Bayesian Analysis of Simple Step-stress Model under Weibull Lifetimes

Ayon Ganguly
Department of Statistics, University of Pune

Co-authors
Prof. Debasis Kundu2 and Dr. Sharmishtha Mitra2

January 01, 2014

1Part of this work has been supported by grants from DST and CSIR, Government of India.

2Department of Mathematics and Statistics, IIT Kanpur.
Censoring
Censoring

- Quite useful technique in reliability life testing.
- Possible termination of experiment before failing all the experimental units.
- Lower cost in terms of money and time than full experiment.
- Survival experimental units can be used for further experiments.
1. Censoring

Type-I Censoring

- n: Number of items put on the test.
- τ: Pre-fixed time.
- $\tau^* = \tau$: Experiment termination time.
Type-I Censoring

- n: Number of items put on the test.
- τ: Pre-fixed time.
- $\tau^* = \tau$: Experiment termination time.
1. Censoring

Type-I Censoring

- n: Number of items put on the test.
- τ: Pre-fixed time.
- $\tau^* = \tau$: Experiment termination time.

Diagram:

- n is the number of items tested.
- τ^* indicates the experiment termination time.
- 0 to $t_{1:n}$ represents the duration of the test.
1. Censoring

Type-I Censoring

- n: Number of items put on the test.
- τ: Pre-fixed time.
- $\tau^* = \tau$: Experiment termination time.

Diagram:

- n:
- $t_1:n$
- $t_2:n$
- τ^*
- τ
1. Censoring

Type-I Censoring

- \(n \): Number of items put on the test.
- \(\tau \): Pre-fixed time.
- \(\tau^* = \tau \): Experiment termination time.

![Diagram showing Type-I Censoring with \(n \) items tested up to time \(\tau^* \).]
1. Censoring

Type-I Censoring

- n: Number of items put on the test.
- τ: Pre-fixed time.
- $\tau^* = \tau$: Experiment termination time.

The diagram illustrates the time axis with n items tested, with $t_1:n$, $t_2:n$, ..., $t_N:n$ indicating the times of failure or censoring. The experiment terminates at $\tau^* = \tau$.

- Number of failures is a random variable.
Type-I Censoring

- \(n \): Number of items put on the test.
- \(\tau \): Pre-fixed time.
- \(\tau^* = \tau \): Experiment termination time.

Number of failures is a random variable.

- **Advantage**: Pre-fixed experiment termination time.
- **Disadvantage**: Very few failures, even no failure, before time \(\tau \).
1. Censoring

Type-II Censoring

- n: Number of items put on the test.
- $r \leq n$: Pre-fixed integer.
- $\tau^* = t_{r:n}$: Experiment termination time.
1. Censoring

Type-II Censoring

- n: Number of items put on the test.
- $r (\leq n)$: Pre-fixed integer.
- $\tau^* = t_{r:n}$: Experiment termination time.

Diagram:

```
 n
  |
  v
 0 | t_{1:n}
```
Type-II Censoring

- n: Number of items put on the test.
- $r (\leq n)$: Pre-fixed integer.
- $\tau^* = t_{r:n}$: Experiment termination time.

Diagram:

- n:
- 0 to $t_{1:n}$ to $t_{2:n}$
1. Censoring

Type-II Censoring

- n: Number of items put on the test.
- $r (\leq n)$: Pre-fixed integer.
- $\tau^* = t_{r:n}$: Experiment termination time.

![Diagram of censored data points over time]

0 \rightarrow $t_{1:n}$ \rightarrow $t_{2:n}$ \rightarrow \ldots \rightarrow $t_{r:n}$
1. Censoring

Type-II Censoring

- \(n \): Number of items put on the test.
- \(r (\leq n) \): Pre-fixed integer.
- \(\tau^* = t_{r:n} \): Experiment termination time.

```
0  t_{1:n}  t_{2:n}  \cdots  t_{r:n}
```

[Diagram of Type-II Censoring]
1. Censoring

Type-II Censoring

- n: Number of items put on the test.
- $r (\leq n)$: Pre-fixed integer.
- $\tau^* = t_{r:n}$: Experiment termination time.

- Duration of experiment is a random variable.
1. Censoring

Type-II Censoring

- n: Number of items put on the test.
- $r (\leq n)$: Pre-fixed integer.
- $\tau^* = t_{r:n}$: Experiment termination time.

Duration of experiment is a random variable.

Advantage: Pre-fixed number of failures.

Disadvantage: Long experimental duration.
Other Censoring Schemes

- Hybrid Censoring Schemes: Hybridization of Type-I and Type-II censoring.
Other Censoring Schemes

- Hybrid Censoring Schemes: Hybridization of Type-I and Type-II censoring.
- Progressive Censoring Schemes: Allow to remove items from the test before completion of the experiment.
Other Censoring Schemes

- Hybrid Censoring Schemes: Hybridization of Type-I and Type-II censoring.
- Progressive Censoring Schemes: Allow to remove items from the test before completion of the experiment.
- Progressive Hybrid Censoring Schemes: Mixture of hybrid and progressive censoring schemes.
Other Censoring Schemes

- Hybrid Censoring Schemes: Hybridization of Type-I and Type-II censoring.
- Progressive Censoring Schemes: Allow to remove items from the test before completion of the experiment.
- Progressive Hybrid Censoring Schemes: Mixture of hybrid and progressive censoring schemes.
- All the censoring schemes suffer from the disadvantage of either Type-I or Type-II censoring scheme.
Step-stress Life Tests
Accelerated Life Tests

- Useful experimental technique to obtain data on the lifetime distribution of highly reliable products.
- Put a sample of products on the test in some extreme environmental conditions to get early failures.
- Need to extrapolate to estimate the lifetime distribution under the normal condition.
Step-stress Life Tests

- A particular type of accelerated life test.
- Allows the experimenter to change the stress levels during the life-testing experiments.
- n: Number of items put on the test.
- s_1, s_2: Stress levels (Simple SSLT).
- τ: Stress changing time (Pre-fixed).
Step-stress Life Tests

- A particular type of accelerated life test.
- Allows the experimenter to change the stress levels during the life-testing experiments.
- \(n \): Number of items put on the test.
- \(s_1, s_2 \): Stress levels (Simple SSLT).
- \(\tau \): Stress changing time (Pre-fixed).

\[n \:
\begin{align*}
\tau & \quad \tau \\
&& \tau \\
st_1 & \quad \tau \\
&t_1:n \quad t_2:n \quad \cdots \quad t_N:n \quad t_{N+1:n} \quad \cdots \quad t_{n:n}
\end{align*}
\]
Step-stress Life Tests

- Generalization
 - \(n \): No of items placed on the test.
 - \(s_1, s_2, s_3, \ldots, s_{m+1} \): Stress levels.
 - \(\tau_1 < \tau_2 < \ldots < \tau_m \): Stress changing times (Pre-fixed).
Consider a simple SSLT, i.e., only two stress levels, s_1 and s_2, present.

$F_i(\cdot)$: CDF of lifetime of an item under the stress level s_i, $i = 1, 2, \ldots, m + 1$.

$F(\cdot)$: CDF of lifetime of an item under the step-stress pattern.

Model needed to relate $F(\cdot)$ to $F_i(\cdot)$, $i = 1, 2, \ldots, m + 1$.

Popular models
 - Cumulative exposure model.
 - Tampered failure rate model.
 - Khamis-Higgins model.
Cumulative Exposure Model

- First proposed by Seydyakin (1966)\(^4\) and later studied by Nelson (1980)\(^5\).
- \(F_i(\cdot)\) is the CDF of lifetime of an item under the stress level \(s_i, i = 1, 2, \ldots, m + 1\).
- \(F(\cdot)\) is the CDF of lifetime of an item under the step-stress pattern.

The CEM assumptions are:

- The remaining life of an item depends only on the current cumulative fraction accumulated, regardless how the fraction accumulated.
- If the stress level is fixed, the survivors will fail according to the distribution function of that stress level but starting at previous accumulated fraction failed.
2. Step-stress Life Tests

Cumulative Exposure Model

Figure: Example of CEM

Here $F_1(\cdot)$ and $F_2(\cdot)$ are CDF of $Exp(14)$ and $Exp(1)$ respectively.
Cumulative Exposure Model

Under the assumptions of CEM, the CDF of the lifetime is given by

\[F_{\text{CEM}}(t) = F_i(t - \tau_{i-1} + h_{i-1}) \quad \text{if} \quad \tau_{i-1} \leq t < \tau_i, \; i = 1, 2, \ldots, m + 1, \]

where \(\tau_0 = 0, \) \(\tau_{m+1} = \infty, \) \(h_0 = 0 \) and \(h_i, \; i = 1, 2, \ldots, m, \) is the solution of

\[F_{i+1}(h_i) = F_i(\tau_i - \tau_{i-1} + h_{i-1}). \]
2. Step-stress Life Tests

Tampered Failure Rate Model

- Proposed by Bhattacharyya and Soejoeti (1989)\(^1\) for simple SSLT.
- Generalized by Madi (1993)\(^2\) for multiple step SSLT.

Tampered Failure Rate Model

- Proposed by Bhattacharyya and Soejoeti (1989)\(^1\) for simple SSLT.
- Generalized by Madi (1993)\(^2\) for multiple step SSLT.
- Effect of switching the stress level is to multiply the failure rate of the first stress level by a positive constant.

\[
\lambda_{TFRM}(t) = \left(\prod_{j=0}^{i-1} \alpha_j \right) \lambda(t) \text{ if } \tau_{i-1} \leq t < \tau_i, \ i = 1, 2, \ldots, m+1.
\]

Khamis-Higgins Model

- Proposed by Khamis and Higgins (1998)\(^1\) for Weibull lifetimes.

Khamis-Higgins Model

- Proposed by Khamis and Higgins (1998)\(^1\) for Weibull lifetimes.
- Under KHM, the CDF is given by

\[
F_{\text{KHM}}(t) = 1 - e^{-\lambda_i(t^\beta - \tau_i^{\beta})} - \sum_{j=1}^{i-1} \lambda_j(\tau_j^\beta - \tau_{j-1}^\beta) \quad \text{if} \quad \tau_{i-1} \leq t < \tau_i.
\]

Khamis-Higgins Model

- Proposed by Khamis and Higgins (1998)\(^1\) for Weibull lifetimes.
- Under KHM, the CDF is given by
 \[
 F_{\text{KHM}}(t) = 1 - e^{-\lambda_i(t^\beta - \tau_i^\beta)} - \sum_{j=1}^{i-1} \lambda_j(\tau_j^\beta - \tau_{j-1}^\beta) \quad \text{if} \quad \tau_{i-1} \leq t < \tau_i.
 \]
- Xu and Tang (2003)\(^2\) showed that KHM is a particular case of TFRM.

Advantages

- By increasing the stress level, reasonable number of failure can be obtained.
- Experimental time is reduced.
2. Step-stress Life Tests

Disadvantages

- Exact relationship between the stress level and lifetime of the product is needed.
- Model must take into account the effect of stress accumulated.
- Model becomes more complicated.
A Brief Literature Review
3. A Brief Literature Review

Literature Review

- Balakrishnan et al. (2007)\(^1\).
 - Type-II censoring.
 - Exponentially distributed failure times.
 - Cumulative exposure model.

Balakrishnan et al. (2007)\(^1\).

- Type-II censoring.
- Exponentially distributed failure times.
- Cumulative exposure model.
- Point and interval estimation are considered.

3. A Brief Literature Review

Balakrishnan et al. (2007)\(^1\).

- Type-II censoring.
- Exponentially distributed failure times.
- Cumulative exposure model.
- Point and interval estimation are considered.

\[
\hat{f}_{\theta_1}(t) = \sum_{j=1}^{r-1} \sum_{k=0}^{j} c_{jk} f_G(t - \tau_{ik}; j, \frac{j}{\theta_1}).
\]

- \(c_{jk}\) involves \((-1)^k, \binom{n}{j}, \binom{j}{k}\), and \(e^{-\frac{\tau}{\theta_1}(n-j+k)}\).
- \(f_G(\cdot)\) is the PDF of Gamma distribution.

Balakrishnan et al. (2009)\(^1\).

- Type-I censoring.
- Exponentially distributed failure times.
- Cumulative exposure model.

Balakrishnan et al. (2009).

- Type-I censoring.
- Exponentially distributed failure times.
- Cumulative exposure model.
- Point and interval estimation are considered.

3. A Brief Literature Review

Literature Review

- Balakrishnan et al. (2009)\(^1\).
 - Type-I censoring.
 - Exponentially distributed failure times.
 - Cumulative exposure model.
 - Point and interval estimation are considered.
 \[
 f_{\hat{\theta}_1}(t) = c_n \sum_{j=1}^{n-1} \sum_{k=0}^{j} c_{jk} f_G(t - \tau_{ik}; j, \frac{j}{\hat{\theta}_1}).
 \]
 - \(c_{jk}\) involves \((-1)^k, \binom{n}{j}, \binom{j}{k}\), and \(e^{-\frac{\tau_{ik}}{\hat{\theta}_1}(n-j+k)}\).
 - \(f_G(\cdot)\) is the PDF of Gamma distribution.

Literature Review

- Balakrishnan and Xie (2007)\(^1\).
 - Hybrid Type-II censored data.
 - Exponentially distributed failure times.
 - Cumulative exposure model.

Balakrishnan and Xie (2007).

- Hybrid Type-II censored data.
- Exponentially distributed failure times.
- Cumulative exposure model.
- Point and interval estimation are considered.
- Exact distributions of model parameters are obtained.
- These exact distributions are used to construct confidence intervals.

3. A Brief Literature Review

Literature Review

- Balakrishnan and Xie (2007)\(^1\).
 - Hybrid Type-I censored data.
 - Exponentially distributed failure times.
 - Cumulative exposure model.

3. A Brief Literature Review

Literature Review

- Balakrishnan and Xie (2007)\(^1\).
 - Hybrid Type-I censored data.
 - Exponentially distributed failure times.
 - Cumulative exposure model.
 - Point and interval estimation are considered.
 - Exact distributions of model parameters are obtained.
 - These exact distributions are used to construct confidence intervals.

Balakrishnan et al. (2009).
- Type-I and Type-II censored data.
- Exponentially distributed failure times.
- Cumulative exposure model.
- Order restriction among means of lifetimes.
3. A Brief Literature Review

Literature Review

Balakrishnan et al. (2009)\(^1\).

- Type-I and Type-II censored data.
- Exponentially distributed failure times.
- Cumulative exposure model.
- Order restriction among means of lifetimes.
- MLE does not exist in explicit form.
- Further analysis depends on asymptotic results.

Kateri and Balakrishnan (2008).\(^1\)

- Type-II censoring.
- Weibull distributed failure times.
- Cumulative exposure model.

Kateri and Balakrishnan (2008).\(^1\)

- Type-II censoring.
- Weibull distributed failure times.
- Cumulative exposure model.
- MLE does not exist in explicit form.
- Further analysis depends on asymptotic results.

Model Description and Prior Assumptions
Model Description

- n: Number of item put on the test.
- s_1, s_2: Stress levels.
- τ_1: Stress changing time (Pre-fixed).
- Type-I censored data.
- $\tau_2 (> \tau_1)$: Censoring time (Pre-fixed).
Model Description

- n: Number of item put on the test.
- s_1, s_2: Stress levels.
- τ_1: Stress changing time (Pre-fixed).
- Type-I censored data.
- $\tau_2 (> \tau_1)$: Censoring time (Pre-fixed).

Life time at stress level s_i, $i = 1, 2$, has a Weibull(β, λ_i) distribution, i.e., its CDF is given by

$$F_i(t) = \begin{cases} 1 - e^{-\lambda_i t^\beta} & \text{if } t > 0 \\ 0 & \text{otherwise.} \end{cases}$$
Model Description

Under CEM, the CDF is given by

\[F_{CEM}(t) = \begin{cases}
0 & \text{if } t < 0 \\
1 - e^{-\lambda_1 t^\beta} & \text{if } 0 \leq t < \tau_1 \\
1 - e^{-\lambda_2 \left(t - \tau_1 + \frac{\lambda_1}{\lambda_2} \tau_1 \right)^\beta} & \text{if } t \geq \tau_1.
\end{cases} \]
Model Description

- Under CEM, the CDF is given by

\[
F_{\text{CEM}}(t) = \begin{cases}
0 & \text{if } t < 0 \\
1 - e^{-\lambda_1 t^\beta} & \text{if } 0 \leq t < \tau_1 \\
1 - e^{-\lambda_2 (t - \tau_1 + \frac{\lambda_1}{\lambda_2} \tau_1)^\beta} & \text{if } t \geq \tau_1.
\end{cases}
\]

- Under KHM, the CDF is given by

\[
F_{\text{KHM}}(t) = \begin{cases}
0 & \text{if } t < 0 \\
1 - e^{-\lambda_1 t^\beta} & \text{if } 0 \leq t < \tau_1 \\
1 - e^{-\lambda_2 (t^\beta - \tau_1^\beta) - \lambda_1 \tau_1^\beta} & \text{if } \tau_1 < t < \infty.
\end{cases}
\]
Model Description

- Under CEM, the CDF is given by

\[
F_{\text{CEM}}(t) = \begin{cases}
0 & \text{if } t < 0 \\
1 - e^{-\lambda_1 t^\beta} & \text{if } 0 \leq t < \tau_1 \\
1 - e^{-\lambda_2 (t - \tau_1 + \frac{\lambda_1}{\lambda_2} \tau_1) ^\beta} & \text{if } t \geq \tau_1.
\end{cases}
\]

- Under KHM, the CDF is given by

\[
F_{\text{KHM}}(t) = \begin{cases}
0 & \text{if } t < 0 \\
1 - e^{-\lambda_1 t^\beta} & \text{if } 0 \leq t < \tau_1 \\
1 - e^{-\lambda_2 (t^\beta - \tau_1^\beta) - \lambda_1 \tau_1^\beta} & \text{if } \tau_1 < t < \infty.
\end{cases}
\]

- KHM is mathematically tractable than CEM.
- It is difficult to distinguish between CEM and KHM.
Prior Assumptions I

- $\lambda_1 \sim \text{Gamma}(a_1, b_1)$.
- $\lambda_2 \sim \text{Gamma}(a_2, b_2)$.
- $\beta \sim \text{Gamma}(a_3, b_3)$.
- $\lambda_1, \lambda_2, \text{and } \beta$ are independently distributed.
Main aim of SSLT is to get rapid failure by imposing extreme environmental condition.

Plausible to assume that the mean life time at stress level s_2 is smaller than that at stress level s_1.

$\lambda_1 < \lambda_2$.
Main aim of SSLT is to get rapid failure by imposing extreme environmental condition.

Plausible to assume that the mean life time at stress level s_2 is smaller than that at stress level s_1.

$\lambda_1 < \lambda_2$.

Reparameterize $\lambda_1 = \alpha \lambda_2$ with $0 < \alpha < 1$.
Prior Assumptions II

- Main aim of SSLT is to get rapid failure by imposing extreme environmental condition.
- Plausible to assume that the mean life time at stress level s_2 is smaller than that at stress level s_1.
- $\lambda_1 < \lambda_2$.
- Reparameterize $\lambda_1 = \alpha \lambda_2$ with $0 < \alpha < 1$.
- $\lambda_2 \sim \text{Gamma}(a_2, b_2)$.
- $\beta \sim \text{Gamma}(a_3, b_3)$.
- $\alpha \sim \text{Beta}(a_4, b_4)$.
- α, β, and λ_2 are independently distributed.
Motivation

- Weibull distribution is quite flexible and fits a large range of lifetime data.
Motivation

- Weibull distribution is quite flexible and fits a large range of lifetime data.
- MLEs of the model parameters do not have explicit form and all inferences rely on asymptotic distributions.
Posterior Analysis
For $\beta > 0$, $\lambda_1 > 0$, and $\lambda_2 > 0$

\[
l_1(\beta, \lambda_1, \lambda_2 \mid \text{Data}) \propto \beta^{n^* + a_3 - 1} \lambda_1^{n_1^* + a_1 - 1} \lambda_2^{n_2^* + a_2 - 1} \times e^{-(b_3 - c_1)\beta - \lambda_1 A_1(\beta) - \lambda_2 A_2(\beta)},
\]

\[
n^* = n_1^* + n_2^*, \quad c_1 = \sum_{j=1}^{n^*} \ln t_{j:n},
\]

\[
A_1(\beta) = b_1 + \sum_{j=1}^{n_1^*} t_{j:n}^\beta + (n - n_1^*)\tau_1^\beta,
\]

\[
A_2(\beta) = b_2 + \sum_{j=n_1^* + 1}^{n^*} (t_{j:n}^\beta - \tau_1^\beta) + (n - n^*)(\tau_2^\beta - \tau_1^\beta).
\]
For $\beta > 0$, $\lambda_1 > 0$, and $\lambda_2 > 0$

\[l_1(\beta, \lambda_1, \lambda_2 \mid \text{Data}) \propto \beta^{n^* + a_3 - 1} \lambda_1^{n_1^* + a_1 - 1} \lambda_2^{n_2^* + a_2 - 1} \]

\[\times e^{-(b_3 - c_1)\beta - \lambda_1 A_1(\beta) - \lambda_2 A_2(\beta)}, \]

\[n^* = n_1^* + n_2^*, \quad c_1 = \sum_{j=1}^{n^*} \ln t_{j:n}, \]

\[A_1(\beta) = b_1 + \sum_{j=1}^{n_1^*} t_{j:n}^{\beta} + (n - n_1^*)\tau_1^{\beta}, \]

\[A_2(\beta) = b_2 + \sum_{j=n_1^*+1}^{n^*} (t_{j:n}^{\beta} - \tau_1^{\beta}) + (n - n^*)(\tau_2^{\beta} - \tau_1^{\beta}). \]

$l_1(\beta, \lambda_1, \lambda_2 \mid \text{Data})$ is integrable if proper priors are assumed on all the unknown parameters.
For $0 < \alpha < 1$, $\beta > 0$, and $\lambda_2 > 0$

$$l_2(\alpha, \beta, \lambda_2 \mid \text{Data}) \propto \alpha^{n_1^* + a_4 - 1}(1 - \alpha)^{b_4 - 1}\beta^{n_1^* + a_3 - 1}\lambda_2^{n_2^* + a_2 - 1} \times e^{-(b_3 - c_1)\beta - \lambda_2(\alpha D_1(\beta) + D_2(\beta) + b_2)},$$

$$n^* = n_1^* + n_2^*, \quad c_1 = \sum_{j=1}^{n^*} \ln t_{j:n},$$

$$D_1(\beta) = \sum_{j=1}^{n_1^*} t_j^{\beta:n} + (n - n_1^*)\tau_1^\beta,$$

$$D_2(\beta) = \sum_{j=n_1^*+1}^{n^*} (t_j^{\beta:n} - \tau_1^\beta) + (n - n^*)(\tau_2^\beta - \tau_1^\beta).$$
For $0 < \alpha < 1$, $\beta > 0$, and $\lambda_2 > 0$

$$l_2(\alpha, \beta, \lambda_2 \mid \text{Data}) \propto \alpha^{n^*_1 + a_4 - 1}(1 - \alpha)^{b_4 - 1} \beta^{n^*_2 + a_3 - 1} \lambda_2^{n^* + a_2 - 1}$$

$$\times e^{-(b_3 - c_1)\beta - \lambda_2(\alpha D_1(\beta) + D_2(\beta) + b_2)},$$

$$n^* = n^*_1 + n^*_2, \ c_1 = \sum_{j=1}^{n^*} \ln t_{j:n},$$

$$D_1(\beta) = \sum_{j=1}^{n^*_1} t_{j:n}^\beta + (n - n^*_1) \tau_1^\beta,$$

$$D_2(\beta) = \sum_{j=n^*_1 + 1}^{n^*} (t_{j:n}^\beta - \tau_1^\beta) + (n - n^*)(\tau_2^\beta - \tau_1^\beta).$$

$l_2(\alpha, \beta, \lambda_2 \mid \text{Data})$ is integrable if proper priors are assumed on all the unknown parameters.
Bayes Estimate and Credible Interval

- Squared error loss function.
Bayes Estimate and Credible Interval

- Squared error loss function.
- \[g_B(\beta, \lambda_1, \lambda_2) = \int \int \int g(\beta, \lambda_1, \lambda_2) h(\beta, \lambda_1, \lambda_2) d\lambda_2 d\lambda_1 d\alpha. \]
Bayes Estimate and Credible Interval

- Squared error loss function.
- \(g_B(\beta, \lambda_1, \lambda_2) = \int \int \int g(\beta, \lambda_1, \lambda_2) h_1(\beta, \lambda_1, \lambda_2) d\lambda_2 d\lambda_1 d\alpha. \)
- Bayes estimate of \(g(\beta, \lambda_1, \lambda_2) \) cannot be obtained explicitly in general.
Bayes Estimate and Credible Interval

- Squared error loss function.
- \(g_B(\beta, \lambda_1, \lambda_2) = \int \int \int g(\beta, \lambda_1, \lambda_2) h_1(\beta, \lambda_1, \lambda_2) d\lambda_2 d\lambda_1 d\alpha \).
- Bayes estimate of \(g(\beta, \lambda_1, \lambda_2) \) cannot be obtained explicitly in general.
- An algorithm based on importance sampling is proposed to compute \(\hat{g}_B(\beta, \lambda_1, \lambda_2) \) and to construct CRI for \(g(\beta, \lambda_1, \lambda_2) \) in both the cases.
Bayes Estimate and Credible Interval

\[
l_1(\beta, \lambda_1, \lambda_2 \mid \text{Data}) = l_3(\lambda_1, \mid \beta, \text{Data}) \times l_4(\lambda_2, \mid \beta, \text{Data}) \times l_5(\beta \mid \text{Data}),
\]

where

\[
l_3(\lambda_1, \mid \beta, \text{Data}) = \frac{\{A_1(\beta)\}^{n_1^*+a_1}}{\Gamma(n_1^* + a_1)} \lambda_1^{n_1^*+a_1-1} e^{-\lambda_1 A_1(\beta)} \text{ if } \lambda_1 > 0,
\]

\[
l_4(\lambda_2, \mid \beta, \text{Data}) = \frac{\{A_2(\beta)\}^{n_2^*+a_2}}{\Gamma(n_2^* + a_2)} \lambda_2^{n_2^*+a_2-1} e^{-\lambda_2 A_2(\beta)} \text{ if } \lambda_2 > 0,
\]

\[
l_5(\beta \mid \text{Data}) = c_2 \frac{\beta^{n_2^*+a_3-1} e^{-(b_3-c_1)\beta}}{\{A_1(\beta)\}^{n_1^*+a_1} \{A_2(\beta)\}^{n_2^*+a_2}} \text{ if } \beta > 0.
\]
Data Analysis
6. Data Analysis

Illustrative Example

- An artificial data is generated from KHM with $n = 40$, $\beta = 2$, $\lambda_1 = 1/1.2 \approx 0.833$, $\lambda_2 = 1/4.5 \approx 2.222$, and $\tau_1 = 0.6$.
Illustrative Example

- An artificial data is generated from KHM with $n = 40$, $\beta = 2$, $\lambda_1 = 1/1.2 \approx 0.833$, $\lambda_2 = 1/4.5 \approx 0.222$, and $\tau_1 = 0.6$.
- $\tau_2 = 0.8$.

Illustrative Example

- An artificial data is generated from KHM with $n = 40$, $\beta = 2$, $\lambda_1 = 1/1.2 \simeq 0.833$, $\lambda_2 = 1/4.5 \simeq 2.222$, and $\tau_1 = 0.6$.
- $\tau_2 = 0.8$.
- $a_1 = b_1 = a_2 = b_2 = a_3 = b_3 = 0.0001$ and $a_4 = b_4 = 1$.
Illustrative Example

- An artificial data is generated from KHM with $n = 40$, $\beta = 2$, $\lambda_1 = 1/1.2 \approx 0.833$, $\lambda_2 = 1/4.5 \approx 2.222$, and $\tau_1 = 0.6$.
- $\tau_2 = 0.8$.
- $a_1 = b_1 = a_2 = b_2 = a_3 = b_3 = 0.0001$ and $a_4 = b_4 = 1$.
- Prior I: $\hat{\beta} = 2.35$, $\hat{\lambda}_1 = 0.93$, $\hat{\lambda}_2 = 2.61$.
- Prior II: $\hat{\beta} = 2.49$, $\hat{\lambda}_1 = 1.01$, $\hat{\lambda}_2 = 2.50$.
Illustrative Example

- An artificial data is generated from KHM with $n = 40$, $\beta = 2$, $\lambda_1 = 1/1.2 \simeq 0.833$, $\lambda_2 = 1/4.5 \simeq 2.222$, and $\tau_1 = 0.6$.
- $\tau_2 = 0.8$.
- $a_1 = b_1 = a_2 = b_2 = a_3 = b_3 = 0.0001$ and $a_4 = b_4 = 1$.
- Prior I: $\hat{\beta} = 2.35$, $\hat{\lambda}_1 = 0.93$, $\hat{\lambda}_2 = 2.61$.
- Prior II: $\hat{\beta} = 2.49$, $\hat{\lambda}_1 = 1.01$, $\hat{\lambda}_2 = 2.50$.
- Prior I: 95% symmetric CRI for β is (1.12, 4.04).
- Prior II: 95% symmetric CRI for β is (0.45, 2.44).
Conclusion
Conclusions

- Extensive simulation has been done to judge the performance of the proposed procedures.
- \(a_1 = b_1 = a_2 = b_2 = a_3 = b_3 = 0.0001 \) and \(a_4 = b_4 = 1 \).
Conclusions

- Extensive simulation has been done to judge the performance of the proposed procedures.
- \(a_1 = b_1 = a_2 = b_2 = a_3 = b_3 = 0.0001 \) and \(a_4 = b_4 = 1 \).
- MSEs of all unknown parameters decrease as \(n \) increases keeping other quantities fixed.
Conclusions

- Extensive simulation has been done to judge the performance of the proposed procedures.
- $a_1 = b_1 = a_2 = b_2 = a_3 = b_3 = 0.0001$ and $a_4 = b_4 = 1$.
- MSEs of all unknown parameters decrease as n increases keeping other quantities fixed.
- MSEs of BE of all unknown parameters are smaller in case of Prior II than those in case of Prior I.
Conclusions

- Extensive simulation has been done to judge the performance of the proposed procedures.
- $a_1 = b_1 = a_2 = b_2 = a_3 = b_3 = 0.0001$ and $a_4 = b_4 = 1$.
- MSEs of all unknown parameters decrease as n increases keeping other quantities fixed.
- MSEs of BE of all unknown parameters are smaller in case of Prior II than those in case of Prior I.
- Other loss functions and other censoring schemes can be handled in a very similar fashion.
Future Works
Future Works

- Step-stress model in the presence of competing risks under Bayesian framework.
Future Works

- Step-stress model in the presence of competing risks under Bayesian framework.
- Optimality of SSLT under Bayesian framework.
Future Works

- Step-stress model in the presence of competing risks under Bayesian framework.
- Optimality of SSLT under Bayesian framework.
- Prior elicitation is becoming a popular topic among Bayesian. It will be a challenging task to find a subjective prior for step-stress life testing models.
Thank You