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Preface 

Digital imaging has found multifaceted applications in our day to day life. 

Revolutionary changes have been brought to the arena of digital photography by 

the integration of digital cameras into mobile phones and other personal gadgets. 

Satellite imaging based on Synthetic Aperture Radar (SAR) which can operate day 

and night under all weather conditions is another thrust area that has wide range of 

applications like homeland security, environmental protection, biomass estimation, 

traffic monitoring, 3-D map generation, land resource management etc. 

Unfortunately, many a time these images do not serve the purpose to the required 

level of satisfaction due to the undesirable coexistence of an extraneous entity 

called noise. So denoising, or in a more confined sense for SAR images, 

despeckling is an important pre-processing step in any image processing 

application to have an application friendly image. 

 

Image denoising imposes a compromise between noise reduction and preservation 

of significant image details. To achieve a good performance in this respect, a 

denoising algorithm has to adapt to image discontinuities. Geometrical features in 

images, like edges and contours, play one of the most important roles in the human 

visual system, since they carry most of the perceptual information. Even though 

Wavelet Transform (WT) was established as a landmark of multi resolution 

analysis, it can only effectively capture point singularities and cannot capture the 1-

D discontinuities like edges and contours in natural images, resulting in an 

inefficient sparse representation. This is due to the spatial isotropy of 2-D WT and 

its construction only along vertical and horizontal directions. Owing to the fact that 

multi-scale transforms with directivity provide image representations of high-

energy concentration, the image denoising methods based on these transforms 

generally outperform 2-D WT based methods. Recently many directional 

transforms viz. Contourlet, Curvelet, Shearlet, Bandlet etc were introduced for 

image representation. However, most of these transforms often require 

oversampling, have higher computational complexity when compared to the 

standard 2D-WT, and require non-separable convolution and filter design. Also in 

some of these schemes the transform directions are not adaptive to the dominant 



 

directions and filtering is done in continuous domain making it difficult to use 

them on discrete images.  

 

The directionlet transform is one among these directional transforms which was 

proposed as an anisotropic, perfect reconstruction and critically sampled basis 

functions with directional vanishing moments along any two directions. It retains 

the computational efficiency and the simplicity of 1-D processing and filter design 

of the standard separable 2-D WT. It has good approximation properties as 

compared to the approximation achieved by other over complete transform 

constructions and is superior to the performance of the standard separable 2-D WT 

while having similar complexity. Thus image denoising schemes based on 

directionlet transform can perform better in terms of preserving image features and 

computational efficiency. This thesis is about image denoising schemes based on 

directionlet transform.  

 

The main objectives covered in this thesis are:- 

1. To develop efficient denoising algorithms for images corrupted with Gaussian 

noise, to effectively retain the significant features in images and thereby 

providing better visual qualities along with good performance metrics. 

 

2. To develop efficient despeckling algorithms for SAR images in directionlet 

domain, which perform equally well both in homogeneous and heterogeneous 

areas. 

 

Both the above objectives are thoroughly studied. Different denoising and 

despeckling algorithms are developed as a result of the study. All these schemes 

suitably adjust the transform directions based on local dominant directions of 

spatially segmented image and successfully capture the oriented features. These 

schemes are verified by testing them with original and synthetic images corrupted 

with noise.  
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�
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  :  First direction of DT 
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  :  Second direction of DT 
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�����  :  Filter  

� � 1, 2, . . ! :   Number of DT levels 

"   :  Segment number of segmented image  

#Λ  :  Generator Matrix 

$% � & ' ( : Size of the image 
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 (  :  Number of pixels in one horizontal line of image 
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 �+, ,� :  Pixel position 



 

-  : Mean 

.  : Variance 

.�  : Standard Deviation 

/0�+, ,� : Strong point pixel value in SAR image 

1     :  Edge correlation parameter 

$23 :  Number of ideal edge pixels 

$34 :  Number of default edge pixels 

52  
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)�6, �� :  Digital line 
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Chapter 1 

Introduction 
 

 
The chapter provides a brief overview of the image denoising 

and despeckling techniques. It gives an insight into the 

motivation behind the present research and its objectives. This 

is followed by a brief discussion of various state of the art 

innovations in image denoising and despeckling which are 

related to the present study. The chapter concludes with the 

summary of contributions of the thesis and its organization. 

 

 

 

1.1 Introduction 

The use of digital imaging in applications ranging from personal archival to remote 

sensing has now become widespread. One of the major problems regarding the use 

of these images is their corruption during acquisition and transmission phase. There 

are different types of noises which can affect digital images like Gaussian noise in 

digital cameras due to the discrete nature of light and thermal behaviour of camera 

sensor,  multiplicative speckle noise in SAR and ultrasound medical images due to 

the coherent nature of the scattering phenomenon etc. The denoising of digital 

images corrupted by different types of noises is a well researched problem in image 

processing. Here the ultimate aim is to remove noise while preserving important 

signal features.  

 

A number of denoising methods have been proposed in literature for removing 

various types of noises. These include linear and non-linear techniques. Noise 

having Gaussian-like distribution is very often encountered in real-world images. 

The zero mean property of the Gaussian distribution allows such noise to be 

removed by locally averaging pixel values. Conventional linear filters such as 

arithmetic mean filter and Gaussian filter smooth noises effectively but distort 
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edges and contours [1]. The Wiener filter is the mean square error-optimal 

stationary linear filter for images degraded by additive noise and blur. A common 

drawback of the practical use of this method is that they usually require some         

a priori knowledge about the spectra of noise and the original signal. 

Unfortunately, such information is very often not available. This makes the linear 

or spatial techniques less attractive for image denoising.  

 

The effect of speckle in SAR images can be reduced either during the image 

formation time or later. The former method is based on multi-look incoherent 

averaging [2, 3], which improves the SAR image by averaging the uncorrelated 

images from non-overlapping spectrum at the cost of reduction in spatial 

resolution. The later method is based on image domain filtering like spatial 

filtering or transform-domain filtering. The spatial filtering schemes include Frost 

filter [4], Kuan Filter [5], Lee filter [6, 7], enhanced Lee filter [8] Gamma MAP 

filter [9, 10], Kalman filter [11] etc. These schemes use a defined filter window to 

estimate the local noise variance of the speckled image and perform individual 

unique filtering process. Even though these techniques, with low computational 

complexity, greatly reduce the speckle level in homogeneous areas they over 

smooth heterogeneous areas in the image due to losses at contours and edges in 

images. 

 

Alternatively, non-linear methods were proposed for image denoising and 

despeckling. They are mostly based on multi-resolution analysis using wavelet 

transform [12, 13]. Separable two-dimensional (2-D) wavelets have been one of the 

major research tools for image representation over Fourier basis. Over the past two 

decades many image denoising and despeckling schemes based on Wavelet 

Transform (WT) were proposed. Comparative study between spatial and  wavelet 

transform-domain filtering for SAR images show that the wavelet-based approach 

is among the best for noise removal [14, 15]. The WT based image denoising 

methods can be broadly classified into two: the threshold based methods and the 

statistical model based methods. In threshold based methods, a WT coefficient is 

compared with a given threshold and is set to zero if its magnitude is less than the 

threshold; otherwise it is kept unmodified or modified depending on hard or soft 

thresholding rules, respectively. These methods rely on the principle that the noise 



Introduction     

3 

will predominantly dominate the wavelet coefficients at finer scales and a few large 

coefficients only will represent the relevant information of the image. The 

effectiveness of these methods depends on the estimation of the correct threshold. 

Of the various thresholding strategies, soft-thresholding is the most popular one 

which was theoretically justified by Donoho and Johnstone [16, 17, 18]. The 

statistical model based denoising methods are mainly based on statistical modelling 

of WT coefficients with prior probability distribution functions [19]. The noise free 

coefficients are then estimated using this a priori information with Bayesian 

estimation techniques, such as the maximum a posteriori (MAP) estimator. Here 

the main problem is effectively modelling the image and noise coefficients. If these 

models are well chosen, the noise can be removed efficiently.   

 

Despite the considerable success of WT based image analysis, intense research in 

the last few years have shown that WT based multi-resolution ideas are far from 

being universally effective. The 2-D wavelet functions are isotropic and have 

directional vanishing moments (DVMs) only along horizontal and vertical 

directions. Wavelets are the optimal bases for functions with point singularity like 

1-D piecewise smooth signals, but they have serious limitations in dealing with 

high-dimensional signals like images as it cannot utilize the advantages of 

geometrical features present in images. It means that the WT is unsuited to exploit 

the correlation along edges and contours in images and has limited directional 

selectivity. Thus WT decomposition cannot produce an optimal sparse 

representation of images. This limits the performance of wavelet-based denoising 

algorithms, particularly in preserving sharp edge features. Therefore the 

requirement of a more effective transform with spatially anisotropic basis functions 

and multi-directional vanishing moments for real-world images was felt to properly 

capture the geometrical coherence of edges and contours present in them. Towards 

this end various multi-scale transforms with directional selectivity were developed 

over the past decade for image representations. Some of the examples are curvelet 

[20], contourlet [21], directional filter banks [22], wedgelets [23, 24], Dual Tree 

Complex WT (DTCWT) [25], orientation adaptive WT [26], directional lifting WT 

[27-28], Shearlet [29-31], curved wavelets [32], bandelets [33-35], directionlets 

[36-37], etc. However, most of these directional transforms often require 

oversampling, have higher computational complexity when compared to the 
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standard discrete WT, and require non-separable convolution and filter design. 

Also in some of these schemes the transform directions are not adaptive to the local 

dominant directions in images and filtering is done in continuous domain making it 

difficult to use them on discrete images.  

 

Denoising schemes based on some of these transforms like curvelet, contourlet, 

DTCWT etc are already available in literature. The wedge shaped basis functions 

of curvelet and contourlet transforms provide good sparse representations for high 

dimensional singularities and thereby better denoising performance. However the 

sub sampling operations involved in the multi-scale partition and directional filter 

processing of these transforms causes pseudo-Gibbs phenomenon and lack of shift 

invariance which will adversely affect the denoising performance. Also they have 

much higher computational complexity as compared to separable 2-D WT. The 

DTCWT exhibits approximate shift invariant property and better directional 

selectivity in multiple directions with reduced computational complexity. It is an 

over complete wavelet transform, which is implemented by two wavelet filter 

banks operating in parallel. The performance gains provided by the DTCWT come 

from designing the filters in the two filter banks appropriately. The DTCWT of a 2-

D image results in an approximation subband and six directional subbands at each 

level, which are strongly oriented at angles of ±15º, ±45º and ±75º. However the 

DTCWT is not adaptive to the local dominant directions in the image resulting in 

an inefficient sparse representation. 

 

The directional WT and curved WT are based on directional lifting and keep the 

down sampling pattern same as that of standard WT, i.e., vertical down sampling 

followed by horizontal down sampling or vice-versa, and vary the filtering 

direction locally. However, due to the possible mismatch between the down 

sampling and the filtering directions, these transforms may suffer from aliasing. On 

the other hand, orientation adaptive WT and directionlets apply both filtering and 

down sampling along the dominant directions. The orientation adaptive WT allows 

filtering and down sampling along any two arbitrary directions using an invertible 

re-sampling involving interpolation of pixels at arbitrary locations, whereas, 

directionlets allow filtering and down sampling along any two arbitrary rational 

directions by applying 1-D WT along the lines defined on integer lattices without 
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any interpolation. Both these conceptually similar methods apply spatially varying 

re-sampling followed by separable filtering, and hence, are forced to process on 

segmented image [38]. Recent works on directionlets focus on its application in 

solving different image processing problems like super resolution [39], fusion [40], 

enhancement [41] etc.  

 

1.2 Motivation & Objectives 

Image denoising imposes a compromise between noise reduction and preserving 

significant image details. To achieve a good performance in this respect, a 

denoising algorithm has to adapt to image discontinuities. Geometrical features in 

images, like edges and contours, play one of the most important roles in the human 

visual system, since they carry most of the perceptual information. An efficient 

image representation has to be capable of precise modelling and of providing a 

sparse description of this geometrical information. Recently many multi resolution 

schemes for image decompositions with better directional properties have been 

presented by many authors. Since these transforms provide image representations 

of high-energy concentration, the image denoising methods based on these 

transforms generally outperform DWT based ones.  

 

Directionlet Transform (DT) is one such representation which has gained 

popularity over the last few years as an anisotropic, perfect reconstruction and 

critically sampled basis function with directional vanishing moments along any two 

directions. It retains the computational efficiency and the simplicity of 1-D 

processing and filter design of the standard separable 2-D WT. It has good 

approximation properties as compared to the approximation achieved by other over 

complete transform constructions and is superior to the performance of the 

standard separable 2-D WT while having similar  complexity. This has motivated 

us to design denoising algorithms based on Directionlet transform. 

 

The performance of denoising schemes based on thresholding depends on the 

estimation of the correct threshold. There are different methods available for 

computing a proper threshold. However in most of these methods, the knowledge 

of noise variance is must for computing the threshold. Unfortunately this is not 
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available in most of the practical cases. The Generalised Cross Validation (GCV) 

based threshold computation can avoid this limitation. Thus here despeckling 

algorithms based on GCV threshold are developed in directionlet domain. 

  

The effective modelling of the statistics of signal and noise plays a major role in 

the performance of statistical model based denoising schemes. If these models are 

well chosen, the noise can be efficiently removed. In literature several models have 

been considered for the noise-free wavelet coefficients and Gaussian model for the 

noise coefficients. In most of these models the WT coefficients are assumed to be 

independent. However it was well established that there are inter and intra scale 

statistical dependency in wavelet coefficients of natural images because if a WT 

coefficient has small magnitude the adjacent coefficients are very likely to be 

small, and the small coefficients tend to propagate across the scales [18]. Thus the 

models which consider the WT coefficient as independent cannot efficiently model 

the transform coefficients of natural images and thus may not provide good 

denoising performance. The performance of denoising schemes based on multi-

resolution analysis would be significantly improved if the multi-scale correlation 

among the transform coefficients is also taken into account. Theoretically this is 

true for any transform with multi resolution representation for images. This has 

motivated us to investigate the interscale and intrascale dependency of DT 

coefficients across different levels and to develop image denoising schemes based 

on this dependency. 

 

 

The main objectives covered in this thesis are:- 

1. To develop efficient denoising algorithms for images corrupted with Gaussian 

noise, to effectively retain the significant features in images and thereby 

providing better visual qualities along with good performance metrics. 

 

2. To develop efficient despeckling algorithms for SAR images in directionlet 

domain, which perform equally well both in homogeneous and heterogeneous 

areas. 
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1.3 Related Work 

In this section a brief description of famous and efficient state of the art denoising 

and despeckling schemes in transform domain is given. These schemes are used for 

comparing the presented schemes in this thesis mainly because of three reasons. 

The first and foremost reason is their state of the art competitive performance. The 

second reason is that these schemes are some way related to the presented schemes 

in this thesis and the final one is the availability of their results for comparison.  

Denoising of images corrupted with Gaussian noise using wavelet based 

thresholding is very popular. There are ample of literature available on finding out 

an effective threshold. Of the various thresholding strategies, soft-thresholding is 

the most popular and has been theoretically justified by Donoho and Johnstone 

[20]. For denoising applications with known noisy function, it is often ideal to 

search for the optimal minimum mean-square error risk estimate using a priori 

information. Thus Donoho and Johnstone proposed an optimal threshold value by 

minimizing Stein’s unbiased risk estimator (SURE) [42]. The Bayesian threshold 

proposed by Chang et al [43] is based on an empirical observation in which the 

wavelet coefficients in each subband are modelled as independent and identically 

distributed random variables with Generalised Gaussian Distribution (GGD). Later 

they have presented batter results with the same scheme with context modelling of 

the wavelet transform coefficients for variance estimation [44]. The denoising 

based on generalised cross validation (GCV) based thresholding in wavelet domain 

proposed by M. Jansen et al [45] also provided promising results. These schemes 

are still considered as the best schemes in threshold based denoising schemes in 

wavelet domain. 

 

There are efficient denoising schemes available in literature which considers the 

dependency of the transform coefficients across scales. Chen et al [46-47] have 

proposed methods which take into account the intra scale dependency of the WT 

coefficients for image denoising. Crouse et al. [48] developed a framework for 

statistical signal processing based on Hidden Markov Models (HMM), where the 

interscale dependency of WT coefficients was exploited to find out an effective 

threshold. Sendur et al [49] developed a subband adaptive bivariate shrinkage 

function for image denoising in the wavelet domain based on the parent 
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coefficients. Later they published better results using the same bivariate shrinkage 

function with local variance estimation [50]. Luisier et al [51] proposed an image 

denoising algorithm using a point wise threshold based on SURE that takes into 

account interscale dependencies of oriented pyramid coefficients. These schemes 

are considered as the state of the art schemes in interscale dependency model based 

denoising. 

 

There are efficient denoising schemes available in literature which make use of 

various directional transforms like curvelets [20], contourlets [21], Dual Tree 

Complex WT (DTCWT) [25], shearlet [29], steerable pyramids [52], etc. As 

compared to the regular 2-D separable wavelet transform, these tailored, multi-

scale and directional redundant transforms can more effectively capture edge 

structures, therefore the representation coefficients are sparser, and thus provide a 

better denoising performance in terms of edge and feature enhancement. Sendur et 

al [50] presented a denoising scheme based on DTCWT using a bivariate shrinkage 

function and reported good results. Here the performance improvement was mainly 

due to the use of DTCWT and incorporation of a local variance parameter in the 

shrinkage function. The scheme proposed by G. Chen et al. [53] exploits the 

statistical dependency between a complex wavelet coefficient and its parent and 

children across three scales in the thresholding process. A denoising scheme based 

on steerable pyramids was proposed by Portilla et al. [54], in which they modelled 

the neighbourhoods of WT coefficients at adjacent positions and scales based on a 

Gaussian Scale Mixture (GSM) and estimated the noise free transform coefficients 

using Bayes least squares (BLS) estimator. Their denoising method is known as 

BLS-GSM scheme. Furthermore, threshold based denoising schemes in curvelet 

domain [55], contourlet domain [56-57] and shearlet domain [58] were reported by 

some authors. A denoising algorithm in directionlet domain was proposed by V. 

Velisavljevi´c [37], which is a combination of smooth denoising and oriented 

denoising using GSM. Here the image was taken as a single unit and an isotropic 

transform was taken along some pre fixed directions. Due to these reasons, this 

scheme provided only comparable results with the BLS-GSM scheme, but with a 

lower computational complexity. The BLS-GSM scheme is still one among the 

best available denoising schemes and is the state of the art in transform domain 

denoising schemes. 
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Various despeckling schemes based on multi resolution analysis tools have been 

developed over the last few years. These schemes can be broadly classified as 

threshold based schemes and statistical model based schemes. In most of these 

schemes, to take advantage of the denoising algorithms already available for 

additive white Gaussian noise (AWGN), the multiplicative speckle noise is 

converted into additive one by a logarithmic transformation. The threshold based 

schemes compute a proper threshold mostly based on minimum mean square error 

criterion and applies this threshold to the transform coefficients using soft or hard 

thresholding strategy [15]. Most of the statistical model based schemes are based 

on the maximum a posteriori (MAP) probability criterion by modelling the 

transform coefficients using various probability distributions like the generalized 

Gaussian (GG) distribution [59-60], Laplacian distribution [61-63], Cauchy’s 

distribution [64] etc. The MAP despeckling in the undecimated wavelet domain 

with GG distribution was proposed by F. Argenti et al. [59]. This method was later 

refined by the same authors [60] by classifying the wavelet coefficients according 

to their texture energy. One of the major drawbacks of GG-based MAP solutions is 

the numerical computation of the estimate of noise free coefficient, leading to a 

high computational cost. To overcome this issue, alternative models were 

considered. Motivated by the use of Laplacian–Gaussian (LG) assumption to 

derive MAP and minimum mean square error (MMSE) estimators for ultrasound 

despeckling [61], similar schemes were developed for SAR images also [63]. This 

has resulted in a reduction in computational cost by one order of magnitude with 

respect to the solution obtained numerically with the GG assumption, without 

significantly affecting the performance in terms of speckle reduction.  

 

A spatially adaptive homomorphic despeckling scheme based on modelling of 

wavelet coefficients of the log-transformed reflectance using a Cauchy prior with a 

zero-valued location parameter was proposed by M. Bhuiyan et al. [64]. Here the 

spatial dependence of the wavelet coefficients was incorporated in the estimation 

process using a linear predictive model. This method using the minimum mean 

square absolute error (MMAE) estimator provides a better speckle reduction in 

homogeneous regions, while still preserving the edge and line structures well. A 

despeckling scheme based on modelling of DTCWT coefficients using a bivariate 

Cauchy pdf was proposed recently by J J Ranjani et al [65]. Here the significant 
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dependences of the wavelet coefficients across different scales were considered in 

the MAP estimation process. Mellin transform of two dependent random variables 

is utilized to estimate the dispersion parameter of the bivariate Cauchy pdf from the 

noisy observations. Later the same authors have proposed a DTCWT based 

despeckling algorithm using multivariate statistical theory [66]. The DTCWT 

coefficients in each subband are modelled with a multivariate Cauchy pdf which 

takes into account the statistical dependency between the wavelet coefficients, their 

neighbours and coefficients across scales. 

 

SAR image despeckling using WT results in unexpected pseudo contours due to 

the fact that 2-D WT can only provide three directional subbands in a certain 

resolution. To overcome this issue despeckling schemes based on directional 

transforms have been introduced very recently. A simple curvelet based 

despeckling scheme proposed by Biao Hou et al [67] has provided very good 

results as compared to wavelet based schemes. A despeckling scheme by exploiting 

the multidirectional capabilities of non sub sampled contourlet transform (NSCT) 

was presented by F. Argenti et al. [68]. Here the noise–free NSCT coefficients are 

estimated from the observed ones according to either the MAP or the MMSE 

criterion. The main drawback here is that the computational complexity of this 

scheme is much higher due to the non separable filtering of NSCT. Similar to this 

scheme, a non-sub sampled shearlet transform (NSST) based adaptive despeckling 

scheme was proposed by Biao Hou et al.[69]. In this scheme the NSST coefficients 

in each subband are classified to identify the signal of interest. This scheme has 

provided reasonably good despeckling performance when compared to the WT and 

NSCT based methods while preserving details and texture information. An edge 

detection and despeckling algorithm in bandlet domain was proposed by Biao hou 

et al [70]. Later a similar scheme based on multi scale products of bandlet 

coefficients was proposed by W G Zhang et al. [71]. Here the edge is first detected 

and the edge removed image is used for despeckling. Finally the removed edge is 

added to preserve edges while despeckling. Both these schemes provided very 

good despeckling results while preserving the edges and contours well. These 

schemes are considered as the state of the despeckling schemes based on 

directional transforms. 
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1.4 Summary of contributions and publications 

The main aim of image denoising is to remove noise while preserving the 

important signal features. The focus of this thesis is to develop directionally 

adaptive image denoising schemes which can preserve the important image 

features while diluting noise. This problem is referred here as spatially adaptive 

image denoising. Here the directionlet transform is used for decomposing the 

image into multi resolution levels. Such denoising schemes have wide applications 

in various fields. Common application areas are in SAR imaging, digital 

photography, medical imaging etc., where noise enters during acquisition or 

transmission of these images. In all these cases the preservation of image features 

while denoising is important. To take care of several such applications, here 

different image denoising schemes based on directionlet transform are presented. 

The contributions of the thesis are summarized here. 

1.4.1 Denoising of images corrupted with Gaussian noise 

Here four different denoising schemes for images corrupted with Gaussian noise 

are presented. Two of these schemes are threshold based ones and the other two are 

statistical model based ones. All these schemes are compared with the state of the 

art transform domain denoising schemes.  
 

 

14.1.1 Subband adaptive denoising scheme based on SURE risk  

A simple, threshold based subband adaptive denoising scheme in directionlet 

domain is presented here to establish the concept of denoising in directionlet 

domain. The image is first spatially segmented and for each spatial segment the 

directionlet transform was computed along six different directions. Then a 

directional map that provides the best match between the transform and locally 

dominant directions is generated by identifying the minimum energy in the high-

pass subband. The decomposed images with directional energy are then used for 

the computation of scale dependent subband adaptive optimal threshold based on 

SURE risk. The threshold applied sub-bands with the unprocessed first sub-band 

(LLL) are given as input to the inverse directionlet algorithm for getting the 
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denoised image. Experimental results show that this method outperforms the 

standard wavelet-based denoising methods in terms of numeric and visual quality. 

Published paper related to this work is given in ‘List of Publications 1.6’ 

1.4.1.2 Subband adaptive denoising scheme based on Bayes shrinkage 

In the previous scheme the directional map is estimated by computing the 

directionlet transform along all the directions. This is time consuming especially 

when more directions are considered. To avoid this, here the directionality of the 

spatially segmented image is first computed using a parameter called directional 

variance for selecting the optimum pair of directions for decomposing the image. 

Due to this the DT needs to be computed along the dominant directions only, 

leading to a computationally efficient scheme. The decomposed images with 

directional energy are used for thresholding using sub band adaptive Bayesian 

threshold. The threshold corrected sub-bands with the unprocessed first sub-band 

are given as input to the inverse directionlet algorithm for getting the denoised 

image. Due to the processing in the directionlet domain the image features are 

concentrated on fewer coefficients so that more effective thresholding is possible. 

Experimental results show that this scheme outperforms the standard wavelet-

based denoising methods in terms of perceptual and numerical estimates. 

Published paper related to this work is given in ‘List of Publications 1.3’ 

1.4.1.3 Image denoising based on inter and intra scale dependency of 

Directionlet coefficients  

Here a locally adaptive image denoising algorithm based on the dependences of the 

directionlet coefficients across different scales is proposed. The spatially 

segmented image is first decomposed along the local dominant directions using 

DT. The DT coefficients so obtained are then modelled using a modified bivariate 

function with a local variance parameter, which takes into account the inter and 

intra scale dependency of these coefficients.  A nonlinear threshold function is 

derived from the modified bivariate models of the signal and noise employing a 

maximum a posteriori (MAP) estimator using Bayesian theory. The denoised 

image is obtained from the estimate of the noise free coefficients using directional 

information and inverse directionlet transform. Here it is established that, allowing 
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for spatial segmentation and choosing transform directions in each segment 

independently, directionlets outperform the other oriented transforms such as 

steerable pyramids and DTCWT in image denoising.  

Published paper related to this work is given in ‘List of Publications 1.1’ 

1.4.1.4 Image denoising based on adaptive spatial segmentation and 

multi scale correlation   

The main drawback with the DT based denoising schemes is the high computation 

cost. To make the previous method more computationally efficient, here two 

techniques are employed. One is the adaptive spatial segmentation based on the 

content directionality and the other one is the local variance parameter estimation 

based on classification of DT coefficients using context modelling. Also a simple 

bivariate model is used here to model the heavy-tail behaviour of natural images 

and the interscale properties of DT coefficients. In addition, the intrascale 

dependency of directionlets is also well exploited in the enhancement process due 

to the computation of local variance using classification of DT coefficients. The 

proposed algorithm is competitive with the existing transform based algorithms 

with better results in terms of output peak signal-to-noise ratio while having lower 

computational complexity. It exhibits good capability to preserve edges, contours 

and textures especially in images with abundant high frequency contents. 

 

1.4.2 Despeckling of SAR images  

Here six different despeckling schemes for SAR images are presented. Three of 

these schemes are threshold based ones and the other three are statistical model 

based ones. All these schemes are compared with the state of the art transform 

domain despeckling schemes.  

 

1.4.2.1 SAR image despeckling based on GCV thresholding  

The effectiveness of a despeckling algorithm basically depends on two factors: one 

is the efficient representation of the image to be despeckled using a directional and 

multi resolution expansion and the other is the efficient computation of an optimal 

threshold. Here the first requirement is met by using a locally adaptive directionlet 
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transform and the second by optimal scale dependent subband adaptive threshold 

computation using Generalized Cross Validation (GCV) technique. The GCV 

method doesn’t require the knowledge of the noise variance as it is only based on 

the input data and its minimum is a good approximation for the optimal threshold. 

Here the directionlets are constructed adaptively so that the chosen directions are 

maximally aligned with locally dominant directions across image. Due to this the 

transform generates a sparser representation with a reduced energy in the high-pass 

subbands allowing for a more robust estimation of the noise free coefficients. 

Experimental results on simulated and actual SAR images show that minimizing 

GCV in the directionlet domain results in better despeckling performance when 

compared to minimizing it in the wavelet domain.  

Published paper related to this work is given in ‘List of Publications 1.7’ 

 

1.4.2.2 SAR image despeckling based on Edge detection  

Since geometrical features in images, like edges and contours carry most of the 

perceptual information, they play important roles in the human visual system. So 

retaining of this information is very important in despeckling. This scheme 

efficiently extracts edge information along dominant directions from the spatially 

segmented SAR image. Then an optimal scale dependent subband adaptive GCV 

threshold is applied to the edge removed image. The despeckled image is finally 

synthesized using the extracted edge information to preserve the sharpness of edges 

and the texture. The algorithm adapts the transform directions to dominant 

directions across the image domain and successfully captures oriented features. 

Due to this the transform generates sparser representation, allowing for more robust 

estimation of edge characteristics and optimal threshold for despeckling. This 

scheme outperforms the traditional despeckling schemes and the wavelet and 

bandlet based edge detection methods in terms of numeric and perceptual quality.  

Published paper related to this work is given in ‘List of Publications 1.5’ 

 

1.4.2.3 SAR despeckling based on multiscale products thresholding  

The performance of the despeckling schemes based on multi-resolution analysis 

would be significantly improved if the multiscale correlation among the transform 
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coefficients is taken into account. If a DT coefficient generated by a true signal has 

a large magnitude at a finer scale, its ascendants at coarser scales will probably be 

significant as well, while the magnitude of the noise coefficients may decay rapidly 

along the scales. Hence, the multiscale products at adjacent scales of DT would 

strengthen the significant features while diluting noise. This property of the DT is 

exploited here to strengthen significant signal features before computing the GCV 

threshold. The proposed scheme outperforms many of the traditional despeckling 

schemes in terms of speckle reduction and edge preservation. 

Published paper related to this work is given in ‘List of Publications 1.4’ 

 

1.4.2.4 Despeckling based on Laplacian-Gaussian modelling  

The generalized Gaussian shape parameters relative to the reflectivity and to the 

speckle noise in SAR images suggest that their distributions can be approximated 

as a Laplacian and a Gaussian function, respectively. Under these hypotheses, a 

nonlinear threshold function is derived from these models of the signal and noise, 

employing a maximum a posteriori (MAP) estimator using Bayesian theory. The 

algorithm adapts the transform directions to local dominant directions and thus 

efficiently captures the geometrical information present in images. This results in 

better sparsity which aids for efficient estimation of noise free coefficients. The 

despeckled image is obtained from the estimated noise free coefficients using 

directional information and inverse directionlet transform. The effectiveness of the 

proposed scheme is illustrated by comparing it with traditional and similar wavelet 

based schemes.  

 

1.4.2.5 Despeckling based on Cauchy-Gaussian modelling    

This scheme is conceptually similar to the earlier scheme. The main difference is 

that the impulsive heavy tailed behaviour of the log transformed high resolution 

SAR image is modelled here using a heavy tailed Cauchy distribution. The DT is 

first computed along the dominant directions of the spatially segmented image. The 

signal and the noise coefficients are then modelled using Cauchy-Gaussian 

bivariate distributions which take into account the statistical dependence between 

the adjacent scale coefficients. The nonlinear threshold functions derived from the 
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models employing a MAP estimator are then used for estimating the noise free 

coefficients. Since the directionlets possess spatial anisotropy and better directional 

capabilities, statistical interscale dependency modelling in directionlet domain 

results in visually appealing despeckling results, with improved performance 

parameters.  

Published paper related to this work is given in ‘List of Publications 2.1’ 

 

1.4.2.6 SAR image despeckling based on bivariate shrinkage   

Here a spatially adaptive despeckling algorithm for SAR images is presented, 

which takes into account the statistical interscale dependency of DT coefficients. 

The algorithm spatially adapts the transform directions to dominant directions 

across the image domain and successfully captures the oriented features. The 

interscale dependency of the DT coefficients is then modelled using a non-

Gaussian bivariate distribution to effectively compute the noise free coefficients. 

Experimental results show that the proposed method achieves effective despeckling 

performance compared with other directional transform based despeckling schemes 

in terms of both subjective visual quality and details preservation. 

Published paper related to this work is given in ‘List of Publications 1.2’ 

 

Altogether ten different denoising schemes have been developed within the frame 

work of directionlet transform and all these schemes were compared with the state 

of the art technologies available for standard benchmark images and original 

images corrupted with noise. It is well established that, allowing for spatial 

segmentation and choosing transform directions in each segment independently, 

directionlets outperform the standard 2D WT and other oriented transforms such as 

steerable pyramids, contourlet, shearlet, bandlet, DTCWT etc. in image denoising 

and despeckling. 

 

This research has resulted so far in a publication of seven papers in international 

journals and one paper in an international conference proceeding. Most recent 

research results, presented in section 4.5 and 5.5, are submitted to two international 

journals. 
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1.5 Thesis Outline  

The main goal of the thesis is to develop new image denoising and despeckling 

schemes capable of capturing geometrical features in images, based on multi 

directional anisotropic transform called directionlets. Here various image denoising 

and despeckling schemes in directionlet domain are presented. These schemes are 

broadly classified into two, viz. threshold based and statistical model based ones. 

The effectiveness of each of these schemes over the competing state of the art 

methods is illustrated.  The thesis is organized into six chapters as below:- 

 

Chapter 1: Introduction  

The first chapter serves as a preamble to the work, which gives an insight into the 

motivation behind the present research and its objectives. It also describes the 

importance and relevance of this work in the area of image denoising and 

despeckling. A summary of contributions and publications are also highlighted 

here. 

 

Chapter 2: Image denoising   

This chapter presents the different types of noises which are common in digital 

images and SAR images. The evolution of different image denoising and 

despeckling schemes are also highlighted here, giving special emphasis on 

different types of spatial and transform domain schemes. In the transform domain 

methods, the threshold and statistical model based schemes are described. The state 

of the art methods in each area are also highlighted along with the pros and cons of 

each of these schemes. At the end various measures of image denoising 

performance are also explained. 

 

Chapter 3: Directionlet Transform 

In the beginning of this chapter the background knowledge on wavelet theory is 

reviewed. The requirement of a multi resolution anisotropic transform with 

directional vanishing moments along multiple directions is then analysed. This 

follows the directionlet theory and construction of directionlet transform.  The 

sparsity due to the anisotropy and any direction nature of directionlet is also 

illustrated. Then the polyphase representation of directionlet transform is 
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presented. Finally an analysis on the computational complexity of directionlet 

transform as compared to wavelet transform and other directional transforms is 

presented. 

 

Chapter 4: Spatially adaptive image denoising techniques  

In this chapter the main contributions of the thesis to image denoising are 

presented. Here four different denoising schemes in the directionlet domain, for 

images corrupted with additive white Gaussian noise are presented and the results 

are compared with the state of the art technologies. The computational complexity 

of these schemes is also analysed here. 

 

Chapter 5: Spatially adaptive SAR image despeckling techniques 

This chapter presents the main contributions of the thesis to SAR image 

despeckling. Here six different despeckling schemes in directionlet domain are 

presented, which include threshold based and statistical model based schemes. 

These schemes are compared with the state of the art technologies available for 

standard benchmark images corrupted with noise and also original SAR images. 

The comparison is made in terms of speckle reduction, edge and feature 

preservation and computational efficiency.   

 

Chapter 6: Conclusions and future perspectives 

In this concluding chapter the whole work is summarised and a thought for the 

scope of further research in the area of image denoising is presented.  

 

The remaining portions of the thesis include the bibliography followed by a list of 

publications by the author in the related field.  
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Chapter 2 
 

Image Denoising 
 

This chapter presents the different types of noises which are 

common in digital images and SAR images. The evolution of 

different image denoising and despeckling schemes are also 

highlighted here, giving special emphasis on spatial and 

transform domain techniques. In the transform domain 

methods, the threshold and statistical model based schemes 

are described. The state of the art methods in each area are 

also highlighted along with the pros and cons of each of these 

schemes. At the end, various measures of image denoising 

performance are also explained. 

 

 

2.1 Introduction 

Image denoising refers to the recovery of a digital image that has been 

contaminated by noise. The presence of noise in images is unavoidable. It may be 

introduced during image formation, recording or transmission phase. Further 

processing of the image often requires that the noise must be removed or at least 

reduced. Even a small amount of noise is harmful when high accuracy is required. 

The noise can be of different types. The most popular ones are additive white 

Gaussian noise (AWGN), speckle noise, impulse noise, Poisson noise etc. 

Mathematically the degradation process can be denoted as � � � & �. Here � is 

the clean image, � the noisy image and  �, the noise. ′&′ is a mathematical 

operation which can be additive or multiplicative depending upon the type of noise. 

An image denoising algorithm attempts to obtain the best estimate of � from  �. 

The optimization criterion can be mean squared error (MSE)-based one or 

perceptual quality driven.   
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This chapter is subdivided into three sections. In the first section, different types of 

noises which are encountered in digital images and SAR images are explained. In 

the second section the evolution of image denoising and despeckling over the years 

and the recent advances in this area are presented. In the last section the different 

metric parameters which are used for assessing the performance of different 

denoising and despeckling algorithms are explained.  

  

2.2 Sources and Types of Noises 

During any physical measurement, it is likely that the measured quantity is 

corrupted by some amount of noise. The sources and types of this noise are 

depending upon the physical measurement. Noise often comes from a source that is 

different from the one to be measured, but sometimes it is due to the measurement 

process itself. In case of images, the example of former one is read-out noise in 

digital cameras and later one is speckle noise in SAR images. Sometimes, noise 

might be due to the mathematical manipulation of a signal, as is the case in image 

de-convolution or image compression. Often, a measurement is corrupted by 

several sources of noise and it is usually difficult to fully characterize all of them. 

In all these cases, noise is the undesirable part of the image. Ideally, one seeks to 

reduce noise by manipulating the image acquisition process, but when such a 

manipulation is impossible, denoising algorithms become mandatory. 

 

The characteristics of noise mainly depend on the image acquisition process. This 

include digital and analog cameras of various kinds for visible or infra-red light, 

radar imagery such as Synthetic Aperture Radar (SAR), Magnetic Resonance 

Imaging (MRI), Computer Tomography (CT), Positron Emission Tomography 

(PET), ultra-sonography, electron microscopy etc. Here we concentrate mainly on 

two types of images viz. SAR images and images from digital and analog cameras. 

 

2.2.1 Noise in Camera Imaging 

Images taken with both digital cameras and conventional film cameras will pick up 

noise from a variety of sources. The types of noise possibly corrupting images are 

too numerous to list here. The Gaussian noise [72] and the salt and pepper noise are 

the two most common noises in this category. In either case, the noise at different 
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pixels can be either correlated or uncorrelated. In many cases, noise values at 

different pixels are modelled as being independent and identically distributed, and 

hence uncorrelated.  The most common noises affecting the digital images are 

described here. 

 

2.2.1.1 Additive White Gaussian Noise 

In image denoising, the most common setting is to use black-and-white images 

corrupted with Additive White Gaussian Noise (AWGN). The images with AWGN 

are used as the benchmark images for assessing the performance of image 

denoising algorithms. Gaussian noise is a statistical noise that has a probability 

density function (pdf) of the normal distribution (also known as Gaussian 

distribution). For each pixel, a random value drawn from a normal distribution is 

added to the clean pixel value. The distribution is the same for every pixel (i.e. the 

mean and variance are the same) and the noise samples are drawn independently of 

each other. The read-out or amplifier noise of digital cameras is often 

approximately AWGN. In case of Gaussian noise, an amount of noise is added to 

every part of the picture i.e., each pixel in the image will be changed from its 

original value by a small amount. Gaussian noise is the most common noise and 

can be produced by the thermal agitation of charged carriers (usually the electrons) 

inside an electrical conductor. It is properly defined as the noise with a Gaussian 

amplitude distribution with a bell-shaped probability density function, known as 

the Gaussian function or informally as the bell curve [73] shown in figure 2.1. This 

is defined as: 

��	
� � 1

√2� �

�������� ��                                                            	2.1� 
                                                                

The parameter � is the mean or expectation (location of the peak) and 
� is the 

variance. 
 is known as the standard deviation. The distribution with � �  0 and 


� � 1 is called the standard normal distribution or the unit normal distribution. A 

normal distribution is often used as a first approximation to describe real-valued 

random variables that cluster around a single mean value. The normal distribution 

is considered the most prominent probability distribution in statistics. There are 
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several reasons for this: First, the normal distribution arises from the central limit 

theorem, which states that under mild conditions, the mean of a large number of 

random variables independently drawn from the same distribution is distributed 

approximately normally, irrespective of the form of the original distribution. 

Secondly, the normal distribution is very tractable analytically, that is, a large 

number of results involving this distribution can be derived in explicit form.  

 

Figure 2.1. The bell curve of Gaussian distribution 

 

2.2.1.2 Salt-and-pepper noise 

Salt-and-pepper noise is having a fat-tail distribution. It is also known as impulsive 

noise or spike noise [72]. This noise is normally generated due to the loss of pixels 

during transmission. Here the pixels in the image are very different in colour or 

intensity from their surrounding pixels. This will appear as dark and white dots in 

images. Generally this type of noise will only affect a small number of image 

pixels. It is a type of noise where the image contains a certain percentage of noisy 

pixels, where the noisy pixels are randomly either completely dark (pixel value 

zero) or saturated (highest possible pixel value). The value of the noisy pixels is 

therefore completely uncorrelated with the value of the same pixels in the clean 

image. Typical sources include flecks of dust inside the camera, overheated or 

faulty CCD elements, analog-to-digital converter errors etc. Salt-and-pepper noise 

can also arise due to errors during transmission of an image like bit errors in 

transmission. Denoising schemes based on median filtering are usually effective on 

this kind of noise.  
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2.2.1.3 Photon Shot Noise 

The dominant noise in the lighter parts of an image from an image sensor is 

typically that caused by statistical quantum fluctuations, that is, variation in the 

number of photons sensed at a given exposure level. This noise is known as photon 

shot noise [74]. Shot noise has a root-mean-square value proportional to the square 

root of the image intensity, and the noises at different pixels are independent of one 

another. Shot noise follows a Poisson distribution, which is usually not very 

different from Gaussian. When the mean is high the Poisson distribution looks 

similar to a Gaussian distribution with equal mean and variance. In that setting, 

removing Poisson noise is similar to removing Gaussian noise, where each pixel 

has a variance which depends on the pixel value of the underlying clean image. For 

lower mean values, the two distributions do not look similar. Due to the 

advancements in technology the pixel size of image sensors is getting smaller 

resulting in decrease in number of photons captured per pixel. Hence, photon shot 

noise is becoming a major issue in modern imaging systems.  

 

In addition to photon shot noise, there can be additional shot noise from the dark 

leakage current in the image sensor; this noise is sometimes known as dark-current 

shot noise. The dark current is normally highest at hot pixels within the image 

sensor. This variation in dark current of normal and hot pixels can be subtracted off 

(using dark frame subtraction), leaving only the shot noise of the leakage. If dark-

frame subtraction is not done, or if the exposure time is long enough that the hot 

pixel charge exceeds the linear charge capacity, the noise will appear as salt-and-

pepper noise.  

 

2.2.1.3 Thermal Noise 

Thermal noise arises due to the thermal energy of a chip. The thermally generated 

electrons accumulate in the chip are indistinguishable from photoelectrons 

resulting in noise. Thermal noise occurs even in the absence of light and is 

therefore sometimes referred to as dark-current noise. This type of noise is strongly 

dependent on the temperate of the sensor, but also on exposure time as well as the 

ISO setting of the camera. Each pixel can be approximately modelled as Gaussian. 

Thermal noise is an example of noise which can be reduced by modifying the 
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signal acquisition process. One of the most common ways for reducing thermal 

noise is the cooling of the camera sensor.  

 

2.2.1.4 Compression Artefacts  

Digital images are usually stored in a compressed format such as JPEG. The 

compression algorithm gives rise to artefacts, which is considered as a type of 

noise. For example the JPEG algorithm, which is the most commonly used 

compression algorithm, causes blocking artefacts in the compressed image. This 

type of noise is non-linearly related to the clean image. 

 

2.2.2 Noise in SAR Imaging 

SAR imaging uses a coherent imaging process, which results in a multiplicative 

noise called speckle noise. It is caused by constructive and destructive interference 

of coherent waves reflected by the many elementary scatterers contained within the 

imaged resolution cell. For distributed targets, the signal received by the radar is a 

superposition of many small reflections. Here it is assumed that in each resolution 

cell no single scatterer dominates over all others combined and the number of 

scatterers is large and the scatterers are statistically identical and independent. 

Moreover to have different phases for the scatterers, the maximum range extent of 

the target shall be many wavelengths across. The vector sum of the backscattered 

electric field is equivalent to a 2-D random walk process with independently and 

identically Gaussian distributed real and imaginary components [75]. 

 

2.2.2.1 Speckle Noise and its Characterisation 

It was established that the speckle noise can be characterized as a random variable 

using a statistical model [75-76]. As explained earlier, since the SAR images are 

formed by coherent imaging process they are affected by speckle noise. The 

undesirable effects of speckle in a SAR image can be easily reduced during the 

image formation phase itself through multi look averaging. The obvious 

disadvantage of such an approach is the loss in spatial resolution. The statistical 

distribution of the resultant speckle in the degraded-resolution image is given by 

the Gamma distribution in the case of intensity data, and by the multi convolution 

of the Rayleigh probability density in the case of amplitude data. 
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Speckle in SAR images is generally modeled as multiplicative random noise, 

whereas most available filtering algorithms were developed for additive white 

Gaussian noise (AWGN) in the context of image denoising and restoration, as 

additive noise is most common in imaging and sensing systems. To take advantage 

of the available noise models it is necessary to apply a logarithmic transform to 

convert the multiplicative noise model into an additive one in most cases. As a 

nonlinear operation, the logarithmic transform totally changes the statistics of SAR 

images, and thus the original speckle statistics cannot be directly used to the log-

transformed images. Prior to the subsequent analysis and processing, several 

factors need to be considered, such as the change in probability density function 

(pdf) of the log-transformed random variable, the new statistical characteristics of 

the transformed data etc. SAR images are usually available in two formats: 

intensity format and amplitude format. The characteristics of the SAR images in  

these formats have been studied by many authors [77-79] and these models have 

been widely used in the processing of SAR images. A review of the statistical 

characteristics of speckle in amplitude and intensity formats and the derivation of 

its pdf, mean values, and variances is given here. 

 

2.2.2.1.1 SAR Image in Intensity Format  

If we use � to denote the image intensity that the SAR measures for a given pixel 

whose backscattering coefficient is �, and assume that the SAR image represents 

an average of � looks (independent samples or pixels), then � is related to � by the 

following multiplicative model [76] 

� � ��                                           (2.2) 

where � is the normalized fading random variable in the intensity image, following 

a Gamma distribution with unit mean and variance 1/�. The pdf of � is given by 

 

��	�� � � � ���� �
Γ	L� ,    � # 0, � # 0                                     	2.3�   

                               

where Γ(·) denotes the gamma function. 

The natural logarithmic transformation converts (2.2) into 
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% �  
 &  '                                                  (2.4) 

where % � ln	�� , 
 � ln	��  and ' � ln	��. Given that the logarithmic function 

is monotonic, the pdf of the random variable ' can be obtained from 

,-	'� �  ,-	�-��-                                                                               	2.5� 
                                

which leads to  

,-	'� �  � �- �� /
0

Γ	��                                                                        	2.6� 
                            

and the mean of ' is given by  

2	'� �  3	�� 4 ln	��                                   (2.7) 

where 3	5� is the Digamma function [80] defined as  

3	6� � 7
78 lnΓ	x�                                                   (2.8) 

When L is an integer, the equation (2.7) can further be simplified as  

2	'� �  : 1
; & 3	1� 4 ln	��,     3	1� �  4<

 ��

=>�
                      	2.9� 

         

where C is Euler’s constant (C = 0.577215). 

 

The new variance is given by 

'@A 	'� � 3	1, ��                                                   (2.10) 

where 3	1, �� is known as the first-order Polygamma function of L. A general BCD 

Poly gamma function is defined as the BCD derivative of the Digamma function [80] 

3	B, 6� �  EFE6F  3	6� �  EFG�E6FG� lnΓ	6�                                          	2.11� 
             

'@A 	'� �  3	1,1� 4 : 1
;� ,              3	1,1� � ��

6
 ��

=>�
                    	2.12� 
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2.2.2.1.2 SAR Image in Amplitude Format  

For an amplitude image, the multiplicative model � � �� still holds, where � is 

the speckle-free value of the magnitude of the electric field of the backscattered 

signal and � is the voltage measured when a linear detector is used. For a single-

look image, the normalized fading random variable � obeys the Rayleigh pdf [76], 

which can be written as 

,�	�� �  ��2 e�I��
J ,               � # 0,          � � 1                             	2.13� 

Its mean and variance are  

2	�� � 1,         '@A	�� �  4� 4 1                                                        	2.14� 
After the logarithmic transform, the pdf of the random variable ' � ln 	�� 
becomes 

,-	'� �  ���-2 e�I/�0J ,                � � 1                                              	2.15� 
The density function defined in (2.15) is called the double exponential or Fisher-

Tippet density function [81]. The mean and variance of ' are  

2	'� �  12 ln L
4
�M &

1
23	1� �

1
2 ln L

4
�M 4

1
2<                               	2.16� 

'@A	'� �  143	1,1� �
��
24                                                                	2.17� 

By averaging L uncorrelated amplitude samples from linear detection, a multiple L-

look amplitude image can be generated. Here a square operation will not provide 

the same results as an intensity image. For the corresponding multiplicative L-look 

fading random variable denoted by ' , its mean is unit magnitude and the variance 

is (4 πO 4 1� decreased by a factor of L. The common practice to derive its pdf is to 

use the characteristic function. Unfortunately, it is not possible to derive a closed 

analytical form for the pdf. As far as the log-transformed speckle random variable 

is concerned, there does not exist a closed-form expression for its pdf either. One 

straightforward way to obtain its pdf is to employ the histogram estimation 

technique, but the numerical procedure involves multiple steps including the 

simulation of Rayleigh distributed random variables, multi-look averaging, the 

logarithmic transform, and the final histogram generation. In [79], other than the 
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conventional characteristic function method, an alternative approach is provided to 

derive the pdf of interest. This is the approximation method based on the edge 

worth expansion.  

 

2.2.2.1.3 Gaussian Distribution Approximation 

It has been established that, as the number of looks increases, the pdf of a speckle 

random variable approaches the Gaussian pdf [76]. The distances between the 

original speckle or the log-transformed speckle distributions and the Gaussian 

distribution were computed to determine which one approaches the Gaussian 

distribution more precisely [79]. Based on this analysis it was clearly demonstrated 

that, for intensity data, the pdf of the log-transformed noise approaches the 

Gaussian pdf much faster than that of the original speckle. Therefore, it is more 

appropriate to apply those Gaussian-noise-based image analysis algorithms to the 

noisy image after a logarithmic transform, than directly to the original intensity 

image. Figure 2.2 shows the pdf of speckle noise and the corresponding log-

transformed speckle noise for intensity image. Similar plots are shown in figure 2.3 

and 2.4 for amplitude image and square-root intensity image respectively. For both 

the amplitude image and the square-root intensity image, although the log-

transformed speckle noise approaches the Gaussian pdf slightly slower than the 

original speckle noise, the former is already statistically very close to the Gaussian 

pdf.  Thus the application of any Gaussian noise based image analysis algorithm 

will work equally well on the log-transformed amplitude data also.  

 
Figure 2.2 The pdf of speckle and the log-transformed speckle for SAR image in the 

intensity format (a) L = 1 (b) L = 3. 
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Figure 2.3 The pdf of speckle and the log-transformed speckle for SAR image in the 

amplitude format (a) L = 1 (b) L = 3. 

 

 
Figure 2.4 The pdf of speckle and the log-transformed speckle for SAR image in the 

square-root intensity format (a) L = 1 (b) L = 3. 

 

2.3 Image Denoising Schemes 

Over the last decades, a variety of methods have been proposed for image 

denoising. This includes spatial filtering methods, transform based methods, 

variational methods and techniques based on the solution of partial differential 

equations. There are various factors which need to be considered in selecting a 

noise reduction algorithm. They are the available computer power and time, 

whether sacrificing some real detail is acceptable if it allows more noise to be 

removed and the characteristics of the noise. For example a digital camera must 

apply noise reduction in a fraction of a second while a desktop computer has much 
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more power and time for denoising. Here we address the image denoising problems 

in two different application areas viz. images acquired using digital or conventional 

cameras and images from synthetic aperture radar (SAR). The later one is more 

specifically known as despeckling as the SAR images are inherently affected with 

speckle noise. In this section a survey of different denoising and despeckling 

schemes is done. 

 

2.3.1 Denoising of Images with AWGN 

The denoising of images affected with additive white Gaussian noise is a well 

known problem in image processing. Image denoising studies were started way 

back in 1970s by computer vision pioneers such as S. Zucker and Azriel Rosenfeld. 

In early 1980s, J. S. Lee proposed image enhancement schemes by using local 

statistics [6]. The invention of wavelet transforms in late 1980s has led to dramatic 

progress in image denoising in 1990s. The Bayesian view towards image denoising 

was put forward by Simoncelli & Adelson in 1996 and since then, many wavelet-

domain denoising techniques have been proposed. The simple yet elegant Gaussian 

scalar mixture (GSM) algorithm published by Portilla et al. in 2003 [54] and the 

nonlocal mean (NLM) algorithm by Buades et al. in 2005 [88] have renewed the 

interest into this classical inverse problem. In the past few years, many more 

powerful denoising algorithms have appeared. Among them the patch-based 

nonlocal schemes, BM3D has shown outstanding performance. The directional 

transform based denoising schemes proposed very recently also have given 

outstanding results. Here an overview of the popular image denoising algorithms 

for images corrupted with AWGN is provided. 

 

2.3.1.1 Wavelet Domain Techniques 

Since their introduction in the late 1980s, wavelets have been universally 

recognized as extremely powerful tools for the analysis of non-stationary signals 

and images [12]. Wavelet based denoising algorithms basically involve three steps. 

First, an image is transformed into a wavelet domain. Next, denoising is effected 

on the wavelet coefficients, and finally the denoised image is obtained by applying 

the inverse wavelet transform on the denoised wavelet coefficients. The wavelet 

based denoising schemes can be broadly classified into two; the threshold based 
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schemes and statistical model based schemes. In threshold based methods, a WT 

coefficient is compared with a given threshold and is set to zero if its magnitude is 

less than the threshold; otherwise it is kept unmodified or modified depending on 

hard or soft thresholding rules, respectively. The statistical model based schemes 

model the WT coefficients with prior probability distribution functions (pdf) and 

the noise free coefficients are estimated using this a priori information with 

Bayesian estimation techniques, such as MAP or MMSE estimators.   

 

Undecimated version of WT is commonly used for image denoising. It has both 

advantages and disadvantages over decimated one. Performing an undecimated WT 

is more computationally demanding than performing a decimated transform. 

Another advantage of decimated transform is that they preserve the inner-product 

so that the white noise in the input image remains white after the transform. 

However in the other case white noise in the image becomes correlated in the 

transform domain. However, undecimated transforms have the advantage of 

introducing fewer aliasing or ringing artefacts. Ringing artefacts occur due to the 

Gibbs phenomenon when coefficients of a decimated transform are set to zero. 

 

2.3.1.1.1 Threshold Based Denoising in Wavelet Domain 

Wavelet coefficient thresholding scheme of denoising is based on the idea that the 

energy of the signal to be defined concentrates on some of the wavelet coefficients, 

while the energy of noise spreads throughout all wavelet coefficients. Similarity 

between the basic wavelet and the signal to be defined plays a very important role, 

making it possible for the signal to concentrate on fewer coefficients. The concept 

of threshold based denoising in wavelet domain is illustrated in figure 2.5. Here 

after transforming an image into wavelet domain, denoising is effected by 

thresholding of the wavelet coefficients. The effectiveness of these methods 

depends on the estimation of the correct threshold.  

There are ample of literature available on finding out an effective threshold. Of the 

various thresholding strategies, soft-thresholding is the most popular and has been 

theoretically justified by Donoho and Johnstone [17, 18]. These authors have 

shown that the shrinkage rule is near-optimal in the minimax (minimum of 

maximum mean square error) sense and provided the expression of the optimal 
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threshold called universal threshold as a function of the noise power when the 

number of samples is large. The use of the universal threshold to denoised images 

in the wavelet domain is known as VisuShrink. For image denoising, however, 

VisuShrink is known to yield overly smoothed images. This is because its threshold 

value, P2σ� logN can be unwarrantedly large due to its dependence on the number 

of samples N, which is very high for typical test images. Yet, despite its theoretical 

appeal, minimax is different from mean-squared error (MSE) as a measure of error. 

 

Figure 2.5. Concept of threshold based denoising in wavelet domain. 

 

For denoising applications with known noisy function, it is often ideal to search for 

the optimal minimum mean-square error risk estimate using a priori information. 

Donoho and Johnstone proposed an optimal threshold value by minimizing Stein’s 

unbiased risk estimator (SURE) [17]. SURE risk is a very good estimate of the true 

risk when the true function is not known [42]. Later a hybrid approach between the 

universal threshold and SURE threshold was proved to be more efficient and is 

known as SURE shrink [18]. Later Chang et al [43] have proposed Bayesian 

threshold in wavelet domain. This is based on an empirical observation in which 

the wavelet coefficients in each subband are modelled as independent and 

identically distributed random variables with Generalised Gaussian Distribution 

(GGD). 
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The major drawback in most of these thresholding schemes is that they require the 

prior knowledge of the amount of noise present in the image to compute an 

optimum threshold. The Generalised Cross Validation (GCV) technique proposed 

by Jansen et al [45] was proven to be an effective statistical way for estimating an 

optimum threshold for noise removal in many denoising application. The main 

advantage of GCV technique is that it can be used to estimate the optimal threshold 

without having the knowledge of the noise variance. The GCV is only based on the 

input data and its minimum is a good approximation for the optimal threshold. It 

was well established that the minimum of the GCV is an asymptotically optimal 

threshold for denoising applications [45]. 

 

In GCV technique, the original image f is assumed to be regular so that each pixel 


T can be approximated by a linear combination of its neighbours. So by 

considering the estimate of the noisy component %T (represented as %UT), as a 

combination of its neighbours, one can eliminate the noise in this particular 

component. This is repeated for all the components and the compromise can be 

estimated as Ordinary Cross Validation (OCV). The estimate of %T  can be 

computed in many ways. By generalizing it one can get the Generalized Cross 

Validation (GCV). This is a function of known parameters of the input image and 

is independent of the noise variance. It was established that minimizing the mean 

square error is equivalent to minimizing the GCV. So the value corresponding to 

the minimum of the GCV function can be used as an optimal threshold value. 

 

In wavelet based denoising schemes substantial improvements in perceptual quality 

were reported later by translation invariant methods based on thresholding of 

undecimated WT coefficients. Further, many investigators have experimented with 

variations on the basic schemes like modified thresholding functions, level-

dependent thresholding, block thresholding, adaptive thresholding etc and reported 

better results. 

 

2.3.1.1.2 Bayesian Denoising in Wavelet Domain 

The statistical model based schemes model the WT coefficients with prior 

probability distribution functions and the noise free coefficients are estimated using 

this a priori information with Bayesian estimation techniques, such as the MMSE 
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or MAP estimators.  Here the main challenge lies in the accurate modelling of the 

image and noise coefficients using suitable pdf. If these models are well chosen, 

the noise can be removed efficiently. In literature several models have been 

considered for the noise-free wavelet coefficients and Gaussian model for the noise 

coefficients. Figure 2.6 shows the concept of Bayesian denoising in wavelet 

domain.  

 

Consider a classical estimation problem as to estimate an unknown signal 
 from 

its noisy observation %. The probability density governing the observation process 

is the conditional density � VW|Y	V%|
). The unknown signal 
 is treated as a 

realization of a random vector �. The Bayes estimate 
Z is the estimate that 

minimizes the Bayes risk, [, which is the expected value of a cost function, <	
, 
Z� 
[ \ 2]<	
, 
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Figure 2.6: Concept of Bayesian denoising in wavelet transform domain. 

 

In a given problem one chooses a cost function to accomplish two objectives. The 

first objective is that the cost function should measure user satisfaction adequately 
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and the second one is to assign one that results in a tractable problem. One usually 

starts by assuming that the cost depends only on the error of the estimate  
/ � 
Z 4

; the cost function <	
, 
Z� is then reduced to a function of a single variable. Since 

the joint density can be rewritten as  �Y,W	
, %� � �W	%�. � VY|W	V
|%), the risk 

becomes 

[ � _�W	%�E%
∞

�∞
_<	
 4 
Z��VY|W	V
|%�E

∞

�∞
                                  	2.19� 

The estimate that minimizes this risk follows from differentiating the inner integral 

and setting it zero. 

E
E
Z _ <	
 4 
Z�� VY|W	V
|%�E


∞

�∞
� 0                                         	2.20� 

To proceed, the cost function needs to be specified. One possible cost function is 

the square of the error, <	 
/� �  
/�, and is commonly referred to as the squared 

error or the quadratic cost function. It accentuates the effects of large errors. The 

corresponding estimate is called the minimum mean squared error (MMSE) 

estimate 
Z=a. Basically it is the conditional mean and can be defined as 

 
Z=a � _ 
�VY|W	V
|%�E

∞

�∞
                                                       	2.21� 

One other possible cost function is the uniform cost function, which assigns zero 

cost to all errors less than b ∆ 2O . It means an error  
/ less than ∆ 2O  in magnitude is 

as good as no error. If |  
/| d ∆ 2O , the cost has a uniform value of one. Of 

particular interest is the case where ∆ is arbitrarily small but a nonzero number. 

One can show that the risk in this case is minimized by choosing the value 
 at 

which the posterior density �VY|W	V
|%� has its maximum. Hence the name the 

maximum a posteriori (MAP) estimate 

 
Z=ef � @A%;@6�VY|W	V
|%�                                                   	2.22� 
The above expression can be rewritten by separating the role of the observation % 

and of the a priori knowledge as follows 
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� VY|W	V
|%� � �VW|Y	V%|
��Y	
��W	%�                                                 	2.23�  
Here �W	%� is not a function of 
.  Thus the expression in (2.22) can be rewritten 

as 

 
Z=ef � @A%;@6�VW|Y	V%|
��Y	
�                                        	2.24� 
The limiting case of the MAP estimate, in which the prior is not available is the 

maximum likelihood (ML) estimate,  
Z=g � @A%;@6�VW|Y	V%|
�. In many cases of 

interest the MAP and the MMSE estimates coincide. For a large class of cost 

functions the optimum estimate is the conditional mean whenever the a posteriori 

density is symmetric about the conditional mean. 

For natural noise-free images, the histograms of wavelet coefficients are typically 

sharply peaked at zero. S. Mallat [82] proposed to model the marginal prior 

distribution of image wavelet coefficients, �Y	
� as a generalized Laplacian 

distribution as 

�Y	
� � h
2iΓ	1h�

��k�lkm         i, h d 0                                     	2.25�   

where Γ	6� �  n o8����C Eo p�
q is the Gamma function. The above model is often 

used in image processing applications. In some literature it is referred as the 

generalized Gaussian distribution (GGD). The model parameters i and h can be 

computed from the histogram of noise-free wavelet coefficients. Specifically, if 
�� 

is the sample variance and r� the kurtosis of the noise-free histogram, then 

i and h can be estimated from the following equations [19]. 

 


�� � i� Γ	
3h�

Γ	1h�
                                                                           	2.26� 

 

r� �
Γ	1h�Γ	5h�
Γ�	3h�

                                                                        	2.27� 
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In practice the histogram of noise-free wavelet coefficients is not available and the 

model parameters need to be estimated from the noisy coefficients, %. In case of 

additive white Gaussian noise (AWGN), and for the above prior model, it is a 

simple task. The variance 
s� and the fourth moment ;J,sof the generalized 

Laplacian signal corrupted by AWGN are [19] 

 


s� � 
-� & 
�� � 
-� & i� Γ	
3h�

Γ	1h�
                                              	2.28� 
                                                                 

 ;J,s � 3
-J &
6
-�i�Γ	3h�

Γ	1h�
& iJ Γ	

5h�
Γ	1h�

                                 	2.29� 
                                              

where 
-� is the noise variance. For natural images, the shape parameter h is 

typically h t u0, 1v. In practice, the Laplacian prior, where h � 1, is often used due 

to simplicity. The scale parameter is then simply computed as  

i � u0.5	
s� 4 
-��v�/�                                                              	2.30�                                                           
The Generalized Gaussian Distribution (GGD) and the α-stable prior are the most 

commonly used priors. The GGD prior suffers from not capturing the heavy tail 

behavior of the observed wavelet coefficients densities. The α-stable prior shows 

superiority in fitting the mode and the tail behavior of the wavelet coefficients 

distributions. But their hyper-parameters estimator is poor in the presence of 

contaminating noise. Only two special cases of α-stable distributions have a closed 

form expression, namely the Gaussian and Cauchy pdf.  The Gaussian pdf is 

obviously not suitable to represent the signal coefficients. On the other hand the 

Cauchy pdf is unimodal and symmetric having a sharp peak around zero with 

heavy tail [83]. This is suitable for high resolution SAR images as they exhibit 

impulsive behavior indicative of underlying heavy tailed distributions [84]. For 

both the GGD and the alpha-stable priors, the derived Bayesian estimator has no 

closed analytical form in general, and also, it involves intensive numerical 
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integration. Other long-tailed distributions of wavelet coefficients have been 

proposed for specific types of images. Examples are the Pearson distributions for 

SAR images [85] and α-stable distributions for medical ultrasound images [86] etc.  

 

A large class of Bayesian wavelet domain filtering techniques assumes an 

orthogonal wavelet transform and approximates the wavelet coefficients as 

mutually independent. In such a condition, the optimum Bayes estimates act as 

simple ‘shrinkers’ of the coefficients. Such Bayesian shrinkage rules are often 

similar to soft-thresholding, but are less ad-hoc and usually outperform the 

classical thresholding in terms of the mean square error. If the wavelet coefficients 

are assumed to be i.i.d., their MAP estimates are same as presented earlier, since 

the same procedure is applied to each coefficient in a given subband. Efforts were 

made to study the relationship between such i.i.d. MAP estimators and wavelet 

thresholding [87]. There it was shown that the soft-thresholding method is 

equivalent to the MAP estimation assuming a Laplacian prior on the wavelet 

coefficients, with standard deviation equal to  
� � 
-�wx��√2, where 
-� is the 

noise variance and wx is the universal threshold. Under the minimum mean square 

error (MMSE) criterion, the optimum estimate is the conditional mean as follows 

 
Z==a/ � _ � VY|W	V
|%�E

p
�p � n 
�VW|Y	V%|
��Y	
�E
p

�p
n � VW|Y	V%|
��Y	
�E
p
�p

              	2.31� 
                    

Simoncelli and Adelson [19] applied the above MMSE estimator in the context of 

image denoising, assuming the generalized Laplacian prior from equation (2.25). In 

case of AWGN, the above equation becomes 

 
Z==a/ � n 
��	% 4 
��Y	
�E
p
�p
n ��	% 4 
��Y	
�E
p
�p

                                                   	2.32� 
                                                       

Where, ��	'� is the normal distribution V(0, 
-�). For the Laplacian prior �Y	
�the 

above estimator has no closed form solution and is computed numerically. This 

operation was implemented in an oriented multi resolution representation, known 

as the steerable pyramid by some authors [19] and reported to outperform classical 
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Wiener filtering. A related approach, but with an orthogonal 2D-DWT was later 

applied to medical ultrasound images [86].  

 

In practice, generally, two problems arise with the Bayesian approach when an 

accurate but complicated pdf is used. The first issue is it can be difficult to estimate 

the parameters for a specific image, especially from noisy data, and the second 

problem is the estimators for these models may not have simple closed form 

solution. The solution for these problems usually requires numerical techniques. 

Thus the modeling of wavelet coefficients shall be carefully done in Bayesian 

denoising. 

 

2.3.1.1.3 Interscale Dependency Model in Wavelet Domain 

In most of the statistical model based denoising schemes, the WT coefficients are 

assumed to be independent. However it was well established that there are inter and 

intra scale statistical dependency in wavelet coefficients of natural images due to 

the fact that if a WT coefficient has small magnitude the adjacent coefficients are 

very likely to be small, and the small coefficients tend to propagate across the 

scales. Thus the models which consider the WT coefficient as independent cannot 

efficiently model the transform coefficients of natural images.  

 

Several researchers have proposed many interscale dependency models for WT 

coefficients. Sendur et al [49] have proposed four different non-Gaussian models to 

characterize the interscale dependency and the corresponding bivariate MAP 

estimators based on noisy wavelet coefficients were derived. These models were 

developed based on the dependency of a coefficient and its parent at adjacent 

coarser scale locations and the coefficients at adjacent spatial locations. These 

models are based on the joint empirical coefficient-parent histograms of a large 

numbers of images taken from the Corel image database. Daubechies length-8 

(Db4) wavelet was used to compute the wavelet transform. Using this empirical 

data a shrinkage function was derived numerically which depends on both parent 

and child. It was difficult to find an accurate model for the empirical histogram. 

However an approximate bivariate pdf was proposed. If the noise is assumed to be 

independent and identically distributed the joint probability function of noise 

vector yz � 	'{ , '{G�� can be written as a bivariate pdf as   
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,-|yz} �  �
|√�I�0}�  �

�~0���0����
��0� �

                                         (2.33) 

The joint pdf  for the signal coefficient vector  �z � 	
{ , 
{G�� can be defined as   

,�|�z} �  �
|√�I�}�  �

�~√������G������
                                (2.34) 

Apply this to the MAP estimator in equation (2.22), we can get the value of 
�{  as  


�{	%{ , %{G�� �
L�s��Gs���� �√��0�� M�

�s��Gs����  . %{                                (2.35) 

Sendur et al [49] developed a subband adaptive image denoising in the wavelet 

domain based on this bivariate shrinkage function. Later they published better 

results using the same bivariate shrinkage function with local variance estimation 

[50]. 

 

There are other efficient denoising schemes available in literature which considers 

the dependency of the transform coefficients across scales. Chen et al [46-47] have 

proposed methods which take into account the intra scale dependency of the WT 

coefficients for image denoising. Crouse et al. [48] developed a framework for 

statistical signal processing based on Hidden Markov Models (HMM), where the 

interscale dependency of WT coefficients was exploited to find out an effective 

threshold. Luisier et al [51] proposed an image denoising algorithm using a point 

wise threshold based on SURE risk that takes into account interscale dependencies 

of oriented pyramid coefficients. The scheme proposed by G. Chen et al. [53] 

exploits the statistical dependency between a complex wavelet coefficient and its 

parent and children across three scales in the thresholding process. Portilla et al. 

[54] have modeled the neighborhoods of WT coefficients at adjacent positions and 

scales based on a Gaussian scale mixture (GSM) and estimated the noise free 

coefficients using Bayes least squares (BLS) estimator. Their denoising method, 

known as BLS-GSM, is still one among the best available denoising schemes in 

transform domain. 
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2.3.1.1.4 Directional Transform Based Denoising Schemes 

Among the directional transform based denoising algorithms, the one based on 

steerable pyramid representation [52] is an important one. Decomposing an image 

into a steerable pyramid is a linear operation. A steerable pyramid is conceptually 

similar to a Laplacian pyramid. In both cases an image is represented using several 

scales. The coarsest scale contains the lowest frequencies of the image and the finer 

scales contain subsequently higher frequencies. A difference between the two 

representations is that in the steerable pyramid, each scale contains several 

orientation sub-bands. Each orientation sub-band corresponds to the response of a 

directional derivative operator. The steerable pyramid transform is over complete. 

A similarity between the steerable pyramid and orthogonal transforms is that the 

steerable pyramid decomposition is self-inverting; the inverse transformation can 

be performed by applying the transpose of the matrix performing the forward 

transform. The steerable pyramid has frequently been used in image denoising. 

Two properties of steerable pyramid decompositions are particularly useful for 

image denoising. The first property is that the distribution of coefficients in 

steerable pyramid decomposition is highly peaked. The other property is that edges 

in the input image cause a clustering activity. This has the effect that the absolute 

values of neighbouring coefficients are mutually dependent. This property holds 

for spatially adjacent coefficients, but also for coefficients corresponding to the 

same image location in different scales or orientations. The steerable pyramid 

based denoising scheme was proposed by J. Portilla et al. [54]. This has provided 

better results in terms of PSNR and better edge preservation. There are efficient 

denoising schemes available in literature which are based on directional transforms 

like DTCWT, curvelet, contourlet, shearlet etc. [55-58] 

 

2.3.1.2 Non-local Techniques 

The wavelet-based denoising techniques explained in the previous section estimate 

the denoised pixel intensities based on the information provided in a limited 

surrounding neighborhood. These methods only exploit the spatial redundancy in a 

local neighborhood and are therefore referred to as local methods. One of the most 

important innovations of recent years in image denoising has been the introduction 

of non-local approach. These methods estimate the intensity of every pixel based 

on information from the whole image thereby exploiting the presence of similar 



Chapter 2 

42 

patterns and features in an image. This approach relies on the observation that most 

natural images present clear self-similarities. If the image is divided into small 

patches, then most patches repeat almost identically over and over in the image. 

Once these similar patches are identified, they can be exploited to carry out noise 

filtering. This relatively new class of denoising methods originates from the Non-

Local Means (NL Means), introduced by Buades at al. [88-89].  

 

The most popular non-local denoising techniques are Non-Local Means (NLM) 

algorithm and Block Matching 3-D algorithm. These schemes are not considered as 

the transform based techniques and thus they are not compared with the schemes 

presented in this thesis. The performance improvement in these methods is 

basically due to the non-local averaging strategy employed. A brief introduction of 

these schemes is given in this section 

 

2.3.1.2.1 Non-Local Means (NLM) Algorithm 

In NLM algorithm, the filtering is carried out through the weighted mean of all the 

pixels in a certain search area; the weight associated with each given pixel, 

however, depends not on its geometrical distance from the reference pixel but on 

its contextual similarity with it, measured by the Euclidean distance between the 

patches surrounding the selected and the reference pixel.  

 

The weight �	�, o� defined by comparing two patches As and At centered 

respectively around the pixel � and o, is represented as 

�	�, o� \ ���
� ∑l����,����,���                                               (2.36) 

where �a,� and �C,� are the k
th neighbor in the patch As and At, respectively, 

i� define a centered symmetric Gaussian kernel and � controls the decay of the 

exponential function. The similarity measure is a weighted Euclidean distance over 

the two windows, well-adapted and robust in the AWGN model. Basically, the 

NLM filter estimates a noise-free pixel intensity as a weighted average of all pixel 

intensities in the image, and the weights are proportional to the similarity between 

the local neighborhood of the pixel being processed and local neighborhoods of 

surrounding pixels. This type of non-local means approach is known as point wise 
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approach, which provides the estimate for a single point only, that is the reference 

pixel in this case.  

 

This technique, despite being intuitive and potentially very powerful, has some 

limitations. One is that the objective and visual quality of this scheme is inferior to 

the other recent non-local techniques like BM3D and the other most important 

issue is that the computational complexity of this scheme is quadratic in the 

number of pixels in the image, making it computationally intensive and even 

impractical in real applications. These issues were addressed by different 

researchers and improvements for enhancing the visual quality with reduced 

computation time have been proposed. Towards this end, modifications in the basic 

scheme with better similarity measures [90-92], adaptive local neighborhoods [93], 

or refinement in similarity estimates in different iterations [94] were proposed. The 

improvement in computational efficiency of NLM filters based on different 

techniques [95-98] were investigated out of these the neighborhood pre 

classification [95] and FFT-based computation of the neighborhood similarities 

[96] are the best ones. 

 

2.3.1.2.2 Block-Matching 3D (BM3D) Algorithm  

BM3D can be arguably considered as the state-of-the-art for AWGN denoising. 

The BM3D algorithm [99] is an extension of NLM with a multipoint rather than 

point wise filtering. It combines three basic ideas in a multipoint approach: the 

non-local approach, the wavelet domain shrinkage and the Wiener denoising in two 

steps [100]. Here the last two steps work not on local neighborhoods, but on groups 

of blocks drawn from different image locations and collected on the basis of their 

similarity. The resulting 3D groups are highly redundant allowing for a sparser WT 

representation and a more effective separation between signal and noise through 

hard thresholding in the first step. Due to grouping the statistics can be more 

reliably estimated, and the Wiener filtering on the 3D groups of the second step 

turns out to be extremely effective.  

 

The BM3D algorithm involves two steps with each step composed of three 

different phases. The three phases in the first step are as follows 
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a) Grouping: for each reference block, the most similar blocks are located in 

the image according to a minimum Euclidean distance criterion; 

b) Collaborative filtering: each 3D group undergoes WT, hard thresholding 

and inverse WT; 

c) Aggregation: all filtered blocks are returned to their original location and 

contribute with suitable weights to the basic estimate of noise free image. 

 

The second step comprises the same three stages, with the following differences 

a) Grouping: blocks are located based on the basic estimate provided by the 

first step;  

b) Collaborative filtering: each 3D group of noisy blocks undergoes DCT or 

WT, Wiener filtering and inverse transform  

c) Aggregation: like in step one. 

 

2.3.1.3 Dictionary-based Methods 

Several denoising algorithms rely on dictionaries for denoising. These methods 

learn or adapt a dictionary. Here denoising is performed patch-wise with each 

patch denoised separately and inserted into the denoised image. Usually, averaging 

is performed in areas of overlapping patches. In these methods the denoising 

performance relies on an over-complete dictionary. The dictionary contains a set of 

atoms, which can be thought of as basis functions. The idea here is to denoising by 

approximating the noisy patch using a sparse linear combination of atoms. Good 

approximations to the true solution can usually be found using orthogonal 

matching pursuit (OMP) [101], which is a greedy procedure and therefore is quite 

fast. The quality of the denoising result of a dictionary based method is highly 

dependent on the choice of the dictionary. The dictionary can be selected mainly in 

three ways, viz. by design, by global learning on a dataset of noise-free images, or 

by learning adaptively from the noisy image itself. 

 

The dictionary based methods usually provide very good denoising performance 

but are computationally very intensive. The most popular dictionary based 

denoising schemes are K-Singular Value Decomposition (KSVD), Non-Local 

Sparse Coding (NLSC) and Expected Patch Log Likelihood (EPLL). These 

schemes are briefly described here. 
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2.3.1.3.1 K-Singular Value Decomposition (KSVD)  

K-Singular Value Decomposition (KSVD) [102-103] is an iterative algorithm that 

learns a dictionary on the noisy image at hand. One iteration of the algorithm 

consists of two steps, viz. finding the coefficient of approximation for each patch in 

the image using OMP and updating the dictionary one column at a time. Usually 

ten iterations are sufficient to achieve good results. Here the dictionary updating 

step relies on a singular value decomposition, hence the name of the algorithm. 

Dictionaries learned in such a way often contain features of the image on which the 

dictionary was learned. 

 

2.3.1.3.2 Non-Local Sparse Coding (NLSC)  

Non-Local Sparse Coding (NLSC) [104] is another dictionary-based method that is 

similar to K-SVD. Here the dictionary is adapted to the noisy image at hand. The 

main difference with the KVSD scheme is that the NLSC employs simultaneous 

sparse coding [105], which encourages similar-looking noisy patches to be 

approximated using the same sparse decomposition. The idea underlying this 

approach is that the natural images contain self-similarities. That is similar-looking 

patches are expected to be found at several locations in an image. NLSC is one of 

the best currently available denoising algorithms in terms of quality of the results, 

but with a much higher computational complexity. 

 

2.3.1.3.3 Expected Patch Log Likelihood (EPLL) 

Many denoising methods denoise image patches independently and apply 

averaging or other similar techniques in areas of overlapping patches. Dictionary 

denoising methods such as KSVD are examples of such methods. The main 

problem with this approach is that the averaging process may create patches in the 

resulting images. Expected Patch Log Likelihood (EPLL) [106] contrasts itself 

from methods that denoise patches independently by keeping each patch under a 

given patch prior, while staying close to the noisy image. EPLL takes a maximum a 

posteriori (MAP) approach to denoising. The EPLL is not the expected log-

likelihood of a full image, but it is the sum over the expected patch log-likelihoods 

of many sliding window patches in an image.  Here the optimization is performed 

using half-quadratic splitting, which introduces auxiliary variables and alternates 

between two steps viz. updating the auxiliary variables while keeping the image 
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patches fixed and updating the image patches while keeping the auxiliary variables 

fixed. This procedure is repeated for a small number of iterations. 

 

2.3.2 SAR Image Despeckling 

SAR imaging is an important source of information, which provides high 

resolution images of earth in all weather and illumination conditions. It has wide 

range of applications like home land security, environmental protection, land 

resource management, disaster management, archaeology etc., which require 

different image processing tasks like image segmentation and classification, target 

detection etc. The performance of these image processing tasks is heavily 

dependent on the quality of the source images. SAR images are inherently 

susceptible to speckle, caused by constructive and destructive interference between 

waves returned from elementary scatterers within each resolution cell [2]. This will 

greatly affect the radiometric resolution of SAR images and degrade the human 

interpretation and computer-aided scene analysis. Thus, speckle reduction is a 

critical preprocessing step for any SAR image processing and applications. SAR 

image despeckling has been the active research topic over the last few years due to 

the launch of large number of radar satellites. 

The effect of speckle in SAR images can be reduced either during the image 

formation phase or later.  The former method consists of multi-look processing by 

averaging several statistically dependent looks of the same scene during image 

focusing in the frequency domain [2]. The main drawback of this method is that it 

enhances the radiometric resolution at the expense of spatial resolution, resulting in 

blurring of the image. The post-image-formation approaches of SAR despeckling 

can be grouped into three broad categories, viz. spatial, transform based and 

nonlocal filtering. These techniques are explained in this section. 

 

2.3.2.1 Spatial Domain Techniques 

The despeckling of SAR images can be considered as a statistical estimation 

problem, wherein the estimate of the radar reflectivity is carried out through the 

direct manipulation of the noisy image [107]. This is equivalent to the 

measurement of a stochastic process in a finite interval. Here the estimation 
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process will be meaningful only if the process involved is ergodic and stationary. 

This ensures that the estimations computed on a finite interval approximate the 

estimations on the whole process. Thus speckle filtering can be described as a 

function of the stationarity and non stationarity nature of the scene, speckle, and 

observed signals. Usually most of the speckle filters assume that the speckle noise 

is multiplicative unit mean wide sense stationary process. This assumption 

simplifies the processing since speckle statistics, which are constant on the whole 

scene, need to be estimated only once. Thus the despeckling filters can be 

categorized based on the stationarity-non stationarity nature of the speckle random 

process as Stationary Multiplicative Speckle Model Filters (SMSM) and Non-

stationary Multiplicative Speckle Model Filters (NSMSM) [108]. The examples of 

SMSM Filters are the Lee [6] and Kuan [5] MMSE filters and the Frost [4] filter 

and that of NSMSM is the MAP Gaussian filter [109]. 

 

The SMSM filters carry out the despeckling in the original domain in a non-

homomorphic way. They operate in the spatial domain with linear filters developed 

under a minimum mean-square error (MMSE) approach. The MMSE solution 

becomes a linear function of the covariance matrix of the signal and noise through 

the assumption of Gaussian signals. In this case it is called linear MMSE 

(LMMSE) filtering [110]. The LMMSE approach is based on the first two 

moments of the pdf and is computationally very efficient.  The SAR images are not 

generally stationary due to the spatial variations of the scene signal.  However 

these images are locally stationary. Thus the first two moments required to apply 

the LMMSE approach can be accurately estimated within a moving window. The 

idea of adaptive filtering by applying the LMMSE filtering in a local way was 

introduced by Lee [6], Kuan [5] and Frost [4]. These standard filters made it clear 

that some kind of local adaptivity is necessary to account for the non stationarity of 

the image. Even though these filters perform well to reduce speckle in 

homogeneous areas they typically exhibit limitations in preserving sharp features 

and details of the original image due to losses at contours and edges. To overcome 

these disadvantages contextual information of the image need to be taken into 

account in the despeckling algorithm. This was done in various ways in the works 

reported in [7], [8] and [111]. 
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In contrast to SMSM speckle filters, the NSMSM filters are statistical model based 

and thus require the knowledge of the a priori probability density function. Here 

the simple MMSE estimation is replaced with the more sophisticated and 

promising Bayesian maximum a posteriori (MAP) approach.  The challenging part 

of these schemes is the effective modelling of the statistics of the SAR images. If 

these models are well chosen, the noise can be efficiently removed. The most well 

known NSMSM filters are the ones proposed in [109], [9] and [112]. The method 

proposed in [109] uses a Gaussian MAP filter and the one proposed in [9] uses a 

Gamma MAP filter. The variety of situations encountered in SAR images cannot 

be accurately modeled using a simple parametric model [113]. The accuracy of the 

parameter estimation is heavily dependent on the volume of available data. The 

inaccuracies in it results in artifacts and artificial biases in the reconstructed scene. 

A large processing window will lead to an accurate estimate of the pdf parameters, 

on the other hand if the number of independent samples is not large enough a 

radiometric bias may be introduced. In particular this bias depends on the number 

of window samples but also on the texture autocorrelation included in the window.  

 

2.3.2.2 Wavelet Transform Domain Techniques 

The transform domain techniques are mainly based on wavelet transform. Here 

noise is assumed to be white and independent of the noise-free image. In case of 

SAR despeckling, to take advantage of the denoising algorithms already available 

for additive white Gaussian noise (AWGN), the multiplicative speckle noise has to 

be converted into additive one. Based on this the despeckling techniques can be 

broadly put into two main categories: the homomorphic and non homomorphic 

approach. These techniques are available in decimated and undecimated wavelet 

domain. The advantage of using undecimated wavelets for denoising signal-

independent noise is equivalent to that of a translation-invariant denoising (TID). 

The TID consists of applying wavelet denoising to circularly shifted versions of the 

noisy image and of averaging the results after shifting them back [114]. It yields 

superior performance with respect to conventional hard and soft thresholding in 

terms of noise suppression, sharpness preservation, and absence of ringing 

impairments. Therefore, transform domain despeckling is mostly performed in the 

undecimated wavelet domain. 
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2.3.2.2.1 Homomorphic Wavelet Approach 

The homomorphic approach consists in applying a logarithmic transform of the 

data to convert the multiplicative noise to an additive one. The main problem here 

is that in this process the statistics of SAR images are totally changed due to the 

non linearity of the logarithmic transform. This necessitates a detailed analysis of 

the distribution and statistics of the log-transformed speckle. Over the years many 

authors have conducted studies to describe the characteristics of the log-transform 

random variables. Arsenault et.al [115], showed that the logarithm of speckle noise 

approaches a Gaussian distribution as the number of look increases. Detailed 

studies were carried out to characterize the log-transformed speckle and to analyze 

the problems introduced by the logarithmic transformation of SAR images [116]. It 

was established that the log-transformed speckle is non-Gaussian, especially in the 

important single-look case and has non-zero mean. However many of the 

despeckling schemes available with homomorphic approach assume a zero mean 

AWGN noise. In general, mean bias problem should not be ignored especially for 

SAR images with high noise levels, for the purpose of radiometric preservation. So 

it is necessary to correct the biased mean within the processing stages. More 

importantly, the logarithm changes radically the data dynamics, leading to 

unavoidable radiometric distortions during the denoising process.  

 

The homomorphic approach of despeckling using simple hard and soft thresholding 

are presented in [15]. Even though these schemes use an empirical threshold value 

they outperformed the spatial-domain adaptive filters especially for the most 

common single look SAR images. Further to this many works were proposed to 

find out an appropriate threshold selection such as adaptive thresholding [117], 

empirical shrinkage in an adaptive fashion [118] etc. Later performance 

improvements in despeckling were achieved by optimizing the shrinkage parameter 

through a statistical Bayesian approach by assuming a priori hypothesis on the 

reflectivity of the scene. For this several solutions were proposed based on MAP 

criterion and different distributions like the Γ-distribution [119], the alpha-stable 

distribution [120], the normal inverse Gaussian [121], or the simpler Cauchy 

distribution [64], for the log-transformed reflectance in the wavelet domain. Since 

the alpha-stable distribution [120] does not have a closed-form expression, the 

estimation of the pdf parameters from the noisy image is hampered and the 
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Bayesian estimator obtained does not have a closed-form. This results in a high 

computational complexity. In [64] it was shown that two special cases of the alpha-

stable distribution have closed-form expressions, the Gaussian and Cauchy pdfs. 

Based on this a simple Cauchy prior was proposed, which has the advantage to be 

symmetric, to have a sharp peak around zero with heavy tails and to have only 

dispersion parameter to estimate. This prior leads to the derivation of both a MAP 

and MMSE Bayesian estimators.  

 

In homomorphic approach, after denoising an exponential operation is employed to 

convert the log-transformed images back to the non logarithmic format. However, 

the mean of log-transformed speckle noise does not equal to zero resulting in a bias 

in the mean of reconstructed signal. This means the backscatter mean is not 

preserved in homogeneous areas when the logarithm is inverted after filtering. This 

needs to be corrected to avoid extra distortion in the restored image. A solution to 

this problem was proposed by Xie et al. [122], which adjusts the mean value by 

adding a further processing step. The other major issue with homomorphic filtering 

is that the signal variations are damped by the logarithm, resulting in an unlikely 

flatness after filtering.  

 

2.3.2.2.2 Non-Homomorphic Wavelet Approach 

The non-homomorphic approaches use the multiplicative noise model to develop 

the denoising algorithm. To one side this brings the advantage that all the issues 

related to the homomorphic approach are avoided, on the other side there are some 

serious modeling issues to be solved with the multiplicative model. In the early 

days the multiplicative model were not as well developed as the techniques for 

additive noise. Over the years lot of non homomorphic techniques have been 

proposed [6-8] enumerating only the spatial domain approaches. All these 

techniques simplify the multiplicative noise model in various ways. 

 

In order to overcome the drawbacks of the homomorphic approach, several authors 

look to the additive signal-dependent speckle model in the wavelet domain. When 

the noise is signal independent, the MMSE Wiener filtering can be simply 

formulated and efficiently performed in the wavelet domain. Here it is done as a 
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rescaling of wavelet coefficients by a space-varying factor depending on the SNR 

of the coefficients themselves [123]. A low complexity MMSE estimation 

procedure is proposed in [124] to derive the shrinkage factor for each wavelet 

coefficient. Later MMSE filtering was extended to multiplicative noise in 

undecimated wavelet domain [125]. Foucher et al. [85] used the Pearson 

distribution to model the pdf of stationary WT wavelet coefficients and 

reconstructed the despeckled image using the MAP criterion. Although this 

algorithm has sound performance, the high computational complexity of the 

Pearson distribution makes this approach less appealing in practice. M. Dai et al 

[126] presented an efficient non-homomorphic despeckling scheme with edge 

preservation. F. Argenti et al [59] proposed a despeckling scheme in wavelet 

domain based on generalized Gaussian (GG) distribution, characterized by two 

spatially-varying parameters. These parameters of the speckle-free reflectivity and 

the signal-dependent noise are derived, through the relationships between these 

moments and the moments of observable noisy variables. The main problem here is 

that the cross correlation of the reflectivity pixel is neglected to enable a more 

simple estimation of GG parameters. This assumption is justified in homogeneous 

areas, but no longer in textured ones. To overcome these issues the same scheme 

was extended by classification of wavelet coefficients based on their level of 

heterogeneity [60]. Information about scene heterogeneity is very important 

because the local stationarity and ergodicity assumptions, to obtain the statistical 

estimation of parameters, may no longer be verified. Moreover, in case of 

extremely heterogeneous areas, like point targets, being the speckle not fully 

developed, leaving the area as such without any processing will be a better 

strategy.  

 

One of the major drawbacks of GG-based MAP solutions, either with or without 

classification of wavelet coefficients, is that they can be achieved only numerically, 

thereby leading to a high computational cost. A Laplacian–Gaussian (LG) 

assumption was used to derive MAP and minimum mean square error (MMSE) 

estimators for despeckling of medical ultrasound images [61]. This was based on 

homomorphic filtering, which may induce a biased estimation. Later based on the 

assumption that the estimated distributions of the wavelet coefficients relative to 

the speckle free reflectivity and to the speckle noise approximately follow a 
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Laplacian and a Gaussian distribution, respectively, a MAP despeckling scheme 

was proposed [62]. As in the case of the GG-based MAP solution, here also 

classification of wavelet coefficients according to their texture content was carried 

out. Here the computational cost was reduced by one order of magnitude with 

respect to the solution obtained numerically with the GG assumption, without 

significantly affecting the performance in terms of speckle reduction.  

 

2.3.2.2.3 Bayesian Despeckling in the Wavelet Domain 

From a signal processing perspective, despeckling filters aim at performing an 

estimation of the radar reflectivity (signal of interest), based on the speckled image 

(observed signal). Bayesian estimation techniques can be used to solve this 

problem. As explained earlier the Bayesian solution can be obtained basically using 

MMSE or MAP equations. The MMSE requires only the second order moments of 

the noise component while the MAP requires the precise knowledge of the pdf of 

the random variables involved. 

 

Under Gaussian signals assumptions, the MMSE solution becomes a linear 

function of the covariance matrices of the signal and of the noise and it is referred 

to as linear MMSE (LMMSE) filtering. The underlying hypothesis of uncorrelated 

noise yields a spatial LMMSE filtering, by locally modeling the covariance matrix 

of the signal. The further assumption of uncorrelated signal variations around its 

space-varying mean yields the local LMMSE (LLMMSE) filter. When non-

Gaussianity assumptions are made on the first-order distribution of reflectivity, the 

LMMSE solution is no longer optimal. Consequently, the LLMMSE solution is a 

maximum likelihood (ML) approximation of the MMSE estimate. In the non-

Gaussian case the MMSE estimator may be formulated as a maximum a posteriori 

(MAP) estimator. As explained earlier, if the number of looks is not too large, SAR 

reflectivity is non-Gaussian distributed. Hence, better estimators like the Gamma-

MAP filter is required where the underlying assumption of Gamma-distributed 

texture allows a closed-form MAP solution.  

 

There are many despeckling schemes available in literature, which are based on 

Bayesian estimation techniques. Many of these schemes are already covered in the 

previous two sections.    
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2.3.2.3 Directional Transform based Techniques 

SAR image despeckling using WT results in unexpected pseudo contours due to 

the fact that 2D WT can only provide three directional subbands in a certain 

resolution. To overcome these issues despeckling schemes based on different 

directional transforms were introduced very recently. The prominent among these 

are the DTCWT [65-66], curvelet [67], contourlet [68], shearlet [69] and bandlet 

[70-71] based schemes. These schemes provided better results as compared to WT 

based ones. A brief description of these schemes is presented here. 

 

The DTCWT has the advantage of improved directional selectivity, approximate 

shift invariance, and perfect reconstruction over the discrete wavelet transform. J J 

Ranjani et al. proposed a despeckling algorithm based on DTCWT by considering 

the dependences of the wavelet coefficients across different scales [65]. Here the 

DTCWT coefficients in each subband are modelled with a bivariate Cauchy pdf 

which takes into account the statistical dependence among the DTCWT 

coefficients. A MAP estimator is used to compute the noise free coefficients. 

Mellin transform of two dependent random variables is utilized to estimate the 

dispersion parameter of the bivariate Cauchy pdf from the noisy observations. Later 

the scheme was refined by the same authors with a multivariate Cauchy pdf, which 

takes into account the statistical dependency between the DTCWT coefficients, 

their neighbours and coefficients across scales [66]. 

 

F. Argenti et al. proposed an efficient despeckling scheme by exploiting the 

multidirectional capabilities of non-sub sampled contourlet transform (NSCT) [68]. 

Here the noise free NSCT coefficients are estimated from the observed ones 

according to MAP and LMMSE criterion. Even though this scheme has provided 

better results, the computational complexity of the scheme is much higher due to 

the non separable filtering of NCST. Later an adaptive despeckling method based 

on non-sub sampled shearlet transform (NSST) was proposed [69], in which the 

NSST coefficients in each subband are classified to identify the signal of interest. 

Here the quantitative analysis of noise variance is made by considering the 

interaction of Laplacian pyramid with Directional Filter Bank used in NSST. This 

has improved the spatial adaptability of the scheme.  The classification of different 

regions in SAR image was carried out to reduce the shrinkage ratio for 
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heterogeneity regions while removing speckle effectively. This method has 

provided reasonably good despeckling performance when compared to the 

previously mentioned NCST based scheme while preserving details and texture 

information well. 

 

The bandelets have adaptability as compared with wavelet, curvelet, contourlet, 

shearlet etc. Also the number of its optional directions outperforms other multiscale 

geometric analysis tools. A despeckling algorithm based on Translation Invariant 

Bandlet Transform (TIBT) using edge detection and Fuzzy C Means (FCM) 

clustering was proposed by Biao Hou et al. [70].  Later a similar despeckling 

scheme was reported with edge detection based on multiscale products of bandlet 

transform [71]. Both these schemes provided very good despeckling results as 

compared to WT and other directional transform based schemes.  

 

2.3.2.4 Non-local Despeckling Techniques 

One of the most important innovations of recent years in denoising has been the 

introduction of non-local approach. Non-local filtering represents a complete 

change of perspective in image denoising, since the “true” value of the current 

pixel is no more estimated from the pixels closest to it, but from those pixels, 

located anywhere in the image, which have the most similar context. This approach 

relies on the observation that most natural images including SAR images present 

clear self-similarities. In images most patches repeat almost identically over and 

over in the image. Once these similar patches are identified, they can be exploited 

to carry out noise filtering.  

 

By exploiting image self similarity, nonlocal filtering mimics a true statistical 

averaging of pixels, thus allowing strong speckle reduction and accurate 

preservation of features. On the down side, it requires the computation of a large 

number of block-similarity measures and is therefore computationally demanding.  

SAR despeckling schemes based on non-local approach are presented here.  

 

2.3.2.4.1 Probabilistic Patch-Based (PPB) Filtering  

PPB can be considered as an evolution of NLM for speckle noise [127-128]. Here a 

similarity measure is developed which is well suited to SAR images. PPB is 
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developed by a more general approach for patch-based denoising in the framework 

of Weighted Maximum Likelihood Estimation (WMLE). The WMLE has first 

been applied to image denoising by Polzehl et al. [129]. Contrary to this, in PPB 

the weights are defined following a statistical patch-based approach. Here a 

suitable patch-based weight is defined to generalize the Euclidean distance based 

weight used in the Non-local means algorithm. In PPB the distance between two 

patches is based on the speckle distribution model. This scheme has provided 

reasonably good despeckling results. 

 

2.3.2.4.2 SAR Version of BM3D 

The BM3D scheme was extended to SAR despeckling by taking a non-

homomorphic approach [130]. For images with a small number of looks, this kind 

of approach does not work well, being the hypothesis of Gaussian noise not 

satisfied in this case. Since the logarithmic operation changes the data dynamics 

and, therefore, the distances among patches, a homomorphic approach is used here. 

The original BM3D algorithm was modified with respect to the criterion used to 

collect blocks in the 3D groups and the thresholding process. In the AWGN setting 

the grouping based on Euclidean distance makes perfect sense because a smaller 

Euclidean distance corresponds to a higher likelihood that the two signal blocks 

without noise be equal. However, once the noise statistics change, as happens with 

SAR images, the Euclidean distance loses its significance. 

 

2.3.3 Strengths and Weaknesses of Different Schemes 

The denoising algorithms cannot always be clearly assigned to one category and 

might sometimes belong to several categories. Linear smoothing, median filtering, 

wiener filter, anisotropic diffusion and bilateral filtering are considered to be 

filtering-based methods. BLS-GSM and KSVD are based on a decomposition of 

the image though KSVD can also be said to rely on prior knowledge. EPLL, 

BM3D and NLSC rely on prior knowledge about images. Methods based on prior 

knowledge about images can be further divided into external knowledge based 

ones and   internal knowledge based ones. The former one is based on knowledge 

about all natural images and the later one is based on knowledge about the noisy 



Chapter 2 

56 

image itself. EPLL belongs to the category exploiting external knowledge, whereas 

BM3D and NLSC belong to the category exploiting internal knowledge. 

 

Methods based on internal knowledge are a more recent development than methods 

based on external knowledge. The idea underlying methods exploiting internal 

knowledge is to look for regions within an image that are similar in appearance. 

This idea was extended to image patches and looks for similar patches within a 

given noisy image and performs a weighted average of the center pixels for 

denoising in NL-means approach. BM3D also exploits the idea of grouping patches 

that are similar in appearance, but performs a more effective denoising step on the 

group of patches rather than a single patch in NL-means. NLSC is a further 

example of a method exploiting this idea. There similar-looking patches are 

grouped and denoised together using simultaneous sparse coding, where a 

dictionary is used that is adapted to the noisy image itself. Dictionary-based 

methods can belong to either the category exploiting external or internal 

knowledge, depending on what kind of dictionary is used for sparse representation. 

If the dictionary is learned on a large dataset of images, the method belongs to the 

category of methods exploiting external knowledge. If the method learns a 

dictionary on the noisy image at hand, such as KSVD, the method belongs to the 

category of methods exploiting internal knowledge. NLSC employs a dictionary 

that is learned on a dataset of noise-free images, but adapts this dictionary to the 

noisy image at hand, similarly to KSVD. NLSC can therefore be said to belong 

both to the category employing internal and to the category employing external 

knowledge. In case the dictionary is hand-crafted as opposed to learned on either a 

larger dataset or a single noisy image, the method belongs to the same category as 

methods based on wavelet-decompositions. They rely on a decomposition of the 

image that is useful, but do not rely on learning. 

 

These denoising methods have complementary strengths and weaknesses. They 

vary in terms of denoising results and the computational complexity of the 

algorithm. The computationally most intensive methods learn or adapt a dictionary. 

The KSVD and NLSC schemes require long computation times (up to an hour on a 

modern machine for images of size 512x512). The BM3D requires the computation 

of a large number of block-similarity measures and is therefore computationally 
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demanding. The BLS-GSM and the directional transform based schemes are 

relatively fast. The computational complexity of directional transform based 

schemes depends mainly on the type of transform used. If the transform is a 

separable one and non redundant, then it will be computationally more efficient. 

Most methods like EPLL lie somewhere in the middle of these two extremes and 

require a few minutes of computation for images of size 512x512. The methods 

relaying on internal knowledge are particularly effective on images with repeating 

structure, whereas methods relying on external knowledge are usually more 

effective on images with more complex structures which are not identical within 

the same image. 

 

The importance of the image denoising problem goes beyond the evident 

applications it serves. Being the simplest possible inverse problem, it provides a 

convenient platform over which image processing ideas and techniques can be 

tested and perfected. Thus the aim shall be to concentrate on weather and how can 

we develop a generalized framework of image restoration which is not only 

suitable to solve image denoising problem, but also has potential ability to retain 

the visually important features like contours, edges etc in a computationally 

efficient manner.  

 

2.3.4 State of the art Denoising & Despeckling Schemes  

In case of denoising of images with AWGN, the bivariate shrinkage with local 

variance in DTCWT domain [50], BLS-GSM scheme [54] and BM3D scheme [99] 

are considered as the state of the art techniques. The first one is the simplest 

algorithm with a very less computation time. The BLS-GSM is considered as the 

state of the art in transform domain image denoising, but the computation time is 

high. The BM3D algorithm achieves the largest PSNR among the existing 

denoising algorithms. This algorithm uses a highly complicated image noise model 

and uses a non local approach for denoising. The BM3D algorithm has much high 

computational complexity than the other schemes mainly because of the 

computation of a large number of block-similarity measures, grouping similar 2-D 

fragments of the image into 3-D data array and the collaborative filtering to deal 

with these 3-D data arrays. The details of these schemes are already presented in 

the previous sections. 
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Among the wavelet based SAR despeckling schemes, the one based on generalized 

Gaussian Distribution (GGD) [60], Laplacian distribution [63] and Cauchy’s 

distribution [64] are considered as the state of the art. In the first scheme, the 

wavelet coefficients are partitioned into classes having different degrees of 

heterogeneity and different GG parameters are used for different sets of 

coefficients. Even though this scheme outperformed the previously proposed 

schemes in terms of speckle reduction, the high computational cost due to the 

numerical estimation of noise free coefficients has limited its practical applications. 

To overcome this, a Laplacian–Gaussian (LG) assumption was used to derive MAP 

and MMSE estimators in the second scheme. As in the previous case here also 

classification of wavelet coefficients according to their texture content was carried 

out. Here the computational cost was reduced by one order of magnitude with 

respect to the solution obtained numerically with the GG assumption, without 

significantly affecting the performance in terms of speckle reduction. In the third 

scheme Cauchy’s distribution is used to model the heavy tailed behavior of SAR 

images. This scheme also provided reasonably good results. 

 

SAR image despeckling using WT results in unexpected pseudo contours due to 

the fact that 2D WT can only provide three directional subbands in a certain 

resolution. To overcome these issues despeckling and denoising schemes based on 

directional transforms were introduced very recently. Among the directional 

transform based SAR despeckling schemes, the one based on DTCWT [65-66], 

contourlet [68], shearlet [69] and bandlet [71] are considered as the state of the art 

techniques. The despeckling scheme proposed by J J Ranjani et al. [65] used a 

MAP estimator by modelling the significant dependences of the DTCWT 

coefficients across different scales with a bivariate Cauchy pdf. Later the same 

authors refined this scheme by introducing a multivariate Cauchy pdf [66]. In the 

contourlet based scheme a non-sub sampled contourlet transform (NSCT) is used 

in Bayesian framework to estimate the noise free image [68]. The computational 

complexity of the scheme is much higher due to the non separable filtering of 

NSCT. In the shearlet based scheme the non-sub sampled shearlet transform 

(NSST) coefficients in each subband are classified to identify the signal of interest 

[69]. An edge detection and despeckling algorithm based on multi scale products in 

bandlet domain was proposed by W G Zhang et al. [71]. Here the edge is first 
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detected and the edge removed image is used for despeckling. Finally the removed 

edge is added to preserve edges while despeckling.  

 

Among the non-local techniques for SAR image despeckling, the probabilistic 

patch based filtering (PPB) [128] and the SAR version of BM3D (SAR-BM3D) 

[130] are considered as the state of the art despeckling schemes. The details of 

these schemes are given in section 2.3.2.4. 

 

2.4 Measures of Image Denoising Performance 

The measures of denoising performance are different for different types of images. 

The performance measures used for SAR images may not be a good performance 

indicator for images corrupted with Gaussian noise. A good SAR despeckling 

technique should have basically four important characteristics [3] viz. speckle 

reduction in homogeneous areas; preservation of scene features such as texture, 

edges, point target etc.; radiometric preservation and absence of artifacts. To assess 

the capacity of a despeckling technique to achieve such results, a set of suitable 

measures are used in the literature, which can be classified as no-reference 

measures and full-reference measures. The no-reference measures are applied on 

real-world SAR images and the full-reference measures are applied when a 

reference SAR image is generated by simulation. In some approaches, despeckling 

quality is judged based on the results of subsequent tasks, such as classification or 

segmentation, but these are obviously application-dependent and hence not very 

general. Many of these measures can be used to assess the performance of 

denoising algorithms for images corrupted with AWGN also. 

 

Here let us consider the following model of a discrete noisy image:- 

� � �. �                                                                                         (2.37)      

Where F is the clean image or the reference image, G is the noisy image and V is 

the multiplicative speckle noise. Let �� be the denoised or the despeckled image. 

The no reference measures require only G and ��  while the full reference measures 

require F and �� . 
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2.4.1 No-Reference Measures  

The no reference measures are applicable for real SAR images. Due to the lack of a 

reference, these measures make sense only if referred to areas of the SAR image 

that can be clearly characterized in terms of their signal content as homogeneous, 

heterogeneous, or extremely heterogeneous regions. There are basically four 

different types of quantitative evaluation indicators which can be used to evaluate 

the performance of SAR images.  

 

2.4.1.1 Effective Number of Looks (ENL)  

Homogeneous regions in SAR images are the most simple to analyze as in these 

areas the randomness of the observed signal is only caused by speckle, which is 

fully developed. Here for each pixel the multiplicative noise model is valid and the 

speckle can be modeled as Gamma distributed with unit mean and variance = 1/L, 

where L is the number of looks. ENL is a commonly used parameter to measure the 

smoothing effects in the de-speckled image in homogeneous regions. The ENL is 

defined as 

ENL � � ���
���                                                       (2.38) 

where � � 1 for SAR images in intensity format and � � 	JI 4  1� for SAR images 

in amplitude format and � and 
� are the mean and variance values respectively 

over the homogeneous area. Since the mean value reflects the average brightness of 

a SAR image, the sustainment of it is important to image calibration. Variance of 

image denotes the range at which the pixels in an image deviate from the mean. A 

lower Variance gives a cleaner and smoother image. So the denoised image should 

sustain the mean of image and decrease its variance. A large ENL value 

corresponds to better speckle suppression, with infinity corresponding to ideal 

filtering. In a homogeneous region, one can also evaluate the radiometric 

preservation by comparing the value of the local mean backscattering reflectivity in 

the original and filtered images. A successful speckle reducing filter should not 

significantly alter the mean intensity within a homogeneous region.  

 

ENL is preferred in many cases as it is the most commonly used measure, which 

provides an immediate insight about speckle reduction ability. Also it has a 
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compelling physical meaning as the number of looks needed to reach the same 

speckle suppression level guaranteed by filtering; and it can be computed also in 

the absence of a reference image, provided a flat region can be identified. 

However, on the down side it is not a good measure of despeckling performance in 

heterogeneous areas of an image as it depends on the presence and detectability of 

a relatively large flat region of the image. Also because of the variation of the 

incidence angle between near and far range, homogeneous areas exhibit a slight 

amplitude variation along the range direction, which obviously affects the ENL 

measures. Thus the subjective quality of the despeckled image through visual 

examination is also important. A refined version of ENL, referred to as ENL* 

[131] is also used in literature, which removes the image amplitude variation along 

range, by dividing values on each fixed-range line by their average, before 

computing the ENL. When the despeckling is very effective ENL* can differ 

significantly from the conventional ENL.   

2.4.1.2 Mean of Ratio Image (MoRI) 

In SAR images, when dealing with heterogeneous regions like textured areas and 

edges, the analysis becomes more complex. Texture, which represents the intrinsic 

spatial variability of a natural scene, is a precious feature to discriminate among 

different land-use types. Measuring its preservation, however, is not an easy task 

[107]. In case of edges, one can apply an edge detector on the filtered images and 

observe the resulting edge map.  

 

Since speckle in SAR imagery is multiplicative noise, the ratio of the original SAR 

image to the despeckled one is the speckle. So the statistical characteristics of the 

ratio image can indicate the performance of the despeckling methods. For ideal 

filtering, the ratio image should be pure speckle. Thus, its mean should equal one, 

and its variance should be the inverse of the number of looks [121]. The mean of 

ratio image, MoRI is usually used to measure the degree of radiometric 

preservation. The mean closer to one means a better performance of radiometric 

preservation. In addition, this comparison provides information regarding a 

possible bias and whether the speckle is insufficiently filtered (the variance is 

lower than the theoretical value) or the scene texture is smoothed (the variance 

becomes larger than the theoretical value). In addition, the visual inspection of the 



Chapter 2 

62 

ratio image can provide information on the degree of edge-preservation in a region, 

as the presence of structures in ratio image indicates that they are filtered out from 

the original data. The ratio image can also give important indications on filtering 

artifacts which is often not so visible in the filtered image.  

 

2.4.1.3 Edge Save Index (ESI) 

The effectiveness of a despeckling algorithm in edge preservation can be assessed 

using a parameter called Edge Save Index, ESI [132]. It reflects the edge save 

ability in horizontal (ESIH) or vertical (ESIV) direction of the despeckling 

algorithm. The bigger the ESI, the stronger the edge save ability. The ESI can be 

computed using the following formulae:- 

2��� � ∑ ∑ ���8,�G� 4 ��8,������>�f8>�
∑ ∑ ��8,�G� 4 �8,������>�f8>�

                        	2.39� 
                                                       

2��� � ∑ ∑ ���8G�,{ 4 ��8,��f��8>���>�
∑ ∑ ��8G�,{ 4 �8,��f��8>���>�

                        	2.40� 
 

where � is the original noisy image, �� is the reconstructed image, p is the row 

number and q is the column number of the image.  

 

2.4.1.4 Signal-to-Clutter Ratio (SCR)  

In SAR images, the speckle noise in extremely heterogeneous areas such as point 

targets, strong edges, or buildings, does not obey to a fully developed model. So 

during despeckling these areas should not be filtered at all, and their original value 

should be preserved. The performance assessment using the above mentioned 

measures cannot be applied to these areas. Here a new measure known as Signal to 

Clutter Ratio (SCR) can be used to evaluate the performance of preservation of 

strong point targets in SAR images [69]. SCR in decibels (dB) is defined as 

�<� � 10 log�q∑ ∑ |�̌	6, ¡�|{T ¢
£                               	2.41� 
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where �̌	6, ¡� is the point target pixel value, ¢ is the total number of point target 

pixels, and 
£  is the clutter standard deviation. A large SCR value corresponds to 

better speckle suppression. 

 

2.4.2 Full-Reference Measures  

The performance assessment becomes much simpler when a clean reference is 

available. In literature, both natural optical images and synthetic images with 

simple features such as uniform regions, textures, edges or strong scatterers are 

used as references. Synthetic SAR images are generated by applying a fully 

developed speckle field. In this case, one can easily compute all sorts of full-

reference global distortion measures on the filtered image from the traditional 

mean-square error (MSE) up to most recent measures, like the structural similarity 

index, which try to provide more meaningful information about the closeness of 

two images. The proposed measures can be calculated globally or locally, if one is 

interested on the performance on specified areas. Through the clean reference, 

several objective measures are proposed to assess the edge-preservation capacity of 

the filters. In particular, one can generate synthetic images with edges of different 

slope, orientation and thickness and define indexes on a certain region of interest.  

Here G, F and  �� are available. Since all the three types of images are available, the 

no reference measures explained in the previous section also can be applied here. 

 

2.4.2.1 Peak Signal-to-Noise Ratio (PSNR) 

For synthetic speckle images and images corrupted with AWGN, the peak signal-

to-noise ratio (PSNR) can be used to evaluate the performance. It is defined as 

��¢� � 10 log�q � ¤�
¥¦§�                                         	2.42�    

where R is the maximum fluctuation in the denoised image and MSE is 

representing the Mean Square Error between the despeckled image �� and the 

original reference image F. For an 8 bit image the value of R is 255. 

¨�2	��, �� � ∑ ���	6, ¡� 4 �	6, ¡���8,�
, © ª             	2.43� 
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where p and q are the size of the image. To improve readability, the above result 

can be shown on a logarithmic scale by means of the related despeckling gain 

measure (DG) defined as 

«� �  10 ¬­%10¨�2	��, ��
¨�2	��, ��                                 	2.44� 

                                                           

Larger number of «� indicate better speckle rejection. The PSNR is the most 

commonly used full reference measure and this single measure can give the best 

assessment of any denoising or despeckling scheme. 

 

2.4.2.2 Edge-correlation Factor (β-index)  

The edge correlation parameter h is a metric which assesses the quality of the edge 

preservation [133]. It evaluates the correlation index between the high pass 

versions of the original and filtered images. 

h � ∑ �∆�� 4 ∆��®� 	∆� 4 ∆�®�T,{
�∑ �∆�� 4 ∆��®��∑ 	∆� 4 ∆�®��T,{T,{

               	2.45�  

                                                         

where ∆�� and ∆� are the high pass filtered outputs of �� and respectively obtained 

with a 3× 3 pixel standard approximation of the Laplacian operator. The over line 

operator represents the mean value. If the edges are optimally preserved in the 

despeckled or denoised image, then the value of h will be close to one.  

 

2.4.2.3 Mean Structural Similarity Index Matrix (MSSIM) 

Mean Structural Similarity Index Matrix (MSSIM) is a performance indicator 

which measures the structural similarity between a reference image and the 

despeckled or denoised image [134]. It is reported to be a more reliable metric for 

assessing the visual quality. 

¨���¨|�, ��} � 1
¨:���¨	�{ ,, ��{� 

¥

{>�
                   	2.46� 
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where � and ��  are the reference and the despeckled images, respectively, M is the 

number of local windows in the image, SSIM is the Structural Similarity Index 

Matrix, �{ , and  ��{ are the image contents at the j
th local window. The SSIM is 

defined as 

���¨|�, ��} � 	2�Y�Y� & <��	2
YY� & <��
	�Y� & �Y�� & <��	
Y� & 
Y�� & <��      	2.47�      

                                           

where �Y and �Y� are the estimated mean intensities and 
Y and 
Y�  are the standard 

deviations of the original reference image and the despeckled image respectively. 

The constants <� and <� are given as <� � 	r�«�� and <� � 	r�«��, respectively 

where r�, r� ¯ 1 and « is the dynamic range of the pixel values. 
YY�  can be 

estimated as  


YY� � 1
¢ 4 1:	�T 4 �Y�	��T 4 �Y�� 

°

T>�
                      	2.48�    

                                             

where ¢ is the size of the image. 

 

2.4.2.4 Figure of Merit (FOM)  

Pratt’s figure of merit (FOM) is a performance measure for SAR images used to 

measure edge preservation in the despeckled SAR image [135]. It measures the 

distance of a given edge map from the reference edge map, penalizing both the 

suppression of true edges and the detection of false ones 

� � 100
¨@6± ¢²§ , ¢³²´ :

1
1 & rET�

°µ¶

T>�
                         	2.49�   

                                                      

where ¢³² is the number of ideal edge pixels. ¢²§ is the number of detected pixels, 

and di is the distance between the i
th
 detected edge pixel and the closest true edge 
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pixel. Here K is a calibration constant, which is an arbitrary penalty parameter and 

can be set as two for a stronger penalization of misplaced edge pixels. The factor 

¨@6± ¢²§ , ¢³²´ penalizes the number of false edges. The smearing and offset 

effects are also included in the Pratt’s measure to provide an impression of overall 

quality. 

 

2.4.2.5 Edge-Preservation Index (EPI) 

There are several objective performance measures available to assess the edge-

preservation capacity of the filters. One can generate synthetic images with edges 

of different slope, orientation and thickness and define indexes on a certain region 

of interest. The edge-preservation index (EPI) [136] is one such parameter which is 

defined as follows: 

2�� � ∑ ���T,� 4 ��T,��FT>�∑ ��T,� 4 �T,��FT>�
                                              	2.50�    

                                                                     

where �T,�, �T,�, ��T,�, and ��T,� are the values of the reference and filtered images, 

respectively, observed on the one pixel wide lines on both sides of the edge. Larger 

values correspond to a better edge retaining ability of the filter. Recently, a 

modified version of 2�� called Edge-Preservation Index based on Ratio of 

Average (EPI-ROA) [137] was proposed. This is based on ratios rather than 

differences. 

 

All of the above parameters need not be used for assessing the performance of a 

denoising or despeckling algorithm as some of these parameters give only 

redundant information. Thus in this thesis some of these parameters are only used 

for assessing the performance. These are selected based on the use of these 

parameters in the competing referred works. 
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Chapter 3 

Directionlet Transform 
 

 
In the beginning of this chapter the background knowledge 
on wavelet theory is reviewed. The requirement of a multi 
resolution anisotropic transform with directional vanishing 
moments along multiple directions is then analysed. This 
follows the directionlet theory and construction of 
directionlet transform. The sparsity due to the anisotropy and 
any direction nature of directionlet is also illustrated. Then 
the polyphase representation of directionlet transform is 
presented. Finally an analysis on the computational 
complexity of directionlet transform as compared to wavelet 
transform and other directional transforms is presented. 

 

 

 

3.1 Introduction 

Over the last two decades the standard two-dimensional (2-D) wavelet transform 

(WT) has emerged as an efficient multi resolution analysis tool for images. But it 

fails to provide a compact representation in the presence of one-dimensional (1-D) 

discontinuities, like edges or contours. The main reason for this inefficiency is the 

spatial isotropy of the construction of the standard 2-D WT, that is, filtering and 

subsampling operations are applied equally along both the horizontal and vertical 

directions at each scale. The corresponding filters, obtained as direct products of 

the 1-D counterparts, are isotropic at all scales. However, discontinuity curves 

present in images are having highly anisotropic features and they are characterized 

by a geometrical coherence that cannot be properly captured by the isotropic 

transforms. Many wavelets that intersect such anisotropic objects generate many 

large magnitude wavelet coefficients. This is illustrated in a simple example in 

Figure 3.1. A simple image with one discontinuity along a smooth curve is 

represented by the two types of basis functions: isotropic and anisotropic. The 
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support of these basis functions is shown schematically as black rectangles. Figure 

3.1 (a) shows the spatial frequency tiling of Standard 2-D WT for two iteration and 

figure 3.1 (b) shows its basis functions. The spatial frequency tiling of an 

anisotropic transform with anisotropic ratio of 1:2 along horizontal to vertical 

direction is shown in figure 3.1(c) for two iterations and figure 3.1 (d) shows its 

basis functions. It can be seen from these figures that the isotropic basis functions 

generate a large number of significant coefficients around the discontinuity, but the 

anisotropic basis functions trace the discontinuity line and produce just a few 

significant coefficients. Thus the requirement is anisotropic basis functions that can 

match anisotropic objects in images. However, the design of the anisotropic 

transforms that ensures an efficient matching between the basis functions and 

objects in images is challenging.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
Figure 3.1 Representation efficiency of isotropic and anisotropic basis functions               

(a) frequency decomposition of 2-D WT for two iterations and (b) its basis functions. (c) 

frequency decomposition of an anisotropic transform with anisotropic ratio of 1:2 for two 

iterations and (d) its basis functions. 

(a) 

(c) 

(b) 

(d) 
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Anisotropic basis functions have already been tried in many transforms. This 

includes adaptive or signal dependent schemes like bandelets [34-35] and non-

adaptive schemes like curvelet [20], contourlet [21], directional filter banks [22], 

wedgelets [23-24], Dual Tree Complex WT (DTCWT) [25], Shearlet [29-31] etc. 

These methods build dictionaries of anisotropic basis functions that provide a 

sparse representation of edges in images. However, most of these directional 

transforms often require oversampling, have higher computational complexity 

when compared to the standard DWT, and require non-separable convolution and 

filter design. Also in some of these schemes the transform directions are not 

adaptive to the dominant directions and filtering is done in continuous domain 

making it difficult to use them on discrete images.  

 

3.2  2-D Wavelet Transform 

The 2-D WT is designed in such a way that the filter bank used in it is fully 

separable. This enables to get the associated basis functions as the direct product of 

two independent 1-D basis functions in the horizontal and vertical directions. This 

method is conceptually simple and has very low computational complexity. The 

construction of the standard 2-D WT is shown in figure 3.2. The filtering and 

subsampling operations in the transform are iterated with an equal number of steps 

along both the horizontal and vertical directions at each scale. At the first stage the 

rows of the image to be transformed are low pass (L) and high pass (H) filtered and 

down sampled by two. In the next step each column of the row filtered image is 

again low pass (L) and high pass (H) filtered and down sampled by two. The output 

of this will have four sub band images labelled as LL, HL, LH and HH. Now the 

LL subband image goes through the same process of filtering and down sampling 

to form the next stage of the structure. The basic 1-D high-pass (HP) and Low Pass 

(LP) filters used in the transform are denoted as H1(z) and H2(z), respectively. The 

resulting filters, obtained as direct products of the 1-D counterparts, are isotropic at 

all scales resulting in four frequency bands as shown in figure 3.3(a).  The 

corresponding isotropic basis functions for Haar and Biorthogonal wavelets and its 

Fourier transform are shown in figure 3.3(b), (c) and (d) respectively. The main 

limitation of such a construction is that it cannot properly capture the anisotropic 

features in images leading to an inefficient sparse representation in transform 

domain. 
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Figure 3.2 The filtering and subsampling operations in standard 2-D WT with two steps in 

each direction. 

 

 

Figure 3.3 (a) The frequency decomposition of 2-D WT. The corresponding basis functions 

for (b) Haar and (c) biorthogonal - 9/7 wavelets (d) Fourier transform of the basis functions 

obtained from the biorthogonal - 9/7 1-D filters. 
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 . . . . . . .  
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3.3 Fully Separable 2-D Wavelet Transform 

To overcome the limitations of 2-D WT, a fully separable 2-D WT (FSWT) was 

proposed, which will improve compactness of the representation of images with 

discontinuities.  In this transform a full 1-D WT is applied in the horizontal 

direction (each row of image) and then, on each output a full 1-DWT is applied in 

the vertical direction (each column). The decomposition scheme is shown in Figure 

3.4. This type of decomposition is referred to as tensor wavelet basis [138-139]. 

The frequency decomposition of 2D FSWT with four steps in horizontal and 

vertical directions is shown in figure 3.5(a) and the corresponding anisotropic basis 

functions are shown in figure 3.5(b, c). The Fourier transform of the basis function 

is shown in figure 3.5(d). The FSWT are better adapted to the anisotropic objects 

such as the discontinuities in images. Due to this the representation efficiency is 

strongly improved in case of FSWT. However this also could not fully deal with 

the discontinuities in images resulting in an inefficient representation in the 

frequency domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The filtering and subsampling operations in FSWT with two steps shown in each 

direction. 
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Figure 3.5 (a) The frequency decomposition of FSWT with 4 steps in horizontal and 

vertical directions. The anisotropic basis functions obtained from the (b) Haar and (c) 

biorthogonal-9/7 wavelet functions. (d) The corresponding Fourier transform of the basis 

functions obtained from biorthogonal-9/7 filters. 

 

3.4 Anisotropic 2-D Wavelet Transform 

In anisotropic WT (AWT) the number of transforms applied along the horizontal 

and vertical directions is unequal, that is, there are �� horizontal and �� vertical 

transforms at a scale, where �� is not necessarily equal to ��. The unequal number 

of horizontal and vertical transforms will continue in the low pass sub-band, like in 

the standard wavelet transform. Such an anisotropic transform can be denoted as 

AWT���, �� �. The anisotropy ratio ρ 	 ��/�� determines elongation of the basis 

functions of the AWT���, �� �. An example of construction of AWT is shown in 



Directionlet Transform     

73 

figure 3.6, where the AWT (2, 1) is used. The corresponding frequency 

decomposition and basis functions are shown in figure 3.7. The standard WT and 

the FSWT can be expressed in terms of the AWT. The standard WT is simply 

obtained by AWT (1, 1). However, the representation of the FSWT is more 

complex and it needs concatenation of two AWTs. The first transform is 

AWT�����
 , 0� that produces ����
 � 1 subbands and it is followed by the 

AWT�����
 , 0� applied on each subband. The arguments ����
  and ����
 

determine the maximal number of transforms in the two directions and depend on 

the size of the image.  

 

Even though the AWT is not the most appropriate representation for natural 

images, it improves approximation of more general classes of images. This type of 

transform can trace the discontinuity efficiently with fewer significant coefficients 

compared with standard WT due to the spatial anisotropy of its construction. 

 

        
 

 
Figure 3.6 The filtering and subsampling operations in an AWT with anisotropic ratio of 

1:2 is shown.  
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Figure 3.7 (a) The frequency decomposition of AWT(2,1) with one step of iteration. The 

corresponding basis functions obtained from the (b) Haar and (c) biorthogonal 9/7 1-D 

wavelet (d) The corresponding Fourier transform of the basis functions obtained from the 

biorthogonal 9/7 wavelet. 

 

The main limitation with the above three transforms viz, WT, FSWT and AWT is 

that they are applied in the horizontal and vertical directions only and not along any 

other directions. Transforms involving more than the standard two directions will 

provide efficient representation of more general classes of images. These types of 

general transform can be obtained by imposing vanishing moments along different 

directions. Such a transform construction is explained in the next section.    
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3.5 Skewed Anisotropic 2-D Wavelet (Directionlet) 

Transform 

The transform constructions that lead to anisotropic basis functions as explained in 

previous sections use only the horizontal and vertical directions. Due to this the 

high-pass (HP) filters in these transforms have vanishing moments only along these 

two directions. Since characterization of features in synthetic and natural images 

involves many more than these two standard directions, multi-directionality (M-

DIR) and directional vanishing moments (DVM) are very important in achieving a 

good sparse representation. In this section a lattice-based anisotropic transform, 

which exploits multi directionality as proposed in [36] is presented.  

 

To apply a discrete transform in the discrete space �� in a certain direction, the 

pixels that approximate the chosen direction need to be defined. This problem of 

defining the pixels in a particular direction was considered in computer graphics 

[140-142].  

 

The set of points ��, �� �  �� represents a continuous line with the slope � and 

intercept �  if the following equality is satisfied: 

                                              � 	 �� � �                                        (3.1) 
A digital line ���, ��can be defined from the above equation by a discrete 

approximation as follows:- 

 

      � 	 ���� � �, � � � �  ��� |�| � 1 ��                    

      � 	  !"# � �, � � � �   ��� |�| $ 1.                                         (3.2) 

For every rational slope r, the set of digital lines ���, ��: � �  � completely 

partitions the 2D discrete space ��, meaning every pixel ��, �� �  ��  is associated 

to only one of the digital lines with slope r. This is a mandatory requirement to 

preserve critical sampling in the transform. The concept of digital lines is useful for 

undecimated multi-directional representation. However they do not provide an 

efficient framework when transforms are applied in different directions and critical 

sampling is enforced. This is basically due to two issues. The first one is the 
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directional interaction and the other one is lack of systematic subsampling. These 

issues are discussed here. 

Let us consider an image with two dominant directions with the rational slopes '� 	 (� )�*  and '� 	 (� )�* , where )�, (�, )�, (� are integers. To simplify the 

notation, the two slopes can be jointly denoted by the following matrix:- 

                            +���, ��� 	  ,)� (�)� (�- =,'�'�-              (3.3) 

To provide a sparse representation of this image, a 1-D WT is applied along the 

digital lines, L�r, n�: n �  �. This produces two types of nonzero coefficients, that 

is, the coefficients corresponding to the discontinuities with the slopes '�and '�. 

 

Since the HP filter has vanishing moments along digital lines with the slope '�, the 

coefficients along this direction are annihilated in the HP subband, while the 

coefficients along the second direction with the slope '� are retained in both the 

subbands. However, after subsampling, unlike in the case of the standard 

directions, the coefficients along the second direction are not aligned, that is, they 

cannot be clustered in the digital lines with the slope '�. Therefore, the following 

1-D WT applied along the digital lines with the slope '� does not annihilate the 

coefficients along the second direction, and, hence, it yields a non-sparse 

representation. This phenomenon is called directional interaction. To illustrate this 

phenomenon, a simple class of piecewise polynomial image known as +��'�1)��2�, 2�� is used. This image contains + 3 + piecewise polynomial 

images with 2�horizontal and 2�vertical discontinuities. A 1-D WT is applied on 

an image from the class S-Mondrian �+�41/2,2/3�1,1� along the digital lines 

L(−1/2, n) and is shown in figure 3.8. The HP filtering annihilates the digital line 

with the slope −1/2. However, the nonzero coefficients produced by the other line 

with the slope 2/3 are not aligned in the digital lines L(2/3, n). Also the concept of 

digital lines does not provide a systematic rule for subsampling in the case of 

iteration of the filtering and subsampling operations along the directions with the 

slopes and when critical sampling is enforced. Although the transform along digital 

lines is efficient when applied in oversampled schemes, it fails to provide a 

systematic subsampling method when critical sampling is enforced. To overcome 
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the directional interaction and to carry out an organized iterated subsampling, the 

concept of integer lattices can be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Illustration of directional interaction when filtering is done along digital lines 

 

Instead of applying a transform along digital lines, integer lattices [143] based 

transform can be used. Any integer lattice Λ is a sub-lattice of the cubic lattice �2
. 

Here the lattice Λ can be represented by a non-unique generator matrix MΛ. 

                           MΛ	 ,)� (�)� (�- =,'�'�-               (3.4) 

Where )�,  (�,  )�, (� �  �. and '� and '�  are two linearly independent integer 

vectors. The linear combination of these two vectors will form the points of the 

lattice Λ.  

 

In lattice based transform the discrete space is first partitioned using integer lattices 

before performing 1-D filtering along lines across the lattice. The integer lattice Λ 

is a sub-lattice of discrete space � which can be partitioned into |MΛ| cosets, where 

each coset is determined by the shift vector, S: � � , for k = 0, 1,2, ... |MΛ| – 1. The 

integer lattice Λ with the corresponding generator matrix given by (3.4) partitions 

each digital line with slopes '� and  '� into co-lines ;�<=�'�, �� and ;�<=�'�, �� 

respectively as shown in Figure 3.9. The intersection between a coset and a digital 

��4 ��, n) 

���>, n) 

MΛ	 ?2 413 2 @              Haar high pass filtering along 4 �� 
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line is known as a co-line.  The filtering and sub sampling operations are applied 

on the pixels in each of the cosets separately. Note that each filtering operation is 

purely 1D. After subsampling, the retained points belong to the sub lattice Λ′ of the 

lattice Λ (Λ′ A Λ) with the corresponding generator matrix given by (3.5) 

                             MΛ’ 	 BC D MΛ =,2'�'� -                         (3.5) 

Here, BC is the horizontal subsampling operator, that is     Ds	 ?2 00 1@ 
Applying the 1-D filtering and sub sampling on the co-lines ;�<=�'�, �� will not 

disturb those operations along ;�<=�'�, ��, means the retained pixels after these 

operations belong to the same co-lines as they were before. The filtering and sub 

sampling operations are applied on the pixels along the vector '� in each of the 

cosets separately. Since these operations are applied in each coset separately, the 

pixels retained after this operations are clustered along the vector '�. The direction 

of vector '� is called the transform direction and '�  the alignment direction. Here, 

since the filtering and subsampling are applied in each coset separately, the pixels 

retained after the subsampling are clustered in co-lines along the alignment 

direction. This is shown in figure 3.10. The nonzero pixels obtained after one step 

of the lattice-based filtering operation applied on the same example as in Figure 3.8 

are clustered now in the digital lines with the slope 2/3. Due to this the directional 

interaction is avoided here. 

 

The lattice-based transforms can avoid directional interaction and are capable of 

providing the same order of approximation as the FSWT achieves for the same 

class of image. The skewed versions of the standard WT, FSWT, and AWT can be 

constructed using integer lattices. Given a lattice Λ , the skewed transforms are 

applied along co-lines in the transform and alignment directions of the lattice Λ, 

retaining the same frequency decompositions as the corresponding transforms 

along the standard directions. Notice that the skewed transforms are applied in all 

cosets of the lattice Λ separately. The basis functions of the skewed transforms 

have DVM in any two directions with rational slopes. The corresponding basis 

functions are shown in Figure 3.11 for the directions along the vectors '� 	 E1, 1F  
and  '� 	 E41, 1F. 
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Figure 3.9 The intersections between the 3 cosets of the lattice Λ given by the generator 

matrix MG and the digital lines with slope  �� 	 1 2* . The co-lines are ;�EH,HF I�� , �J , ;�EH,�F I�� , �J and  ;�E�,�F I�� , �J. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: The lattice-based filtering and subsampling which has avoided the directional 

interaction. 

���>, n) 

��4 ��, n) 

MΛ	 ?2 413 2 @              Haar high pass filtering along 4 �� 

 

;�EH,HF��,41�  ;�EH,�F��,41�  ;�E�,�F��,41�  

 �� 	 ��  
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Figure 3.11 Basis functions obtained by the skewed transforms using the Haar 1-D scaling 

and wavelet functions: (a) S-WT, (b) S-FSWT, and (c) S-AWT (MG, 2, 1�  (directionlets). 

The same, but with the biorthogonal-9/7 1-D scaling and wavelet functions: (d) S-WT, (e) 

S-FSWT, and S-AWT (MG, 2, 1�  (directionlets). 
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The lattice based anisotropic transform, which will avoid directional interaction, is 

called Skewed AWT, denoted as  SAWT�MG, ��, ���. The basis functions of S-

AWT are called directionlets, which can be effectively used for directional analysis 

of images. An example of construction of directionlets based on integer lattices is 

shown in figure 3.12 for pair of direction (45
º
, 135

º
) with anisotropic ratio of 1:1 

and 1:2. Here the two cosets are shown in white and black circles. 

 

 

 

 

 

 

 

 

Figure 3.12 Construction of directionlets based on integer lattices for pair of directions (45
º
, 

135
º
) with anisotropic ratio of 1:1 and 1:2. Here '� 	 E1, 1F  and  '� 	 E41, 1F.  

 

The SAWT�MG, ��, ��� is implemented as a stage transformation. In every scale, it 

decomposes an image into �2QRSQT 4 1� detail subbands and one approximation 

subband. The approximation subband will have �2QRSQT 4 1� number of 

orientations. All these subbands are anisotropic with an anisotropic ratio of ��: ��. 

The corresponding basis functions in the space domain will have an aspect ratio of     ��: �� in the horizontal-to-vertical directions. This scheme is iterated on the 

approximation subband to obtain coarser subbands and can be implemented by a 2-

D separable filter bank. As an example, the AWT (2, 1) produces eight subbands as 

shown in figure 3.6. At the first stage the rows of the image to be transformed are 

low pass (L) and high pass (H) filtered and down sampled by two. In the next step 

each column of the row filtered image is again low pass (L) and high pass (H) 

filtered and down sampled by two. The output of this will have four sub band 

images labelled as LL, HL, LH and HH. As a next step each row of these sub band 

images are again low pass (L) and high pass (H) filtered and down sampled by two. 

Coset 1 Coset 2 

+U 	 ? 1 141 1@ 
 

+VUR 	 ? 2 241 1@ 
 

+UR 	 ? 4 442 2@ 
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This will produce eight bands viz. HHH, HHL, HLH, HLL, LHH, LHL, LLH, and 

LLL. Now the LLL subband image goes through the same process of filtering and 

down sampling to form the next stage of the structure.  

 

Efficiency of representation of an image by a skewed transform depends on 

matching between the directions of discontinuities in the image and the directions 

used in the transform. The skewed versions of the transforms SWT, SFSWT 

& SAWT�MΛ, 2, 1�, where MΛ 	 M�d�, d�� are applied to the image S-Mondrian �M�d�, d��k�, k�� and the different resolution levels are shown in Figure 3.13. For 

the case of class S-Mondrian �M�d�, d��k�, k�� the orders of nonzero coefficients 

in band-pass subbands are given in Table 3.1. Table 3.2 summarizes the orders of 

nonzero coefficients in band-pass subbands in the case of both matched and 

mismatched directions. 

 
Figure 3.13 (a) Example of an image from the class S-Mondrian �M�'�, '��2�, 2��, for M 	  Ev� ;  v�  FT , where v � 	  E1;  1F and v�  	  E41;  1F. The image is transformed using 

(b) S-WT, (c) S-FSWT, and (d) SAWT�MΛ, 2, 1�, where all the transforms are built on the 

lattice Λ determined by the generator matrix MΛ 	 M�'�, '��. 
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TABLE 3.1 Orders of approximation by the standard WT, FSWT and AWT  

applied on the class S-Mondrian �k�, k�� 

Standard WT FSWT AWT �k� � k��M �k� � k���ln M�� Ik�a � k� a* JM 

 

TABLE 3.2 Orders of approximation by the standard WT, FSWT and AWT  

applied on the class S-Mondrian �M�d�, d��k�, k�� 

 Standard WT FSWT AWT 

Matched Direction �k� � k��M �k� � k���lnM�� Ik�a � k� a* JM 

Un matched 

Direction 

�k� � k��M �k� � k��M �k� � k��M 

 

 

In the multi scale DT decomposition, each coefficient, except the ones at the finest 

scale, has a certain number of children.  The number of children that each 

coefficient can have varies depending on the anisotropic ratio of the transform. The 

DT with two horizontal transforms and one vertical transform will have eight 

children at the next scale. The WT will always have four children. The interscale 

dependency is shown in figure 3.14(a) in case of WT and in figure 3.14(b) in case 

of DT. Here the case of DT�MG`, 2, 1� is considered, where the generator matrix  MG` 	 E'� '�Fawith '� 	 E1 1F and '� 	 E0 1F. The dependent children are 

identified as in the case of standard zero tree structure. Here the children 

correspond to the same spatial location and orientation as the parent coefficient. In 

the case of WT, the set of children is isotropic and aligned along the horizontal and 

vertical directions. On the other hand, in the case of DT, since directionlets are 

anisotropic and oriented in different directions, the corresponding children are 

grouped in anisotropic and oriented sets. The corresponding parent-children 

relation is illustrated in figure 3.15 for WT and in figure 3.16 for DT. The 

anisotropy and orientation of the sets of children is the same as that used in the 

construction of directionlets. But it still retains the property of grouping 

coefficients across scales that belong to the same spatial location.  
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The directionlet transform is not shift invariant because of the decimation operation 

involved in the transform construction. In image processing applications, a small 

shift in the input signal can cause very different output wavelet coefficients. One 

way of overcoming this is by taking the transform without decimation. The 

drawback of this approach is that it is computationally inefficient, especially in 

multiple dimensions. In the multi resolution analysis, the oversampled transforms 

have been shown to lead to better denoising performance than critically sampled 

transforms. For that reason, undecimated versions of transforms are preferred for 

denoising algorithms. In undecimated directionlet transform the oversampling is 

imposed in the same way as in the case of the undecimated wavelet transform, that 

is, by discarding the sub-samplers in the filter-banks of figure 3.6. The filters used 

for DT are up sampled across scales. Thus, if the LP filter b��c�� is used in first 

level 1-D wavelet filter-bank, the equivalent LP filter at the j
th scale is b�dc�ef, 

where j = 1….J, corresponds to the scale index sweeping from the finest to the 

coarsest scale. Such a construction results in a shift-invariant transform with a 

preserved number of coefficients in each subband.  

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Interscale dependencies of a) wavelet transform coefficients and b) directionlet 

transform coefficients along 90º and 45º. 

(a) (b) 
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Figure 3.15 The parent child relationships for DT�MG` , 2, 1�. The subbands at the coarser 

scale g �1 are defined across the lattice UeS� with the generator matrix+UhiR. Each 

coefficient has a set of children at the next finer scale j. The children belong to the same 

orientation as their parent and are located in the parallelepiped around the spatial location 

of their parent.  

 

 

Figure 3.16  Zero-tree hierarchical structure of wavelet transform coefficients 

+Uh 	 ?1 00 1@ 
 

+UhiR 	 ?2 00 2@ 
 

+UhiR 	 ?4 40 2@ 
 

+Uh 	 ?1 10 1@ 
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2.4 Polyphase Representation of Directionlets  

The lattice based filtering and sub sampling operations in directionlet transform 

can be efficiently represented in the polyphase domain. A two-channel 1-D filter-

bank with transfer function EbH�j�,b��j�F followed by a sub sampler by the factor 

2 can be given in terms of the polyphase components [143] as 

 

                                            bH�j� 	 bHH�j�� � jbH��j��  and    b��j� 	 b�H�j�� � jb���j�� 

Here, bHH, bH�, b�H, and b�� are the polyphase components of the filters bH�j� 

and b��j� that correspond to even and odd samples of the impulse response, 

respectively. The corresponding polyphase representation is shown in Figure. 3.17.  

 

          

 

Figure. 3.17. One-dimensional filter-bank EbH�j�, b��j�F with the subsampling factor 2 is 

represented in the poly phase domain with the corresponding poly phase 

components, bHH, bH�, b�H, and b�� 

 bk 	 ,bHH�j� bH��j�b�H�j� b���j�- 
 

The equivalent polyphase components of a 2-D filter-bank EbH�j�,b��j�F, where 	 �j�, j�� , can be found for the lattice-based scheme of DT. Here the filters bH�j�and b��j� used are are purely 1-D filters, that is, bH�j� 	 bH�j�� and  b��j� 	 b��j�� . Since the lattice-based filtering and 

subsampling in DT are applied in each coset of the lattice separately, the equivalent 

scheme has two sections. The first section does the separation into two cosets and 

the second one do 1-D filtering and sub-sampling in the transform direction. This is 

illustrated in Figure. 3.18(a) for DT�MG, 2, 1�, where the generator matrix, MG 	

z 

↓2 
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 E'� '�Fawith '� 	 E1 1F and '� 	 E41 1F and sub sampling matrix B< 	E�� ��Fawith �� 	 E2 0F and �� 	 E0 1F . Notice that filtering in the transform 

direction is performed as horizontal filtering proceeded by rotation by the generator 

matrix. Since the total subsampling rate is |BKL�B<.  MG| 	 4, the polyphase 

representation of such a filter-bank consists of four polyphase components. The 

equivalent polyphase representation is shown in Figure. 3.18(b), where the 

polyphase transform bk is block-diagonal as given below. 

 

bk 	 pbHH�c�� bH��c�� 0 0b�H�c�� b���c�� 0 00 0 bHH�c�� bH��c��0 0 b�H�c�� b���c��q 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. 2-Dimensional two-channel filter-bank of DT�MG, 2, 1�  and its 

equivalent polyphase representation 

 

Notice that the block-diagonal polyphase transform with two identical blocks is a 

consequence of the separable transforms applied across cosets. This property 

allows for a simple filter design and computational efficiency in the polyphase 

domain. Such separability in the polyphase domain has also been used in other 2-D 

filter-bank designs [144-145]. 
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2.5 Computational Complexity of Directionlets  

The computational complexity of DT is similar to that of 2-D WT which is in the 

order of t�. �. Each filtering operation is performed in t. � multiplications and t. � additions. Here N is the number of input samples and L is the length of the 

applied filter. The extra computation is due to the anisotropic nature of DT. The 

computational complexity is substantially lower than other similar schemes like 

bandlets, which require t��u�v�t�� operations and contourlets, which require ��. ��t� operations, where �� )�'  �� is the size of the 2-D filters. The 

Wedgeprints require t�u�v�t operations. Thus as compared to other popular 

directional transforms, the directionlet transform require only less number of 

computations. However the true benefit of DT comes from the identification of 

local dominant directions in an image by spatial segmentation and decomposition 

of these spatial segments using the anisotropic transform along the dominant 

direction. Thus for the better identification of directional features using DT, extra 

computations are required for segmentation and content direction identification. 

This adds to the computational complexity of DT based applications. So there is 

always a trade off between the computational efficiency and denoising 

performance in DT based denoising schemes. 

 

2.6 Conclusions 

In this chapter, the concept of anisotropic transform construction is presented 

through fully separable WT and anisotropic WT. These transforms retain the 

simplicity of separable filtering and subsampling from the standard 2-D WT and 

provide anisotropic basis functions that can capture more efficiently anisotropic 

features in images, like edges and contours. Further to this an anisotropic transform 

with directional vanishing moments along any two directions is presented. The 

lattice based construction and the polyphase representation of this transform is also 

presented. The computational complexity of directionlet transform as compared to 

other directional transforms is also analyzed here.  
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Chapter 4 

Spatially Adaptive Image Denoising 

in Directionlet Domain 
 

 
In this chapter the main contributions to image denoising are 

presented. Four different denoising schemes in directionlet 

domain are presented for images corrupted with additive white 

Gaussian noise. The results are compared with the state of the 

art transform domain denoising techniques. The computational 

complexities of these schemes are also analysed here. 

 

 

 

4.1 Introduction 

This chapter presents the main contributions of the thesis in the area of image 

denoising. The images corrupted with additive white Gaussian noise (AWGN) are 

considered here. Four different denoising schemes in directionlet domain are 

presented here. These include two threshold based schemes and two statistical 

model based schemes. All these schemes are in line with wavelet transform based 

schemes with several modifications due to the implementation in directionlet 

domain. The presented schemes are compared with the similar schemes in wavelet 

domain and also with other directional transform based denoising schemes.   

As in any transform based denoising, the directionlet based denoising algorithms 

basically involve three steps. First, an image is transformed into directionlet 

domain. Next, denoising is effected on the directionlet coefficients, and finally the 

denoised image is obtained by applying the inverse directionlet transform on the 

denoised directionlet coefficients. The principle of denoising in directionlet domain 

is illustrated in figure 4.1.  
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Figure 4.1. Principle of denoising in directionlet domain  

 

The directionlet based denoising schemes can be broadly classified into two; the 

threshold based schemes and statistical model based schemes. In threshold based 

methods, a DT coefficient is compared with a given threshold and is set to zero if 

its magnitude is less than the threshold; otherwise it is kept unmodified or modified 

depending on hard or soft thresholding rules, respectively. As like Wavelet based 

denoising schemes, these schemes are based on the idea that the energy of the 

signal to be defined concentrates on some of the transform coefficients, while the 

energy of noise spread throughout all coefficients. Similarity between the basic 

wavelet and the signal to be defined plays a very important role, making it possible 

for the signal to concentrate on fewer coefficients. The effectiveness of these 

methods depends on the estimation of the correct threshold. In statistical model 

based schemes, the WT coefficients are modelled using a suitable prior probability 

distribution function and the noise free coefficients are estimated using this a priori 

information with Bayesian estimation techniques, such as the maximum a 

posteriori (MAP) estimator.  The challenging part of these schemes is the effective 

modelling of the statistics of the images. If these models are well chosen, the noise 

can be efficiently removed. In literature several models have been considered for 

the noise-free wavelet coefficients and Gaussian model for the noise coefficients. 

The main thrust here is the computation of a proper threshold in threshold based 

schemes and the accurate modelling of the directionlet transform coefficients in 

case of statistical model based schemes.  

 

4.2 SURE Thresholding in Directionlet Domain 

Here a novel denoising scheme which is in line with the 3-band 2-D wavelet 

transform based schemes is presented. This scheme is evidently not better than the 

state of the art denoising schemes. However through this scheme we intent to 

introduce the concept of denoising in directionlet domain. It is noteworthy that as 
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compared to the similar schemes in wavelet domain, this simple scheme in 

directionlet domain is much better in terms of numerical and visual qualities.  

The proposed algorithm involves mainly three steps. First transform the input 

image using directionlet transform, then threshold the transform coefficients using 

a non-linear algorithm and finally reconstruct the image using the modified 

coefficients. The effectiveness of a denoising algorithm basically depends on two 

factors- one is the efficient representation of the image to be denoised using a local, 

directional and multi resolution expansion and second is the efficient computation 

of an optimal threshold. Here the first requirement is met by using a locally 

adaptive directionlet transform and the second by optimal threshold computation 

using Steins’ Unbiased Risk Estimate (SURE).  

 

4.2.1 Image Noise Model & SURE Threshold Computation 

Suppose that the image f, with N number of pixels, is polluted by independent and 

identically distributed (i.i.d) white Gaussian noise, � with zero mean and σ2 

variance, the observed image � is described as 

� � � 	 �                                                                                          (4.1) 

In denoising applications, the performance is often measured in terms of peak 

signal-to-noise ratio (PSNR). The aim of image denoising is naturally to maximize 

the PSNR and, thus, to minimize the minimum mean square error (MSE).  Here the 

objective is to estimate image f with minimum MSE, i.e., to minimize l2 risk, 
���, ��for a given noisy image, as follows 


���, �� �  ��  ��� �  ��� � ��∑ ���� � ����������                                   (4.2) 

where �� is the estimate of  � from �. Here mean is used instead of mathematical 

expectation, because the optimal solution is desired for each individual noisy 

function. Here, � can be estimated using a point wise function of � as 

�� � ����                                                                                           (4.3) 

where ���� is a function from �N to �N. Here the goal is to find the function ���� that minimizes the MSE and thus 
���, ��. 
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���, �� �  ��  ��� �  ��� � �
�  ����� �  ���                               (4.4) 


���, �� � �
� �������� � 2������� 	 �����                            (4.5) 

In practice, the noisy signal, � only is accessible and not the original signal, �. 

Thus the explicit dependence on � need to be removed from equation (4.5). Note 

that, since ����has no influence in the minimization process of 
���, ��, this need 

not be estimated. Charles Stein [42] introduced a method for estimating the loss 

��� �  ��� in an unbiased fashion. For a nearly arbitrary, nonlinear, biased 

estimator one can nevertheless estimate its loss unbiased. When ���� is weakly 

differentiable, then 

!" ����� �  ��� � # 	 !"$������� 	 2%& ��g�(                       �4.6� 
where,  

%& ���� � ∑ ,-.,&.N/��                                                                        (4.7) 

Now consider the soft threshold estimator which is illustrated in figure 4.2(a) 

���� � 0��, 1� � 23�4����|�| � 1�6                                          (4.8) 

where        �|�| � 1�6 � max�0, |�| � 1�                                              (4.9) 

and               23�4��� �  �
�6;<=                                                                (4.10) 

Here ���� is weakly differentiable in Stein's sense, and thus using equation (4.7)  


>�1� � ?@� � �
� �2?@�. A B3 C |��| D 1E 	 ∑ F34�|��|, 1������ �   (4.11) 

This is an unbiased estimator of the risk,  !"  ����� � ���. Thus it provides a 

means for unbiased estimate of the true MSE, but it also requires the knowledge of 

noise variance, ?@�, whose exact value is hard to be known in practical case. It was 

well established that the minimum of MSE & SURE correspond to the optimal 

threshold. From figure 4.2 (b) it can be seen that the MSE curve and SURE curve 

closely follow and the minimum of both correspond to the same threshold value. 

Thus the estimator of risk 
>�1� can be used to select the near optimal threshold as 

1> GHI BJK,JL ..JM<LE
 �   argO34  
>�1�                                                 (4.12) 
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Here 1> is selected as the value of � which makes the  
>�1� minimum. This is a 

suboptimal threshold for the risk because it is selected within a finite set. 

 
Figure 4.2 (a) Soft thresholding (b) The MSE & SURE values plotted against threshold, 1  

A transform domain shrinkage method relies on the basic idea that the energy of a 

function will often be concentrated in a few coefficients in transform domain while 

the energy of noise is spread among all coefficients. Therefore, the nonlinear 

thresholding function in transform domain will tend to keep a few larger 

coefficients representing the function, while the noise coefficients will tend to 

reduce to zero. Here the equation for l2 risk for a given noisy image can be 

extended to the transform coefficients also provided the transform is orthogonal. 

Then the risk function given in (4.2) can be expressed in transform domain as 


���, �� � �
�∑ ���� � ���������� � ��   ∑ �PQ�,R � P�,R���,R                     (4.13) 

Apply the directionlet transform to the vector g and obtain the empirical 

directionlet coefficients S�,R at scale j where T �  1, 2… . W.  Apply the soft-

thresholding function as given in equation (4.8), to the directionlet coefficients S�,R at each scale j where T �  1, 2… . W.  Then the estimate coefficients PQ�,R  are 

obtained based on the selected threshold, 1 �  X1�, 1�…1YZ[ . Here tj is the 

threshold for directionlet coefficients at scale j. Here 1 is selected for each scale as 

the value of the directionlet coefficient at that scale which makes the SURE 
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risk 
>�1� minimum. This is done for each detail subband. So this is a scale 

dependent sub band adaptive threshold. Now take the inverse directionlet transform 

on the threshold applied DT coefficients and obtain the estimate of the function. 

 

4.2.2 Denoising Algorithm 

The edge information in images has great influence on human visual effect and 

reflects the main direction of texture for the most part. Wavelet is the optimal bases 

for functions with point singularity. But in the case of two dimensional functions 

like images, wavelet analysis cannot take advantages of the geometrical features in 

it. Thus it is not the optimal or the sparsest representation tool for analysing 

images. When the direction of the directionlet bases matches with the geometrical 

features in images, then the directionlet can represent images well, otherwise bases 

of directionlet will degenerate into wavelets and will have poor approximation 

power.  But the main problem in natural images is that the directional information 

in them varies over space. Thus, directionality can be considered as a local feature, 

defined in a small neighbourhood. Therefore, to extract directional variations of an 

image it has to be analysed locally. This necessitates the need for spatial 

segmentation of the image into smaller segments before identifying the dominant 

directions for that segment.  If these dominant directions match with the transform 

directions then the transform can efficiently capture the geometrical information 

present in images. 

In the proposed scheme the input image is subdivided into small patches of size 

32x32, before applying the directionlet transform. Even though the construction of 

directionlets allow for anisotropy and directional vanishing moments along any two 

directions with rational slopes, here the transform directions are taken only from 

the set of directions, \ � B�0°, 90°�, �0°, 45°�, �0°, �45°�, �90°, 45°�, �90°, �45°� E. This 

restriction is imposed to avoid the division of cubic lattice into more cosets as 

explained earlier. The best pair of directions  `�a I \  is then chosen for each 

segment indexed by 4 as 

`�a � bc�O34dIe ∑ fg�,�d f��                                                        (4.14) 

where, the directionlet coefficients  g�,�  d are produced by applying directionlets to 

the 4Hh segment along the pair d  of directions. The assigned pair of transform 
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directions of each patch across the input image forms a directional map of that 

image and provides the best matching between the transform and the locally 

dominant directions for that segment. For segments with no apparent dominant 

directions, the pair (0°, 90°) is assigned by default to smooth the segments for the 

reason of simplicity of implementation of DT. To avoid a blocking effect in the 

transform caused by many small segments, the pixels from the neighbour segments 

are used for filtering across the segment borders. Here a symmetric extension is 

performed as it seems to provide better results. The size of extension is fixed based 

on the segment size and the length of wavelet used for filtering. 

 

After identifying the dominant directions in each spatial segment, the directionlet 

transform coefficients corresponding to the dominant directions are selected for 

thresholding. In the directionlet decomposition, the subbands ijjR , ijiR , iijR , jiiR, jijR , jjiR  and jjjR, T � 1,2,3… . W are called the 

details, where j is the scale, with J being the largest or coarsest scale in the 

decomposition. The subband iiiR  is the low resolution residual. Like wavelet 

transform, the directionlet transform is also orthogonal and the coefficients in the 

subbands are independent and identically distributed with zero mean. The 

directionlet coefficient S�,R  from the detail subbands are used for optimal threshold 

computation as explained in section 4.2.1 with soft threshold function to obtain PQ�,R. 
The denoised estimate is then obtained as  �� � \��PQ�,R , where \�� is the inverse 

directionlet transform operator.  

 

The noise variance is not known in many cases. So it needs to be computed from 

the noisy image. This can be computed as the robust median estimator from jjj�coefficients.  The directionlet transform is not shift invariant because of the 

decimation operation involved in the transform construction. In image denoising, a 

small shift in the input signal will result in significant performance degradation. 

This can be avoided by using an undecimated version of the transform. The main 

drawback of such an approach is the computational complexity, especially when 

applied in multiple dimensions. Unlike the discrete version of directionlet 

transform, which down samples the approximation coefficients and detail 

coefficients at each decomposition level, the Undecimated Directionlet Transform 
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(UDT) does not incorporate the down sampling operations. Thus, the 

approximation coefficients and detail coefficients at each level are having the same 

length as the original signal. Denoising with the UDT is shift-invariant. The 

denoising result of the undecimated directionlet transform has a better balance 

between smoothness and accuracy than its discrete version. In case of UDT, the 

oversampling is imposed in the same way as in the case of the undecimated 

wavelet transform, that is, by discarding the sub-samplers in the filter-banks. The 

filters used for DT are up sampled across scales. Thus, if the LP filter j��n�� is 
used in the corresponding 1-D wavelet filter-bank, then the equivalent LP filter at 

the jth scale is j��n�Y�R�, where j = 1….J, corresponds to the scale index sweeping 

from the finest to the coarsest scale. Such a construction results in a shift-invariant 

transform with a preserved number of coefficients in each subband.  

 

The developed denoising algorithm, which is referred as DT-SURE is summarised 

in three steps as follows. 

Step 1: Directionlets and Directional Map 

• The noisy image is first divided into spatial segments of smaller size, say 

32 by 32.  

• Apply directionlet transform to segments along the pair of directions \ � B�0°, 90°�, �0°, 45°�, �0°, �45°�, �90°, 45°�, �90°, �45°� E with an 

anisotropic ratio of 1:2 

• Compute optimal pair of direction using equation (4.14) 

• Compute the multi scale directionlet transform along dominant directions. 

Step 2: Threshold Computation 

• For each subband, except the iiiY subband, compute the SURE threshold 

using the equation (4.12) which minimizes the SURE risk  

• Apply the computed threshold to the subband using soft thresholding rule 

to estimate the best value for the noise-free coefficients 

Step 3: Reconstruction 

• Reconstruct the image from the above processed sub-bands and the low-

pass residual (iiiY) using inverse directionlet transform and the direction 

map to obtain the denoised image. 



Spatially Adaptive Image Denoising Techniques in Directionlet Domain     

97 

4.2.3 Experimental Analysis and Results 

In this section, the performance of the DT-SURE scheme is compared with similar 

wavelet based schemes like SureShrink [42], Bayes shrink [43] and HMT scheme 

[48]. The SureShrink and BayesShrink are the SURE and Bayesian threshold based 

denoising scheme in wavelet domain respectively. HMT scheme is the hidden 

Markov tree approach of denoising in wavelet domain. All these schemes are 

subband adaptive schemes. Standard greyscale images of size 512x512 are used for 

evaluating the performance of the developed algorithm. The test images are 

contaminated with zero mean white Gaussian noise with standard deviation ? = 10, 

15, 20, 25 & 30. In all the schemes the popular Db4 wavelet with three 

decomposition levels are used. The performance improvement was quantified in 

terms of Peak Signal to Noise Ratio (PSNR). The denoising process has been 

performed over ten different noise realizations for each standard deviation and the 

resulting PSNRs averaged and given in Table 4.1. The parameters of each method 

have been set according to the values given by their respective authors in the 

corresponding referred papers. Variations in output PSNRs are, thus, only due to 

the denoising techniques themselves. From the results it is clear that the DT-SURE 

scheme outperforms the other compared schemes for all the test images. As 

compared to SureShrink, the performance improvement of DT-SURE is more than 

1 dB on average for Lena image. This difference is higher for Barbara and Boat 

images as they contain more edges and textures.  

 

A visual comparison of Lena image is given in Figure 4.3 and Boat image in Figure 

4.4 for ? � 20. Although there is no consensual objective way to judge the visual 

quality of a denoised image, two important criteria are widely used: the visibility of 

processing artifacts and the conservation of image edges. Processing artifacts 

usually result from the modification of the spatial correlation between wavelet 

coefficients mainly caused by the zeroing of small neighboring coefficients. The 

edge distortions in images usually arise when the transform directions are not 

matched with the edges in images. Since the directionlet transform was taken along 

the local dominant directions in the image, the DT based denoising algorithms shall 

perform better in both the above aspects. This is evident from the visual quality of 

the denoised images with DT-SURE scheme as they are characterized by fewer 
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artifacts and are having sharper edges and texture than the output images from 

other schemes. The zoomed portions of the denoised images substantiate this.  

 

Table.4.1 PSNR (dB) comparison of DT-SURE scheme with other denoising algorithms  

Lena 

Standard 

devn. ? 

Noisy SureShrink 

[42] 

BayesShrink 

[43] 

HMT 

[48] 

DT-SURE 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

33.27 

31.36 

30.19 

29.14 

28.36 

33.33 

31.39 

30.15 

29.21 

28.48 

33.83 

31.74 

30.38 

29.25 

28.36 

34.24 

32.36 

31.01 

29.94 

29.15 

Boat 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

31.18 

29.28 

28.12 

27.27 

26.53 

31.78 

29.84 

28.43 

27.37 

26.56 

32.26 

30.30 

28.83 

27.66 

26.84 

32.37 

30.46 

28.94 

27.88 

26.95 

Barbara  

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

30.21 

28.12 

25.91 

25.71 

24.33 

30.84 

28.50 

27.11 

26.00 

25.14 

31.35 

29.21 

27.81 

25.97 

25.12 

31.96 

29.86 

28.21 

26.99 

26.01 

 

Even though DT-SURE has performed well in terms of PSNR, it has got a serious 

drawback with respect to the higher computation time. The actual time taken by 

these algorithm using an Intel Core i5 CPU @ 2.4 GHz with 4GB RAM for 

Barbara image of size 512x512 with a standard deviation of 20 is given in Table 

4.2. As can be seen from these figures the computation time taken by the DT-

SURE scheme is more than ten times that of the SureShrink. The computational 

inefficiency of the scheme is basically due to two reasons: one is the use of 

undecimated version of the transform and the other is due to the computation of 

transform along five different sets of directions with an anisotropic ratio of 1:2. 

Table 4.2 Computation time taken by different algorithms 

Method  SureShrink [42]  BayesShrink [43]  DT-SURE  

Time (sec)  1.2  1.4  15.1  
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Figure.4.3. Image denoising result of Lena image. (a) Noise free image (b) noisy image 

with ? �  20, (c) denoised image using WT-SURE (d) denoised image using DT-SURE (e) 

enlarged portion of (c) and (f) enlarged portion of (d)  
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Figure.4.4. Image denoising result of Boat image. (a) Noise free image (b) noisy image 

with ? �  20, (c) denoised image using WT-SURE (d) denoised image using DT-SURE (e) 

enlarged portion of (c) and (f) enlarged portion of (d)  
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4.3 Subband Adaptive Bayes Thresholding in 

Directionlet Domain 

In the previous section, a simple denoising scheme in directionlet domain is 

presented, which uses a threshold computed based on SURE risk. As compared to 

the previous scheme, two major modifications are made here to make the scheme 

more efficient. One is the use of Bayesian threshold and the second one is a more 

efficient way of identification of local dominant directions in the image.  

 

The directionlet based denoising scheme proposed here is an extension of the 

wavelet based denoising techniques. The undecimated version of directionlet 

transform is used here to have better denoising performance. The directionlet has 

directional vanishing moments along two directions only. So for identifying the 

best pair of directions, directionlet transform has to be taken along multiple 

directions. This is computationally intensive and data expansive. Thus if the texture 

direction is known a priori, the construction of directionlet can be limited to two 

dominant directions only, making it a computationally efficient scheme. However 

natural images can have different texture at different areas. This restriction implies 

a need for spatial segmentation of image and adaptation of the pair of directions in 

each segment based on the dominant direction of image. Here a scheme is 

presented in which the directional information of the spatially segmented image is 

first identified and then directionlet transform is computed for each of these spatial 

segments along the dominant directions. A subband adaptive Bayesian threshold is 

then computed from these transform coefficients and applied to the detail subbands 

using soft thresholding rule. Finally the denoised image is reconstructed from the 

modified subband coefficients. 

 

4.3.1 Identification of Local Dominant Directions Using 

Directional Variance  

As explained earlier, there are adaptive and non adaptive directional transforms for 

image representation. The former ones are fixed transforms with anisotropic 

directional basis, independent of image being transformed. In this case a fixed 

decomposition is applied irrespective of the signal, and these try to make the 
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directional features in images more explicit. The later ones do signal adaptive 

directional decompositions. In most of these schemes, the adaptation is done by 

searching exhaustively all possible directions using Lagrangian multiplier based 

Rate-Distortion (RD) optimization. Motivated by the need to estimate the content 

direction in a faster and efficient way, a scheme was proposed by D. Jayachandra et 

al [146], which compute the variance along discrete lines, as a means to measure 

content directionality. This parameter is known as directional variance, ‘DirVar’. 

 

Given any rational slope c, the digital line i�c, 4� where 4 I  o, is defined as the 

set of pixels ��, p� such that 

                                    p � qc�r 	 4, s � I o  �tc |c| D 1 tc                    

                                    � � uvwx 	 4, s p I o   �tc |c| y 1.                   (4.15) 

For every rational slope r, the set of digital lines i�c, 4�: 4 I  o completely 

partitions the 2D discrete space o�, meaning every pixel ��, p� I  o�  is associated 

to only one of the digital lines with slope r. 

Given the definition of digital line L(r, n) with rational slope r, the directional 

variance [146] for a given image segment S, along the lines with rational slope r, is 

defined as 

\3c{bc�|, c� � 1#  }}�|v � |~�w,-���
��

v��

�

-��
                                    �4.16� 

where, ��, p� is the set of pixels, |~�w,-� is the mean of the digital line with slope r 

and offset x and |v is the pixel in the same line. N is the total number of pixels and 

n is the total number of lines in the segment S.  �- is the number of pixels in the 

line x. 

\3c{bc�|, c� measures the normalized sum of variances along each digital line 

with the given slope r and hence is very sensitive to content directionality. It 

measures spatial activity along the given direction. That is, if the content has edges 

along some direction then the \3c{bc measured along a direction slightly different 

from that will result in a larger value than when measured along the content 

direction. Figure.4.5 shows the DirVar plot along 12 directions for three images 



with different directionality. 

(1,0),(3,1),(2,1),(1,1),(1,2)

first image with two regions separated by 

DirVar plot shows a dip at direction number 5 which corresponds to 

away from this direction shows increase in

difference between the content direction and others. For the next image with two 

dominant directions, DirVar

ability to respond to more than one direction. For the next image with uniform 

region which doesn’t have specific directionality, 

direction to direction.  

Figure.4.5. The directional variance for different images (a) an image with one edge (b) an 

image with two edges and (c) an image with no specific edges.

In the proposed scheme, the 

y) = (1, 0), (2, 1), (1, 1), (1, 2), 

0º, 30º, 45º, 60º, 90º, 120º, 135º and 150º.  This was carried out for each spatial 

segment of the image and the directions corresponding to the two minimum 

directional variances were identif

directions (transform direction and alignment direction) 

directionlet transform. The segments where 
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with different directionality. The directions selected are (x, y

2),(1,3),(0,1),(−1,3),(−1,2),(−1,1),(−2,1),(−3,1). For the 

first image with two regions separated by a line edge along the direction (1,2)

plot shows a dip at direction number 5 which corresponds to (1,2). Moving 

away from this direction shows increase in DirVar, hence clearly showing the 

difference between the content direction and others. For the next image with two 

Var shows minima at those two directions, showing its 

ability to respond to more than one direction. For the next image with uniform 

region which doesn’t have specific directionality, DirVar doesn’t vary much from 

directional variance for different images (a) an image with one edge (b) an 

image with two edges and (c) an image with no specific edges. 

the DirVar was computed along the rational directions 

(1, 2), (0, 1), (-1,2), (-1, 1) and (-2,1) which corresponds to 

120º, 135º and 150º.  This was carried out for each spatial 

segment of the image and the directions corresponding to the two minimum 

directional variances were identified and these were selected as the optimal pair of 

directions (transform direction and alignment direction) for computing the 

The segments where the DirVar for all the directions comes 

in Directionlet Domain     

y) = 

For the 

2), the 

Moving 

, hence clearly showing the 

difference between the content direction and others. For the next image with two 

shows minima at those two directions, showing its 

ability to respond to more than one direction. For the next image with uniform 

doesn’t vary much from 

 

directional variance for different images (a) an image with one edge (b) an 

was computed along the rational directions (x, 

which corresponds to 

120º, 135º and 150º.  This was carried out for each spatial 

segment of the image and the directions corresponding to the two minimum 

the optimal pair of 

for computing the 

all the directions comes 
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within 5% are considered to have no apparent dominant directions. For such 

segments, the pair (0º, 90º) is assigned by default as the transform directions for the 

reason of simplicity of implementation of DT.  

 

4.3.2 Image Noise Model and Bayes Threshold Computation 

The Generalised Gaussian Distribution (GGD) has been widely used to model the 

coefficients in many wavelet based denoising applications. For most of the natural 

images, the WT coefficients from each subband except LL subband can be well 

described by the zero mean GGD. Based on this distribution many attempts were 

made to find out the best threshold for denoising applications. The Bayes threshold 

based on GGD was first proposed by Chang et al [43] in the wavelet domain. The 

same scheme can be extended to the directionlet domain also as DT is an extended 

version of WT. The threshold estimation problem in directionlet domain can be 

formulated as follows. 

Suppose that the image � is polluted by independent and identically distributed 

(3. 3. `) white Gaussian noise � with zero mean and ?@�  
variance, the observed 

image � can be described as: 

� � � 	 �                                              (4.17) 

Since the directionlet transform is a linear operator, we can get the corresponding 

observation model in the directionlet domain as  

�R � �R 	 �R                                                                      (4.18) 

where �R , �R  and �R  are the directionlet transforms of �, � and � respectively.  

It has been observed that for a large class of images, the coefficients from each 

subband except LL subband form a symmetric distribution that is sharply peaked at 

zero [82], well described by the zero-mean GGD. 

 

The GGD is  

SS��,���� � ��?" , ���������,��|"|��                                           �4.19� 
where,   �∞ � � � ∞,    ?" y 0,   � y 0 
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� �?" , �� �  ?"�� �Γ�3 �⁄ �
Γ�1 �⁄ ��

� ��
 

��?" , �� � �. � �?" , ��2Γ�1 �⁄ �  

and  Γ�1 �⁄ � � � ���∞� �H��`�  is the gamma function. The parameter ?" is the 

standard deviation and � is the shape parameter.  

 

For each subband, the signal coefficients �R are modeled as independent samples of 

generalized Gaussian distribution, �"��R� � SS��,���R� and since the wavelet 

transform is orthogonal, the noise coefficients �R are modeled as independent 

samples of the Gaussian distribution,  �@��R� � �
√����  �

�� �������� 

 

Let the estimator be restricted to the soft-threshold estimator of the form  0��, �� �23�4����|�| � ��6,  where � is called the threshold. For a given set of parameter 

the objective is to find a soft threshold T which minimises the Bayes risk 
���, 
which is defined as 


��� � !��� � ��� �  !"  !J "⁄ ��� � ���                                           �4.20�  
The optimal threshold  �a can be obtained by minimising the Bayes risk 
���. 

�a�?", �� � argmin  R���                                                                  �4.21� 
This is a function of ?" and  �. There is no closed form solution for �a�?", �� for 

this chosen pair.  

It was established that at least for the range of  � I X0.5, 4Z, �a can be well 

approximated by the following equation [43] 

�¢�?"� � ?@�?"                                                                                          �4.22� 
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It was well established that a GGD with the shape parameter, � ranging from 0.5 to 

1 can adequately describe the wavelet coefficients of a large set of natural images. 

This range of shape parameter, � is well within the range requirement for �¢�?"� 
defined earlier. Thus in case of wavelet based denoising the threshold value 

mentioned in equation (4.22) can be effectively used. Now it has to be established 

that the directionlet coefficients also follow the non-Gaussian statistical properties, 

whose probability density function can be modelled using Generalized Gaussian 

Distribution. Figure. 4.6 shows the histogram of the wavelet and directionlet 

coefficients of Lena and Barbara images. These histograms are approximated to 

the generalized Gaussian curve and the corresponding standard deviation, ? and 

shape parameter, � are computed in each case. From these figures it is clear that 

the directionlet coefficients of natural images show a strong non-Gaussian 

statistical properties, whose probability density function can be modelled with the 

use of Generalized Gaussian Distribution. Also as in the case of wavelet 

coefficients, the � values in the case of directionlet coefficients also lie within the 

range of 0.5 to 1. This justifies the use of the Bayesian threshold as defined in 

equation (4.22) to the directionlet coefficients also. 

 

The Bayesian threshold �¢�?"� is a function of GGD parameters ?" and �  and is 

adaptive to different subband characteristics. Here the parameter � doesn’t 

explicitly enter into the expression of �¢�?"�, only the standard deviation of signal 

?" does. The noise variance  ?@� can be computed from the high frequency sub band 

coefficients at level1 (HHH�� in the directionlet decomposition by the robust 

median estimator as 

 ?@ � ¤;d�¥� �f¦§�f��.¨©ª« , ¬­�c� ®�R I jjj�                                          �4.23�  
The next parameter to be estimated is ?". From the image noise model as given in 

equation (4.17) and assuming that � and � are independent of each other, 

?J� � ?"� 	 ?@�                                                                                      �4.24� 
where ?J� is the variance of the noisy image. 
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Figure 4.6. Histogram at scale 1 of (a) WT coefficients of HL & HH subbands of Lena     

(b) DT coefficients of HLH & HHH subbands of Lena (c) WT coefficients of HL & HH 

subbands of Barbara (d) DT coefficients of HLH & HHH subbands of Barbara 
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Since the noisy image is modelled as zero mean, ?J� can be computed using the 

following empirical formula:- 

?�J� � 14� } ��R�
�

�,R��
                                                                                  �4.25� 

where 4 ¯  4 is the size of the subband under consideration. ?" can now be 

computed as  

?�" � °Ob��?�J� � ?�@�, 0�                                                                  �4.26� 
From the computed values of ?" and ?@ the threshold can be calculated using 

equation (4.22). The computed threshold is data driven and subband dependent. 

The denoising scheme based on Bayes thresholding in directionlet domain is 

referred as DT-Bayes. 

 

4.3.3 Denoising algorithm 

The DT-Bayes image denoising algorithm is summarized as follows:- 

Step 1: Divide the noisy image into spatial segments of smaller size, say 32 by 32.  

Step 2: Compute the \3c{bc along eight directions 0º, 30º, 45º, 60º, 90º, 120º, 

135º and 150º using equation (4.16) for each segment and choose the directions 

corresponding to two minimum \3c{bc values as the pair of transform and 

alignment directions. 

Step 3: Decompose the image segments into sub-bands using directionlet transform 

along the chosen pair of directions. 

Step 4: Compute the noise variance from the HHH� subband using equation (4.23) 

Step 5: For each subband, except the LLL subband, compute the Bayes threshold 

using the equation (4.22). 

Step 6: Apply the computed threshold to the subbands using soft thresholding rule 

to estimate the best value for the noise-free coefficients. 

Step 7: Reconstruct the image from the above processed sub-bands and the low-

pass residual (LLL) to obtain the denoised image. 



4.3.4 Results and Analysis

Standard greyscale images of size 512 x 512 

performance of the developed algorithm. The test images 

zero mean white Gaussian noise with standard deviation

The performance of the DT

[43], which is a scheme with

subband adaptive scheme with no spatial 

schemes popular Db4 wavelet was used for 

improvement was quantifi

directions estimated by minimizing the directional variance for the 

Barbara images are shown in Figure 4.7. Here the image was segmented into small 

patches of size 32x32 and the directional var

different directions. It is evident from th

correctly identified the directions that are close to the content directionality of the 

image in most of the spatial segments.

  Figure 4.7 Directions estimated by minimizing 

The PSNR comparison of 

The PSNR values provided are the average of 10 different noise realisations for 

each standard deviation. 

scheme for all the test images. From the PSNR values it is seen that the 

performance difference with the 
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4.3.4 Results and Analysis 

Standard greyscale images of size 512 x 512 are used for evaluating the 

performance of the developed algorithm. The test images are contaminated with 

zero mean white Gaussian noise with standard deviation of 10, 15, 20, 25 and 30. 

DT-Bayes scheme is compared mainly with BayesSh

a scheme with Bayesian thresholding in wavelet domain. This is a 

subband adaptive scheme with no spatial adaptation or correlation. In both the 

schemes popular Db4 wavelet was used for filtering. The performance 

improvement was quantified in terms of Peak Signal to Noise Ratio (PSNR). 

directions estimated by minimizing the directional variance for the Lena

images are shown in Figure 4.7. Here the image was segmented into small 

patches of size 32x32 and the directional variance was computed along eight 

different directions. It is evident from these figures that the directional variance has 

correctly identified the directions that are close to the content directionality of the 

image in most of the spatial segments.  

Directions estimated by minimizing DirVar for (a) Lena and (b) Barbara image

The PSNR comparison of Lena, Boat and Barbara images is given in Table 4.3.  

The PSNR values provided are the average of 10 different noise realisations for 

rd deviation. The proposed method outperforms the other compared 

scheme for all the test images. From the PSNR values it is seen that the 

performance difference with the BayesShrink scheme is more for Barbara and 

in Directionlet Domain     

re used for evaluating the 

re contaminated with 

, 15, 20, 25 and 30. 

BayesShrink 

Bayesian thresholding in wavelet domain. This is a 

. In both the 

. The performance 

ed in terms of Peak Signal to Noise Ratio (PSNR). The 

Lena and 

images are shown in Figure 4.7. Here the image was segmented into small 

iance was computed along eight 

that the directional variance has 

correctly identified the directions that are close to the content directionality of the 

image 

images is given in Table 4.3.  

The PSNR values provided are the average of 10 different noise realisations for 

The proposed method outperforms the other compared 

scheme for all the test images. From the PSNR values it is seen that the 

and Boat 
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images. This is basically due to the fact that these images have more high 

frequency content and so more directional features. The DT has effectively 

captured these directional features and aided for efficient denoising. Extracted and 

enlarged portions of Barbara, Lena and Boat images are shown in figure 4.8, figure 

4.9 and figure 4.10 respectively for analysing the visual performance of the DT-

Bayes scheme. It can be seen from these figures that the visual quality of the 

denoised images using DT is evidently better because of sharper edges and texture. 

The BayesShrink blurs image details especially at edges and contours. The DT-

Bayes scheme suppresses noise effectively while preserving the image details 

equally well. The performance improvement of the directionlet based scheme as 

compared to WT based schemes is more evident especially when the local 

dominant directions in the image are neither horizontal nor vertical. This can be 

seen clearly from the stripes in the scarf of Barbara, edges of the hat of Lena and 

the rods and ropes in Boat image. In all these cases the lines and edges are retained 

with the best quality in the resulting images from DT-Bayes scheme. 

Table.4.3. PSNR (dB) comparison of DT-Bayes scheme with other denoising algorithms 

for Lena, Boat & Barbara images of size 512x512 

Lena ? Noisy SureShrink 

[42] 

BayesShrink 

[43] 

HMT 

[48] 

DT-SURE DT-Bayes 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

33.27 

31.36 

30.19 

29.14 

28.36 

33.33 

31.39 

30.15 

29.21 

28.48 

33.83 

31.74 

30.38 

29.25 

28.36 

34.24 

32.36 

31.01 

29.94 

29.15 

34.56 

32.68 

31.39 

30.26 

29.50 

Boat 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

31.18 

29.28 

28.12 

27.27 

26.53 

31.78 

29.84 

28.43 

27.37 

26.56 

32.26 

30.30 

28.83 

27.66 

26.84 

32.37 

30.46 

28.94 

27.88 

26.95 

32.72 

30.92 

29.44 

28.27 

27.36 

Barbara  

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

30.21 

28.12 

25.91 

25.71 

24.33 

30.84 

28.50 

27.11 

26.00 

25.14 

31.35 

29.21 

27.81 

25.97 

25.12 

31.96 

29.86 

28.21 

26.99 

26.01 

32.66 

30.47 

28.95 

27.57 

26.68 
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Figure.4.8 Image denoising result of Barbara image. (a) noise free image (b) noisy image 

with ? �  20, (c) enlarged portion of noise free image (d) enlarged portion of noisy image 

(e) denoised image using BayesShrink  (f) denoised image using DT-Bayes.  
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Figure.4.9. Image denoising result of Lena image. (a) Noise free image (b) noisy image 

with ? �  20, (c) denoised image using wavelet based BayesShrink in [43] and (d) 

denoised image using Bayes thresholding in directionlet domain. 

The time taken by the DT-Bayes algorithm is noticeably very less from the 

previous scheme mainly due to the use of directional variance for estimation of 

dominant directions. The actual time taken by these algorithm in an Intel Core i5 

CPU @ 2.4 GHz with 4GB RAM for Barbara image of size 512x512 with a 

standard deviation of 20 is given in Table 4.4. 
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Table 4.4. Computation time taken by different algorithms 

 

 
Figure 4.10 Visual performance of DT-Bayes algorithm. (a) Noise free part of Boat image 

(b) Noisy parte with ? �  10, (c) Denoised image using wavelet based BayesShrink [43] 

and (d) Denoised image using DT-Bayes.  

Method  SureShrink [42]  BayesShrink [43]  DT-SURE  DT-Bayes 

Time (sec)  1.2  1.4  15.1  8.3 
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4.4 Image Denoising Using Interscale Dependency in 

Directionlet Domain 

In this section a statistical model based denoising scheme is presented in 

directionlet domain. This scheme is different from the earlier two schemes in three 

major aspect. The first one is that it is a statistical model based scheme as against 

the threshold based schemes presented earlier.  The second speciality is that the 

interscale dependency of the transform coefficients is taken into account in the 

modelling process. The third difference is the use of spatial adaptation instead of 

the subband adaptation used in the earlier schemes. 

 

The statistical model based schemes model the signal and noise coefficients using 

appropriate prior probability distribution functions and the noise free coefficients 

are estimated using this a priori information with Bayesian estimation techniques, 

such as the MAP estimator.  Here the main challenge lies in the accurate modelling 

of the image and noise coefficients. If these models are well chosen, the noise can 

be removed efficiently. In literature several models have been considered for the 

noise-free wavelet coefficients and Gaussian model for the noise coefficients. In 

most of these models the WT coefficients are assumed to be independent. However 

it was well established that there are inter and intra scale statistical dependency in 

wavelet coefficients of natural images due to the fact that if a WT coefficient has 

small magnitude the adjacent coefficients are very likely to be small, and the small 

coefficients tend to propagate across the scales. Thus the models which consider 

the transform coefficient as independent cannot efficiently model natural images 

and thus may not provide good denoising performance. Motivated by this here the 

interscale dependency of transform coefficients is incorporated in the estimation 

process. Also here spatial adaptation is used instead of subband adaptation. In the 

earlier two schemes, if two noisy coefficients from the same subband are of equal 

magnitudes then they are shrunk by the same amount without considering their 

spatial position and local surroundings. Here a local variance parameter, computed 

from the neighboring coefficients are used in the estimation process thereby the 

intrascale dependency of the transform coefficients is also made use of. This 

scheme is conceptually simple and computationally efficient with better directional 

features as against other directional transform based schemes. 
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The directionality of the spatially segmented image is first computed using 

directional variance to adapt the transform direction to the content direction. DT is 

then computed along these directions. The DT coefficients so obtained are then 

modelled using a bivariate function with a local variance parameter, which takes 

into account inter and intra scale dependency of these coefficients.  A nonlinear 

threshold function is derived from the bivariate models of the signal and noise 

employing a maximum a posteriori (MAP) estimator using Bayesian theory. The 

denoised image is obtained from the modified transform coefficients using 

directional information and inverse directionlet transform.  

 

4.4.1 Image Modelling & MAP Estimation 

The statistical model of a noisy image can be written as  

���, p� � ���, p� 	 ���, p�                                                           (4.27) 

Here ���, p� is the ��, p�Hh pixel of the noisy image, ���, p� the corresponding 

noise free image and ���, p� is independent and identically distributed white 

Gaussian noise with zero mean and   ?�� variance. The aim of denoising is to 

estimate ���, p� from ���, p�. 
 

Let us denote the J-level DT with generator matrix ±²Y and anisotropic ratio of 4�: 4� as DT�±²Y, 4�, 4��. Then as an example, DT�±²Y, 1, 2�  of a 2-D image 

results in an approximation subband iiiY as well as 7 ¯ W detail subbands viz. ijjR , ijiR , iijR , jiiR, jijR , jjiR  b4` jjjR , where T � 1,2,3… . . W. The 

approximation subband contains the low frequency portion of the image and thus 

possesses most of the information of the image. The detail subbands provide the 

directional information in the image specific to the spatial location resulting in an 

efficient energy compaction or sparse representation.  

Since DT is a linear operation like 2-D WT, the equation in (4.27) can be written as  

 �R���, p� � �R���, p� 	 �R���, p�                                                     (4.28) 

Here �R���, p�,  �R���, p� and  �R���, p�denote the DT at level j for segment i of the 

segmented noisy image, noise free image and noise components respectively. From 

now onwards, we will omit the superscript i and index ��, p� for simplicity.  
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Now we have to consider the interscale dependency of DT coefficients in the 

modelling process. Assume that DT�±²Y, 4�, 4��. is applied on an image, 

where ±²Y �  X`� `�Z[. The transform is applied in each of fdet �±²Y�f cosets 

independently. The number of HP subbands produced at each scale of DT is �2�L6�� � 1� and these subbands are said to have �2�L6�� � 1� distinct 

orientations. Consider two subbands of the same orientation at two adjacent scales. 

We denote the index of the finer scale as j and that of the coarser scale as (T 	 1�. 
The two subbands are defined across the corresponding lattices given by the 

generator matrices 

F²� � �2R�L . `�2R�� . `��  and  F·�¸L � �2�R6���L . `�2�R6���� . `��         
Notice that the lattice ·R6� is a sublattice of the lattice ·Rand recall that the 

coefficients in the two subbands are separated into ¹det�F·��¹ cosets. A coefficient 

in the C
th
 coset of the subband at the coarser scale (T 	 1� is parent of a set of 

children that belong to the same coset C in the subband at the next finer scale T. 
The children belong to the same orientation as their parent and are located within 

the parallelepiped around the spatial location of their parent. The children are 

defined by the following equation 

O�. 2R�L . `�  	 O�. 2R�� . `�  for  � �
� D O�, O� � �

�                      (4.29) 

The similar hierarchical structure of subbands across scales is shown in Figure 

4.11(a) for the case of DT�±²Y, 2, 1�, where the generator matrix  ±²Y � X`� `�Z[with `� � X1 1Z and `� � X�1 1Z. The corresponding parent-

children relation is illustrated in Figure 4.11(b) for the same transform. 

As in the case of WT, adjacent scale coefficients in the directionlet domain are also 

strongly correlated. The noise level decreases rapidly across scales while signal 

structures are strengthened. To take advantage of this property we model the DT 

coefficients using this dependency. Let us consider the coefficients of DT�±²Y, 4�, 4�� at scale T. Here each DT coefficient will have one parent at scale 

(T 	 1� and 2�L6�� children at scale �T � 1�. If we consider this interscale 
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dependency or the parent child relationship in the model in equation (4.28), it can 

be written as  

ºR � »R	¼R                                                                                 (4.30) 

where ºR � ½¾J�¿À , �RÁ  , »R � ½¾"�¿À , �RÁ  ,  and ¼R � ½¾@�¿À , �RÁ  , are the 

interscale dependence vectors of noisy, noise-free and noise coefficients 

respectively. 

 

Here ¾J�¿À is the average of one parent at scale �T 	 1� and 2�L6�� children at 

scale �T � 1� of �R and can be expressed as 

¾J�¿À � �
��∑ J�<L�Â�

�ÃL¸Ã�� 	 pR6��                                                     (4.31) 

where �R����� , � � 0,1…�2�L6�� � 1� are the children and �R6� is the parent of �R .  

Similarly,              ¾@�¿À � �
��∑ @�<L�Â�

�ÃL¸Ã�� 	 �R6��                          (4.32) 

and                                  ¾"�¿À � �
��∑ "�<L�Â�

�ÃL¸Ã�� 	 �R6��                         (4.33) 

 

 

 

 

 

 

 

Figure 4.11 (a) The parent child relationships for DT�±²Y , 2, 1�.  (b)The subbands at the 

coarser scale T 	1 are defined across the lattice ·R6� with the generator matrixF·�¸L . Each 

coefficient has a set of children at the next finer scale j.  

F·�¸L � Ä 4 4�2 2Å 
 

Coset 1  Coset 2  

F·� � Ä 1 1�1 1Å 
 

(a) (b) 
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The MAP filtering is a powerful estimation strategy for the random processes 

affected by noise. However, it needs a precise knowledge of the pdf of the random 

processes that are involved. Let �º�º�, �»�»� and �¼�¼� represent the pdf of the 

interscale dependence vectors of DT coefficients of the noisy image, noise free 

image and noise components respectively. Then, the MAP estimation of the 

process �R is 

��R � argmax�»⁄º�»ÆfºÆ�                                                       (4.34) 

Using Baye’s formula, this can be written as 

��R � argmaxX �º⁄»�ºÆf»Æ� . �»�»Æ�Z                                        (4.35) 

��R � argmaxX �¼�ºÆ � »Æ�. �»�»Æ�Z                                         (4.36) 

Here the estimate of noise free image is represented in terms of the probability 

density functions of interscale dependence vectors of noise and the signal 

coefficient. As it can be seen, finding a solution to the above equation needs pdf of 

both the signal and noise coefficients. Due to the orthogonal property of the DT, 

the noise in the transform domain remains zero mean Gaussian with a standard 

deviation ?@. So the noise pdf can be written as 

�@��R� �  �
√����  �

�� ��������                                                           (4.37) 

It was established that WT coefficients of natural images have highly non-Gaussian 

heavy tailed distribution [153]. The pdf for wavelet coefficients is often modeled 

using a Generalized Gaussian Distribution (GGD) as follows:- 

�"���Z � ®�2, ����¹�Ç¹¿                                                              (4.38) 

where 2 & � are the parameters for this model, and ®�2, �� is the parameter-

dependent normalization constant. Since DT is an extended WT operation, the DT 

coefficients of natural images also follow a non-Gaussian statistics with heavy 

tailed distributions. This non-Gaussian statistics can be modelled by using different 

heavy tailed pdfs. There are many marginal distributions proposed in literature. 

However these marginal models cannot effectively model the statistical 

dependencies between wavelet coefficients. It was established that there are strong 
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inter and intra scale dependencies between WT coefficients of natural images. Four 

different non-Gaussian models to characterize this dependency between a 

coefficient and its parent were proposed by Sendur et. al. and the corresponding 

bivariate MAP estimators based on noisy wavelet coefficients were derived [49]. 

But all these models were made based on the dependency of a coefficient and its 

parent at adjacent coarser scale locations and at adjacent spatial locations only. The 

children at the adjacent finer scale locations are not considered. Here a new joint 

non-Gaussian model is presented which characterizes the dependency between a 

coefficient and its parent at coarser scale and children at finer scale, and derives the 

corresponding bivariate MAP estimators. The Bayesian estimation problem is 

modified to take into account the statistical dependency between a coefficient and 

its parent and children. Thus the joint probability density functions for the noise 

and signal coefficients have to be considered by taking into account the parent 

child relationship. The noise is assumed to be independent and identically 

distributed. Then the corresponding joint pdf of noise vector ¼Æ � ½¾@�¿À , �RÁ can 

be written as a bivariate pdf as 

�@�¼Æ� �  �
�√������  �

�ÉÊ��¿À�¸������� Ë
                                            (4.39) 

The joint pdf for the signal coefficient vector »Æ � ½¾"�¿À , �RÁ can be defined as  

�"�»Æ� �  Ì
�√�����  �

�Í√Î�°Ï��¿À�6"��Ð                                      (4.40) 

Here the model fitting performance of this proposed model to the statistics of 

natural images has to be studied. The histogram of Lena and Barbara images at 

two different subbands and levels are considered here. These are shown in figure 

4.12 and 4.13. The proposed estimated pdf are also shown in red colour in each 

plot. These figures show that the proposed model provides a very good fit to the 

histogram of directionlet transform coefficients at different subbands and levels of 

these images. Also, for a quantitative evaluation of the closeness of fit, the 

Kullback-Leibler (KL) distance [150] is used to measure the difference between 

normalised histogram and the estimated pdf.  It is a non-symmetric measure of the 

difference between two probability distributions P and Q. Specifically, the 

Kullback–Leibler divergence of Q from P, denoted as DKL(P||Q), is a measure of 
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the information lost when Q is used to approximate P. For discrete probability 

distributions P and Q, the KL divergence of Q from P is defined to be  

\¦~���ÑÒ� � ∑ Ó4� ½Ô���Õ���Á ��3�                                          (4.41) 

The KL distance of the proposed pdf in (4.40) and the histograms of DT 

coefficients at different subbands and resolution levels of Lena and Barbara 

images are given in Table 4.5. This also shows that the proposed model has very 

good model fitting performance. Based on this analysis, the proposed model can 

very well be used in the MAP estimation process.  

 

 

Figure 4.12 Histogram of the DT coefficients of ‘Lena’ image & the estimated bivariate pdf 

(a) jjj subband at level 1 (b) jjj subband at level 2 (c) jij subband at level 1   

(d) jij subband at level 2 
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Figure 4.13 Histogram of the DT coefficients of ‘Barbara’ image & the estimated bivariate 

pdf (a) jjj subband at level 1 (b) jjj subband at level 2 (c) jij subband at level 1   

(d) jij subband at level 2 

Table 4.5 Values of the K-L distance between the normalised histogram and estimated pdf 

Image 
HHH HLH 

Level 1 Level 2 Level 1 Level 2 

Lena 3.51 3.18 2.95 3.03 

Barbara 2.33 3.12 2.02 2.91 

Using equation (4.36) with (4.39) and (4.40), the MAP estimator of �R is derived as 

��R�¾J�¿À , �R� �
�°Ï=�¿À�6J���√Î���� �¸

°Ï=�¿À�6J��
 . �R                                   (4.42) 
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Here the parameters required for this estimator are only signal and noise variances, ?� and ?@� respectively. By using these parameters, the estimate of the noise free 

DT coefficients can be computed from the noisy observations of the same 

coefficients at adjacent scales. 

 

4.4.2 Denoising Algorithm 

The DT can have directional vanishing moments along any two directions with 

rational slopes. Thus the dominant directions in an image have to be identified first 

to select the two transform directions. Since directionality in an image is a local 

feature which varies over space, it is ideal to identify it after spatially segmenting 

the image into small blocks.  

 

Here the input image is first divided into small spatial segments. Then a local 

texture-direction detector is constructed by measuring directional variance [146], 

using equation (4.16) to identify the pair of transform directions. Here the  \3c{bc 

is computed along eight different directions with (x, y) = (1, 0), (2, 1), (1, 1), (1, 2), 

(0, 1), (-1,2), (-1, 1) and (-2,1) which corresponds to 0º, 30º, 45º, 60º, 90º, 120º, 

135º and 150º.  This was carried out for each spatial segment of the image and the 

directions corresponding to the two minimum \3c{bc are identified as the optimal 

pair of directions for computing the DT. The segments where the \3c{bc for all 

the directions comes within 5% are considered to have no apparent dominant 

directions. For such segments, the pair (0º, 90º) is assigned by default as the 

transform directions for the reason of simplicity of implementation of DT.  

 

The directionlets apply transform separately on each coset of the integer lattice 

given by the chosen generating matrix, and by definition no interaction is allowed 

between these cosets. Here based on the computational efficiency point of view, 

the generating matrices are selected in such a way that they will not form more 

than one coset. To satisfy this condition, the direction vectors `� and `� are 

considered such that |`�1 �MΛ�| � 1. One useful subset of matrices with 

|`�1 �MΛ�| � 1 are of the form MΛ � ×1 0� 1Ø and MΛ � ×0 11 �Ø where � I o. 
Varying p leads to large number of transform directions. Based on the eight 
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directions considered earlier for \3c{bc computation, thirteen different generating 

matrices can be formed as follows which will satisfy the above condition.  

MΛ� � Ä1 00 1Å,  MΛ� � Ä1 01 1Å,  MΛÌ � Ä1 02 1Å, MΛª � Ä 1 0�1 1Å,  MΛ« � Ä 1 0�2 1Å,   
MΛ¨ � Ä0 11 1Å, MΛ© � Ä0 11 2Å,   MΛÙ � Ä2 11 1Å,  MΛÚ � Ä1 11 2Å,  MΛ�� � Ä�1 20 1Å,   
MΛ�� � Ä�1 2�1 1Å,  MΛ�� � Ä�1 01 1Å,  MΛ�Ì � Ä�1 1�2 1Å 
Using these generator matrices the DT decomposition is carried out for each spatial 

segment along the content directionality. Pairs of directions that would result in |`�1 �MΛ�| y 1 and thereby form multiple cosets are not considered here to avoid 

the division of spatially adjacent pixels into different cosets. Symmetric boundary 

extension at the borders of the segment is carried out while taking the transform, to 

avoid the boundary errors. As compared to the periodic extension, the symmetric 

extension has shown to yield better performance. 

The noise free DT coefficients are then computed using the estimator given in 

equation (4.41). It may be noted here that, since the undecimated DT 

decomposition generates redundant representation, there are correlations exist 

between the decomposition coefficients. Thus the 3. 3. ` models explained in the 

previous section are not justified and the derivation of MAP estimator is not 

possible. To overcome this, the DT coefficients are separated into four sets of 

uncorrelated coefficients namely �R6�� �2�, 2p�, �R6�� �2� 	 1,2p�, �R6�� �2�, 2p 	
1� and  �R6�� �2� 	 1, 2p 	 1�. For the OHh level decomposition, the coefficients 

can be separated into 2��L6���Û sets, each containing uncorrelated coefficients, and 

they are 3. 3. ` within each set as well. This approach lets us still use the 

independent noise assumption and circumvent the issue of denoising correlated 

signal coefficients with correlated noise. 

The estimator in equation (4.42) requires the prior knowledge of the noise variance ?Ü� and marginal variance ?� for each directionlet coefficient. The noise variance 

can be computed from the high frequency sub band coefficients at the finest scale 

(jjj�� in the directionlet decomposition as 

?Ü � ¤;d�¥� �|JL|��.¨©ª« , ¬­�c� �� I jjj�                                        (4.43) 
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The marginal variance can be estimated using a locally adaptive scheme [50]. From 

the observation model of equation (4.30), one gets  ?&� � ?� 	 ?Ü�, where ?&� is the 

marginal variance of noisy observations, �R. Since �R is modelled as zero mean, ?&� 

can be calculated as follows 

?J� � �
¤∑ ���J§I�Ý���                                                                     (4.44) 

where F is the size of the oriented neighbourhood, #Þ���, which is defined as all 

coefficients within an anisotropic neighbourhood oriented along the transform 

direction and centered at the k
th

 coefficient. In the case of undecimated DT since 

the down samplers are discarded in the decomposition process, the transform 

coefficients in the nearest neighbor spatial locations are highly correlated and they 

provide only redundant information. Therefore, estimation of marginal variance 

based on the closest neighborhood is not too efficient. For that reason, a sparser 

neighborhood is chosen, that is, the neighborhoods of coefficients with the relative 

coordinates to the coordinate of the referent coefficient scaled by the distance 

factor, ß � 2R  while the dimensionality of the neighborhood is retained the same. 

Here the orientation is matched with the transform direction.  
 

Using ?&� and ?Ü�,  ? can be estimated as 

? � °�?&� � ?Ü��6                                                                      (4.45)        

Since the DT coefficients at the first level do not have any children the noise free 

coefficients at this level are computed using the standard bivariate shrinkage 

procedure given in [50]. Now inverse DT is applied on the denoised directionlet 

coefficients to get the noise free image. The denoising algorithm presented here is 

referred as DT-Interscale and is summarised in three steps as follows:- 

Step 1: Spatial Segmentation & Identification of dominant direction 

• Spatially segment the noisy image into small blocks.  

• Compute optimal pair of directions for each spatial segment using DirVar. 
 

 Step 2: Multi scale DT computation and estimation of noise free coefficients  

• Apply multilevel undecimated DT to the segments along the optimal pair of 

directions.  
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• Calculate the noise variance ?Ü�  from jjj� subband coefficients using 

equation (4.43). 

• For each DT coefficient compute the marginal variance ?� using (4.45). 

• Estimate the new DT coefficient using equation (4.42) except for the DT 

coefficients at level 1. 

• Estimate the new coefficients at level 1 using standard bivariate shrinkage 

procedure of [50] 
 

Step 3: Reconstruction 

• Reconstruct the image from the modified DT coefficients using directional 

information and inverse DT 

 

4.4.3 Experimental Results & Analysis 

Standard 8-bit greyscale images of size 512 x 512 are used for evaluating the 

performance of the developed algorithm. The test images are contaminated with 

zero mean white Gaussian noise with variance 10, 15, 20, 25 & 30. The 

performance of the proposed method is compared with Bayesian thresholding in 

wavelet domain (BayesShrink) [43], SURE linear expansion of thresholding in 

wavelet domain (SURELET) [51], bivariate shrinkage in DTCWT domain 

(BiShrink) [50], steerable pyramid based oriented denoising (BLS-GSM) [54] and 

the DTCWT based scheme using three scales of dependency (DTWT-3) [53]. The 

BLS-GSM algorithm uses fully steerable pyramid decomposition with five levels 

and eight oriented sub bands at each level. BiShrink uses six levels and DTWT-3 

uses three levels of DTCWT. The performance improvement was quantified in 

terms of Peak Signal to Noise Ratio (PSNR). The PSNR comparison of Lena, Boat 

and Barbara images is given in Table 4.6. 

 

In the proposed method the image was spatially segmented into small blocks of 

size 32x32 and three levels of decomposition using undecimated DT with an 

anisotropic ratio of 1:2 was carried out. The biorthogonal-9/7 filter bank was used 

for DT decomposition and a 5x5 window was used as the neighbourhood window 

for marginal variance estimation. The segment size and the neighbourhood window 

size will greatly affect the quality of processed images. If the segment size is too 

small, the algorithm may not work well and may lead to unwanted block-like 
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artifacts. On the other hand, if the segment size is too large, the region containing 

image features will also become large with relatively more number of directions. 

This will adversely affect the denoising performance. It was also found that as the 

size of neighborhood window increases the image is getting more smoothened with 

diminishing features. Our experiments indicate that a window of size three or five 

is an ideal choice. The selection of biorthogonal wavelet is due to two reasons; 

regularity and symmetry. Regularity deals with sparse representation, i.e. a wavelet 

shall generate relatively few significant coefficients after decomposition. The 

regularity of a wavelet usually increases with the number of its vanishing moments. 

The symmetry is related to visual quality. The preference of symmetrical wavelets 

is due to the fact that our visual system is more tolerant of symmetric errors than 

asymmetric ones. 

 
Table.4.6. PSNR (dB) Comparison of DT-Bivariate scheme with other efficient schemes 

Lena ? Noisy BayesSh

rink [43] 

SUREL

ET [51] 

BiShrink 

[50] 

DTWT-3 

[53] 

BLS 

GSM [54] 

DT-

Interscale 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

33.33 

31.39 

30.15 

29.21 

28.48 

34.56 

32.68 

31.37 

30.36 

29.56 

35.32 

33.64 

32.41 

31.38 

30.51 

35.32 

33.60 

32.36 

31.38 

30.56 

35.60 

33.90 

32.66 

31.68 

30.88 

35.96 

34.25 

32.95 

31.90 

31.03 

Boat 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

31.78 

29.84 

28.43 

27.37 

26.56 

32.91 

30.80 

29.47 

28.44 

27.63 

33.12 

31.34 

30.09 

29.02 

28.33 

33.23 

31.35 

30.01 

28.98 

28.16 

33.58 

31.68 

30.35 

29.33 

28.49 

33.95 

32.03 

30.74 

29.67 

28.81 

Barbara  

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

30.84 

28.50 

27.11 

26.00 

25.14 

32.18 

29.66 

27.97 

26.76 

25.83 

33.35 

31.28 

29.81 

28.58 

27.62 

33.66 

31.49 

29.97 

28.78 

27.84 

34.02 

31.83 

30.27 

29.07 

28.07 

34.38 

32.17 

30.64 

29.41 

28.30 

 

Though the performance difference is marginal as compared to BLS-GSM scheme 

the DT-Interscale outperformed the compared schemes for all the test images. It 
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outperforms the classical Bayes Shrink by more than 2 dB on low and medium 

frequency images like Lena and Boat and more than 3 dB on high frequency image 

like Barbara. The interscale dependency modeling in directionlet domain for high 

frequency images give better results as it adaptively captures the oriented features 

like edges and contours in these images which correspond to high frequency 

information. It can also be seen from the results that the performance improvement 

of the DT-Interscale scheme as compared to the other schemes is narrowing down 

as the noise variance increases. This can be attributed to the fact that as the noise 

variance increases the accurate identification of dominant directions in the image is 

getting adversely affected. Thus the improvement of the quality of denoised images 

using DT-Interscale scheme, when compared to the results of the wavelet and 

DTCWT based schemes is significant, especially at lower noise levels. 

 

The visual quality of the denoised images is also used to evaluate the performance. 

Most of the image denoising algorithms achieve high visual quality in smooth 

regions. The difference is mainly in the preservation of image edges and textures. 

In Figure 4.14 and Figure 4.15 extracted portions of Barbara and Lena images are 

shown for visual comparison of the proposed scheme with BiShrink [50].  The 

visual quality of the denoised image using the proposed algorithm is evidently 

better because of sharper edges and texture. To emphasize this gain, portions of the 

denoised images of Barbara containing the stripes of the scarf and Lena containing 

the lines of the hat are zoomed in for both the methods. It can be noticed that the 

stripes in the scarf of Barbara image and the cross lines in the hat of Lena image 

are more clear and distinct in the denoised images of DT-Interscale scheme.  

 

In Figure 4.16, three different regions of Lena image containing smooth, edge and 

texture areas are extracted and the performance is compared with BiShrink and 

BLS-GSM algorithms. The visual quality with the DT-Interscale scheme in the 

smooth region is almost same as that with BiShrink scheme. In the areas where 

there are edges and textures, the performance of the DT-Interscale algorithm is 

similar to that of BLS-GSM. The performance is slightly inferior in segments 

where both edges and smooth regions are equally dominant. This is because the 

oriented denoising will adversely affect the smooth areas in a segment. So the 

selection of segment size plays a major role in the denoising performance.  
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Figure 4.14 Image denoising results of part of Barbara image (a) noise free image (b) noisy 

image with σ@ � 20 (c) denoised image using BiShrink and (d) denoised image using DT- 

Interscale (e) selected enlarged portion of ‘(c)’ (e) selected enlarged portion of ‘(d)’ 
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Figure 4.15 Image denoising results of part of Lena image (a) noise free image (b) noisy 

image with σ@ � 20 (c) denoised image using BiShrink and (d) denoised image using      

DT-Interscale (e) selected enlarged portion of ‘(c)’ (e) selected enlarged portion of ‘(d)’ 
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Figure 4.16. Image denoising results of smooth (A), texture (B) and edge (C) regions of 

Lena image using BiShrink, BLS-GSM & DT-Bivariate schemes. The images are arranged 

from left to right in order from Noise free image, noisy image with noise variance 20, 

denoised image using BiShrink, denoised image using BLS-GSM and denoised image 

using DT-Interscale scheme. 

 

An analysis of the computational complexity of the presented scheme is carried out 

here. The computational cost of the scheme consists of the cost of image 

segmentation, identification of dominant directions, image decomposition using 

DT, filtering process and reconstruction. Here the additional computation as 

compared to the BiShrink and DTWT-3 schemes is due to the identification of 

dominant directions using DirVar. For k pairs of directions the computation of 

DirVar requires one addition and one multiplication per direction, per pixel. So for 

an image with # pixels, the computation of DirVar requires only � ¯ # additions 

and the same number of multiplications. In BLS-GSM scheme eight directions and 

five levels are used leading to a total of forty 2-D non-separable filtering stages. 

The 2-D filtering of BLS-GSM scheme is much more complex than the separable  
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1-D filtering of the DT-interscale scheme. The computation cost of variance 

estimation is almost same in all the schemes. This analysis shows that the 

transform in the case of directionlets is computationally simpler than the steerable 

pyramids with 2-D directional filter-banks used in BLS-GSM scheme. However 

the proposed scheme is computationally more complex than the other two schemes 

based on DTCWT, mainly due to the mandatory requirement of spatial 

segmentation of the input image and identification of local dominant directions. 

The actual time taken by the four algorithms in an Intel Core i5 CPU @ 2.4 GHz 

with 4GB RAM for Barbara image of size 512x512 with a noise level of ? � 20 is 

given in Table 4.7. This shows that the proposed scheme takes less than one third 

of the time of BLS-GSM scheme with performance better than that of BLS-GSM.  

 

Table 4.7 Computation times taken by different algorithms 

 

4.4.4 Conclusion 

In this section an effective image denoising technique based on inter and intra scale 

dependency of directionlet transform coefficients is presented. The scheme suitably 

adjusts the transform directions based on content directionality of spatially 

segmented images and successfully captures the oriented features.  It uses the joint 

statistics of the DT coefficients of natural images and a non-linear threshold 

function is derived using Bayesian MAP estimator.  It was established that, 

allowing for spatial segmentation and choosing transform directions in each 

segment independently, directionlets outperform the DTCWT and BLS-GSM in 

image denoising. Even though the computational complexity of this scheme is less 

than one third of that of BLS-GSM scheme, it is much higher when compared to 

the other two schemes based on DTCWT. This may limit the practical applicability 

of the proposed algorithm. Thus the requirement is a computationally efficient 

scheme which can provide good denoising performance while preserving the edges 

and textures efficiently. 

Method  BiShrink [50]  DTWT-3 [53] BLS GSM [54]  DT-Interscale 

Time (sec)  1.3  1.5 30.1  9.4  
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4.5 Denoising based on Adaptive Spatial Segmentation 

and Classification in Directionlet Domain 

In this section a statistical model based denoising scheme is presented. This 

scheme is different from the earlier scheme in two aspects. One is the adaptive 

spatial segmentation of the image based on local dominant directions to identify the 

transform directions. This will improve computational efficiency and provide better 

sparse representation of the image. The second change is in the local variance 

estimation based on classification of DT coefficients using context modelling. 

 

The image to be denoised is first spatially segmented based on the content 

directionality and the dominant directions in each segment are identified. Then an 

undecimated version of DT is applied to effectively capture the directional features 

and edge information of these segments. The DT coefficients so obtained are then 

modelled using a simple bivariate distribution and the noise free coefficients are 

computed using MAP estimator. By employing bivariate pdf, the heavy-tail 

behaviour of natural images is accurately modelled and the interscale properties of 

DT coefficients are properly exploited. In addition, the local variance parameter of 

the model is estimated based on classification of DT coefficients using context 

modelling. Due to this the intrascale dependency of directionlets is also well 

exploited in the enhancement process.  

 

4.5.1 Adaptive Spatial Segmentation  

By adapting the transform directions to the local content directions as close as 

possible, the DT concentrates the signal information to the low frequency 

approximation sub band as much as possible. However the DT can have directional 

vanishing moments only along two directions with rational slopes. Thus to get the 

best benefit out of DT, the dominant directions in an image have to be identified in 

advance to select the transform directions. 

 

The content directionality in an image varies over space. Therefore it is ideal to 

find out the directionality in an image locally after spatially segmenting it into 

small blocks. Here a segmentation scheme adaptive to the content directionality is 

proposed. First, the input image is divided into four equally sized segments in a 
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step of the quad-tree spatial segmentation. Then for each spatial segment, the 

directional variance, DirVar [146] is computed along eight different directions with 

(x, y) = (1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (-1,2), (-1, 1) and (-2,1). Even though 

more directions are possible, in practice, it was observed that these eight directions 

are enough to achieve a good performance. 

 

For segments with uniform region or texture which don’t have specific 

directionality, the DirVar doesn’t vary much from direction to direction. This 

particular behaviour of DirVar can be used to differentiate the uniform and texture 

regions from the regions with specific directionality. If the value of DirVar along 

all eight directions are within 5% then that segment need no further division. The 

segments with more than two dominant directions are further quad tree segmented 

and the process is repeated till the predetermined maximal segmentation depth is 

reached. The two dominant directions of each segment are then selected as the 

transform and alignment directions. This way the transform directions are adapted 

independently in each spatial segment allowing for more efficient capturing of 

geometrical information. For segments having no apparent dominant directions, the 

transform directions are selected as (0º, 90º) for simplicity of implantation of DT. 

The optimal segmentation and the choice of transform and alignment directions for 

a simulated circle image is shown in figure 4.17. 

               

Figure 4.17 The optimal segmentation and choice of transform directions in each segment 

identified by Directional variance for simulated circle image 
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As in the previous scheme the generating matrices for the DT decomposition are 

selected in such a way that the determinant of the generating matrices value is one 

so that it will not form more than one coset. At every level of the transform only 

one level of 1-D transform is applied along each direction to avoid computational 

complexity. This will generate an isotropic decomposition. Even though 

anisotropic nature provides a faster asymptotic approximation rate it will result in a 

small number of scales and, therefore, the multi-scale dependence of the 

coefficients cannot not be properly captured. Symmetric extension at the borders of 

the segment was carried out while taking the transform, to avoid boundary errors.  

 

4.5.2 Image Modelling & MAP Estimation 

The image modelling and MAP estimation are similar to the earlier section except 

in the interscale dependency modelling. Here the parent coefficients only are 

considered for estimating the noise free coefficients. This is basically to make the 

system more computationally efficient. By considering only the parent coefficient 

in the estimation process, the estimate of the noise free coefficient can be obtained 

as follows 

��R��R , �R6�� � Í°J��6J�¸L� �√Î���� Ð¸
°J��6J�¸L�  . �R                                   (4.46) 

where �R and �R6�are the noisy DT coefficients at two adjacent scales,  ?Ü�  is the 

noise variance and  ?� is the marginal variance. So if we know the noise and signal 

variances, the estimate of the noise free DT coefficients can be computed from the 

noisy observations of the same coefficient and its parent at adjacent scale.  

 

4.5.3 Signal Variance Estimation through Context Modelling 

The signal variance is estimated here using the context modelling technique as 

explained in [44]. In the case of decimated DT, since the coefficients in a subband 

are de-correlated, the 3. 3. `  models are largely justified and thus the derivation of a 

MAP estimator is facilitated. However undecimated DT decomposition generates 

redundant representation, and there are correlations between the decomposition 

coefficients. For example, at the first level of decomposition, the odd and even 
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coefficients in each direction are correlated. So in this case the realistic statistical 

modelling of coefficients is far more difficult. To solve this issue the coefficients 

have to be separated into four sets of uncorrelated coefficients, 

namely �R��2�, 2Ó�,  �R��2� 	 1,2Ó�,  �R��2�, 2Ó 	 1� and  �R��2� 	 1, 2Ó 	 1�. For 

the s
th
 level decomposition, the coefficients can be separated into 2��L6���> sets, 

each containing uncorrelated coefficients, and they are 3. 3. ` within each set as 

well. This approach lets us still use the independent noise assumption and 

circumvent the issue of denoising correlated signal coefficients with correlated 

noise. The coefficients from each of these groups are further classified based on 

context modelling to differentiate and gather coefficients with some similarities, 

but not necessarily spatially adjacent. Consider one particular group from a 

subband with # number of coefficients �RX�, ÓZ. Here the context value, áR��, Ó�of 

noisy DT coefficient, �RX�, ÓZ is calculated as the weighted average of the absolute 

values of its neighbours. 

áR��, Ó� � �R�,â¬R                                                                 (4.47) 

where �R�,â is a 1 ¯ 8 vector whose elements are the absolute value of �RX�, ÓZ’s 

eight nearest neighbors. Here the parent coefficient at scale T 	 1 is not considered 

as it is already accounted in the bivariate shrinkage function. Here ¬R is a 1 ¯ 8 

weight vector, which can be found by using the least squares estimation as  

¬R � �äR[äR���äR[f�Rf                                                         (4.48) 

where äR  is a # ¯ 8 matrix with each row being �R�,â and �R is an # ¯ 1 vector 

containing all elements of �RX�, ÓZ. Now the context values are sorted in ascending 

order and the corresponding DT coefficients are clustered. The DT coefficients 

with similar natures are now arranged together and are assumed to have same 

statistics. Now the variance of a DT coefficient �RX��, Ó�Z can be estimated from �RX�, ÓZ whose context áR��, Ó� falls near to it. The pixel values can be selected by i closest points in value above áRX��, Ó�Z  and i closest points in value below, 

resulting in a total of 2i points.  These 2i points can be considered as a cluster åR�. 
The variance of DT coefficient can be estimated from this cluster as  

?æ"�� � Fb� ½ �
�~∑ �R�J���,â�Iç�§ ��, Ó� � ?@�, 0Á                       (4.49) 
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Here ?@� is the noise variance which needs to be subtracted because �R��, Ó� are the 

noisy observations and the noise is independent of the signal. The noise variance 

can be computed from the high frequency sub band coefficients at the finest scale 

in the decomposition (jjj�� using equation (4.43). The selection of the value of i 

is very important here. Too small or too large values adversely affect the 

performance.  

 

4.5.4 Denoising Algorithm 

The full denoising algorithm presented in this section is referred as DT-Adaptive 

and is summarized in three steps as follows 

 

Step 1: Adaptive Spatial Segmentation & Identification of dominant direction 

• The input image is first divided into four equally sized segments  

• Compute \3c{bc for each spatial segment along eight directions  

• If the \3c{bcfor all directions lies within 5%, then leave the segment as such, 

else check whether there are more than two dominant directions in that 

segment. If it is so, then further divide it into four equally sized segments and 

go back to the previous step until a pre defined segmentation depth is reached. 

 

Step 2: Multi scale Directionlet Transform computation and Estimation of 

noise free coefficients  

• Apply 3-level undecimated DT to the segments having dominant directions 

along the optimal pair of directions to get the multi scale DT coefficients. 

• Apply 3-level isotropic undecimated WT to the segments having no apparent 

dominant directions  

• For each transform coefficients, compute the noise variance ?Ü� using equation 

(4.43) and marginal variance ?� using equation (4.49). 

• Estimate the noise free transform coefficient using equation (4.46). 

 

Step 3: Reconstruction 

• Reconstruct the image from the modified DT and WT coefficients using 

directional information of each segment and inverse DT and WT. 
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4.5.5 Experimental Analysis & Results 

The performance of the presented algorithm is verified by using standard 8-bit grey 

scale images of Lena, Boat and Barbara of size 512 x 512. The Lena and Boat 

images contain smooth regions and edges while the Barbara image has abundant 

inhomogeneous structures. These images are contaminated with zero mean white 

Gaussian noise with standard deviation of 10, 15, 20, 25 & 30. The performance of 

the DT-Adaptive scheme was compared with that of interscale dependency model 

based schemes like BiShrink [50] and DTWT-3 [53]. Both these schemes are based 

on DTCWT.  

In DT-Adaptive scheme, the image is quad tree segmented based on the content 

directionality and a maximum segmentation depth of 32x32 is fixed. The 

segmentation depth greatly affects the quality of processed images. If it is too 

small, the output image will have block like artefacts, which are seen as artificial 

edges at the segment boundaries. On the other hand, if the segment size is too 

large, the segment will have more number of dominant directions making it 

difficult to select the optimum transform directions. This will adversely affect the 

denoising performance. A segmentation depth of 32x32 is found to be an ideal 

choice. After segmentation, each segment is decomposed using undecimated DT up 

to three levels with biorthogonal-9/7 filter bank. The signal variance required to 

estimate the noise free coefficient is computed based on context modelling of the 

DT coefficients. Through this the intra scale dependency of the DT coefficients is 

also incorporated in the estimation process. The performance improvement of the 

DT-Adaptive scheme is quantified in terms of Peak Signal to Noise Ratio (PSNR).  

The values obtained are given in Table 4.8 for different noise realizations. The 

PSNR values provided are the average of ten different noise realizations for each 

standard deviation.  

 

From the results it is clear that the DT-Adaptive method outperformed the DTCWT 

based schemes for all the test images, but the performance is slightly inferior as 

compared to DT-Interscale scheme. The visual quality of the denoised images is 

also used to evaluate the performance. The difference in visual quality is mainly in 

the preservation of image edges and textures. In figure 4.18 and figure 4.19, 

extracted portions of the Lena and Barbara images are compared with BiShrink in 
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DTCWT domain.  The visual quality of the denoised image using the proposed 

algorithm is evidently better because of sharper edges and texture.  

 

Table 4.8. PSNR (dB) comparison of DT-Adaptive scheme with other denoising schemes  

Lena 

? Noisy DTWT-3 [53] BiShrink [50] DT-Interscale DT-Adaptive 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

35.32 

33.60 

32.36 

31.38 

30.56 

35.32 

33.64 

32.41 

31.38 

30.51 

35.96 

34.25 

32.95 

31.90 

31.03 

35.82 

34.08 

32.80 

31.78 

30.94 

Boat 

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

33.23 

31.35 

30.01 

28.98 

28.16 

33.12 

31.34 

30.09 

29.02 

28.33 

33.95 

32.03 

30.74 

29.67 

28.81 

33.81 

31.89 

30.58 

29.56 

28.69 

Barbara  

10 

15 

20 

25 

30 

28.13 

24.61 

22.11 

20.17 

18.59 

33.66 

31.49 

29.97 

28.78 

27.84 

33.35 

31.28 

29.81 

28.58 

27.62 

34.38 

32.17 

30.64 

29.41 

28.30 

34.19 

32.00 

30.54 

29.30 

28.22 

 

Here the computational efficiency of this algorithm is compared with the DT-

Interscale scheme presented in previous section and also with DTCWT based 

schemes. The actual time taken by these algorithm in an Intel Core i5 CPU @ 2.4 

GHz with 4GB RAM for Barbara image of size 512x512 with a noise variance of 

20 is given in Table 4.9. This shows that the DT-Adaptive scheme is 

computationally more efficient than the DT-Interscale scheme but with a slight 

degradation in performance. 

Table 4.9. Computation times taken by different algorithms 

Method  BiShrink [50]  BLS GSM [54]  DT-Interscale DT-Adaptive 

Time (sec)  1.3  30.1  9.4 4.8 
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Figure 4.18 Visual comparison of Image denoising results of part of Lena image (a) noise 

free image (b) noisy image with σ@ � 20 (c) denoised image using BiShrink (d) denoised 

image using DT-Adaptive 
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Figure 4.19 Visual comparison of Image denoising results of part of Barbara image (a) 

noise free image (b) noisy image with σ@ � 20 (c) denoised image using BiShrink and (d) 

denoised image using DT-Adaptive 
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Chapter 5 

Spatially Adaptive SAR Image Despeckling 

in Directionlet Domain 
 

 
This chapter presents the contributions of this thesis to SAR 
image despeckling. Here six different despeckling schemes in 
directionlet domain are presented, which include threshold 
based schemes and statistical model based schemes. The 
effectiveness of these schemes are established by comparing 
them with the state of the art technologies available for 
original SAR images and standard benchmark images 
corrupted with noise. 

 

 

 

5.1 Introduction 

Speckle in SAR images is generally modelled as multiplicative random noise, 

whereas most available filtering algorithms are developed for additive white 

Gaussian noise (AWGN) as additive noise is most common in imaging and sensing 

systems. To take advantage of the available noise models and wavelet based 

denoising techniques for AWGN, it is necessary to apply a logarithmic transform 

to convert the multiplicative noise model into an additive one. As a nonlinear 

operation, the logarithmic transform totally changes the statistics of SAR images, 

and thus the original speckle statistics cannot be directly applied to log-transformed 

images. SAR images are usually available in intensity format or amplitude format. 

The statistical modelling and parameter estimation techniques for the log-

transformed multi-look speckle noise in these formats are explained in chapter 2.  

 

In this chapter the main contributions of this thesis in the area of SAR image 

despeckling are presented. The basic principle of despeckling in directionlet 
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domain is illustrated in Figure 5.1. It mainly consists of four steps. The first step is 

the spatial segmentation of the image and identification of two dominant directions. 

The second step involves DT computation along these dominant directions. The 

third step is the manipulation of the DT coefficients and the final step is the 

computation of the inverse DT using the modified coefficients. Since the speckle 

noise is multiplicative in nature, a pre-processing step consisting of a logarithmic 

transformation is mandatory to separate the noise from the original image. The 

manipulation of DT coefficients can be done in two ways. One is thresholding and 

the other is statistical model based Bayesian estimation. Depending upon the 

manipulation of coefficients, the despeckling schemes can be divided in to two: the 

threshold based ones and the statistical model based ones. The threshold based 

methods involve the computation of a proper threshold, which is troublesome in 

many cases. Statistical model based methods involve modeling of image and noise 

coefficients using suitable pdf. The success of these schemes depends on the 

closeness of these models to the actual distribution. In this chapter six different 

despeckling schemes in directionlet domain are presented. The first three are 

threshold based schemes and the last three are statistical model based schemes. 

These schemes suitably adjust the transform directions based on local dominant 

directions of spatially segmented image and successfully capture the oriented 

features.   

 

 

 

 

 

Figure. 5.1. Block diagram of directionlet based speckle suppression algorithm  

In many threshold based despeckling scheme, the prior knowledge of noise 

variance is required for the proper computation of an optimal threshold. 

Unfortunately, this is not available in most of the cases. To avoid this limitation, 

Generalized Cross Validation (GCV) technique [45] is used here to estimate the 

optimal threshold without using the prior knowledge of the noise variance. GCV is 

based on the input data only and its minimum is a good approximation for the 

optimal threshold. The first scheme is a simple GCV thresholding in directionlet 
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domain. The second scheme efficiently extracts edge information along dominant 

directions from the spatially segmented SAR image. Then an optimal scale 

dependent subband adaptive threshold based on GCV technique is applied to the 

edge removed image. The despeckled image is finally synthesized using the 

extracted edge information to preserve sharpness of edges and texture. In the third 

scheme the adjacent DT coefficients are multiplied to amplify the significant signal 

features and thresholding is applied to these multiscale products to better 

differentiate edge structures from noise. The proposed schemes are compared with 

the similar schemes in wavelet domain and also with other directional transform 

based despeckling schemes. 

 Among the statistical model based schemes proposed here, the first one uses a 

simple Laplacian-Gaussian modelling of the DT coefficients and the noise free 

coefficients are estimated using MAP criterion. The performance of despeckling 

schemes based on multi-resolution analysis can be improved significantly by taking 

into account the multi-scale correlation among the transform coefficients. Here the 

last two schemes are based on bivariate modelling of the directionlet coefficients, 

which takes into account the multi-scale correlation among the transform 

coefficients. In the first scheme the signal and the noise coefficients are modelled 

using Cauchy-Gaussian bivariate distributions which take into account the 

statistical dependence between the adjacent scale coefficients. In the second 

scheme the interscale dependency of the DT coefficients is modelled using a non-

Gaussian bivariate distribution with a local variance parameter. The nonlinear 

threshold functions derived from these models employing a maximum a posteriori 

(MAP) estimator are then used for estimating the noise-free coefficients. Since the 

directionlets possess spatial anisotropy and better directional capabilities, statistical 

interscale dependency modelling in directionlet domain results in visually 

appealing despeckling results, with improved performance parameters. The details 

of these despeckling schemes are presented in the following sections. 

 

5.2 Despeckling using GCV Thresholding  

Here a simple yet efficient despeckling scheme in directionlet domain is presented. 

As in any transform based despeckling schemes, the directionlet based despeckling 

also involves mainly three steps. First transform the input image using an 
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orthogonal transform, then threshold the transform coefficients using a non-linear 

algorithm and finally reconstruct the image using the modified coefficients. The 

effectiveness of a threshold based denoising algorithm basically depends on two 

factors- one is the efficient representation of the image to be denoised using a local, 

directional and multi resolution expansion and the other is the efficient 

computation of an optimal threshold. Here the first requirement is met by using a 

locally adaptive directionlet transform and the second by optimal threshold 

computation using Generalized Cross Validation (GCV) technique.   

 

5.2.1 Speckle noise model  

It may be assumed that the observed signal follows the following model � � �. �                                                          (5.1) 

where � is the observed signal, � is the speckle-free reflectivity that we would like 

to estimate and � is the multiplicative speckle noise. Here a logarithmic 

transformation is carried out to convert the multiplicative nature of speckle noise to 

an additive one. However this results in a mean shift which has to be corrected 

after processing. After logarithmic transformation the equation (5.1) becomes  � � � � 	                                                        (5.2) 

where �, � and 	 are the logarithms of �, � and � respectively. Owing to the 

linearity of DT, a multi-resolution decomposition of � results in  �� � �� � 	�                                                    (5.3) 

where ��, �� and 	� are the DT coefficients at level 
 of �, � and 	 respectively. The 

directionlet transform concentrates the important image features in a limited 

number of coefficients and the noise energy to all the coefficients. So the noise has 

small influence on the large signal coefficients. To reduce the contribution of these 

small noisy coefficients, a soft thresholding operation is applied to all the 

coefficients except those of the lowest scale. A soft threshold operation will set all 

the directionlet coefficients ��below the threshold, � (between ��  to ��) to zero, 

while others are shrunk in absolute value to obtain ���. ��� � ����� ���� � ��� � ���                         (5.4) 
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Finally, the speckle-reduced image is obtained from the synthesis part of the DT of 

the enhanced subband image ���. The main problem here is the selection of an 

appropriate threshold. If this threshold is large, important image features will be 

lost. On the other hand, a small threshold will result a still noisy image. Thus an 

optimal threshold, ��,���  is required which optimizes the mean square error �����.  ����� � ���  ��,� � �� !                                (5.5) 

where "� is the number of coefficients in the subband k, ��,� is the vector of 

threshold applied noisy coefficients and �� is the vector of noise-free coefficients. 

Here, because �� is unknown the function ����� is not computable and hence it 

cannot be used in practical applications to compute the optimal threshold ��,��� . 
 

5.2.2 Thresholding based on Generalized Cross Validation  

Since piecewise smooth true images have sparse representations with respect to 

wavelet basis functions, wavelet denoising methods have been intensively 

researched over the past two decades. Donoho and Johnstone [17] provided an 

asymptotically optimal choice for a single thresholding parameter under soft 

thresholding with an assumption of white noise. Following their work, Nason [147] 

and Jansen et al [45] proposed cross validation (CV) and generalized cross 

validation (GCV) techniques, respectively, for threshold parameter estimation. 

Johnstone and Silverman [148] suggested schemes for dealing with correlated 

noise by grouping wavelet coefficients according to their resolution levels and then 

selecting the threshold parameters separately for each resolution level. Jansen and 

Bultheel [149] subsequently revised the GCV technique to accommodate correlated 

noise. 

 

In GCV technique, the original image � is assumed to be regular so that the i
th 

component of it, �# can be approximated by a linear combination of its neighbours. 

So by considering �$#, as a combination of its neighbours, the noise in this particular 

component can be eliminated. That is a pixel value is replaced by the weighted 

average of its neighbours to smooth the noise in that pixel. This value can be used 

in the computation of an approximation for mean square error,  ����� of equation 
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(5.5). This way the modified signal �$ is obtained by replacing the i
th
 component �# 

with �$#. Now we have to consider the ability of �$#,� to predict the value of �# as a 

measure for the optimality of the choice of threshold, �. For small values of �, the 

difference �# � �$#,� is dominated by noise while for large values of �, the signal 

itself is affected. This can be repeated for all the components and the compromise 

can be estimated as Ordinary Cross Validation (OCV).  

%&� � 1"()�# � �$#,�*!�
#+�                                             �5.6�           

The  �$# can be computed in many ways. One of the most obvious choices is  

 �$# � �!  .�#/� � �#��0                                      (5.7) 

If �$#,� is taken as 123# �# then �$#,� 4 �$# and if �$#,� is taken as 1��#  �# then  �$#,� 5�$#. The OCV in equation (5.6) can be approximated as  

%&� � 1"()�# � �#,�*!.�
#+�  6#!���                   �5.8� 

 

where    6#��� � ���/899′ �      and  :##′ � ;9,< /;$9,<;9 /;$9  = >;9,<>;9  

This cannot be used in practical computations as  :##′  is 0 or 1. Thus a mean value 

of 6#��� can be taken as  

6#��� � 6��� � 11"∑ �1 � :##′ ��#+�                    �5.9� 
With this generalisation, the OCV will become a Generalized Cross Validation 

(GCV) as 

�&� � 1"(     )�# � �#,�*!A1"∑ �1 � :##′ ��#+� B! 
�
#+�                 �5.10� 

This can be written as 
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�&���� � 1" D� � ��D!E"F" G!                                       �5.11� 
where,  "F  is the number of coefficients that were replaced by zero. For orthogonal 

transforms, this formula can be used as such for the transform coefficients also. 

Thus GCV can be applied as such to both wavelet transform and directionlet 

transform coefficients. In the transform domain for a subband k, the GCV as a 

function of threshold  � is defined as  

�&����� � HI� ;J�/;J�,< K
LI�MI� NK                                    (5.12)  

where "�F  is the number of coefficients that were replaced by zero, ��� is the 

transform coefficients at level 
 in the subband O. ���,� is the threshold applied 

transform coefficient ���. This is a function of known parameters of the input noisy 

image only and is independent of the noise variance. It was established that, under 

certain conditions, this threshold choice is asymptotically optimal, i.e., for a large 

number of wavelet coefficients, the minimizer of �&����also minimizes the mean 

square error function (or risk function) ���� [45]. Thus the value corresponding to 

the minimum of the GCV function can be used as the optimal threshold value. The 

main advantage of such an approach is that the prior knowledge about the amount 

of noise energy is not necessary here. The amount of computation for this 

minimization is comparable to or even less than that for the wavelet transform. 

 

If E denotes the expectation operator, and  �P and � Qare the estimated thresholds 

based on the minimum of mean square error, ���� and minimum of Generalized 

Cross Validation, �&���� respectively then,  �P � argmin����                                                     �5.13� �Y � argmin�&����                                                 �5.14� 
Then for ", the total number of coefficients, tending to ∞           [�)�Y*[���P�  \ 1                                                                  �5.15� 
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and in the neighborhood of  �P   [ �&���� = [���� � ]!                                        �5.16� 
Figure.5.2 illustrates this principle. Here the GCV and mean square error, R are 

plotted against threshold for a noisy image with a variance of  3. It can be seen 

from the figure that the minimum of both GCV and mean square error, R 

corresponds to the same threshold. However the mean square error is not 

computable from the available data but GCV is. 

 
Figure 5.2 GCV and mean square error, R are plotted against threshold 

 

The denominator in the GCV function counts the transform coefficients below the 

threshold and therefore behaves discontinuously as a function of the threshold 

value. This causes unpleasant jumps in the GCV plot, especially at small threshold 

values, since most coefficients are small. Typically, most discontinuities appear up 

to thresholds equal to the noise deviation. It was established that for a typical 

signal, 1000 sample values are sufficient for the minimum risk threshold to be far 

enough from the noise deviation. In that case the threshold will be in a region of 

smooth GCV behavior and can thus be easily estimated [45]. 
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It was proven that the GCV procedure fails in cases with correlated noise. It is 

obvious that a wavelet threshold method fails when the noise on the coefficients is 

not stationary. The optimal choice of the threshold depends on the present noise 

energy. If the amount of noise is different for different coefficients, it is difficult to 

remove it decently by using a single threshold. The threshold computation methods 

are always based on the assumption that the noise is i.i.d, means it is stationary. A 

non orthogonal transform yields a non-stationary noise in transform domain even if 

the noise is stationary and white in time domain. Thus an orthogonal wavelet is 

required to be used for decomposition. The wavelet transform of stationary 

correlated noise is stationary within each resolution level. Since stationarity is a 

condition for a successful GCV-estimation of the optimal threshold, this result 

suggests choosing a different threshold for each resolution level. Although a level-

dependent threshold selection works fine for correlated noise, problems may occur 

from the fact that the GCV-estimation is only asymptotically optimal. Indeed, the 

number of available coefficients decreases if the scale gets coarser, because of the 

subsampling step in the transform algorithm. A non-decimated transform or 

stationary transform has no subsampling step and therefore keeps the same number 

of coefficients at each level. Moreover, unlike the decimated transform, the 

redundant transform is translation invariant. The main drawback with such an 

approach is the increase in computational complexity. 

 

For large images the computation of GCV may be time consuming. To deal with 

this problem, one can base the computation of GCV not on all pixels, but on a well 

selected, representative part of it. One way of doing it is selecting the pixels using 

an equidistant sampler. 

 

5.2.3 Despeckling Algorithm 

A transform based on direction of texture with edge information in an image can 

greatly improve its sparse representation and also the precision of estimation of 

correct threshold. Thus it is important to identify the dominant direction of texture 

before thresholding.  As discussed earlier, the directionality in an image is a local 

feature which varies over space. Therefore it is ideal to find out the directionality in 

an image locally after spatially segmenting it into small patches. The directionlet 
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transform can have anisotropy and directional vanishing moments along any two 

directions with rational slopes. Here the input image is first spatially segmented in 

a quad tree structure and directionlet transform is taken along multiple directions 

from the set ^ � _�0°, 90°�, �0°, 45°�, �0°, �45°�, �90°, 45°�, �90°, �45°�`. These 

sets are chosen in such a way that the cubic lattice is not divided into more cosets 

in the lattice based implementation of DT [37]. The best pair of directions abP c ^  
is chosen for each segment indexed by n as follows [37]. 

abP � 2d�e��fcg ∑ �hb,#f �!#                               (5.17) 

where hb,#  f represent the wavelet coefficients which are produced by applying 

directionlets to the ��isegment along the pair d  of directions. The assigned pair of 

transform directions of each patch across the input image forms a directional map 

of that image and provides the best matching between transform and locally 

dominant directions for that segment. For segments with no apparent dominant 

directions, the pair (0°, 90°) is assigned by default to smooth the segments, for the 

reason of simplicity of implementation of the directionlet.  

After identifying the dominant direction in each spatial segment, multi scale 

directionlet transform is applied along the dominant directions and the directionlet 

coefficients are selected for thresholding using GCV.  In the directionlet 

decomposition, the subbands HHHj, HHLj, HLHj, HLLj, LHHj, LHLj and LLHj, j=1, 

2, 3….J are called the details, where j is the scale, with J being the largest scale in 

the decomposition. The subband LLLJ is the low resolution residual. The 

directionlets retain orthogonality from standard wavelet transform and the 

coefficients in the subbands are independent and identically distributed with zero 

mean. Thus the image noise model presented in section 5.2.1 is applicable for 

directionlets also. The directionlet coefficient gjk from the detail subbands are used 

for optimal threshold computation using GCV technique to obtain �$jk. The 

denoised estimate is then �j � ^/��$kl, where ^/� is the inverse directionlet 

transform operator.  

 

It may be noted here that, since the undecimated DT decomposition generates 

redundant representation there are correlations between the decomposition 

coefficients. Thus the �. �. a models explained in the previous section are not 
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justified. To overcome this, a level dependent threshold is used here. That is the 

thresholds for each subband at each level are computed separately. 

 

The despeckling algorithm proposed here is referred as DT-GCV and is 

summarised in three steps as follows 

Step 1: Directionlets and Directional Map 

• The noisy image is first quad tree segmented till a desired level of 

segmentation is achieved.  

• Make a logarithmic transformation (log (g+1.0)) of the segmented image to 

convert multiplicative noise to additive noise. Here 1 is added to prevent zero 

become -∞ after logarithmic transformation. 

• Apply directionlet transform to the segments along the pair of directions ^ � _�0°, 90°�, �0°, 45°�, �0°, �45°�, �90°, 45°�, �90°, �45°�` 
• Compute optimal pair of directions for each segment using equation (5.17) 

• Compute the multi scale directionlet transform along the dominant directions 

Step 2: Threshold Computation 

• At each level for each subband, except the LLLJ  subband, compute the GCV 

threshold which minimizes the parameter �&�����, given in equation (5.12). 

• Apply the computed threshold to the subband coefficients using soft 

thresholding rule to estimate the best value for the noise-free coefficients 

Step 3: Reconstruction 

• Reconstruct the image from the above processed sub-bands and the low-pass 

residual (LLLJ) using inverse directionlet transform and the directional map. 

• Invert the logarithmic transformation to obtain the despeckled image 

 

5.2.4 Results and Discussions 

In SAR image denoising, due to the lack of the original noiseless signal, 

performance assessment is quite a challenging task. Different indicators have 

already been explained in chapter 2 to measure smoothness of smooth areas as well 

as sharpness of edges and details, but they are largely empirical and provide little 

insight about how to balance image smoothness and preservation of critical 
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information. Therefore, following the approach widely used in the literature, 

experiments have been carried out on optical images corrupted by simulated 

speckle. Through this, objective performance figures like PSNR have been 

obtained which allow a sound comparison among different despeckling algorithms. 

Experiments have been conducted with actual SAR images also. In this case 

Equivalent Number of Looks (ENL) is used as the performance parameter for 

assessing the performance of speckle reduction over a homogeneous area in the 

image. However ENL is not a good measure of despeckling performance in 

heterogeneous areas of an image. Thus the subjective quality of the despeckled 

image through visual examination is also important. A parameter called Edge Save 

Index (ESI) is also used to assess the edge preservation capability of the algorithm. 

It reflects the edge save ability in horizontal �ESIH� or vertical �ESIV� direction of 

the despeckling algorithm. 

 

The proposed scheme is compared with similar scheme in wavelet domain (WT-

GCV) [45]. The well-known traditional spatial filters like Frost filter [4] and Lee 

filter [6] are also considered here. These filters, although pretty aged, are the de 

facto standard, included in many image processing software packages, and used 

routinely by photo interpreters of military and civil space agencies. A 3x3 mask 

was used in both these spatial filters. For a fair comparison, three levels of 

decomposition using db4 wavelet was carried out both in WT-GCV and DT-GCV 

schemes. The subband coefficients in both these methods were shrunk using soft 

thresholding with a threshold value computed for each subband and resolution 

level through GCV technique. The LL subband in WT and LLL subband in 

directionlet scheme are kept unchanged. To reduce computational complexity, the 

GCV is computed only for 512 pixels for a segment of size 32x32. These pixels are 

selected using an equidistant sampler.  

 

The resolution cell of the SAR system describes the smallest object the system is 

able to recognize and its size depends on the azimuth and range resolution. Each 

ground resolution cell is composed of a large number of elementary reflectors 

backscattering the radar wave in the sensor direction following different paths. The 

total component backscattered by the resolution cell is the vectorial sum of these 

elementary backscattered electrical fields. Interference caused by different 
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scattering waves can be both constructive and destructive. So SAR images are 

characterized by dark spots, corresponding to destructive interferences, and clear 

spots, due to constructive ones. These are seen as speckle in SAR images. The 

speckle noise can be modelled as a white noise with a Gamma distribution, whose 

parameter is the number of looks, L. The noise variance is inversely proportional to 

the number of looks, i.e., as the number of looks increases, the quality of image 

becomes better. Here in order to assess the quality of the presented algorithm, 

synthetically speckled images are used. These are generated from standard 

benchmark noise-free images added with speckle noise. Here 1, 2, 4 and 16-look 

amplitude speckled Lena and Boat images of size 512x512 disturbed by fully 

developed speckle are taken for experiments. The worst case corresponding to the 

input image with the number of looks, L = 1 and the best case corresponding to the 

image with number of looks, L= 16. The PSNR values obtained with different 

algorithms are given in table 5.1. Visual effects of these algorithms are shown in 

figure 5.3 for Lena image. Figure 5.3 (a) and (b) are noise-free Lena image and its 

speckled versions respectively. Figure 5.3 (c) – (e) shows the despeckled images 

obtained by Lee filter, wavelet based GCV thresholding and the proposed 

directionlet based scheme respectively.  As they appear, the Lee filtered version 

has lower despeckling effects, because many homogeneous regions are not 

smoothed enough. The one-dimensional data extracted from 50
th
 and 150

th
 row of 

this test image is given in figure 5.4. It shows a comparison of the one-dimensional 

variation of noise less pixel values of Lena image and artifacts in despeckling 

results of same image with speckle noise using different algorithms. It can be seen 

from this figure that the pixel values of the despeckled image using DT-GCV 

follows the original one very smoothly. But in case of Lee filter and WT-GCV, 

there are many spikes in the despeckled pixel values. This clearly indicates that the 

noise reduction is much better in directionlet based scheme than the other schemes. 

 

The performance of the scheme was also verified by using original SAR images in 

amplitude and intensity formats. Here an X-band, 2-looks, amplitude SAR image 

of Bedfordshire [151] and a Ku-band, 4-looks, intensity SAR image relevant to 

Horse track, near Albuquerque, New Mexico with 1-m resolution [152] are 

considered. Figure 5.5 and figure 5.6 show the visual comparison of the despeckled 

images obtained by different methods with these images. Two homogeneous 
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regions each in these images are used to compute the ENL. These areas are 

highlighted in the noisy SAR images. The ENL and ESI values obtained by the 

different schemes are listed in Table 5.2. It can be noted that the DT-GCV scheme 

provides a substantial improvement in terms of ENL and ESI over the other 

methods for both these images. Also the visual quality of the despeckled image 

using the proposed scheme is evidently better because of sharper edges and texture. 

The Gamma MAP filter smoothes speckle noise and gives better ENL among 

traditional schemes, but edges are blurred here and regions around the edges 

contain significant artefacts which are visible as dark spots. Even though the 

wavelet based scheme removes speckle effectively Gibbs phenomena exists in 

uniform regions and also the edges in this case are blurred. 

 

 
Figure 5.5 Despeckling results of Synthetic SAR image of Lena in amplitude format with 

L=4  (a) Original noise free Image (b) Noisy image (c) Despeckled image using Frost filter 

(d) Despeckled image using Lee filter (e) Despeckled image using WT-GCV                     

(f) Despeckled image using DT-GCV 



Spatially Adaptive SAR Image Despeckling in Directionlet Domain     

155 

 

  
Figure 5.6 One-dimensional data extracted from 50

th
 & 150

th
 rows of synthetic SAR image 

of Lena in amplitude format with L=4. Original image pixels are shown in blue colour and 

despeckled image in red colour.(a) (b) Despeckled image using Lee filter, (c) (d) 

Despeckled image using WT-GCV and (e) (f) Despeckled image using DT-GCV 
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Table 5.1. Despeckling results (PSNR) for synthetic SAR images of Lena & Boat 

(512x512) in amplitude format  

Looks/Method 
Lena Boat 

1 2 4 16 1 2 4 16 

Synthetic SAR 

Image 
12.11 14.89 17.80 23.76 11.77 14.55 17.46 23.42 

Frost [4] 19.16 23.32 26.32 30.60 18.64 22.56 25.22 28.33 

Lee [6] 20.82 23.86 26.19 29.34 17.25 20.31 23.53 28.09 

WT-GCV [45] 24.86 27.01 28.68 32.10 23.00 24.61 26.15 29.60 

DT-GCV 25.38 27.54 29.21 32.90 23.59 25.26 26.86 30.48 

 

 

Figure. 5.7. (a) The original SAR image of Bedfordshire (b) de-speckled image using Frost 

filter (c) de-speckled image using Lee filter (d) de-speckled image using Gamma MAP 

filter  (e) de-speckled image using WT-GCV and (f) despeckled image using DT-GCV. 
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Figure. 5.8. (a) The original SAR image of Horse track (b) de-speckled image using Frost 

filter (c) de-speckled image using Lee filter (d) de-speckled image using Gamma MAP 

filter  (e) de-speckled image using WT-GCV and (f) despeckled image using DT-GCV. 

 

Table 5.2 Comparison of ENL & ESI values of DT-GCV and other despeckling schemes 

applied on original SAR images 

Despeckling 

Scheme 

Bedfordshire Image 

(Amplitude format, L=2) 

Horse Track image 

(Intensity format, L=4) 

ENL ESI ENL ESI 

Reg.

A 

Reg.   

B 
ESIH ESIV 

Reg.  

C 

Reg.  

D 
ESIH ESIV 

Real SAR Image 2.94 3.28 1 1 14.11 9.76 1 1 

Frost [4] 13.56 21.10 0.370 0.332 116.8 82.45 0.261 0.270 

Lee [6] 15.67 22.69 0.365 0.328  125.1 91.33 0.253 0.262 

WT-GCV [45] 24.91 48.11 0.371 0.301 182.6 90.21 0.268 0.256 

DT-GCV 32.60 63.58 0.428 0.394 214.8 98.70 0.313 0.385 
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5.3 Despeckling with Edge detection  

The human visual system is highly sensitive to edge structures, which involves a 

large quantity of information, and thus the key point for the image denoising 

algorithms is to remove noise while preserving the original edge structures. Here 

an edge detection and despeckling algorithm in directionlet domain is presented. 

The algorithm adapts the transform directions to dominant directions across the 

image domain and efficiently captures the geometrical information present in 

images. Due to this the transform generates sparser representation allowing for 

more robust estimation of edge characteristics and optimal threshold for 

despeckling.  

 

5.3.1 Edge Detection and Despeckling Algorithm  

The despeckling of image causes smoothing the edges. Most of the reported 

despeckling methods are a compromise between edge preservation and speckle 

reduction. In transform domain despeckling schemes, as the level of decomposition 

increases the image becomes smoother and the despeckling becomes more 

effective at the cost of blurring the edges. To tackle this problem, here the edge 

information in the image is first removed before despeckling.  

Here an undecimated version of DT is used for edge detection and despeckling. 

The input image is first divided into spatial segments of smaller size. Then a local 

texture-direction detector is constructed by measuring directional variance to 

identify the pair of transform directions. The directional variance is computed 

along the rational directions, (x, y) = (1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (-1,2), (-1, 1) 

and (-2,1) which corresponds to 0º, 30º, 45º, 60º, 90º, 120º, 135º and 150º. This is 

carried out for each spatial segment of the image and the directions corresponding 

to the two minimum directional variances are identified as the optimal pair of 

directions for computing the undecimated DT. The pairs of directions are selected 

so that the cubic lattice is not divided into more cosets.  

The undecimated DT with an anisotropic ratio of 1:2 is first taken along the 

dominant directions for each spatial segment of the image ��3, r�. This will 

produce eight subbands viz. HHH, HHL, HLH, HLL, LHH, LHL, LLH, and LLL. 
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The corresponding directionlet coefficients at level 
 are represented as  hf��3, r� where a � sss� , sst� , sts�,. stt� , tss� , tst� , tts� , ttt� . The DT 

modulus matrix, 1�3, r� is computed as    

1�3, r� �  u∑ v∏ hf��3, r�x�+� v!f                          �5.18�  
The local maxima of the DT modulus correspond to the edges. So the edge 

information  [�3, r� is obtained by thresholding 1�3, r�. Here y � 3] is selected 

as the approximate threshold. 

[�3, r� � z1.  �� 1�3, r� {  y0,         |}~�d6��� �                                 �5.19� 
where   

 y � 3] � �P��f#�b �|�H|�F.���� , 6~�d� �� c sss�                 �5.20�   
Now multiply this edge positions with the image to get the final edge. The next 

step involved is despeckling the edge removed image. Here a logarithmic 

transformation is carried out to convert the multiplicative noise to an additive one. 

Then multi scale DT is taken along the dominant directions as identified earlier.  

The GCV threshold is then computed and applied to the DT coefficients as per the 

procedure explained in the previous scheme. 

Because of the independent processing of spatial segments, the despeckled image is 

affected by blocking effect, which is visible as sharp artificial edges along the 

segment boarders. Symmetric extension at the borders of the segment is carried out 

while taking the transform, to avoid this blocking artefact. The despeckling scheme 

presented in this section is referred as DT-Edge and the whole algorithm is 

summarised here. 

 

Step 1: Segmentation & Identification of dominant directions 

• Spatially segment the input image to the required level.  

• Identify optimal pair of directions for each segment by computing directional 

variance. 
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Step 2: Edge detection and removal 

• Compute 3-level DT along dominant directions. 

• Identify the edge information using equation (5.19). 

• Subtract the edge information from the noisy image  

 

Step3: Multi scale Directionlet and Threshold Computation  

• Make a logarithmic transformation of the edge removed image to convert 

multiplicative noise to additive one. 

• Apply DT to the edge removed segments along the optimal pair of directions 

to get the multi scale DT coefficients. 

• For each subband, except the LLLJ subband, compute the GCV threshold 

which minimizes �&�f��� 
• Apply the computed threshold to the DT coefficients using soft thresholding 

rule to estimate the noise-free coefficients. 

 

Step 4: Reconstruction 

• Reconstruct the image from the processed sub-bands and the low-pass 

residual (LLLJ) using inverse DT 

• Invert the logarithmic transformation  

• Add the edge information to the reconstructed image to obtain the final image. 

 

5.3.2 Results and discussions 

To demonstrate the efficacy of the proposed method an original 2-looks amplitude 

SAR image of Bedfordshire [151] and 1-look intensity SAR image of Horse track 

[152] are used. Equivalent Number of Looks (ENL) and Edge Save Index (ESI) are 

used as the performance parameters. The proposed method was compared with 

traditional Lee filter [6] and wavelet [45] and bandlet [71] based schemes with 

edge preservation. A 3x3 mask was used in the Lee filter. Here the image was 

spatially segmented to 32x32 patches and three levels of decomposition using dB4 

wavelet was carried out.  The edges detected by the proposed scheme are shown in 

figure 5.7 for Bedfordshire and Horse track images. The despeckling results are 

given in Table 5.3 and visual comparison is shown in figure 5.8 for Bedfordshire 

and in figure 5.9 for Horse track images. As they appear, the despeckled image 

using WT-GCV has lower despeckling effects, because many homogeneous 

regions are not smoothed enough. The other two schemes viz. bandlet and 
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directionlet based ones are adaptive methods and have better performance in visual 

result. But it still can be easily observed that the despeckled image using DT-Edge 

is smoother in homogeneous areas than that of Bandlet based scheme.    

 
Figure 5.7 Edges detected by the DT-Edge scheme for (a) Bedfordshire image and           

(b) Horse track image. 

 

Table. 5.3. Comparison of ENL & ESI values of DT-Edge and other despeckling schemes 

applied on original SAR images 

Despeckling 

Scheme 

Bedfordshire Image 

(Amplitude format, L=2) 

Horse Track image 

(Intensity format, L=4) 

ENL ESI ENL ESI 

Reg. 

A 

Reg.   

B 
ESIH ESIV 

Reg.  

C 

Reg.  

D 
ESIH ESIV 

Real SAR 

Image 
2.94 3.28 1 1 14.11 9.76 1 1 

Frost [4] 13.56 21.10 0.370 0.332 116.8 82.45 0.261 0.270 

Lee [6] 15.67 22.69 0.365 0.328  125.1 91.33 0.253 0.262 

WT-GCV [45] 24.91 48.11 0.371 0.301 182.6 90.21 0.268 0.256 

Bandlet [71] 66.14 146.9 0.518 0.441 402.6 141.2 0.318 0.411 

DT-Edge 72.08 165.18 0.681 0.621 482.31 172.87 0.395 0.479 
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Figure 5.8 Despeckling results of Bedfordshire image (a) Original Image  (b) Despeckled 

image using WT-GCV (c) Despeckled image using Bandlet (d) Despeckled image using 

DT-Edge 
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Figure 5.9 Despeckling results of Horse track image (a) Original Image  (b) Despeckled 

image using WT-GCV      (c) Despeckled image using Bandlet (d) Despeckled image using 

DT-Edge 

 

 



Chapter 5 

164 

An enlarged portion of horse track image and synthetic Lena image are shown in 

figure 5.10 and 5.11 respectively to highlight the edge saving capability of DT-

edge scheme as compared to WT-GCV and bandlet based despeckling schemes. As 

shown in these figures, DT-Edge scheme possesses a good preserving performance 

of the edges both regular and irregular compared with WT-GCV scheme. This is 

clearly visible along the lines in horse track image and in edges of hat and eyes of 

Lena image. Bandlet based algorithm attains a similar preserving performance but 

with some artifacts in the homogeneous zones of horse track image. Also for Lena 

image there are some intensity variations in the homogeneous zones, some textures 

of the hat are lost and some fine contours are over smoothed. 

 
Figure 5.10 Despeckling results of enlarged portion of Horse track image (a) Original 

Image (b) Despeckled image using WT-GCV (c) Despeckled image using Bandlet (d) 

Despeckled image using DT-Edge 
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Figure 5.11 Despeckling results of enlarged portion of synthetic Lena image (a) Noisy 

Image (b) Despeckled image using WT-GCV (c) Despeckled image using Bandlet (d) 

Despeckled image using DT-Edge 

Due to the anisotropic basis functions of DT, the edge details can be captured 

exactly by less number of DT coefficients. Thus the directionlet based scheme 

preserve the edges efficiently while providing very good despeckling performance. 

The numerical results indicate that the DT-Edge possesses remarkable speckle-

suppression and radiometric preservation capabilities. Since the directionlets 

possess spatial anisotropy and better directional capabilities, edge detection and 

GCV thresholding in directionlet domain results in visually appealing despeckling 

results, with improved performance parameters. 



Chapter 5 

166 

5.4 Despeckling using multiscale products thresholding  

In most of the transform based multi resolution denoising methods the correlation 

of the coefficients across the scales is not considered in the thresholding process 

even though there are strong dependency between adjacent scale coefficients. The 

performance of despeckling schemes based on multi resolution analysis would be 

significantly improved if the multiscale correlation among the transform 

coefficients is taken into account. If a DT coefficient generated by true signal has 

large magnitude at a finer scale, its ascendants at coarser scales will likely be 

significant as well, while the magnitude of noise coefficients may decay rapidly 

along the scales. So the multiscale products at adjacent scales of DT would 

strengthen the significant features while diluting noise. Unlike many traditional 

schemes that directly threshold the transform coefficients, here a despeckling 

algorithm in directionlet domain is presented which multiplies the adjacent scale 

DT coefficients to amplify the significant features. GCV technique is then used to 

find out the optimum threshold from these multiscale products to better 

differentiate edge structures from noise.  

5.4.1 Despeckling algorithm 

The speckle noise can typically be modelled as a multiplicative independent and 

identically distributed random noise. Here first a logarithmic transformation is 

carried out to convert the multiplicative noise to an additive one. The local 

dominant directions in the image are identified by computing a parameter called 

directional variance.  The multi scale DT is then taken along the identified 

dominant directions and the multiscale products are computed. A subband adaptive 

optimal threshold is then computed from these products using GCV technique.  

As in earlier schemes here also the first step involved in the despeckling algorithm 

is the spatial segmentation of SAR image into small blocks and identification of the 

local dominant directions in that area for fixing the transform directions. The 

directional information is obtained by computing directional variance along the 

rational directions (x, y) = (1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (-1,2), (-1, 1) and (-2,1) 

which corresponds to 0º, 30º, 45º, 60º, 90º, 120º, 135º and 150º.  The directions 

corresponding to the two minimum directional variances are identified as the 
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optimal pair of directions for computing the DT for each segment to make the DT 

adaptive to the image to be despeckled.  

In transform domain the signal and noise behave very differently. Multiplying the 

DT coefficients at adjacent scales would amplify the edge structures while diluting 

noise. The undecimated DT is first taken along the dominant directions for each 

spatial segment of the image ��3, r�. This will produce eight subbands viz. HHH, 

HHL, HLH, HLL, LHH, LHL, LLH, and LLL.  The corresponding directionlet 

coefficients at level 
 are represented as hf��3, r�  
where a � sss� , sst� , sts� ,. stt� , tss� , tst� , tts� , ttt� . The multiscale 

product of hf��3, r�, �f�3, r� is computed as    

�f�3, r� � ∏ hf��3, r�x�+�                                       �5.21�  
where J is the number of levels.  

Finding an optimal threshold plays a key role in the transform domain filtering. 

The GCV technique used in the earlier schemes for estimating the optimum 

threshold is employed here also but with a small modification. The GCV is 

computed here using the multiscale products. In the transform domain for a 

subband d, the GCV as a function of threshold  � is defined as 

�&�f��� � HI� ��/��,< KLI�MI� NK                                      (5.22) 

Where "f  is the number of DT coefficients in the subband d, �f  is the multiscale 

product of noisy coefficients, �f,� is the threshold applied �f and  "fF is the 

number of coefficients that were replaced by zero. The minimum of �&�f��� is 

found by iteration. The value of � corresponding to minimum of �&�f��� is 

selected as the threshold for each subband and the DT coefficients of subbands 

except that of LLL subband are modified with this threshold. A significant DT 

coefficient, h�f���, 
� is identified if its corresponding multiscale products value  �f� ��, 
� is greater than or equal to an adaptive threshold �f� . that is  

h�f���, 
� � zhf���, 
�.  �� �f� ��, 
� 5  �f�0,         |}~�d6��� �                 �5.23� 



Chapter 5 

168 

Because of the independent processing of spatial segments, the despeckled image is 

affected by blocking effect, which is visible as sharp artificial edges along the 

segment boarders. Symmetric extension at the borders of the segment was carried 

out while taking the transform, to avoid this blocking artefact.  

 

This despeckling scheme presented here is referred as DT-Multiscale and the whole 

algorithm is summarised below 

 

Step 1: Segmentation & Identification of dominant directions 

• Spatially segment the input SAR image into small blocks of size 32x32.  

• Compute optimal pair of directions for each block using directional variance. 

 

Step2: Multi scale Directionlet and Threshold Computation  

• Make a logarithmic transformation of the segmented image to convert 

multiplicative noise to additive noise. 

• Apply 3-level UDT to the segments along the optimal pair of directions to get 

the multiscale DT coefficients. 

• Compute the multiscale product for each block and subband. 

• For each subband, except the LLLJ subband, compute the GCV threshold from 

the multiscale products which minimizes �&�f���. 
• Apply the computed subband adaptive threshold to the DT coefficients, 

except those in the LLLJ  subband to estimate the noise-free coefficients. 

 

Step 3: Reconstruction 

• Reconstruct the image from the above processed sub-bands and the low-pass 

residual (LLLJ) using inverse DT 

• Invert the logarithmic transformation  

 

5.4.2 Results and discussions 
The performance of the proposed algorithm is analyzed using original SAR images 

of Bedfordshire and horse track. Equivalent Number of Looks (ENL) and Edge 

Save Index (ESI) are used as the performance parameters. The scheme is compared 

with wavelet [45] and bandlet [71] based schemes with edge preservation. The 

despeckling results are shown in figures 5.12 and 5.13 and the performance 

parameters are given in Table 5.4, with the best results highlighted in bold font. It 

shows that the proposed scheme outperforms the other compared methods in terms 
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of numeric and visual qualities. As compared to the DT-Edge scheme presented in 

the previous section, this scheme is better in terms of speckle removal but worse in 

terms of edge preservation. 

 

 

Figure 5.12 Despeckling results of Bedfordshire image (a) Original Image (b) Despeckled 

image using WT-GCV (c) Despeckled image using Bandlet (e) Despeckled image using 

DT-Multiscale. 
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Figure 5.13 Despeckling results of horse track image (a) Original Image (b) Despeckled 

image using WT-GCV (c) Despeckled image using Bandlet (e) Despeckled image using 

DT-Multiscale. 

 



Spatially Adaptive SAR Image Despeckling in Directionlet Domain     

171 

 

Table 5.4 Comparison of ENL & ESI values of DT-Multiscale and other despeckling 

schemes applied on original SAR images 

Despeckling 

Scheme 

Bedfordshire Image 

(Amplitude format, L=2) 

Horse Track image 

(Intensity format, L=4) 

ENL ESI ENL ESI 

Reg. 

A 

Reg.   

B 
ESIH ESIV 

Reg.  

C 

Reg.  

D 
ESIH ESIV 

Real SAR 

Image 
2.94 3.28 1 1 14.11 9.76 1 1 

Frost [4] 13.56 21.10 0.370 0.332 116.8 82.45 0.261 0.270 

Lee [6] 15.67 22.69 0.365 0.328  125.1 91.33 0.253 0.262 

WT-GCV [45] 24.91 48.11 0.371 0.301 182.6 90.21 0.268 0.256 

Bandlet [71] 66.14 146.9 0.518 0.441 402.6 141.2 0.318 0.411 

DT-Multiscale 76.57 171.24 0.612 0.569 511.56 196.22 0.387 0.470 

 

5.5 Despeckling using Laplacian-Gaussian Modelling 

The despeckling schemes presented in the earlier three sections are based on 

thresholding of directionlet coefficients. Here a simple statistical model based 

despeckling scheme based on Bayesian maximum a posteriori (MAP) estimator is 

presented. The MAP solution is based on the assumption that directionlet 

coefficients have a known distribution. In literature different distributions have 

been used for modeling the signal coefficients and Gaussian distribution for the 

noise coefficients. Here a new modeling of the statistics of directionlet coefficients 

is proposed based on experimental observations. Observations of the estimated 

generalized Gaussian shape parameters relative to the reflectivity and to the 

speckle noise in SAR images suggest that their distributions can be approximated 

as a Laplacian and a Gaussian function, respectively. Under these hypotheses, a 

closed form solution of the MAP estimation in directionlet domain is presented for 

SAR despeckling.  
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5.5.1 Image Speckle Model 
It is assumed that the observed signal follows the following model � � �. �                                                         (5.24) 

where � is the observed signal, � is the speckle-free reflectivity that we would like 

to estimate and � is the speckle noise. Here a logarithmic transformation is carried 

out to convert the multiplicative nature of speckle noise to an additive one. 

However, this results in a mean shift which has to be corrected after processing. 

After logarithmic transformation, the equation (5.24) becomes  � � � � 	                                                      (5.25) 

where �, � and 	 are the logarithms of �, � and � respectively. Owing to the 

linearity of DT, a multi-resolution decomposition of � results in  

�� � �� � 	�                                                   (5.26) 

where �� , ��  and 	�be the undecimated directionlet transforms of �, � and 	 at level 
 respectively. Here the aim is to estimate �� from the noisy observation �� . Based 

on Bayesian maximum a posteriori (MAP) estimator, the estimate of ��  is given by �j� � argmax��⁄;)�����*                                (5.27)     �j� � argmax. �;⁄�)�����* . ������0                (5.28) �j� � argmax. ��)�� � ��*. ������0                 (5.29) 

It was established that WT coefficients of natural images have highly non-Gaussian 

heavy tailed distribution [122]. The pdf for wavelet coefficients is often modelled 

using a Generalized Gaussian Distribution (GGD). The zero mean GG distribution 

can be written as  ������0 � ��!ΓAH�B �/�|�|�                                (5.30) 

where � is the scale parameter and � is the shape parameter.  The above GG 

distribution coincides with the Laplacian distribution when the shape parameter 

assumes a value of one and with the Gaussian distribution when the shape 

parameter assumes a value of two.  
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When a particular pdf is considered for modeling the statistics of a set of data, there 

are basically two factors which need to be considered. One is the amount of 

complexity involved in the estimation of its parameters and the other is the model 

fitting performance. Here a simple Laplacian pdf is considered for modeling the 

noise free directionlet coefficients. As far as Laplacian pdf is considered, there are 

only two parameters which need to be estimated; the scale parameter and the shape 

parameter. The model fitting performance can be assessed by conducting some 

experiments. Here images from different databases are taken and their histograms 

are plotted along with the standard model pdf. Then one can visually analyze and 

assess the closeness of fit. In addition to this quantitative analysis also can be 

carried out by computing various parameters which measure the difference 

between the normalized histogram and estimated pdf. Kullback-Leibler (K-L) 

distance [150] is one such parameter, which is explained in section 4.4.1. Here both 

these methods are used for analyzing the closeness of fit of the Laplacian pdf with 

the histogram of DT coefficients.  

 

The histogram of the DT coefficients at two different subbands and two different 

resolution levels for noise free Lena image is shown in figure 5.14 in blue colour. 

The standard Laplacian pdf is also plotted along with the histograms in each case in 

red colour. Here the scale and the shape parameters of the model are adjusted to 

make it close to the histograms. As can be seen from these plots that these 

histograms roughly approach Laplacian distribution. A similar analysis is done for 

Barbara image and the result is shown in figure 5.15. The observation holds good 

in this case also. It can be seen that a similar behavior has been also encountered 

for different subbands and different decomposition levels for both the images. This 

observation was found to be true for most of the natural images including SAR 

images. The Kullback-Leibler (K-L) distance measured in these cases is given in 

Table 5.5. This also indicates a good model fitting performance. 

 

Table 5.5. Values of the K-L distance between the normalised histogram and estimated pdf 

 HHH HLH 

Level 1 Level 2 Level 1 Level 2 

Lena 8.51 10.31 3.65 10.11 

Barbara 8.33 10.11 4.22 11.11 
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Figure 5.14 Histogram of the DT coefficients of ‘Lena’ image (blue colour) & the estimated 

Laplacian pdf (red colour) (a) sss subband at level 1 (b) sss subband at level 2 (c) sts 

subband at level 1   (d) sts subband at level 2 

    

Based on this analysis, the directionlet coefficients related to the speckle-free 

signal and to the signal-dependent noise can be assumed to be distributed as a 

Laplacian and as a Gaussian function, respectively. Based on this assumption the 

solution of the MAP equation of (5.29) can be found in a closed form. The � and 	 

can be modeled as 

����� � �√!�  �/√Kv ¡¢ v£                                               (5.31) 

 ���	� � �√!¤�¥ �/|¥¡¢¥|K£¥K                                              (5.32) 
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Here ¦� and ¦� are mean and ]� and ]� are the standard deviations of clean image 

and noise respectively. By substituting this to equation (5.29), we get the estimate 

of  ��as follows  

 �j� � 
§̈©̈
ª�� � √!�¥K�  ,   �� �� { ¦� � √!�¥K� �� � √!�¥K�  , �� �� { ¦� � √!�¥K� ¦�,                             �«��6~�d�

�                        (5.34) 

 

 

Figure 5.15 Histogram of the DT coefficients of ‘Barbara’ image (blue colour) & the 

estimated Laplacian pdf (red colour) (a) sss subband at level 1 (b) sss subband at level 

2 (c) sts subband at level 1   (d) sts subband at level 2 
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5.5.2 Despeckling algorithm  

Directionlets can have directional vanishing moments along any two directions 

only. Also directionality in any image is a local feature which varies over space. So 

a spatial segmentation of the input image is first carried out to identify two local 

dominant directions. The local dominant directions are identified by computing 

directional variance as explained in the previous schemes. Here for each spatial 

segment, the directional variance is computed along eight different directions with 

(x, y) = (1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (-1,2), (-1, 1) and (-2,1) which 

corresponds to 0º, 30º, 45º, 60º, 90º, 120º, 135º and 150º. Two directions 

corresponding to two minimum directional variances in each segment are identified 

as the optimal pair of directions for computing the DT. The estimate of the noise 

free DT coefficients is then computed using equation (5.34). The noise variance is 

estimated from the sss� subband as the robust median estimator as  

]¬ � ��f#�b �|;H|�F.���� , 6~�d� �� c sss�                    (5.35) 

From the observation model of equation (5.25), one gets  ]­! �  ]®! � ]¬!, where ]­! 

is the marginal variance of noisy observations ��. Here �� is modelled as zero 

mean and thus ]­! can be calculated as 

]­! � �M∑ gk!­°cN²�³�                                                 (5.36) 

where "��O�  is a directional window oriented along the transform direction with 1 members from an anisotropic neighbourhood and centered at the k
th

 coefficient. 

In case of undecimated DT since the down samplers are discarded, the transform 

coefficients in the nearest neighbor spatial locations are highly correlated and they 

provide only redundant information. Therefore, estimation of marginal variance 

based on the closest neighborhood is not too efficient. Thus sparser neighborhoods, 

that is, the neighborhoods of coefficients with the relative coordinates to the 

coordinate of the referent coefficient scaled by the distance factor, ´ � 2� , with the 

orientation matched with the transform direction are chosen. For DT with 

anisotropic ratio of n2:n1 and orientation θ, the neighborhood around the coefficient 

in the location �3′, r′� is defined as the set of the coefficients at the same scale in 

the locations as 
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3′ � .�3 � �´� cos � � �r � e´� sin �0              (5.37) r′ � .�3 � �´� sin � � �r � e´� cos �0              (5.38) 

for � c _�3,�2,… .2,3` if e � 0 and � c _�1, 0, 1` if e c _�1, 1` 
Here, [ ] is the rounding function, which ensures that the coordinates of the 

neighbor coefficients are integers. Based on this neighborhood definition there are 

thirteen members in this anisotropic neighborhood. The selection of a 

neighborhood along -45º for ´ � 2 is shown in figure 5.16 (b). Here the 

neighborhood used is anisotropic and oriented as against the isotropic 

neighborhood in the case of WT shown in figure 5.16 (a). Neighborhoods with 

different sizes can also be defined. The size of the neighborhood will greatly affect 

the quality of processed images. If the neighborhood size is too small, the 

algorithm may not work well and may lead to unwanted block-like artifacts. On the 

other hand, if it is too large, the region containing edges and contours will also 

become large, resulting in relatively large variances. This will lead to the poor 

denoising performance nearby edges and contours. The neighborhood size of 13 is 

found to be good choice here. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 (a) The isotropic neighborhood of WT (b) The anisotropic neighborhood of DT 

for � �  �45°, and ´ �  2. The orientation of the neighborhood is matched with the 

orientation of the transform in case of DT.  

 

The standard deviation of clean image, ]� can be computed from the standard 

deviations of noisy image and noise as follows 

´ 

´ 
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]� � u)]­! � ]¬!*�                                               (5.39) 

The mean of the clean image, ¦� is equal to the mean of the noisy observation,  ¦;. 

Thus it can be computed directly from the noisy observation.  

 

This scheme is referred here as DT-LG and the whole despeckling algorithm is 

described in three steps as follows 

Step 1: Segmentation & identification of dominant directions 

• Spatially segment the SAR image into small blocks.  

• Compute optimal pair of directions for each segment using directional 

variance. 
 

Step2: Multi scale DT computation and MAP estimation  

• Convert the multiplicative speckle noise to additive one by doing a 

logarithmic operation. 

• Compute 3-level DT along the optimal pair of directions for each segment to 

get the multi scale DT coefficients. 

• Estimate the noise free coefficients using equation (5.34) for all subbands 

except LLLJ 

Step 3: Reconstruction 

• Reconstruct the image from the above processed sub-bands and the low-pass 

residual (LLLJ) using inverse DT 

• Invert the logarithmic operation and carry out a mean correction. 

 

5.5.3 Results and Discussions 

As in earlier schemes, here also the performance of the presented scheme is 

verified by using original and synthetic SAR images. In the proposed scheme the 

segment size was selected as 32x32 and three levels of decomposition using db4 

wavelet was carried out along the dominant directions for each segment. The 

proposed method is compared with wavelet based schemes LGMAP-S [63] and 

GGMAP-S [60]. The traditional Lee filter is also used for comparison with its local 

window being set up as 3x3. For generating synthetic SAR images, standard grey 

scale images of Lena and Boat of size 512x512 are used. These images are 

corrupted by multiplying simulated spatially uncorrelated speckle noise. The PSNR 
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values obtained with different schemes for these images at four different noise 

levels (four number of looks) are listed in Table 5.6 with the highest PSNR values 

highlighted. The PSNR provided is an average of ten noise realizations. The 

experiment was repeated ten times under exactly the same settings except that 

speckle was realized using different random seeds, but with the same distribution. 

As can be seen from the table, the proposed method consistently outperforms the 

other wavelet-based denoising algorithms in all the cases. Figure 5.17 presents the 

comparison of the denoised Lena image corrupted with speckle noise (L=4) in 

amplitude format. It can be seen that many isolated specks are present in smooth 

regions of despeckled image using wavelet based LGMAP-S scheme as shown in 

figure 5.17 (c). These are disappeared in figure 5.17 (d) due to the spatially 

adaptive directionlet based filtering. 

 

Table 5.6. Despeckling results (PSNR) for synthetic SAR images of Lena & Boat 

(512x512) in amplitude format  

Looks/Method 
Lena Boat 

1 2 4 16 1 2 4 16 

Synthetic SAR 

Image 
12.11 14.89 17.80 23.76 11.77 14.55 17.46 23.42 

Lee [6] 20.82 23.86 26.19 29.34 17.25 20.31 23.53 28.09 

GGMAP-S [60] 26.33 28.03 29.75 33.29 23.98 25.43 27.05 30.48 

LGMAP-S [63] 26.20 27.80 29.51 33.24 23.71 25.20 26.91 30.40 

DT-LG 26.45 28.24 30.08 33.88 24.14 25.69 27.38 30.89 

 

Shown in figure 5.18 (a) is a 256x256 original X-band, 2-looks SAR image of 

Bedfordshire in amplitude format [151] and in figure 5.19 (a) is a 256x256 size 

portion of Ku-band, 4-looks, intensity SAR image relevant to Horse track, near 

Albuquerque, New Mexico with 1-m resolution [152]. Since the noise-free images 

are not available in these cases, ENL is used to assess the different algorithms' 

noise reduction performance in homogeneous areas. As highlighted in these 

figures, two uniform areas each are selected for the analysis. Table 5.7 lists the 
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ENL values before and after filtering. It can be seen that in all the cases, the DT-

LG scheme outperforms the other ones with the highest ENL values, which is 

consistent with the simulation results. In terms of feature preservation, ESI 

parameter is computed for vertical and horizontal directions for each scheme and 

compared. It is indicated that the proposed method provides very good edge 

preservation performance as compared to other schemes. Visual comparisons of 

these schemes shown in figure 5.18 and figure 5.19 also show the superiority of the 

DT-LG scheme. 

 

Table. 5.7. Comparison of ENL, ESI & MRI values of DT-LG and other despeckling 

schemes applied on original SAR images 

Despeckling 

Scheme 

Bedfordshire Image 

(Amplitude format, L=2) 

Horse Track image 

(Intensity format, L=4) 

ENL ESI ENL ESI 

Reg. 

A 

Reg.   

B 
ESIH ESIV 

Reg.  

C 

Reg.  

D 
ESIH ESIV 

Real SAR 

Image 
2.94 3.28 1 1 14.11 9.76 1 1 

Frost [4] 13.56 21.10 0.370 0.332 116.8 82.45 0.261 0.270 

Lee [6] 15.67 22.69 0.365 0.328  125.1 91.33 0.253 0.262 

GGMAP-S [60] 31.47 77.21 0.309 0.284 328.45 77.55 0.315 0.377 

LGMAP-S [63] 30.2 70.6 0.295 0.269 303.83 104.47 0.272 0.322 

DT-LG 70.11 160.81 0.507 0.424 531.86 192.01 0.347 0.412 

 

 

Even though the performance improvement of the scheme with respect to 

GGMAP-S scheme is only marginal for synthetic SAR images, the computational 

complexity of the scheme is much less here as compared to GGMAP-S. Also it can 

be seen that the DT-LG algorithm is becoming more competitive with increasing 

number of looks. The DT-LG scheme takes only 12 sec for filtering a synthetically 

speckled image of Lena of size 512x512 with L=4, whereas GGMAP-S takes 64 

sec for the same image by a Core i5 CPU @ 2.4 GHz with 4GB RAM. The 

denoising performance of the proposed method can be further improved by 

incorporating the interscale dependency in the modeling process.   



Spatially Adaptive SAR Image Despeckling in Directionlet Domain     

181 

 

 

 

 
Figure 5.17 Despeckling result for synthetic speckle image of Lena (four-look amplitude). 

(a) Original Lena image (b) Speckled Lena image (c) Despeckled image using wavelet 

based LGMAP-S (d) Despeckled image using DT-LG scheme. 
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Figure 5.18 Despeckling results of Bedfordshire image (a) Original Image (b) Despeckled 

image using wavelet based GGMAP-S (c) Despeckled image using wavelet based LGMAP-

S (d) Despeckled image using DT-LG scheme. 
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Figure 5.19 Despeckling results of Horse track image (a) Original Image (b) Despeckled 

image using wavelet based GGMAP-S (c) Despeckled image using wavelet based LGMAP-

S (d) Despeckled image using DT-LG scheme. 

 

5.6  Despeckling using Cauchy-Gaussian modelling 

with interscale dependence  

In the previous scheme a simple statistical model was presented for SAR images 

and dependent noise. There the interscale dependency of the transform coefficients 

in the multi resolution representation was not considered in the modelling process. 

The performance of despeckling schemes based on multi-resolution analysis can be 

improved significantly by taking into account the multi-scale correlation among the 
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transform coefficients. Here a novel directionally adaptive despeckling algorithm 

for SAR images is presented which takes into account the statistical inter scale 

dependency of Cauchy-Gaussian modelled DT coefficients. The noise free 

coefficients are computed using Bayesian MAP estimator. Since the directionlets 

possess spatial anisotropy and better directional capabilities, statistical interscale 

dependency modelling in directionlet domain results in visually appealing de-

speckling results, with improved performance parameters.  

 

5.6.1 Speckle Model & MAP Estimator  

The noise model explained in the previous section is considered here also. Let us 

recall the equation (5.26)   �� � �� � 	�                                                                                  (5.26) 

Here an undecimated DT is used to decompose the image. So there is one to one 

dependency between the adjacent scale coefficients. To model the interscale 

dependency, each DT coefficient is represented by interscale dependence 

vectors ¹º, »º and ½º. So ¹º � »º � ½º                                                                                 (5.43) 

where ¹� � )�� , ����*, »� � )�� , ����*, and ½� � )	� , 	���*  

Here the aim is to estimate �� from the noisy observation �� . This can be done by 

Bayesian maximum a posteriori (MAP) estimator. The typical MAP estimate of ��  is  �j�)�, ���� * � argmax�»⁄¹)»º�¹º*                                            (5.44)     �j�)�� , ����* � argmax. �¹⁄»)¹º�»º* . �»�»º�0                           (5.45) �j�)�� , ����* � argmax. �½)¹º � »º*. �»�»º�0                            (5.46) 

Now the inter scale dependency of the signal and noise coefficients has to be 

modelled using a suitable pdf. It was established that the distribution of the wavelet 

coefficients of the log-transformed reflectance can be accurately described by a 

symmetric alpha stable pdf. There are some theoretical reasons for such an 

assumption. Stable random variables satisfy the stability property, which states that 
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linear combinations of jointly stable variables are indeed stable. Also stable 

processes arise as limiting processes of sums of independent and identically 

distributed random variables via the generalized central limit theorem. Strong 

empirical evidence suggests that many data sets in several physical and economic 

systems exhibit heavy tail features. The heavy tail characteristic justifies the use of 

symmetric alpha stable densities for modeling signals that are impulsive in nature.  

Only two special cases of the alpha stable pdf have a closed form expression, 

namely, the Gaussian and the Cauchy pdf. However, the Gaussian pdf is obviously 

not suitable to represent the wavelet coefficients. On the other hand, the Cauchy 

pdf  is unimodal and symmetric, having a sharp peak around zero with heavy tails 

and so is an ideal choice. 

 

The log transformed SAR image has significant non-Gaussian behaviour which can 

be best described by the families of heavy tailed distribution such as the Cauchy 

distribution [122]. H. H Arsenault et al. [115] have modelled the impulsive heavy-

tailed behaviour of high resolution SAR images using Cauchy distribution. Later J. 

J. Ranjani et al [65] have developed a statistical interscale dependency model based 

on the parent child relationship using Cauchy distribution and applied it to 

DTCWT coefficients. Since DT is an extended WT operation, it can be established 

that the statistical distribution of DT coefficients is same as that of WT 

coefficients. So this scheme can be extended to the directionlet domain. However 

before finalizing such a distribution for DT coefficients, an experimental analysis 

has to be carried out to arrive at a parameter distribution for the DT coefficients of 

natural images. The histograms obtained for noise free images at different 

subbands and resolution levels are approximated here to a bivariate Cauchy 

distribution with interscale dependency. The histogram and pdf plots for Lena and 

Barbara images are shown in figure 5.20 and figure 5.21 respectively. 

 

In addition to the standard images used for analysis, a Lee filtered SAR image of 

horse track is also analyzed as it can be approximated to the noise free SAR image. 

The corresponding histogram and pdf plots are shown in figure 5.22. It can be seen 

that a similar behavior has been encountered for this image also. This validates the 

generalization of the pdf approximation as explained above. In addition, for a 

quantitative evaluation, the Kullback–Leibler (K-L) distance [150] is also used to 
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measure the difference between the normalized histogram and the estimated pdf, 

which is shown in Table 5.5. This table also shows that the bivariate Cauchy pdf 

model has the best model fitting performance w.r.t the DT coefficients of natural 

images. Also it can be seen that this model is closer to the normalized histogram of 

DT coefficients, than the Laplacian model presented in the previous section. The 

K-L distance measure also substantiates this. The K-L distance is found to be more 

for Lee filtered SAR image as in this case the histograms are more close to a 

Gaussian distribution. This can be attributed to the fact that the Lee filtering is not 

much effective in despeckling.  

 

 

Figure 5.20 Histogram of the DT coefficients of ‘Lena’ image & the estimated bivariate 

Cauchy pdf (a) sss subband at level 1 (b) sss subband at level 2 (c) sts subband at 

level 1   (d) sts subband at level 2 
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Table 5.8. Values of the K-L distance between the normalised histogram and estimated pdf 

 HHH HLH 

Level 1 Level 2 Level 1 Level 2 

Lena 6.85 5.61 5.25 4.15 

Barbara 6.53 5.69 5.14 4.31 

Horse track 22.12 20.56 21.34 21.01 

 

 

 

Figure 5.21 Histogram of the DT coefficients of ‘Barbara’ image & the estimated bivariate 

Cauchy pdf (a) sss subband at level 1 (b) sss subband at level 2 (c) sts subband at 

level 1   (d) sts subband at level 2 
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Based on the above analysis, the joint probability density function for the signal 

coefficient vector »º � ��� , ����� can be defined as a bivariate Cauchy pdf as 

���»º� � ¾J!¤��JK��J¿HK �¾JK�À/K    �|d 
 � 1 }| Â                                  (5.47) 

where Ã� is the dispersion parameter at scale 
  and  Â is the decomposition level. 

This parameter can be computed using central moments of the noisy observations 

in (5.43) through Mellin transform [65] as  

Ã� �  ÄA��∑ Å�����Æ �#+� � �¥K�¤B ΓAÀKB
ΓA/HKB8ÇÈ

�/!  �|d 
 � 1 }| Â         (5.48) 

where N is the number of coefficients of ��. 

 
Figure 5.22 Histogram of the DT coefficients of Lee filtered ‘Horse track’ image & the 

estimated bivariate Cauchy pdf (a) sss subband at level 1 (b) sss subband at level 2 

(c) sts subband at level 1   (d) sts subband at level 2 
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Several authors have shown that the distribution of the log transformed speckle can 

be well modelled by a Gaussian distribution. Thus the logarithmic speckle is 

assumed to be independent and identically distributed. So the joint probability 

density function of noise vector ½º � �	� , 	���� can be written as a bivariate 

Gaussian pdf as  

��)½º* �  �)√!¤�¥*K  �/É
¥JK¿¥J¿HK
K£¥K Ê

                                                    (5.49) 

Now the pdf of signal and noise are known. By applying (5.47) & (5.49) to the 

MAP estimator given in equation (5.46), the estimate of  ��   can be obtained as [65] 

�j� � ����)��* 123 Ë0, Ì ;J�� À£ÍKAÎJK¿ÎJ¿HK ¿ÏJKB
ÌÐ  �|d 
 � 1 }| Â          (5.50) 

where,   

   3� � fJ� � É� ÑJ! � ÒÑJK� � �JÀ!�Ó�/!Ê�/� � É� ÑJ! � ÒÑJK� � �JÀ!�Ó�/!Ê�/�       (5.51) 

with           

                       �� � Ô¾JK���ÕK���J¿HK
�JK

Ö � fJK�                                                             (5.52) 

and             

      ×� � � ¾JKfJ
���J¿HK

�JK
� �!� P Ô9a� ¾JK���ÕK���J¿HK

�JK
� 2a��Ö                                         (5.53) 
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5.6.2 Despeckling Algorithm  

As explained in previous section, the DT will be effective for a sparse 

representation of an image if the transform directions are matched with the local 

dominant directions in the image. Thus the input image is first spatially segmented 

and the dominant directions are identified by computing directional variance before 

taking the DT. As in previous schemes, here also the directional variance is 

computed along 0º, 30º, 45º, 60º, 90º, 120º, 135º and 150º. The directions 

corresponding to the two minimum directional variances are identified as the 

optimal pair of directions for computing the DT for each segment to make the DT 

adaptive to the image to be despeckled.  

The estimate of the noise free coefficients is obtained from the noisy coefficients 

and its next level coefficients using equation (5.50). The noise variance required in 

the estimator is computed using equation (5.35) as in previous scheme.  

The DT coefficient from the detail subbands are only used for modelling and MAP 

estimation. The despeckled image is then obtained by performing an inverse DT 

operation. The logarithmic transformation carried out at the beginning will cause a 

mean shift which needs to be corrected at the end. The full despeckling algorithm 

is referred here as DT-CG and is summarized below 

• Spatially segment the SAR image into small blocks.  

• Compute optimal pair of directions for each segment using directional 

variance. 

• Make a logarithmic transformation of the segmented image to convert 

multiplicative noise to additive noise. 

• Apply 3-level DT to the segments along the optimal pair of directions to get 

the multi-scale DT coefficients. 

• Compute the noise variance ]¬! from the high frequency sub band coefficients 

at level1 (HHH��. 
• Compute the estimate of noise-free coefficients using equation (5.50) for all 

subbands except LLLJ. 

• Reconstruct the image from the above processed sub-bands and the low-pass 

residual (LLLJ) using inverse DT. 

• Invert the logarithmic transformation and do a mean correction.  
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5.6.3 Experimental Results  

The performance of the proposed algorithm was analyzed using original SAR 

images of Horse track and Bedfordshire. Synthetic speckle images of Lena and 

Boat in amplitude format are also used for performance analysis. In case of original 

SAR images, Equivalent Number of Looks (ENL) and Edge Save Index (ESI) are 

used as the performance parameter for assessing the performance of speckle 

reduction and edge preservation. For synthetic speckle images, PSNR is used as the 

performance parameter as in this case the reference images are available.  

 

The performance was compared with the state of the art despeckling schemes like 

GGMAP [60] and LGMAP [63] in wavelet domain and also with a DTCWT based 

scheme with interscale dependency [65]. Here the image is spatially segmented to 

blocks of size 32x32 and three levels of decomposition using Daubechies’ length 

eight wavelet (Db4) is carried out. The despeckling results are shown in figure 

5.23, 5.24 and 5.25, and the performance parameters in Table 5.9 and 5.10, with 

the best results highlighted in bold font. It shows that the DT-CG scheme 

outperforms the other compared methods in terms of numeric and visual qualities. 

Also it can be noted that the WT based schemes provide good smoothing but with 

blurring of edges. The edge retaining capacity of DT-CG scheme is much better 

than the wavelet based schemes. DTCWT based scheme provides both better 

despeckling and edge preservation but as compared to directionlet based scheme, it 

is slightly inferior. This is more evident in the comparison with real SAR images. 

Since the directionlets possess spatial anisotropy and better directional capabilities, 

directionally adaptive interscale dependency modelling in directionlet domain 

results in visually appealing despeckling results, with improved performance 

parameters. 

 

Upon critical analyze of the results it can be seen that as the number of looks 

decreases, the performance improvement of the proposed scheme is narrowing 

down. This can be mainly attributed to two reasons. First one is that as the noise 

level increases, the log-transformed speckle noise deviates strikingly from the 

Gaussian distribution, and secondly, the identification of dominant directions using    

directional variance computation is adversely affected as the noise level increases.   
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Table 5.9. Despeckling results (PSNR) for synthetic SAR images of Lena & Boat 

(512x512) in amplitude format  

Looks/Method 
Lena Boat 

1 2 4 16 1 2 4 16 

Synthetic SAR 

Image 
12.11 14.89 17.80 23.76 11.77 14.55 17.46 23.42 

LG MAP-S [63] 26.20 27.80 29.51 33.24 23.71 25.20 26.91 30.40 

GGMAP-S [60] 26.33 28.03 29.75 33.29 23.98 25.43 27.05 30.48 

DTCWT [65] 26.37 28.11 29.93 33.61 24.06 25.55 27.21 30.59 

DT-GG 26.49 28.29 30.16 33.97 24.20 25.78 27.47 31.00 

 

 

Table. 5.10. Comparison of ENL & ESI values of DT-CG and other despeckling schemes 

applied on original SAR images 

Despeckling 

Scheme 

Bedfordshire Image 

(Amplitude format, L=2) 

Horse Track image 

(Intensity format, L=4) 

ENL ESI ENL ESI 

Reg. 

A 

Reg.   

B 
ESIH ESIV 

Reg.  

C 

Reg.  

D 
ESIH ESIV 

Real SAR 

Image 
2.94 3.28 1 1 14.11 9.76 1 1 

GGMAP-S 

[60] 
31.47 77.21 0.309 0.284 328.45 77.55 0.315 0.377 

LGMAP-S 

[63] 
30.2 70.6 0.295 0.269 303.83 104.47 0.272 0.322 

DTCWT [65] 40.1 61.11 0.424 0.383 366.34 121.78 0.332 0.408 

DT-CG 71.41 163.52 0.511 0.438 536.15 194.64 0.356 0.432 
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Figure 5.23 Despeckling result for synthetic speckle image of Lena (four-look amplitude). 

(a) Original Lena image (b) Speckled Lena image. (c) Despeckled image using GGMAP-S 

algorithm. (d) Despeckled image using DT-CG 
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Figure 5.24 Despeckling results of Bedfordshire image (a) Original Image (b) Despeckled 

image using DTCWT (c) Despeckled image using GGMAP-S in wavelet domain                

(d) Despeckled image using DT-CG scheme. 
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Figure 5.25 Despeckling results of Horse track image (a) Original Image (b) Despeckled 

image using DTCWT (c) Despeckled image using GGMAP-S (d) Despeckled image using 

DT-CG scheme. 
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5.7 SAR Despeckling using Bivariate Modelling in 

Directionlet Domain 

As explained earlier, simple marginal models cannot properly model the statistical 

dependence between transform coefficients. There are strong dependency between 

the adjacent scale coefficients and neighbour coefficients in a multi resolution 

representation. This is due to the fact that in a multi resolution representation, the 

next scale of coefficients is derived from the parent scale. Thus the dependency 

between the adjacent scale coefficients is significant. However, in most of the 

image processing schemes based on multi resolution analysis, the interscale 

dependence between the coefficients is neglected. Sendur et al analysed the 

dependency of WT coefficients across adjacent scales and modelled the heavy-

tailed behaviour using a bivariate pdf [49]. This is based on the parent child 

relationship in the wavelet domain. They have used more than two hundred images 

from Corel image database to compute the joint empirical coefficient-parent 

histogram and proposed a joint probability density function for the WT coefficients 

of adjacent scales. This model was successfully used for denoising images 

corrupted with Gaussian noise [50]. Here an interscale dependency model of the 

DT is presented in line with this scheme and the model fitting performance is 

analysed. Using this statistical model a shrinkage function using MAP estimator is 

presented and a despeckling algorithm in directionlet domain is developed.   

 

5.7.1 Despeckling Model 

The multiplicative noise model used in the previous section is used here also. As 

explained in chapter 2, a simple logarithmic transformation is required to convert 

the multiplicative noise model of SAR images to an additive one. As in previous 

section, to model the interscale dependency, each DT coefficient is represented by 

interscale dependence vectors ¹º, »º and ½º. So ¹º � »º � ½º                                                                                 (5.43) 

Here the joint probability density functions are required which take into account 

the parent child relationship for the noise and signal coefficients. Since the noise is 



Spatially Adaptive SAR Image Despeckling in Directionlet Domain     

197 

assumed to be independent and identically distributed the joint probability function 

of noise vector ½º � �	� , 	���� can be written as a bivariate pdf as   
��)½º* �  �)√!¤�¥*K  �/É

¥JK¿¥J¿HK
K£¥K Ê

                                       (5.54) 

It is well known that the high-resolution SAR images exhibit impulsive behaviour 

indicative of underlying heavy-tailed distributions. Since DT is an extended WT 

operation, it can be established that the statistical distribution of DT coefficients is 

same as that of WT coefficients. This is experimentally proven here by analyzing 

the histogram of natural images.  

Let ���� is the directionlet coefficient at the same position as �� , but at the next 

coarser scale, then ���� can be considered as the parent of �� . The joint probability 

density function for the signal coefficient vector  »º � ��� , ����� can be defined as   

��)»º* �  �)√!¤�*K  �/É√À£ u�JK��J¿HKÊ
                                 (5.55) 

Figure 5.26 illustrates the histogram of the directionlet coefficients computed from 

Lena and Barbara images. The red line shows estimated bivariate pdf and blue 

line, the histogram. From the figure it is clear that the distribution of DT 

coefficients is very close to the bivariate pdf. The Kullback-Leibler (KL) distance 

[150] measure in each case is given in Table 5.11. This also shows a good model 

fitness. From this measure it can be seen that this model is very close to the 

histogram of natural images than the other models considered in previous sections.  

The estimate of the noise free coefficients can be obtained by applying pdf 

equations of (5.54) and (5.55) to the MAP estimator in equation (5.46).  The 

estimate is given as  

�j���� , ����� � Òu;JK�;J¿HK /√À£¥K£ Ó¿u;JK�;J¿HK  . ��                                   (5.56) 

where �� and ����are the noisy DT coefficients at two adjacent scales,  ]¬! is the 

noise variance and  ]! is the marginal variance.  
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Figure 5.26 Histogram of the DT coefficients of ‘Lena’ and ‘Barbara’ images & the 

estimated bivariate pdf (a) sts subband at level 1 of ‘Lena’ (b) sts subband at level 2 of 

‘Lena’  (c) sts subband at level 1 of ‘Barbara’ (d) sts subband at level 2 of ‘Barbara’ 

Table 5.11. Values of the K-L distance between the normalised histogram and estimated pdf 

 HHH HLH 

Level 1 Level 2 Level 1 Level 2 

Lena 3.60 3.26 3.03 3.11 

Barbara 2.38 3.19 2.14 2.96 

 

5.7.2 Despeckling Algorithm 

The first step in the proposed scheme is the spatial segmentation of the image to 

identify the local dominant directions. This is done as in earlier schemes by 

computing directional variance. The directions corresponding to two minimum 

directional variances are identified as the dominant directions. After identifying the 

dominant direction in each spatial segment, multi scale undecimated DT is applied 
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along these directions. The noise free DT coefficients are then computed using the 

estimator given in equation (5.56). It requires the prior knowledge of the noise 

variance ]¬! and marginal variance ]! for each directionlet coefficient. These 

parameters can be computed using the procedure followed in the previous section. 

The scheme presented in this section is referred as DT-Bivariate and the whole 

algorithm is summarised here. 
 

Step 1: Segmentation & identification of dominant directions 

• Spatially segment the SAR image into small blocks.  

• Compute optimal pair of directions for each segment using directional 

variance. 

Step2: Multi scale DT computation and MAP estimation  

• Convert the multiplicative speckle noise to additive one by doing a 

logarithmic operation. 

• Compute 3-level DT along the optimal pair of directions for each segment to 

get the multi scale DT coefficients. 

• Estimate the noise free coefficients using equation (5.56) for all subbands 

except LLLJ 

Step 3: Reconstruction 

• Reconstruct the image from the above processed sub-bands and the low-pass 

residual (LLLJ) using inverse DT 

• Invert the logarithmic operation and do a mean correction.  

 

5.7.3 Results and discussions 

In the presented scheme the image is spatially segmented into small patches of size 

32x32. The transform directions are chosen by identifying the dominant directions 

through the computation of directional variance for each spatial segment. Here 

three levels for DT decomposition with an anisotropic ratio of 1:2 is used. The 

number of levels in DT is limited by the segment size, which in turn limits the 

segmentation process and hence possibly affects the denoising performance. For 

segments having no dominant directions, three levels of decomposition was done 

using an undecimated WT. Here a 5x5 window was used as the neighbourhood 

window for marginal variance estimation. In both the cases the filtering was done 

using db4 wavelet. Symmetric extension at the borders of the image was carried 

out to reduce the impact of border effects. The major parameters of the algorithm 
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like segment size, anisotropic ratio, number of levels of decomposition, window 

size for marginal variance estimation etc. are tuned based on simulation on 

different images. 

 

The performance of the proposed algorithm is analyzed using original and 

synthetic SAR images. The performance is compared with the state of the art 

despeckling schemes like wavelet based GGMAP-S [60] and LGMAP-S [63], 

directional transform based schemes like NSCT [68] and NSST [69] and interscale 

dependency model based schemes like DTCWT [65]. The GGMAP-S and 

LGMAP-S use three levels of decomposition using db4 wavelet. In both these 

schemes the wavelet coefficients are segmented according to their texture energy to 

provide better results. NSCT filter uses 3-levels of decomposition, and the number 

of directional subbands is 8, 8 and 4 from finer to coarser level. In NSST scheme, 

the number of decomposition level is set to 4, the numbers of shearing directions 

are chosen to be 4, 4, 4 and 4 from finer to coarser, the bin sizes for the histograms 

used to compute prior ratio and likelihood ratio are set to 4, and the bin size used to 

compute the normalized distribution is set to 0.01 for all scales. 

 

The performance of the scheme is analyzed in terms of both image quality and 

computational complexity. Synthetically speckled image are generated from a 

noise-free images of ‘Lena’ and ‘boat’ of size 512x512 pixels with different 

number of looks say, 1, 2, 4, and 16. These noisy images are made in amplitude 

format as explained in [2]. Table 5.12 shows the objective performance index in 

terms of PSNR measured on these images.  The PSNR values provided are the 

average of ten different noise realisations for each case. It can be seen from the 

results that for both the test images the proposed scheme perform better than the 

compared schemes. Two original SAR images are also taken for evaluating the 

performance of the proposed scheme. The first image is an X-band, 2-looks, 

amplitude SAR image of Bedfordshire and the second one is a Ku-band, 4-looks, 

intensity SAR image of Horse track. Table 5.13 shows the ENL and ESI values 

measured on these two real SAR images.  

 

PSNR figures for simulated SAR images and ENL & ESI values for real SAR 

images help understanding major trends, but must be complemented by visual 
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inspection. Therefore, in figure 5.27 the output of the various despeckling 

algorithms on the synthetic Lena image (L=4) and in figure 5.28 and figure 5.29 

that on two real SAR images are shown. The DT-Bivariate scheme provides the 

best speckle rejection followed by DTCWT, both by visual inspection and in terms 

of performance indices. It can be seen that most of these schemes are very effective 

for homogeneous regions. But they have the common limitation, that is, edges and 

point targets are also strongly and smoothly suppressed in despeckling. In 

directional transform based schemes the speckles are effectively reduced, and the 

texture feature are very well preserved, but scratches are seen in homogeneous 

areas of NCST filtered image and edges and strong point objects are blurred in 

NSST filtered images. On the other hand, wavelet based schemes, GGMAP-S & 

LGMAP-S and in a lesser measure DTCWT also, over smooth the image, leaving 

traces of signal structures in the ratio images shown in figure 5.30. It can be seen 

from the ratio images generated from Bedfordshire SAR image that the one by the 

DT-Bivariate looks much noisier and shows the least number of details among all 

the methods. 

 

Table 5.12 Despeckling results (PSNR) for synthetic SAR images of Lena & Boat 

(512x512) in amplitude format  

Looks/Method 
Lena Boat 

1 2 4 16 1 2 4 16 

Synthetic SAR 

Image 
12.11 14.89 17.80 23.76 11.77 14.55 17.46 23.42 

Lee [6] 20.82 23.86 26.19 29.34 17.25 20.31 23.53 28.09 

DTCWT [65] 26.37 28.11 29.93 33.61 24.06 25.55 27.21 30.59 

GGMAP-S [60] 26.33 28.03 29.75 33.29 23.98 25.43 27.05 30.48 

LG MAP-S [63] 26.20 27.80 29.51 33.24 23.71 25.20 26.91 30.40 

NSCT [68] 26.02 27.12 29.01 32.78 23.50 24.64 26.37 30.02 

NSST [69] 26.28 27.87 29.66 33.41 23.76 25.35 27.00 30.61 

DT-Bivariate 26.66 28.44 30.28 34.22 24.39 26.01 27.73 31.45 
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Figure 5.27 Despeckling results of Synthetic SAR image of Lena in amplitude format with 

L=4 (a) Original noise free Image (b) Noisy image (c) Despeckled image using Lee filter 

(d) Despeckled image using NSCT (e) Despeckled image using NSST and (f) Despeckled 

image LGMAP-S (g) Despeckled image GGMAP-S (h) Despeckled image DT-Bivariate 
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Table 5.13 Comparison of ENL, ESI & MRI values of DT-Bivariate and other despeckling 

schemes applied on original SAR images 

Despecklin

g Scheme 

Bedfordshire Image 

(Amplitude format, L=2) 

Horse Track image 

(Intensity format, L=4) 

ENL ESI MRI ENL ESI MRI 

Reg. 

A 
Reg.  B ESIH ESIV  Reg. C Reg.  D ESIH ESIV  

Real SAR 

Image 
2.94 3.28 1 1 ----- 14.11 9.76 1 1 ----- 

Lee [6] 15.67 22.69 0.365 0.328  0.926 125.1 91.33 0.253 0.262 0.930 

NSCT [68] 30.78 42.11 0.421 0.381 0.942 204 70.34 0.311 0.384 0.926 

NSST [69] 44.46 52.56 0.456 0.397 1.005 212 76.75 0.320 0.401 0.997 

DTCWT 

[65] 
40.1 61.11 0.424 0.383 0.986 366.34 121.78 0.332 0.408 0.963 

GGMAP-S 

[60] 
31.47 77.21 0.309 0.284 0.972 328.45 77.55 0.315 0.377 0.990 

LGMAP-S 
[63] 

30.2 70.6 0.295 0.269 0.969 303.83 104.47 0.272 0.322 0.951 

DT-

Bivariate 
76.7 178.2 0.534 0.453 1.006 569.21 205.76 0.386 0.468 1.011 

 

Shown in figure 5.31 is a 256x256 portion of Horse track image and the 

despeckled images using directional transform based schemes NSCT and NSST. 

This portion of the image is taken as it contains lot of structural information. An 

enlarged part of the despeckled image is shown in figure 5.32. The visual 

examination of these figures shows that the DT-Bivariate scheme provides a very 

high edge preservation performance and speckle reduction as compared to other 

two schemes. 

 

It can also be seen from the results that the performance improvement of the 

proposed scheme is narrowing down as the noise variance increases or the number 

of looks, L decreases. This is basically due to two reasons. The first one is that at 

lower values of L, the noise variance is more which adversely affects the detection 

of local dominant directions in the image and the second reason is that as the 

number of looks, L increases, the noise in the log transformed image tend to 

become more Gaussian making the homomorphic filtering more effective. The 
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performance is also affected by the length of the wavelets. The Db4 wavelet gives 

slightly better results than Haar wavelet due to the fact that it effectively smoothes 

out the noise in flat regions due to the good support of its scaling function.  

 

Figure 5.28 Despeckling results of Bedfordshire image (a) Original Image (b) Despeckled 

image using Lee filter (c) Despeckled image using DTCWT (d) Despeckled image using 

LGMAP-S (e) Despeckled image using GGMAP-S and (f) Despeckled image using          

DT-Bivariate. 

 

Computational complexity is a serious problem in the SAR field, since systems of 

the last generation produce high-resolution images of hundreds of megapixels. 

Several recent papers focus on fast SAR despeckling techniques. In order to 

compare the computational burden of the different algorithms, a computer with a 

core i5 CPU@2.4GHz with 4GB RAM is used. A synthetic SAR image of Lena of 

size 512X512 with L=4 is used to compare computation time. The computational 
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times needed to run the different algorithms are shown in Table 5.14. It can be seen 

that the computation time of NSCT is the largest, say, 400 Sec. LG-MAP-S 

algorithm takes the smallest computation time of 10 sec among the compared 

schemes. This is because the LG-MAP-S algorithm uses wavelet transform, which 

is having lower complexity as compared with other directional transforms like 

NSCT, NSST, directionlet etc. Among the directional transform based schemes, 

DT-Bivariate and DTCWT are best in terms of computational efficiency.  

 

 

 

Figure 5.29 Despeckling results of Horse track image (a) Original Image (b) Despeckled 

image using Lee filter (c) Despeckled image using DTCWT (d) Despeckled image using 

LGMAP-S (e) Despeckled image using GGMAP-S and (f) Despeckled image using       

DT-Bivariate scheme. 
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Figure 5.30 Ratio images of despeckled result of Bedfordshire image (a) Lee filter (b) 

DTCWT (c) LGMAP-S (d) GLGMAP-S and (e) DT-Bivariate  

 

 

Table. 5.14. Approximate computation time taken by different despeckling schemes  

Scheme 
Lee 

[6] 

NSCT 

[68] 

NSST 

[69] 

DTCWT 

[65] 

GGMAP-

S [60] 

LG 

MAP-S 

[63] 

DT-

Bivariate 

Time(sec.) 20 400 69 11 64 10 12 
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Figure 5.31 Despeckling results of Horse track 1 image a) Original Image b) Despeckled 

image using NSCT c) Despeckled image using NSST d) Despeckled image using DT-

Bivariate 
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Figure 5.32 The enlarged detail parts corresponding to Horse track 1 image. (a) Original (b) 

NSCT (c) NSST (d) DT-Bivariate 

 

5.8 Comparison of Presented Despeckling Schemes in 

Directionlet Domain 

In this section an overall comparison of all the developed despeckling schemes in 

directionlet domain is carried out. The comparison is done in terms of PSNR for 

synthetic SAR images and ENL & ESI values for original SAR images. The 

comparison of computational complexity in terms of the actual time taken by a 

standard computer environment is also done. Table 5.15 gives the PSNR values 

achieved by different despeckling schemes in directionlet domain for synthetic 
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SAR image of Lena and Boat with different number of looks. Also the comparison 

is made with two real SAR images in amplitude and intensity formats, of 

Bedfordshire and horse track. Here the ENL & ESI are used as the performance 

measures. The mean of ratio image (MRI) is also used for performance assessment.  

Table 5.16 gives a comparison of these parameters for the original SAR images. 

The computation time taken by these schemes on a computer with a core i5 

CPU@2.4GHz with 4GB RAM is listed in Table 5.17.   

 

Table 5.15. Despeckling results (PSNR) for synthetic SAR images of Lena & Boat 

(512x512) in amplitude format  

Looks/Method 
Lena Boat 

1 2 4 16 1 2 4 16 

Synthetic SAR 

Image 
12.11 14.89 17.80 23.76 11.77 14.55 17.46 23.42 

DT-GCV 25.38 27.54 29.21 32.90 23.59 25.26 26.86 30.48 

DT-Edge 25.83 27.86 29.43 33.65 23.62 25.45 27.18 30.60 

DT-Multiscale 25.90 27.91 29.58 33.79 23.72 25.57 27.35 30.79 

DT-LG 26.45 28.24 30.08 33.88 24.14 25.69 27.38 30.89 

DT-CG 26.49 28.29 30.16 33.97 24.20 25.78 27.47 31.00 

DT-Bivariate 26.66 28.44 30.28 34.22 24.39 26.01 27.73 31.45 

 

In addition to the denoising techniques and the statistical models used, the choice 

of the underlying wavelet family, as well as the length of the wavelet filter, is also 

important for the overall denoising performance. The length of a wavelet filter is 

related to smoothness and localization properties. The primary advantage of short-

wavelet filters, such as the Haar wavelet, is their compact spatial support; in 

contrast, longer-wavelet filters are preferred for smoothness. Furthermore, 

computational time of the wavelet transform is approximately proportional to the 

length of the wavelet filter. To compromise, Daubechies’ maximally flat wavelet of 

length eight (db4) is used throughout this work. To allow for robust and reliable 

parameter estimation, the minimum segment size is maintained at 32x32. The 
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decomposition level of directionlet transform is limited to three in all the cases. 

Another concern of segmented processing is managing the problem of image 

border distortion. Here symmetric extension of the boarders is carried out to avoid 

discontinuities along borders. At each decomposition level, the denoising algorithm 

was applied separately to all the detail subbands, while the approximation subband 

was left intact.  

 

Table 5.16 ENL, ESI & MRI values for the different Despeckling schemes applied on 

original SAR images 

Despeckl

ing 
Scheme 

Bedfordshire Image 

(Amplitude format, L=2) 

Horse Track image 

(Intensity format, L=4) 

ENL ESI MRI ENL ESI MRI 

Reg. A Reg.  B ESIH ESIV  Reg. C Reg.  D ESIH ESIV  

Real SAR 

Image 
2.94 3.28 1 1 ----- 14.11 9.76 1 1 ----- 

DT-GCV 32.60 63.58 0.428 0.394 0.971 214.81 98.70 0.313 0.385 0.982 

DT-Edge 72.08 165.18 0.681 0.621 0.979 482.31 172.87 0.395 0.479 0.986 

DT-Multi 76.57 171.24 0.612 0.569 0.988 511.56 196.22 0.387 0.470 0.978 

DT-

Bivariate 
86.78 195.79 0.544 0.463 1.006 569.21 205.76 0.386 0.468 1.011 

DT-CG 71.41 163.52 0.511 0.438 1.005 536.15 194.64 0.356 0.432 1.004 

DT-LG 70.11 160.81 0.507 0.424 1.008 531.86 192.01 0.347 0.412 1.007 

 

Table 5.17 Approximate computation time taken by different despeckling schemes in 

directionlet domain  

Scheme DT-GCV DT-Edge 
DT-

Multiscale 
DT- LG DT-CG 

DT- 

Bivariate  

Time(sec) 8.2 9.4 9.3 11.2 13.6 12.1 

 

From the computed performance measures, it can be concluded that the DT-

bivariate scheme provides the best despeckling performance in terms of noise 

smoothing with a reasonable computation time. The DT-Edge scheme provides the 

best edge retaining capability whereas the DT-GCV (with dominant direction 

identification using DirVar) takes the lowest computation time among the schemes.  
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Chapter 6 

Conclusions and Future Perspectives 
 

 
In this concluding chapter the whole work is summarised and 
the achievements of the research work is highlighted. The 
directions for future study are also discussed here. 

 

 

 

6.1 Thesis Highlights and Contributions 

This chapter stands as a brief conclusion of the thesis. It highlights the objectives 

of the study and the achievements. The aim of the thesis was to design and develop 

spatially adaptive denoising techniques with edge and feature preservation, for 

images corrupted with additive white Gaussian noise and SAR images affected 

with speckle noise.  

 

Image denoising is a well researched topic. It has found multifaceted applications 

in our day to day life. Image denoising based on multi resolution analysis using 

wavelet transform has received considerable attention in recent years.  However 

due to limited directional selectivity, the wavelet based multi resolution techniques 

cannot easily cater to the growing requirements of effective denoising with edge 

and feature preservation. Digital photography, satellite imaging, medical imaging 

etc are the thrust application areas which need edge and feature preserving 

denoising algorithms. The intense research efforts to tackle this problem with better 

adaptive schemes by combining ideas from geometry and traditional multi-scale 

analysis have resulted in a family of multi scale geometrical transforms. A special 

member of this emerging family is the directionlet transform, which has strong 

directional character and its elements are highly anisotropic at all scales. 

 

Given the diversity of the problems posed and addressed, this thesis presented 

different denoising algorithms in directionlet domain for images corrupted with 

additive white Gaussian noise and SAR images affected by speckle noise. To 
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address the multiplicative nature of speckle noise, the speckle contribution is made 

additive by a linear decomposition. All the presented methods suitably adjust the 

transform directions based on local dominant directions of spatially segmented 

image and successfully capture the oriented features. The developed methods 

include two sub band adaptive threshold based schemes, based on SURE risk and 

Bayes shrink. Since these schemes require the prior knowledge of the noise 

variance and signal variance to compute the threshold, a Generalized Cross 

Validation (GCV) based optimal threshold estimation scheme in directionlet 

domain is developed.  This scheme computes the optimal threshold from the noisy 

input data without using the knowledge of the noise variance. Here three 

despeckling schemes based on GCV thresholding are presented in directionlet 

domain. The first scheme applies simple GCV thresholding to the directionlet 

coefficients of a spatially segmented image. The second scheme efficiently extracts 

edge information along dominant directions from the spatially segmented SAR 

image. Then an optimal scale dependent subband adaptive threshold is applied to 

the edge removed image. The despeckled image is finally synthesized using the 

extracted edge information to preserve sharpness of edges and texture. In the third 

scheme, the adjacent scale directionlet coefficients are multiplied to amplify the 

significant signal features and thresholding is applied to these multiscale products 

to better differentiate edge structures from noise. All the presented schemes 

provided better results as compared to the WT based schemes and other state of the 

art techniques. 

 

The statistical model based schemes use the joint statistics of the DT coefficients 

across scales and non-linear threshold functions are derived using Bayesian MAP 

estimator. The interscale dependency of the DT coefficients is modelled here using 

different probability distributions. Three different distributions have been 

considered. These are selected based on the analysis of the original signal and noise 

distributions in directionlet domain. It was observed that the heavy tailed behaviour 

of the natural images can be effectively modelled by using different bivariate 

distributions with inter and intra scale dependency. Denoising and despeckling 

schemes have been developed using these bivariate distributions. In one of the 

despeckling schemes Cauchy pdf was utilized as a prior for modelling the heavy 

tailed nature of the log-transformed reflectance. The statistical inter scale 
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dependency of DT coefficients was also considered in the modelling process. 

Laplacian-Gaussian model based MAP despeckling was also developed which has 

provided reasonably good results with better computational efficiency. Adaptive 

spatial segmentation and processing based on content directionality was tried in 

one of the schemes which have improved the computational efficiency with a slight 

reduction in performance.    

Altogether ten different denoising schemes were developed within the frame work 

of directionlet transform and all these schemes were compared with the state of the 

art technologies available for standard benchmark images and original images 

corrupted with noise. It is well established that, allowing for spatial segmentation 

and choosing transform directions in each segment independently, directionlets 

outperform the standard 2D WT and other oriented transforms in image denoising. 

The performance improvement can be basically attributed to two reasons. One is 

the application of multi directional DT, which adapts to the local dominant 

directions resulting in an efficient sparse representation and there by retaining the 

image specific features like edges and contours after denoising. The other reason 

for the improvement is the interscale dependency model based denoising of DT 

coefficients using locally adaptive marginal variance and oriented neighbourhood. 

 

6.2 Future Perspectives 

The directionlet based denoising schemes presented in this thesis are effective in 

preserving the image specific features like edges and contours in denoising. Scope 

of this research is still open in areas like further optimization in terms of speed and 

extension of the techniques to other related areas like colour and video image 

denoising. Such studies would further augment the practical use of these 

techniques. 

 

Several aspects of the proposed algorithm may still be improved. A more complex 

spatial segmentation, which is capable of extracting the dominant directions in 

images with more flexibility, may improve the performance of the proposed 

schemes. A more efficient adaptive spatial segmentation of the image based on the 
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local dominant directions to identify the transform directions can further improve 

the computational efficiency and provide better sparse representation.  

 

The anisotropic ratio and the maximum number of levels in the DT decomposition 

are now limited by the segment size, which can affect the overall performance of 

DT based denoising schemes. The optimal selection of these parameters based on 

content directionality may improve the performance.  

 

The identification of dominant directions in the case of images contaminated with 

large amount of noise is a challenging task. The estimation of dominant directions 

based on the computation of directional variance may not yield a good result in 

such cases. This needs further study.  

 

In the case of SAR despeckling, the performance analysis showed different results 

when the algorithm is applied on simulated or real SAR images; the reason behind 

is that the speckle statistics of actual SAR images, especially at high resolution, 

often deviate from the simplified models used in this work, as well as in most of 

the literature. The accurate modelling of the statistics of SAR images is a 

challenging task. The performance of statistical model based despeckling schemes 

is heavily dependent on the models selected. As a future improvement, 

optimization of the statistical model based denoising algorithm by incorporating 

generalized statistical models with variable parameters can be tried out.  

 

Yet another scope of future research is to extend the proposed algorithms for 

colour image denoising and video image denoising. This will find more practical 

applications to the presented schemes. 
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