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Chapter 1

Introduction

1.1 Motivation

The classical methods of analysing time series by Box-Jenkins approach assume that

the observed series fluctuates around changing levels with constant variance. That

is, the time series is assumed to be of homoscedastic nature. However, the financial

time series exhibits the presence of heteroscedasticity in the sense that, it possesses

non-constant conditional variance given the past observations. So, the analysis of

financial time series, requires the modelling of such variances, which may depend

on some time dependent factors or its own past values. This lead to introduction of

several classes of models to study the behaviour of financial time series. See Taylor

(1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe

the evolution of conditional variances is referred to as stochastic volatility models.

1
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The stochastic models available to analyse the conditional variances, are based on

either normal or log-normal distributions.

One of the objectives of the present study is to explore the possibility of employing

some non-Gaussian distributions to model the volatility sequences and then study

the behaviour of the resulting return series. This lead us to work on the related

problem of statistical inference, which is the main contribution of the thesis.

1.2 Introduction

Time series is a sequence of observations on any variable of interest. Time series

models are designed to capture various characteristics of time series data. These

models have been widely used in many disciplines in the science, humanities, engi-

neering etc. In particular, it has been found that time series models are very useful

in analysing economic and financial data. The reports in the daily news papers,

television and radio inform us for instance, of the latest stock market index values,

currency exchange rates, gold prices etc. The reports often highlight substantial

fluctuations in prices. It is often desirable to monitor price behaviour and try to

understand the probable development of the prices in the future. The sequence of

observations representing the prices or price indices are referred to as financial time

series.

There are two main objectives of investigating financial time series. First, it is im-

portant to understand how prices behave over a period of time. The variance of the

time series is particularly relevant to understand the presence of heteroscedasticity
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in the system. Tomorrow’s price is uncertain and it must therefore be described

by a suitable probability distribution. This means that statistical methods are the

natural way to investigate price behaviour. Usually one builds a model, which is

a detailed description of how successive prices are evolving. The second objective

is to use our knowledge of price behaviour to reduce risk or take better decisions.

Time series models may for instance be used for forecasting, option pricing and risk

management. This motivates more and more statisticians and econometricians to

devote themselves to the development of new (or refined) time series models and

methods.

Classical time series analysis, generally known as Box and Jenkins time series ap-

proach, deals with the modelling and analysis of finite variance linear time series

models (see Box et al. (1994) and Brockwell and Davis (1987)). This approach of

modelling time series heavily depends on the assumption that the series is a realiza-

tion from a Gaussian sequence and the value at a time point t is a linear function of

past observations. Box et al. (1994) proposed a four stage procedure for analysing

a time series which includes model identification, parameter estimation, diagnostic

checking and forecasting. The detailed discussion is given in Section 1.7.

In recent years a number of different models have been constructed for the generation

of non-Gaussian processes in discrete time. The need for such models arises from

the fact that many naturally occurring time series are clearly non-Gaussian. The

usual techniques of transforming the data to use a Gaussian model also fail in

certain situations (Lawrance (1991)). Hence, a number of non-Gaussian time series

models have been introduced by different researchers during the last few years (see

Gaver and Lewis (1980), Lawrance and Lewis (1985)). The study of non-Gaussian
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time series is motivated mainly by two aspects. First is that, it gets stationary

sequences having non-normal marginal random variables (rvs). Secondly, to study

the point processes generated by the sequences of non-negative dependent rvs. One

of the theoretical problems in non-Gaussian time series modelling is to identify the

innovation distribution for a specified stationary marginal. In most of the cases, we

cannot get a closed form expression for such distribution. For some other linear non-

Gaussian time series models, one may refer Adke and Balakrishna (1992), Sim (1990)

for gamma marginals, Balakrishna and Nampoothiri (2003) for Cauchy, Jayakumar

and Pillai (1993) for Mittag-Leffler, etc.

The modelling of non-negative rv plays a major role in the study of financial time se-

ries, where one has to model the evolution of conditional variances known as Stochas-

tic Volatility (see Tsay (2005)). The linear time series model for non-negative rvs

lead to complicated form of the innovation distribution, which in turn makes the

likelihood based inference intractable. As an alternative, McKenzie (1982) intro-

duced a class of models with product structure which generates a Markov sequence

of non-negative rvs. The contents of this thesis are on various aspects of mod-

elling and analysis of non-Gaussian and non-negative time series in view of their

applications in financial time series to model stochastic volatility.

1.3 Examples of Time series

Time series analysis deals with statistical methods for analysing and modelling an

ordered sequence of observations. This modelling results in a stochastic process
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model for the system which generated the data. The ordering of observations is

most often, but not always, through time, particularly in terms of equally spaced

time intervals. Time series occur in a variety of fields such as agriculture, business

and economics, engineering, medical studies etc. In this section, we describe some

examples of time series.

The first example is the daily exchange rate of Rupee to US dollar. The data

consists of 273 observations from 1, January 2013 to 30, September 2013. The time

series plot of the data is shown in Figure 1.1. It is obvious from the figure that the

data exhibit a clear positive trend. This is a typical economic time series where

time series analysis could be used to formulate a model for forecasting future values

of the exchange rate.

Figure 1.1: Time series plot of daily exchange rate of Rupee to US dollar for
the period January 2013 to September 2013
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Next, we consider the number of international passenger bookings per month on

an airline in the United States. The data were obtained from the Federal Aviation

Administration for the period 1949-1960 (Brown (1963)). The company used the

data to predict future demand before ordering new aircraft and training aircrew.

From the Figure 1.2, it is apparent that the number of passengers travelling on the

airline is increasing with time, with some seasonal effects.

Figure 1.2: Time series plot of international air passenger bookings per month
in the United States for the period 1949-1960

Other examples include (1) sales of a particular product in successive months, (2)

the maximum temperature at a particular location on successive days, (3) electricity

consumption in a particular area for successive one-hour periods, (4) daily closing

stock prices, (5) weekly interest rates, and (6) monthly price indices, etc.
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Time series analysis is done primarily for the purpose of making forecasts for future

and also for the purpose of evaluating past performances. For example, an economist

or a businessman is naturally interested in estimating the future figures of national

income, population, prices and wages etc. In fact the success or the failure of

an economist depends, to a large extent on the accuracy of his future forecasts.

Forecasting for future is done by analysing the past behaviour of the variable under

study. Thus, the future demand of a commodity or future profits of a concerned

can be forecasted only by analysing the demand of the commodity or the profits of

the concerned in the past years. Hence the analysis of time series assumes as great

importance in the study of all economic problems.

In the upcoming sections, we list some of the basic concepts which facilitate the

systematic development of the thesis.

1.4 Basic Concepts

1.4.1 Stochastic Processes

A stochastic processes is a family of time indexed random variables X(ω, t), where

ω belongs to a sample space and t belongs to an index set. For a given ω, X(ω, t),

as a function of t, is called a sample function or realization. The population that

consists of all possible realizations is called the ensemble in stochastic processes

and time series analysis. Thus, a time series is a realization or a sample function

from a certain discrete time stochastic process. With proper understanding that a

stochastic process, X(ω, t), is a set of time indexed random variables defined on
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a sample space, we usually suppress the variable ω and simply write X(ω, t) as

X( t) or Xt. Thus, we may call {Xt} as a stochastic process or a time series. The

mean function and variance function of the process are defined as µt = E(Xt) and

σ2
t = V (Xt) = E(Xt − µt)2.

1.4.2 Stationary Processes

A time series {Xt} is said to be strictly stationary if the joint distribution of

(Xt1 , Xt2 , ..., Xtn) is identical to that of (Xt1+k, Xt2+k, ..., Xtn+k) for all t and k,

where n is an arbitrary positive integer and (t1, t2, ..., tn) is a collection of n posi-

tive integers. In other words, strict stationarity requires that the joint distribution

of (Xt1 , Xt2 , ..., Xtn) is invariant under time shift. This is a very strong condition

that is hard to verify empirically. A weaker version of stationarity, which is often

easy to verify is described below.

A time series {Xt} is weakly stationary if Xt has constant mean, finite variance and

the covariance between Xt and Xt−k depends only on k, where k is an arbitrary

integer. From definitions, if {Xt} is strictly stationary and its first two moments

are finite, then it is also weakly stationary. The converse is not true in general.

1.4.3 Autocorrelation and Partial Autocorrelation Function

Let {Xt : t = 0, ±1, ±2, ...} be a stochastic process (time series), the covariance

between Xt and Xt−k is known as the autocovariance function at lag k and is defined
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by

γX(k) = Cov (Xt, Xt−k) = E(Xt − E(Xt))(Xt−k − E(Xt−k)).

Hence, the correlation coefficient between Xt and Xt−k, is called Autocorrelation

function (ACF) at lag k, is given by

ρX(k) = Corr (Xt, Xt−k) =
Cov(Xt, Xt−k)√
V (Xt)

√
V (Xt−k)

, (1.1)

where V (.) is the variance function of the process.

For a strictly stationary process, since the distribution function is same for all t, the

mean function E(Xt) = E(Xt−k) = µ is a constant, provided E|Xt| <∞. Likewise,

if E(X2
t ) <∞, then V (Xt) = V (Xt−k) = σ2 for all t and hence is also a constant.

The Partial Autocorrelation function (PACF) of a stationary process, {Xt}, denoted

φk , k for k = 1, 2, ..., is defined by

φ1, 1 = Corr(X1, X0) = ρ1

and

φk, k = Corr(Xk − X̂k, X0 − X̂0), k ≥ 2,

where X̂k = l1Xk−1+l2Xk−2+· · ·+lk−1X1 is the linear predictor. Both (Xk, X̂k) and

(X0, X̂0) are correlated with {X1, X2, ..., Xk−1}. By stationarity, the PACF, φk, k, is

the correlation betweenXt andXt−k obtained by fixing the effect ofXt−1, ..., Xt−(k−1).
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1.5 Linear Time Series Models

The classical set up of time series analysis asserts that the observed series is gen-

erated by a linear structure (Box-Jenkins method) and we call such time series as

linear time series. The models introduced for such studies include Autoregressive

(AR), Moving Average (MA), Autoregressive Moving Average (ARMA), Autore-

gressive Integrated Moving Average Models (ARIMA), etc.

1.5.1 Autoregressive Models

A stochastic model that can be extremely useful in the representation of certain

practically occurring series is the autoregressive model. In this model, the current

value of the process is expressed as a finite, linear aggregate of previous values of the

process and a shock ηt. Let us denote the values of a process at equally spaced time

t, t−1, t−2, ... by Xt, Xt−1, Xt−2, ..., then Xt can be described by the expression:

Xt = α1Xt−1 + α2Xt−2 + ...+ αpXt−p + ηt. (1.2)

Or equivalently,

α(B)Xt = ηt with α(B) = 1− α1B − α2B
2 − · · · − αpBp,

where B is the back shift operator, defined by BXt = Xt−1, {ηt} is a sequence of

uncorrelated random variables with mean zero and constant variance, termed as

innovations and α(B) is referred to as the characteristic polynomial associated with
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an AR(p) process. As Xt is a linear function of its own past p values, the process

{Xt} generated by (1.2) is referred to as an Autoregressive process of order (p)

(AR(p)). This is rather like a multiple linear regression model, but Xt is regressed

not on independent variables but on the past values of Xt; hence the prefix ‘auto’.

The resulting AR(p) process is weakly stationary if all the roots of the associated

characteristic polynomial equation α(B) = 0 lie outside the unit circle.

For a stationary AR(p) processes, the autocorrelation function, ρX(k), can be found

by solving a set of difference equations called the Yule-Walker equations given by

(1− α1B − α2B
2 − · · · − αpBp)ρX(k) = 0, k > 0.

The plot of ACF of a stationary AR(p) model would then show a mixture of damping

sine and cosine patterns and exponential decays depending on the nature of its

characteristic roots.

The autoregressive model of order 1 (AR(1)) is important as it has several useful

features. It is defined by

Xt = αXt−1 + ηt, (1.3)

where {ηt} is a white noise with mean 0 and variance σ2. The sequence {Xt}

is weakly stationary AR(1) process, when |α| < 1. Under stationarity, we have

E(Xt) = 0 , V (Xt) = σ2/(1− α2) and the autocorrelation function is given by

ρX(k) = αk, k = 0, 1, 2, ....
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This result says that the ACF of a weakly stationary AR(1) series decays expo-

nentially in k. If we assume that the innovation sequence {ηt} is independent and

identically distributed (iid), then the AR(1) sequence is Markovian.

1.5.2 Moving Average Models

Another type of model of great practical importance in the representation of ob-

served time-series is the finite moving average process. In this model, the observa-

tion at time t, Xt, is expressed as a linear function of the present and past shocks.

A moving average model of order q (MA(q)) is defined by

Xt = ηt − θ1 ηt−1 − θ2 ηt−2 − ...− θq ηt−q. (1.4)

Or, Xt = Θ(B)ηt, where Θ(B) = 1− θ1B − θ2B
2 − ...− θqBq, is the characteristic

polynomial associated with the MA(q) model, where θi’s are constants, {ηt} is a

white noise sequence.

The definition implies that

E(Xt) = 0;V (Xt) = σ2

q∑
i=1

θ2
i

and the ACF is,

ρX(k) =


−θk+θ1θk+1+...+θq−kθq

1+θ21+θ22+...++θ2q
, k = 1, 2, ..., q

0, k > q
. (1.5)
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Hence, for a MA(q) model, its ACF vanishes after lag q.

In particular a MA(1) model for {Xt} is defined by

Xt = ηt − θ ηt−1.

So, Xt is a linear function of the present and immediately preceding shocks. The

MA(q) process will always be stationary as it is a finite linear combination of shocks,

but it is invertible if |θ| < 1. The unconditional variance of a MA(1) process is given

by V (Xt) = (1 + θ2)σ2.

The ACF of the MA(1) process is

ρX(k) =

 −θ/(1 + θ2), k = 1

0, k = 2, 3, ...
.

1.5.3 Autoregressive Moving Average Models

A natural extension of the pure autoregressive and pure moving average processes

is the mixed autoregressive moving average (ARMA) process. An ARMA model

with p AR terms and q MA terms is called an ARMA(p, q) model. The advantage

of ARMA process relative to AR and MA processes is that it gives rise to a more

parsimonious model with relatively few unknown parameters.
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A mixed process of considerable practical importance is the first order autoregressive

first order moving average (ARMA(1, 1)) model,

Xt − αXt−1 = ηt − θ ηt−1. (1.6)

The process is stationary if |α| < 1 and invertible if |θ| < 1. The mean, variance

and the autocorrelation function of the ARMA(1, 1) model are respectively given

by

E(Xt) = 0, V ar(Xt) = γ0 = E(X2
t )

and

ρX(k) =


αθ2−θ α2+α−θ

1+θ2−2θ α
, if k = 1

α ρk−1, if k = 2, 3, ...
. (1.7)

Thus, the autocorrelation function decays exponentially from the starting value,

ρ(1), which depends on θ as well as on α.

A more general model that encompasses AR(p) and MA(q) model is the autoregres-

sive moving average, or ARMA(p, q), model

Xt − α1Xt−1 − α2Xt−2 − ...− αpXt−p = ηt − θ1 ηt−1 − θ2 ηt−2 − ...− θq ηt−q. (1.8)

The model is stationary if AR(p) component is stationary and invertible if MA(q)

component is so. One may refer Box et al. (1994) for detailed analysis of linear time

series models.
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1.6 Product Autoregressive Model

The role of linear autoregressive models is well known in time series analysis when

the variables take both positive and negative values. When the variables are non-

negative, the additive form is not so natural and a multiplicative autoregressive

form may be preferable. Let {Yt, t ≥ 0} be a random sequence of non-negative rvs

defined recursively by

Yt = Y α
t−1Vt, 0 < α < 1, t = 1, 2, ..., (1.9)

where {Vt} is a sequence of iid positive rvs. Further Y0 is independent of V1. The

model (1.9) initially introduced by McKenzie (1982) is referred to as the Product

Autoregressive model of order 1 (PAR(1)). McKenzie (1982) discusses the above

model mainly for gamma random variables. One specifies a marginal distribution

as the stationary distribution of the above sequence and investigates existence and

form of distribution of Vt. Such processes are clearly Markovian, if Vt is a sequence

of iid positive random variables.

The log-transform of (1.9) leads to

log Yt = α log Yt−1 + log Vt, 0 < α < 1, (1.10)

which is an AR(1) model in log Yt. In terms of the Moment Generating Function

(MGF), we may express (1.10) as

φlog V (s) = φlog Y (s)/φlog Y (αs), (1.11)



Chapter 1. Introduction 16

where φU(s) = E (exp (sU)), is the MGF of U . Thus the model (1.9) defines a

stationary sequence {Yt} if the right hand side of (1.11) is a proper MGF for every

α ∈ (0, 1). This happens if log Yt is a self-decomposable rv. In fact the MGF

of log Yt may be expressed as the Mellin Transform (MT), MY (s) of Yt, defined

by MY (s) = E(Y s
t ), s ≥ 0. Thus, we can use the Mellin transform to identify the

innovation distribution for PAR(1) models. The equation (1.11) now can be written

in terms of MT as

MV (s) = MY (s)/MY (αs). (1.12)

If Vt admits a density function fV (.), then the one step transition probability density

function of {Yt} can be expressed as

f(yt+1|yt) =
1

yαt
fV (yt+1/y

α
t ). (1.13)

Conditional on the past observations, the mean and variance of Yt in (1.9) depend

just on Yt−1, according to the formulae

E(Yt|Yt−1) = µV Y
α
t−1 ; V (Yt|Yt−1) = σ2

V Y
2α
t−1, (1.14)

where µV and σ2
V denote the mean and variance of Vt, respectively.

Instead of the usual linear expansion of the standard AR(1) model in terms of

past innovations, for the PAR(1) model there is a multiplicative expansion in past

innovations; for any chosen k, it takes the form

Yt =

(
k−1∏
i=0

V αi

t−i

)
Y αk

t−k. (1.15)
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Using this result, McKenzie (1982) gave the following ACF of PAR(1) sequence

{Yt}

ρY (k) = Corr(Yt, Yt−k) =
E(Yt)

{
E(Y αk+1

t−k )− E(Y αk

t−k)E(Yt−k)
}

E(Y αk
t−k)V (Yt)

. (1.16)

The ACF of the squared sequence, {Y 2
t }, is also important when we analyse the

non-linear time series models. For the PAR(1) model, such ACF is given by

ρY 2(k) = Corr(Y 2
t , Y

2
t−k) =

E(Y 2
t )
{
E(Y 2αk+2

t−k )− E(Y 2αk

t−k )E(Y 2
t−k)

}
E(Y 2αk

t−k )V (Y 2
t )

. (1.17)

The above ACFs depend only on the moments of stationary marginal distribution.

1.7 Box-Jenkins Modelling Techniques

This section highlights the Box-Jenkins methodology for model building and dis-

cusses its possible contribution to post-sample forecasting accuracy and therefore

its need and value. A three step procedure is used to build a time series model.

First, a tentative model is identified through analysis of historical data. Second, the

unknown parameters of the model are estimated. Third, through residual analysis,

diagnostic checks are performed to determine the adequacy of the model. We shall

now briefly discuss each of these steps.
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1.7.1 Model Identification

The primary tools for model identification are the plots of autocorrelation and the

partial autocorrelation. The sample autocorrelation plot and the sample partial

autocorrelation plot are compared to the theoretical behaviour of these plots when

the order is known. Autocorrelation function of an autoregressive process of order

p tail off and its partial autocorrelation function has a cut off after lag p. On the

other hand, the autocorrelation function of moving average process cuts off after

lag q, while its partial autocorrelation tails off after lag q. If both autocorrelation

and partial autocorrelation tail off, a mixed process is suggested. Furthermore, the

autocorrelation function for a mixed process, contains a pth order AR component

and qth order moving average component, and is a mixture of exponential and

damped sine waves after the first q − p lags. The partial autocorrelation function

for a mixed process is dominated by a mixture of exponential and damped sine

waves after the first q − p lags.

1.7.2 Parameter Estimation

Estimating the model parameters is an important aspect of time series analysis.

There are several methods available in the literature for estimating the parameters,

(see Box et al. (1994)). All of them produce very similar estimates, but may be

more or less efficient for any given model. The main approaches to fitting Box-

Jenkins models are non-linear least squares and maximum likelihood estimation.

The Least Squares Estimator (LSE) of the parameter is obtained by minimizing
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the sum of the squared residuals. For pure AR models, the LSE leads to the lin-

ear Ordinary Least Squares (OLS) estimator. If moving average components are

present, the LSE becomes non-linear and has to be solved by numerical methods.

The Maximum Likelihood Estimator (MLE) maximizes the (exact or approximate)

log-likelihood function associated with the specified model. To do so, explicit dis-

tributional assumption for the innovations has to be made. Other methods for

estimating model parameters are the Method of Moments (MM) and the General-

ized Method of Moments (GMM), which are easy to compute but not very efficient.

1.7.3 Diagnosis Methods

After estimating the parameters one has to test the model adequacy by checking

the validity of the assumptions imposed on the errors. This is the stage of diagno-

sis check. Model diagnostic checking involves techniques like over fitting, residual

plots, and more importantly, checking that the residuals are approximately uncor-

related. This makes good modelling sense, since in the time series analysis a good

model should be able to describe the dependence structure of the data adequately,

and one important measurement of dependence is via the autocorrelation function.

In other words, a good time series model should be able to produce residuals that

are approximately uncorrelated, that is, residuals that are approximately white

noise. Note that as in the classical regression case complete independence among

the residuals is impossible because of the estimation process. However, the auto-

correlations of the residuals should be close to being uncorrelated after taking into

account the effect of estimation. As shown in the seminal paper by Box and Pierce
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(1970), the asymptotic distribution of the residual autocorrelations plays a central

role in checking out this feature. From the asymptotic distribution of the residual

autocorrelations we can also derive tests for the individual residual autocorrelations

and overall tests for an entire group of residual autocorrelations assuming that the

model is adequate. These overall tests are often called portmanteau tests, reflecting

perhaps that they are in the tradition of the classical Chi-square tests of Pearson.

Nevertheless, portmanteau tests remain useful as an overall benchmark assuming

the same kind of role as the classical Chi-square tests. Portmanteau tests and the

residual autocorrelations are easy to compute and the rationale of using them is

easy to understand. These considerations enhance their usefulness in applications.

Model diagnostic checking are often used together with model selection criteria such

as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion

(BIC). These two approaches actually complement each other. Model diagnostic

checks can often suggest directions to improve the existing model while information

criteria can be used in a more or less “automatic” way within the same family of

models. Through the exposition on diagnostic checking methods, it is hoped that

the practitioner should be able to grasp the relative merits of these models and how

these different models can be estimated.

1.7.4 Forecasting

One of the objectives of analysing time series is to forecast its future behaviour.

That is, based on the observation up to time t, we should be able to predict the

value of the variable at a future time point. The method of Minimum Mean Square
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Error (MMSE) forecasting is widely used when the time series follows a linear model.

To derive the minimum mean square error forecasts, we first consider the stationary

ARMA model,

Xt − α1Xt−1 − α2Xt−2 − ...− αpXt−p = ηt − θ1 ηt−1 − θ2 ηt−2 − ...− θq ηt−q,

or, α(B)Xt = Θ(B) ηt.

We can rewrite it in a moving average representation,

Xt =
Θ(B)

α(B)
ηt = ψ(B) ηt =

∞∑
j=0

ψj B
j ηt = ηt + ψ1ηt−1 + ψ2ηt−2 + · · · (1.18)

with ψ0 = 1.

For t = n+ l, we have

Xn+l =
∞∑
j=0

ψj ηn+l−j. (1.19)

Suppose, at time t = n, we have the observations Xn, Xn−1, Xn−2, . . . and wish

to forecast l-step ahead value, Xn+l, as a linear combination of the observations

Xn, Xn−1, . . .. Since Xt for t = n, n− 1, n− 2, . . . can all be written in the form of

(1.18), we can let the minimum mean square error forecast X̂n(l) of Xn+l be

X̂n(l) = ψ∗
l
ηn + ψ∗l+1ηn−1 + ψ∗l+2ηn−2 + · · · ,

where the ψ∗j are to be determined. The mean square error of the forecast is

E(Xn+l − X̂n(l))2 = σ2

l−1∑
j=0

ψ2
j + σ2

∞∑
j=0

(
ψl+j − ψ∗l+j

)2
,
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which is seen to be minimized when ψ∗l+j = ψl+j. Hence,

X̂n(l) = ψlηn + ψl+1ηn−1 + ψl+2ηn−2 + · · · .

But using (1.19) and the fact that

E(ηn+j|Xn, Xn−1, . . .) =

 0, j > 0,

ηn+j, j ≤ 0,

we have E(Xn+l|Xn, Xn−1, . . .) = ψlηn + ψl+1ηn−1 + ψl+2ηn−2 + · · · .

Thus, the minimum mean square error forecast of Xn+l is given by its conditional

expectation. That is,

X̂n(l) = E(Xn+l|Xn, Xn−1, . . .).

X̂n(l) is usually read as the l-step ahead of the forecast of Xn+l at the forecast origin

n.

The forecast error is

en(l) = Xn+l − X̂n(l).

In the present study of financial time series, our goal is to forecast the volatility and

we have to deal with non-linear models. Hence different approaches are adopted for

different models and we will describe them as and when we need such methods.
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1.8 Outline of the Thesis

The linear time series models available in the literature are not suitable to model the

financial time series. So, new classes of models are introduced to deal with financial

time series. Chapter 2 mainly discusses the characteristic of the financial time

series. The models for financial time series may be broadly classified as observation

driven and parameter driven models. In observation driven models, the conditional

variance is assumed to be a function of the past observations, which introduces

the heteroscedasticity in the model. The famous models such as Autoregressive

Conditional Heteroscedastic (ARCH) model of Engle (1982) and Generalized ARCH

model of Bollerslev (1986) are examples of these. While in the case of parameter

driven models, the conditional variances are generated by some latent processes.

The Stochastic Volatility (SV) model of Taylor (1986) is the example of parameter

driven model. We summarize the properties of these models in Chapter 2. One of

our objectives in this study is to identify some non-Gaussian time series models and

study their suitability for modelling stochastic volatility.

We introduce a Gumbel Extreme Value Autoregressive (GEVAR) sequence {Xt} in

Chapter 3, with an idea to develop SV models induced by non-Gaussian volatility

sequences. This Extreme value AR(1) model can be used to model the extreme

events which includes the daily maximum/minimum of prices of assets, extreme

floods and snowfalls, high wind speeds, extreme temperatures, large fluctuations

in exchange rates, and market crashes. We have studied the second order proper-

ties and inference problems for this model. As the innovation distribution of the

model does not admit a closed form expression, the problem of estimation becomes
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complicated. We proposed the method of Conditional Least Squares (CLS), Quasi

Maximum Likelihood (QML) and Maximum Likelihood (ML) for estimating the

model parameters. A comparison study is made with respect to their efficiencies.

Simulation studies are carried out to assess the performance of these methods. To

illustrate the application of the proposed model, we have analysed two sets of data

consisting of daily maximum of Bombay Stock Exchange (BSE) index and Standard

and Poor 500 (S&P 500) index.

In Chapter 4, we study the details of the Product Autoregressive model of order

one (PAR(1)) introduced by McKenzie (1982) to generate a non-negative Markov

sequence. We developed the PAR(1) model for Weibull distribution and studied

its statistical properties. As the innovation random variable does not admit closed

form density, we use an approximation method to estimate the model parameters.

Maximum Likelihood Estimators of the model parameters are obtained and their

asymptotic properties are established.

We have considered the statistical analysis of Gumbel Extreme Value Stochastic

Volatility (GEV-SV) model in Chapter 5. The volatility sequence are generated by

GEVAR model, discussed in Chapter 3. The likelihood based inference of SV model

is quite complicated because of the fact that the likelihood function involves the

unobservable Markov dependent latent variables. Also, the innovation distribution

of GEVAR model does not have a closed form and hence the other methods of

estimation such as Bayesian estimation, Efficient importance sampling may not be

appropriate. Thus, we employed the method of moments for parameter estimation.
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Using the structure of the PAR(1) models we have constructed an absolutely con-

tinuous bivariate exponential distribution in Chapter 6. This bivariate distribution

can be used for modelling two-dimensional renewal processes and queuing processes

when arrival and service times are dependent. The basic properties of this model

and problem of estimating its parameters are discussed. Some data sets are analysed

to illustrate the applications of this model.





Chapter 2

Models for Financial Time Series

2.1 Introduction

Financial time series analysis is concerned with the theory and practice of asset val-

uation over time. One of the objectives of analysing financial time series is to model

the volatility and forecast its future values. The volatility is measured in terms of

the conditional variance of the random variables involved. Although volatility is

not directly observable, it has some characteristics that are commonly seen in asset

returns. First, there exist volatility clusters. Second, volatility evolves over time in

a continuous manner - that is, volatility jumps are rare. Third, volatility does not

diverge to infinity - that is, volatility varies within some fixed range. Statistically

speaking, this means that volatility sequence is often stationary. Fourth, volatility

seems to react differently to a big price increase or a big price drop, referred to

27
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as the leverage effect. These properties play important role in the development of

models for volatility.

The conditional variances in the case of financial time series are not constants. They

may be functions of some known or unknown factors. This leads to the introduction

of conditional heteroscedastic models for analysing financial time series. In financial

markets, the data on price Pt of an asset at time t is available at different time points.

However, in financial studies, the experts suggest that the series of returns be used

for analysis instead of the actual price series, see Tsay (2005). For a given series of

prices {Pt}, the corresponding series of returns is defined by

Rt =
Pt − Pt−1

Pt−1

=
Pt
Pt−1

− 1, t = 1, 2, . . . .

The advantages of using the return series are, (1) for an investor, the return series is

a scale free summary of the investment opportunity, (2) the return series are easier

to handle than the price series because of their attractive statistical properties.

Further consideration of the properties, suggested that, the log-return series defined

by rt = log (Pt/Pt−1) is more suitable for analysing the stochastic nature of the

market behaviour. Hence, we focus our attention on the modelling and analysis

of the log-return series in this thesis and {rt = log (Pt/Pt−1) , t = 1, 2, ...} is the

financial time series of our interest.

Empirical studies on financial time series (See Mandelbrot (1963), Fama (1965) and

Straumann (2005)) show that the series {rt} defined above is characterized by the

properties such as
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(i) Absence of autocorrelation in {rt}.

(ii) Significant serial correlation in {r2
t }.

(iii) The marginal distribution of {rt} is symmetric and heavy-tailed.

(iv) Conditional variance of rt given the past is not constant.

The models described in the previous chapter are often very useful in modelling time

series in general. However, they have the assumption of constant error variance. As

a result, the conditional variance of the observation at any time given the past will

remain a constant, a situation referred to as homoscedasticity. This is considered to

be unrealistic in many areas of economics and finance as the conditional variances

are non-constants. Therefore, Autoregressive Conditional Heteroscedastic (ARCH)

model, Generalized ARCH (GARCH) model and Stochastic Volatility (SV) model

which allow conditional variance to vary over time have been proposed, in particular

to model financial market variables.

The chapter is split in to six sections. In the second section, we discuss the ARCH

model and its properties. We surveyed the estimation procedure, model checking

and volatility forecasting in the section. Generalized ARCH models are defined in

Section 2.3. Section 2.4 introduces the mathematical representation of SV model.

State-space approach for SV model are given in Section 2.5.
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2.2 Autoregressive Conditional Heteroscedastic

(ARCH) Model

The ARCH model introduced by Engle (1982) was a first attempt in econometrics

to capture volatility clustering in time series data. In particular, Engle (1982) used

conditional variance to characterize volatility and postulate a dynamic model for

conditional variance. We will discuss the properties and some generalizations of the

ARCH model in subsequent sections; for a comprehensive review of this class of

models we refer to Bollerslev et al. (1992). ARCH models have been widely used

in financial time series analysis and particularly in analysing the risk of holding an

asset, evaluating the price of an option, forecasting time-varying confidence intervals

and obtaining more efficient estimators under the existence of heteroscedasticity.

Specifically, an ARCH(p) model assumes that

rt =
√
htεt , ht = α0 +

p∑
i=1

αi r
2
t−i, (2.1)

where {εt} is a sequence of independent and identically distributed symmetric ran-

dom variables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0. If

{εt} has standardized Gaussian distribution, rt is conditionally normal with mean

0 and variance ht. The Gaussian assumption of εt is not critical. We can relax it

and allow for more heavy-tailed distributions, such as the Student’s t -distribution,

as is typically required in finance. Now we describe the properties of a first order

ARCH model in detail.
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2.2.1 ARCH(1) model and Properties

The structure of the ARCH model implies that the conditional variance ht of rt,

evolves according to the most recent realizations of r2
t analogous to an AR(1) model.

Large past squared shocks, {r2
t−i}

p
i=1, imply a large conditional variance, ht, for rt.

As a consequence, rt tends to assume a large value which in turn implies that a

large shock tends to be followed by another large shock. To understand the ARCH

models, let us now take a closer look at the ARCH(1) model,

rt =
√
ht εt , ht = α0 + α1 r

2
t−1, (2.2)

where α0 > 0 and α1 ≥ 0.

1. The unconditional mean of rt is zero, since

E (rt) = E (E (rt|rt−1)) = E
(√

htE (εt)
)

= 0.

2. The conditional variance of rt is

E
(
r2
t |rt−1

)
= E

(
htε

2
t |rt−1

)
= htE

(
ε2
t |rt−1

)
= ht = α0 + α1 r

2
t−1.

3. The unconditional variance of rt is

V (rt) = E
(
r2
t

)
= E

(
E
(
r2
t |rt−1

))
= E

(
α0 + α1r

2
t−1

)
= α0 + α1E

(
r2
t−1

)
.
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This implies that V (rt) = α0/(1−α1), 0 ≤ α1 < 1, because rt is a stationary

process with E(rt) = 0, and V (rt) = V (rt−1) = E(r2
t−1).

4. Assuming that the fourth moment of rt is finite, the kurtosis, Kr of rt, is given

by

Kr =
E (r4

t )

E (r2
t )

2 = 3
1− α2

1

1− 3α2
1

> 3, provided α2 < 1/3.

The ARCH model with a conditionally normally distributed rt leads to heavy

tails in the unconditional distribution. In other words, the excess kurtosis of

rt is positive and the tail distribution of rt is heavier than that of the normal

distribution.

5. The autocovariance of rt is defined by

Cov (rt, rt−k) = E (rt rt−k)− E (rt)E (rt−k)

= E (rt rt−k)

= E
(√

ht
√
ht−k

)
E (εtεt−k) = 0.

Thus, the ACF of rt is zero. The ACF of {r2
t } becomes ρr2t (k) = αk1, and

notice that ρr2t (k) ≥ 0 for all k, a result which is common to all linear ARCH

models.

Thus, the ARCH(1) process has a mean of zero, a constant unconditional variance,

and a time-varying conditional variance. The {rt} is a stationary process when

0 ≤ α1 < 1 is satisfied, since the variance of rt must be positive. These prop-

erties continue to hold for general ARCH models, but the formulae become more

complicated for higher order ARCH models.
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2.2.2 Estimation

The most commonly used estimation procedure for ARCH models has been the

maximum likelihood approach. When the errors are normally distributed, the like-

lihood function of an ARCH(p) model is

f(r1, r2, ..., rT |α) =
T∏

t=p+1

1√
2π ht

exp

(
− r2

t

2ht

)
f(r1, r2, ..., rp|α), (2.3)

where α = (α0, α1, ..., αp)
′ and f(r1, r2, ..., rp|α) is the joint probability density func-

tion of r1, r2, ..., rp. Since the exact form of f(r1, r2, ..., rp|α) is complicated, it is

commonly dropped from the prior likelihood function, especially when the sample

size is sufficiently large. This results in using the conditional likelihood function

f(rp+1, rp+2, ..., rT |α, r1, r2, ..., rp) =
T∏

t=p+1

1√
2π ht

exp

(
− r2

t

2ht

)
. (2.4)

Maximizing the conditional likelihood function is equivalent to maximizing its log-

arithm, which is easier to handle. The conditional log-likelihood function is

l(rp+1, rp+2, ..., rT |α, r1, r2, ..., rp) =
T∑

t=p+1

(
−1

2
ln (2π)− 1

2
ln (ht)−

r2
t

2ht

)
. (2.5)

A variety of alternative estimation methods can also be considered. Least squares

and Quasi Maximum Likelihood (QML) estimations in ARCH models were consid-

ered in the seminal paper by Engle (1982). The Least Squares Estimator (LSE)

for ARCH(p) models is simple to compute but requires existence of higher order

moments. An important issue is the possible efficiency loss of the QMLE, resulting
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from the use of an inappropriate Gaussian error distribution.

2.2.3 Model Checking

For a properly specified ARCH model, the standardized residuals

ε̃t =
rt√
ht
, t = 1, 2, . . . ,

form a sequence of iid random variables. Therefore, one can check the adequacy

of a fitted ARCH model by examining the series {ε̃t}. In particular, the Ljung-

Box statistics of ε̃t can be used to check the adequacy of the mean equation and

that of ε̃2
t can be used to test the validity of the volatility equation. The skewness,

kurtosis, and QQ-plot of {ε̃t} can be used to check the validity of the distribution

assumption.

2.2.4 Forecasting

An important use of ARCH models is the evaluation of the accuracy of volatil-

ity forecasts. In standard time series methodology which uses conditionally ho-

moscedastic ARMA processes, the variance of the forecast error does not depend

on the current information set. If the series being forecasted displays ARCH effect,

the current information set can indicate the accuracy by which the series can be

forecasted. Engle and Kraft (1983) were the first to consider the effect of ARCH

on forecasting. As the conditional variance is a linear function of the squares of the
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past observations, one can use the Minimum Mean Square Error (MMSE) method

for forecasting the volatility as in the case of classical AR models.

Using the MMSE method, the 1-step-ahead forecast of hn+1 at the forecast origin

n, for the ARCH(p) model is,

hn(1) = α0 + α1 r
2
n + · · ·+ αp r

2
n+1−p.

The 2-step-ahead forecast is

hn(2) = α0 + α1 hn(1) + α2 r
2
n + · · ·+ αp r

2
n+2−p,

and the l-step-ahead forecast for hn+l is

hn(l) = α0 +

p∑
i=1

αi hn(l − i),

where hn(l − i) = r2
n+l−i if l − i ≤ 0.

Despite the extensive literature on ARCH and related models, relatively little at-

tention is being given to the issue of forecasting in models where time-dependent

conditional heteroscedasticity is present. Bollerslev (1986), Diebold (1988), Granger

et al. (1989) all discuss the construction of one-step-ahead prediction error inter-

vals with time-varying variances. Engle and Kraft (1983) derive expressions for

the multi-step prediction error variance in ARMA models with ARCH errors, but

do not further discuss the characteristics of the prediction error distribution. The

prediction error distribution is also analysed in Geweke (1989) within a Bayesian
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framework using extensive simulation methods. In the next section, we will focus

on the generalization of the observation driven models.

2.3 Generalized ARCH Models

The GARCH model is an extension of Engle’s work by Bollerslev (1986) that al-

lows the conditional variance to depend on the previous conditional variance and

the squares of previous returns. The possibility that estimated parameters in

ARCH model do not satisfy the stationarity condition, increases with lag. The

GARCH(p,q) is defined by

rt =
√
htεt , ht = α0 +

p∑
i=1

αi r
2
t−i +

q∑
j=1

βjht−j, (2.6)

where {εt} is a sequence of iid symmetric random variables with mean 0 and variance

1, α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(p,q)

i=1 (αi + βi) < 1. The constraint on αi +

βi implies that the unconditional variance of rt is finite, whereas its conditional

variance ht evolves over time.

2.3.1 GARCH(1,1) model and properties

Let us now consider the simple GARCH(1,1) model, which is the most popular for

modelling asset return volatility. We represent this model as

rt =
√
htεt , ht = α0 + α1 r

2
t−1 + β1ht−1, (2.7)
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where εt ∼ N (0, 1) and 0 ≤ α1, β1 ≤ 1, α1 + β1 < 1.

1. The unconditional mean of rt is zero, since

E (rt) = E (E (rt|rt−1)) = E
(√

htE (εt)
)

= 0.

2. The conditional variance of rt is

E
(
r2
t |rt−1

)
= E

(
htε

2
t |rt−1

)
= htE

(
ε2
t |rt−1

)
= ht = α0 + α1 r

2
t−1 + β1ht−1.

3. The unconditional variance of rt is

V (rt) = E
(
r2
t

)
= E

(
E
(
r2
t |rt−1

))
= E

(
α0 + α1 r

2
t−1 + β1ht−1

)
= α0 + α1E

(
r2
t−1

)
+ β1E (ht−1) .

This implies that V (rt) = α0/1− (α1 + β1).

4. The kurtosis of rt, Kr, is given by

Kr =
3
[
1− (α1 + β1)2]

1− 2α2
1 − (α1 + β1)2 > 3, if 1− 2α2

1 − (α1 + β1)2 > 0.

Consequently, similar to ARCH models, the tail distribution of GARCH(1,1)

process is heavier than that of a normal distribution if 1−2α2
1−(α1 +β1)2 > 0.



Chapter 2. Models for Financial Time Series 38

5. The ACF of {rt} is zero and the ACF of {r2
t } is given by

ρr2t (k) = (α1 + β1)k−1 α1 (1− α1β1 − β2
1)

1− 2α1β1 − β2
1

.

2.3.2 Forecasting

Forecasts of a GARCH model can be obtained using methods similar to those of

an ARMA model. Consider the GARCH(1,1) model in (2.7) and assume that the

forecast origin is n. For 1-step ahead forecast, we have

hn+1 = α0 + α1r
2
n + β1hn,

where rn and hn are known at the time index n. Therefore, the 1-step ahead forecast

is

hn(1) = α0 + α1r
2
n + β1hn.

For multi-step ahead forecasts, we use r2
t = htε

2
t and rewrite the volatility equation

in (2.7) as

ht+1 = α0 + (α1 + β1)ht + α1ht(ε
2
t − 1).

When t = n+ 1, the equation becomes

hn+2 = α0 + (α1 + β1)hn+1 + α1hn+1(ε2
n+1 − 1).
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Since E(ε2
n+1−1|rt−1) = 0, the 2-step ahead volatility forecast at the forecast origin

n satisfies the equation

hn(2) = α0 + (α1 + β1)hn(1).

In general, we have

hn(l) = α0 + (α1 + β1)hn(l − 1), l > 1.

The multi-step ahead volatility forecasts of a GARCH(1, 1) model converge to the

unconditional variance of rt as the forecast horizon increases to infinity provided

that V (rt) exists, for details see Tsay (2005).

2.4 Stochastic Volatility Models

This is a class of parameter driven models, where the volatility is assumed to follow

some latent stochastic process, such as an autoregressive model. An appealing

feature of the SV model is its close relationship to financial economic theories. The

univariate SV model proposed by Taylor (1986) is given by,

rt = εt exp (ht/2) , ht = α + βht−1 + ηt, (2.8)

where εt and ηt are two independent Gaussian white noises, with variances 1 and

σ2
η, respectively. Adding the innovation ηt substantially increases the flexibility

of the model in describing the evolution of ht, but it also increase the difficulty in
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parameter estimation. Due to the Gaussianity of ηt, this model is called a log-normal

SV model. Its major properties are discussed in Taylor (1986), Taylor (1994).

As ηt is Gaussian, {ht} is a standard Gaussian autoregressive process. It will be

(strictly and covariance) stationary if |β| < 1 with:

µh = E (ht) =
α

1− β
; σ2

h = V (ht) =
σ2
η

1− β2
.

As {εt} is always stationary, {rt} will be stationary if and only if {ht} is stationary,

rt being the product of two stationary process. Using the property of log-normal

distribution, all the even moments of rt exist if ht is stationary and in particular

the kurtosis is

Kr =
E (r4

t )

E (r2
t )

2 = 3 exp
(
σ2
h

)
≥ 3,

which shows that the SV model has fatter tails than the corresponding normal

distribution. The dynamic properties of rt are easy to find. First, as {εt} is iid,

{rt} is a martingale difference and is a white noise if |β| < 1. As ht is a Gaussian

AR(1),

Cov
(
r2
t , r

2
t−k
)

= E
(
r2
t r

2
t−k
)
− E

(
r2
t

)
E
(
r2
t−k
)

= E (exp (ht + ht−k))− (E (exp (ht)))
2

= exp
(
2µh + σ2

h

) (
exp

(
σ2
hβ

k
)
− 1
)

and so

ρr2t (k) =
Cov

(
r2
t , r

2
t−k
)

V (r2
t )

=
exp

(
σ2
hβ

k
)
− 1

3 exp (σ2
h)− 1

' exp (σ2
h)− 1

3 exp (σ2
h)− 1

βk.
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Note that, if β < 0, ρr2t (k) can be negative, unlike ARCH models. This resembles the

autocorrelation function of an ARMA(1,1) process. Thus, the SV model behaves in

a manner similar to the GARCH(1,1) model. Finally, note that there is no need for

non-negativity constraints or for bounded kurtosis constraints on the coefficients.

This is a great advantage with respect to GARCH models. A review of the properties

of SV model may be found in Taylor (1994) and Tsay (2005).

Despite theoretical advantages, the SV models have not been popular as the ARCH

models in practical applications. The main reason is that the likelihood function for

the SV models is not easy to evaluate unlike for the ARCH models. The likelihood

function of the parameters θ = (α, β, σ2
η) based on (r1, r2, ..., rT ) may be written as

L(θ) =

∫
h

Pθ(r|h)Pθ(h)dh

=

∫
hT

∫
hT−1

...

∫
h1

T∏
t=1

Pθ(rt|ht)Pθ(ht|ht−1)dh1...dhT .

The multiple integral L(θ) cannot be factored in to a product of T one-dimensional

integrals because of the dependence of ht on the past. Exact evaluation of the likeli-

hood is possible through Kalman filter only for the case in which both Pθ(rt|ht) and

Pθ(ht|ht−1) are Gaussian. But Gaussian distributions poorly represent volatilities,

because they are defined over the complete real line where as the volatility distri-

bution is thought to be highly skewed on the right. In the SV model, the positivity

constraint on ht makes distributions such as log-normal suitable for Pθ(ht|ht−1).

Due to the difficulties in obtaining explicit forms of MLE for a SV model, several

numerical methods are proposed by several authors. Markov Chain Monte Carlo
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(MCMC) procedures (see Jacquier et al. (1994) and Kim et al. (1998)) is a commonly

used method for numerical estimation. A variety of other estimation procedures has

also been proposed, including, the Generalized Method of Moments (GMM) used

by Melino and Turnbull (1990), the Quasi Maximum Likelihood (QML) approach

followed by Harvey et al. (1994) and Ruiz (1994) and the Efficient Method of Mo-

ments (EMM) applied by Gallant et al. (1997). For a survey of these estimation

procedures, one can refer Ghysels et al. (1996) and Broto and Ruiz (2004).

2.5 State-Space Approach and Kalman Filter

The state-space model provides a flexible approach to time series analysis. A wide

range of all linear and many non-linear time series models can be handled, includ-

ing regression models with changing coefficients, autoregressive integrated moving

average (ARIMA) models and unobserved component models. A state-space model

consists of a state equation and an observation equation. While the state equation

formulates the dynamics of the state variables, the observation equation relates the

observed variables to the unobserved state vector. The state variable and the pa-

rameters have to be estimated from the data. Maximum likelihood estimates of

the parameters can be obtained by applying the Kalman filter. It is a recursive

algorithm that computes estimates for the unobserved components at time t, based

on the available information at the same time. Many dynamic time series models

in economics and finance can be represented in state-space form.
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Once a model is put into state-space form, the Kalman filter can be employed to

update knowledge of the state variable recursively when a new data point becomes

available. Here, we briefly discuss the derivation of Kalman filter and smoothing

algorithms using local trend model. The Kalman filter method assumes that the

distributions of underlying rvs are normal.

Consider the univariate time series wt satisfying

wt = µt + et; µt = µt−1 + at−1, (2.9)

where {et} and {at} are two independent Gaussian sequences with mean 0 and

variances σ2
e , and σ2

a respectively.

Let Ft = {w1, w2, . . . , wT} be the information available at time t. The conditional

mean and variance of µt given Fj is respectively given by µt|j = E(µt|Fj) and Ωt|j =

V (µt|Fj). Similarly, wt|j denotes the conditional mean of wt given Fj. Furthermore,

let υt = wt − wt|t−1 and ft = V (υt|Ft−1) be the 1-step ahead forecast error and the

variance of wt given Ft−1, respectively. Note that the forecast error υt is independent

of Ft−1 so that the conditional variance is same as the unconditional variance; that

is, V (υt|Ft−1) = V (υt). From (2.9),

wt|t−1 = E(wt|Ft−1) = E (µt + et|Ft−1) = E (µt|Ft−1) = µt|t−1.

Consequently,

υt = wt − wt|t−1 = wt − µt|t−1
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and

ft = V (υt|Ft−1) = V (wt − µt|t−1|Ft−1) = V (µt + et − µt|t−1|Ft−1)

= V (µt − µt|t−1|Ft−1) + V (et|Ft−1) = Ωt|t−1 + σ2
e .

To derive the Kalman filter, it suffices to consider the joint conditional distribution

of (µt, υt)
′ given Ft−1. The conditional distribution of υt given Ft−1 is normal with

mean zero and variance ft and that of µt given Ft−1 is normal with mean µt|t−1 and

variance Ωt|t−1. Furthermore, the joint distribution of (µt, υt)
′ given Ft−1 is also

normal. From the definition, we have Cov(µt, υt|Ft−1) = Ωt|t−1. Now, we state a

theorem in multivariate normal distribution, whose proof may be found in Anderson

(1954).

Theorem 2.1. Let the components of X be divided into two groups composing the

sub-vectors X(1) and X(2). Suppose that the mean of X, µ is similarly divided into

µ(1) and µ(2), and the covariance matrix Ω of X is divided into Ω11, the covariance

matrix of X(1), Ω12, the covariance matrix of X(1) and X(2), and Ω22, the covariance

matrix of X(2). Then if the distribution of X is normal, the conditional distribu-

tion of X(1) given X(2) = x(2) is normal with mean µ(1) + Ω12Ω−1
22 (x(2) − µ(2)) and

covariance matrix Ω11 − Ω12Ω−1
22 Ω21.

Using this theorem for the above state-space model, it follows that the conditional

distribution of µt given Ft is normal with mean and variance

µt|t = µt|t−1 + Ωt|t−1υt/ft = µt|t−1 +Ktυt,
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and

Ωt|t = Ωt|t−1 − Ω2
t|t−1/ft = Ωt|t−1(1−Kt),

where Kt = Ωt|t−1/ft is commonly referred to as the Kalman gain.

Next, one can make use of the knowledge of µt given Ft to predict µt+1. We have

µt+1|t = E(µt + at|Ft) = E(µt|Ft) = µt|t,

Ωt+1|t = V (µt+1|Ft) = V (µt|Ft) + V (at) = Ωt|t + σ2
a.

Once the new data wt+1 is observed, one can repeat the above procedure to update

the knowledge on µt+1. This is the famous Kalman filter algorithm proposed by

Kalman (1960). We use this procedure for estimating unobservable volatility in

Chapter 5.





Chapter 3

Gumbel Extreme Value

Autoregressive Model

3.1 Introduction

The problem of modelling extreme events arises in many areas where such events

can have serious consequences on the event generating system. Some examples of

such events include extreme floods and snowfalls, high wind speeds, extreme tem-

peratures, large fluctuations in exchange rates, and market crashes. To develop

appropriate probabilistic models and assess the risks caused by these events, busi-

ness analysts and engineers frequently use the extreme value distributions. Extreme

value distributions are generally considered to comprise the following three families,

(see Johnson et al. (1994)),

47
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Type 1:

F (x) = exp

(
− exp

(
−x− µ

σ

))
, x ∈ R (3.1a)

Type 2:

F (x) =

 0, x < µ,

exp
(
−
(
x−µ
σ

)−k)
, x ≥ µ

(3.1b)

Type 3:

F (x) =

 exp
(
−
(
µ−x
σ

)k)
, x ≤ µ

1, x > µ
(3.1c)

where µ, σ(> 0) and k(> 0) are parameters. The Type 1 distribution is referred to

as the Gumbel-type distribution; the Type 2 distribution is called as the Fréchet-

type distribution; and the Type 3 distribution as the Weibull-type distribution. The

Type 2 and Type 3 distributions are closely related to the Type 1 distribution by

the simple transformations

W = log(X − µ), W = − log(µ−X),

respectively. Type 1 is sometimes called the log-Weibull distribution. Extreme value

distributions were obtained as limiting distributions of greatest (or least) values in

random samples of increasing size.

Among these distributions, Gumbel distribution played an important role in analysing
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the extreme value data. The Type 1 (Gumbel) distribution is obtained as the

limiting distribution of Mn = max(X1, X2, ..., Xn) after properly centralizing and

normalizing, where X1, X2, . . . , Xn are independent and identically distributed (iid)

rvs. In this chapter, we develop a first order autoregressive (AR(1)) process with

Type 1 distribution as the stationary marginal distribution.

Corresponding distribution for the minimum can be obtained using the relation,

mn = min(X1, X2, ..., Xn) = −max(−X1, −X2, ...,−Xn).

Thus, the cumulative limiting distribution function corresponding to the minimum

(or least) values is given by

P (X ≤ x) = 1− exp

(
− exp

(
x− µ
σ

))
.

As far as the properties of the distribution are concerned, there is no much difference

between Gumbel minimum and Gumbel maximum distribution. We employ Gumbel

minimum distribution for modelling volatility in Chapter 5.

In the classical method of analysis, it is customary to assume that the variables

generating events are statistically independent. However, such assumptions hold

rarely in practice and the more practical study requires the method to deal with

sequences of dependent random variables. Statistical analysis of time series is an

appropriate area where one can deal with such problems. In the classical set up, the

time series analysis assumes that the observed series is a realization of a Gaussian
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time series generated by a linear model. But in situations where extreme events are

expected as stated above, the normal time series is not a suitable choice.

Hughes et al. (2007) studied the time series modelling of monthly extreme tem-

peratures in the Antarctic Peninsula using generalized extreme value innovations.

However, there was no discussion on the explicit form of the stationary marginal dis-

tribution of the time series. Toulemonde et al. (2010) applied autoregressive models

with stationary marginal Gumbel Extreme Value (GEV) distribution to model the

maximum of certain environmental variables. The authors use the method of mo-

ments to estimate the model parameters. The detailed analysis of class of extreme

value distributions and their applications in modelling interest rates and other finan-

cial related characteristics may be found in Bali (2003) and the references there in.

Nakajima et al. (2012) proposed a state-space approach to model the time depen-

dence in an extreme value process, assuming that the state variables follow ARMA

models with Gumbel extreme value distributed innovations. This distribution also

plays an important role in the study of limiting distribution of the extremes of sta-

tionary time series. A recent survey on statistical analysis of extremes of time series

may be found in Chavez-Demoulin and Davison (2012).

In this chapter, we provide a systematic development of the AR(1) model which

generates a stationary sequence of GEV distributed random variables and study

its probabilistic and statistical properties. In Section 3.2, we discuss the proper-

ties of Gumbel extreme value AR(1) model. Section 3.3 discusses the problem of

parameter estimation. A simulation study is carried out to assess the performance

of the estimators and the findings are described in Section 3.4. An application of
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the proposed model is illustrated using Bombay Stock Exchange (BSE) index and

Standard and Poor 500 (S&P 500) index in Section 3.5.

3.2 Model and Properties

Let {ηt} be a sequence of independent and identically distributed rvs and define a

stationary AR(1) sequence {Xt} by

Xt = αXt−1 + ηt, 0 ≤ α < 1, t = 1, 2, ..., (3.2)

such that X0 is independent of η1. We assume the marginal distribution of {Xt}

to be an extreme value Type 1 with cdf given in (3.1a). A major problem in the

analysis of non-Gaussian time series is to find the distribution of the innovation rv

ηt for a specified marginal distribution of {Xt}.

Theorem 3.1. The stationary marginal distribution of {Xt} in model (3.2) is GEV

distribution with parameters µ and σ iff the distribution of ηt is specified by

ηt
L
= (1− α)µ+ σZ, and Z

L
= − log

(
U−α

)
,

where
L
= denotes the equality in distribution and U denotes a positive stable rv.

Proof: It is well known that, for a specified marginal distribution, F of {Xt} in

model (3.2), there exist a proper distribution for the innovation ηt if and only if F

is self-decomposable.

In terms of the characteristic function, φX(s) = E (exp(isX)), the random variable
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X is said to be self-decomposable if the ratio φX(s)/φX(αs) is a well defined char-

acteristic function for every α, 0 ≤ α < 1.

Now, the characteristic function of the rv X with cdf (3.1a) is given by

φX(s) = eisµ Γ(1− isσ), (3.3)

where Γ(.) is the gamma integral and i =
√
−1 is the complex number.

The definition of the model (3.2) implies that the rvs Xt−1 and ηt are statistically

independent for every t and hence in terms of characteristic functions, (3.2) leads

to the equation

φX(s) = φX(αs)φη(s)⇒ φη(s) =
φX(s)

φX(αs)

⇒ φη(s) = eis(1−α)µ Γ(1− isσ)

Γ(1− iαsσ)
, (3.4)

using (3.3). The cdf of ηt can be obtained by inverting the characteristic function

on the right hand side of (3.4). Using the results of Brockwell and Brown (1978) it

is readily verified that

ηt
L
= (1− α)µ+ σZ, with Z

L
=− log

(
U−α

)
, (3.5)

where
L
= denotes the equality in distribution and U denotes a positive stable rv with

Laplace Transform (L.T.), ϕ(s) = exp(−sα).

Conversely, if ηt is independent and identically distributed with distribution speci-

fied by (3.5) and X0 follows an arbitrary distribution, then we have to prove that

{Xt} is asymptotically a stationary process with GEV marginal distribution.
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The model (3.2) can be written in terms of ηt’s as,

Xt = αtX0 +
t−1∑
k=0

αkηt−k.

Then the characteristic function of Xt is given by

φX(s) = φX0

(
αts
) t−1∏
k=0

φη(α
ks)

= φX0

(
αts
) t−1∏
k=0

eiα
ks(1−α)µ Γ(1− iαksσ)

Γ(1− iαk+1sσ)

= φX0

(
αts
)
e

(
i s(1−α)µ

t−1∑
k=0

αk
)

Γ(1− iα0sσ)

Γ(1− iαtsσ)

→ ei sµ Γ(1− isσ), as t→∞ and αt → 0, where 0 ≤ α < 1.

Hence the theorem.

The probability density function (pdf) of Z in (3.5) can be expressed as an infinite

series,

fZ(z;α) =
1

π

∞∑
k=1

(−1)k−1 Γ(kα)

Γ(k)
(e−z)k sin(kπα), (3.6)

which is also referred to as log-Mittag-Leffler density in the literature (cf, Blumenfeld

and Mandelbrot (1997)). The mean and variance of ηt are given by

E(ηt) = (1− α) (µ+ σ γ) = µ∗, (say) and V (ηt) = (1− α2)
π2σ2

6
= σ2∗, (say),

(3.7)

where γ ≈ 0.5772 is the Euler’s constant. We refer the stationary AR(1) sequence

with GEV marginal distribution as GEVAR(1) (Gumbel extreme value autoregres-

sive of order one) sequence. The second order properties of the GEVAR(1) process
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are summarized below.

E(Xt) = µ+ γσ, V (Xt) =
π2

6
σ2 and the ACF, ρk = αk, k = 1, 2, . . . . (3.8)

The regression of Xt on Xt−1 is given by

E(Xt|Xt−1) = αXt−1 + E(ηt|Xt−1)

= αXt−1 + (1− α)(µ+ σγ) (3.9)

= g(θ;Xt−1) with θ = (α, µ, σ)′.

Now, the conditional cdf of Xt given Xt−1 = xt−1 is expressed as,

P (Xt ≤ xt|Xt−1 = xt−1) = P (αXt−1 + ηt ≤ xt|Xt−1 = xt−1)

= P (ηt ≤ xt − αxt−1).

Then the one-step transition density function of {Xt} defined by (3.2) can be ob-

tained as,

f(xt|xt−1) = fηt(xt − αxt−1) =
1

σ
fZ

(
xt − αxt−1 − (1− α)µ

σ
;α

)
. (3.10)

The form of the transition density (3.10) shows that the likelihood function of

the model parameters for the Markov sequence {Xt} will not have a closed form

expression. Hence, we have to employ some numerical methods for obtaining the

Maximum Likelihood Estimate (MLE) of the parameters. In the next section, we

propose the method of Conditional Least Squares introduced by Klimko and Nelson
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(1978) to estimate θ and then consider its further improvement in the subsequent

sections.

3.3 Estimation of Model Parameters

The estimation of model parameters is one of the important problems involved in

modelling of non-Gaussian time series. If the stationary marginal distribution of

an AR(p) model is not specified, then the estimation methods such as Conditional

Least Squares (CLS) and Quasi Maximum Likelihood (QML) may be preferred.

For a specified marginal distribution, one can go for maximum likelihood method

of estimation, if there is a closed form density for the innovation rv. The innovation

rvs do not have closed form densities for most of the non-Gaussian AR models. In

view of this, we include the detailed analysis of CLSE and QMLE for the proposed

AR(1) model. Even though, the innovation density does not have a closed form,

we propose the ML method of estimation using the properties of positive stable

distribution.

3.3.1 Parameter estimation by the method of Conditional

Least Squares

Klimko and Nelson (1978) developed an estimation procedure for dependent obser-

vations based on the minimization of a sum of squared deviations about conditional

expectations. This approach referred to as “conditional least squares”, provides

a unified treatment of estimation problems for widely used classes of stochastic
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models. The method is implicit in the observation of Mann and Wald (1943),

Durbin (1960) and others that the assumption of normally distributed error terms

in autoregressive models renders maximum likelihood estimation equivalent to the

minimization of a sum of squares. On a light note, here we briefly explain about

the method of conditional least squares developed by Klimko and Nelson (1978).

Let {Xt, t = 1, 2, ...} be a stochastic process defined on a probability space (Ω,F , Pθ),

whose distribution depends on an unknown parameter vector θ = (θ1, θ2, ..., θp)
′
.

Let {Ft−1}∞t=1 denote a sequence of sub-sigma fields with Ft−1 generated by an arbi-

trary subset of {X1, X2, ..., Xt−1}, t > 1. Then the CLS estimator of the parameters

are obtained by minimizing the conditional sum of squares,

QT (θ) =
n∑
t=1

[Xt − g(θ; Ft−1)]2 ,

with respect to the parameter vector θ = (θ1, θ2, ..., θp)
′
, where g(θ; Ft−1) =

E(Xt| Ft−1). The estimates are obtained by solving the least squares equations

∂ QT (θ)

∂ θi
= 0, i = 1, 2, ..., p.

Under a set of regularity conditions, Klimko and Nelson (1978) proved that the CLS

estimators are strongly consistent and asymptotically jointly normally distributed.

The rate of convergence of the estimators is found to be ((log log T )/T )1/2. The

assumptions made concern the application of strong laws, central limit theorems and

laws of iterated logarithm to sums of dependent random variables. A wide variety of

conditions under which these hold may be found in Stout (1974), McLeish (1974),

and Heyde and Scott (1973). These conditions are generally a trade-off among
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moment assumptions, stationarity, the martingale property, mixing, ergodicity and

the Markov property; with no one set of assumptions being most universal.

Let {Xt}∞t=0 be a stationary ergodic sequence of integrable rvs. Then the function

g = g(θ; Ft−1) satisfies the following regularity conditions:

(i) ∂g/∂θi, ∂
2g/∂θi ∂θj and ∂3g/∂θi ∂θj ∂θk exists and are continuous for all θ, i ≤

p, j ≤ p, k ≤ p;

(ii) For i ≤ p, j ≤ p, E |(Xt − g) ∂g/∂θi| <∞, E |(Xt − g) ∂2g/∂θi ∂θj| <∞ and

E |∂g/∂θi ∂g/∂θj| < ∞ where g and its partial derivatives are evaluated at

true value of parameters θ and Xt−1;

(iii) For i, j, k = 1, 2, ..., p, there exist functions

H(0) ≡ H(0)(Xt−1, Xt−2, ..., X0), H
(1)
i ≡ H

(1)
i (Xt−1, Xt−2, ..., X0),

H
(2)
i j ≡ H

(2)
i j (Xt−1, Xt−2, ..., X0), H

(3)
i j k ≡ H

(3)
i j k(Xt−1, Xt−2, ..., X0),

such that

|g| ≤ H(0), |∂g/∂θi| ≤ H
(1)
i , |∂2g/∂θi ∂θj| ≤ H

(2)
i j , |∂3g/∂θi ∂θj ∂θk| ≤ H

(3)
i j k,

for all θ and E
∣∣∣XtH

(3)
i j k

∣∣∣ <∞, E{H(0) H
(3)
i j k} <∞, E{H(1)

i H
(2)
j k } <∞.

Then we have the following lemma.

Lemma 3.2. Let {Xt} be a stationary and ergodic Markov sequence with finite third

order moments. Under the regularity conditions listed above, the CLS estimator θ̂

of θ is consistent and asymptotically normal (CAN). That is, as T →∞

√
T (θ̂ − θ) L−→ Np(0, V

−1W V −1)
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where V and W are p×p matrices, whose (i, j)th elements are respectively given by

Vi j = E

(
∂ g(θ; Ft−1)

∂θi
.
∂ g(θ; Ft−1)

∂θj

)
, i, j = 1, 2, ..., p

and

Wi j = E

(
u2
t (θ)

∂ g(θ; Ft−1)

∂θi

∂ g(θ; Ft−1)

∂θj

)
, i, j = 1, 2, ..., p,

where ut = Xt − g(θ; Ft−1).

We employ this method to estimate θ of our GEVAR(1) model. Let (x1, x2, ..., xT )

be a realization from the stationary GEVAR(1) sequence discussed in the earlier

section. The CLS estimate of the parameter vector θ = (α, µ, σ)′ is obtained by

minimizing the conditional error sum of squares

Q(θ;x1, ..., xT ) =
T∑
t=1

(xt − g(θ;xt−1))2 , (3.11)

where g(.; .) is the conditional expectation given in (3.9). We assume that the scale

parameter σ is known to avoid the problem of identification and fix σ = 1. The

CLS estimates of θ = (θ1, θ2)′ = (α, µ)′ are obtained by solving the conditional least

squares equations,

∂Q(θ;x1, ..., xT )

∂α
= 0⇒ ∂

∂α

(
T∑
t=1

(xt − αxt−1 − (1− α)(µ+ γ))2

)
= 0

⇒ 2
T∑
t=1

(xt − αxt−1 − (1− α)(µ+ γ)) (−xt−1 + (µ+ γ)) = 0
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⇒ −
T∑
t=1

(xt − αxt−1)xt−1 +
T∑
t=1

(xt − αxt−1) (µ+ γ)

+ (1− α)(µ+ γ)
T∑
t=1

xt−1 − T (1− α)(µ+ γ)2 = 0.

∂Q(θ;x1, ..., xT )

∂µ
= 0⇒ ∂

∂µ

(
T∑
t=1

(xt − αxt−1 − (1− α)(µ+ γ))2

)
= 0

⇒ 2
T∑
t=1

(xt − αxt−1 − (1− α)(µ+ γ)) (−(1− α)) = 0

⇒
T∑
t=1

(xt − αxt−1) − T (1− α)(µ+ γ) = 0.

The solutions are given by

α̂ =

∑T
t=1 xtxt−1 − (1/T )

∑T
t=1 xt

∑T
t=1 xt−1∑T

t=1 x
2
t−1 − (1/T )

(∑T
t=1 xt−1

)2 and µ̂ =

∑T
t=1(xt − α̂xt−1)

T (1− α̂)
− γ,

(3.12)

where γ ≈ 0.5772.

Since the GEVAR(1) process is stationary and ergodic with all moments finite, it is

readily verified that all the regularity conditions of Klimko and Nelson (1978) are

satisfied. We briefly indicate the verification here.

To begin with, consider

∂ g

∂α
= Xt−1 − (µ+ γ) ;

∂ g

∂µ
= 1− α ; ,

and conclude that ∂ g/∂θi, i = 1, 2 exist and are continuous for all θ.
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Similarly, we can show that ∂2 g/∂θi ∂θj, i, j = 1, 2 also exist and are continuous for

all θ. Hence, condition (i) is satisfied.

In order to prove conditions (ii) and (iii), we need to find the appropriate H func-

tions. If we define

H(0) = αXt−1 + µ+ γ,

it follows that, since 0 ≤ α < 1, |g| < H(0) for σ = 1. Define

H
(1)
i =

 Xt−1, i = 1

1, i = 2
.

Then we see that, for all θ, |∂ g/∂θi| < H
(1)
i , i = 1, 2. The H

(1)
i were obtained by

omitting the negative terms in ∂ g/∂θi, i = 1, 2. Similarly, by omitting the negative

terms from the expressions for ∂2 g/∂θi ∂θj, i, j = 1, 2, we can obtain the function

H
(2)
ij , i, j = 1, 2 (Billard and Mohamed (1991)). In our case, it is zero.

Since the H functions are linear in Xt’s, we have all the H functions are square inte-

grable. Hence, from the Cauchy-Schwartz inequality, the integrability requirements

of conditions (ii) and (iii) are satisfied.

Hence, the CLS estimators obtained above are CAN for the corresponding param-

eters. Now applying the Lemma 3.2, we have proved that,

√
T ((α̂, µ̂)′ − (α, µ)′)

L−→ N2(0, D),
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where N2(0, D) stands for a bivariate normal distribution with mean vector 0 and

dispersion matrix D = V −1WV −1 with

V =

 E
(
∂g(θ;Xt−1)

∂α

)2

E
(
∂g(θ;Xt−1)

∂α
∂g(θ;Xt−1)

∂µ

)
E
(
∂g(θ;Xt−1)

∂α
∂g(θ;Xt−1)

∂µ

)
E
(
∂g(θ;Xt−1)

∂µ

)2



W =

 E
(
ut

∂g(θ;Xt−1)
∂α

)2

E
(
u2
t
∂g(θ;Xt−1)

∂α
∂g(θ;Xt−1)

∂µ

)
E
(
u2
t
∂g(θ;Xt−1)

∂α
∂g(θ;Xt−1)

∂µ

)
E
(
ut

∂g(θ;Xt−1)
∂µ

)2

 ,

where ut = Xt − g(θ; Xt−1).

For a stationary GEVAR(1) sequence defined by (3.2), the elements of the matrix

V are

V11 = E

(
∂

∂α
(αXt−1 + (1− α)(µ+ γ))

)2

= E (Xt−1 − (µ+ γ))2 =
π2

6
.

V12 = E

(
∂

∂α
(αXt−1 + (1− α)(µ+ γ))

∂

∂µ
(αXt−1 + (1− α)(µ+ γ))

)
= E ((Xt−1 − (µ+ γ)) (1− α))

= (1− α)E (Xt−1 − (µ+ γ)) = 0 = V21.

V22 = E

(
∂

∂µ
(αXt−1 + (1− α)(µ+ γ))

)2

= (1− α)2 .

and that of W are

W11 = E

(
ut

∂

∂α
(αXt−1 + (1− α)(µ+ γ))

)2

= E ((Xt − αXt−1 − (1− α)(µ+ γ)) (Xt−1 − (µ+ γ)))2

= (1− α2)

(
π2

6

)2

.
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W12 = E

(
u2
t

∂

∂α
(αXt−1 + (1− α)(µ+ γ))

∂

∂µ
(αXt−1 + (1− α)(µ+ γ))

)
= E

(
(Xt − αXt−1 − (1− α)(µ+ γ))2 (Xt−1 − (µ+ γ)) (1− α)

)
= 0 = W21.

W22 = E

(
ut

∂

∂µ
(αXt−1 + (1− α)(µ+ γ))

)2

= E ((Xt − αXt−1 − (1− α)(µ+ γ)) (1− α))2

= (1− α)2E (Xt − αXt−1 − (1− α)(µ+ γ))2

= (1− α)2(1− α2)
π2

6
.

Therefore, V and W can be written as

V =

 π2

6
0

0 (1− α)2

 ;

W =

 (1− α2)
(
π2

6

)2

0

0 (1− α)2(1− α2)
(
π2

6

)


= (1− α2)

(
π2

6

) π2

6
0

0 (1− α)2

 = (1− α2)

(
π2

6

)
V.

Then the above dispersion matrix becomes

D =

 1− α2 0

0 π2(1+α)
6 (1−α)

 . (3.13)

That is, the CLSE of α and µ are asymptotically independent. Even though the
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CLS estimates can be easily computed, they are biased as can be seen from the

simulation results listed in Table 3.1 of the Section 3.4. Further, one of the model

parameters is not identifiable. These drawbacks suggest that we need to look for

better estimates.

3.3.2 Method of Quasi Maximum Likelihood Estimation

The log-likelihood function of θ = (α, µ, σ)′ based on a realization (x1, x2, ..., xT )

from the stationary GEVAR(1) model (3.2) is given by

LT (θ;x1, x2, ..., xT ) = log fX(x1; θ) +
T∑
t=2

log f(xt; θ|xt−1)

= log fX(x1; θ) +
T∑
t=2

log

(
1

σ
fZ

(
xt − αxt−1 − (1− α)µ

σ
;α

))
,

(3.14)

where fX(.) is the pdf corresponding to the cdf (3.1a) and fZ(.) is the density

function given by (3.6). The structure of the innovation distribution described in

Section 3.2 indicates that it is difficult to express the likelihood function in a closed

form. The method of quasi maximum likelihood (QML) is proposed to estimate the

model parameters when the exact form of the error distribution is unknown or when

it does not have a tractable form. For a general discussion on the QML method and

asymptotic properties of the resulting estimators one may refer White (1982). A

recent paper by Aue et al. (2006) obtained the QML estimates of the parameters of

random coefficient autoregressive models. We follow their method to obtain QMLE

of the parameters of our GEVAR(1) model described above. Accordingly we write
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down the likelihood function for the model (3.2) by assuming that the innovations

are normally distributed with mean and variance given in (3.7). Thus the pdf of ηt

becomes,

f(ηt) =

√
3√
π3

1

σ
√

1− α2
exp

{
− 3

π2σ2(1− α2)
(ηt − (1− α)(µ+ σ γ))2

}
. (3.15)

Since {ηt} is an iid normal sequence, the stationary marginal distribution of {Xt} is

also normal with mean µ∗/(1− α) and variance σ2∗/(1− α2). The quasi maximum

likelihood estimator of θ = (α, µ, σ)′ now can be obtained by maximizing the log-

likelihood function (3.14). The QMLE of α denoted by α̂ is obtained as a solution

of the equation

(
T − 1

T

)(
T (α− 1)2 − 2α2

2α + T − Tα

)(
(1 + α)x1 +

T∑
t=2

(xt − αxt−1)

)2

+ α(1 + α)

(
x2

1 +
1

1− α2

T∑
t=2

(xt − αxt−1)2

)

=
1

1− α

(
α

T∑
t=2

x2
t + α

T∑
t=2

x2
t−1 − (1 + α2)

T∑
t=2

xtxt−1

)

− α− 1

2α + T − Tα

(
T∑
t=2

xt +
T∑
t=2

xt−1

)(
(1 + α)x1 +

T∑
t=2

(xt − αxt−1)

)
,

(3.16)

which needs to be solved numerically.
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Then the QMLE of σ2 and µ are respectively given by

σ̂2 =
6

T π2

[
x2

1 +
1

1− α̂2

T∑
t=2

(xt − α̂xt−1)2

− 1

(1 + α̂)(2α̂ + T − T α̂)

(
(1 + α̂)x1 +

T∑
t=2

(xt − α̂xt−1)

)2
 , (3.17)

µ̂ =
1

2α̂ + T − T α̂

(
(1 + α̂)x1 +

T∑
t=2

(xt − α̂xt−1)

)
− σ̂ γ. (3.18)

Next, we discuss the asymptotic properties of the QMLE. Billingsley (1961) and

Basawa and Rao (1980) proved under certain regularity conditions, listed below,

that the MLE is consistent and asymptotically normal. Let {Xt} be a stationary

Markov sequence with one-step transition density function f(xt; θ|xt−1) and the

initial density fX(x1; θ) and Θ be the parameter space.

(i) log f(xt; θ|xt−1) is thrice differentiable with respect to θ for all θ in a neigh-

bourhood I of θ0.

(ii) E|∂2 log f(xt; θ0|xt−1)/∂θi ∂θj| <∞;

E|∂2 log f(xt; θ0|xt−1)/∂θi ∂θj + (∂ log f(xt; θ0|xt−1)/∂θi)
2 | <∞.

(iii) There exist sequences {K(T )} and {M(T )} of positive constants with K(T )→

∞ and M(T )→∞, as T →∞ such that

(1) M(T ) {K(T )}−1
∑T

t=1 ∂ log f(xt; θ0|xt−1)/∂θi
L→N(0, B(θ0)) for some non-

random function B(θ0) > 0,

(2) {K(T )}−1|
∑T

t=1 ∂
2 log f(xt; θ0|xt−1)/∂θi ∂θj|

P→A(θ0) for some non-random

function A(θ0) > 0, and
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(3) for all ε > 0 and for all ν > 0, there exists δ = δ(ε, ν) and N = N(ε, ν)

such that for all T > N ,

P

[
{K(T )}−1

∣∣∣∣∣
T∑
t=1

(
∂2 logf(xt; θ

∗|xt−1)

∂θi ∂θj
− ∂2 logf(xt; θ0|xt−1)

∂θi ∂θj

)∣∣∣∣∣ > ν

]
< ε,

whenever, |θ∗ − θ0| < δ, where θ∗ = θ0 + r(θ − θ0) with r = r(T, θ0)

satisfying |r| < 1.

Hence, there exists a root θ̂ of the likelihood equation with Pθ0-probability

approaching one which is consistent for θ0 as n→∞

Under the conditions (i)-(iii), any consistent solution of the maximum likelihood

equation is asymptotic normal (CAN). That is,

M(T )
(
θ̂ − θ0

)
L−→ N(0, C(θ0)),

where C(θ0) = ((Ci j(θ0))) = A(θ0)−1B(θ0)A(θ0)−1 and

Ai j(θ0) = E (∂2 log f(xt; θ0|xt−1)/∂θi ∂θj),

Bi j(θ0) = E ((∂ log f(xt; θ0|xt−1)/∂θi) (∂ log f(xt; θ0|xt−1)/∂θj)).

White (1982) proved under the above mentioned regularity conditions that the

QMLE θ̂ is consistent and asymptotically normal for the corresponding parameter.

As the likelihood function in (3.14) is differentiable with respect to parameters and

all the moments of {Xt} are finite, the required regularity conditions defined above

hold good. If we take θ = (α, µ, σ)′ = (θ1, θ2, θ3)′, then

√
T
(
θ̂ − θ

)
L−→ N(0, C(θ)), (3.19)
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where

C(θ) = ((Ci j(θ))) = A(θ)−1B(θ)A(θ)−1 (3.20)

with (i, j)th elements of A(θ) and B(θ) are respectively given by

Ai j(θ) = E

(
∂2

∂θi ∂θj
log f

)
and Bi j(θ) = E

(
∂

∂θi
log f

∂

∂θj
log f

)
.

Let us now compute the elements of the variance-covariance matrix. Based on the

discussion above, we have

log f = C − log σ − 1

2
log(1− α2)− 3

π2σ2(1− α2)
[xt − αxt−1 − (1− α)(µ+ σ γ)]2 ,

where C = log
√

3√
π3

.

The elements of A(θ) are obtained as,

A11 = E

(
∂2 log f

∂α2

)
= − 1 + α2

(1− α2)2
;

A12 = E

(
∂2 log f

∂α ∂µ

)
= 0 = A21;

A13 = E

(
∂2 log f

∂α ∂σ

)
=

2α

σ(1− α2)
= A31;

A22 = E

(
∂2 log f

∂µ2

)
= − 6(1− α)

π2σ2(1 + α)
;

A23 = E

(
∂2 log f

∂µ ∂σ

)
= − 6 γ(1− α)

π2σ2(1 + α)
= A32;

A33 = E

(
∂2 log f

∂σ2

)
= − 2

σ2
− 6 γ2(1− α)

π2σ2(1 + α)
;
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and that of B(θ) are

B11 = E

(
∂ log f

∂α

∂ log f

∂α

)
=

(5 + 7α2)(1 + α2)

5 (1− α2)3
;

B12 = E

(
∂ log f

∂α

∂ log f

∂µ

)
=

36α (1− α3)ψ2(1)

π4σ (1 + α) (1− α2)2
= B21;

B13 = E

(
∂ log f

∂α

∂ log f

∂σ

)
=

36α γ (1− α3)ψ2(1)

π4σ (1 + α) (1− α2)2
+

α

σ (1− α2)
− 36α (9− α2)

60σ (1− α2)2
;

B22 = E

(
∂ log f

∂µ

∂ log f

∂µ

)
=

6 (1− α)

π2σ2 (1 + α)
;

B23 = E

(
∂ log f

∂µ

∂ log f

∂σ

)
=

6 γ (1− α)

π2σ2 (1 + α)
− 36 (1− α3)ψ2(1)

π4 σ2 (1 + α) (1− α2)
= B32;

B31 = B13;

B33 = E

(
∂ log f

∂σ

∂ log f

∂σ

)
= − 1

σ2
+

6 γ2(1− α)

π2σ2 (1 + α)
− 36 γ (1− α3)ψ2(1)

π4σ2 (1 + α) (1− α2)

+
3 (9− α2)

5σ2 (1− α2)
;

Then the expression of Cij(θ) = Cij, for i, j = 1, 2, 3 are obtained as,

C11 = 1− α2 +
36α2γ (1 + α + α2)ψ2(1)

π4(1 + α)2
;

C12 = −α γ σ − 18α γ2σ (1 + α2) (1 + α + α2)ψ2(1)

π4 (1− α2) (1 + α)2
= C21;

C13 = ασ +
18α γ σ (1 + α2) (1 + α + α2)ψ2(1)

π4 (1− α2) (1 + α)2
= C31;
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C22 =
11 γ2 σ2(1 + α2)

10 (1− α2)
+

6 γ σ2 (1 + α + α2)ψ2(1)

π2 (1− α2)
+
π2 σ2(1 + α)2

6 (1− α2)

+
9 γ3 σ2 (1 + α2)2(1 + α + α2)ψ2(1)

π4 (1− α2)2 (1 + α)2
;

C23 = −11 γ σ2(1 + α2)

10 (1− α2)
− 3σ2 (1 + α + α2)ψ2(1)

π2 (1− α2)

− 9 γ2 σ2 (1 + α2)2(1 + α + α2)ψ2(1)

π4 (1− α2)2 (1 + α)2
;

= C32;

C33 =
11σ2(1 + α2)

10 (1− α2)
+

9 γ σ2 (1 + α2)2(1 + α + α2)ψ2(1)

π4 (1− α2)2 (1 + α)2
,

where ψ2(1) = −2.4041, and γ = 0.5772 is the Euler’s constant.

The simulation study reported in Table 3.2 of Section 3.4 indicates that the esti-

mates are biased and a large sample is required to get a better estimate, which is

expected under the QML set up. The estimation methods described in this and the

previous section, provide easily computable estimators. But they are not as efficient

as the MLE. Even though, we do not have closed form expressions for the MLE, due

to the infinite series form of the innovation distribution, we study their properties

in the next section and compare their performance with the earlier estimates by

simulation.

3.3.3 Method of Maximum Likelihood Estimation

As noted earlier, the complex structure of the transition density function of the

GEVAR(1) sequence, the likelihood based inference is difficult to manage. This

lead us to study the properties of CLSE and QMLE as some alternative estimators
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for the parameters. Since the transition density function exists, unlike in the case of

many other non-Gaussian AR models, it is worth trying for parameter estimation

by maximum likelihood method. The explicit form of the log-likelihood function of

θ = (α, µ, σ)′ based on (x1, x2, ..., xT ) can be obtained from (3.6) and (3.14) and is

given by

LT (θ; x1, x2, ..., xT ) = −T log(σ)− (x1 − µ)

σ
− exp

(
−(x1 − µ)

σ

)
+ (T − 1) log

(
1

π

)
+

T∑
t=2

log(R(xt−1, xt)),

where R(xt−1, xt) =
∑∞

k=1(−1)k−1 Γ(kα)
Γ(k)

e−
k
σ

(xt−αxt−1−(1−α)µ) sin(kπα).

The form of the likelihood function indicates that we have to maximize it by some

numerical methods. This requires us to approximate the infinite series by truncating

it at a finite number of terms. Let us approximate R(xt−1, xt) by

RN(xt−1, xt) =
N∑
k=1

(−1)k−1 Γ(kα)

Γ(k)
e−

k
σ

(xt−αxt−1−(1−α)µ) sin(kπα),

and choose N for which |RN(xt−1, xt) − RN+1(xt−1, xt)| < δ. In our computation,

we have chosen δ = 10−10. The value of this sum depends on N as well as on a

particular realization, {xt, t > 0}.

Now the MLE θ̃ = (α̃, µ̃, σ̃)′ of θ = (α, µ, σ)′ can be obtained by solving the following

likelihood equations,

T∑
t=2

Rα(xt−1, xt)

R(xt−1, xt)
= 0

(3.21)
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1− exp(−(x1 − µ)/σ) + (1− α)
T∑
t=2

Rµ(xt−1, xt)

R(xt−1, xt)
= 0

(3.22)

x1−µ−nσ−(x1−µ) exp

(
−(x1 − µ)

σ

)
+

T∑
t=2

(xt − αxt−1 − (1− α)µ)Rσ(xt−1, xt)

R(xt−1, xt)
= 0

(3.23)

where

Rα(xt−1, xt) =
∞∑
k=1

(−1)k−1 Γ(kα)

Γ(k)
k e−

k
σ

(xt−αxt−1−(1−α)µ)

{[((xt−1 − µ)/σ) + Ψ(kα)] sin(kπα) + π cos(kπα)}

Rµ(xt−1, xt) =
∞∑
k=1

(−1)k−1 Γ(kα)

Γ(k)
k e−

k
σ

(xt−αxt−1−(1−α)µ) sin(kπα) = Rσ(xt−1, xt)

and Ψ(.) is a digamma function defined by Ψ(k) = d
dk

ln Γ(k) = Γ′(k)
Γ(k)

.

We applied the standard theory on the properties of MLE for a stationary Markov

sequences, discussed in Section 3.3.2, to prove that θ̃ is consistent and asymptotic

normal with mean vector 0 and covariance matrix C(θ), defined by (3.20). However,

the elements of the matrices in (3.20) are to be evaluated for the GEVAR(1) model,

which do not have closed form expression for its innovation density. The elements

of the matrices can be evaluated using the following relations. For i, j = 1, 2, 3,

Aij(θ) = E

(
∂2

∂θiθj
log fZ(x1, x2)

)
; Bij(θ) = E

(
∂ log fZ(x1, x2)

∂θi

∂ log fZ(x1, x2)

∂θj

)
.

(3.24)

These expectations need to be evaluated numerically as the underlying density is

expressed as infinite series. While evaluating the expectations, we truncate the

series as discussed above. In the expressions (3.24), we replace (xt−1, xt) by (x1, x2)
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due to the stationarity of the GEVAR(1) sequence. The elements of the matrices

presented below will be used for computation in the next section.

A11 = E

(
∂2

∂α2
log f

)
;A12 = A21 = E

(
∂2

∂α ∂µ
log f

)
;

A13 = A31 = E

(
∂2

∂α ∂σ
log f

)
;A22 = E

(
∂2

∂µ2
log f

)
;

A23 = A32 = E

(
∂2

∂µ ∂σ
log f

)
;A33 = E

(
∂2

∂σ2
log f

)
;

B11 = E

(
∂

∂α
log f

)2

;B12 = B21 = E

(
∂

∂α
log f

∂

∂µ
log f

)
;

B13 = B31 = E

(
∂

∂α
log f

∂

∂σ
log f

)
;B22 = E

(
∂

∂µ
log f

)2

;

B23 = B32 = E

(
∂

∂µ
log f

∂

∂σ
log f

)
;B33 = E

(
∂

∂σ
log f

)2

.

In the next section, we simulate observations from the GEVAR(1) model and obtain

the estimates under different methods described above.

3.4 Simulation Study

We carried out simulation studies to illustrate the numerical methods for comput-

ing the estimates proposed in the earlier sections and also to examine their perfor-

mances. To simulate a realization from the model (3.2) we used the link between

the innovation rv ηt and the positive stable rv U described in (3.5). Accordingly

for specified values of the parameters we simulated iid sequence of positive stable
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rvs {Ut} using the relation:

U = E− (1−α)/α(sin ξ)−1/α sin(αξ) sin((1− α)ξ)(1−α)/α,

proposed by McKenzie (1982), where ξ is a uniform rv over (0, π) and E is a unit

exponential rv independent of ξ. Then generate ηt using the equation (3.5) and

finally obtain the sequence of GEVAR(1) sequence from the equation (3.2). Based

on this realization, we obtain the estimates using the procedures described in Section

3.3. The detailed algorithm (in MATLAB code) for the computations is given in

Appendix A. The estimates along with their bias and root mean square errors

(RMSE) are listed in the Tables 3.1 – 3.3 under different method of estimation.

In Tables 3.1 – 3.4, the entries in the column with title ”Asym Std dev” are asymp-

totic standard deviations computed at the theoretical values of the parameters.

They are obtained as the square root of the diagonal elements of the corresponding

asymptotic dispersion matrices. These values could be compared with the estimated

RMSE of the respective estimates given in the parenthesis. For a better estimation

method these values become closer.

The Table 3.1 summarizes the computation of the conditional least squares estimates

(CLSE) of α and µ when the scale parameter is fixed as σ = 1. The CLSE of α and

µ are obtained by using the equations given in (3.12) for specified sample sizes and

are listed in the Table 3.1. For each specified value of the parameter, we repeated

the experiment 50 times for computing the estimates and then averaged them over

the repetitions. The final values are entered in Table 3.1 along with the bias and

the RMSE in the parenthesis.
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Table 3.1: The average estimates, the bias, the corresponding RMSE and the
asymptotic standard deviation for the CLS estimates

True Values Conditional Least Squares Estimates
n α µ α̂ Asym µ̂ Asym

(Bias, RMSE) Std (Bias, RMSE) Std
dev dev

100 0.80 2.00 0.7722 1.8616
(-0.0278, 0.0532) 0.0600 (-0.1384, 0.3817) 0.3848

0.70 3.00 0.7054 2.9130
(0.0054, 0.0597) 0.0714 (-0.0870, 0.2949) 0.3053

0.60 0.00 0.5735 0.0145
(-0.0265, 0.0805) 0.0800 (0.0145,0.2912) 0.2565

0.50 3.00 0.5265 2.9504
(0.0265, 0.0780) 0.0866 (-0.0496 , 0.2449) 0.2221

0.30 2.00 0.3409 1.9579
(0.0409, 0.0861) 0.0954 (-0.0421, 0.1516) 0.1748

0.20 1.00 0.1891 0.9982
(-0.0109, 0.0873) 0.0980 (-0.0018, 0.1508) 0.1571

200 0.80 2.00 0.7874 1.9724
(-0.0126, 0.0422) 0.0424 (-0.0276, 0.1908) 0.2721

0.70 3.00 0.7015 2.9560
(0.0015, 0.0444) 0.0504 (-0.0440, 0.2125) 0.2159

0.60 0.00 0.5753 0.0082
(-0.0247, 0.0663) 0.0566 (0.0082, 0.1853) 0.1814

0.50 3.00 0.5169 2.9691
(0.0169, 0.0450) 0.0612 (-0.0309, 0.1720) 0.1571

0.30 2.00 0.3110 1.9819
(0.0110, 0.0693) 0.0675 (-0.0181, 0.1024) 0.1236

0.20 1.00 0.1969 0.9932
(-0.0031, 0.0736) 0.0693 (-0.0068, 0.1074) 0.1110

500 0.80 2.00 0.7964 2.0046
(-0.0036, 0.0277) 0.0268 (0.0046, 0.1904) 0.1721

0.70 3.00 0.6916 2.9819
(-0.0084, 0.0313) 0.0319 (-0.0181, 0.1278) 0.1365

0.60 0.00 0.5912 0.0133
(-0.0088, 0.0350) 0.0358 (0.0133, 0.1147) 0.1147

0.50 3.00 0.5062 2.9710
(0.0062, 0.0347) 0.0387 (-0.0290, 0.0902) 0.0993

0.30 2.00 0.3040 1.9932
(0.0040, 0.0390) 0.0427 (-0.0068, 0.0844) 0.0782

0.20 1.00 0.1898 0.9975
(-0.0102, 0.0435) 0.0438 (-0.0025, 0.0668) 0.0702
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From the table, it is observed that the estimates of (α, µ) perform well as sample

size increases. For instance, if µ = 2 and α = 0.8 , the average µ̂ is 1.8616 and

the average α̂ is 0.7722, for n = 100. When the sample size is increased to 500,

the estimates of µ and α are respectively 2.0046 and 0.7964. Further, the bias,

the RMSE and the asymptotic standard deviation of the estimates decrease when

sample size increases. The other parameter combinations of µ and α behave in a

similar way. It is observed from the Table 3.1 that as α decreases, the asymptotic

standard deviation of the α̂ increases and that of µ̂ decreases.

In Table 3.2, we present the QMLE of θ based on the simulated samples. The

estimates are obtained by solving the QML equations (3.16), (3.17), and (3.18).

As before, we repeated the computation 50 times, and the final estimates are the

averages over these repetitions. Corresponding root mean square errors and the bias

are given in the parenthesis. The asymptotic standard deviations of the estimators

are also reported in Table 3.4. We observed that the estimates are close to the true

values when the sample size is large. Also, the bias, RMSE and the asymptotic

standard deviation of the estimates decrease when sample size increases.

Finally, the Table 3.3 summarizes the calculations of the MLE of θ. For the speci-

fied sample sizes, we computed the MLE by solving the likelihood equations (3.21),

(3.22) and (3.23). The averages of the estimates obtained by repeating the exper-

iment 50 times along with their bias, and RMSE are presented in Table 3.3. Also,

the asymptotic standard deviations are entered in Table 3.4.
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Table 3.2: The average estimates, the bias and the corresponding RMSE for
the QMLE.

True Values Quasi Maximum Likelihood Estimates
n α µ σ α̂ µ̂ σ̂

(Bias, RMSE) (Bias, RMSE) (Bias, RMSE)
0.80 2.00 3.00 0.7775 2.2574 2.8408

(-0.0225,0.0586) (0.2574, 0.9226) (-0.1592, 0.6585)
100 0.70 3.00 2.00 0.6514 3.1659 1.9139

(-0.0486, 0.0737) (0.1659, 0.5874) (-0.0861, 0.2954)
0.60 0.00 1.00 0.5528 0.0056 0.9496

(-0.0472, 0.0847) (0.0056, 0.1946) (-0.0504, 0.1331)
0.50 3.00 2.00 0.4746 2.9705 1.9300

(-0.0254, 0.0856) (-0.0295, 0.3664) (-0.0700, 0.2474)
0.30 2.00 0.50 0.2830 1.9974 0.4943

(-0.0170, 0.0912) (-0.0026, 0.0709) (-0.0057, 0.0597)
0.20 1.00 2.00 0.1770 0.9601 1.9181

(-0.0230, 0.0959) (-0.0399, 0.2612) (-0.0819, 0.1854)
0.80 2.00 3.00 0.7935 2.1389 3.0199

(-0.0065, 0.0379) (0.1389, 0.6842) (0.0199, 0.4409)
0.70 3.00 2.00 0.6738 3.1506 1.9902

200 (-0.0262, 0.0492) (0.1506, 0.3589) (-0.0098, 0.2248)
0.60 0.00 1.00 0.5795 0.0303 0.9761

(-0.0205, 0.0520) (0.0303, 0.1622) (-0.0239, 0.1020)
0.50 3.00 2.00 0.4942 2.9683 1.9909

(-0.0058, 0.0529) (-0.0317, 0.2468) (-0.0091, 0.1615)
0.30 2.00 0.50 0.2966 2.0177 0.4991

(-0.0034, 0.0634) (0.0177, 0.0509) (-0.0009, 0.0369)
0.20 1.00 2.00 0.1805 1.0200 1.9890

(-0.0195, 0.0752) (0.0200, 0.1994) (-0.0110, 0.1445)
0.80 2.00 3.00 0.7928 2.1093 2.9716

(-0.0072, 0.0247) (0.1093, 0.4459) (-0.0284, 0.3187)
0.70 3.00 2.00 0.6929 3.0085 1.9936

500 (-0.0071, 0.0314) (0.0085, 0.2617) (-0.0064, 0.1716)
0.60 0.00 1.00 0.5908 0.0187 0.9954

(-0.0092, 0.0390) (0.0187, 0.0981) (-0.0046, 0.0519)
0.50 3.00 2.00 0.4959 3.0047 1.9916

(-0.0041, 0.0374) (0.0047, 0.1684) (-0.0084, 0.1276)
0.30 2.00 0.50 0.2941 2.0022 0.4990

(-0.0059, 0.0371) (0.0022, 0.0337) (-0.0010, 0.0219)
0.20 1.00 2.00 0.2050 0.9973 1.9978

(0.0050, 0.0481) (-0.0027, 0.1236) (-0.0022, 0.1072)
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Table 3.3: The average estimates, the bias and the corresponding RMSE for
the MLE.

True Values Maximum Likelihood Estimates
n α µ σ α̂ µ̂ σ̂

(Bias, RMSE) (Bias, RMSE) (Bias, RMSE)
0.80 2.00 3.00 0.7708 1.9136 2.6582

(-0.0292, 0.0372) (-0.0864, 0.7578) (-0.3418, 0.4722)
100 0.70 3.00 2.00 0.6865 2.9815 1.9237

(-0.0135, 0.0472) (-0.0185, 0.4071) (-0.0763, 0.2695)
0.60 0.00 1.00 0.5947 -0.0098 0.9844

(-0.0053, 0.0572) (-0.0098, 0.1724) (-0.0156, 0.1269)
0.50 3.00 2.00 0.5015 3.0853 1.9860

(0.0015, 0.0564) (0.0853, 0.3390) (-0.0140, 0.2043)
0.30 2.00 0.50 0.3092 2.0164 0.4911

(0.0092, 0.0722) (0.0164, 0.0707) (-0.0089, 0.0524)
0.20 1.00 2.00 0.1969 1.0188 1.9894

(-0.0031, 0.0775) (0.0188, 0.2037) (-0.0106, 0.1759)

0.80 2.00 3.00 0.7866 2.1328 2.8619
(-0.0134, 0.0241) (0.1328, 0.7144) (-0.1381, 0.3347)

0.70 3.00 2.00 0.6946 3.0662 1.9707
200 (-0.0054, 0.0286) (0.0662, 0.3745) (-0.0293, 0.2074)

0.60 0.00 1.00 0.5980 0.0313 0.9999
(-0.0020, 0.0342) (0.0313, 0.1588) (-0.0001, 0.0840)

0.50 3.00 2.00 0.4997 3.0607 2.0071
(-0.0003, 0.0398) (0.0607, 0.2748) (0.0071, 0.1508)

0.30 2.00 0.50 0.3074 2.0143 0.5057
(0.0074, 0.0546) (0.0143, 0.0534) (0.0057, 0.0324)

0.20 1.00 2.00 0.2051 1.0563 2.0207
(0.0051, 0.0559) (0.0563, 0.1905) (0.0207, 0.1228)

0.80 2.00 3.00 0.7930 2.1133 2.9476
(-0.0070, 0.0137) (0.1133, 0.4267) (-0.0524, 0.2100)

0.70 3.00 2.00 0.6986 3.0573 2.0169
500 (-0.0014, 0.0246) (0.0573, 0.2702) (0.0169, 0.1455)

0.60 0.00 1.00 0.5963 0.0284 0.9997
(-0.0037, 0.0214) (0.0284, 0.1025) (-0.0003, 0.0536)

0.50 3.00 2.00 0.4957 3.0503 1.9984
(-0.0043, 0.0247) (0.0503, 0.1808) (-0.0016, 0.0972)

0.30 2.00 0.50 0.2957 2.0095 0.4993
(-0.0043, 0.0306) (0.0095, 0.0364) (-0.0007, 0.0211)

0.20 1.00 2.00 0.1964 1.0312 1.9963
(-0.0036, 0.0343) (0.0312, 0.1325) (-0.0037, 0.0805)
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Table 3.4: The asymptotic standard deviations under the QML and ML meth-
ods

True Values QML Method ML Method
n α µ σ Asymp Asymp Asymp Asymp Asymp Asymp

std std std std std std
dev (α) dev (µ) dev (σ) dev (α) dev (µ) dev (σ)

100 0.80 2.00 3.00 0.0336 0.9529 0.5203 0.0292 0.7942 0.5084
0.70 3.00 2.00 0.0565 0.5096 0.3088 0.0388 0.4963 0.2663
0.60 0.00 1.00 0.0706 0.2151 0.1376 0.0456 0.2112 0.1144
0.50 3.00 2.00 0.0806 0.3734 0.2495 0.0540 0.3696 0.2112
0.30 2.00 0.50 0.0934 0.0734 0.0540 0.0668 0.0776 0.0409
0.20 1.00 2.00 0.0971 0.2632 0.2061 0.0729 0.2653 0.1786

200 0.80 2.00 3.00 0.0238 0.6738 0.3679 0.0178 0.6342 0.2978
0.70 3.00 2.00 0.0399 0.3603 0.2184 0.0281 0.3443 0.1841
0.60 0.00 1.00 0.0499 0.1521 0.0973 0.0250 0.1554 0.0623
0.50 3.00 2.00 0.0570 0.2640 0.1764 0.0361 0.2653 0.1388
0.30 2.00 0.50 0.0660 0.0519 0.0382 0.0499 0.0511 0.0310
0.20 1.00 2.00 0.0686 0.1861 0.1457 0.0518 0.1850 0.1140

500 0.80 2.00 3.00 0.0150 0.4261 0.2327 0.0109 0.4026 0.1901
0.70 3.00 2.00 0.0253 0.2279 0.1381 0.0192 0.2272 0.1403
0.60 0.00 1.00 0.0316 0.0962 0.0616 0.0161 0.0970 0.0416
0.50 3.00 2.00 0.0361 0.1670 0.1116 0.0292 0.1632 0.1109
0.30 2.00 0.50 0.0418 0.0328 0.0241 0.0347 0.0321 0.0217
0.20 1.00 2.00 0.0434 0.1177 0.0922 0.0399 0.1151 0.0867

The MLE of all parameters perform well even for a small sample of size n = 100.

For example, at µ = 3, α = 0.7, σ = 2, µ̂ = 2.9815, α̂ = 0.6865 and σ̂ = 1.9237.

The RMSE is close to the asymptotic standard deviation. Also, as α decreases, the

RMSE and the asymptotic standard deviations of α̂ increase.

Overall, it is observed that the estimates of α, µ and σ behave reasonably well for

large sample sizes under CLS and QML methods in terms of their bias and RMSE.

However, from the Table 3.3, we can see that there is significant reduction in bias
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and RMSE of MLE even for reasonable sample sizes. Hence, the use of likelihood

estimates is recommended compared to other methods for GEVAR(1) model.

3.5 Application

To illustrate the application of the proposed time series model, an AR(1) model with

Gumbel marginal distribution has been fitted to two time series of daily maximum of

Bombay Stock Exchange (BSE) index and Standard and Poor 500 (S&P 500) index.

The data consists of 375 observations of BSE index values from 4, January 2010 to

30, June 2011 and 252 of S&P 500 index from 2, January 2009 to 31, December

2009. The data are obtained from the website of Yahoo Finance. The time series

plots and ACF of the data are displayed in Figure 3.1 and 3.2 respectively.

Figure 3.1: Time series plot of BSE and S&P 500 indices
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Figure 3.2: ACF of BSE and S&P 500 indices

From the time series and ACF plots, it is observed that both the series show non-

stationary behaviour. This is further confirmed using Augmented Dickey-Fuller

(ADF) test for the BSE data. The calculated value of the ADF test statistic for

the BSE data is given in Table 3.5. ADF tests whether a unit root is present in an

autoregressive model. In this method, one can check for unit roots using either the

normalized bias test, given by T (α̂ − 1) or the usual t-statistic. If the calculated

t value exceeds the 5% critical value, then we accept the null hypothesis of unit

roots. However, for the S&P data, the ADF rejects the non-stationarity hypothesis

due to unit root, but the ACF plots exhibits non-stationarity. Hence, we adopted

exponential smoothing method for removing non-stationarity and confirmed the

stationarity of the residual obtained by exponential smoothing using ADF test.

Exponential smoothing is a technique that can be applied to time series data, either



Chapter 3. GEVAR(1) Model 81

Table 3.5: ADF statistic along with associated p values (in brackets) for the
BSE data

BSE Index ADF Statistic

Original series -1.5354(0.7732)
Log-transformed series -1.5586(0.7634)
exponentially smoothed series -14.5202(0.0050)

to produce smoothed data, or to make forecasts. When the sequence of observations

begins at time t = 0, the simplest form of exponential smoothing is given by the

formulae

S0 = X0; St = cXt + (1− c)St−1, t > 0,

where c is the smoothing factor, and 0 < c < 1. The value of c is chosen by

minimizing the residual sum of squares. In the present case, it is found that c = 0.9.

Then we fit a GEVAR(1) model to the residuals which are calculated as Xt − St,

the actual series minus the exponential smooth. We call the resulting residual series

as the exponentially smoothed series and are plotted in Figure 3.3.

Figure 3.3: Time series plot of exponentially smoothed series
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Next, we have to identify an appropriate model for the smoothed series. The graphs

of autocorrelation function and partial autocorrelation function in Figure 3.4 suggest

that the series may have an AR(1) structure.

Figure 3.4: ACF and PACF of smoothed series

We estimate the parameters α, µ and σ by using the methods: conditional least

squares, quasi maximum likelihood and the maximum likelihood and the results are

summarized in Table 3.6.

Then fit the Gumbel distribution to the data to check the marginal stationarity.

The histogram of the data and the true density are superimposed in the Figures 3.5

and 3.6 respectively for BSE and S&P indices.
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Table 3.6: The estimated values of the parameters for two data sets under three
methods

Estimation Methods BSE Index S&P 500 Index

CLSE α̂ =0.2740 α̂ = 0.2292
(σ = 1) µ̂ =-0.5770 µ̂ = -0.5649

α̂ =0.2733 α̂ = 0.2283
QMLE µ̂ =-0.0039 µ̂ = -0.0756

σ̂ = 0.0072 σ̂ = 0.1526

α̂ = 0.2698 α̂ =0.1947
MLE µ̂ =-0.0038 µ̂ =-0.0606

σ̂ = 0.0075 σ̂ = 0.1363

Figure 3.5: Histogram of smoothed BSE data with super imposed extreme value
distribution based on the parameters estimated by (a): QMLE, (b) MLE
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Figure 3.6: Histogram of smoothed S&P 500 data with super imposed extreme
value distribution based on the parameters estimated by (a): QMLE, (b) MLE

The panel (b) in the Figure 3.5 and Figure 3.6 show that there is a close agreement

between the observed and fitted density function whose parameters are estimated

by the maximum likelihood method.

For a visual check, we plot in Figure 3.7, the ACF of the residuals from the model.

It is observed that there is no significant correlation among the residuals.
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Figure 3.7: ACF of the residual series

Next, we have to test the model adequacy by checking the validity of the assump-

tions imposed on the errors. Under normal circumstances, we propose Portmanteau

tests and Ljung-Box test for diagnosing model validity. Since we are working with

non-Gaussian set up, the above mentioned tests may not be suitable for our model.

Therefore we apply a non-parametric test based on permutation entropy proposed

by Matilla-Garćıa and Ruiz Maŕın (2008) for testing the independence of errors.

Recently, serial independence has been increasingly studied by using entropy mea-

sures; see for example, Matilla-Garćıa and Ruiz Maŕın (2008). These measures

avoid restrictive parametric assumptions on the probability distribution generating

the data, and they can capture the dependence present in a time series. In this
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method, given a time series, we study the dependence present in the series by trans-

lating the problem into symbolic dynamic and then, we use the entropy measure

associated to these symbols to test the dependence present in the time series. More

concretely, we study all m! permutations (symbols) π of length m in the symmetric

group S∗m which are considered here as possible order types of m different numbers.

Afterwards, we give the distribution followed by the mentioned symbols and define

the entropy measure associated to them. This entropy measure is called permuta-

tion entropy. Moreover, under the null hypothesis of independence we prove that an

affine transformation of the permutation entropy is asymptotically χ2 distributed.

In this method, we first construct a symmetric group corresponding to the embed-

ding dimension m = 4. For a given set of T observations, the embedding dimension

will be the largest m that satisfies 5m! ≤ T with m = 2, 3, .... Then find the

relative frequency pπ of a symbol π ∈ S∗m using

p(π) := pπ =
# {t ∈ T |t is of π − type}

T −m+ 1
.

Now, under this setting we can define the permutation entropy of a time series for

an embedding dimension m ≥ 2. This entropy is defined as the Shannon’s entropy

of the m! distinct symbols as follows:

h(m) = −
∑
π∈S∗m

pπ ln (pπ).

Permutation entropy, h(m), is the information contained in comparing m consecu-

tive values of the time series. It is clear that 0 ≤ h(m) ≤ ln(m!) where the lower



Chapter 3. GEVAR(1) Model 87

bound is attained for an increasing or decreasing sequence of values and the up-

per bound for a completely random system (iid sequence) where all m! possible

permutations appear with the same probability.

Then, we can define the affine transformation of the permutation entropy, under

the null hypothesis of independence, as

G (m) = 2 (T −m+ 1) (Ln (m!)− h (m)) ,

which is asymptotically χ2
m!−1 distributed.

Concerning the BSE index, the computed value of G(m) is equal to 11.2364. The

computed value of G(m) in the S&P data is equal to 17.0191. Both values are less

than the 5% Chi-square critical value at degrees of freedom 23. Hence, we conclude

that there is no significant serial dependence among the residuals. That is, the

GEVAR(1) is adequate for the above data sets.

Note:

In the above analysis, we have considered the BSE index values from 4, January

2010 to 30, June 2011 for the model construction purpose. The time series analysis

revealed that the model is adequate for the data. With an objective to validate the

model, we again fitted the data from 1, July 2011 to 31, December 2013 and found

that the model works well.

The results of this chapter are reported in the paper Balakrishna and Shiji (2013).





Chapter 4

Weibull Product Autoregressive

Models

4.1 Introduction

In the context of analysing financial time series, it is important to study the be-

haviour of market volatility, which is measured in terms of the conditional vari-

ance of return given the past. One way of analysing the stochastic volatility is

by modelling the squares or absolute values of the sequence of returns. These are

non-negative variables and exhibit a tendency to follow heavy-tailed and skewed

distributions such as log-normal, Pareto, Weibull, etc. It is well known that the

return series are serially dependent and hence the classical method of data analysis

based on random samples is of no use. So, it is necessary to introduce stochastic

models to generate sequences of non-negative dependent random variables.

89
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Linear autoregressive models have played a significant role in modelling the depen-

dence structure in the study of Gaussian and non-Gaussian time series. When the

time series of interest is a sequence of non-negative random variables as mentioned

above, the product form of the models are preferable compared to their linear coun-

terparts. In this chapter, we study the properties of a model with product structure

which generates a sequence of Markov dependent Weibull random variables. The

role of Weibull distribution in modelling non-negative variables such as failure time,

sea wave height, wind velocity, etc., is well known in the literature. The Weibull dis-

tribution is also used to model extreme events such as floods and snowfall, extreme

temperatures, large fluctuations in exchange rates, market crashes, etc.

Even though, the statistical analysis of Weibull distribution is well studied based

on random samples, not much research is available on the problem of modelling

when the observations are serially dependent. Sim (1986) introduced a model with

minification structure, to define a sequence of Markov dependent Weibull random

variables. But there are difficulties in handling the inference problems, (cf. Balakr-

ishna and Jacob (2003)).

Rest of the chapter is organized as follows. In Section 4.2, we discuss some of the

useful properties of the sequence generated by the model. We propose an approxi-

mate method to analyse the innovation random variable in Section 4.3. The method

of maximum likelihood estimation is discussed in Section 4.4. The simulation results

to assess the performance of the estimates are presented in Section 4.5. Finally, in

Section 4.6, we apply the model to a real life data.
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4.2 Model and Properties

The general form of the first order product autoregressive (PAR(1)) model is given

by

Yt = Y α
t−1Vt, t = 1, 2, ..., 0 ≤ α < 1 , (4.1)

where {Vt} is a sequence of independent and identically distributed non-negative

innovation random variables. Assume that Y0 > 0, is independent of V1 and hence

it follows that Yt depends on Vj for j ≤ t and is independent of Vj for j > t . Under

these conditions, {Yt} generates a stationary Markov sequence. For an explicit

analysis of the model it is important to know the stationary marginal distribution

of {Yt}. This in turn requires to identify the distribution of {Vt} for a specified

marginal distribution of {Yt}, a problem common in the study of non-Gaussian

time series models. If the innovation random variable admits a density function

then the one-step transition density function for the Markov sequence {Yt} can be

expressed as

f(yt|yt−1) =
1

yαt−1

fV

(
yt
yαt−1

)
, (4.2)

where, fV (.) is the marginal density function of {Vt}. McKenzie (1982) introduced

this model to define a stationary sequence of gamma random variables through the

properties of linear gamma AR(1) model of Gaver and Lewis (1980). However,

the form of the innovation distribution was not obtained explicitly. McKenzie’s

interest was to establish a characterizing property of the gamma sequence, namely

{Yt} and {log Yt} have the same autocorrelation structure. Later, Abraham and

Balakrishna (2012) obtained the explicit form of the innovation distribution for the

gamma PAR(1) model and studied its properties.
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Balakrishna and Lawrence (2012) discussed the PAR(1) model with gamma marginal

distribution by approximating the innovation densities. They also identify some

more members of the family of rvs which admit explicit solutions for Vt in the

model (4.1). In the present chapter, we concentrate on the properties and applica-

tions of the Weibull PAR(1) model. Balakrishna and Lawrence (2012) proved that

the random variable Yt defined by (4.1) follows a Weibull distribution denoted by

Weibull(θ, λ) with probability density function,

fY (y) = λθyθ−1 exp
(
−λyθ

)
, y ≥ 0, λ > 0, θ > 0, (4.3)

if the distribution of the corresponding innovation Vt is given by that of
(
λ−(1−α)U−α

)1/θ
,

where U has a positive stable distribution, with Laplace Transform (LT), ϕU(s) =

exp (−sα). The second order properties of our Weibull PAR(1) sequence are stated

below for ready reference. The mean, variance and the ACF are respectively given

by

E(Yt) = λ−1/θΓ(θ−1 + 1) ; V (Yt) = λ−2/θ
{

Γ
(
2θ−1 + 1

)
− Γ

(
θ−1 + 1

)2
}

; (4.4)

ρY (j) =
Γ(θ−1 + 1) {Γ[θ−1(αj + 1) + 1]− Γ(θ−1αj + 1)Γ(θ−1 + 1)}

(Γ (θ−1αj + 1) {Γ(2θ−1 + 1)− Γ(θ−1 + 1)2})
, j = 1, 2, . . . .

(4.5)

Note that the innovation random variable, Vt, for the Weibull model does not have a

closed form for its density function. Hence, the likelihood based inference becomes

difficult. However moments of all orders exist and are given by

E(V k
t ) = λ−k(1−α)/θΓ(kθ−1 + 1)/Γ(αkθ−1 + 1), (4.6)
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so that one can obtain moment estimators of the parameters. But, the moment

estimators are not efficient in general. We have computed the moment estimates of

the parameters based on simulated samples and found that they are seriously biased.

In our further analysis, we will consider these estimators as our initial estimates.

Next, we propose a method for analysing the above model based on an approximate

innovation.

4.3 Approximation to Innovation Variable

Aiming at the likelihood based inference for the model parameters, we propose an

approximation approach to the problem. According to this approach we assume

that the innovation Vt also follows a Weibull distribution with its scale and shape

parameters are chosen by matching the first two moments of the random variables

on both sides of the equation (4.1). We justify the choice of Weibull distribution

for the innovation through a result of Brockwell and Brown (1978). That is, if

U is a positive stable random variable with LT, ϕU(s) = exp (−sα), then U−α

converges to an exponential random variable with unit mean as α → 0. Hence,

Vt =
(
λ−(1−α)U−α

)1/θ
tends to a Weibull(θ, λ) random variable as α → 0. This

result motivated us to assume Weibull(β, δ) distribution for the innovation. We

chose the parameters δ and β by equating the first two moments of the stationary

random variable Yt and Y α
t−1Vt as the distribution is completely determined by

these two parameters. The required moments can be obtained using (4.4) and (4.6)

along with the independence of Yt−1 and Vt . The proposed approximation works

very well and which is confirmed by numerical comparison. By the above method
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the expressions for the innovation parameters β and δ are obtained by solving the

following equations for given values of α, θ, λ,

B(β−1, β−1)

2β
=

B(θ−1, θ−1)

αB(αθ−1, αθ−1)
and δ =

(
αλ(1−α)/θ

β

)β (
Γ(αθ−1)Γ(β−1)

Γ(θ−1)

)β
,

(4.7)

where B(., .) denotes a beta function, given by B(x, y) = Γ(x) Γ(y)/Γ(x+ y). The

probability density function of Y α
t−1Vt can be numerically evaluated using the equa-

tion,

fY αt−1Vt
(x) =

λθδβ

α
y
θ
α
−1

∫ ∞
0

vβ−
θ
α
−1 exp(−δvβ − λ(y/v)θ/α) dv. (4.8)

This density is taken as an approximation to that of the Weibull(θ, λ) density

function.

The plots in Figure 4.1 compare the exact Weibull(θ, λ) probability density function

with the approximate one for selected parameter values. We have noted the similar

behaviour for several other combinations of the parameters.

The Figure 4.2 is the histogram of simulated sample of size 5000 from the exact

Weibull PAR(1) model superimposed on the Weibull density using the approximate

innovation. The plots in panel (a) and (b) of Figure 4.2 can be paired with panel (a)

and (d) of Figure 4.1 respectively. These figures further confirm that the proposed

approximation is acceptable for practical purposes.
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Figure 4.1: Comparison of exact and approximate Weibull density when (a)
α=0.95, θ=3, λ=5. (b) α=0.8, θ=0.7, λ=2. (c)α=0.5, θ=2, λ=4. and (d)

α=0.1, θ=2, λ=4.

4.4 Maximum Likelihood Estimation

If we have an explicit form for the innovation density function then the likeli-

hood based inference is possible for the PAR(1) model (4.1). We have already

observed that for a Weibull PAR(1) model the approximate innovation density

works very well. Let (y1, y2, ..., yT ) be an observed realization from the model (4.1)

with Weibull(θ, λ) marginal density. Since the innovation random variable admits

a density function we have an explicit expression for the one-step transition density

function, f(yt|yt−1) of the Markov sequence defined by (4.1). Then the likelihood
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Figure 4.2: Theoretical Weibull marginal density function based on approxi-
mate innovation and its simulated version from the exact Weibull PAR(1) model

for (a) α=0.95, θ=3, λ=5 and (b) α=0.1, θ=2, λ=4.

function of the parameter vector µ∗ = (α, β, δ)′ = (µ∗1, µ
∗
2, µ

∗
3)′, (say) can be ex-

pressed as,

L(µ∗|y1, y2, ..., yT ) = fY (y1)
T∏
t=2

f(yt|yt−1) = fY (y1)
T∏
t=2

fV

(
yt
yαt−1

)
1

yαt−1

, (4.9)

where fY (.) and fV (.) are the marginal density functions of {Yt} and {Vt} respec-

tively. Once the MLE of µ∗ is found from the sample, the MLE of the original

parameter µ = (α, θ, λ)′ = (µ1, µ2, µ3)′, (say) can be obtained using the relation

(4.7). Further analysis of MLE is carried out by skipping the first term on the right
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side of (4.9) as it will not affect its asymptotic properties. Hence, the likelihood

function we considered is given by

L(µ∗|y1, y2, ..., yT ) =
T∏
t=2

δ β

(
yt
yαt−1

)β−1

exp

(
−δ
(

yt
yαt−1

)β)
1

yαt−1

.

The log-likelihood function can be written as,

log L(µ∗|y1, y2, ..., yT ) = (T − 1) log δ + (T − 1) log β + (β − 1)
T∑
t=2

log

(
yt
yαt−1

)

− δ
T∑
t=2

(
yt
yαt−1

)β
− α

T∑
t=2

log yt−1.

Now, the MLE of µ∗ can be obtained by solving the following system of likelihood

equations:

(T − 1)

(
T∑
t=2

(
yt
yαt−1

)β)−1 T∑
t=2

(
yt
yαt−1

)β
log yt−1 −

T∑
t=2

log yt−1 = 0. (4.10)

(T − 1)

β
+

T∑
t=2

log

(
yt
yαt−1

)
− (T − 1)

(
T∑
t=2

(
yt
yαt−1

)β)−1 T∑
t=2

(
yt
yαt−1

)β
log

(
yt
yαt−1

)
= 0.

(4.11)

δ = (T − 1)

(
T∑
t=2

(
yt
yαt−1

)β)−1

. (4.12)

These equations have to be solved by numerical methods and are illustrated using

simulated samples in Section 4.5.

Next, we discuss the asymptotic properties of the MLE. Billingsley (1961), Basawa

and Rao (1980) developed the standard theory on the properties of MLE for a

stationary Markov sequences. It can be applied to prove that µ̂∗ is consistent
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and asymptotic normal with mean vector 0 and covariance matrix C(µ∗), which is

defined by (3.20) in Chapter 3.

That is,

√
n (µ̂∗ − µ∗) L−→ N(0, C(µ∗)),

where

C(µ∗) = ((Ci j(µ
∗))) = A(µ∗)−1B(µ∗)A(µ∗)−1

with (i, j)th elements of A(µ∗) and B(µ∗) are respectively given by

Ai j(µ
∗) = E

(
∂2

∂µ∗
i
∂µ∗

j

log f

)
and Bi j(µ

∗) = E

(
∂

∂µ∗
i

log f
∂

∂µ∗
j

log f

)
,

where f is the conditional density function given in (4.2).

Now, we compute the elements of the variance-covariance matrix. We have

log f = log δ + log β + (β − 1) log

(
yt
yαt−1

)
− δ

(
yt
yαt−1

)β
− α log yt−1.
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Then, the elements of A(µ∗) are obtained as

A11 = E

(
∂2 log f

∂α2

)
= −β2

(
π2

6 θ2
+

(
γ + log λ

θ

)2
)

;

A12 = E

(
∂2 log f

∂α ∂β

)
= −

(
γ + log λ

θ

)
(1− γ − log δ) = A21;

A13 = E

(
∂2 log f

∂α ∂δ

)
= −β

δ

(
γ + log λ

θ

)
= A31;

A22 = E

(
∂2 log f

∂β2

)
= − 1

β2

(
π2

6
+ (1− γ − log δ)2

)
;

A23 = E

(
∂2 log f

∂β ∂δ

)
= − 1

β δ
(1− γ − log δ) = A32;

A33 = E

(
∂2 log f

∂δ2

)
= − 1

δ2
;

and that of B(µ∗) are

B11 = E

(
∂ log f

∂α

∂ log f

∂α

)
= β2

(
π2

6 θ2
+

(
γ + log λ

θ

)2
)

;

B12 = E

(
∂ log f

∂α

∂ log f

∂β

)
=

(
γ + log λ

θ

)
(1− γ − log δ) = B21;

B13 = E

(
∂ log f

∂α

∂ log f

∂δ

)
=
β

δ

(
γ + log λ

θ

)
= B31;

B22 = E

(
∂ log f

∂β

∂ log f

∂β

)
=

1

β2
+

π2

2β2
− 1

β2
(γ + log δ)(2− γ − log δ);

B23 = E

(
∂ log f

∂β

∂ log f

∂δ

)
=

1

β δ
(1− γ − log δ) = B32;

B33 = E

(
∂ log f

∂δ

∂ log f

∂δ

)
=

1

δ2
.
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Then, the expression of Ci j(µ
∗) = Cij, for i, j = 1, 2, 3 are obtained as

C11 =
6 θ2

π2 β2
; C12 = 0 = C21;

C13 = −6 θ δ

π2 β
(γ + log λ) = C31;

C22 =
18 β2

π4

(
π2 − 2(log δ)2 + 2(γ − 2) log λ+ 2(2− γ + log λ) log δ

)
;

C23 =
18 β δ

π4
(γ + log δ − 1)

(
π2 − 2(log δ)2 + 2(γ − 2) log λ+ 2(2− γ + log λ) log δ

)
;

= C32;

C33 =
δ2

π4
{π2[π2 + 6(3− 6γ + 4γ2)]− 36(log δ)4 − 36(log δ)3[3γ − 4− log λ]}

+
δ2

π4
{12[3γ3 − 12γ2 + γ(15 + π2)− 6] log λ+ 6π2(log λ)2}

+
δ2

π4
{36(γ − 1)[π2 − 2 + 3γ − γ2 + (3γ − 5) log λ] log δ}

+
δ2

π4
{18[π2 − 10 + 16γ − 6γ2 + (6γ − 8) log λ](log δ)2},

where γ = 0.5772 is the Euler’s constant.

The Fisher information matrix, C = ((Cij (µ))), in terms of the original parameter

µ can be obtained using (4.7). If σ2
i is the ith diagonal element of C, then the

asymptotic variance of µ̂i is σ2
i /n. Then, for a specified value of significance level τ ,

the 100(1−τ)% confidence interval for µi is given by µ̂i±Zτ/2(σ̂i/
√
n), where σ̂i is the

ith diagonal element of C, with unknown parameters replaced by the corresponding

MLE and Zτ/2 is an appropriate percentile point of standard normal distribution.
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4.5 Simulation

In this section, we carry out a simulation study to assess the finite sample perfor-

mance of the MLE of the parameters. We generate a sample of size T from the

Weibull PAR(1) model (4.1) using the innovation random variable described in Sec-

tion 4.3. This requires the simulation of observations from a positive stable random

variable Ut, which is detailed in Section 3.4 and thus obtain Vt =
(
λ−(1−α)U−αt

)1/θ
,

t = 1, 2, ..., for specified values of the parameters. Then form the sequence {Yt}

using (4.1). We used this simulated sample of Weibull series to obtain the MLE of

the parameters by solving the likelihood equations (4.10) - (4.12). Then we repeated

the computation of MLE for 100 samples and took their arithmetic mean as the

final estimate. The computational algorithm are given in Appendix B.
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The computations are carried out for several combinations of parameters and sum-

marized in Table 4.1 and 4.2. The values in the parenthesis are the standard error

of the respective MLE calculated over the repetitions. As can be seen from the

table, for series length 200 estimation is reasonably satisfactory and becomes more

accurate with increasing length.

Table 4.1: The MLE and corresponding standard errors (in parenthesis) based
on simulated observations of sample sizes n=200, 500.

True values
MLE MLE

Based on n=200 Based on n=500

α θ λ α̂ θ̂ λ̂ α̂ θ̂ λ̂

0.90 0.70 1.00
0.8974 0.6733 1.2545 0.8963 0.6755 1.2394

(0.0127) (0.1235) (0.4152) (0.0071) (0.0649) (0.2723)

0.80 2.00 1.50
0.7992 2.1719 1.5573 0.7991 2.1951 1.5270

(0.0246) (0.3100) (0.3937) (0.0124) (0.2133) (0.2389)

0.70 2.00 2.00
0.6866 2.1075 2.0762 0.7004 2.0823 2.0279

(0.0309) (0.3671) (0.3690) (0.0186) (0.1179) (0.2049)

0.70 0.80 2.00
0.6938 0.7150 2.2270 0.6970 0.7187 2.1590

(0.0314) (0.0974) (0.3647) (0.0179) (0.0463) (0.1812)

0.60 2.00 3.00
0.5937 2.0176 3.1407 0.5976 2.0390 3.0900

(0.0337) (0.2956) (0.4240) (0.0220) (0.1231) (0.2813)

0.50 2.00 0.80
0.4864 2.0004 0.8305 0.4929 2.0276 0.8043

(0.0428) (0.1622) (0.1228) (0.0264) (0.0985) (0.0733)

0.40 3.00 4.00
0.3977 3.1056 4.1465 0.4012 3.0501 4.1304

(0.0453) (0.2207) (0.4568) (0.0275) (0.1209) (0.2920)

0.20 3.00 5.00
0.2042 3.0173 5.0319 0.1998 3.0369 5.0436

(0.0528) (0.1770) (0.5128) (0.0323) (0.1111) (0.3199)
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Table 4.2: The MLE and corresponding standard errors (in parenthesis) based
on simulated observations of sample sizes n=1000, 2000.

True values
MLE MLE

Based on n=1000 Based on n=2000

α θ λ α̂ θ̂ λ̂ α̂ θ̂ λ̂

0.90 0.70 1.00
0.8992 0.6600 1.2150 0.8992 0.6569 1.2199

(0.0060) (0.0524) (0.1809) (0.0041) (0.0319) (0.1285)

0.80 2.00 1.50
0.7993 2.1945 1.5224 0.7987 2.1942 1.5187

(0.0099) (0.1193) (0.1564) (0.0068) (0.0691) (0.1131)

0.70 2.00 2.00
0.6988 2.0764 2.0727 0.6993 2.0737 2.0683

(0.0119) (0.0981) (0.1340) (0.0093) (0.0683) (0.1151)

0.70 0.80 2.00
0.6988 0.7102 2.1810 0.7009 0.7076 2.1517

(0.0119) (0.0381) (0.1250) (0.0089) (0.0235) (0.0977)

0.60 2.00 3.00
0.5983 2.0471 3.0521 0.5994 2.0244 3.0831

(0.0161) (0.0753) (0.1743) (0.0115) (0.0587) (0.1425)

0.50 2.00 0.80
0.4989 2.0126 0.8067 0.4991 2.0103 0.8002

(0.0190) (0.0739) (0.0530) (0.0128) (0.0488) (0.0347)

0.40 3.00 4.00
0.3959 3.0573 4.1438 0.3990 3.0594 4.1021

(0.0202) (0.0856) (0.1922) (0.0136) (0.0542) (0.1393)

0.20 3.00 5.00
0.1988 3.0091 5.0239 0.1984 3.0139 5.0506

(0.0222) (0.0758) (0.2228) (0.0169) (0.0543) (0.1594)

4.6 Data Analysis

We now apply the Weibull PAR(1) model described in the earlier sections to a

real data set. The data consists of 734 observations of the daily maximum of BSE

(Bombay Stock Exchange) index values from 2, January 2007 to 31, December 2009.

The observations are not available on Saturday, Sunday and other National holidays.

The data is downloaded from the website Yahoo Finance. Figure 4.3 provides the

time series plot of the data and indicates that the time series is not stationary. The
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time series plot of the first order difference of the log-transformed data is given in

Figure 4.4.

Figure 4.3: Time series plot of the daily maximum of BSE index values

Figure 4.4: Time series plot of the first order difference of the log-transformed
BSE data
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We form the return series {Rt} by considering the log-transform of the successive

indices and then obtain its exponential smoothing, say {St}, using the formula

St = cRt + (1− c)St−1, for t = 1, 2, ..., 0 < c < 1 and S0 is taken as the arithmetic

mean of the return series. The value of c is chosen by minimizing the residual

sum of squares and in the present case, it is found that c = 0.9. Then obtain,

yt = |Rt − St|, t = 1, 2, ..., and analyse this series by Weibull PAR(1) model. We

use the absolute values of the smoothed data to retain the non-negativity. Figure

4.5 is the plot of the absolute values of the exponentially smoothed series.

Figure 4.5: Time series plot of absolute value of the smoothed BSE data

The MLE of the parameters are obtained as α̂ = 0.1490, θ̂ = 1.0676, λ̂ = 0.0146.

The first panel of Figure 4.6 shows the histogram of the series, {yt} super-imposed

by the Weibull density function evaluated with these estimated parameters. The
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plot in the second panel of Figure 4.6 is the histogram of the residuals obtained by

fitting a Weibull PAR(1) model superimposed by the corresponding Weibull density

function.

Figure 4.6: Histogram of smoothed BSE data with superimposed weibull den-
sity with parameters α= 0.1490; θ=1.0676; λ=0.0146 and histogram of residuals

with superimposed Weibull (1.0077, 0.0299) density

These plots show that the Weibull PAR(1) model fits well for the given data. Yet, we

have to check formally the goodness-of-fit by some statistical procedure. Since the

classical Chi-square test of goodness-of-fit developed under the normal assumption,

we use the Chi-square test of goodness-of-fit for dependent random variables pro-

posed by Bhat (1961). In the next section, we briefly discuss the method proposed

by Bhat (1961).
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4.6.1 Bhat’s Chi-square goodness-of-fit test

The fundamental assumption underlying the classical Chi-square test of goodness-

of-fit is the independent and unordered nature of the sample observations. Patankar

(1954) developed the goodness-of-fit of frequency distribution obtained from stochas-

tic processes. In Patankar’s test, the data are divided into r mutually exclusive

groups and the corresponding group frequencies will be denoted by n1, n2, ..., nr.

If the group frequencies expected from the parent distribution are m1, m2, ..., mr,

then Pearson’s measure of deviation is defined by,

χ2 =
r∑
i=1

(ni −mi)
2

mi

. (4.13)

Then, the test is provided by the fact that as sample size tends to infinity, the

sampling distribution of χ2 tends to that of χ2 distribution with r − 1 degrees of

freedom. The importance of this test is that the χ2 criterion can be shown to be

equivalent to the likelihood-ratio test in large samples.

Patankar (1954) derived the approximate asymptotic distribution of (4.13) based

on the assumption that for a large sequence of observations the marginal frequencies

are asymptotically multivariate normal. He specified the asymptotic distribution of

(4.13) completely by its first two moments and derived the mean and variance of

(4.13) which is given by,

E(χ2) =
r∑
i=1

σ2
i

mi

= A, say, and V(χ2) = 2
r∑

i, j=1

σ2
i j

mi mj

= 2 B, say.
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Then, a better approximation to the standard χ2 is obtained by taking Aχ2/B to

have an asymptotic χ2 distribution with A2/B degrees of freedom. This is called

the modified χ2 test of goodness-of-fit.

To obtain the expression of σ2
i and σi j, Patankar (1954) employed a familiar device

of putting,

X(t) i =

 1, if at any time t, the system is in the ith group

0, otherwise

where i = 1, 2, ..., r ; t = 1, 2, ..., n.

Then, ni =
∑n

t=1 X(t) i and after some algebra, we get the expression,

σ2
i = mi−m2

i+2
n−1∑
s=1

(n−s)P (s)
i i , and σi j = −mimj+

n−1∑
s=1

(n−s)P (s)
i j +

n−1∑
s=1

(n−s)P (s)
j i ,

(4.14)

where P
(s)
i j is the probability of obtaining the observations belonging to the ith and

jth groups at times t and t+ s, respectively, for all t (assuming stationarity).

Bhat (1961) modified the Patankar’s method by using any arbitrary distribution for

marginal frequencies. Let nu be the frequency of the t-tuple, u = (u1, u2, ..., ut) in

a sequence of length n+ t− 1 from an mth order stationary Markov chain; and let

mu be its expected value in a new sequence of the same length. To test whether the

chain has a specified transition probability matrix, one may construct the statistic

χ2
t =

∑
u

(nu −mu)
2

mu

(4.15)
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and test the goodness-of-fit for nu. In (4.15) the summation extends over those

values of u for which mu does not vanish.

He obtained the expression for E(χ2
t ) and V (χ2

t ) as in the similar way Patankar

(1954) derived. The expressions are

E(χ2
t ) = kt − n+ 2

n−1∑
s=1

n− s
n

tr(P s
t ),

V (χ2
t ) = 2

{
kt − n2 + 4

∑
s

n− s
n

tr(P s
m) + 4

∑
s,t

n− s
n

n− t
n

tr(P s+t
m )

}
,

where tr(A) is the trace of matrix A, and kt is the number of t-tuples for which

mu does not vanish. These expressions can be calculated if we know tr(P r
1 ). Thus

tr(P r
1 ) is expressed as

tr(P r
1 ) ∼=

∫ ∞
−∞

fr(x− ρrx) dx

and because fr is a density function, tr(P r
1 ) equals (1 − ρr)−1. Because all the

expected frequencies may be assumed non-zero, we have

E(χ2
t ) = kt − n+ 2

n−r∑
r=1

n− r
n

(1− ρr)−1

V (χ2
t ) = 2

{
kt − n2 +

∑
r

n− r
n

1

1− ρr
+ 4

∑
r,t

n− r
n

n− t
n

1

1− ρr+t

}
.

These are the same as those derived by Patankar (1954) for the special case when

the X’s are normal variates and the class intervals equal. Thus, his results are true

even when the X’s follow a general class of continuous distributions.

Using this procedure, we check whether the series {yt} follows a Weibull distribution



Chapter 4. Weibull PAR(1) Model 110

or not. The value of Chi-square statistics obtained is 9.3353. We can therefore

accept the hypothesis that {yt} follows a Weibull distribution and the model is

suitable for the data with p-value greater than 0.001. Further, it is observed that

the ACF of the resulting residuals is negligible.

Figure 4.7: ACF of the residuals

The summary of this chapter is published in Balakrishna and Shiji (2010). In the

next chapter, we discuss the properties of the stochastic volatility models induced

by the Weibull PAR(1) model or exponentiated Extreme Value AR(1) model.



Chapter 5

Stochastic Volatility process

generated by Gumbel Extreme

Value Autoregressive model

5.1 Introduction

The Stochastic Volatility (SV) model introduced by Taylor (1986) is used to ac-

count for the well-documented autoregressive behaviour in the volatility of financial

time series. The literature in this area mainly deals with the models with normal-

lognormal distributions. An exponentiated Gaussian autoregressive sequence pro-

vides a Markov dependent sequence of log-normal random variables to describe the

conditional variances, see Tsay (2005). Taylor (1994) suggested several alternative

models to describe the evolution of conditional variances while modelling stochastic

111
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volatilities. As quoted by Shephard (1996), volatility models provide an excellent

testing ground for the development of new non-linear and non-Gaussian time series

techniques. A number of autoregressive models are introduced for non-negative rvs

in the context of non-Gaussian time series. In principle, one can very well use these

autoregressive models to describe the evolution of time-dependent volatilities. As

an alternative to normal-lognormal SV models, Abraham et al. (2006) proposed a

SV model in which the volatility sequence is generated by a gamma AR(1) sequence

of Gaver and Lewis (1980).

In this chapter, we study the properties of Gumbel Extreme Value Stochastic

Volatility (GEV-SV) model where the volatilities are generated by GEVAR(1) pro-

cess discussed in Chapter 3. One difficulty we faced in the analysis of GEV Markov

sequence is that the transition distribution does not admit closed form density and

hence the likelihood based inference is not an easy task. We used numerical tech-

niques to optimize the likelihood function. We considered the GEV distribution

corresponding to maximum rvs as marginal for the GEVAR(1) process in Chapter

3. When we employ this distribution for modelling volatility, we are getting the

kurtosis of the return series in the form,

Kr = 3
Γ (1− 2σ)

[Γ (1− σ)]2
, σ ≤ 0.5.

Since there is restriction on the parameter σ, we consider Gumbel distribution

corresponding to minimum rv as an alternative.

The GEV-SV model and its second order properties are described in Section 5.2 of

this chapter. We discussed the estimation procedure by the method of moments in
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Section 5.3. A simulation study is carried out in Section 5.4. In Section 5.5, we

present the results on data analysis using our model.

5.2 Model and Properties

Let {rt} be a sequence of returns on certain financial asset and the volatilities are

generated by a Markov sequence {exp(ht)} of non-negative rvs. Define the SV

model

rt = exp (ht/2) εt; (5.1)

ht = αht−1 + ηt, t = 1, 2, ..., 0 ≤ α < 1, (5.2)

where {εt} is a sequence of independent and identically distributed standard normal

random variables. We assume that the sequence {εt} is independent of ht and ηt

for every t. Here we assume that for every t, the volatility, ht, is a GEV rv with

probability density function

fht(x; µ, σ) =
1

σ
Exp

(
x− µ
σ

)
Exp

(
−Exp

(
x− µ
σ

))
, (5.3)

−∞ < x <∞, −∞ < µ <∞, σ > 0 and denoted by an GEV (µ, σ) distribution.

Note that if {ht} is an Extreme value autoregressive process, then exp(ht/2) has a

Weibull distribution for every t. In order to have this marginal distribution for {ht}

defined by (5.2) we need to have the distribution of ηt expressed by

ηt
L
= (1− α)µ− σ Z, and Z

L
= − log

(
U−α

)
, (5.4)
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where L denotes the equality in distribution, U denotes a positive stable rv with

Laplace transform, ϕ(s) = e−s
α
, 0 ≤ α < 1, whose density function does not admit

a closed form expression. The mean and variance of {ηt} are respectively given by

E(ηt) = (1− α) (µ− σ γ) = µ∗, (say) and V(ηt) = (1− α2)
π2σ2

6
= σ2∗, (say),

(5.5)

where γ ≈ 0.5772 is the Euler’s constant. Since the sequence {εt} follows standard

normal distribution, the odd moments of rt are zero and its even moments are given

by

E
(
r2r
t

)
= (2r − 1) (2r − 3) ...3.1. erµ Γ (rσ + 1) , r = 1, 2, ....

Then V (rt) = eµ Γ (σ + 1) and the kurtosis of rt becomes

Kr = 3
Γ (2σ + 1)

[Γ (σ + 1)]2
. (5.6)

By choosing different values for σ, one can get a distribution with larger kurtosis

as shown in Figure 5.1.

The structure of the model (5.1) implies that the ACF of {rt} is zero and that of

{r2
t } is significant. Thus, the variance and covariance function of the squared return

series are obtained as

V
(
r2
t

)
= E

(
r4
t

)
−
(
E
(
r2
t

))2

= e2µ
(
3 Γ (2σ + 1) − [Γ (σ + 1)]2

)
.

γr2t (k) = e2µ

{
Γ (σ + 1) Γ

[(
αk + 1

)
σ + 1

]
Γ (αkσ + 1)

− [Γ (σ + 1)]2
}
.
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Figure 5.1: The plot of kurtosis, Kr, of rt.

Hence, the lag k autocorrelation of the squared sequence {r2
t } is

ρr2t (k) = Corr
(
r2
t , r

2
t−k
)

=
Γ (σ + 1) Γ

[(
αk + 1

)
σ + 1

]
− [Γ (σ + 1)]2 Γ

(
αkσ + 1

)
Γ (αkσ + 1)

{
3 Γ (2σ + 1) − [Γ (σ + 1)]2

} . (5.7)

The ACF is an exponentially decreasing function of the lags for different values of

the parameters, as can be seen in Figure 5.2.
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Figure 5.2: The ACF of squared return for different combinations of the pa-
rameters

5.3 Parameter Estimation

One of the difficulties with the statistical inference for SV models is that the likeli-

hood function involves the unobservable Markov dependent latent variables. These

variables have to be integrated out using multiple integrals and this complicates

the parameter estimation by the method of maximum likelihood. Moreover, in the

present case, the probability density function of ηt in expression (5.4) does not have

a closed form and hence the other methods of estimation such as Bayesian estima-

tion, Efficient importance sampling etc., may not be appropriate. In view of this, we

employ the Generalized Method of Moments (GMM) introduced by Hansen (1982)
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for estimation.

Let (r1, r2, ..., rT ) be a realization of length T from the GEV-SV model (5.1) and θ =

(µ , σ, α)
′

be the parameter vector to be estimated. We use the moments E (r2
t ) =

eµ Γ (σ + 1) , E (r4
t ) = 3 e2µ Γ (2σ + 1) and E

(
r2
t r

2
t−1

)
= e2µ (Γ(σ+1) Γ[(α+1)σ+1])

Γ(ασ+1)
to

estimate the parameters.

If we define

f (rt , rt−1, θ) =


r2
t − eµ Γ (σ + 1)

r4
t − 3 e2µ Γ (2σ + 1)

r2
t r

2
t−1 − e2µ Γ(σ+1) Γ[(α+1)σ+1]

Γ(ασ+1)

 . (5.8)

Then the moment estimator θ̂ = (µ̂, σ̂, α̂)
′

of θ may be obtained by solving

1

T

T∑
t=1

f (rt, rt−1, θ) = 0.

The resulting moment equations for µ, σ and α are expressed as

µ̂ = Log

(
Ȳ2

Γ(σ̂ + 1)

)
;

Ȳ 2
2

Ȳ4

=
Γ(σ̂ + 1)2

3 Γ(2σ̂ + 1)
and

Ȳ22

e2µ Γ(σ + 1)
=

Γ[(α + 1)σ + 1]

Γ(ασ + 1)
,

(5.9)

where Ȳ2 = (1/T )
∑T

t=1 r
2
t , Ȳ22 = (1/T )

∑T
t=1 r

2
t r

2
t−1 and Ȳ4 = (1/T )

∑T
t=1 r

4
t .

Hansen (1982) proved that under the following stated assumptions, the generalized

moment estimators are consistent and asymptotically normal (CAN).

(i) {rt : −∞ < t <∞} is stationary and ergodic sequence.



Chapter 5. GEV-SV Model 118

(ii) The parameter space Θ is an open subset of Rq that contains the true param-

eter θ0.

(iii) f (. , θ) and ∂f (. , θ) /∂θ are Borel-measurable for each θ ∈ Θ and ∂f (r, .) /∂θ

is continuous on Θ for each r ∈ Rq.

(iv) ∂f1/∂θ is first moment continuous at θ0, D = E [∂f (rt , θ0) /∂θ] exists, is

finite, and has full rank.

(v) Let ωt = f (rt , θ0) , −∞ < t <∞ and

ϑj = E (ω0|ω−j, ω−j−1, ...) − E (ω0|ω−j−1, ω−j−2, ...), j ≥ 0. The assumptions

are that E
(
ω0 ω

′
0

)
exists and is finite, E (ω0 |ω−j, ω−j−1, ...) converges in mean

square to zero and
∑∞

j=0E
(
ϑ
′
jϑj
)1/2

is finite.

Now, we have the following theorem, proved by Hansen (1982).

Theorem 5.1. Suppose that the sequence {rt : −∞ < t <∞} satisfies the assump-

tions (i) - (v). Then
{√

T
(
θ̂ − θ

)
, T ≥ 1

}
converges in distribution to a normal

random vector with mean 0 and dispersion matrix
[
DS−1D

′]−1
, where D is as given

in (iv) and S =
∑∞

k=−∞ Γ
(k)

, Γ(k) = E
(
ωt ω

′

t−k
)
.

Since the sequence {ht} defined by (5.2) is stationary and ergodic, it follows that

the sequence {rt} given in (5.1) also possesses these properties. Further, all the

moments of rt and ht are finite. We can shown that

∂ f

∂µ
=


−eµ Γ(σ + 1)

−6 e2µ Γ(2σ + 1)

−2e2µ Γ(σ+1)Γ[(1+α)σ+1]
Γ(ασ+1)

 ;
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∂ f

∂σ
=


−eµ Ψ(σ + 1)Γ(σ + 1)

−6 e2µ Ψ(2σ + 1)Γ(2σ + 1)

−e2µ Γ(σ+1)Γ[(1+α)σ+1]
Γ(ασ+1)

(Ψ(σ + 1)− αΨ(ασ + 1) + (1 + α)Ψ((1 + α)σ + 1))

 ;

and

∂ f

∂α
=


0

0

−e2µ σ Γ(σ+1)Γ[(1+α)σ+1]
Γ(ασ+1)

(Ψ((1 + α)σ + 1)− Ψ(ασ + 1))

 ,

where Ψ(.) is a digamma function.

Thus, we see that ∂f/∂θ exists and continuous for all θ. Similarly, we can show

that E (∂f/∂θ) and E (ω0 ω
′
0) exists and finite. Hence, the regularity conditions

hold good for our SV model. Next, we derive the elements of the dispersion matrix

which are required to compute the asymptotic standard errors of the estimators.

Let

Γ(k) =


γ(k)

11
γ(k)

12
γ(k)

13

γ(k)
21

γ(k)
22

γ(k)
23

γ(k)
31

γ(k)
32

γ(k)
33

 , k = 0,±1,±2, ...,

and Γ(k) = Γ(−k), k = 1, 2, ... . Then the 3 × 3 matrix S is given by S = Γ(0) +

2
∑∞

k=1 Γ(k).

When k = 0, the elements of Γ(0) = E
(
ωt ω

′
t

)
are obtained as

γ
(0)
11 = e2µ

{
3 Γ(2σ + 1)− [Γ(σ + 1)]2

}
;
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γ
(0)
12 = e3µ {15 Γ(3σ + 1)− 3 Γ(σ + 1) Γ(2σ + 1)} ;

γ
(0)
13 = e3µ

{
3

Γ[(2α + 1)σ + 1] Γ(2σ + 1)

Γ(2ασ + 1)
− [Γ(σ + 1)]2 Γ[(α + 1)σ + 1]

Γ(ασ + 1)

}
;

γ
(0)
21 = γ

(0)
12 ;

γ
(0)
22 = e4µ

{
105 Γ(4σ + 1)− 9 [Γ(2σ + 1)]2

}
;

γ
(0)
23 = e4µ

{
15

Γ[(3α + 1)σ + 1] Γ(3σ + 1)

Γ(3ασ + 1)
− 3

Γ(σ + 1) Γ(2σ + 1) Γ[(α + 1)σ + 1]

Γ(ασ + 1)

}
;

γ
(0)
31 = γ

(0)
13 ; γ

(0)
32 = γ

(0)
23 ;

γ
(0)
33 = e4µ

{
9

Γ[(2α + 2)σ + 1] Γ(2σ + 1)

Γ(2ασ + 1)
− [Γ(σ + 1)]2 {Γ[(α + 1)σ + 1]}2

[Γ(ασ + 1)]2

}
.

Similarly, the following are the elements of Γ(k) for k = 1, 2, ...,

γ
(k)
11 = e2µ

{
Γ(σ + 1) Γ[(αk + 1)σ + 1]

Γ(αkσ + 1)
− [Γ(σ + 1)]2

}
;

γ
(k)
12 = 3 e3µ

{
Γ(σ + 1) Γ[(αk + 2)σ + 1]

Γ(αkσ + 1)
− Γ(σ + 1) Γ(2σ + 1)

}
;

γ
(k)
13 = e3µ

{
Γ[(αk+1 + α + 1)σ + 1] Γ[(αk + 1)σ + 1] Γ(σ + 1)

Γ(αkσ + 1) Γ[(αk+1 + α)σ + 1]

− [Γ(σ + 1)]2 Γ[(α + 1)σ + 1]

Γ(ασ + 1)

}
;

γ
(k)
21 = 3 e3µ

{
Γ(2σ + 1) Γ[(2αk + 1)σ + 1]

Γ(2αkσ + 1)
− Γ(σ + 1) Γ(2σ + 1)

}
;

γ
(k)
22 = 9e4µ

{
Γ(2σ + 1) Γ[(2αk + 2)σ + 1]

Γ(2αkσ + 1)
− [Γ(2σ + 1)]2

}
;
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γ
(k)
23 = 3 e4µ

{
Γ(2σ + 1) Γ[(2αk + 1)σ + 1] Γ[(2αk+1 + α + 1)σ + 1]

Γ[(2αk+1 + α)σ + 1] Γ(2αkσ + 1)

− Γ(2σ + 1) Γ(σ + 1) Γ[(α + 1)σ + 1]

Γ(ασ + 1)

}
;

γ
(k)
31 = e3µ

{
Γ(σ + 1) Γ[(α + 1)σ + 1] Γ[(αk + αk−1 + 1)σ + 1]

Γ[(αk + αk−1)σ + 1] Γ(ασ + 1)

− [Γ(σ + 1)]2 Γ[(α + 1)σ + 1]

Γ(ασ + 1)

}
;

γ
(k)
32 = 3 e4µ

{
Γ(σ + 1) Γ[(α + 1)σ + 1] Γ[(αk + αk−1 + 2)σ + 1]

Γ[(αk + αk−1)σ + 1] Γ(ασ + 1)

− Γ(2σ + 1) Γ(σ + 1) Γ[(α + 1)σ + 1]

Γ(ασ + 1)

}
;

γ
(k)
33 = e4µ

{
Γ(σ + 1)Γ[(α + 1)σ + 1]Γ[(αk + αk−1 + 1)σ + 1]Γ[(αk+1 + αk + α + 1)σ + 1]

Γ[(αk+1 + αk + α)σ + 1)Γ[(αk + αk−1)σ + 1]Γ(ασ + 1)

− [Γ(σ + 1)]2 {Γ[(α + 1)σ + 1]}2

[Γ(ασ + 1)]2

}
.

The 3 × 3 matrix D is evaluated using the form D = E (d f (rt, θ) /dθ) and its

elements are:

D11 = − eµ Γ(σ+1);

D12 = − 6 e2µ Γ(2σ+1);

D13 = − 2 e2µΓ(σ + 1) Γ[(α + 1)σ + 1]

Γ(ασ + 1)
;

D21 = − eµ Γ(σ+1) Ψ(1+σ);
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D22 = − 6 e2µ Γ(2σ+1) Ψ(1+2σ);

D23 = − e2µΓ(σ + 1) Γ[(α + 1)σ + 1]

Γ(ασ + 1)
{Ψ(1 + σ) + (1 + α) Ψ[1 + (1 + α)σ]

−αΨ(1 + ασ)} ;

D31 = D32 = 0;

D33 = − e2µ Γ(σ + 1) Γ[(α + 1)σ + 1]

Γ(ασ + 1)
[(1 + α)Ψ (1 + (α + 1)σ)− αΨ (1 + ασ)] ;

Hence the asymptotic dispersion matrix becomes 1
T

Σ , where

Σ =
[
DS−1D

′
]−1

. (5.10)

The diagonal elements of this matrix are used to compute the asymptotic standard

errors of the estimators in the next section.

5.4 Simulation Study

We carry out a simulation study to understand the performance of the estimators

with sample sizes 1000 and 2000. First, we generate a sample of size T from the

GEV Markov sequence, {ht}, specified in (5.2) using the innovation random variable

described in (5.4). The method of generating GEV Markov sequence is described

in Section 3.4. Based on this realization, we simulate the sequence {rt} using (5.1).

Then we obtain the estimates by solving (5.9). The algorithm are given in Appendix

C.
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For each specified value of the parameter, we repeat the experiment 1000 times for

computing the estimates and then averaged them over the repetitions. The average

estimates and corresponding Root Mean Square Errors (RMSE) based on simulated

observations are reported in Tables 5.1 and 5.2.

We also calculate the asymptotic standard deviation based on the theoretical values

of the parameters. They are obtained as the square root of the diagonal elements

of the corresponding asymptotic dispersion matrices given in (5.10). These values

are compared with the estimated RMSE of the respective estimates. For a better

estimation method these values become closer. From the above tables, we observe

that the estimates µ̂, α̂, and σ̂ are slightly biased. When the sample size is large, the

estimates perform reasonably well and there is a significant reduction in asymptotic

standard deviations and root mean square errors. Hence, we claim that the method

of moment estimation yields good estimates for the parameters involved.

5.5 Data Analysis

To illustrate the application of the proposed model, we analysed the daily stock

price index returns using the model defined above. We use three sets of data for the

analysis purpose: (1) the closing index data of Bombay Stock Exchange (BSE) for

the period 2000-2010, (2) the opening index data of Standard and Poor 500 (S&P

500) for the period 2000-2009 and (3) low index data of S&P 500 for the period

2000-2009. The time series plots of these data are given in Figure 5.3. The left
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panels show the plots of actual data series and the log-return series are on the right

panels.

Figure 5.3: Time series plot of the stock prices and the return
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Denoting the daily price index by pt, the returns are transformed into continuously

compounded rates centered around their sample mean:

rt = 100

[
ln

(
pt
pt−1

)
−
(

1

T

) T∑
t=1

ln

(
pt
pt−1

)]
.

The summary statistics of the return series are reported in Table 5.3, where Q(20)

and Q(2)(20) are the Ljung-Box statistic for return and squared return series with lag

20, respectively. The corresponding χ2 table value at 5% significance level is 10.117.

Hence, the test suggests that the return series is serially uncorrelated whereas the

squared return series has significant serial correlation. The kurtosis of the returns

for all the series is greater than three which implies that the distribution of the

returns is leptokurtic in nature.

Table 5.3: Summary statistics of the return series

Statistics BSE Closing S&P500 Opening S&P500 Low

Index Index Index

Sample size 2725 2515 2515

Std. Dev 1.7331 1.3572 1.2654

Kurtosis 9.0457 10.1669 11.9490

Minimum -11.8583 -9.1044 -8.5578

Maximum 15.9408 10.1499 8.7272

Q(20) 5.9814 0.0293 0.0826

Q(2)(20) 13.9558 87.1349 47.0954

From the ACF of the returns plotted in Figure 5.4, it is observed that serial correla-

tions in the return series are insignificant where as the ACF of the squared returns

in the bottom panel declines slowly with increasing lags.
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Figure 5.4: ACF of the returns(top panels) and the squared returns(bottom
panels)
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In Table 5.4, we present the parameter estimates for each of the return series. The

values of α̂ in the table suggest that there is a significant persistence of volatility in

the data series.

Table 5.4: Parameter estimates using Method of Moments

Parameters BSE Closing S&P500 Opening S&P500 Low
Index Index Index

µ̂ 0.8868 0.3265 0.0759

σ̂ 1.3927 1.4986 1.6459

α̂ 0.8311 0.7006 0.9967

Once the estimates of parameters are obtained, the next stage is the model diagnos-

tic checking. That is, we need to check whether the assumptions on the model (5.1)

are satisfied with respect to the data we have analysed. Note that the model (5.1)

is in terms of the volatilities ht, which are unobservable. This aspect makes the di-

agnosis problem difficult. One of the methods suggested in such cases is to employ

Kalman filtering by rewriting the model (5.1) in the state-space form. The state-

space approach and Kalman filter algorithm for the local trend model are discussed

in Chapter 2. We can very well use this procedure for estimating the unobservable

volatility, ht. For more details on Kalman filter method and associated theory, one

can refer Jacquier et al. (1994) and Tsay (2005). Since the Kalman filter method

is developed under the normality assumptions, we approximate the distribution of

ηt specified in (5.2) by a normal distribution and then adopt Kalman filter method

for estimating the volatilities. Using these estimated volatilities, we can compute

the residuals using the equation (5.1).
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The state-space representation of the SV model given in (5.1) can be written as

log r2
t = −1.27 + ht + νt , E(νt) = 0, V (νt) =

π2

2
; (5.11)

and

ht = αht−1 + ηt,

where ηt is assumed to be normally distributed with mean (1 − α)(µ − σ γ) and

variance (1 − α2) (π2σ2)/6 which are given in (5.5). If the distribution of νt is

approximated by a normal distribution then the preceding system (5.11) becomes

a standard dynamic linear model, to which the Kalman filter can be applied. Let

h̄t |t−1 be the prediction of ht based on the information available at time t − 1 and

Ωt | t−1 be the variance of the predictor. Here we are making a presumption that the

update that uses the information at time t as h̄t |t and the variance of the update

as Ωt | t. The equations that recursively compute the predictions and updating are

given by

h̄t | t−1 = α h̄t−1 | t−1 + (1− α) (µ− σ γ)

Ωt | t−1 = α2 Ωt−1 |t−1 + (1− α2)
π2σ2

6

and

h̄t | t = h̄t | t−1 +
Ωt | t−1

ft

[
log r2

t + 1.27− h̄t | t−1

]
Ωt | t = Ωt | t−1(1−

Ωt | t−1

ft
)

where ft = Ωt | t−1 + π2

2
.
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Then the residuals are calculated by the equation

ε̂t = rt exp

(
− h̄t

2

)
(5.12)

and use this sequence for the residual analysis. The system is initialized at the

unconditional values, Ω0 = π2σ2

6
and h0 = µ− σ γ. The residual analysis is carried

out using this prediction error. The correlograms of the residuals given in Figure

5.5 below suggest that the model performs quite well. The parameters µ, σ and α

in the above system are replaced by their respective estimates which are given in

Table 5.4.

Figure 5.5: ACF of the residuals
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Further, we also checked the significance of ACF in the residuals by computing

the Ljung-Box statistic for the series {ε̂t} and {ε̂2
t}, which are summarized in the

Table 5.5. All these values are less than the 5% Chi-square critical value (10.117)

at degrees of freedom 20. Hence we conclude that there is no significant serial

dependence among the residuals and the squared residuals.

Table 5.5: Ljung-Box Statistic for the residuals and squared residuals

Data
Ljung-Box statistic

Residuals Squared Residuals

BSE Closing Index 3.1938 1.4479

S&P500 Opening Index 0.0827 4.6594

S&P500 Low Index 0.2401 0.0412

In the following Figure 5.6, we superimpose the histogram of the residuals with

standard normal density to check whether the series follows standard normal dis-

tribution. The figure clearly shows that the standard normal distribution is a good

fit for the residuals in all the three cases. The results of this chapter are published

in Balakrishna and Shiji (2014b).
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Figure 5.6: Histogram of residuals with superimposed standard normal density





Chapter 6

Bivariate Exponential Model with

Product Structure

6.1 Introduction

This chapter is a by-product of our studies on product autoregressive models for

non-negative rvs. The univariate exponential distribution is very popular among

researchers working in the areas such as reliability analysis, life testing, survival

analysis, etc. When there are two or more variables affecting the system, in most

of the cases the analysis carried out by assuming that they are statistically in-

dependent. However, the assumption of independence does not hold in practice.

As a consequence, several bivariate models have been introduced in the literature.

A detailed up-to-date survey of bivariate distributions and the methods of their

135
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constructions along with their applications may be found in a recent book by Bal-

akrishnan and Lai (2009). Such distributions are important candidates for joint

modelling of non-negative variables such as lifetime and repair time of equipments,

wind velocity and wave heights, etc. Some well known bivariate exponential dis-

tributions are those by Gumbel (1960), Freund (1961), Marshall and Olkin (1967),

Block and Basu (1974), Downton (1970) and so on.

Several bivariate exponential distributions were discussed in the literature on non-

Gaussian time series (cf, Lawrance and Lewis (1985), Gaver and Lewis (1980), Iyer

et al. (2002)) where the component random variables were linked through a linear

relation. One of the drawbacks of these models is that they are not absolutely

continuous and possess singular components. Further, they have restriction on the

range of correlation coefficient. Iyer et al. (2002) considered the detailed analysis

of a bivariate exponential distribution constructed using the first order exponential

autoregressive model of Gaver and Lewis (1980). Their bivariate distribution is

expressed in terms of the Laplace Transform as there is no explicit form for its

probability density function. Further there is mass concentration on the line y = a x,

which makes the joint distribution singular.

In this chapter, we introduce a class of absolutely continuous bivariate exponen-

tial distributions where the components are linked through a product structure.

McKenzie (1982) proposed product form of an autoregressive model of order one

(PAR(1)) to generate a gamma sequence and proved a characterizing autocorre-

lation property. Abraham and Balakrishna (2012) and Balakrishna and Lawrence

(2012) discussed several aspects of the PAR(1) models and proposed methods of
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estimating their parameters. In this chapter, we use the PAR(1) structure to define

an absolutely continuous bivariate exponential distribution.

The chapter is organized as follows: in Section 6.2 and 6.3, we discuss the properties

of the bivariate exponential distribution. Bivariate exponential distribution with

negative correlation is defined in Section 6.4. Section 6.5 describes the statistical

inference for the Bivariate distribution. Simulation studies are conducted in Section

6.6. The applications of the bivariate exponential distribution are given in Section

6.7.

6.2 Models with Product Structure

Let (X, Y ) be a random vector defined on non-negative quadrant of R2 with survival

function

F̄ (x, y) = P (X > x, Y > y), x ≥ 0, y ≥ 0.

We say that (X, Y ) has a specific bivariate distribution D if both the marginal

random variables X and Y have the univariate distributions D. Let FX(.) and

FY (.) be the distribution functions of X and Y respectively and define

Y = XαZ, 0 ≤ α < 1, (6.1)

where Z is a non-negative rv, independent of X, such that the equality in (6.1)

holds in distribution. One of our tasks here is to identify distribution of Z, for

which (X, Y ) has a bivariate exponential distribution when the marginal rvs are
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tied together using (6.1). The joint survival function of X and Y is obtained as

F̄ (x, y) = P (X > x, Y > y)

=

∫ ∞
x

P [Y > y|X = u]dFX(u).

Using (6.1), we can write the above expression as,

=

∫ ∞
x

P [XαZ > y|X = u] dFX(u)

=

∫ ∞
x

P
[
Z >

y

uα

]
dFX(u)

=

∫ ∞
x

F̄Z

( y
uα

)
dFX(u).

Applying the integration by parts, we get

= F̄Z

( y
uα

) ∫ ∞
x

dFX(u)−
∫ ∞
x

(∫ ∞
x

dFX(u)

)
dF̄Z

( y
uα

)
= F̄Z

( y
xα

)
F̄X(x)−

∫ ∞
x

F̄X(u) dFZ

( y
uα

)
= F̄Z

( y
xα

)
F̄X(x)−

∫ 0

y/xα
F̄X

(
(y/z)1/α

)
dF̄Z (z)

=

∫ y/xα

0

F̄X
(
(y/z)1/α

)
dF̄Z(z) + F̄X(x)F̄Z ((y/xα)) . (6.2)

We need to identify FZ(.) which provides a meaningful distribution for (X, Y ). If

there exist density functions for the rvs involved then the joint probability density

function may be expressed as

f(x, y) = fX(x)fZ

( y
xα

) 1

xα
, x > 0, y > 0. (6.3)
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In the following sections, we study the detailed properties of the proposed bivariate

exponential distribution.

6.3 Bivariate Exponential Models

Balakrishna and Lawrence (2012) developed a product form of the first order au-

toregressive time series model for exponential rvs. The exponential product autore-

gressive model is defined as

ϑt = ϑαt−1Vt , t = 1, 2, ... 0 < α < 1,

where {Vt } is assumed to be a sequence of independent, identically and non-

negatively distributed innovation rvs. The marginal distribution of {ϑt } is assumed

to be exponential with survival function

F̄ϑt(θ) = e−λ θ, θ ≥ 0, λ > 0.

Corresponding to this marginal distribution, the innovation rv can be expressed as

Vt
L
=λ−1(λ/U)α,

where U is the positive stable random variable with Laplace transform,

ϕU(s) = E
(
e−sU

)
= exp (−sα) , 0 < α < 1, (6.4)
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and the pdf of U is given by

fU(u;α) =
1

πu

∞∑
k=1

Γ(kα + 1)

Γ(k + 1)
(−1)k

1

uαk
sin(−kπα), u > 0. (6.5)

We also have the pdf of W = U−α which may be expressed as

fW (v;α) =
1

π

∞∑
k=1

Γ(kα)

Γ(k)
(−v)k−1 sin(kπα), v > 0. (6.6)

If we choose Z in (6.1) as a suitable function of a positive stable rv U , we can get the

required bivariate exponential distribution for (X, Y ) with the product structure

defined in (6.1).

Let X be an exponential rv with pdf,

f(x;λ) = λ exp(−λx), x > 0, (6.7)

and Z be defined by

Z = β−1 (λ/U)α . (6.8)

For any α, 0 ≤ α < 1 consider the distribution of Y = XαZ. That is, consider

P [Y > y] = P [XαZ > y]

= P

[
Xα 1

β

(
λ

U

)α
> y

]
=

∫ ∞
0

P
[
X > (βy)1/α(u/λ)

]
dFU(u),
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where FU(u) is the distribution function of the positive stable rv, U . Since X has

Exponential(λ) distribution, we can write

P [Y > y] =

∫ ∞
0

exp
{
−(yβ)1/αu

}
dFU(u)

= E
(
e−(yβ)1/αU

)
= ϕU((yβ)1/α),

where ϕU(s) is the Laplace transform of the positive stable rv U . Now, using (6.4)

on the right hand side, we get the marginal survival function of Y as

P [Y > y] = e−βy. (6.9)

This is again an exponential survival function with new scale parameter β.

We employ this result to construct a bivariate random vector as described in Section

6.2 with exponential marginals.

Next, we derive the joint density function of (X, Y ). Let Z = β−1 (λ/U)α =

β−1λαW . Using the transformation method, the pdf of Z is given by

f(z) = f(w)

∣∣∣∣dwdz
∣∣∣∣

= fW

(
β

λα
z

) (
β

λα

)
.
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Since the rvs involved admit densities, from (6.3) we get the joint density function

of (X, Y ) as

f(x, y) = f(x) f(y|x)

= fX(x) fZ

( y
xα

) 1

xα

= λ exp(−λx)fW

(
βy

xαλα

)
β

λα
1

xα

= (βλ1−αx−α) exp(−λx)fW

(
βy

xαλα

)
. (6.10)

The following figures, Figure 6.1-6.3, represents the plot of the joint density function

(6.10) of (X, Y ) for the selected values of the parameters.

Figure 6.1: Plot of the joint density function (6.10) of (X,Y ) for α = 0.8, β =
1, λ = 1.
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Figure 6.2: Plot of the joint density function (6.10) of (X,Y ) for α = 0.6, β =
0.5, λ = 1.

Figure 6.3: Plot of the joint density function (6.10) of (X,Y ) for α = 0.3, β =
2, λ = 2.
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From (6.3) and (6.9) it is readily verified thatX and Y have marginal Exponential(λ)

and Exponential(β) distributions respectively.

In terms of the usual notations the conditional probability density functions are

given by

f(y|x) = f(x, y)/f(x) = (β/λαxα) fW (βy/λαxα) ,

f(x|y) = f(x, y)/f(y) = (λ1−αx−α) exp(−λx+ βy)fW (βy/(xλ)α) .

The second order properties of the distribution are summarized as follows,

E(X) = λ−1, E(Y ) = β−1, E(XY ) = (α + 1)(λβ)−1, Corr(X, Y ) = α. (6.11)

Theorem 6.1. The random variables X and Y become independent with exponential

marginals as α→ 0.

Proof: If U is a positive stable rv with Laplace transform (6.4), then from Brockwell

and Brown (1978), it follows that

Pr
(
U−α ≤ v

)
→ 1− e−v as α→ 0.

Further, it easily follows that as α → 0, Y = Xα (λ/U)α /β
L−→ (E/β), where E

is unit mean exponential rv, and
L−→ stands for convergence in distribution. From

the definition of the model, we know that X is independent of U and hence we get

the required result.
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The regression equation of X on Y is given by

E(X|Y = y) =

∞∫
0

x f(x|y) dx

=

∞∫
0

x (λ1−αx−α) exp(−λx+ βy)fW (βy/(xλ)α) dx

= λ1−α exp(βy)

∞∫
0

x1−α exp(−λx)fW (βy/(xλ)α) dx

= λ1−α exp(βy)

∞∫
0

(
(βy)1/αu

λ

)1−α

exp(−(βy)1/αu)
(βy)1/α

λα
u1+αfU(u) du

=

(
λ(βy)1/α

λ

)1−α
(βy)1/α

λα
exp(βy)

∞∫
0

u1−α exp(−(βy)1/αu)u1+αfU(u) du

=
β

2
α
−1y

2
α
−1

λα
exp(βy)

∞∫
0

u2 exp(−(βy)1/αu)fU(u) du

=
β

2
α
−1

αλ
y

2
α
−1 exp(βy)

∂2

∂s2
ϕ(s),

where s = (βy)1/α and ϕ(.) = exp(−sα) is the Laplace transform of positive stable

distribution.

If ∂2ϕ(s)/∂s2 = αsα−2e−s
α
(αsα − α + 1) and s = (βy)1/α, we get

E(X|Y = y) = (αβ/λ)y + (1− α)/λ.
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Similarly, the regression equation of Y on X is

E(Y |X = x) =

∞∫
0

y f(y|x) dy

=

∞∫
0

y
β

λαxα
fW

(
βy

λαxα

)
dy

=
λαxα

β
E(W ) =

λαxα

β
E(U−α)

=
λαxα

β
E

(
β

λα
Z

)
= xαE(Z)

= xα
E(Y )

E(Xα)
= xα

1/β

λ−αΓ(1 + α)

= (xλ)α/β Γ(1 + α), (6.12)

where U−α = (β/λα)Z.

We get closed form expressions for the joint density when α = 1/2. In this case, the

positive stable rv U with Laplace transform ϕ(s) = exp(−
√
s) has a pdf given by

fU(u) =
1

2
√
πu3

exp (−1/4u) , u ≥ 0 (6.13)

and the pdf of W = 1/
√
U is

fW (v) =
1√
π

exp
(
−v2/4

)
, v ≥ 0. (6.14)

Noting that Z =
(√

λ/β
)
W and using the relation (6.3), the joint pdf of X and Y

becomes

f(x, y) = (β
√
λ/
√
πx) exp

(
−λx− β2y2

4λx

)
, x > 0, y > 0. (6.15)



Chapter 6. Bivariate Exponential Model 147

One can use our bivariate exponential distribution for modelling two-dimensional

renewal processes and queuing processes when arrival and service times are depen-

dent. The renewal properties are conveniently discussed with the help of Laplace

transforms. Then we have the following theorem.

Theorem 6.2. The Laplace transform of the bivariate exponential random vector

(X, Y ) with joint pdf (6.10) is given by

ϕ(X,Y )(s1, s2) =
λβ

λ+ s1

(
β + s2

(
λ

λ+ s1

)α)−1

. (6.16)

Proof: The Laplace transform of the bivariate exponential random vector (X, Y )

can be written as

ϕ(X,Y )(s1, s2) = E (exp(−s1X − s2Y ))

=

∫ ∞
0

∫ ∞
0

(exp(−s1X − s2Y )) f(x, y) dx dy

=

∫ ∞
0

∫ ∞
0

(exp(−s1x− s2y))

(
βλ1−α

xα

)
exp(−λx) fW

(
βy

(xλ)α

)
dxdy

=

∫ ∞
0

λ exp(−(s1 + λ)x)ψ (s2(λx)α/β) dx,

where ψ (s) = E (exp(−sW )) = E (exp(−sU−α)). Now we simplify the expression

for ψ (s) in terms of the reciprocal moments of the positive stable random variable

U .
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We have, exp(−sU−α) =
∞∑
j=0

(−sU−α)
j
/j!, then,

ψ (s) = E
(
exp(−sU−α)

)
= E

(
∞∑
j=0

(
−sU−α

)j
/j!

)

=
∞∑
j=0

(
(−s)j

j!

)
E(U−αj)

=
∞∑
j=0

(
(−s)j

j!

)
βj

λαj
E (Y j)

E (Xαj)

=
∞∑
j=0

(
(−s)j

j!

)
βj

λαj
β−jΓ(1 + j)

λ−αjΓ(1 + αj)

=
∞∑
j=0

(−s)j

Γ(1 + αj)

Thus we can write

ϕ(X,Y )(s1, s2) =

∞∫
0

λ exp(−(s1 + λ)x)

(
∞∑
j=0

(−s2(λx)α/β)j

Γ(αj + 1)

)
dx

= λ
∞∑
j=0

(λα/β)j(−s2)j
∞∫

0

xαj exp(−(s1 + λ)x)

Γ(αj + 1)
dx

= λ

∞∑
j=0

(λα/β)j
(−s2)j

Γ(αj + 1)

∞∫
0

xαj exp(−(s1 + λ)x)dx

= λ

∞∑
j=0

(λα/β)j
(−s2)j

Γ(αj + 1)

Γ(αj + 1)

(s1 + λ)αj+1

= λ

∞∑
j=0

(λα/β)j
(−s2)j

(s1 + λ)αj+1
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=
λ

λ+ s1

∞∑
j=0

(
−
(
s2

β

)(
λ

λ+ s1

)α)j
=

λ

λ+ s1

(
1 +

s2

β

(
λ

λ+ s1

)α)−1

=
λβ

λ+ s1

(
1 + s2

(
λ

λ+ s1

)α)−1

,

since
∞∑
j=0

(−q)j = 1 − q + q2 + · · · = (1 + q)−1. The last expression is the Laplace

transform of our bivariate exponential distribution. Hence the theorem.

6.4 Bivariate Exponential Distributions with Neg-

ative Correlation

For the models discussed in the earlier sections, the correlation coefficient is non-

negative. In practice, we may come across situations where the distributions of X

and Y may be exponential, but the correlation coefficient between the components

may be negative. In order to incorporate such cases, we define negatively correlated

bivariate exponential distributions using the method of antithetic variables. To

obtain a negative cross correlation between X and Y , we take an approach similar

to Iyer et al. (2002).

Let ξ be a Uniform(0,1) rv and define

Z1 = (−(1/λ) log ξ) and Z2 = (−(1/λ) log(1− ξ)) .
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Then we know that Z1 and Z2 are correlated and have identical Exponential(λ)

distribution.

Now take X = Z1 and Y = Zα
2 (λα/β)U−α in the construction of our bivariate

distribution, so that

P (Y > y) = P
(
Zα

2 (λα/β)U−α > y
)

= P (Zα
2 > y(β/λα)uα)

= P
(
Z2 > ((yβ)1/α/λ)u

)
=

∞∫
0

{
exp(−λ((yβ)1/α/λ)u)

}
dFU(u)

= E
(
exp(−(yβ)1/αU)

)
= φU

(
(yβ)1/α

)
= e−β y.

It follows that (X, Y ) will have bivariate exponential distribution with pdf given by

(6.10). It is assumed that ξ is independent of U . The correlation between X and

Y is defined as,

Corr(X, Y ) = ρX Y =
Cov(X, Y )√
V (X)

√
V (Y )

.

But,

Cov(X, Y ) = E (XY )− E(X)E(Y )

= E
(
Z1Z

α
2 (λα/β)U−α

)
− E(Z1)E(Zα

2 (λα/β)U−α)

= (λα/β)E(U−α)E (Z1Z
α
2 )− (1/λβ)

=
(λα/β)

Γ(α + 1)
E (Z1Z

α
2 )− (1/λβ)
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=
(λα/β)

Γ(α + 1)

1

λα+1
E [(− log ξ)(− log(1− ξ))α]− (1/λβ)

=
1

λβ
{(1/Γ(α + 1))E [(− log ξ)(− log(1− ξ))α]− 1} .

Now, the correlation coefficient between X and Y becomes

ρXY =
(1/λβ) {(1/Γ(α + 1))E [(− log ξ)(− log(1− ξ))α]− 1}

(1/λβ)

= (1/Γ(α + 1))E [(− log ξ)(− log(1− ξ))α]− 1

= (1/Γ(α + 1))

1∫
0

[(− log ξ)(− log(1− ξ))α] dξ − 1, (6.17)

which can be evaluated numerically. The Figure 6.4 is the plot of the correlation

coefficient (6.17), for different values of α.

Figure 6.4: Plot of the correlation coefficient (6.17), for different values of α
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6.5 Statistical Inference for the Product Bivari-

ate Exponential Distribution

In this section, we discuss the problem of estimation for the proposed bivariate

exponential distribution. The existence of closed form expressions for all the mo-

ments, motivated us to adopt the method of moments to estimate the parameters

though they are less efficient. For the bivariate density given by (6.10), the moment

estimates are obtained as

_
α=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

,
_

β=
1

ȳ
,

_

λ=
1

x̄
,

where x̄ and ȳ are the marginal sample means. We will use these estimates as the

initial values for obtaining maximum likelihood estimates by numerical methods.

6.5.1 Maximum likelihood estimation

Now we discuss the maximum likelihood method for estimating the parameter vector

θ = (α, β, λ)
′

based on a random sample {(xi, yi), i = 1, 2, ..., n} from the bivariate

exponential pdf (6.10). The resulting likelihood function of θ may be expressed as

L(θ|xi, yi, i = 1, 2, . . . , n) =
n∏
i=1

λ e−λxi

π yi
R(xi, yi), (6.18)

where R(xi, yi) =
∞∑
k=1

(−1)k−1 Γ(k α)
Γ(k)

(
β yi

(λxi)α

)k
sin(k π α).
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Now, the MLE, θ̂ = (α̂, β̂, λ̂) can be obtained by solving the following likelihood

equations:

n∑
i=1

Rα(xi, yi)

R(xi, yi)
= 0,

n∑
i=1

Rβ(xi, yi)

R(xi, yi)
= 0 and

n

λ
−

n∑
i=1

xi = 0. (6.19)

where

Rα(xi, yi) =
∞∑
k=1

(−1)k−1 Γ(k α)

Γ(k)
k

(
β yi

(λxi)α

)k
{[Ψ(k α)− log(λxi)] sin(k π α)

+π cos(k π α)}

Rβ(xi, yi) =
∞∑
k=1

(−1)k−1 Γ(k α)

Γ(k)
k

(
β yi

(λxi)α

)k
sin(k π α)

and Ψ(.) is the digamma function defined by Ψ(k) = d ln Γ(k)/dk = Γ′(k)/Γ(k).

Since MLE of α and β do not have closed forms, they have to be obtained by

some numerical methods like Newton-Raphson. We use the moment estimators as

the initial guess in the iterative procedure for computing the MLE. The likelihood

equations are in terms of infinite series R(xi, yi) and we need to truncate them at

appropriate finite number of terms. We truncate the series at N terms and denote

it by

RN(xi, yi) =
N∑
k=1

(−1)k−1 Γ(kα)

Γ(k)

(
β yi

(λxi)α

)k
sin(kπα),

by choosing N such that, |RN(xi, yi)−RN+1(xi, yi)| < δ, where δ is a pre-specified

number. We have taken δ = 10−10 while finding MLE based on the simulated data

in the next section.
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Now, we discuss the asymptotic properties of the MLE. Under the regularity con-

ditions, stated below, Cramér (1946) proved that the MLE of θ is consistent and

asymptotically normally distributed with mean zero and covariance I−1, where I is

the Fisher information matrix.

Let {fθ, θ ∈ Θ} be a family of probability density functions, where Θ is an open

interval on R. The regularity conditions are:

(i) ∂ log fθ/∂θ, ∂
2 log fθ/∂θ

2, ∂3 log fθ/∂θ
3 exist for all θ ∈ Θ and every x.

Also,
∞∫

−∞

∂ fθ(x)

∂θ
dx = Eθ

∂ fθ(X)

∂θ
= 0, for all θ ∈ Θ.

(ii)
∞∫
−∞

∂2 fθ(x)/∂θ2 dx = 0 for all θ ∈ Θ.

(iii) −∞ <
∞∫
−∞

(∂2 fθ(x)/∂θ2) fθ(x) dx < 0 for all θ.

(iv) There exists a function H(x) such that for all θ ∈ Θ,

∣∣∣∣∂3 fθ(X)

∂θ3

∣∣∣∣ < H(x) and

∞∫
−∞

H(x) fθ(x) dx = M(θ) <∞.

(v) There exists a function g(θ) that is positive and twice differentiable for every

θ ∈ Θ and, a function H(x) such that for all θ

∣∣∣∣ ∂2

∂θ2

[
g(θ)

∂ log fθ
∂θ

]∣∣∣∣ < H(x) and

∞∫
−∞

H(x) fθ(x) dx <∞.

Then, we have the following results by Cramér (1946).
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Theorem 6.3. (a) Conditions (i), (iii) and (iv) imply that with probability ap-

proaching 1, as n→∞, the likelihood equation has a consistent solution.

(b) Conditions (i) through (iv) imply that a consistent solution θ̂ of the likelihood

equation is asymptotically normal, that is,n→∞,

√
n (θ̂ − θ) L−→ N(0, I−1),

where
L−→ denotes convergence in distribution and I is the Fisher information

matrix given by I(θ) = E
(

(∂ log fθ(x)/∂θ) (∂ log fθ(x)/∂θ)
′
)

.

The above mentioned regularity conditions are satisfied by the model (6.1) as the

likelihood function in (6.18) is differentiable with respect to θ, and all the moments

of x and y are finite. Now, the elements of the Fisher information matrix,

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33


are obtained as

I11 = −E
(
∂2

∂α2
log L

)
; I12 = −E

(
∂2

∂α ∂β
logL

)
= I21;

I13 = −E
(

∂2

∂α ∂λ
logL

)
= I31; I22 = −E

(
∂2

∂β2
logL

)
;

I23 = −E
(

∂2

∂β ∂λ
logL

)
= I32; I33 = −E

(
∂2

∂λ2
logL

)
.

We evaluate these elements for the simulated samples in the next section.
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6.6 Simulation Study

To evaluate the performance of the estimation procedure discussed above, we carried

out a simulation study for different sample sizes and for different specified values of

the parameters. For the simulation purpose, we first generate the realizations from

positive stable rvs {Ui} using the procedure discussed in Section 3.4. For specified

values of the parameters we simulated independent and identically distributed se-

quence {xi} from Exponential(λ) distribution and then obtain the sequence {yi}

using the relation yi = xαi
1
β

(
λ
Ui

)α
, i = 1, 2, ..., n. Based on this bivariate sample

{xi, yi}, we obtain the MLE of the parameters using the procedures described in the

previous section. The estimates are obtained by solving the likelihood equations in

(6.19). We used moment estimates as the initial values while solving the likelihood

equations by iterative methods. The step-by-step procedure with MATLAB code

is given in Appendix D. For each specified value of the parameter, we repeated the

experiment 50 times for computing the estimates and then averaged them over the

repetitions. It is observed that for smaller values of α, (say α ≤ 0.8 ) the compu-

tation algorithm works well and we get the MLE. However, for higher values of α,

the computation algorithm does not converge and hence we are unable to obtain

MLE. In such cases, we propose to use the moment estimates. The final values are

entered in Table 6.1 along with the root mean square errors in the parenthesis.
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Table 6.1: The average estimates and the corresponding root mean squared
errors of the MLE

Sample True values Maximum Likelihood Estimates

Size α β λ α̂ β̂ λ̂
50 0.80 2.00 2.00 0.8057 (0.0289) 2.0299 (0.3131) 2.0325 (0.2886)

0.70 2.00 3.00 0.6980 (0.0332) 1.9354 (0.2816) 2.9374 (0.3772)
0.60 3.00 1.00 0.6004 (0.0583) 2.9989 (0.3331) 1.0154 (0.1410)
0.50 1.00 2.00 0.5294 (0.1181) 1.0012 (0.1396) 2.0345 (0.3024)
0.30 2.00 0.50 0.3631 (0.1942) 2.0297 (0.2652) 0.5073 (0.0573)
0.20 0.50 2.00 0.2393 (0.1153) 0.5080 (0.0712) 2.0514 (0.3142)

100 0.80 2.00 2.00 0.8097 (0.0219) 2.0063 (0.2032) 1.9942 (0.2225)
0.70 2.00 3.00 0.7042 (0.0298) 2.0061 (0.1930) 2.9747 (0.3343)
0.60 3.00 1.00 0.6055 (0.0405) 3.0244 (0.2859) 0.9916 (0.1114)
0.50 1.00 2.00 0.5106 (0.0640) 1.0132 (0.0949) 1.9832 (0.2229)
0.30 2.00 0.50 0.3253 (0.1102) 2.0266 (0.2314) 0.4958 (0.0557)
0.20 0.50 2.00 0.2302 (0.0984) 0.5071 (0.0609) 2.0188 (0.1797)

300 0.80 2.00 2.00 0.8019 (0.0177) 2.0173 (0.1145) 2.0035 (0.1228)
0.70 2.00 3.00 0.7025 (0.0138) 1.9897 (0.1052) 2.9880 (0.1758)
0.60 3.00 1.00 0.6033 (0.0187) 2.9845 (0.1598) 0.9960 (0.0586)
0.50 1.00 2.00 0.4991 (0.0234) 1.0041 (0.0605) 2.0037 (0.1047)
0.30 2.00 0.50 0.3033 (0.0344) 1.9890 (0.1127) 0.4980 (0.0293)
0.20 0.50 2.00 0.2019 (0.0396) 0.4969 (0.0284) 1.9920 (0.1172)

6.7 Data Analysis

In this section we illustrate the applications of our bivariate exponential distribution

by analysing the real data sets. Let us first consider a set of data reported in

Hanagal (2011) on bone marrow transplantation for Leukemia patients. The full

data consists of observations on 137 patients with three types of diseases which are

Acute Myeloctic Leukemia (AML) with low and high risks and Acute Lymphoblastic

Leukemia (ALL). In our illustration we considered a group of 38 ALL patients with
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data on Time to death or time on study(xi) and the disease free survival time (time

to relapse, death or end of study)(yi). Our aim here is to check if the proposed

bivariate exponential distribution fits for this data. The moment estimates of the

parameters based on the bivariate exponential pdf (6.10) for the data are obtained

as α̂ = 0.9430, β̂ = 0.0016 and λ̂ = 0.0015. We have noted earlier that for large

values of α the computation algorithm of MLE does not converge. As the moment

estimate of α is 0.9430 in the above example, we are not able to obtain the MLE

of the parameters based on this data. Since, the procedure available for testing the

goodness-of-fit for a bivariate distribution is complicated, we apply the Kolmogorov-

Smirnov (KS) test for the marginal distribution. Based on moment estimates the

KS distance between the empirical distribution function and the fitted distribution

function along with the associated p-values (in brackets) for the two marginals are

respectively 0.1269 (0.5318) and 0.1204 (0.5976). These values clearly indicate that

we cannot reject the null hypothesis that both the marginals follow exponential

distributions.

Next, we consider another dataset which is obtained from American Football (Na-

tional Football League) League from the matches on three consecutive weekends in

1986. This data set were first published in ‘Washington Post’, and they are avail-

able in Csörgő and Welsh (1989) and also in Jamalizadeh and Kundu (2012). In

this bivariate data set (X, Y ), the variable X represents the game time to the first

points scored by kicking the ball between goal posts and Y represents the ‘game

time’ by moving the ball into the end zone. The data set was analysed by Csörgő

and Welsh (1989) by using the Marshall-Olkin bivariate exponential model. Also,

Jamalizadeh and Kundu (2012) analysed the data using Weighted Marshall-Olkin
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bivariate exponential model.

The preliminary analysis of this data using hazard function indicated that the haz-

ard function of X is not constant. So we transform the data (X, Y ) by (X1.2, Y 1.2)

as suggested by Csörgő and Welsh (1989). The hazard function of the transformed

data indicates that both X and Y follow exponential distributions. We estimate the

parameters by method of Maximum likelihood. In this case moment estimates of

the parameters are
_
α= 0.7071,

_

β= 0.0408,
_

λ= 0.0668 . With these as initial values,

the MLE of the parameters obtained as α̂ = 0.5288, β̂ = 0.0334, and λ̂ = 0.0668.

The Kolmogorov-Smirnov distances between the empirical marginals and the fitted

marginals along with the associated p-values (in brackets) in two cases are 0.1298

(0.4415) and 0.1197 (0.5441) respectively. These results suggest that our bivariate

exponential distribution is a good fit for the above data set.

The results of this chapter are published in Balakrishna and Shiji (2014a).





Chapter 7

Conclusions and Future Works

The thesis has covered various aspects of modelling and analysis of financial time

series. The main objective of analysing financial time series is to model the volatil-

ity and forecast its future values. Time series analysis based on Box and Jenkins

methods are the most popular approaches where the models are linear and errors

are Gaussian. This is considered to be unrealistic in many areas of economics and

finance as the conditional variances are non-Gaussian. In the present thesis, we

mainly studied the properties of some non-Gaussian time series models and exam-

ined their suitability for modelling stochastic volatility. One of the requirements

for suggesting new models for stochastic volatility is that the class of model for

generating non-negative sequences of dependent random variables for generating

volatilities.

We have proposed an Extreme value autoregressive model, in view of its application

in modelling stochastic volatility. Major problems associated with the non-Gaussian

161
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time series models are those of statistical inference. The non-standard form of the

error distribution in the GEVAR(1) model motivated us to try the methods of esti-

mation such as conditional least squares and quasi maximum likelihood. However,

its link with positive stable distribution helped us to obtain the maximum likeli-

hood estimates of the parameters. Simulation experiments and data analysis are

performed to illustrate the applications of these models.

In the context of developing models for non-negative random variables, we have pro-

posed Weibull product autoregressive model, anticipating that they could be used

for generating variances for SV models. The PAR models have several advantages

over the corresponding linear AR models for non-negative rvs. We have studied

properties of the first order PAR model with Weibull marginal distribution. The

estimation problem is really challenging here as the likelihood functions do not have

closed form expressions. As a preliminary step we have proposed the method of an

approximate maximum likelihood approach. These methods need to be improved

and we are currently working on them. Further, there is a wide scope for developing

SV models generated by stationary PAR(1) models and we have already made some

progress in this direction.

We proposed a SV model generated by first order extreme value autoregressive

process as an alternative to normal-lognormal SV model. The model parameters

are estimated using the method of moments as the likelihood function is intractable.

But we have to come up with more efficient method of estimation and diagnosis

procedures for effective use of these models. One practical approach in this context

is to develop Bayesian inference procedures. Numerical estimation methods such as

Gibbs sampler and Markov chain Monte Carlo procedures will be handier here.
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The bivariate exponential distribution introduced in the thesis may serve as a life

time model in the context of a repairable system, where could be survival and repair

time of an equipment. We have discussed the properties of this distribution and also

proposed inference procedures. The computation algorithm for MLE works well for

smaller values of the correlation coefficient. If the correlation coefficient exceeds 0.8,

the algorithm does not converge. In such cases we may use the moment estimates.

Two data sets are analysed to illustrate the applications of the new distribution.

The method of constructing bivariate exponential distributions introduced in this

chapter can be extended to obtain other classes of distributions such as bivariate

Weibull, bivariate gamma, bivariate Pareto, etc. The bivariate Pareto distribution

will have a singular component. Further details on these aspects need to be worked

out.

We conclude this thesis with a note that we have several unsolved problems which

are more challenging than the problems we have already solved. Some of these

problems can be solved under the Bayesian frame work. The problems related to

volatility forecasting and model selection are yet be discussed. The non-parametric

and semi-parametric approaches are potential alternatives to the already established

parametric approaches to deal with financial time series. These methods will work

better when there are no closed form expressions for likelihood functions. Even

though we have focused on discrete time space in our studies so far, the events

such as changes in price, temperature, etc. take place continuously. So it is more

appropriate to study such problems in continuous time space, which requires the

knowledge of stochastic calculus.





Appendix A

Estimation of parameters for

GEVAR(1) Model

1. Conditional Least Squares Estimation

--------------------------------------

clear;

N=600;

alpha=input(’enter alpha’);

mu=input(’enter mu’);

sig=input(’enter sigma’);

ahat(50)=0;mhat(50)=0;sighat(50)=0;

for z=1:50

Generation of positive stable rvs

165



Appendix A 166

------------------------------------

E=exprnd(1,N,1);

U=unifrnd(0,pi,N,1);

kk1=power(E,(-(1-alpha)/alpha));

kk2=power((sin(U)),(-1/alpha));

kk3=sin(alpha*U);

kk4=power((sin((1-alpha)*U)),((1-alpha)/alpha));

y=kk1.*kk2.*kk3.*kk4;

y1=(1./y);

v=power(y1,alpha);

v1=log(v);

ab=((1-alpha)*mu)-(sig.*v1);

x1(N)=0;

x1(1)=ab(1);

for p=2:N

x1(p)=alpha*x1(p-1)+ab(p);

end

x=x1(101:N);

n=length(x);

s1=0;s2=0;s3=0;s4=0;

for t=2:n

s1=s1+(x(t-1)*x(t));

s2=s2+x(t);

s3=s3+x(t-1);
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s4=s4+(x(t-1)*x(t-1));

end

computation of CLS estimates

------------------------------

aa=(s1-((1/n)*s2*s3))/(s4-((1/n)*s3\^2));

gam=0.577216;

sg=(1/pi)*sqrt(6*var(x));

mu1=((s2-aa*s3)/(n*(1-aa)))-(sg*gam);

ahat(z)=aa;

mhat(z)=mu1;

sighat(z)=sg;

end

est=[mean(ahat) mean(mhat) mean(sighat)]

stder=[sqrt(var(ahat)) sqrt(var(mhat)) sqrt(var(sighat))]

----------------------------------------------------------

----------------------------------------------------------



Appendix A 168

2. Quasi Maximum Likelihood Estimation

-----------------------------------

clear;

N=600;

alpha=input(’enter alpha’);

mu=input(’enter mu’);

sigm=input(’enter sigm’);

e1(50)=0;e2(50)=0;e3(50)=0;

for p=1:50

Generation of positive stable rvs

----------------------------------

E=exprnd(1,N,1);

U=unifrnd(0,pi,N,1);

k1=power(E,(-(1-alpha)/alpha));

k2=power((sin(U)),(-1/alpha));

k3=sin(alpha*U);

k4=power((sin((1-alpha)*U)),((1-alpha)/alpha));

y=k1.*k2.*k3.*k4;

y1=(1./y);

v=power(y1,alpha);

v1=log(v);

ab=((1-alpha)*mu)-(sigm.*v1);

x1(N)=0;
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x1(1)=ab(1)};

for q=2:N

x1(q)=alpha*x1(q-1)+ab(q);

end

x=x1(101:N);

n=length(x);

sum1=0;sum2=0;sum3=0;sum4=0;sum5=0;

for h=2:n

sum1=sum1+x(h);

sum2=sum2+x(h-1);

sum3=sum3+(x(h)*x(h));

sum4=sum4+(x(h-1)*x(h-1));

sum5=sum5+(x(h)*x(h-1));

end

x2=autocorr(x);

QML Estimates

------------------

a(10)=0;

a(1)=x2(2);

for j=1:10

falp=(((n-1)/n)*ff1(n,a(j))*power(ff2(n,a(j),x),2))

+(((n-1)/n)*a(j)*(1+a(j))*ff3(n,a(j),x))



Appendix A 170

+(((a(j)-1)/(2*a(j)+n-n*a(j)))*(sum1+sum2)*ff2(n,a(j),x))

-((1/(1-a(j)))*((a(j)*(sum3+sum4))

-((1+(a(j)*a(j)))*sum5)));

falp1=-((2*((n-1)/n))*ff4(n,a(j))*ff2(n,a(j),x)*ff2(n,a(j),x))

+((2*((n-1)/n))*ff1(n,a(j))*(x(1)-sum2)*ff2(n,a(j),x))

+(((n-1)/n)*(1+(2*a(j)))*ff3(n,a(j),x))

+(((2*(n-1)*a(j)*(1+a(j)))/(n*(1-(a(j)*a(j)))*(1-(a(j)*a(j)))

))*(a(j)*(sum3+sum4)-(1+(a(j)*a(j)))*sum5))

+(((sum1+sum2)/((2*a(j)+n-n*a(j))\^2))*(((2*a(j)+n-n*a(j))*

(2*a(j)*x(1)+sum1+(1-2*a(j))*sum2))-((a(j)-1)*(2-n)*ff2(n,a(j

),x))))-((1/((1-a(j))\^2))*(sum3+sum4-((1+2*a(j)-a(j)*a(j)

*sum5)));

a(j+1)=a(j)-(falp/falp1);

if a(j+1)-a(j)<0.0001

ah=a(j+1);

end

end

sum6=0;sum7=0;

for i=2:n

sum6=sum6+(x(i)-ah*x(i-1));

sum7=sum7+((x(i)-ah*x(i-1))*(x(i)-ah*x(i-1)));

end

sig=sqrt((6/(pi*pi*n))*((x(1)*x(1))+((1/(1-ah*ah))*sum7)

-(((((1+ah)*x(1))+sum6)\^2)/((2*ah+n-n*ah)*(1+ah)))));
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muh=((((1+ah)*x(1))+sum6)/(2*ah+n-n*ah))-(sig*0.5772);

e1(p)=ah;

e2(p)=muh;

e3(p)=sig;

end

est=[mean(e1) mean(e2) mean(e3)]

st=[sqrt(var(e1)) sqrt(var(e2)) sqrt(var(e3))]

-------------------------

function f1=ff1(n,ap)

f1=((n*(ap-1)*(ap-1))-(2*ap*ap))/((2*ap+n-n*ap)\^2);

function f2=ff2(n,ap,x)

s=0;

for t=2:n

s=s+(x(t)-ap*x(t-1));

end

f2=((1+ap)*x(1))+s;

function f3=ff3(n,ap,x)

s1=0;

for t=2:n

s1=s1+((x(t)-ap*x(t-1))*(x(t)-ap*x(t-1)));

end

f3=(x(1)*x(1))+((1/(1-ap*ap))*s1);

function f4=ff4(n,ap)
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f4=(((2*ap+n-n*ap)\^2)+((2-n)*((n*(ap-1)*(ap-1))-(2*ap*ap))))

/((2*ap+n-n*ap)\^3);

-------------------------------------------------------------

-------------------------------------------------------------
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3. Maximum Likelihood Estimation

------------------------------------

clear;

N=200;

alpha=input(’enter alpha’);

sig=input(’enter sigma’);

mu=input(’enter mu’);

ah(50)=0;mh(50)=0;shh(50)=0;

for z=1:50

tic

Generation of positive stable rvs

---------------------------------

E=exprnd(1,N,1);

U=unifrnd(0,pi,N,1);

kk1=power(E,(-(1-alpha)/alpha));

kk2=power((sin(U)),(-1/alpha));

kk3=sin(alpha*U);

kk4=power((sin((1-alpha)*U)),((1-alpha)/alpha));

y=kk1.*kk2.*kk3.*kk4;

y1=(1./y);

v=power(y1,alpha);

v1=log(v);

ab=((1-alpha)*mu)-(sig.*v1);
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x1(N)=0;

x1(1)=ab(1);

for p=2:N

x1(p)=alpha*x1(p-1)+ab(p);

end

x=x1(101:N);

n=length(x);

s1=0;s2=0;s3=0;s4=0;

for t=2:n

s1=s1+(x(t-1)*x(t));

s2=s2+x(t);

s3=s3+x(t-1);

s4=s4+(x(t-1)*x(t-1));

end

aa=(s1-((1/n)*s2*s3))/(s4-((1/n)*s3\^2));

sg=(1/pi)*sqrt(6*var(x));

gam=0.577216;

mu1=((s2-aa*s3)/(n*(1-aa)))-(sg*gam);

calculation of mle

---------------------

ap(10)=0;m(10)=0;sh(10)=0;

ap(1)=aa;

m(1)=mu1;
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sh(1)=sg;

newton raphson for sigma

--------------------------

sigm(5)=0;

sigm(1)=sg;

for r=1:10

for j=1:5

b(n)=0;

for h=2:n

sumR(1)=stable\_R(1,ap(r),sigm(j),m(r),x,h);

sumR(2)=stable\_R(1,ap(r),sigm(j),m(r),x,h)

+stable\_R(2,ap(r),sigm(j),m(r),x,h);

i=2;

while abs(sumR(i)-sumR(i-1))>.0001

sumR(i+1)=sumR(i)+stable\_R(i+1,ap(r),sigm(j),m(r),x,h);

i=i+1;

end

b(h)=i;

end

b1(n)=0;

for h=2:n

sumL(1)=stable\_L(1,ap(r),sigm(j),m(r),x,h);

sumL(2)=stable\_L(1,ap(r),sigm(j),m(r),x,h)
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+stable\_L(2,ap(r),sigm(j),m(r),x,h);

i1=2;

while abs(sumL(i1)-sumL(i1-1))>.0001

sumL(i1+1)=sumL(i1)+stable\_L(i1+1,ap(r),sigm(j),m(r),x,h);

i1=i1+1;

end

b1(h)=i1;

end

b2(n)=0;

for h=2:n

sumL1(1)=stable\_L1(1,ap(r),sigm(j),m(r),x,h);

sumL1(2)=stable\_L1(1,ap(r),sigm(j),m(r),x,h)

+stable\_L1(2,ap(r),sigm(j),m(r),x,h);

i2=2;

while abs(sumL1(i2)-sumL1(i2-1))>.0001

sumL1(i2+1)=sumL1(i2)

+stable\_L1(i2+1,ap(r),sigm(j),m(r),x,h);

i2=i2+1;

end

b2(h)=i2;

end

sum1=0;sum2=0;

for h=2:n

sL=0;sL1=0;sR=0;
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for q=1:b(h)

sR=sR+stable\_R(q,ap(r),sigm(j),m(r),x,h);

end

for q1=1:b1(h)

sL=sL+stable\_L(q1,ap(r),sigm(j),m(r),x,h);

end

for q2=1:b2(h)

sL1=sL1+stable\_L1(q2,ap(r),sigm(j),m(r),x,h);

end

sum1=sum1+((x(h)-ap(r)*x(h-1)-(1-ap(r))*m(r))*(sL/sR));

sum2=sum2+(power(((x(h)-ap(r)*x(h-1)

-(1-ap(r))*m(r))/sigm(j)),2)*((sR*sL1-sL*sL)/(sR*sR)));

end

fsig=x(1)-m(r)-n*sigm(j)-((x(1)-m(r))*exp(-(x(1)-m(r))/sigm(j)))+sum1;

fsig1=-n-(power((x(1)-m(r))/sigm(j),2)*exp(-(x(1)-m(r))/sigm(j)))+sum2;

sigm(j+1)=sigm(j)-(fsig/fsig1);

if sigm(j+1)-sigm(j)<0.0001

sigh=sigm(j+1);

end

end

newton raphson for mu

------------------------

mm(5)=0;
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mm(1)=mu1;

for j=1:5

d(n)=0;

for h=2:n

sumR1(1)=stable\_R(1,ap(r),sigh,mm(j),x,h);

sumR1(2)=stable\_R(1,ap(r),sigh,mm(j),x,h)

+stable\_R(2,ap(r),sigh,mm(j),x,h);

j1=2;

while abs(sumR1(j1)-sumR1(j1-1))>.0001

sumR1(j1+1)=sumR1(j1)+stable\_R(j1+1,ap(r),sigh,mm(j),x,h);

j1=j1+1;

end

d(h)=j1;

end

d1(n)=0;

for h=2:n

sumLL(1)=stable\_L(1,ap(r),sigh,mm(j),x,h);

sumLL(2)=stable\_L(1,ap(r),sigh,mm(j),x,h)

+stable\_L(2,ap(r),sigh,mm(j),x,h);

j2=2;

while abs(sumLL(j2)-sumLL(j2-1))>.0001

sumLL(j2+1)=sumLL(j2)+stable\_L(j2+1,ap(r),sigh,mm(j),x,h);

j2=j2+1;

end
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d1(h)=j2;

end

d2(n)=0;

for h=2:n

sumLL1(1)=stable\_L1(1,ap(r),sigh,mm(j),x,h);

sumLL1(2)=stable\_L1(1,ap(r),sigh,mm(j),x,h)

+stable\_L1(2,ap(r),sigh,mm(j),x,h);

j3=2;

while abs(sumLL1(j3)-sumLL1(j3-1))>.0001

sumLL1(j3+1)=sumLL1(j3)+stable\_L1(j3+1,ap(r),sigh,mm(j),x,h);

j3=j3+1;

end

d2(h)=j3;

end

sum3=0;sum4=0;

for h=2:n

sLL=0;sLL1=0;sR1=0;

for q3=1:d(h)

sR1=sR1+stable\_R(q3,ap(r),sigh,mm(j),x,h);

end

for q4=1:d1(h)

sLL=sLL+stable\_L(q4,ap(r),sigh,mm(j),x,h);

end

for q5=1:d2(h)
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sLL1=sLL1+stable\_L1(q5,ap(r),sigh,mm(j),x,h);

end

sum3=sum3+(sLL/sR1);

sum4=sum4+((sR1*sLL1-sLL*sLL)/(sR1*sR1));

end

fmu=1-exp(-(x(1)-mm(j))/sigh)+(1-ap(r))*sum3;

fmu1=-(exp(-(x(1)-mm(j))/sigh)/sigh)+(power((1-ap(r)),2)/sigh)*sum4;

mm(j+1)=mm(j)-(fmu/fmu1);

if mm(j+1)-mm(j)<0.0001

muh=mm(j+1);

end

end

newton raphson for alpha

-------------------------

alp(5)=0;

alp(1)=aa;

for j=1:5

k1(n)=0;

for h=2:n

sumR2(1)=stable\_R(1,alp(j),sigh,muh,x,h);

sumR2(2)=stable\_R(1,alp(j),sigh,muh,x,h)

+stable\_R(2,alp(j),sigh,muh,x,h);

j4=2;
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while abs(sumR2(j4)-sumR2(j4-1))>.0001

sumR2(j4+1)=sumR2(j4)+stable\_R(j4+1,alp(j),sigh,muh,x,h);

j4=j4+1;

end

k1(h)=j4;

end

k2(n)=0;

for h=2:n

sumalp(1)=stable\_R1(1,alp(j),sigh,muh,x,h);

sumalp(2)=stable\_R1(1,alp(j),sigh,muh,x,h)

+stable\_R1(2,alp(j),sigh,muh,x,h);

j5=2;

while abs(sumalp(j5)-sumalp(j5-1))>.0001

sumalp(j5+1)=sumalp(j5)+stable\_R1(j5+1,alp(j),sigh,muh,x,h);

j5=j5+1;

end

k2(h)=j5;

end

k3(n)=0;

for h=2:n

sumalp1(1)=stable\_R2(1,alp(j),sigh,muh,x,h);

sumalp1(2)=stable\_R2(1,alp(j),sigh,muh,x,h)

+stable\_R2(2,alp(j),sigh,muh,x,h);

j6=2;
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while abs(sumalp1(j6)-sumalp1(j6-1))>.0001

sumalp1(j6+1)=sumalp1(j6)+stable\_R2(j6+1,alp(j),sigh,muh,x,h);

j6=j6+1;

end

k3(h)=j6;

end

sum5=0;sum6=0;

for h=2:n

salp=0;salp1=0;sR2=0;

for q6=1:k1(h)

sR2=sR2+stable\_R(q6,alp(j),sigh,muh,x,h);

end

for q7=1:k2(h)

salp=salp+stable\_R1(q7,alp(j),sigh,muh,x,h);

end

for q8=1:k3(h)

salp1=salp1+stable\_R2(q8,alp(j),sigh,muh,x,h);

end

sum5=sum5+(salp/sR2);

sum6=sum6+((sR2*salp1-salp*salp)/(sR2*sR2));

end

falp=sum5;

falp1=sum6;

alp(j+1)=alp(j)-(falp/falp1);
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if alp(j+1)-alp(j)<0.0001

alph=alp(j+1);

end

end

ap(r+1)=alph;

m(r+1)=muh;

sh(r+1)=sigh;

if ap(r+1)-ap(r)<0.001

aha=ap(r+1);

end

if m(r+1)-m(r)<0.001

mha=m(r+1);

end

if sh(r+1)-sh(r)<0.001

sha=sh(r+1);

end

end

ah(z)=aha;

mh(z)=mha;

shh(z)=sha;

toc

end

est=[mean(ah) mean(shh) mean(mh)]

stdrr=[sqrt(var(ah)) sqrt(var(shh)) sqrt(var(mh))]
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----------------------------------------------------

function fl=stable\_L(k,alpha,sig,mu,x,h)

fl=(power(-1,k-1))*(gamma(k*alpha))*k*(exp(-(k*(x(h)-alpha*x(h-1)

-(1-alpha)*mu)/sig)))*(sin(k*pi*alpha))/factorial(k-1);

function fl1=stable\_L1(k,alpha,sig,mu,x,h)

fl1=(power(-1,k-1))*(gamma(k*alpha))*k*k*(exp(-(k*(x(h)-alpha*x(h-1)

-(1-alpha)*mu)/sig)))*(sin(k*pi*alpha))/factorial(k-1);

function f=stable\_R(k,alpha,sig,mu,x,h)

f=(power(-1,k-1))*(gamma(k*alpha))*(exp(-(k*(x(h)-alpha*x(h-1)

-(1-alpha)*mu)/sig)))*(sin(k*pi*alpha))/factorial(k-1);

function fR=stable\_R1(k,alpha,sig,mu,x,h)

fR=(power(-1,k-1))*k*(gamma(k*alpha))*(exp(-(k*(x(h)-alpha*x(h-1)

-(1-alpha)*mu)/sig)))*(((((x(h-1)-mu)/sig)+psi(0,k*alpha))*sin(k*pi*alpha))

+(pi*cos(k*pi*alpha)))/factorial(k-1);

function fR1=stable\_R2(k,alpha,sig,mu,x,h)

fR1=(power(-1,k-1))*k*k*(gamma(k*alpha))*(exp(-(k*(x(h)-alpha*x(h-1)

-(1-alpha)*mu)/sig)))*((power((((x(h-1)-mu)/sig)+psi(0,k*alpha)),2)

+psi(1,k*alpha)-pi*pi)*sin(k*pi*alpha)+pi*(((x(h-1)-mu)/sig)

+2*psi(0,k*alpha))*cos(k*pi*alpha))/factorial(k-1);
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Estimation of Parameters for

Weibull PAR(1) Model

Maximum Likelihood Estimation

----------------------------

clear;

al=input(’initial alpha’);

th=input(’initial theta’);

la=input(’initial lamda’);

gam=0.577216;

n=2000;

be(10)=0;

be(1)=0.3;

for i=1:10
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LL=((gamma((1/be(i))+1)*gamma((1/be(i))+1))/gamma((2/be(i))+1))

-(gamma((1/th)+1)*gamma((1/th)+1)*gamma((2*al/th)+1))/(gamma((2/th)+1)

*gamma((al/th)+1)*gamma((al/th)+1));

LL1=-((2*gamma((1/be(i))+1)*gamma((1/be(i))+1)

*psi(0,1+(1/be(i))))/(be(i)*be(i)*gamma((2/be(i))+1)))

+((2*gamma((1/be(i))+1)*gamma((1/be(i))+1)

*psi(0,1+(2/be(i))))/(be(i)*be(i)*gamma((2/be(i))+1)));

be(i+1)=be(i)-(LL/LL1);

if be(i+1)-be(i)<0.001

be1=be(i+1);

end

end

c1=power(la,-1/th)*gamma((1/th)+1);

c2=power(la,-al/th)*gamma((al/th)+1)*gamma((1/be1)+1);

dee=c1/c2;

de=power(dee,-be1);

mom=[be1 de]

aa(100)=0;tt(100)=0;ll(100)=0;

for z=1:100

u=rand(1,n);

u1=-(log(1-u)/de);

u2=1/be1;
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v=u1.\^{u2}

y(n)=0;

y(1)=v(1);

for t=2:n

y(t)=power(y(t-1),al)*v(t);

end

m=10;

bet(m)=0;alp(m)=0;alph(m)=0;bet2(m)=0;

alp(1)=al;

bet(1)=be1;

alph(1)=al;

bet2(1)=be1;

for j=1:m

for i=1:m

L1=((n-1)/bet(i))+fp3(alph(j),y,n)-(n-1)

*(fp4(alph(j),bet(i),y,n)/fp(alph(j),bet(i),y,n));

L2=-((n-1)/power(bet(i),2))-(n-1)*((fp(alph(j),bet(i),y,n)

*fp6(alph(j),bet(i),y,n))-power(fp4(alph(j),bet(i),y,n),2))

/power(fp(alph(j),bet(i),y,n),2);

bet(i+1)=bet(i)-(L1/L2);

if bet(i+1)-bet(i)<0.001

bet1=bet(i+1);
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end

end

for i=1:m

L3=(n-1)*(fp1(alp(i),bet1,y,n)/fp(alp(i),bet1,y,n))-fp2(y,n);

L4=((n-1)*bet1)*(power(fp1(alp(i),bet1,y,n),2)

-(fp(alp(i),bet1,y,n)*fp5(alp(i),bet1,y,n)))

/power(fp(alp(i),bet1,y,n),2);

alp(i+1)=alp(i)-(L3/L4);

if alp(i+1)-alp(i)<0.001

alp1=alp(i+1);

end

end

alph(j+1)=alp1;

bet2(j+1)=bet1;

if alph(j+1)-alph(j)<0.001

alpha=alph(j+1);

end

if bet2(j+1)-bet2(j)<0.001

beta=bet2(j+1);

end

end

delta=(n-1)/fp(alpha,beta,y,n);
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tht(10)=0;

tht(10)=0.4;

for i=1:10

H1=((gamma(1+(1/tht(i)))*gamma(1+(1/tht(i)))

*gamma(1+(2*alpha/tht(i))))/(gamma(1+(2/tht(i)))

*gamma(1+(alpha/tht(i)))*gamma(1+(alpha/tht(i)))))

-((gamma(1+(1/beta))*gamma(1+(1/beta)))/gamma(1+(2/beta)));

H2=(2*gamma((1/tht(i))+1)*gamma((1/tht(i))+1)

*gamma((2*alpha/tht(i))+1)*psi(0,(1/tht(i))+1))/(tht(i)*tht(i)

*gamma((2/tht(i))+1)*gamma((alpha/tht(i))+1)*gamma((alpha/tht(i))+1));

H3=(2*gamma((1/tht(i))+1)*gamma((1/tht(i))+1)

*gamma((2*alpha/tht(i))+1)*psi(0,(2/tht(i))+1))/(tht(i)

*tht(i)*gamma((2/tht(i))+1)*gamma((alpha/tht(i))+1)

*gamma((alpha/tht(i))+1));

H4=(2*alpha*gamma((1/tht(i))+1)*gamma((1/tht(i))+1)

*gamma((2*alpha/tht(i))+1)*psi(0,(alpha/tht(i))+1))/(tht(i)

*tht(i)*gamma((2/tht(i))+1)*gamma((alpha/tht(i))+1)

*gamma((alpha/tht(i))+1));

H5=(2*alpha*gamma((1/tht(i))+1)*gamma((1/tht(i))+1)

*gamma((2*alpha/tht(i))+1)*psi(0,(2*alpha/tht(i))+1))/(tht(i)
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*tht(i)*gamma((2/tht(i))+1)*gamma((alpha/tht(i))+1)

*gamma((alpha/tht(i))+1));

H=-H2+H3+H4-H5;

tht(i+1)=tht(i)-(H1/H);

if tht(i+1)-tht(i)<0.001

theta=tht(i+1);

end

end

lam=(gamma((1/theta)+1)*power(delta,(1/beta)))/(gamma((alpha/theta)+1)

*gamma((1/beta)+1));

po=theta/(1-alpha);

lamda=power(lam,po);

tt(z)=theta;

aa(z)=alpha;

ll(z)=lamda;

end

est=[mean(aa) mean(tt) mean(ll)]

sds=[sqrt(var(aa)) sqrt(var(tt)) sqrt(var(ll))]

---------------------------------------------------

function f=fp(a,b,y,n)

s=0;
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for t=2:n

s=s+power((y(t)/power(y(t-1),a)),b);

end

f=s;

function f1=fp1(a,b,y,n)

s1=0;

for t=2:n

s1=s1+power((y(t)/power(y(t-1),a)),b)*log(y(t-1));

end

f1=s1;

function f2=fp2(y,n)

s2=0;

for t=2:n

s2=s2+log(y(t-1));

end

f2=s2;

function f3=fp3(a,y,n)

s3=0;

for t=2:n

s3=s3+log(y(t)/power(y(t-1),a));

end
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f3=s3;

function f4=fp4(a,b,y,n)

s4=0;

for t=2:n

s4=s4+power((y(t)/power(y(t-1),a)),b)*log(y(t)/power(y(t-1),a));

end

f4=s4;

function f5=fp5(a,b,y,n)

s5=0;

for t=2:n

s5=s5+power((y(t)/power(y(t-1),a)),b)*power(log(y(t-1)),2);

end

f5=s5;

function f6=fp6(a,b,y,n)

s6=0;

for t=2:n

s6=s6+power((y(t)/power(y(t-1),a)),b)

*power(log(y(t)/power(y(t-1),a)),2);

end

f6=s6;
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Estimation of parameters for

GEV-SV Model

GMM Estimation (R Code)

-----------------------

mu=2

sigma=2

alpha=0.2

n1=1500

est1=c();est2=c();est3=c();

for(r in 1:1000){

E=rexp(n1,1)

U=runif(n1,0,pi)

k1=(sin(U))\^(-1/alpha)
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k2=sin(alpha*U)

k3=(sin((1-alpha)*U))\^((1-alpha)/alpha)

k4=E\^(-(1-alpha)/alpha)

Z=k4*k1*k2*k3

v=(Z)\^(-alpha)

v1=-log(v);

eta=((1-alpha)*mu)-(sigma*v1)

h1=c()

h1[1]=eta[1]

for(t in 2:n1){

h1[t]=alpha*h1[t-1]+eta[t]

}

h=h1[501:n1]

n=length(h)

abl=rnorm(n,0,1)

y=exp(h/2)*abl

s1=0;s2=0;s3=0

for(l in 2:n){

s1=s1+(y[l]*y[l])

s2=s2+(y[l]*y[l]*y[l]*y[l])

s3=s3+(y[l]*y[l]*y[l-1]*y[l-1])

}

m1=s1/n;m2=s2/n;m3=s3/n

sig=c()
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sig[1]=0.5

for(i in 1:10){

L1=((m1\^2)/m2)-((gamma(1+sig[i])*gamma(1+sig[i]))

/(3*gamma(1+(2*sig[i]))))

L2=((2*gamma(1+sig[i])*gamma(1+sig[i]))

/(3*gamma(1+(2*sig[i]))))*(digamma(1+(2*sig[i]))

-digamma(1+sig[i]))

sig[i+1]=sig[i]-(L1/L2)

if((sig[i+1]-sig[i])<0.0001) sigmahat=sig[i+1]

}

muhat=log(m1/gamma(sigmahat+1))

al=c()

al[1]=0.1

for(j in 1:10){

L3=(m3/((exp(2*muhat))*gamma(1+sigmahat)))

-((gamma(1+((1+al[j])*sigmahat)))/(gamma(1+(al[j]*sigmahat))))

L4=(sigmahat*(gamma(1+((1+al[j])*sigmahat)))

/(gamma(1+(al[j]*sigmahat))))*(digamma(1+(al[j]*sigmahat))

-digamma(1+((1+al[j])*sigmahat)))

al[j+1]=al[j]-(L3/L4)

if((al[j+1]-al[j])<0.0001) alphahat=al[j+1]

}

est1[r]=muhat

est2[r]=sigmahat
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est3[r]=alphahat

}

a1mu=mean(est1)

v1mu=sqrt(var(est1))

a2sigma=mean(est2)

v2sigma=sqrt(var(est2))

a3alpha=mean(est3)

v3alpha=sqrt(var(est3))

a1mu

v1mu

a2sigma

v2sigma

a3alpha

v3alpha
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Estimation of parameters for

Bivariate Exponential Distribution

Maximum Likelihood Estimation

-----------------------------

clear;

N=150;

alpha=input(’Enter alpha: ’);

beta=input(’Enter beta: ’);

lamda=input(’Enter lamda: ’);

aa(50)=0;bb(50)=0;ll(50)=0;

for z=1:50

tic

E=exprnd(1,N,1);
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U=unifrnd(0,pi,N,1);

kk1=power(E,(-(1-alpha)/alpha));

kk2=power((sin(U)),(-1/alpha));

kk3=sin(alpha*U);

kk4=power((sin((1-alpha)*U)),((1-alpha)/alpha));

Y1=kk1.*kk2.*kk3.*kk4;

V=power(Y1,-alpha);

Z=(power(lamda,alpha)/beta).*V;

X=exprnd((1/lamda),N,1);

Y=power(X,alpha).*Z;

x=X(101:N);

y=Y(101:N);

n=length(x);

lha=n/sum(x);

newton raphson for alpha

------------------------

ap(20)=0;be(20)=0;

cc=corrcoef(x,y);

ap(1)=cc(1,2);

be(1)=1/mean(y);

for r=1:20

a(10)=0; a(1)=ap(1);

for j=1:10
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q(n)=0;

for h=1:n

s(1)=(power(-1,1-1))*(gamma(1*a(j))/gamma(1))

*power((be(r)*y(h)/(power(lha*x(h),a(j)))),1)

*(sin(1*pi*a(j)));

s(2)=s(1)+(power(-1,2-1))*(gamma(2*a(j))/gamma(2))

*power((be(r)*y(h)/(power(lha*x(h),a(j)))),2)

*(sin(2*pi*a(j)));

i=2;

while abs(s(i)-s(i-1))>.0000000001

s(i+1)=s(i)+(power(-1,(i+1)-1))

*(gamma((i+1)*a(j))/gamma((i+1)))

*power((be(r)*y(h)/(power(lha*x(h),a(j)))),(i+1))

*(sin((i+1)*pi*a(j)));

i=i+1;

end

q(h)=i;

end

G(n)=0;

for h=1:n

sum1=0;

for k=1:q(h)

sum1=sum1+(power(-1,k-1))*(gamma(k*a(j))/gamma(k))

*power((be(r)*y(h)/(power(lha*x(h),a(j)))),k)
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*(sin(k*pi*a(j)));

end

G(h)=sum1;

end

q1(n)=0;

for h=1:n

s1(1)=(power(-1,1-1))*(gamma(1*a(j))/gamma(1))*1

*(power((be(r)*y(h)/(power(lha*x(h),a(j)))),1))

*((pi*cos(1*pi*a(j)))+((psi(0,1*a(j))

-log(lha*x(h)))*sin(1*pi*a(j))));

s1(2)=s1(1)+(power(-1,2-1))*(gamma(2*a(j))/gamma(2))

*2*(power((be(r)*y(h)/(power(lha*x(h),a(j)))),2))

*((pi*cos(2*pi*a(j)))+((psi(0,2*a(j))

-log(lha*x(h)))*sin(2*pi*a(j))));

i1=2;

while abs(s1(i1)-s1(i1-1))>.0000000001

s1(i1+1)=s1(i1)+(power(-1,(i1+1)-1))

*(gamma((i1+1)*a(j))/gamma((i1+1)))*(i1+1)

*(power((be(r)*y(h)/(power(lha*x(h),a(j)))),(i1+1)))

*((pi*cos((i1+1)*pi*a(j)))+((psi(0,(i1+1)*a(j))

-log(lha*x(h)))*sin((i1+1)*pi*a(j))));

i1=i1+1;

end

q1(h)=i1;
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end

Ga(n)=0;

for h=1:n

sum2=0;

for k1=1:q1(h)

sum2=sum2+(power(-1,k1-1))*(gamma(k1*a(j))/gamma(k1))

*k1*(power((be(r)*y(h)/(power(lha*x(h),a(j)))),k1))

*((pi*cos(k1*pi*a(j)))+((psi(0,k1*a(j))

-log(lha*x(h)))*sin(k1*pi*a(j))));

end

Ga(h)=sum2;

end

q2(n)=0;

for h=1:n

s2(1)=(power(-1,1-1))*(gamma(1*a(j))/gamma(1))*1*1

*power((be(r)*y(h)/(power(lha*x(h),a(j)))),1)

*((2*pi*(psi(0,1*a(j))-log(lha*x(h)))*cos(1*pi*a(j)))

+(power((psi(0,1*a(j))-log(lha*x(h))),2)

*sin(1*pi*a(j)))+((psi(1,1*a(j))-pi*pi)

*sin(1*pi*a(j))));

s2(2)=s2(1)+(power(-1,2-1))*(gamma(2*a(j))/gamma(2))

*2*2*power((be(r)*y(h)/(power(lha*x(h),a(j)))),2)

*((2*pi*(psi(0,2*a(j))-log(lha*x(h)))*cos(2*pi*a(j)))

+(power((psi(0,2*a(j))-log(lha*x(h))),2)
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*sin(2*pi*a(j)))+((psi(1,2*a(j))-pi*pi)

*sin(2*pi*a(j))));

i2=2;

while abs(s2(i2)-s2(i2-1))>.0000000001

s2(i2+1)=s2(i2)+(power(-1,(i2+1)-1))*(gamma((i2+1)*a(j))

/gamma((i2+1)))*(i2+1)*(i2+1)*power((be(r)*y(h)

/(power(lha*x(h),a(j)))),(i2+1))

*((2*pi*(psi(0,(i2+1)*a(j))-log(lha*x(h)))

*cos((i2+1)*pi*a(j)))+(power((psi(0,(i2+1)*a(j))

-log(lha*x(h))),2)*sin((i2+1)*pi*a(j)))

+((psi(1,(i2+1)*a(j))-pi*pi)*sin((i2+1)*pi*a(j))));

i2=i2+1;

end

q2(h)=i2;

end

Gaa(n)=0;

for h=1:n

sum3=0;

for k2=1:q2(h)

sum3=sum3+(power(-1,k2-1))*(gamma(k2*a(j))/gamma(k2))

*k2*k2*power((be(r)*y(h)/(power(lha*x(h),a(j)))),k2)

*((2*pi*(psi(0,k2*a(j))-log(lha*x(h)))*cos(k2*pi*a(j)))

+(power((psi(0,k2*a(j))-log(lha*x(h))),2)*sin(k2*pi*a(j)))

+((psi(1,k2*a(j))-pi*pi)*sin(k2*pi*a(j))));
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end

Gaa(h)=sum3;

end

falpha=sum(Ga./G);

fdalpha=sum((G.*Gaa-Ga.*Ga)./(G.*G));

a(j+1)=a(j)-(falpha/fdalpha);

if a(j+1)-a(j)<0.0001

aha=a(j+1);

end

end

newton raphson for beta

-----------------------

b(10)=0; b(1)=1/mean(y);

for j=1:10

q3(n)=0;

for h=1:n

s3(1)=(power(-1,1-1))*(gamma(1*aha)/gamma(1))

*power((b(j)*y(h)/(power(lha*x(h),aha))),1)

*(sin(1*pi*aha));

s3(2)=s3(1)+(power(-1,2-1))*(gamma(2*aha)/gamma(2))

*power((b(j)*y(h)/(power(lha*x(h),aha))),2)

*(sin(2*pi*aha));

i3=2;
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while abs(s3(i3)-s3(i3-1))>.0000000001

s3(i3+1)=s3(i3)+(power(-1,(i3+1)-1))*(gamma((i3+1)*aha)

/gamma((i3+1)))*power((b(j)*y(h)

/(power(lha*x(h),aha))),(i3+1))

*(sin((i3+1)*pi*aha));

i3=i3+1;

end

q3(h)=i3;

end

bG(n)=0;

for h=1:n

sum4=0;

for k3=1:q3(h)

sum4=sum4+(power(-1,k3-1))*(gamma(k3*aha)/gamma(k3))

*power((b(j)*y(h)/(power(lha*x(h),aha))),k3)

*(sin(k3*pi*aha));

end

bG(h)=sum4;

end

q4(n)=0;

for h=1:n

s4(1)=(power(-1,1-1))*(gamma(1*aha)/gamma(1))

*1*power((b(j)*y(h)/(power(lha*x(h),aha))),1)

*(sin(1*pi*aha));
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s4(2)=s4(1)+(power(-1,2-1))*(gamma(2*aha)/gamma(2)

*2*power((b(j)*y(h)/(power(lha*x(h),aha))),2)

*(sin(2*pi*aha));

i4=2;

while abs(s4(i4)-s4(i4-1))>.0000000001

s4(i4+1)=s4(i4)+(power(-1,(i4+1)-1))

*(gamma((i4+1)*aha)/gamma((i4+1)))*(i4+1)

*power((b(j)*y(h)/(power(lha*x(h),aha))),(i4+1))

*(sin((i4+1)*pi*aha));

i4=i4+1;

end

q4(h)=i4;

end

Gb(n)=0;

for h=1:n

sum5=0;

for k4=1:q4(h)

sum5=sum5+(power(-1,k4-1))*(gamma(k4*aha)/gamma(k4))

*k4*power((b(j)*y(h)/(power(lha*x(h),aha))),k4)

*(sin(k4*pi*aha));

end

Gb(h)=sum5;

end

q5(n)=0;
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for h=1:n

s5(1)=(power(-1,1-1))*(gamma(1*aha)/gamma(1))

*1*1*power((b(j)*y(h)/(power(lha*x(h),aha))),1)

*(sin(1*pi*aha));

s5(2)=s5(1)+(power(-1,2-1))*(gamma(2*aha)/gamma(2))

*2*2*power((b(j)*y(h)/(power(lha*x(h),aha))),2)

*(sin(2*pi*aha));

i5=2;

while abs(s5(i5)-s5(i5-1))>.0000000001

s5(i5+1)=s5(i5)+(power(-1,(i5+1)-1))

*(gamma((i5+1)*aha)/gamma((i5+1)))*(i5+1)*(i5+1)

*power((b(j)*y(h)/(power(lha*x(h),aha))),(i5+1))

*(sin((i5+1)*pi*aha));

i5=i5+1;

end

q5(h)=i5;

end

Gbb(n)=0;

for h=1:n

sum6=0;

for k5=1:q5(h)

sum6=sum6+(power(-1,k5-1))*(gamma(k5*aha)/gamma(k5))

*k5*k5*power((b(j)*y(h)/(power(lha*x(h),aha))),k5)

*(sin(k5*pi*aha));
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end

Gbb(h)=sum6;

end

fbeta=sum(Gb./bG);

fdbeta=(1/b(j))*sum((bG.*Gbb-Gb.*Gb)./(bG.*bG));

b(j+1)=b(j)-(fbeta/fdbeta);

if b(j+1)-b(j)<0.0001

bha1=b(j+1);

end

end

be(r+1)=bha1; ap(r+1)=aha;

if be(r+1)-be(r)<0.0001

bha=be(r+1);

end

if ap(r+1)-ap(r)<0.0001

aph=ap(r+1);

end

end

aa(z)=aph; bb(z)=bha; ll(z)=lha;

toc

end

es=[mean(aa) mean(bb) mean(ll)]

va=[sqrt(var(aa)) sqrt(var(bb)) sqrt(var(ll))]
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