementation of software

components, hardware failures result from unreliable hardware

resources, and network failures are caused by message loss or problems

during inter component communication (Franz and Heiko [2012]).

The analysis of the reliability of a system must be based on precisely

defined concepts. Since it is readily accepted that a population of

supposedly identical systems, operating under similar conditions, fall at

different points in time, then a failure phenomenon can only be described in

probabilistic terms. Thus, the fundamental definitions of reliability must

depend on concepts from probability theory (Pham [2007]).

System-level reliability and availability requirements set forth by

U.S. Government agencies procuring large software intensive systems

encompass both hardware and software. However, specifications,

statement of work requirements, and compliance documents (standards)

usually implicitly or explicitly focus on hardware and are largely silent

about software reliability, maintainability, availability and dependability.

A Survey of Reliability Models

 59

Consequently, contractor system reliability analyses and design reviews

usually ignore quantitative software reliability, maintainability,

availability, and dependability requirements. During system testing and

evaluation, data on software operating times, failure rates, and recovery

times are not collected. Finally, logistics and support specialists devote

significant attention to sparing and maintenance concept development,

but often do not adequately consider the software-related sustainment

issues of large computer systems. These problems can be solved, by an

appropriate definition of requirements for software-intensive system

reliability in specifications, and in the definition of programmatic

requirements in contractual documentation (Myron et. al.[2007]).

In general, a system may be required to perform various functions,

each of which may have a different reliability. In addition, at different times,

the system may have a different probability of successfully performing the

required function under stated conditions. The term failure means that the

system is not capable of performing a function when required. The term

capable used here is to define if the system is capable of performing the

required function. However, the term capable is unclear and only various

degrees of capability can be defined (Musa [1980], Pham [2007]).

2.4 A Framework to Enable the Early Prediction of Software
Reliability
The objective is to develop a framework to enable the early

prediction of software reliability incorporating reliability measurement

in each stage of the software development. Leslie et.al.[2008] state that

Chapter -2

 60

the ability to predict the reliability of a software system early in its

development can help to improve the systems quality in a cost effective

manner. Therefore, the proposed framework, measures and minimizes

the complexity of software design at the early stage of software

development lifecycle, leading to a reliable end product. To calculate the

reliability of software product, the reliabilities at different stages of product

development like requirements analysis, design, development, testing and

implementation etc. will have to be evaluated. This facilitates the improving

of the overall product reliability. It is observed that modifications and error

identifications during operation and implementation can lead to re-

engineering of large parts of the system, which has been shown to be costly.

Hence to ensure the quality of the developed system, it is important to

ensure quality at different stages of development. A few approaches which

do consider component-level reliability (Goseva et. al. [2003], Reussner et,

al. [2003]) , assume that the reliabilities of a given component’s elements,

such as its services, are known.

Reliability prediction is useful in a number of ways. A prediction

methodology provides a uniform, reproducible basis for evaluating

potential reliability during the early stages of a project. Predictions assist

in evaluating the feasibility of proposed reliability requirements and

provide a rational basis for design and allocation decisions.

2.4.1 Background

The attention of scientists and engineers in the late 60’s was

focused mainly on hardware reliability, mechanical and electronic

A Survey of Reliability Models

 61

systems. Then from 70’s onwards the permanent growth of software

applications became the center of many studies. Computers are applied

in almost all areas of human life. The main applications includes

banking system, power distribution, hospital management and critical

systems like air traffic control and airplane flight, where failure could

lead to catastrophes and loss of many lives(Vladimir et. al. [2011]). On

one hand there is increasing dependence on software and on the other

hand, software systems are becoming more and more complex and

harder to develop and maintain. Software functionality is becoming

crucial from the aspects of reliability, safety of human lives and security

issues as well (Vladimir et. al. [2011], Voas and Payne [2000]).

2.4.2 Reliability Prediction

Reliability predictions are conducted during the requirement and

definition phase, the design and development phase, the operation and

maintenance phase in order to evaluate, determine and improve the

dependability measures of an item. Successful reliability prediction

generally requires developing a reliability model of the system considering

its structure. Several prediction methods include reliability block diagrams,

fault tree analysis, state-space method etc.(www.epsma.org).

A prediction scenario is shown in the Fig 2.7. The method involves

collection of failure data from the field and it is compared with the

information available in the database. The database is updated regularly

to keep it current. The failure rate figures are employed, tested and

checked in some suitable reliability models to predict the reliability.

Chapter -2

 62

This will help the project managers to predict and develop a reliable

product.

 Figure 2.7 Prediction Method

2.4.3 The Framework

The main task of a system program office (SPO) when acquiring a

new software system, is to specify the requirements to the developer and

to see that the requirements mentioned are met as the system

development process evolves to the final product. It is also necessary to

assure that the qualities of the software such as reliability, maintainability,

usability, testability, and portability are attained.

A Survey of Reliability Models

 63

Fi
gu

re
 2

.8
 D

et
ai

le
d

so
ftw

ar
e

re
lia

bi
lit

y
pr

ed
ic

tio
n

fra
m

e
w

or
k

Chapter -2

 64

An error in the software product can occur when there is a difference

between the actual output of the software and the expected correct output.

Fault is a condition that causes a system to fail to perform its required

function. Failure occurs when the behavior of the software is different

from the specified behavior (Amitabha and Khan [2012]).

A reliability prediction framework is shown in the Fig 2.8, which

is to analyze the reliability at different stages of development. The

process includes phases of software development, identification of

errors, integration, development and finalization. The first step is to

analyze the phases of development, which includes requirement analysis,

design, coding, testing, implementation and maintenance. Next comes the

identification of errors in different phases, where possible occurrences of

errors are identified. The collected error data is used to calculate the failure

density and thereby the reliability.

In the Identification phases, Software reliability attributes have

been identified in different phases of development. Firstly, draw up a

functional profile, then identify the needs of software reliability, then

define the fault/failure type and the fault/failure severity, finally,

understand the software development process and environment.

Integration phase relation between reliability aspects of the above

identified phase is determined. The next stage is to formulate a plan to

integrate the software aspects to incorporate reliability criteria in the

software development stage.

A Survey of Reliability Models

 65

Reliability estimation model (REM) is developed in the development

phase. In this phase, first of all, establish a data collection plan and collect

data through templates. Secondly, draw up an operational profile and

allocate software reliability goal. Predict software reliability through

software prediction models and estimate software reliability through

software estimation models. Elicit improvements and review improvements

and establish a device for software reliability improvement (Voas [2000]).

Finally on the basis of the review, the whole approach is reviewed and

revised if needed.

2.5 Techniques and Technologies for Measuring and Improving
Software Reliability.
Reliability measurement is a set of mathematical techniques that

can be used to estimate and predict the reliability behavior of software

during its development and operation. The primary goal of software

reliability modelling is to find out the probability that it will fail in a

given time interval, or, what is the expected duration between successive

failures (Allen and Lyu [1999], Allen and John [1998]). Software

reliability is closely influenced by the creation, manifestation and impact

of software faults. Consequently, software reliability can be improved by

treating software faults properly, using techniques of fault tolerance,

fault removal, and fault prediction. Fault tolerance techniques achieve

the design for reliability, fault removal techniques achieve the testing for

reliability, and fault prediction techniques achieve the evaluation for

reliability (Lyu[1998]).

Chapter -2

 66

Reliability engineering is a daily practised technique in many

engineering disciplines. Using a similar concept in these disciplines, we

define software reliability engineering as the quantitative study of the

operational behavior of software-based systems with respect to user

requirements concerning reliability. Software reliability engineering

therefore, includes (Lyu [1996]): (1) software reliability measurement,

which includes estimation and prediction, with the help of software

reliability models established in the literature; (2) the attributes and

metrics of product design, development process, system architecture,

software operational environment, and their implications on reliability;

and (3) the application of this knowledge in specifying and guiding

system software architecture, development, testing, acquisition, use, and

maintenance.

To achieve software reliability, different techniques for measurement

have been developed. The main purpose is to test the software and measure

the reliability according to the predefined criteria of the techniques. The

result of this offers the developers and users an understanding of the

reliability of the software (lyu [1996]). This process is known as

reliability engineering and can be summarized as shown in the Fig 2.9.

A Survey of Reliability Models

 67

Figure 2.9 Software Reliability Engineering Process Overview (lyu [1996])

Chapter -2

 68

2.6 Conclusion

From the above discussions it is evident that even though a lot of

models are developed and available in the literature for evaluation of

software reliability, all the models do not provide a direct quantification of

the reliability, that is, all these models are not necessarily deterministic.

Typical hardware reliability models make use of the available

component field failure data for reliability estimation. However no

attempts were made to incorporate hardware and software together in

reliability estimation and the present work is emphasized on this. Also in

the early stages of development, failure information is not available to

quantitatively measure reliability of a software product. Software

reliability cannot be calculated during the requirement analysis, design,

development, testing and maintenance phases, if adequate data on

system failures is collected throughout the project. The same models for

estimating reliability parameters, such as the expected number of failures

in a certain period of time, failure intensity, the expected time of the next

failure, etc., could be applied to software systems as well. A software

reliability prediction framework is proposed, which enhances the

reliability calculation at different stages of development and hence

increases the end product reliability.

….. …..

Scheme of Research work and Methodology

 69

CChhaapptteerr 33		

SScchheemmee ooff RReesseeaarrcchh wwoorrkk aanndd
MMeetthhooddoollooggyy

3.1 Introduction
3.2 The Methodology for Model Development
3.3 Algorithm Development
3.4 Model Development
3.5 Comparison of Developed Model with Other Existing

Models
3.6 Conclusion

3.1 Introduction

The methodology involves the study of the existing reliability

models, the study and analysis of the role of free and open source

software in different communities, the study and evaluation of existing

open source software and to arrive at a reliability growth model, the

development of a model for estimation of computational reliability by

incorporating both hardware and software components, and to compare

the actual reliability with the developed model and other existing models

as shown in Fig 3.1.

C
on

te
n

ts

Chapter -3

 70

Figure 3.1 Design and Development Phases in the Study

Study of the existing reliability models discusses the software,

hardware, open source reliability models and the appropriateness of

model usage. Study and analysis of the role of free and open source

software in different communities involves the preparation of a

questionnaire and data collection. Recently software industry started

adopting existing open source code, open source libraries etc in

developing proprietary products. A case study has been done for

Scheme of Research work and Methodology

 71

studying why individual programmers, Government and many of the IT

firms are lining up towards FOSS and the benefits of adopting open

source software for building their custom products. A comprehensive

survey has been conducted among the above, to identify the role of these

communities towards the open source software, and an analysis of the

results are presented. The constraints to adopt the FOSS in the existing

environment of an organization are also discussed.

Studying and evaluating of existing open source software, and

arriving at a reliability growth model phase involves collection of bug

tracking data from a few popular open source projects and the time

related bug arrival investigation. It further involves a proposal of model

for software development using open source software and discussion of

problems associated with the integration of the open source with custom

made software.

The development of a model for estimation of computational

reliability involves studying the effects of failure of an actual software

package and working towards formulating a reliability model taking into

consideration the hardware issues.

3.2 The Methodology for Model Development

The methodology involves defining a system configuration

consisting of software and hardware elements. The software and

hardware components are considered independently consisting of two

subsystems. The failure related data of hardware components are based

Chapter -3

 72

on the field data. On the other hand, the software failure is based on the

bug arrival rate as published in the Debian site. The hardware modeling

is based on the constant Hazard model whereas, the software model is

based on the distribution as obtained from the bug arrival. A relatively

simplified model is one, where both hardware and software exhibit a

constant failure.

Software reliability models are used to assess a software product’s

reliability to estimate the number of latent defects when it is available to

the customer (Leblanc and Roman [2002]). This estimation is important

for two reasons namely to provide an objective statement of the quality

of the product, and to prepare the resource plan for the software

maintenance phase.

The criterion variable under study, is the number of defects or

defect rate normalized to lines of code, or function points in specified

time intervals or time between failures. Reliability models can be either

static or dynamic. Static models use attributes of the project or program

modules to estimate the number of defects in the software, whereas

dynamic models, based on statistical distributions, use the current

development defect pattern to estimate end-product reliability.

 The objective of the research is to develop a model to represent

reliability of a computing system by considering both hardware and

software failure impacts. The methodology involves studying the effects of

failure of an actual software package and working towards formulating a

Scheme of Research work and Methodology

 73

reliability model, taking into consideration the hardware issues.

Studying the effects of failure of actual software package is comprised of

three stages namely data collection, data preprocessing and analysis. The

formulation of the reliability model involves algorithm development, model

development, and comparison of theoretical products with the

formulated model as shown in Fig. 3.2. The first phase of the work is the

data collection. In this phase, failure data for software and hardware are

to be collected. The collected data is pre-processed to get the valid data

set in the second phase of the work. In the third phase the valid data set

is analyzed to get the reliability equation and thus the model generation.

The generated model is then compared with the theoretical and existing

models and concluded that the model developed is a reliable one as the

final phase.

Chapter -3

 74

Figure 3.2 Methodology for Model Development

Data Collection

Hardware Software

Pre-processing

Analysis

Model
Generations

Comparison
with theoretical

and existing

Reliable Model

Valid Data

Reliability Equation

No

Yes

Scheme of Research work and Methodology

 75

3.2.1 Analysis Phase

For reliability analysis of hardware and software package, information

regarding its failure has to be studied. So, this phase can be further

broken down into data collection and analysis. The former will deal with

collecting parameters essential to evaluate its reliability, and the latter

will deal with the evaluation and analysis.

3.2.2 Data Collection

The reliability of software is adversely affected by failures or bugs

in computer programs. A failure is the departure of software behavior

from user requirements. A static fault (or bug) in the software code

causes failure as soon as it is activated during program execution. Hence

as a first step towards building a reliability model, failure reports were

collected to evaluate the reliability of a software package due to

occurrences of bugs. The data required was the time of identification of a

bug and time of repairing the same, so that the total failure duration

could be obtained. From the failure duration the rate of failure could be

calculated.

In the case of hardware, failure data are collected from the production

system of Cochin University of Science and Technology (CUSAT)

where Debian based server system were used to run their website, mail

server etc. The failure data are collected systematically whenever a

system failure had occurred. The collected data is analyzed to reach to

the required refined set of data.

Chapter -3

 76

The bug reports were collected mainly from online open source

development site Debian.org. Debian GNU /Linux is a free operating

system that comprises of 25000 packages, precompiled in a user-friendly

format. It is developed through distributed development all around the

world. The Debian GNU/Linux distribution has a bug tracking system

which consists of bugs reported by users and developers. This facility

was used as the primary data source.

The bug report generated by the Debian’s Bug Tracking System

(BTS) has a typical format where each bug related to a package is

assigned a unique bug identity. The bug status report gives the package

name, bug identity, its description along with the author, and its present

status. The following tags are used to indicate the present status of a bug.

P: pending, +: patch, H: help, M: moreinfo, R: unreproducible, S: stable,

U: upstream and I: squeeze-ignore.

The second set of tags indicate what releases a bug applies to: O

for old stable (sarge), S for stable (lenny), T for testing (squeeze), U for

unstable (sid) or E for experimental. The detailed operations carried out

are detailed in the Appendix part of the thesis.

3.2.3 Data Preprocessing

Data preprocessing is an important step to refine the collected data.

Generally the real world data is incomplete, lacking attribute values, lacking

certain attributes of interest, or containing only aggregate data or may be

Noisy: containing errors or outliers or can be Inconsistent: containing

Scheme of Research work and Methodology

 77

discrepancies in codes or names. Data preprocessing includes data cleaning,

data integration, data transformation, data reduction and data discretization.

Data cleaning usually includes fill in missing values, smooth noisy

data, identify or remove outliers, and resolve inconsistencies, whereas,

data integration is carried out by using multiple databases, data cubes, or

files. Data transformation is the normalization and aggregation process.

Data reduction is reducing the volume but producing the same or similar

analytical results and Data discretization is part of data reduction by

replacing numerical attributes with nominal ones.

3.2.4 Data Analysis and Interpretation

The collected data is analyzed in order to arrive at reliability. The

software bug arrival is plotted against time and the failure function is

derived. This function is used for arriving at the software reliability. In

the case of hardware the mean time to failure for each of the components

is sufficient to arrive at the reliability based on the constant hazard

model.

In the case of the software a total of 1880 packages were available

at the start of the analysis, as per the details available from the official

website of Debain [http://www.debian.org]. This is taken as the initial

population. A time interval of one month is fixed and the bug arrival rate

during this interval is noted. The observations are taken for 1 year after

which the bug arrival is negligible indicating that the software has more

or less stabilized.

Chapter -3

 78

3.3 Algorithm Development

A systematic procedure for evaluating reliability of open source

software is developed by considering the prevailing trends in industry.

The methodology involves defining an equation for the pattern of failure

based on the available bug arrival rate and developing a generalized

model for the reliability of the software.

3.4 Model Development

The reliability estimation involves considering the computing

system as two subsystems, one comprising of hardware components and

the other, the various software modules or packages. These various

packages are considered as various components of the software part of the

system [http://www.debian.org]. The software and hardware components

are assumed to be connected in series and based on the reliability block

diagram, the overall system reliability is obtained.

3.5 Comparison of Developed Model with Other Existing
Models
The developed model arrives at the reliability by combining

software and hardware parameters. A comparison is made with the other

existing reliability models so as to arrive at the error involved in

reliability analysis when computation of reliability is calculated without

considering the software and hardware elements together.

Scheme of Research work and Methodology

 79

3.6 Conclusion

The research work is aimed at arriving at a model for reliability by

combining hardware and software reliabilities for FOSS. The

methodology involves the analysis of software reliability by collecting

bug reports of software packages and analyzing the failure rate thereby

evaluating its reliability. The reliability of the hardware part is obtained

using the collected component failure data by employing a constant

hazard model. Finally, the hardware and software reliabilities are

integrated to arrive at the overall system reliability.

….. …..

Role of Community and Open Source Software a Case Study

 81

CChhaapptteerr 44		

RRoollee ooff CCoommmmuunniittyy aanndd OOppeenn SSoouurrccee
SSooffttwwaarree aa CCaassee SSttuuddyy

4.1 Introduction
4.2 How Free and Open Source Software helps Project

Manager
4.3 Integration of Free and Open Source Software with

Closed Source Software
4.4 Pros and Cons of Open Source Software Development
4.5 Case Study
4.6 Analysis
4.7 Importance of Open Source Software.
4.8 Conclusion

4.1 Introduction

Free and Open Source Software (FOSS) development has emerged

as one of the more important Information Technology (IT) trends in this

century. Recently, software industries including Government organizations

adopted FOSS for building their software based infrastructure for

various reasons. Today, individual programmers, Government and many

of the IT firms are lining up towards FOSS and are adopting open source

software for building their custom products.

C
on

te
n

ts

Chapter 4

 82

Open Source software is becoming more and more popular and is

achieving a high rate of growth. Open source code evolves through

community cooperation. These communities are composed of individual

programmers, very large companies for business purpose and the

government. Even individuals can participate in open source software

projects in a number of ways, such as contributing source code, testing and

installing the software, reporting and fixing bugs, writing documentation

and posting forum messages (Scott and Greg [2007]). It is possible to

view the codes written by industry experts, thereby achieving capability to

write standard codes (Jagadeesh et. al. [2008]). The whole community can

share and modify this program and has proven to reduce the software

development costs as well as the maintenance cost. Active open source

projects usually have a well-defined community with common interests

which is involved either in continuously evolving its related products or in

using its results (Gacek and Arief [2004]).

Recently, software industry started adopting open source for

development of these proprietary products. They use well developed

open source libraries, tool chains or stripped down versions of already

developed software modules for developing their own products. The

open source model includes the concept of different concurrent agendas

and differing approaches in production, in contrast with more centralized

models of development such as those typically used in commercial

software companies. Software systems are becoming increasingly

complex as customers demand richer functionality delivered in even

Role of Community and Open Source Software a Case Study

 83

shorter time scales (Pekka et. al [2009], Clark et. al. [2008]). Developing

complex software systems using current code-centric technologies is

difficult and expensive (France and Rumpe [2007]). As per the Standish

Group, 84% software projects fail to deliver what has been promised on

time and according to the budget (Greenfield et. al [2004]). Model

driven development approach fastens the software development and is a

solution for complex projects.

Some of the factors affecting reliability are the user groups

involved, type and rate of failure, where the failure can be due to some

planned or unplanned events or human activities, number of operational

units of the software, time the user spends using the software, load on

the underlying hardware, Free and Open Source Software (FOSS) testing,

bug identification and testing, personnel expectation and analysis,

community or individual members working on the distributed development

of the FOSS (Kalpana et. al. [2011]) etc.

Research on the adoption of Information Technology(IT) innovations,

has frequently drawn on innovation adoption theory (Bajaj [2000], Chau and

Tam [1997], Cooper and Zmud [1986]). However, a weakness identified in

many innovation adoption research has been an excessive focus on adoption

at the individual level and not enough on the organizational level (Eveland

and Tornatzky [1990], Eugene et. al [2005]).

The importance of FOSS is an important aspect of the study and

hence a survey is planned to execute. Recently software industries

Chapter 4

 84

including Government organizations adopted FOSS for building their

software based infrastructure for various reasons. There are very few

studies done to evaluate the reliability of such community-driven

software system products.

The main objective or the intention of the survey is :

 To find out how much is the use of open source software

among different communities.

 Why community is moving towards FOSS and

 Why government and many of the IT firms are adopting

FOSS.

The survey is conducted by preparing a questionnaire and is

circulated to collect data, the questionnaire wass attached as APENDIX

B. About 1000 records of data was collected. Which is processed by

using simple JAVA codes and based on the processed data graphs were

drawn and come to the conclusions.

4.2 How Free and Open Source Software (FOSS) helps the
Project Manager
Project management involves planning, monitoring, and controlling

of the people, processes and events that occur, as software evolves from

a preliminary management concept to an operational implementation.

(Pressman [2007]) They supervise the work to ensure that it is carried

out to the required standards and also whether if the product is delivered

to the customer in the stipulated time and within the budget. Good

Role of Community and Open Source Software a Case Study

 85

management cannot guarantee project success. However, bad management

usually results in project failure (Sommerville [2003]). The model

helps the project manager to take appropriate decisions in time and thus

it becomes a systematic approach. The project manager can make use of

freely available open source models and codes for their development

purpose. They can make use of or reuse certain codes that are available

for developing their project modules. The logic available may be more

comfortable and more simple for adopting to find out solutions for their

project. So, automatically they can cut short their project cost as well as

the time for development.

4.3 Integration of FOSS with Closed Source Software (CSS).

This is a new paradigm in software development and is a community

based approach in the software development. Open source philosophy

proved that it was able to produce software that was able to compete with

commercially produced software [www.linux.org]. It is possible for the

software engineers or developers to take advantage over the source code

available over the net to find out their required logic to solve their problems,

or to reuse the available code for their development purpose. Another thing

is that the developers can make use of the help available on the net by the

user groups formed over the net. The developers can post their doubts to get

useful solutions. They will get different solutions out of which they can find

out the most suitable ones. Even then the integration is slightly difficult.

The main difficulty is in finding out the most suitable and reliable solutions.

Chapter 4

 86

If these situations can be tackled, this is the easiest and cost effective

method to develop reliable software.

4.4 Pros and Cons of Free and Open Source Software
Development.
Open source is assumed to be risky, even in some situations where

it clearly provides more functionality (Mark [2004]). If we utilize the

required code only as per our requirement, it may not be the case.

Development becomes more easy. The interest in Open Source is increasing

because of three principal issues like Risk, Cost and Functionality (Mark

[2004]). Risk refers to the likelihood that the software will be stable and

continue to meet needs over the long term. Cost means the overall cost of

ownership, thus involving both licensing costs and support costs.

Functionality pertains to the overall capability to meet specific operational

requirements.

Some of the pros and cons of open source software are, reduced

costs and less dependency on imported technology and skills, affordable

software for individuals, enterprise and government, universal access

through mass software rollout without costly licensing implications, access

to government data without barrier of proprietary software and data

formats, lowered barriers to entry for software business, participation in

global network of software development, supplier independence, limiting

vendor lock-in, and patches or updates become available quicker, which

limits breakdown and security risks.

Role of Community and Open Source Software a Case Study

 87

At the same time there are limitations and drawbacks to the use of

open source software. They may include: Available support for open

source software: In the past years support has been lacking a

professional approach, Finding the appropriate software: Since FOSS is

not ‘advertised’ it can be very difficult to select the appropriate

applications for the task it has to support. A more active approach is

needed from the users, Documentation: The documentation that

accompanies FOSS software application is often idiosyncratic and some

times non-existent. FOSS developers are motivated towards the

technical aspects of the application than towards the usability. Limited

best practices: There are very little known and documented cases of

large scale migration from CSS to OSS and Hardware-software fit:

FOSS often lags behind concerning new hardware. This is caused by the

fact the hardware manufacturers fail to release hardware specifications in

time to the FOSS community.(Victor and Corrado [2003]).

4.5 Case Study

A comprehensive survey has been conducted among the individual

programmers, Government and many of the IT firms to identify the role

of these communities towards the open source software and an analysis

of the results are presented. For giving clarity to the study, the

community has been categorized into three groups, common users,

business industry and the government of each country. The view of these

communities towards open source is discussed below.

Chapter 4

 88

4.5.1 Common User’s Community

Common user’s open source community consists of individuals or

groups of individuals who contribute to a particular open source product

or technology. The open source process refers to the approach for

developing and maintaining open source products and technologies,

including software, computers, devices, technical formats, and computer

languages. For analyzing this community attitude towards FOSS, a

survey has been designed to gather data on the factors influencing

participant’s satisfaction with free software. The factors considered

include intended audience and their back ground who are the members

of the community, participant’s knowledge and level of people working

on the open-source software, attitude towards open source software,

user's experience on open-source software etc.

4.5.1.1 Intended Audience and their Back Ground - who are the
Members of the Community

The users for the survey were mostly developers, employees and

the college students who code or use the open source software for

different purposes. The factors such as the level of education, age

groups, gender and experience with the open source software were

considered. And for that different levels of people at different levels

were selected for the survey. The motive of the survey was to identify

end users and programmers. From the survey concluded that open source

software are mostly used in student community with the age below 25 as

in Fig. 4.1.

Role of Community and Open Source Software a Case Study

 89

Figure 4.1 Participant’s age group Vs No of users in the survey

4.5.1.2 Participant’s Knowledge

To know how the level of knowledge influences the use of FOSS,

was categorized the survey into different levels i.e. hardware, operating

systems and programming languages. Knowledge levels were divided

into three categories minimal, moderate and expert. The number of under

graduate users were more compared to post graduate or high qualified

users. About 10% were experts in hardware knowledge, 62% were experts

in operating system, about 50% were having programming knowledge and

only 7% were having high skill in design and development ability. The

understanding of hardware, operating systems and programming

languages by people having minimal, moderate and expert level of

knowledge was measure/ surveyed. The survey revealed as in Fig. 4.2

shows that - open source software were not only for the expert users but

also for novice users.

Chapter 4

 90

Figure 4.2 Knowledge level of users

The analyses of the above graph confirmed the following hypothesis

that majority of the users do have moderate knowledge about computer

hardware, but at the same time they have the expertise level of

understanding of operating system.

4.5.1.3 Attitude Towards Open Source Software

This section mainly focuses the familiarization of open source with

the end users. Users were quite familiar with the term “open source”

before the survey. While choosing a new application most of the users

give preference to open source software wherever possible, while some

of them want to know if open source software will meet their needs or

not. Most of the users, use open source software as much as possible on

the computers provided by their employer. The main questions asked for

the survey were, How an open source software makes difference than a

closed source software? Why do users use open source software? What

Role of Community and Open Source Software a Case Study

 91

operating systems do users use on the computers they own and the

computers provided by the employers? How much preference do they

give to open source software compared to closed source software?

In order to empirically investigate these questions, the investigator

hypothesizes the following: While choosing a new application, most of

the users give preference to open source software wherever possible,

while some of them see if open source software meets their needs or

not. For others it makes no sense whether the software is open source or

proprietary. While some of them always choose open source software,

most of the users, use open source software as much as possible on the

computers provided by their employer. While others use sometimes.

Besides some users prefer to use Open source software always on the

computers provided by their employer.

To find out user attitude towards open source software the

following questions were asked for the survey (Fig. 4.3). Are the users

satisfied with the documentation provided, installation procedure- how

easy is it, easy to add new features, is the community helpful , what

about security and access control, are they free from bugs, what is its

functionality and its reliability. Most of the users are satisfied with open

source software, as it is free from bugs and has high security.

Chapter 4

 92

Figure 4.3 Users satisfaction towards the OSS features

4.5.2 Business Community

FOSS supports business oriented customization with the open-

source features. Thereby, many firms today are integrating to these

platforms to reduce their platform migration costs. From the survey it is

observed how open-source software are helpful, what is their use and

what sort of persons are using such technology. In business, mainly due

to the following reasons, open-source software are more popular. One is

Flexibility which is incensed in such a way that one can modify it

according to the suitability and the specific needs of the business. The

second is the reliability, since it will be having fewer bugs and it is more

reliable. The third factor is the cost. It is free of cost, but sometimes one

has to pay some money for the support. The fourth factor is longevity:

When the commercial product's company is out from the business

support cases then there will be no support. Instead, if open-source

Role of Community and Open Source Software a Case Study

 93

software are used there are so many communities that are always in the

forefront to help and support these products. The survey gives the

following results as in Fig. 4.4.

Figure.4.4 Factors Influencing the Business Industry

Community support for operating system like debian, Fedora are

more in use about 65% than Paid support OS like RedHat (35%). This

gives an idea regarding the importance and prominence of community

support. The software that are not paid, but based on community support

are universally accepted. The use of Open-source Software in the

Industry is very high due to cost effectiveness (65%), Technical

Supremacy (45%), Security & Networking (75%) and also they stay

ahead in the race too (15%). This reveals that the cost is minimum while

using open-source software. Security is also one of the prime reasons

why people are using it in the business. This whole section tells how

important is the open-source software either in terms of cost or

Chapter 4

 94

performance. Networking is the heart of business and with the help of

these, open-source software are at the top in terms of satisfaction.

4.5.3 Government

This community includes different educational institutions and the,

administrative departments of government of each country. Government

is one of the major ICT (Information and communications technology)

and software consumers worldwide. Government agencies wishing to

develop an understanding of the open-source software's potential, might

look no farther for information than a non-profit trade association. As in

the private sector, the types of open source software the government is

pursuing are becoming more sophisticated [Eugene Glynn, Brian

Fitzgerald et al 2005]. Now the Government of Malaysia proudly

reports an astonishing 97% adoption rate for open source software. The

Open Source Observatory and Repository for European public

administrations (OSOR.eu) supports and encourages the collaborative

development and re-use of publicly-financed free, libre and open source

software (FOSS) applications developments for use in European public

administrations. Governments too, have begun to take notice of this

phenomenon. Countries such as Brazil, China, Malaysia, South Africa,

and Viet Nam, are implementing nationwide policies or legislation

promoting FOSS. While the often-cited cost and stability benefits of

FOSS are attractive, governments often choose to promote FOSS in their

own countries for a variety of other reasons.

Role of Community and Open Source Software a Case Study

 95

Countries like Singapore have offered tax reductions to companies that

use the GNU/Linux operating system. The guaranteed cost-saving makes

FOSS systems more attractive. A consolidated survey of total FOSS usage

of the countries India, UK, US and Malaysia has been done (Dominik

Richter, Hangjung Zo, et. al. [2009], http://www.govtalk.gov.uk/policydocs,

www.egovos.org, Kenneth Wong [2004]). The information is not very

accurate since it was received from the websites of the countries and other

related reports. Fig.4.5 shows the overall report. The policy of each country

is discussed.

Figure 4.5 Factors influencing different Government to adopt FOSS

The department of Information Technology is developing,

supporting and promoting Open Source Software in India. Advantages like

increasing interoperability, reducing costs, achieving vendor independence,

enabling localization, reducing piracy/copyright infringements and

Chapter 4

 96

increasing growth of knowledge-based society are among the compelling

reasons for adopting FOSS in India. In many cases it has been observed

that FOSS is functionally and qualitatively equivalent to or even superior

than the proprietary products. The initiatives toward offering a low cost

computing, flexibility and choice to the end users include Bharat

Operating System Solutions (BOSS) desktop and server versions and

EduBOSS for schools. BOSS is a GNU/Linux based localized Operating

System distribution that supports 18 Indian languages. FOSS elective

courses are part of curriculum in several higher institutes of technical

learning.

The policies of the UK government to adopt FOSS are: the

government will consider FOSS solutions alongside proprietary ones in

IT procurements and contracts will be awarded on a value for money

basis. The Government will only use products for interoperability, seek

to avoid lock-in to proprietary IT products and services. Publicly funded

R&D projects which aim to produce software outputs shall specify a

proposed software exploitation route at the start of the project. At the

completion of the project, the software shall be exploited either

commercially or within an academic community or as FOSS.

The U.S. Government has the ability to promote and continue the

development of open source software through its purchasing policies.

Their policies include added reliability and security which FOSS

products provide, and the increased demand for these products would

encourage more corporations and independent programmers to embrace

Role of Community and Open Source Software a Case Study

 97

FOSS methods. The U.S. Postal Service, for example, uses a highly

modified version of Linux to read addresses on envelopes electronically.

Some other agencies use Linux for network administration tasks, as it is

considerably more affordable then the competing Windows Software.

Another action involves the vast pool of software created for internal

tasks within the government and the military. Collecting non classified

source code in a series of repositories for the purpose of allowing public

access would benefit both government and the public. Companies and

individuals will have access to the expertise of government and military

software engineers, obviating the need to solve software problems which

have already been solved. Additionally, if some individual or group

takes an interest in improving some piece of software in use in a

government agency, the agency will reap the benefit, at no cost to

taxpayers. An attacker can find security flaws in software with or

without the source code. Opening source code to the public, though it

may create short-term apprehensions, will result in more secure software

in the long run.

The Malaysian government is using 97% open source software

[http://www.mit.gov.in]. The report reveals that 703 of 724 agencies in

Malaysia have switched to FOSS. The Malaysian government is using

OpenOffice, MySQL, Apache web server and a Linux based distro. The

government produces regular guidelines and provides advisory services

to assist public sector agencies, when implementing FOSS. Policies in

general are discussed. FOSS Adoption should be based on the least

Chapter 4

 98

disruptive and fit for purpose implementation. FOSS procurement

should be based on merits, value for money, transparency, security and

interoperability, as well as in accordance with the Government

procurement policies and procedures. FOSS education should be

introduced through structured programs in school IT labs for primary,

secondary and tertiary education levels.

4.6 Analysis

 Free and open source software is gaining rapid growth after the

increased popularity and use of internet. This has formed a different

community of software developers all across the world. A measure of

success and failure of an OSS can be considered as activities on the

online community. Both government and business organizations have

some concerns about the quality of the software. In organizations having

problems with software defects, threats etc. Software defect management

is not very easy without the community support. We observed that

technically rich online forums are the corner stone of managing

software defects in OSS. The management of new defect right from the

identification, solution to fixing phases is communicated via online forum,

which may give rise to problems such as improper communication, and

others. A thorough analysis is needed in the design phase itself to

reduce the problems with OSS after development. Here we propose a

more efficient defect free model.

Role of Community and Open Source Software a Case Study

 99

4.7 Importance of Open Source Software.

The usage of open source software is much more advanced and

people are using it for the development of their own products. According

to Zhou and Davis [2005], the Information Technology (IT) community

is getting more used to applying open source solutions and in recent

surveys, the majority of companies are found to be using open source

software commonly as server operating system, web server and for web

development. Apache web server software and Linux operating system

are the most famous open source products, which have proven their

quality and reliability. Even though these two products proved the

success of open source products, people are still confused about using

open source software products. This hesitation is present in private

sector, government and business people as well. Ray[2004], former

oracle executive, stated that the lack of formal support and velocity of

change are the two common apprehensions. Hence, we can conclude

that these hesitations are all originated from the quality, reliability and

security levels of open source software and their evaluation. Further

before concluding the major findings of this case study are

• FOSS are mostly used in student community.

• FOSS are not only for the expert users but also for novice

users.

• Most of the users are satisfied with FOSS, as it is free from

bugs and having high security.

Chapter 4

 100

• There are so many communities that are always in forefront

to help and support FOSS products.

• The guaranteed cost saving makes FOSS system more

attractive.

4.8 Conclusions

A case study on the use of open source software among different

communities is discussed. Companies and governments have chosen

Free and Open Source Software due to lower costs, independence from

software manufactures, ability to modify etc. The survey shows that the

community is moving towards FOSS due to its simplicity and support.

Companies should re-evaluate FOSS when considering upgrades of their

software due to the fast paced IT landscape. Since the process model

followed by open source software is different from the closed source

models a thorough analysis is required by the project managers before

adopting the open source. Government and many IT firms are adopting

open source software for building their custom products, since it offers

independence and opportunities of innovation.

There are only a few studies on reliability aspects are carried out

compared to closed source software development. To assure the quality

of the developed product using open source scenario it is important to

consider reliability aspects of the development process. Hence our

problem was to conduct a study on reliability of open source software. It

is also noted that only limited studies are carried out to find out the

Role of Community and Open Source Software a Case Study

 101

reliability aspects of combined hardware and software components. So

we incorporated both of these factors and decided to develop a model

that incorporates both hardware and software components.

….. …..

Reliability of Open Source Software Projects

 103

CChhaapptteerr 55		

RReelliiaabbiilliittyy ooff OOppeenn SSoouurrccee
SSooffttwwaarree PPrroojjeeccttss

5.1 Introduction
5.2 Background
5.3 Data Collection and Analysis
5.4 Conclusion

5.1 Introduction

Evaluation of quality of open source projects is important and

there are no major method or metrics that are available. Currently, people

make judgments on open source products based on relatively arbitrary

criteria. There is a close relationship between the quality of a software

product and stabilization of the bugs raised from the software product.

Here, an attempt has been made to predict latent bugs in open source

projects using time series analysis. We collected information regarding

newly opened bugs of popular open source Packages. The trend of bug

arrival rate has been collected from the concerned web sites of these

projects and historical time series plot has been used to predict future

values. The results are compared with open source reliability growth

C
on

te
nt

s

Chapter 5

 104

models and a conclusion is made on the possible reliability growth

models for open source projects.

Open source is emerging as a potentially important competitive

force in the software industry, capturing the attention of venture

capitalists and computing industry executives. Open source development

is an area where people develop and distribute their products by

downloading free source code available under a license. Open source

software development has created an interest in the development circle.

They make use of this environment to create quality products. The open

source development environment is a different approach, where the main

functionality is developed by the initiator and then made available for

others to test, use and modify. Mistakes in the software are not

considered problematic, but are accepted. Since the source code is

distributed, every software engineer can change or extend the original

product. So, where proprietary software is developed in- house and then

released, open source software is under constant development because

anyone in the world can change the code (Victor and Corrado [2003]).

Software reliability is defined as the probability of failure-free software

operation for a specified period of time in a specified environment

(Michael [2007], Musa and Iannino [1981]). The reliability at any instant

in a software system depends on the faults that exist in the software and

the exposure of such faults through activation of the software via testing,

usage etc.

Reliability of Open Source Software Projects

 105

5.2 Background

Usually there are two approaches for predicting software

reliability. They are White-box and Black –box models. White-box

models measure the quality of the system based on the structure and

design of the product, where as in Black-box models the entire software

system is treated as a single entity, thus ignoring software structures and

component interdependencies (Cobra et. al[2009], Cheung [1980],

Gokhale et. al [1998], Wang et. al [1999], Yacoub et. al [2005]). These

models measure and predict software quality in the later phases of

software development. The model rely on the data collected over an

observed time period. Some examples of this type includes Yamada,

S-Shape, Littlewood-Verrall, Jelenski-Moranda, Musa-Okumotto and

Goel-Okumoto (Goel and Okumoto [1979], Littlewood and Verrall

[1974], Littlewood and Verrall [1973], Musa and Okumoto[1984],

Yamada et. al [1984]). Black-box reliability approach has been

concentrated upon, to measure and compare the reliability of the selected

OSS projects.

A fault or bug is a defect in the software that has the potential to

cause the software to fail. An error is a measured value or condition that

deviates from the correct state of software during operation. A failure is

the inability of the software product to deliver one of its services.

Therefore, a fault is the cause for an error, and software that has a bug

may not encounter an error that leads to a failure. Failure behavior can

be reflected in various ways such as Probability Density Function (PDF)

Chapter 5

 106

and Cumulative Distribution Function (CDF). PDF, denoted as f(t),

shows the relative concentration of data samples at different points of

measurement scale, such that the area under the graph is unity. CDF,

denoted as F(t), is another way to present the pattern of observed data

under study. CDF describes the probability distribution of the random

variable, T, i.e. the probability that the random variable T assumes a

value less than or equal to the specified value t. In other words,

)(')()()()()(tFtfxdxftTPtF
t

∫ ∞−
=⇒=≤=

Therefore, f(t) is the rate of change of F(t). If the random variable

T denotes the failure time, F(t), or unreliability, is the probability that the

system will fail by time t. Consequently, the reliability R(t) is the

probability that the system will not fail by time t (Pham [2000]), i.e.

)('1)()()()()(tFtRxdxftTPtF
t

t∫ −=⇒=>=

The reliability function of Weibull distribution is (Neubeck [2004])

β

⎟
⎠
⎞

⎜
⎝
⎛
∞

−=
tetR)(--- (5.1)

Weibull distribution is the most widely used distribution model. The 2-

parameter Weibull distribution is widely used due to its ability to

describe failure modes like initial,random and wear-out. Two special

Reliability of Open Source Software Projects

 107

forms of Weibull distribution are Rayleigh and exponential distribution

(Kan[2003], Lawless[2003]).

The 2-parameter Weibull distribution has a probability distribution

function of the form

() ()ββ λλλβ)(exp)()(1 tttf −= − --------------------------- (5.2)

Where t represents time; α = 1/λ represents the scale parameter of the

distribution and β represents the shape parameter of the distribution. The

Weibull probability density function is monotone decreasing if β <=1

and becomes bell shaped when β > 1. The larger the β value the steeper

the bell shape. Its special case Rayleigh distribution has β = 2, while

exponential distribution has β = 1. Fig. 5.1 shows the Weibull PDF for

several values of the shape parameter (Kan[2003]).

Figure 5.1 Weibull PDF for several shape values when α =1

Chapter 5

 108

In software quality engineering, large body of empirical data

supports the finding that software projects follow a life cycle pattern

described by Rayleigh curve. This is considered as a desirable pattern

since the bug arrival rate stabilizes at a very low level (Zhou and

Davis[2005]). In closed source software, the stabilizing behavior is

usually an indicator of ending test effort and releasing the software to the

field. The bug arrivals usually peak at the code inspection phase and get

rather stabilized in the system test phase (Kan[2003], Zhou and

Davis[2005]).

5.3 Data Collection and Analysis

Data were collected from sources like Debian.org, Bugzilla.org

and Apache.org. The collected data processed with simple JAVA

Codes. In the bug-analysis step, the frequency of bugs in a two week

periods is calculated. Therefore, the x-axis and y-axis represent the

biweekly time and the corresponding bug frequency, respectively. The

bug arrival frequency for six projects are plotted and shown in the

following Fig. 5.2.

Reliability of Open Source Software Projects

 109

Figure. 5.2 Bug Arrival Frequency for Six Projects

In all the above projects it is seen that the frequency of bug

arrival is slowly increasing and comes to a peak, then slowly decreasing

and further it comes to a stable state. Nonlinear regression procedure is

employed to model the data and to estimate the parameters.

Chapter 5

 110

Table 5.1 Estimated Parameters and R-square

Project Lambda Beta R-square
Project I 0.0008 0.585 0.785
Project II 0.001 1.550 0.228
Project III 0.002 0.695 0.287
Project IV 0.035 1.311 0.348
Project V 0.029 2.292 0.363
Project VI 0.027 1.699 0.279

The Table 5.1 lists the estimations of the shape and scale parameters

of the projects identified. Actual names of the projects were not revealed

to follow standard software engineering ethics (Emam [2001]). The R-

square value indicates good fit for some projects such as project 1, project

V, project IV and project III. The failure rate and the corresponding

predicted failure rate are indicated in the following Fig. 5.3 to 5.8. The

Weibull distribution is fitted to arrive at the predicted failure rate.

Reliability of Open Source Software Projects

 111

Figure 5.3 Failure Rate and Predicted – Project I

Figure. 5.4 Failure Rate and Predicted – Project II

Chapter 5

 112

Figure 5.5 Failure Rate and Predicted – Project III

Figure 5.6 Failure Rate and Predicted – Project IV

Reliability of Open Source Software Projects

 113

Figure 5.7 Failure Rate and Predicted – Project V

Figure 5.8 Failure Rate and Predicted – Project VI

Chapter 5

 114

It is observed that the bug frequencies for these projects appear to follow

a pattern that can be represented by the Weibull distribution function

with different β values. The projects I and III shows β values lesser than

1. This lower coefficient value indicates that the projects are in the initial

stage of development and more and more bugs are reported with in a

short span of time. Where as projects II, IV,V & VI show β values

higher than 1 and closer to 2. This is considered as a desirable pattern

since the bug arrival rate decreases exponentially and stabilizes as time

progress. From the literature we found that this pattern is supported by

large body of empirical studies and in software projects that follow a

life cycle pattern similar to Weibull distribution. This pattern is also

supported by Musa-Okumoto model in which possible bugs are

captured in the early stages of development. The rate of undetected bugs

are significantly less and is decreased exponentially. An implication of

this behaviour is that as the project evolves in time there are less

frequency of reports on bugs and probably it is difficult to detect and fix.

Further reliability of the projects can be calculated by inserting the

shape and scale parameters from Table 5.1 into the Weibull reliability

function in (5.1). Fig. 5.9 exhibits the reliability graphs for the five OSS

products. As shown Project II and Project III has the highest reliability

and the other projects show almost same decreasing reliabilities.

Reliability of Open Source Software Projects

 115

Figure. 5.9 Time VS Reliability for different projects

A comparison of reliabilities for different projects is carried out by

calculating reliabilities using theory, Musa model and Weibull

distribution for these six products. These are plotted as in Fig. 5.10 to

Fig. 5.15. It is obvious that the Weibull model is appropriate for

modeling open source products.

Figure 5.10 Time VS Reliability Project I

Chapter 5

 116

Figure 5.11 Time VS Reliability Project II

Figure 5.12 Time VS Reliability Project III

Reliability of Open Source Software Projects

 117

Figure 5.13 Time VS Reliability Project IV

Figure 5.14 Time VS Reliability Project V

Chapter 5

 118

Figure 5.15 Time VS Reliability Project VI

It is evident from the above figures that General Weibull distribution

is a possible way to define a reliability model. Estimations of shape

parameters from various open source projects are different indicating

that in contrast to closed source projects it is unlikely to find a special

case to model all open source projects. It might be a better way to model

individual open source projects separately, further time series analysis

would be appropriate for predicting latent bugs in individual open source

projects.

5.4 Conclusion

Bug tracking data was collected from a few popular open source

projects and the time related bug arrival was investigated. Bug arrivals

of most OSS projects will stabilize at a very low level and the stabilizing

Reliability of Open Source Software Projects

 119

point can be viewed as the mature point for adoption consideration. The

general Weibull distribution offers a possible way to establish the

reliability model.

….. …..

A Simplified Model for Evaluating Reliability of a Computing System

 121

CChhaapptteerr 66		

AA SSiimmpplliiffiieedd MMooddeell ffoorr EEvvaalluuaattiinngg
RReelliiaabbiilliittyy ooff aa CCoommppuuttiinngg SSyysstteemm

6.1 Introduction
6.2 Reliability Measures
6.2 Probability Density Function
6.3 An Algorithm for Estimating Software Reliability
6.4 Development of a Simplified Model
6.5 Conclusion

6.1 Introduction

Evaluation of Reliability of a computing system is important for

predicting possible system failures in the future. The probability of a

device giving satisfactory performance for a specified period under

specified operating conditions is the reliability. When a unit or system

does not perform satisfactorily, it is said to have failed. The first step in

reliability analysis is to understand the pattern of failure and this can be

obtained from life test results. That is, by testing a fairly large number of

models until failure occurs, and observing the failure rate characteristics

as a function of time. It is necessary for the analysis to link reliability

with experimental or field – failure data. These data will also provide a

C
on

te
nt

s

Chapter 6

 122

basis for formulating or constructing mathematically, a failure model for

general analysis. Further, a model is developed to estimate the reliability

of computing systems by incorporating software and hardware elements.

The main disadvantage with the existing models is that computational

system reliability analysis is purely focussed on software alone. No

attempt has been made to incorporate hardware reliability in

computational system reliability analysis. The present work brings out a

simplified model for computational system reliability evaluation by

incorporating hardware as well as software failures. A separate algorithm is

also developed for software reliability estimation.

6.2 Reliability Measures

The reliability definitions given in the literature vary among

different practitioners as well as researchers.

Mathematically, reliability R(t) is the probability that a system will

be successful in the interval from time 0 to time t:

0),()(≥>= ttTPtR -------------------------------------- (6.1)

where T is a random variable denoting the time-to-failure or failure time.

Unreliability F(t), a measure of failure, is defined as the probability that

the system will fail by time t:

0)()(1)(≥≤=−= tfortTPtRtF

A Simplified Model for Evaluating Reliability of a Computing System

 123

In other words, F(t) is the failure distribution function. If the time-to-

failure random variable T has a density function f(t), then

∫
∞

=
0

)()(dttftR

or, equivalently,

)]([)(tR
dt
dtf −=

The density function can be mathematically described in terms of T:

)(lim

0
ttTtP

t
Δ+≤<

→Δ

This can be interpreted as the probability that the failure time T

will occur between the operating time t and the next interval of

operation, t+ t.

If the time to failure is described by an exponential failure time

density function, then

0,01)(/ >≥= − φ
φ

φ tetf t

and this will lead to the reliability function

01)(/ ≥== −
−

∫ teetR t
dtt

t

φφ
α

φ

Chapter 6

 124

Thus, given a particular failure time density function, or failure time

distribution function, the reliability function can be obtained directly.

A system or a complex product is an assembly of a number of

parts or components. The components may be connected in series or in

parallel, or it may be a mixed system, where the components are

connected in series as well as in parallel. Reliability Block Diagrams

(RBD) were used to measure the system reliability by assigning failure

rates to each of the constituent components comprising the system

(Bream and Curator [1995]). Here, the same approach is extended to the

system which includes hardware and software components together.

If the components of an assembly are connected in series, the

failure of any component causes the failure of the assembly or system.

The following Fig. 6.1 shows a system consisting of n units which

are connected in series.

Figure 6.1 Reliability block diagram of a system having n components

connected in series(Xie et al.[2004]).

Let the successful operation of these individual units be

represented by nXXX ,,, 21 LLLL and their respective probabilities

by)(,),(),(21 nXPXPXP LLL . For the successful operation of the

system, it is necessary that all n units function satisfactorily. Hence, the

A Simplified Model for Evaluating Reliability of a Computing System

 125

probability of the simultaneous successful operation of all units

is).(21 nXandandandXXP LLLL . Therefore according to the

multiplication rule,

).()(21 nXandandandXXPtR LLLL=

)()()()()(121213121 −××××= nn andXandXXXPandXXXPXXPXPtR LLLLLL

In this expression,)(12 XXP represents the probability of the

successful operation of unit 2 under the condition that unit 1 operates

successfully. Similarly,)/(121 −nn XandandXXXP LLL represents the

probability of the successful operation of unit n under the condition that

all the remaining units 1,2,3,…………,n-1 are working successfully. If

the successful operation of each unit is independent of the successful

operation of the remaining units, then events nXXX ,,, 21 LLLL are

independent and the above equation becomes

)()()()(21 nXPXPXPtR LLLLL=

That is, nRRRRtR LLLL321)(= ,

where nRRRR LLLL321 are component reliabilities.

Several systems exist in which successful operation depends on the

satisfactory functioning of any one of their n sub-systems or elements.

They are said to be connected in parallel. The following Fig. 6.2 shows a

system consisting of n units which are connected in parallel.

Chapter 6

 126

Figure 6.2 Reliability block diagram of a system having n components

connected in parallel(Xie et al.[2004]).

Let nXXX ,,, 21 LLLL represent the successful operation of

units 1,2,……….,n respectively. Similarly, let nXXX ,,, 21 LLLL

represent the unsuccessful operation. If)(1XP is the probability of

successful operation of unit 1, then)(1XP is the probability of its

failure. Further,)(1)(11 XPXP −=

For the complete failure of the system, all n units have to fail

simultaneously. If F(t) is the probability of failure of the system, then

).()(21 nXandandXandXPtF LLLL=

)()()()()(121213121 −××××= nn XandXandXXPXandXXPXXPXPtF LLLLLL

A Simplified Model for Evaluating Reliability of a Computing System

 127

In this expression,)/(213 XandXXP represents the probability of

failure of unit 3 under the condition that units 1 and 2 have failed. The

other terms can also be interpreted in the same manner. If the unit

failures are independent of each other, then

)(1)()()()(21 tRXPXPXPtF n −== LLLLL

()() ()() ()(){ }nXPXPXPtR −−−−=∴ 11(11)(21 LLL

That is, ())1()1(11)(21 nRRRtR −−−−= LLL

where nRRRR LLLL321 are component reliabilities

If a system is having a mixed configuration, then it will have

components connected in parallel as well as in series.

Typical approaches to achieve higher system reliability are:

(1) increasing the reliability of system components and

(2) using redundant components in various subsystems in the

system (Kuo and Prasad [2000] , Hsieh et. al. [1998]).

In the reliability literature, these methods are commonly posed as

reliability optimization problems. Depending on the choice of decision

variables, creating redundancy (adding parallel units), increasing

component’s reliability or both, the reliability optimization problem can be

formulated as a redundancy allocation, a reliability allocation or a mixed

optimal problem, respectively. Information on different formulations and

solution procedures are presented by Kuo et. al. [2001].

Chapter 6

 128

6.3 Probability Density Function

Failure density is the ratio of the number of failures during a given

unit interval of time to the total number of items at the very beginning of

the test (also called as initial population).

Reliability is the ratio of survivors at any given time to the total

initial population. As time tends to infinity reliability tends to zero and

in terms of failure density function this can be expressed

Figure 6.3 Probability Density Function

with reference to the above Fig. 6.3 as , ∫ =
T

d df
0

1)(ξξ -------------(6.2)

(where ξ is a dummy variable)

That is, the probability that a specimen will fail at time t = ⋅∞ is 1

(that is, a certainty).

A Simplified Model for Evaluating Reliability of a Computing System

 129

In probability theory the function fd (ξ) dξ is known as probability

density function.

Reliability in terms of failure density and failure rate can be

expressed as

() ()∫−=+++−=
t

dddd dfffftR
t

0

11)(
21

ξξLLL -----(6.3)

Failure rate can be defined as the ratio of number of failures during

a particular unit time interval to the average population during that

interval. Failure density in terms of failure rate and reliability can be

expressed as

)()()(tRtZtf d = --(6.4)

Reliability of an individual component in terms of failure rate can

be expressed as

∫−

=
t

dttZ
etR 0

)(
)(--(6.5)

For a component with a constant failure rate equation (6.5) reduces to

tetR λ−=)(---(6.6)

The constant failure rate model is widely used in the literature to

reduce the computational burden of the resulting problem [Goel et al,

2002] because the parameter MTBF [Shouri , Sreejith 2008], which is

Chapter 6

 130

the average time between failures, obtained from equation 6.7 becomes

time-independent in this case.

λ
λ 1)(

00

=== ∫∫
∞

−
∞

dtedttRMTBF t --------------------------(6.7)

6.4 An Algorithm for Estimating Software Reliability

An attempt is made to develop a systematic procedure for

evaluating the reliability of open source software based computing

system by considering the prevailing trends in industry. The

methodology involves defining an equation for the pattern of failure

based on the available bug arrival rate and developing a generalized

model for the reliability of the software. A flowchart for the procedure is

as shown in Fig. 6.4.

A Simplified Model for Evaluating Reliability of a Computing System

 131

Figure 6.4 Flowchart for the systematic procedure

Chapter 6

 132

The following are the assumptions involved in the analysis (Isitan

et. al.[2011], Crowston and Scozzi [2002]).

1) The software analyzed is open source.

2) As the open source software is made up of a very large

community the environmental changes are not considered.

3) The total number of packages at the beginning of the analysis is

assumed to remain constant and is taken as the initial population.

4) The failures of various packages are assumed to be

independent of each other.

5) The model is developed for evaluation of the software

reliability at the developmental stage and the packages that

fail during this period are not further considered. It is further

assumed that by the end of developmental stage the bug

associated with the failed packages would be eliminated and

will be stable further.

6) The reliability of the software is inversely proportional to the

number of bugs reported at any point of time.

7) The beginning of the time period after which the bug arrival

or failure rate remains constant marks the culmination of the

developmental stage and the software will stabilize.

Based on the above assumptions a 6- step algorithm is developed

for the analysis as detailed below.

A Simplified Model for Evaluating Reliability of a Computing System

 133

Table 6.1 Algorithm for estimating software reliability

Algorithm. Reliability analysis

Input: Total Initial Population

Output: Expression for Reliability

 Initialize the total population, P

 Define a time interval T<t1, t2>

 for each time interval Ti

 Obtain the bugs { }21 , ttbi ∈

Calculate Total failure ∑
=

=
n

i
if bT

1

Cumulative failure

{ } ()∑
=

≤=≤=
n

k
kkf txItxknumberC

1
22|

where I is the indicator function and nxx ,.........1 are
observed data

Survivor
i

ffi CTS −= where Tntoi ∈= ''1

Failure rate (){ }if

i
r SCAvg

b
F

i
=

End

Obtain the equation of relation between failure rate and time using

regression analysis

Obtain the expression of reliability of the software using
∫−

=
t

dttZ
etR 0

)(
)(

Chapter 6

 134

The algorithm shown above in Table (6.1) is explained as follows

1) Identify the total initial population. This corresponds to the

total number of packages existing at the beginning of the

time period. That is, at the start of analysis.

2) Define a time period and find out the bugs reported during

this time interval. As the failure would have occurred

anywhere between the time interval, the reported failures are

indicated in between the time interval.

3) Calculate the cumulative failures and thereby the survivors at

different points in time.

4) Estimate the failure rate associated with the time intervals by

dividing the number of failures associated with the given

unit time interval by average population associated with the

time interval. Average population associated with a given

time interval is the average of survivors at the beginning and

end of the time period.

5) Obtain the equation of relation between failure rate and time

using regression analysis.

6) Obtain the expression for reliability of the software by

substituting the equation of failure rate in equation 6.5 given as

∫−=
t dttz

etR 0)(
)(--- (6.8)

A Simplified Model for Evaluating Reliability of a Computing System

 135

6.5 Development of a Simplified Model

The reliability estimation involves considering the computing

system as two subsystems, one comprising of hardware components and

the other the various software modules or packages. These various

packages can be considered as various components of the software part

of the system [http://www.debian.org]. These two subsystems are then

considered to be connected in series as shown in Fig.6.4.

Figure 6.5. Reliability block diagram for the computing system

Considering the entire Reliability Block Diagram (RBD) of the

combined system, the reliability of the computing system at time t can

be stated as

snsshnhh RRRRRRtR)(2121=

So, combining the failure rates of both hardware and software the

computational system reliability at time t can be expressed as:

softwarehardware RRtR ×=)(---------------------------------- (6.9)

where, =hardwareR Hardware reliability at time t

=softwareR Software reliability at time t

Chapter 6

 136

Further, if the hardware system components are assumed to have a

constant failure rate, the reliability of the hardware part can be expressed as:

t

hardware

n

i iheR
∑

= =

−
1
λ

 -- (6.10)

where,
nhhh λλλ KKKK

21
, represents the failure rate of different

hardware components involved in the system.

Equation 6.10 assumes that all the hardware components are

essential for the success of the system and as such these components are

connected in series in the RBD.

Similarly for software the reliability of the software part can be

expressed as

t

software

n

i iseR
∑

= =

−
1
λ

 --(6.11)

where snss λλλ ...,
21

 represents the failure rate of individual software

components involved in the system.

The developed model can be further simplified if the software

reliability calculations are based on the Musa model, which assumes a

constant failure rate. In this case both hardware and software failure

rates are taken to be constant and the computational reliability can be

expressed as

A Simplified Model for Evaluating Reliability of a Computing System

 137

=)(tR
t

n

i ihe
∑
=

−
1
λ

×
∑
=

−
n

i iS
t

e 1
λ

 -------------------------------- (6.12)

where, hλ represents the failure rate of different hardware components

involved in the system and is further expanded as

λ h= λ h1 +λ h2+ ………….. λ hn

where
nhhh λλλ KKKK

21
, represent individual hardware components.

Similarly snsss λλλλ +++= ...21

where

11
..., 2 snss λλλ represents the failure rate of individual software

components.

Now total failure rate of the system is λ hardware + λ software

Ie.

tsnsshmhhetR)......(2121)(λλλλλλ +++++++−=

tswhweie)(λλ +∑−=

Where represents the failure rate of hardware components and

represents failure rate of software components. The λ represents

components failure rate which in turn is a function of parameters like the

measured failure rate of the component (f), the fraction of time spend in

the component (t), utilization of CPU by the component (u), and the

relative speed of the hardware platform (s). This justifies the fact that

Chapter 6

 138

reliability of a computing system depends on both hardware and

software components.

The model presented here assume that the components have a

constant failure rate. Also the individual components are connected

serially. Though the actual relationship among the components in the

system are not obvious, the simplified model considers a serial

relationship. This could be further investigated, considering the actual

relationship among the components. The presented model is to be

evaluated against the failure data obtained from various open source

software projects. The details are presented in the next chapter.

6.6 Conclusion

The importance of considering both software and hardware

together in computational system reliability calculations has been

brought out, and a Simplified Model has been developed. The software

reliability calculations were based on the developed algorithm whereas

the hardware reliability values are obtained using the constant hazard

model. The developed algorithm for software reliability estimation can

be used as a tool for analysis in open source software development as the

necessary input data for the model like bug arrival rate are readily

available.

….. …..

The Evaluation and Comparison of the Developed Model

 139

CChhaapptteerr 77		

TThhee EEvvaalluuaattiioonn aanndd CCoommppaarriissoonn ooff tthhee
DDeevveellooppeedd MMooddeell

7.1 Introduction
7.2 Application of Simplified Model
7,3 Application of Simplified Model in a Real Time

Situation
7.4 Conclusions

7.1 Introduction

Computation of reliability by integrating software and hardware

has got high significance because in any industrial situation these two

components should be considered together. The developed simplified

model assumes greater importance in this context. The application of the

model in industrial situations and subsequent analysis is presented in this

section.

7.2 Application of Simplified Model.

A computing system is comprised of two systems in the form of

hardware and software. The software part is considered to operate in

open source environment. The hardware part of the system is made up of

the following components as given in Table 7.1. The respective mean

time between failures is also indicated.

C
on

te
nt

s

Chapter -7

 140

Table 7.1 Hardware Component Failures

Sl.No. Components MTBF(months)
1 H1 36
2 H2 40
3 H3 35
4 H4 42
5 H5 60
6 H6 24
7 H7 29
8 H8 36

Software reliability is a function of different software packages

that are involved in the given system. These various packages are

considered as different modules and thus can be considered as various

components of the software part of the system. The software component

failures are shown in the Table 7.2.

Table 7.2. Software Component Failures

Sl.No. Modules Initial
MTBF(months)

After Development
MTBF(months)

1 M1 18 0
2 M2 18 72
3 M3 16 0
4 M4 18 72
5 M5 17 60
6 M6 16 0
7 M7 13 65
8 M8 14 0
9 M9 18 0

10 M10 17 72
11 M11 16 0
12 M12 15 72

The Evaluation and Comparison of the Developed Model

 141

The failure rate of the software during the developmental stage is

very high and this is evident from the Fig. 7.1 This means that if the

software is used without further modification or development, the

reliability values will come down drastically and the software will be

impracticable for use, and this demands further development.

Figure 7.1 Software Reliability Calculated with the Developmental

Values of MTBF.

However, after the developmental stage the failure rate comes

down drastically and considering that the developmental period is

negligibly small in comparison with the life of the system, in order to

arrive at the software reliability, the MTBF is based on the failures after

the developmental stage. If the reliability calculations are based on the

MTBF by considering the failures only after the developmental stage,

then the reliability values will be very high and this is evident from the

Fig. 7.2.

Chapter -7

 142

Figure 7.2 Reliability Comparison.

The variation of hardware reliability with time, is also indicated in

Fig.7.2. The values of computing system reliability evaluated by

considering both hardware and software reliabilities will lie below these

two reliability values. This is also evident from Fig. 7.2.

A measure of the error involved in the calculations of reliabilities

if the computational reliability calculations are purely based on software

part alone, is given in Fig.7.3.

-350

-300

-250

-200

-150

-100

-50

0
0 0.5 1 2 3 4 5 6

Time (months)

%
 E

rro
r

Figure 7.3 Error Involved in Reliability Estimation.

The Evaluation and Comparison of the Developed Model

 143

It is evident that if the computational reliability is calculated by

considering software and hardware components together, then the total

reliability will be much lower than when it is calculated using software

alone. The magnitude of error increases with time as the chances of

hardware failure is very high with the passage of time.

7.3 Application of Simplified Model in a Real Time Situation

The open source software data is made use of and the methodology

for evaluating the software reliability involves identifying a fixed

number of packages at the start of the time and defining the failure rate

based on the failure data for these preset number of packages. The

defined function of the failure rate is used to arrive at the software

reliability model. The hardware reliability is obtained using constant

hazard model.

A total of 1880 packages were available at the start of the analysis

as per the details available from the official website of Debain. This is

taken as the initial population. A time interval of 1 month is fixed and

the bug arrival rate during this interval is noted. The reported errors at

different time intervals are given in the Table 7.2. The observations are

taken for 1 year after which, the bug arrival is negligible indicating that

the software has more or less stabilized.

Chapter -7

 144

Table 7.3 Software Failure Data Analysis

Time No. of
Failures

Cumulative
Failures Survivors Failure Rate

(per month)
Feb-08 0 1880

 25 0.013386881
Mar-08 25 1855

 61 0.033433817
April-08 86 1794

 340 0.209350606
May-08 426 1454

 49 0.034277719
June-08 475 1405

 55 0.039927405
Jul-08 530 1350

 214 0.172164119
Aug-08 744 1136

 136 0.127340824
Sept-08 880 1000

 37 0.037697402
Oct-08 917 963

 40 0.042417815
Nov-08 957 923

 48 0.048929664
Dec-08 1005 875

Average 0.075893525

The Evaluation and Comparison of the Developed Model

 145

Figure 7.4 Software Failure Rate

The variation of software failure rate with respect to time is shown

in Fig. 7.4. It can be seen that after the 8th month onwards the software

has somewhat stabilized indicating the completion of developmental

phase. The failure model corresponding to the failure rate can be

expressed as:

battZ +−=)(-- (7.1)

Where a=0.0004 and b = 0.078.

The corresponding reliability can be expressed as:

dtt

Software

t

eR
)078.00004.0(

0
∫ +−−

=

t

t

e
078.0

2
0004.0 2

−
= -------------------------- (7.2)

Chapter -7

 146

Table 7.4 Hardware Component Failure Rate

Hardware Component No. Failure Rate (per month)
H1 0.027778
H2 0.025
H3 0.028571
H4 0.02381
H5 0.016667
H6 0.041667
H7 0.034483
H8 0.027778

The failure rate of the hardware components are indicated in Table 7.4.

The values of the hardware failure rate can be substituted in equation 7.2 to

get the hardware reliability equation and can be expressed as:

t

hardware

n

i iheR
∑

= =

−
1

λ

te 225753.0−= ------------------------------- (7.3)

Thus, the reliability of the computing system R(t) at any given

time will be the product of equations 7.2 and 7.3 and can be expressed

as:

ttt

eetR 225753.0078.0
2

0004.0 2

)(−−
×=

tt

e
303753.0

2
0004.0 2

−
= ------------------------------ (7.4)

The Evaluation and Comparison of the Developed Model

 147

Figure 7.5. Variation of Reliability with Time

Fig. 7.5 shows the variation of reliability with respect to time when

software and hardware are considered independently also the combined

reliability using the developed simplified model.

Figure 7.6. Error Involved in Computational Reliability Calculations

Chapter -7

 148

Fig 7.6 shows the error involved in computational reliability

calculations when hardware or software components alone are

considered. It is evident that the error involved is quite significant and

thus necessitates the incorporation of both these elements.

The reliability of the software at different points in time is calculated

using the equation (7.2). The actual values of reliability obtained by

dividing the survivors at the given point in time by the initial population are

also calculated. The Musa model assumes a constant value for the failure

rate and by considering this as the average value of failure rates the

reliability values are calculated using the equation

tetR λ−=)(-- (7.5)

 The reliability values for Weibull distribution is calculated
using the equation

R(t) =e−(t /α)β --- (7.6)

The reliability values calculated using the four different methods

and the failure density values are shown in Table (7.5).

The Evaluation and Comparison of the Developed Model

 149

Table 7.5. Reliability and Failure Density

Time Failure
Density

Reliability
(Actual)

Reliability
(Musa)

Reliability
(Weibull)

Reliability
(Model)

08- Feb 1.00000 1.00000 1.00000 1.00000
 0.013297872

08- Mar 0.98670 0.85985 0.98144 0.92515
 0.032446809

08- April 0.95426 0.73934 0.92263 0.85624
 0.180851064

08- May 0.77340 0.63572 0.82780 0.79279
 0.02606383

08- June 0.74734 0.54662 0.70739 0.73433
 0.029255319

08- Jul 0.71809 0.47001 0.57487 0.68045
 0.113829787

08- Aug 0.60426 0.40414 0.44377 0.63078
 0.072340426

08- Sept 0.53191 0.34750 0.32507 0.58497
 0.019680851

08- Oct 0.51223 0.29879 0.22577 0.54270
 0.021276596

08- Nov 0.49096 0.25692 0.14856 0.50369
 0.025531915

08- Dec 0.46543 0.22091 0.09256 0.46767

Fig.7.7 shows a comparison of reliability obtained using the

Developed, Simplified model, and Weibull and Musa model with the

actual reliability values. It can be seen that the simplified model shows a

better result comparing to other models. Further, these two models very

closely approximate the real situation.

Chapter -7

 150

Figure 7.7. Comparison of Reliability Obtained Using Different Models

The variation of failure density with time is also shown in Fig.7.8.

It can be seen that the failure density increases in the initial stage and

comes to a peak value, then decreases again increases and finally comes

to a stable state at the end.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

1 2 3 4 5 6 7 8 9 10

Time (months)

Fa
ilu

re
 d

en
si

ty

Figure 7.8 Variation of Failure Density with Time

The Evaluation and Comparison of the Developed Model

 151

Fig 7.9 compares the reliability value obtained using the model

with the theoretical value. It can be seen that the percentage error is

always within 10% of the actual value which is a reasonably a good

result for all engineering problems.

-15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10

Time (months)

%
 E

rro
r

Figure 7.9. Error Analysis

7.4 Conclusions

A new method for estimation of reliability of computational

systems was developed. The methodology is far more realistic in

comparison with the traditional methods which focuses either on

hardware or software alone, rather than integrating these elements. The

concept is very much in accordance with the systems approach. The

developed method could prove to be a very effective tool for reliability

analysis of computational systems. An error analysis was also conducted

and it can be seen that if the hardware and software components are not

integrated in reliability analysis the calculated values will be an over

estimated one. That is, the calculated values would be much higher than

Chapter -7

 152

the actual reliability values. A comparison of reliability obtained using

the developed model, Weibull and Musa model with the actual reliability

values are also shown.

….. …..

Research Findings and Conclusions

 153

CChhaapptteerr 88		

RReesseeaarrcchh FFiinnddiinnggss aanndd CCoonncclluussiioonnss

8.1 Introduction
8.2 Research Findings and Outcome
8.3 Research Contributions
8.4 Limitations and Further Scope
8.5 Conclusions

8.1 Introduction

The major objective of the research was to develop an integrated

model for estimation of computational system reliability by combining both

hardware and software. The hardware system reliability was evaluated

using a Constant Hazard Model and the software reliability was obtained

using the Musa Model, Weibull Model as well as the developed model.

The research findings emphasize the importance of incorporating both

hardware and software in computational reliability calculations.

8.2 Research Findings and Outcome

The major findings of the research work are listed below:

An exhaustive survey of existing reliability growth models for

software, hardware and open source software were carried out and a

taxonomy of reliability models were presented.

C
on

te
nt

s

Chapter -8

 154

A frame work for early prediction of software reliability consisting

all phases of software process was proposed.

A case study conducted revealed the trend towards adoption of

open source by various organizations including government. The study

also brought out the importance of thorough analysis and evaluation of

the product before the adoption.

Reliability analysis of a handful number of open source

software projects were carried out. An attempt made to fit a reliability

model for these selected projects, reveal Weibull distribution as a

candidate.

The importance of development of an integrated model for

prediction of overall reliability of a software system was brought out. An

algorithm for software reliability calculation is presented and a new

model incorporating hardware reliability is proposed.

The proposed model was validated with real data and the

usefulness was demonstrated comparing the model with existing

reliability models. An error analysis was also carried out to prove the

effectiveness of the integrated approach..

8.3 Research Contributions

The contribution of this thesis is twofold. First a comprehensive

study on reliability of FOSS and an investigation on incorporating

reliability in each stages of software development life cycle has been

carried out. This aspect is important since the development model

Research Findings and Conclusions

 155

followed by FOSS and closed source software are entirely different.

Secondly the proposed model helps to enable industry to zero-in

appropriate FOSS products. The details of contributions towards

researchers and practitioners community are discussed below.

8.3.1 Contributions towards Practitioners

Software companies build quality products by following key

practice areas proposed by models like capability maturity model

(CMMI). These models are not directly useful in the case of open source

domain. The thesis throws light into how to fuse quality in an open

source project, by proposing reliability measures in each stage of the

software process model. The proposed model is helpful to the

practitioners to judge the suitability of open source software in terms of

reliability and adaptability, before the integration with the existing

environment.

8.3.2 Contributions towards Researchers

A reliability model for a computational system by integrating

hardware and software component reliability is developed and there is

no such model found in literature. The developed model is validated

with experimental data pertaining to OSS. We have also compared the

model with existing ones and suggest this model for reliability

computation of OSS. Most of the work from the thesis were published in

international and national journals and international and national

conferences.

Chapter -8

 156

8.4 Limitations and Further Scope

The present study is an attempt to develop an integrated model for

assessing reliability of software system. The study focused on data

available from open source software and related hardware failure. The

work considered data obtained from major open source software projects

for the analysis and development of the model. This could be further

improved if data from more projects were available but many of the

projects were stopped and abandoned, and collection of data was

difficult. It was also difficult to obtain data pertaining to hardware

failures.

The evaluation of the developed model was done against two well

known models. More models could have been included in the study but

well accepted models were not available.

Even though many projects are available in the open source

software domain successful projects were limited in number. The

developed model could be further toned to its perfection if more and

more data from successful projects can be incorporated.

An automated tool for reliability analysis of open source software

projects does not exist. This can be developed as a further work.

8.5 Conclusion

The importance of considering the software and hardware together

in computational reliability calculations is the theme of thesis. A

simplified model incorporating both these elements was developed and

Research Findings and Conclusions

 157

applied in real time situations. The impact of neglecting any one of these

elements, that is hardware or software, is brought out, and more importantly,

the error involved will be enormously high when the hardware part is not

considered. The developed model can prove to be a very useful tool in

reliability analysis of computing systems.

….. …..

References

 161

[1]. A. Mockus, T.R. Fielding, and J.D. Herbsleb, “Two case studies of
open source software development: Apache and Mozilla”, ACM
Transactions on Software Engineering and Methodology, vol. 11,
no. 3, July 2002, pp. 309-346.

[2]. A.L. Goel and K. Okumoto, “A time-dependent error-detection
rate model for software reliability and other performance
measure”, IEEE Transactions on Reliability, vol. R-28, 1979,
pp. 206-211.

[3]. Alan M. Davis. Great Software Debates (October 8, 2004), pp:125-
128 Wiley-IEEE Computer Society Press.

[4]. Allen Nikora and Michael Lyu, “Software Reliability and Risk
Management: Techniques and Tools”, tutorial presented at
the 1999 International Symposium on Software Reliability
Engineering.

[5]. Allen Nikora, John Munson, “Determining Fault Insertion Rates For
Evolving Software Systems”, proceedings of the International
Symposium on Software Reliability Engineering, Paderborn,
Germany, November, 1998.

[6]. Amitabha Yadav and R.A. Khan “Reliability Estimation Framework-
Complexity perspective“ ICAITA, SAI, SEAS, CDKP, CMCA, CS &
IT 08, pp. 97–104, 2012. © CS & IT-CSCP 2012.

References

 162

[7]. Amrit L and Goel. Software reliability Models: Assumptions,
Limitations, and Applicability. Transactions on Software Engineering,
Vol. 2, No. 12, pp 1411-1423, 1985 IEEE.

[8]. Ashis Arora, V.S. Arunachalam, Jai Asundi, Ronald Fernandes “The
Indian Software Industry”.

[9]. B. Bream, Curator, “Reliability Block diagrams and Reliability
Modeling” , Office of Safety and Mission Assurance, NASA Lewis
Research centre, may 1995.

[10]. B. Littlewood and J.L. Verrall, “A bayesian reliability growth model
for computer software”, Applied Statistics, vol. 22, 1973, pp. 332-346.

[11]. B. Littlewood and J.L. Verrall, “A bayesian reliability model with a
stochastically monotone failure rate”, IEEE Transactions on
Reliability, vol. R-23, June 1974, pp. 108-114.

[12]. Bain, I. J. (1974) Analysis of linear failure rate life testing
distribution. Technometrics 16:551-60

[13]. Bajaj . A(2000) A study of senior IS managers decision model in
adopting new computing architecture, JAIS, vol. 1, Paper4, pp 1-58.

[14]. Boyd M A and Monahan C M. Developing Integrated Hardware -
Software reliability Models: Difficulties and Issues. Digital Avionics
Systems Conference, pp 193-198, 1995 IEEE.

[15]. Bugzilla, http://www.bugzilla.org.

[16]. Capiluppi A and Michlmayr M 2007, in IFIP International
Federation for Information Processing, volume 234, Open source
development , Adoption and innovation,eds. J Feller, Fitzgerald, B,
Scacchi, W, Sillitti, A(Boston Springer) pp 31-44.

[17]. Carolyn A. Kenwood A business case study of open source software
2001 The MITRE Corporation.

References

 163

[18]. Charles EE. Reliability and maintainability engineering.1st ed. New
Delhi: Tata McGraw-Hill Publishing Company Ltd; 2000.

[19]. Charles Jobson “J2EE Design in UML using RUP and Agile
Software Development”Callista Enterprise Developer's Conference
29 Jan 2003.

[20]. Chau.P and Tam.K(1997) Factors affecting the adoption of open
systems:an exploratory study, MIS quarterly, Vol.21.No.1.
pp. 1-24.

[21]. Clark T., P. Sammut & J. Willans, “Applied Metamodelling: A
Foundation for Language Driven Development”, Second Edition,
Ceteva 2008.

[22]. Cleland D.L & King W.R: System Analysis and Project Management,
Mcgraw Hill.1992.

[23]. Cobra Rahmani, Harvey Siy and Azadmanesh “An Experimental
Analysis of Open Source Software Reliability”

 http://www.cse.buffalo.edu/srds2009.

[24]. Cooper. R and Zmud, R.(1986) Information Technology implementation:
a technological diffusion approach, Management Science, vol 36,
no.2,pp156-172.

[25]. Coutinho J. de S, “Software Reliability Growth ,”IEEE Symposium
on Computer Software Reliability, 1973.

[26]. Debra .s and David .E.” Software Reliability Cases: The Bridge
between hardware, software and system safety and reliability”
proceedings Annual Reliability and Maintainability symposium,
1999.

[27]. Dhillon, B. S. (1981) Life distributions. IEEE Transactions on
Reliability R30:457-9.

References

 164

[28]. Dominik Richter, Hangjung Zo, Michael Maruschke, “A comparative
analysis of open source software usage in germany, brazil, and
india”, 2009 fortth International conference on computer science
and convergence Information Technology, 2009 IEEE, pp 1403-
1410.

[29]. DRM Associates (2002). "New Product Development Glossary".
http://www.npd-solutions.com/glossary.html. Retrieved 2006-10-29.

[30]. Dzumbu M. Edge Analyst at AEL Mining Services 2008.

[31]. E.S. Raymond, “The cathedral and the bazaar: musings on linux
and open source by an accidental revolutionary, 2nd Ed.,
O’Reilly, 2001.

[32]. Edelstein, K. L. (1998) Mathematical models in biology. Random
House, New York.

[33]. El-Emam. Ethics and Open source. Empirical Software Engineering
4, 6 (2001), 291-292

[34]. Eugene Glynn, Brian Fitzgerald and Chris Exton, “Commercial
adoption of Open Source Software: An Emperical Study”, 2005
IEEE.

[35]. Eveland, J and Tornatzky.L(1990) The deployment of technology, in
Tornatzky, L and Fleischer, M(eds) The process of technological
innovation, Lexington Books.

[36]. Federic P, Brooks J. R Chap. 17. "'No Silver Bullet' Refired". The
Mythical Man Month (Anniversary Edition with four new chapters
ed.) (Addison-Wesley). ISBN 0-201-83595-9, (1995).

[37]. France R. B. and B. Rumpe, “Model-driven development of
complex software: A research roadmap,” in FOSE 07: 2007 Future
of Software Engineering, Washington, DC, USA:IEEE Computer
Scociety, 2007, pp. 37-54.

References

 165

[38]. Franz Brosch, Heiko Koziolek “Architecture-Based Reliability
Prediction with the Palladio Component Model” IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38,
NO. 6, NOVEMBER/DECEMBER 2012.

[39]. Gacek, C. and Arief, B., The many meanings of open source, IEEE
Software, Vol. 21, No. 1, pp. 34-40, 2004.

[40]. Gaver, D. P. and M. Acar. (1979) Analytical hazard representation for
use in reliability, mortality and simulation studies. Communications in
Statistics-Simulation and Computation B8 (2):91-111.

[41]. Goel .A.L, “Software reliability models: Assumptions,limitations,
and applicability”, IEEE Trans. Software Engineering,vol SE-11,
num 12, 1985, pp 1411 - 1423.

[42]. Goel A.L. and K.Okumoto, “Time-Dependent Error-Detection Rate
Model for software and other performance measures,” IEEE Trans.
Reliability, vol. 28, pp. 206-211, 1979.

[43]. Goel HD, Grievink J, Herder PM, Weijnen MPC. Integrating
reliability optimization into chemical process synthesis. J Reliability
Engineering and System Safety 2002; 78:247–258.

[44]. Goseva-Popstojanova K. et al. Architectural Level Risk Analysis
using UML, IEEE Transactions on Software Engineering,Vol.29,
No.10, October 2003.

[45]. Greenfield J. , K. Short. S.Cook. and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley, Indianapolis, 2004.

[46]. H. Pham, Software Reliability. Springer-Verlag, 2000.

[47]. H.S. Kan, Metrics and Models in Software Quality Engineering,
2ndEd., Addison-Wesley, 2003.

References

 166

[48]. Haupt, E. and H. Schabe. (1992) A new model for life time
distribution with bathtub shaped failure rate. Microelectronics
Reliability 32(5):633-9.

[49]. Hijroth, U. (1980) A reliability distribution with increasing, decreasing,
constant and bath-tub shaped failure rates. Technometrics 22(1):99-
107.

[50]. Hoang Pham, Xuemei Zhang, “A Software Cost Model with
Warranty and Risk Costs,”IEEE Transactions on Computers, vol.
48, No.1, January 1999.

[51]. Hossain S.A and R.C.Dhahiya, “Estimating the parameters of a
Non-Homogeneous Poisson Process Model for software Reliability
Model for Software Reliability,” IEEE Trans. Reliability, vol.42, pp.
604-612, 1993.

[52]. Hsieh, Y.C., T. C. Chen and D. L. Bricker. (1998) Genetic algorithm
for reliability design problems. Microelectronics Reliability
38:1599–605.

[53]. http://www.coverity.com

[54]. http://www.debian.org.

[55]. http://www.gnu.org/philosophy/philosophy.html

[56]. http://www.govtalk.gov.uk/policydocs

[57]. http://www.mit.gov.in

[58]. http://www.oscc.org.my/content/view/227/139/

[59]. http://www.pcguide.com/care/bu/risksHardware-c.html

[60]. http://xface.itc.it.

[61]. http:/www.opensource.org/docs/definition.php

References

 167

[62]. Huang C.Y, M. R. Lyu and S. Y. Kuo "A unified scheme of some
non-homogenous Poisson process models for software reliability
estimation" IEEE Trans. Softw. Engineering, vol. 29, no. 3,
pp. 261-269, 2003

[63]. I. Koren and C.M. Krishna, Fault-Tolerant Systems, Morgan
Kaufmann, 2007.

[64]. IAN SOMMERVILLE, Software Engineering. Pearson Education
publishing, 2003.

[65]. IEEE Reliability Society, “IEEE recommended practice on software
reliability”, IEEE Std 1633-2008, June 2008.

[66]. IEEE Std 1413-2010, IEEE Standard Framework for Reliability
Prediction of Hardware.

[67]. IEEE/AIAA P163/DRAFT 14, Reccommended Practice on Software
Reliability[2007].

[68]. “IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard
Dictionary of Measures to Produce Reliable Software”, 1998

[69]. J.D. Musa and A. Iannino. Software reliability modelling-
accounting for program size variation due to integration or design
changes. Proceedings of the 1981 ACM workshop/symposium on
Measurement and evaluation of software quality, 1981.
pp 129-130

[70]. J.D. Musa and K. Okumoto, “A logarithmic poisson execution time
model for software reliability measurement”, 7th Int’l Conference
on Software Engineering (ICSE), 1984, pp. 230-238.

[71]. J.De.S Coutinho, “Software reliability growth”. IEEE Symposium
on Computer Software Reliability, 1973, pp. 58-64.

References

 168

[72]. Jagadeesh Nandigam, Venkat N Gudivada and Abdelwahab
Hamaou-Lhadj, “Learning Software Engineering Principles using
Open Source Software”, Proceedings of the 38th ASEE/IEEE
Frontiers in Education Conference,2008.

[73]. Jaisingh, L. R., W. J. Kolarik and D. K. Dey. (1987) A flexible
bathtub hazard model for non-repairable systems with uncensored
data. Microelectronics reliability 27(1): 87-103.

[74]. Jean Dolbec and Terry Shepard 1995, “a component based software
reliability model”.

[75]. Jeff Norris Mission- critical Development with Open Source
Software: Lessons lerned. IEE software.

[76]. Jelinski Z. and P. Moranda, Software reliability research”, In
Statistical Computer performance evaluation , W. Frieberger, Ed.,
New York: Academic, 1972, pp. 465-484.

[77]. Joe Palma, Jeff Tian and Peng L u. Collecting Data for Software
Reliability Analysis and Modeling. Proceedings of the 1993
conference of the Centre for Advanced Studies on Collaborative
research: software engineering, Vol1, 1993, pp 483-494

[78]. Joseph p, james .a “ A frame work for the measurement of software
quality” proceedings of the software quality assurance work shop
on functional and performance issues, p 133-139, 1978.

[79]. K. Neubeck, Practical Reliability Analysis, Prentice Hall, 2004.

[80]. K.S. Wang, F.S. Hsu and P.P. Liu “Modeling the bathtub shape
hazard rate function in terms of reliability”, Reliability Engineering
& System Safety Volume 75, Issue 3, March 2002, Pages 397–406.

[81]. Kalpana Yadav ,Eshna Jain, Jaspreet Bhatia “ Comparative Study of
Open Source Software Reliability Assessment Models”,2011 IEEE..

References

 169

[82]. Kan H.S, Mmetrics and Models in software Quality Engineering, 2nd
Ed. Addison-Wesley, 2003.

[83]. Kan H.S. Metrics and models in software quality engineering, 2nd
edition, Addison-Wesley (2003)

[84]. Kemal Isitan, Timo Nummenmaa and Elini Berky. Openness as a
method for game evolution, 5 pages. To appear in proceedings of the
IADIS Inter National Conference in Game and Entertainment
Technologies 2011.

[85]. Kenneth Wong, “Free/Open Source Software: Government Policy”,
International open source network, Asia-Pacific Development
Information Programme, e-Primers on Free/Open Source Software ,
2004.

[86]. Kevin Crowston and Barbara Scozzi. Exploring the strengths and
limits of open source software engineering processes: A research
agenda. Second Workshop on open Source Software Engineering,
Orlando, Florida. May 25, 2002.

[87]. Kevin Lewis “Eight reasons why software implementation projects
fail” www.powerandgasmarketing.com • Spring 2003.

[88]. Kumar D, Klefsjo B, Kumar U. Reliability analysis of power-
transmission cables of electric loaders using a proportional-hazard
model. J Reliability engineering & system safety 1992; 37:217–22.

[89]. Kuo, W. and V. R. Prasad. (2000) An annotated overview of system-
reliability optimization. IEEE Transactions on Reliability 49(2): 176–87.

[90]. Kuo, W., V. R. Prasad, F.A. Tillman and C. Hwang. (2001) Optimal
reliability design. Cambridge University Press, Cambridge.

[91]. Lakey, Peter and Neufelder, Ann Marie, "System and Software
Reliability Assurance Notebook," Rome Laboratory Report, Griffiss Air
Force Base, Rome NY, 1997. http://www.cs.colostate.edu/~cs530/rh/

References

 170

[92]. Laprie and Karama Kanoun, LAAS-CNRS, Toulouse, France,
“Software Reliability and System Reliability”.

[93]. Laprie, J-C and Kanoun, K, “X-Ware Reliability and availability
modeling”, IEEE Transactions on Software Engineering vol.18,
no.2,February 1992, pp,134-139.

[94]. Lawless J.F. Statistical Models and Methods for Lifetime Data, 2nd
edition, New York: Wiley (2003)

[95]. Lawless, J. F. (1982) Statistical models and methods for life time
data. Wiley, New York.

[96]. Leblanc S. P. , P.A.Roman, “Reliability Estimation of Hierarchical
Software Systems.”, 2002 Proceedings annual reliability and
maintainability symposium.

[97]. Leslie Cheung, Roshanak Roshandel, Nenad Medvidovic, Leana
Golubchik “,Early Prediction of Software Component Reliability”
ICSE’ 08, May 10 - 18, 2008, Leipzig, Germany.Copyright 2008
ACM 978-1-60558-079-1/08/05...$5.00.

[98]. Leung Y.W., “Optimal Software Release Time with a given Cost
Budget,” J. Systems and Software, vol. 17. Pp. 23-242, 1992.

[99]. Li M. and C.Smidts,’ A Ranking of Software Engineering Measures
based on Expert Opinion,” IEEE Transactions on Software
Engineering, vol. 29,pp, 811-24, 2003.

[100]. Li M., Y.Wei, D.Desovski, H.Nejad, S.Ghose, B Cukic, C. Smidts.,
“Validation of a methodology for Assessing Software Reliability”
proceedings of the 15th international symposium on Software
reliability Engineering (ISSRE ’04)1071-9458/04.

[101]. Littlewood B. and J.L. Verrall, A Bayesian Reliability Growth
Model for Computer Software, J. Royal Statist. Soc., C (Applied
Statistics), Vol. 2, pp 332-346, 1973.

References

 171

[102]. Lloyed D. K. and M. Lipow. 1977. Reliability: management, methods,
and mathematics, 2nd ed. Redondo Beach, CANSWER: published by
the authors.

[103]. Luyin Zhao and Sebastian Elbaum A Survey On Quality Related
Activities in Open Source; Software Engineering Notes Vol 25 no 3:
54-57 May 2000.

[104]. Lyu M.R “Design, Testing, and Evaluation Techniques for Software
Reliability Engineering”1998.

[105]. Lyu M.R (ed.), Handbook of Software Reliability Engineering,
McGraw-Hill and IEEE Computer Society Press, New York, 1996.

[106]. M.L. Shooman, “Probabilistic models for software reliability
prediction”, in Statistical Computer Performance Evaluation, W.
Freidberger, Ed., New York: Academic Press, 1972, pp. 485-502.

[107]. Mark Sondheim Open Source Geospatial Software. The Jump-
Project, March 2004.

[108]. MartinMichlmayr, FrancisHunt, DavidProbert Quality Practices and
Problems in Free Software Projects, Proceedings of the First
International Conference on Open Source Systems Genova, pp 24-28,
July 2005

[109]. Michael R Lyu Software Reliability Engineering: A Roadmap,
Future of Software engineering (FOSE 07) May 2007 IEEE.

[110]. Michael R. Lyu, Handbook of Software Reliability Engineering.
McGraw-Hill publishing, 1995.

[111]. Mike. H. “Data Management and Systems Operations at Net Edge
Solutions” 2008

[112]. Ming-Wei Wu, Ying Dar – Lin, Open Source Software Development:
An Overview. Computer, 34(6) 33 - 38, June 2001.

References

 172

[113]. Moranda P.B, “Software Reliability Predictions” Proceedings of the
Sixth Triennia World Congress of the International Federation of
Automatic Control, 1975, pp 342-347.

[114]. Moranda.P.L. and Jelinski. Z.,Final Report on Software Reliability
Study, McDonnell Douglas Astronautics Company, MADC Report
Number 63921,1972.

[115]. Musa J. D. 2005 “software reliability engineering” tata McGraw –
Hill Edition 2005.

[116]. Musa J.D “Meassurement and Management of Software Reliability”
proceedings of the IEEE, VOL. 68, NO. 9, September 1980.

[117]. Musa J.D, A. Iannino, K. Okumoto, Software Reliability,1987;
McGraw-Hill.

[118]. Musa J.D. and K. Okumoto, A Logarithamic Execution time model for
software reliability measurement, Proc. 7th International conference on
Software Engg., Orlando, Florida, march 26-29, pp 230-238, 1984.

[119]. Musa J.D. and A. Iannino and K. Okumoto, Software Reliability,
Measurement, Prediction, Application, McGraw-Hill, 1987.

[120]. Musa J.D. and Okumoto K. “A Logarithamic Poisson Execution
Time Model for Software Relibility Meassurement,”Proceedings
Seventh International Conference on Software Engineering,
Orlando, Florida,1983, PP.230-238.

[121]. Musa J.D., “A Theory of Software Reliability and Its Applications”,
September 1975, IEEE Transactions on Software Engineering,
Volume: SE-1, No: 3, pp.312-327

[122]. Musa. J. D. and A. Iannino. Software reliability modelling-
accounting for program size variation due to integration or design
changes. Proceedings of the 1981 ACM workshop/symposium on
Measurement and evaluation of software quality, 1981. pp 129-130

References

 173

[123]. Myron Hecht, Karen Owens, Joanne Tagami “Reliability-Related
Requirements in Software-Intensive Systems” 2007 IEEE.

[124]. Nahid golafshani(2003) ‘Understanding reliability and validity in
qualitative research’ the qualitative report voleume 8 number 4 december
2003 597-607. http://www.nova.edu/sss/QR/QR8-4/golafshani.pdf.

[125]. Norman Schneidewind,’Tutorial on Hardware and Software
Reliability, Maintainability, and Availability” 2008,IEEE.

[126]. Octavio B. Management Consultant in Business Analytics &
Optimization at IBM 2008

[127]. Ohba M., “Software Reliability Analysis Models,” IBM J. Research
and Development, vol 28, pp. 428-443, 1984.

[128]. Open Source Software development – Wikipedia, the free
encyclopedia-. en.wikipedia.org.

[129]. Pankaj Jalote, and Rajib Ghosh, “An Approach for Cost Effectiveness
Analysis of Multiversion Software Using Software Reliability Models”
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.3640.,2011

[130]. Patrick DTO. Practical reliability engineering, 4th ed. England: John
Wiley & Sons Ltd; 2002.

[131]. Pekka Aho, Janne Merilinna, Eila Ovaska, “Model-Driven Open
Source Software Development”, 2009 Fourth International
Conference on Software engineering Advances, 2009IEEE.

[132]. Pham H "Software reliability and cost models: perspectives,
comparison and practice" European J. of Operational Research, vol.
149, pp. 475-489, 2003

[133]. Pham H, “Software Reliability Assessment: Imperfect Debugging
and Multiple Failure Types in Software Development,”EG&G-
RAAM-10737, Idaho Nat’1 Eng. Laboratory,1993.

References

 174

[134]. Pham H. “System Software Reliability” http://www.springer.com, ,
XIV,440 p.63 illus., Hardcover ISBN, 2007.

[135]. Popstajanova K. and K. Trivedi "Architecture based approach to
reliability assessment of software systems" Performance Evaluation,
vol. 45, no. 2, 2001

[136]. R Project, http://www.r-project.org/.

[137]. R.C. Cheung, “A user-oriented software reliability model”, IEEE
Transactions on Software Engineering, vol. 6, no. 2, March 1980, pp.
118-125.

[138]. Report of FOSS usage in the US Department of Defence, prepared
by MITRE Corporation: www.egovos.org/ awmedia_repository/
588347ad_c97c_48b9_a63d_821cb0e8422d?/document.pdf

[139]. Reussner R. et al. Reliability prediction for component-based
software architectures, J. Systems and Software, 66(3), 2003.

[140]. Richard unkle, Ray Venkataraman. Quality & reliability corner
relationship between Weibull and AMSAA models in reliability
analysis a case study. International Journal of Quality & Reliability
Management, vol.19, pp. 986-997, 2002.

[141]. ROGER S PRESSMAN,Software Engineering. McGraw-Hill
publishing, 2007.

[142]. Rosenberg L., T. Hammer, J. Shaw, “Software Metrics and
Reliability”, 1998. http://satc.gsfc.nasa.gov/support/ISSRE_NOV98/
software_metrics_and_reliabil ity.html.

[143]. S. Yacoub, B. Cukic and H.H. Ammar, “A software-based reliability
analysis approach for component-based software”, IEEE Transactions
on Reliability, vol. 53, no. 4, Dec 2004.

References

 175

[144]. S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth
modeling for software error detection”, IEEE Transactions on
Reliability, Vol. R-32, 1983, pp. 475-478.

[145]. S.S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Reliability simulation of
component-based software systems”, Proceedings of 9th Int’l
Symposium on Software Reliability Engineering, 1998.

[146]. Schabe Hendrik. (1994) Constructing lifetime distributions with
bathtub shaped 87 failure rate from DFR distributions.
Microelectronics and Reliability. 34(9):1501-8.

[147]. Scott Christley and Greg Madey “Analysis of Activity in the Open
Source Software Development Community” Proceedings of the 40th
Hawaii International Conference on System Sciences-2007 IEEE.

[148]. Sergio Bittanti, An Introduction to Software Reliability Modeling,
Lecture notes in Computer Science,341, Sergio Bittanti(ED.),
Springer-Verlag, 1988.

[149]. Sharma, K. Garg, R. Nagpal, C.K. Garg, R.K. “Selection of Optimal
Software Reliability Growth Models Using a Distance Based
Approach” Reliability, IEEE Transactions on, Issue Date: June
2010.

[150]. Shiyi Xu. “An Accurate Model of Software Reliability’ 13th IEEE
International Symposium on Pacific Rim Dependable Computing,
2007 IEEE.

[151]. Shooman M.L “Structural Models for Software reliability Prediction,”
Proceedings of the 2nd International Conference on Software
Engineering, IEEE, Computer Society, New York, October 1976.

[152]. Shooman M.L 1986. Probabilistic reality: an engineering approach.
1968. New York: McGraw- Hill. Updated and reprinted, Kreger,
Malabar, FL. 1986.

References

 176

[153]. Shooman M.L, “Probablistic Methods For Software Reliability
Prediction”, Statistical Computer Performance Evaluation, Academic
Press, New York, June 1972, pp 485-502.

[154]. Shooman M.L,”Operational Testing and Software Reliability
Estimation During Program Developments,” Record of 1973 IEEE
Symposium on Computer Software Reliability, IEEE Computer
Society, New York, 1973, pp. 51-57.

[155]. Shooman M.L. “Spectre of Software Reliability and its Exorcism,”
Proceedings of the 1977 Joint Automatic Control Conference ,
IEEE, New York, 1977, pp-225-231.

[156]. Shooman, M. I. (1968) Probabilistic reliability: an engineering
approach. McGraw Hill, New York.

[157]. Shouri P.V,P.S. Sreejith Algoritham for break even availability
allocation in process system modification using deterministic
valuation model incorporating reliability jan 2008 ELSVIER
ScienceDirect.

[158]. Smidts C., R. W. Stoddard and M. Stutzke "Software reliability
models: An approach to early reliability prediction" IEEE Trans.
Reliability, vol. 47, no. 3, pp. 268-278, 1998

[159]. Smidts C , B.Li, and Z.Li, “Software Reliability Models, “ in
Encyclopedia of Software Engineering, vol . 2, J.J. Marciniak,
Ed.,2nd ed. New York: John Wiley & sons inc.,2002,pp. 1594-1610.

[160]. Smidts C and M.Li, “Software Engineering Measures for
Predicting Software Reliability in Safety Critical Digital Systems,
“University of Maryland, Washington D.C.NUREG/GR-0019,
November 2000.

[161]. Smith, R. M. and Bain I. J. (1975) An exponential power life-testing
distribution. Communications In Statistics 4(5): 469-81.

References

 177

[162]. Smrithy V. , Rekha, V.Adinarayanan,Anurag Maherchandani,Sneha
Aswani, “Bridging the Computer Science Skill Gap with Free and
Open Source Software” International Conference on Engineering
Education (ICEED 2009),Kuala Lumpur, Malaysia,2009 IEEE.

[163]. SourceForge, http://sourceforge.net.

[164]. Srinath LS. Reliability engineering. 3rd ed. New Delhi:Affiliated
East West Press;1991.

[165]. Subash Bhatnagar “India’s Software Industry”, Technology,
Adaptation, and Exports: How Some Developing Countries Got
It Right, Vandana Chandra(Ed.),World Bank, 2006,Pp, 95-124.

[166]. T.R. Moss, The Reliability Data Handbook, ASME Press, 2005.

[167]. Thomas, W. C. (1973) Modeling the bathtub curve. Proceedings of
the AnnualReliability and Maintainability Symposium.

[168]. Victor van Reijswound and Corrado Topi Open Source Software in
Africa,2003

[169]. Vinay Tiwari and R.K. Pandey,” Open Source Software and
Reliability Metrics”, International Journal of Advanced Research in
Computer and Communication Engineering Vol. 1, Issue 10,
December 2012.

[170]. Vladimir Zelijkovic, Nela Radovanovic and Dragomir llic
“Software Reliability Models and Parameter Estimation” Scientific
technical review, 2011,vol.61.no.2, pp. 57-60.

[171]. Voas,J., Payne,J.: Dependability certification of Software Components,
Journal of Systems and Software 2000, 52(2-3) pp.165-172.

[172]. W.L. Wang, Y. Wu and M.H. Chen, “An architecture-based software
reliability model”, Proceedings of Pacific Rim Int’l Symposium on
Dependable Computing, 1999.

References

 178

[173]. Wang K. S., F. S. Hsu and P. P. Liu. (2002) Modeling the bathtub
shape hazard 90 rate function in terms of reliability. Reliability
Engineering and System Safety 75:397-406.

[174]. Wang, K. S., E. H. Wan and W. C. Yang. (1993) A preliminary
investigation of new mechanical product development based on
reliability theory. Reliability Engineering and System Safety 40: 187-94.

[175]. Wang, K. S., S. T. Chang and Y. C. Shen. (1996) Dynamic
reliability models for fatigue crack growth problem. Engineering
Fracture Mechanics 54(4): 543-56.

[176]. www.agilemodeling.com.

[177]. www.epsma.org.

[178]. www.osalt.com

[179]. Xie, M. and C. D. Lai. (1996) Reliability analysis using an additive
Weibull model with bathtub shaped failure rate function. Reliability
Engineering and System Safety 52: 87-93.

[180]. Xie.M, Kim-Legng Poh, Yuan-Shun Dai, Computing systems
Reliability: Models and Analysis, Hingham, MA,Usa: Kluwer
Academic Publishers.pp. 71 – 113. 2004.

[181]. Y. Zhou and J. Davis, “Open source software reliability model: an
empirical approach”, Proceedings of the 5th Workshop on Open
Source Software Engineering, May 2005, pp. 1-6.

[182]. Yamada S. and S.Osaki, “Software Reliability Growth Modeling:
Models and Applications,” IEEE Trans. Software Eng., vol. 11,
pp.1,431-1,437,1985.

[183]. Ying Zhou and Joseph Davis Open source software reliability
model: an empirical approach, Fifth workshop on Open Source
Software Engineering (5-WOSSE) May 2005, USA.

References

 179

[184]. Yoshinobu Tamura and Shigeru Yamada, Comparison of Software
Reliability Assessment Methods for Open Source Software and
Reliability Assessment Tool, Journal of Computer Science vol 2 (6):
pp 489-495, 2006.

[185]. Z. Jelinski and P.B. Moranda,”Software reliability research”, in
Statistical Computer Performance Evaluation, W. Freiberger, Ed.,
New York: Academic Press, 1972, pp. 465-484.

[186]. Zuzana “A brief survey of reliability growth models”,
www.urel.feec.vutbr.cz/.../459.pdf

….. …..

Appendices

 181

DEVELOPMENT ENVIRONMENT

A.1 Introduction

The main development process is a collection of failure data and

its processing for software as well as hardware. The data for software

were collected from the open source sites like debian.org, bugzilla.org,

and for hardware, failure data were collected from the production system

of CUSAT , where Debian based server systems are used to run their

website, mail server etc. Failure data were collected systematically

whenever a system failure had occurred. The collected data were

processed to get the required clean set of data for the study.

A.2 Bug Collection

The bug reports was collected mainly from online open source

development site Debian.org. Debian is a free software consultant and

offers free help through mailing lists. Debian GNU /Linux is a free

operating system that comprises of 25000 packages, precompiled in a

nice format. Debian GNU/Linux is developed through a distributed

development all around the world. The Debian GNU/Linux distribution

has a bug tracking system which consists of bugs reported by users and

developers. Each bug is given a unique number as id. The bug status

report initially contains the count of the total bugs, the number bugs that

Appendices

 182

have a patch, the number that are fixed and waiting to upload, the

number that are being ignored, the number concerning the stable release

and the number concerning the next release. Then the status is displayed.

Then the actual bug report, which contains the package name, maintainer

name, package id and the reported bug is displayed.

A.3 Bug Processing

Data preprocessing is an important step to refine the collected data.

Generally the real world data is incomplete. Usually the collected data

are incomplete: lacking attribute values, lacking certain attributes of

interest, or containing only aggregate data or may be Noisy: Containing

errors or outliers or can be inconsistent: Containing discrepancies in

codes or names. Data preprocessing includes data cleaning, data

integration, data transformation, data reduction and data discretization.

Data cleaning usually includes fill in missing values, smooth noisy

data, identify or remove outliers, and resolve inconsistencies. where as

data integration is carried out by using multiple databases, data cubes,

or files. Data transformation is the normalization and aggregation

process. Data reduction is reducing the volume but producing the same

or similar analytical results. And Data discretization is part of data

reduction by replacing numerical attributes with nominal ones. The

collected bug is processed to get the required output.

The main tools used for bug processing are Web harvest (for Data

Extraction), Apache (Web server), PHP and Mysql

Appendices

 183

A.4 Web Harvest

Web-Harvest is an Open Source Web Data Extraction tool written in

Java. It offers a way to collect desired Web pages and extract useful data

from them. Web-Harvest mainly focuses on HTML/XML based web sites.

Every Web site and every Web page is composed, using some logic.

It is therefore needed to describe the reverse process - how to fetch desired

data from the mixed content. Every extraction procedure in Web-Harvest is

user-defined through XML-based configuration files. Each configuration

file describes sequence of processors executing some common task in order

to accomplish the final goal. Processors execute in the form of pipeline.

Thus, the output of one processor execution is input to another one. This

can be best explained using the simple configuration fragment:

<xpath expression="//a[@shape='rect']/@href">

 <html-to-xml>

 <http url="http://www.somesite.com/"/>

 </html-to-xml>

</xpath>

When Web-Harvest executes this part of configuration, the following

steps occur:

1) http processor downloads content from the specified URL.

2) html-to-xml processor cleans up that HTML producing

XHTML content.

Appendices

 184

3) xpath processor searches specific links in XHTML from

previous step giving URL sequence as a result.

The bug reports extracted from Debian are initially in XML

format. A Java program is developed to gather the relevant data from the

XML format for further data filtering and analysis.

A.5 Bug Tracking

The Debian GNU/Linux distribution has a bug tracking system

which consist of bugs reported by users and developers. Each bug is

given a unique number as id.

In the bug stastus report the tags used are P: pending, +: patch, H:

help, M: moreinfo, R: unreproducible, S: stable, U: upstream and I:

lenny-ignore or squeeze-ignore. The second set of tags indicate what

releases a bug applies to: O for oldstable (sarge), S for stable (lenny), T

for testing (squeeze), U for unstable (sid) or E for experimental.

A.6 Conclusion

This chapter details the process of data collection and the

processing of the data. The tools used are web harvest, Appache, PHP

and Mysql.

Appendices

 185

FREE/OPEN SOURCE PARTICIPANT SATISFACTION SURVEY

This survey has been designed to gather data to investigate factors

influencing participants' satisfaction with free/open source software. It

consists of 30 questions, asking about one’s background, one’s attitudes

to free/open source software in general, and one’s experience and

satisfaction with one library or information management free/open

source software project. It should take a person between 15 and 20

minutes to complete the survey.

Please answer all questions that apply to your current situation. If a

question does not apply to you, please leave it blank, or choose 'N/A'.

In this research, free/open source software is defined as software

that is issued under a license that guarantees access to source code, and

ensures that users have:

1) The freedom to run the software, for any purpose;

2) The freedom to read the source code to see how it works,

and to modify it to suit local conditions;

3) The freedom to redistribute copies; and

4) The freedom to improve it, and redistribute the improved

version.

Appendices

 186

No data that identifies you individually is being collected, and the

results of the research will not be related to specific projects, apart from

indicating how many people responded to each project. The data will be

used for a PhD thesis, which will be deposited in the university library

and made available online in its institutional repository. The results may

also be presented at conferences, or published as articles in academic or

professional journals. Only aggregate data will be presented in the thesis

and any publication resulting from this research, and any quote taken

from comments will not be attributed.

The software used for this survey was issued under a free/open

source license, in keeping with the topic of the research. The data that is

provided will be stored securely in password-protected files for up to 2

years, and then it will be destroyed.

If you have questions about this survey, please contact

shelbi@cusat.ac.in 09446221045

Section 1: Background and Education

1. How old are you?

20 or younger 21-25 26-30 31-35
36-40 41-45 46-50 51-55 56-60
61 or older

2. What is your gender?

 Female Male

Appendices

 187

3. What is your highest educational qualification?
 None

Secondary or high school graduate
Postsecondary certificate or diploma
Undergraduate degree
Postgraduate certificate or diploma
Master's degree
PhD

4. What country do you live in?

5. How long have you been using a computer, either at work or at home?
< 5 years
5-10 years
11-15 years
16-20 years
21-25 years
26-30 years
More than 30 years

6. Please rate your level of knowledge and skills in the following areas:

Minimal | some | moderate | much | extensive
Knowledge and use of hardware
Knowledge and use of operating systems
Knowledge and use of one or more programming languages
Knowledge and use of library or information management
application software
Ability to provide system designers with information required to
develop library or information management application software
Ability to define library or information management application
software requirements
Ability to assess library or information management application
software features

Appendices

 188

Section 2: Attitude to Free/Open Source Software

7. Before starting this survey, how familiar were you with the idea of
free/open source software?
Not at all familiar
Slightly familiar
Somewhat familiar
Quite familiar
Very familiar

8. To what extent do you use free/open source software:

not at all | very little | sometimes| often| as much as possible | don't know
On computers provided by your employer
On computers you own

9. What operating system do you use on computers provided by your
employer?

10. When choosing a new application software package for use at
work, to what extent do you give preference to free/open source
alternatives?

It makes no difference to me
Other people make the decision for me
I prefer to use proprietary software with vendor support
I will consider a free/open source option, and choose it if it meets
my needs best
I give preference to free/open source software whenever possible
I only use free/open source software
Other (please specify)

11. What operating system do you use on computers you own?

Appendices

 189

12. When choosing a new application software package for use on
computers you own, to what extent do you give preference to
free/open source alternatives?

It makes no difference to me
Other people make the decision for me
I prefer to use proprietary software with vendor support
I will consider a free/open source option, and choose it if it meets
my needs best
I give preference to free/open source software whenever possible
I only use free/open source software
Other (please specify)

Section 3: Experience and Satisfaction with one Library or Information
Management Free/Open Source Project

In this section of the survey, please answer based on one library or

information management free/open source source software project you

use or are involved with in some other way. Some library-related

examples are DSpace, EPrints, Koha, Evergreen, Greenstone, and

MyLibrary. More general information management software includes

web content management software such as Drupal, wiki software such as

MediaWiki or PmWiki, or blogging software such as WordPress.

If you are involved with more than one project, please choose the one

that you have used or contributed to most recently.

13. What is the name of the project? There are too many to list here, so
please specify the one on which you will base your subsequent
responses.

Appendices

 190

14. How long have you been using or contributing to this project?

Less than 6 months
Between 6 months and one year
1 to 2 years
2 to 4 years
4 to 6 years
6 to 8 years
More than 8 years

15. How would you describe your current role in this project?
Examples of roles include user, developer, maintainer, trainer,
release manager, etc. If you have more than one role, please choose
the one that takes up most of your time.

16. What other roles have you held in this project, if any?

17. This survey is concerned with two aspects of a free/open source
software project: roles that relate to a specific implementation used
in one or more institutions, and roles that relate to the wider
project/developer community or the version of the software
available for anyone to download. You may be involved in one or
both of these aspects. Please indicate:

None | less than 5 hours | 5-10 hours | 11-20 hours | 21-30 hours |
more than 30 hours

In the last 6 months, how many hours per week have you spent in a
role relating to a specific implementation, on average?

In the last 6 months, how many hours per week have you spent in a
role relating to the wider project/developer community or the
version of the software available for anyone to download, on an
average?

Appendices

 191

18. What proportion of your time working on this project, either locally or
on the wider project, has been part of your paid employment?
None
Less than 20%
Between 20% and 50%
Between 50% and 80%
Between 80% and 100%

19. Which of the following activities have you carried out with this
software/project?

Please tick all that apply
Installed the software
Upgraded the software to a more recent release
Studied the source code to see how it works
Used the software
Distributed the software to others
Joined the project's email discussion list/forum
Asked a question on the project's email discussion list/forum
Answered a question on the project's email discussion list/forum
Promoted the project by talking about it to others, for example at a
conference
Promoted the project by writing about it for publication
Provided resources to support the project, such as hosting an email
discussion list, forum, or wiki
Organised an event relating to the project, such as a meeting or
conference
Wrote documentation to help others use the software
Customised the software to meet local needs, either yourself, or by
having a developer do so
Reported a bug to the system developers
Requested an enhancement from the system developers
Contributed local changes back to the project
Fixed one or more bugs
Evaluated existing software functionality
Written software to add new features

Appendices

 192

20. Have you used or contributed to this project in any other ways?
Please specify.

21. Which of the following best describes how any training you have
received affects your use of the software:

 n/a | not at all | very little | somewhat | considerably | extensively

Training provided by outside organisations
In-house training
Self-study using tutorials or online help
Self-study using manuals or other documents

22. Please briefly describe any other training you have received that
affects your use of the software:

23. Please indicate your general level of satisfaction with the following
characteristics of the software:

 N/A | not at all | satisfied | slightly satisfied | somewhat satisfied |
quite satisfied | completely satisfied

Reliability (i.e doesn't freeze, crash, or lose data)
Functionality
Free from bugs
Easy to use
Easy to learn
Documentation
Easy to install
Easy to configure to meet local needs
Release frequency
Easy to add new features
Helpfulness of community
Security and access control

Appendices

 193

24. Please rate your experience in the following categories, relative to
your perception of other people involved in the project:

Considerably less than most | Slightly less than most | About the same
as most | Slightly more than most| Significantly more than most

Experience using this type of software
Experience using this particular software package
Experience using computers in general
Experience as a member of a software development project

25. Please indicate your agreement with each of the following
statements about the project's developers:

Strongly disagree | Disagree | Neutral | Agree | Strongly agree n/a

The project's developers are sensitive to others' needs
The project's developers typically get right to the point when
communicating with others
The project's developers pay attention to what other people say
The project's developers deal effectively with others
The project's developers are easy to understand
The project's developers generally say the right thing at the right
time
The project's developers are easy to communicate with
The project's developers respond to messages quickly
The project's developers express ideas clearly

26. Please indicate your agreement with the following statements
about the project's culture:

 Strongly disagree | Disagree | Neutral | Agree | Strongly agree

I feel encouraged to contribute to this project
Anyone is encouraged to contribute to this project
Only a few people are allowed to contribute to this project

Appendices

 194

I find other people's contributions to this project valuable.
Other people find my contributions to this project valuable.
Information about the future development plans for this project is
easy to find
The future development plans for this project are clear
The project has infrequent, formal releases of new versions of the
software
The project has frequent releases of incremental versions with bug
fixes and small enhancements

27. How much influence have you had on the software features/
functionality, in your institution's local version?

None
Very little
A moderate influence
Much influence
Very much influence

28. How much influence have you had on the software features/
functionality, in the version that is available for downloading by
others?

None

Very little

A moderate influence

Much influence

Very much influence

Appendices

 195

29. Please indicate your agreement with each of the following
statements about the software:

 Strongly disagree | Disagree | Neutral Agree | Strongly agree

In comparison with other software I work with, this software has
complex requirements

This software has a complex design

When working with this software, I have clear, planned goals and
objectives for the tasks I am carrying out

When working with this software, I know what I am responsible
for

When working with this software, I know exactly what other
people expect of me

30. Are there any other comments you would like to make about your
use of this software package, your involvement in the project, or
reasons for your satisfaction or dissatisfaction? For example, how
does it compare to other projects you are involved with?

Thank you for spending your valuable time to fill it up and send to me.

Thank you once again

Shelbi Joseph, division of Information Technology , School of Engineering, Cochin

University of Science and Technology, Kochi.

….. …..

List of Publications

 159

Papers in International journals.

[1] Shelbi Joseph, Shouri P.V. AND Jagathyraj V. P, “A Model for
Reliability Estimation of Software based Systems by Integrating
Hardware and Software”, IJCA Special Issue on “Computational
Science - New Dimensions & Perspectives” NCCSE, 2011.

[2] Shelbi Joseph, Shouri P.V. AND Jagathyraj V. P, “A Simplified
Model for Evaluating Software Reliability at the Developmental
Stage”, International Journal Software Engineering (IJSE), Volume
(1): Issue (5). 2011.

Papers in National journals.
[1] Shelbi Joseph, Shouri P.V. AND Jagathyraj V. P(2010), “A

Pseudo Model for Evaluating Reliability of A Computing System “ ,
MES Journal of Technology & Management ISSN 0976-3724
Vol.01,no.02 special issue on iConCEPT-2010.

Papers in International Conferences.
[2] Shelbi Joseph, G.Santhosh Kumar, Shiji S.H, Jagathy Raj V.P, “A

Case Study- Role of Community and Open Source Software”,
International Conference on Information Technology Management at
 Yashwantrao Academy of Development Administration Baner Road,
Pune (11th & 12th Oct. 2011).

[3] Shelbi Joseph, Shouri P.V. AND Jagathyraj V. P(2010), “A
Pseudo Model for Evaluating Reliability of A Computing System” ,
iConCEPT-2010 international conference on computational
engineering practices and techniques., MES College of Engineering,
Kuttipuram, Calicut, Kerala.

List of Publications

 160

[4] Shelbi Joseph, G. Santhosh Kumar and Jagathyraj V.P, (2008), “A
Businesscase Model for Open Source Software Development”
Proceedings of the International Conference on Recent trends in
computational science(ICRTCS-2008), TOC_H Institute of Science
& Technology, Cochin, Kerala.

[5] Shelbi Joseph, G.Santhosh Kumar and Jagathyraj V.P,(2008),
“Frequent Tree Search - A step towards XML Data Mining.”,
Proceedings of the International Conference on Advanced Computing
& Communication Technologies for High Performance Applications,
Federal Institute of Science and Technology (FISAT) Cochin, Kerala
in association with IEEE & CSI.

Papers in National Conferences

[1] Shelbi Joseph, Shouri P.V. AND Jagathyraj V. P, “A Model for
Reliability Estimation of Software based Systems by Integrating
Hardware and Software”, Second National Conference on
Computational Science and Engineering –NCCSE.2011.

[2] Shelbi Joseph, G.Santhosh Kumar and Jagathyraj V.P,(2009), “A
Proposed Model for Software Development Using Open Source
Software”, NATIONAL CONFERENCE ON FRONTIER RESEARCH
AREAS IN COMPUTING (NCFRAC'09) Date: 21st FEBRUARY
2009.

[3] Shelbi Joseph, G.Santhosh Kumar and Jagathyraj V.P, P.S.
Sreejith,(2008), “A study on software reliability models for Open source
software development” National seminar on information,
communication and intelligent systems is jointly conducted by model
engineering college and IETE(institution of Electronics &
Telecommunication Engineers) on 8th &9th FEB 2008.

….. …..

SShheellbbii JJoosseepphh
Chunkapurackal House,
Villa No. 13. ABC Homes,
Judgemukku, Cochin- 21,
Kerala, India.
Ph. - 9446221045
E- mail - achayanshelbi@gmail.com, shelbi@cusat.ac.in

Shelbi Joseph received the BE. Degree from University of Madras
in 1992 in Computer Science and M.Tech degree in Computer Science
from Department of Computer Science, National Institute of
Technology, Tiruchirappalli in 2006. He spent seven years in software
industry, and currently working as Assistant professor, Division of
Information Technology, School of Engineering, Cochin University of
Science and Technology.

He carried out his research work leading to Ph.D at School of
Engineering, Cochin University of Science and Technology in Software
Reliability. His areas of interest are Software Engineering, Software
Reliability, Open Source Software and Data Mining. He has number of
publications in National and International Journals and Conference
proceedings to his credit.

….. …..

	Reliability Estimation of Open Source
Software based Computational Systems
	Certificate
	Declaration
	Dedication
	Acknowledgements
	Abstract
	Preface
	Contents
	List of tables
	List of figures
	Acronyms
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References
	Appendices
	List of publications
	Curriculum Vitae

