

Available online at www.sciencedirect.com

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS

Journal of Physics and Chemistry of Solids 69 (2008) 1985-1989

www.elsevier.com/locate/jpcs

Raman and FTIR studies of the structural aspects of Nasicon-type crystals; $AFeTi(PO_4)_3$ [A = Ca, Cd]

M. Junaid Bushiri^{a,*}, C.J. Antony^a, Abderrahim Aatiq^b

^aDepartment of Physics, University of Kerala, Kariavattom, Trivandrum, Kerala-695 581, India ^bFaculté des Sciences Ben M'Sik, Département de Chimie, LCMS, Av. Idriss El harti, B.P. 7955, Casablanca, Morocco

Received 29 August 2006; received in revised form 8 January 2008; accepted 11 February 2008

Abstract

Raman and FTIR spectra of CaFeTi(PO₄)₃ and CdFeTi(PO₄)₃ are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO₆ octahedra and PO₄ tetrahedra. The symmetry of TiO₆ octrahedra and PO₄ tetrahedra is lowered from their free ion symmetry. The presence of Fe³⁺ ion disrupts the Ti–O–P–O–Ti chain and leads to the distortion of TiO₆ octrahedra and PO₄ tetrahedra. The PO₄³⁻ tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO₄³⁻ polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO₄³⁻ polyanionin. © 2008 Elsevier Ltd. All rights reserved.

Keywords: C. Infrared spectroscopy; C. Raman spectroscopy

1. Introduction

Phosphates with general formula ABB'(PO₄)₃ crystallize mainly in the Nasicon $NaZr_2(PO_4)_3$ -type structure. Materials with this family possess a rhombohedral $R\bar{3}c$ structure and have many technological applications due to its superionic conductivity, chemical stability and high catalytic activity. The ABB'(PO₄)₃ Nasicon-type phase consists of a $BB'(PO_4)_3$ framework built up by a corner-sharing $B(B')O_6$ octahedra and PO_4 tetrahedra. In this structure each octahedron is surrounded by six tertrahedra and each tetrahedron is connected to four octahedra. This family of compounds possess 'open' structures in which alkali ions can move with significantly reduced activation barriers and hence potential for applications as fast ion conductors [1–8]. B sites can be accommodated with large number of transition as well as non-transition metals. The tetravalent and trivalent redox couples in B site can give technically attractive battery voltage [5]. The phosphate polyanions can lowers the open circuit voltage of isostructural compounds [5]. Recently, considerable importance has attained for phosphate with Nasicon-type framework with elements like Ti, Fe, Nb, Sn, etc. which can have more than one oxidation state [6]. The partial substitution of tetravalent element like Ti with trivalent element like Al was very effective for enhancement of ionic conductivity of these materials [7]. Several works have been reported to study the relationship between the structural and electrochemical properties of potential materials for battery applications [5,7,9]. Aatiq et al. studied the structure of $AFeTi(PO_4)_3$ [A = Ca, Cd] with aid of powder X-ray diffraction data using the Rietveld method [6]. Since Ca^{2+} and Ti^{4+} ions are isoelectronic, these cannot be distinguished without ambiguity by XRD. But the analysis of Ca-O and Fe(Ti)-O distances permits to conclude about cationic distribution of CaFeTi(PO₄)₃. Apart from this, the solid electrolytic properties of materials are usually caused by features of their atomic structure. The vibrational spectra of these materials will provide additional information on the nature of fast ion transport in solids [10]. In the present study the internal structure of the title compounds

^{*}Corresponding author. Present address: Department of Physics, Cochin University of Science and Technology, Kochi, Kerala 682022, India. Tel.: +91 0484 2577404.

E-mail address: junaidbushiri@gmail.com (M. Junaid Bushiri).

^{0022-3697/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.jpcs.2008.02.008

are investigated by using Raman and FITR spectra. Further an attempt is made to determine the redox energy and cell voltage of title compounds from the Raman spectral data.

2. Experimental

Powder crystalline samples of CaFeTi(PO₄)₃ and CdFe-Ti(PO₄)₃ abbreviated as CaFT and CdFT, respectively were prepared by solid state reaction technique from the mixtures of TiO₂, Fe₂O₃, carbonates CaCO₃ or CdCO₃ and NH₄H₂PO₄ [6]. Bruker RFS 100/S spectrometer was used to record the Raman spectra in the stokes region. The FTIR spectra of the compounds were recorded using a Bruker IFS-66v-FTIR spectrometer in the region 400–4000 cm⁻¹ by KBr Pellet method.

3. Factor group analysis

The structure of both CaFT and CdFT crystals are having Nasicon-type framework structure and crystallizes in hexagonal system with space group $R\bar{3}c$ (D_{3d}^6). Its unit cell parameters are: a = 8.518(1)Å, c = 21.797(2)Å and a = 8.534(1)Å, c = 21.416(2)Å, for CaFT and CdFT, respectively [6]. In the crystal structure, two Ca(Cd) atoms are in the D₃ site, the Fe and Ti atoms each two in number are, respectively, occupying C_{3i} and C_i sites. Six P atoms are located at C₂ site and all the 24 oxygen atoms are found to occupy the C₁ site. The vibrational modes of these compounds are obtained by the group theoretical method [11]. The total irreducible representation excluding acoustic modes are distributed as

 $\Gamma_{105} = 10A_{1g} + 12A_{2g} + 13E_g + 12A_{1u} + 13A_{2u} + 16E_u.$

4. Results and discussion

4.1. Vibrational analysis

The crystal structure of CaFT is built up by corner sharing of Ti(Fe)O₆ octahedra and PO₄ tetrahedra in such a way that each octahedra is surrounded by six tetrahedra (Fig. 1). Within Nasicon framework, there are interconnected interstitial sites, usually labeled as M1 and M2, through which a cation can diffuse. Ca²⁺ ions in CaFT are considered to be distributed within the M1 sites whereas the M2 site is empty (Fig. 1). The structure of CdFT is similar to the previous one, in which the M1 sites are filled with Cd ions. The crystal structure refinement suggests that, Fe^{3+} ions are occupying the Ti sites [6]. Considering chemical nature of both Fe^{3+} and Ti^{4+} ions there is a probability of different types of Fe/Ti-O bonds. Hence the TiO_6 octrahedra are disturbed by the presence of Fe³⁺ ions in the site. Moreover the ionic radii of these ions are almost identical $(r_{\text{Fe}} = 0.6454 \text{ Å}; r_{\text{Ti}} = 0.605 \text{ Å})$ [6]. The Ti–O bond length is weak and varies from 1.902 to 2.041 Å in CaFT and from 1.897 to 2.044 Å in CdFT. There will be

Fig. 1. Perspective view of the CaFeTi(PO₄)₃ Nasicon phase [6].

higher possibility of Fe ions disturbing Ti–O–P as well as Ti–O–Ti chain. This is due to the equivalence of Fe³⁺ and Ti⁴⁺ ions which occupy equivalent sites in the structure as reported in similar type compounds [12,13].

4.2. Vibrations of TiO_6 octahedra

In metal-oxide systems containing titanium, the binding forces within the metal-oxygen octahedra are higher than the crystal binding forces. External modes usually appear at lower frequencies than internal modes [14]. The free ion TiO₆ octahedra with O_h symmetry has six fundamental modes of vibration, viz, symmetric stretching mode v_1 (A_{1g}) , asymmetric stretching modes v_2 (E_g) and v_3 (F_{1u}) , asymmetric bending mode v_4 (F_{1u}), symmetric bending mode v_5 (F_{2g}) and the Raman and IR inactive mode v_6 (F_{2u}). The v_1 , v_2 , and v_5 modes are Raman active, whereas the v_3 and v_4 modes are IR active [15–17]. The TiO₆ octahedral modes were reported to be at $v_1 = 639$, $v_2 = 519$, $v_3 = 513$, $v_4 = 399$, $v_5 = 197$, and $v_6 = 144 \text{ cm}^{-1}$ in TiO₂ crystals [18]. In compounds having Ti–O–Ti chain v_1 mode of TiO_6 octahedra are observed around 700 cm^{-1} as in KTiOPO₄.Na(TiO)PO₄ and $(TiO)_2P_2O_7$ [16,17,19]. But the symmetric stretching mode of TiO₆ octahedron is reported around 900 cm^{-1} in NaLnTiO₄ and at 891 cm^{-1} in $Na_5Ti(PO_4)_3$. This is interpreted due to the strong nature of Ti–O bonds [1,20]. The PO₄ stretching modes are reported above 950 cm^{-1} in Nasicon-type compouds like NaZr₂(PO₄)₃, Na₃NiZr(PO₄)₃, and Na₃MgZr(PO₄)₃ [21]. It is interesting to note in the present study, the $v_3 PO_4$ modes of CaFT and CdFT are observed at higher frequency than that of titanyl and niobyl phosphates [12,16,17,19]. This observation suggests an increasing covalent character in Ti-O bond of CaFT and CdFT in comparison to that of titanyl phosphate [22]. Further, Ti-O symmetric stretching (v_1) vibration is expected to have the strongest intensity in the Raman spectra. This spectral behavior is reported in

1987

many perovskite-like crystals or substances containing MO, groups such as SnNbO, BiNbO₄, and LaCuO [14,23–25]. According to the previously mentioned reports, the relatively strong band observed in the Raman spectra at 928 (CaFT) and at 926 (CdFT) cm⁻¹ are assigned to v_1 mode of TiO₆ octahedra. Apart from these intense Raman bands, strong IR bands are also observed at 932 (CaFT) and at 915 (CdFT) cm⁻¹ in the v_1 mode region. The relatively weak bands in the Raman spectra at 670 in CaFT and at 672 cm^{-1} in CdFT are attributed to v_2 mode of TiO₆ octahedra. Very strong Raman bands observed at 310 and $309 \,\mathrm{cm}^{-1}$ in both the compounds are due to v_5 modes of TiO₆ octahedra. The remaining bands are assigned in Table 1. The moderately strong Raman bands at 220 (CaFT) and 224 cm^{-1} (CdFT) are contributed to the Raman and IR inactive v_6 mode. The charge redistribution, or Ti-shift within the TiO₆ octahedra should strongly affect the frequency of modes involving Ti-O stretching [26]. The octahedral substitutution of Fe³⁺ has led to a distortion of the structure, which is in agreement with similar compounds having Nasicon structure [7]. If the stretching frequency of the shortest metal-oxygen bond is observed in the lower wavenumber side, the MO₆ octahedral structure is more regular especially in metal-oxide systems [27]. In the present study TiO₆ stretching frequencies (i.e., v_1 , v_2 , and v_3 modes) are shifted considerably to higher wavenumber side as compared to that of TiO₂ crystal. Further, the activation of v_1 mode in the IR spectra, v_2 and v_6 modes

Table 1 Raman and FTIR spectral data and band assignments of $CaFeTi(PO_4)_3$ and $CdFeTi(PO_4)_3$

CaFeTi(PO	4)3	CdFeTi(PO ₄) ₃		Assignments
Raman	IR	Raman	IR	
82 w		84 w		
169 ms		175 ms		Ti translational
201 ms		204 ms		
220 ms		224 ms		v_6 TiO ₆
249 sh				
310 vs		309 vs		v_5 TiO ₆ and FeO ₆
436 vs		437 vs	418 w	v_2 PO ₄ and v_4 TiO ₆
457 vs	447 ms	455 ms	455 m	
			473 sh	
534 vw	547 w	532 vw	539 vw	v_3 TiO ₆
566 vw	562 w	563 vw		5 0
583 vw		581 vw	580 vw	$v_4 PO_4$
	646 ms		642 ms	v_2 TiO ₆
670 vw		672 vw		v_2 TiO ₆
928 vvs	932 vs	926 vvs	915 vs	v_1 TiO ₆
984 vs	1002 vs	974 vs	989 vs	$v_1 PO_4$
1056 sh	1049 sh	1040 sh	1047 vs	
	1068 s		1076 vs	
1089 ms				$v_3 PO_4$
	1117 vs	1101 ms	1118 vs	5 1
1194 vw			1196 vw	
	1227 ms		1226 ms	

vw-very weak; w-weak; sh-shoulder; ms-moderately strong; vvs-very very strong, s-strong.

in the Raman spectra, suggests that TiO_6 octahedral symmetry is lowered and distorted in both compounds. The observed distortion of TiO_6 octahedra may be related to the incorporation of Fe^{3+} ions in the Ti site [6].

4.3. Vibrations of PO₄ tetrahedra

The vibrations of free PO₄ tetrahedra with T_d symmetry have four fundamental modes. These frequency modes fall at v_1 (A_1) 938, v_2 (E) 420, v_3 (F_2) 1017, and v_4 (F_2) 567 cm⁻¹. All the modes are Raman active whereas v_3 and v_4 ones are IR active only [9,15,16,28]. The v_1 mode region of PO₄ tetrahedra in CaFT shows a strong and broad band extending from 965 to 1014 with peak at 984 cm⁻¹ (Fig. 2 and Table 1). Similarly, in CdFT a strong and broad band extending from 956 to 1005 with a peak at 974 cm⁻¹ is observed (Fig. 2). The corresponding region in the IR spectra also has bands (Fig. 3). The IR spectrum in the triply degenerate asymmetric stretching v_3 mode region of CaFT has four bands at 1049, 1068, 1117, and 1227 cm⁻¹ where as CdFT shows bands at 1047, 1076, 1118, and 1226 cm⁻¹. The Raman spectra of both the samples show

Fig. 2. Raman spectra of (a) CaFeTi(PO₄)₃ and (b) CdFeTi(PO₄)₃.

Fig. 3. FTIR spectra of (a) CaFeTi(PO₄)₃ and (b) CdFeTi(PO₄)₃.

bands in the above region (Fig. 2, Table 1). These values are close to those already reported in the literature for Nasicon-like phosphates [1,3,9,10,22,29]. In CaFT, P–O distances are 1.520 and 1.527 Å with a mean P–O distance of 1.523 Å. But in CdFT, P–O distances are 1.501 and 1.547 with a mean P–O distance of 1.523 Å [6]. Popovic et al. have formulated the following empirical relation connecting P–O bond lengths and stretching frequencies [30]:

$$v = 224,500 \exp(-R/28.35),$$
 (1)

where *R* is the P–O bond lengths in pm. By replacing P–O distance values in the above expression, the obtained values are given in Table 2. These values are relatively comparable with that of the experimentally obtained one and this further confirm that the bands observed in the Raman Spectra at 928 (CaFT) and at 926 (CdFT) cm⁻¹ are due to v_1 mode of TiO₆ octahedra.

The relatively strong bands observed in the Raman spectrum of CaFT correspond to doubly degenerate v_2 mode vibration of PO₄ tetrahedra and appears at 436 and $457 \,\mathrm{cm}^{-1}$. Similarly the Raman spectrum of CdFT also shows bands at 437 and $455 \,\mathrm{cm}^{-1}$. The degeneracy of this mode is found to be lifted in both the compounds. IR spectra of these samples also have bands in the aforesaid region (Fig. 3 and Table 1). Note that the above-described spectral patterns are almost similar to that of Nasicon structures reported in literature. Assignments of v_4 mode of PO₄ tetrahedra are not obvious, since it overlaps with the v_3 modes of TiO₆ octahedra [16,17]. The observed lifting of degeneracies of v_2 and v_3 modes in the IR spectra implies that the symmetry of PO₄ tetrahedra is lowered from its free ion T_{d} symmetry. Further, the presence of symmetric stretching and bending modes in the IR spectra also confirms the above result.

The P–O bond lengths vary considerably between the two compounds even though the mean bond lengths are the same (Table 2). The stretching frequency of CdFT is shifted towards the low wavenumber side of the order of 10 cm⁻¹

Table 2

Bond lengths and stretching wavenumbers calculated (* $v = 224,500 \exp(-R/28.35)$) with experimental values of CaFT and CdFT

Name of compoud	P–O bond length (pm)	Stretching wavenumbers (exp.) Raman (cm ⁻¹)	Stretching wavenumbers (cal.)*(cm ⁻¹)
CaFT	152	1056	1054
	152.7	984	1028
	152.3 (Mean P–O)	1056	1043
CdFT	150.1 154.7	1101 974	1127 958
	152.4 (Mean P–O)	1040	1039

as compared to that of CaFT. This is probably due to comparatively longer P-O distance (1.547 Å) in CdFT as reported [6]. The splitting of v_3 mode of PO₄ tetrahedra is of the order of 159 cm^{-1} in CaFT and 180 cm^{-1} in CdFT. This observation suggests that distortion of PO₄ tetrahedra is more in CdFT than in CaFT. The appearance of the symmetric stretching mode at a higher frequency than that of the regular tetrahedra indicates linear distortion of the PO₄ tetrahedra in both the compounds. Generally, Raman bands originated from the vibrations of PO₄ stretching modes are relatively weak in most of the crystals like KTiOPO₄, SbOPO₄, MoPO₅, NbOPO₄, etc. due to the presence of Met-O-Met-O chain. Strong bands may also occur in the Raman spectra depending on Ti atoms environment [24,25,32]. But in the present study, the appearance of intense bands corresponds to PO₄ stretching modes which rules out the possibility of the Met-O-Met-O chain [19]. A broader Raman band profile is observed for both compounds in the symmetric stretching region of PO₄ tetrahedra and is about 49 cm^{-1} . This broad band profiles suggest that there is a disorder in structure of samples under investigation [12,14,21,31]. The presence of Fe³⁺ ions in Ti site induces a disorder around the PO₄ tetrahedra because the PO₄ tetrahedra are linked by corners to Fe/TiO₆ octahedra [6].

Materials with these framework are useful for battery applications and hence it is worthwhile to determine covalency strength of PO_4 tetrahedra. It is of interest to note that the cell voltage depends on the redox couple of the transition metal atoms and it related to redox energy and covalency strength. The covalency strength of PO_4 tetrahedra is directly linked to the material structure. The vibrational spectra are sensitive to the covalency of the phosphate group, the covalency strength can be estimated by the following expression [9]:

$$\Delta = (v_1 - v_2)/(v_1 + v_2).$$
⁽²⁾

The covalency strength parameter of PO_4^{3-} polyanion is found to be 0.38 in CaFT and 0.37 in CdFT. This covalency bonding factor is comparable to that of orthophosphate group of compounds. The higher covalency bonding factor of PO₄ polyanion in CaFT and CdFT indicates that a reduction in redox energy and cell voltage as compared to that of diphosphates and Nasicon-type systems reported in the literature [9]. The decrease in redox energy is attributed to the presence of PO₄³⁻ polyanion with strong covalency bonding factor which reduces the strength of Met–O covalency in the structure [9].

4.4. Other bands

Bands observed below 200 cm^{-1} are mostly due to rotational and translational modes. These bands are influenced by the replacement of the Ca by Cd. This can be attributed to external lattice modes in which the Ca²⁺ (or Cd²) ions move with respect to the PO₄ and TiO₆, groups. Further vibrations contributed by FeO₆ octahedra are expected in the $300-400 \text{ cm}^{-1}$ region [1,3]. Unambiguous assignments of these bands are limited. The band observed at 175 cm^{-1} in the Raman spectrum of CdFT and at 169 cm^{-1} in CaFT may be due to Ti translational mode as reported by Barj et al. [33].

5. Conclusions

The symmetry of both TiO₆ octrahedra and PO₄ tetrahedra is lowered from its free ion symmetry and are corner-shared in CaFT and CdFT crystals. The presence of Fe³⁺ ion disrupts the Ti–O–P–O–Ti chain within the Nasicon structure. The PO₄ tetrahedra is linearly distorted in CaFeTi(PO₄)₃ and CdFeTi(PO₄)₃. The broader band profiles of PO₄ tetrahedra suggest that there is a disordered structure in the samples under investigation. The calculated higher covalency bonding factor of PO₄ polyanion in CaFT and CdFT indicates that a reduction in redox energy as well as cell voltage as compared to that of diphosphates and certain Nasicon-type systems. The decrease in redox energy is attributed to the presence of PO₄^{3–} polyanionin with strong covalency.

References

- K.J. Rao, K.C. Sobha, A. Sundeepkumar, Infrared and raman spectroscopic studies of glasses with NASICON-type chemistry, Proc. Indian Acad. Sci. 113 (2001) 497–514.
- [2] Iara F. Gimenez, Oswaldo L. Alves, Formation of a novel polypyrrole/porous phosphate glass ceramic nanocomposite, J. Braz. Chem. Soc. 10 (1999) 167–168.
- [3] G. Butt N. Sammes, G. Tompsett, A. Smirnova, O. Yamamoto, Raman spectroscopy of superionic Ti-doped Li₃Fe₂(PO₄)₃, and LiNiPO₄ structures, J. Power Sources 134 (2004) 72–79.
- [4] S. Zhang, B. Quan, Z. Zhao, B. Zhao, Y. He, W. Chen, Preparation and characterization of NASICON with a new sol-gel process, Mater. Lett. 58 (2003) 226–229.
- [5] K.S. Nanjundaswamy, A.K. Padhi, J.B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds, Solid State Ion. 92 (1996) 1–10.
- [6] A. Aatiq., H. Dhoum, Structure of AFeTi(PO₄)₃(Ä = Ca, Cd) Nasicon phases from powder X-ray data, Powder Diffr. 19 (2004) 157–161.
- [7] M. Cretin, P. Fabry, L. Abello, Study of Li_{1+x}Al_xTi_{2-x}(PO₄)₃ for Li⁺ potentiometric sensors, J. Eur. Ceram. Soc. 15 (1995) 1149–1156.
- [8] G.Le. Polles, J-J. Videau, R. Olazcuaga, Analyse structurale par spectroscopie Raman et Infrarouge de quelques phosphates de cuivre detype Nasicon, J. Solid State Chem. 127 (1996) 341–349.
- [9] C.M. Julien, P. Jozwiak, J. Garbarczyk, Vibrational spectroscopy of electrode materials for rechargeable lithium batteries—IV. Lithium metal phosphates, in: Proceedings of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing, Sofia, Bulgaria, September 2004.
- [10] V.V. Kravchenko, V.I. Michailov, S.E. Sigaryov, Some features of vibrational spectra of $Li_3M_2(PO_4)_3(M = Sc, Fe)$ compounds near a superionic phase transition, Solid State Ion. 50 (1992) 19–30.
- [11] W.G. Fateley, F.R. Dollish, N.T. Mc Devitt, F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations— The Correlation Method, Wiley, New York, 1972.
- [12] M.J. Bushiri, V.U. Nayar, Structural aspects of KMg_{1/3}Nb_{2/3}PO₅ a KTP analogue—Raman and FTIR spectroscopic study, J. Nonlinear Opt. Phys. Mater. 10 (2001) 343–345.

- [13] E.M.Mc. Carron III, J.C. Calabrese, J.E. Gier, L.K. Cheng, C.M. Foris, J. D. Bierlein, A structural comparison of aliovalent analogues: K(Mg_{1/3}Nb_{2/3})PO₅ and KTiOPO₄, J. Solid State Chem. 102 (1993) 354–361.
- [14] A. Hushur, J.-H. Ko, S. Kojima, Raman scattering study of A- and B-site substitutions in ferroelectric Bi₄Ti₃O₁₂, J. Korean Phys. Soc. 41 (2002) 763–768.
- [15] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds—Part A, fifth ed., Wiley-Interscience, New York, 1997.
- [16] G.E. Kugel, F. Brehat, B. Wyncke, M.D. Fontana, G. Marnier, C. Carabatos-Nedelec, J. Mangin, The vibrational spectrum of a KTiOPO₄, single crystal studied by Raman and infrared reflectivity spectroscopy, J. Phys. C: Solid State Phys. 21 (1988) 5565–5583.
- [17] M.J. Bushiri, V.U. Nayar, Raman and FTIR spectroscopic studies of potassium titanylphosphate (KTiOPO₄) doped with lanthanum and praseodymium, Ind. J. Phys. 75B (2) (2001) 109–116.
- [18] K. Vivekanandan, S. Selvasekarapandian, P. Kolandaivel, M.T. Sebastian, S. Suma, Raman and FT-IR spectroscopic characterisation of flux grown KTiOPO₄ and KRbTiOPO₄ non-linear optical crystals, Mater. Chem. Phys. 49 (1997) 204–210.
- [19] G.E. Bamberger, G.M. Begun, O.B. Cavin, Synthesis and characterization of sodium-titanium phosphates, Na₄(TiO)(PO₄)₂, Na(TiO)-PO₄, and NaTi₂(PO₄)₃, J. Solid State Chem. 73 (1988) 317–324.
- [20] G. Blasse, G.P.M. Van Den Heuvel, Vibrational spectra and structural considerations of compounds NaLnTiO₄, J. Solid State Chem. 10 (1974) 206–210.
- [21] M. Chakir, A.EI. Jazouli, D.de. Waal, Synthesis crystal structure and spectroscopy properties of Na₃AZr(PO₄)₃(A = Mg, Ni) and Li_{2.6}Na_{0.4}NiZr(PO₄)₃ phosphates, J. Solid State Chem. 179 (2006) 1883–1891.
- [22] M. Ma, A.W. Kowska, J. Hanuza, Crystal structure and vibrational properies of Rb₂MgWO₂(PO₄)₂—a new framework phosphate, J. Solid State Chem. 179 (2006) 103–110.
- [23] N. Wakiya, J. Shiihara, K. Shinozaki, N. Mizutani, Raman spectroscopic determination of pyrochlore-type compound on the synthesis and decomposition of sol-gel-derived Pb(Mg_{1/3}Nb_{2/3})O₃(PMN), J. Solid State Chem. 142 (1999) 344–348.
- [24] E. Husson, F. Genet, A. Lachgar, Y. Piffard, The vibrational spectra of some antimony phosphates, J. Solid State Chem. 75 (1988) 305–312.
- [25] M. Issac, Investigations on the Raman and infrared spectra of certain molybdates, Ph. D. Thesis, University of Kerala, 1992.
- [26] N. Kolev, R.P. Bontchev, A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchuk, M.N. Iliev, Raman spectroscopy of CaCu₃Ti₄O₁₂, Phys. Rev. B 66 (2002) 132102–132104.
- [27] F.D. Hardcastle, I.E. Wachs, Determination of molybdenum–oxygen bond distances and bond orders by Raman spectroscopy, J. Raman Spectrosc. 21 (1990) 683–691.
- [28] M.J. Bushiri, M. Fakhfakh, R.S. Jayasree, V.U. Nayar, Raman and infrared spectral analysis of thallium niobyl phosphates Tl₂NbO₂PO₄, Tl₃NaNb₄O₉(PO₄)₂ and TlNbOP₂O₇, J. Mater. Chem. Phys. 73 (2002) 179–185.
- [29] R. Pikl, D. de Waal, A. Aatiq, A. El Jazouli, Vibrational spectra and factor group analysis of $Mn_{(0.5+x)}Ti_{(2-2x)}Cr_{2x}(PO_4)_3 \ \{0 \le x \le 0.50\}$, Vibr. Spectrosc. 16 (1998) 137–143.
- [30] L. Popovic, D. de Waal, J.C.A. Boeyens, Correlation between Raman wavenumbers and P–O bond lengths in crystalline inorganic phosphates, J. Raman Spectrosc. 36 (2005) 2–11.
- [31] A.A. Belik, A.P. Malakho, P.S. Salamakha, B.I. Lazoryak, Magnetic and vibrational properties and crystal structure of Sr_{9.2}Co_{1.3}(PO₄)₇ with disordered arrangements of some strontium, cobalt, and phosphate ions, J. Solid State Chem. 179 (2006) 161–168.
- [32] G.T. Stranford, R.A. Condrate Sr., The vibrational spectra of α-MoPO₅ and α-NbPO₅, J. Solid State Chem. 52 (1984) 248–253.
- [33] M. Barj, H. Perthuis, P. Colomban, Relations between sublattice disorder, phase transitions and conductivity in NASICON, Solid State Ion. 9–10 (1983) 845–850.