Theoretical investigations of an annular elliptical ring
microstrip antenna using Green'’s function technique
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Abstract: Analytical expressions for the Green’s function of an annular elliptical ring microstrip
antenna (AERMA) are developed and reported. The modal, radiation and input impedance
characteristics of the TM,,,, modes are determined from these expressions. The resonant frequencies of
odd modes are greater than that of the even modes for all TM,; modes (n = 1, 2, 3, ...) unlike
elliptical microstrip structures. The radiation pattern and input imedance curves of TM;, mode on
comparison with available experimental result shows good agreement which provides an independent
validation to this technique. The performance of the AERMA is then investigated as a function of

thickness and substrate dielectric permittivity.

1 Introduction

It is well known that circularly polarised waves may be
obtained from circular or square patches using orthogonal
feeds [1, 2], elliptical shaped antennas [3] and from elliptical
ring structures [4]. Theoretical analysis of an annular ellipti-
cal ring microstrip antenna (AERMA) was carried out
using generalised transmission line model 4] and mode
charts were presented using normalisation technique [5]. A
more direct approach i.e. Green’s function approach, which
is used for other shapes [6-10], has not been applied to
AERMA because a computationally efficient Green’s func-
tion was not available. Although solutions using other
approaches were devised for AERMA, they dealt with only
the TM,, mode [4].

In this paper, expressions for cavity model Green’s func-
tions have been derived. The modal field, radiated field and
input impedance expressions are developed for a probe-fed
confocal AERMA. The radiation characteristics of various
TM,,,, modes are presented and their usefulness are studied.
Various losses in the patch and the electric and magnetic
energies stored in the fringe regions are taken into account
for the analytical expression of the input impedance. The
radiation pattern and input impedance for the TM;, mode
obtained with the present method are compared with the
results of [4] and are in good agreement.

2 Cavity model Green's function

A confocal AERMA with dimensions shown in Fig. 1 is
considered for the analysis. The Green’s function G for this
structure is the solution of the wave equation in elliptical
coordinates [10] and is expressed as

2 2
ra + 26 h?(cosh 2u — cos 2v)G

ou? = O?
= ——6(u - UO)(;({U - UO) (1)
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Fig.1 Geometry of a probe fed AERMA and feed pin

G can be obtained if the complete set of mutually orthogo-
nal eigen function for the given boundary conditions is
known. Since the elliptical structure has both odd and even
modes, G is a sum of G, (odd) and G, (even) modes. There-
fore eqn. 1 can be split into two equations.

892G, + 9%G;
ou? ov?

+ h*(cosh 2u — cos 2v)G;

6(u — uo)d(v — o)
2
i=e0 (2)
Initially eqn. 2 with ¢ = e is considered for analysis and G,
is chosen as

Ge =" Ynme(w)Sen(hnme,cosv)  (3)
n=0m=1
where Se,(4,,,,., cos V) is the angular Mathieu function [11]
and h,,, = k,n.c corresponds to even mode cut-off
trequency. Substituting eqn. 3 into eqn. 2 and multiplying
both sides by Se,(/,,.., cos v) and integrating between 0
and 2z, and using the principle of orthogonality we can
write
O nme(u .
— TJ—J + [bn - hime cosh 2u] Vrme (1)

_ 0(u — up)Sen{hnme, COSV0)

- 2Me¢

(4)
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where b,° is a constant given by

e 1
b”_Me

n

nme/Sen hrnme, COSV) cos 2vdv

_/ 82Sen (hnme, cosv) Se, (Bnme, 08 v)dv

dv?
0
()
The solution for the inhomogeneous equation given by
eqn. 4 can be found by the method given in [11] and the
general solution can be written as

wnme (U) =

Sen (Anme, cOSVg)
2M§(hnme)(3n —A,)

X (Jen (Anme,coshug) + in Ney (Anme, cosh uo))

An
X (Jen(hnme,coshu) —+ B Nen(hnme,coshu))

n

(6)
where A4, and B, are constants. The upper values are for
the region u; < u < uy and the lower values are for the
region uy < u < u,. Therefore from eqns. 3 and 6

_ i i Sen (hnme, €08 00)Sen (Rnme, COSV)
N 2ME(hpme)(Brn — Ay)

n=0m=1

X {Jen(hnme, coshug) + B Ne, (Apme, cosh uo)]

An

A,
X [Jen(hnme, coshu) + Nep (Anme, cosh u)}

B,

(M)
Proceeding through similar steps for i = o from eqn. 2 we
get

. i Z Son(hnmo,cos 10)S05 (hnmo, COSV)
- —0 (hnmo)(Dn - Cn)

Jon (hnmo, cosh ug)

X
=

D
+ C” Noy, (hnme, cosh uo)]

Jon (hnmo,cosh u) +

Cy
D Non (hnmo, cosh u)]

! ()

where C, and D, are constants.
3 Evaluation of constants A4, B, C,and D,

Constants 4,, B,, C, and D, are chosen to satisfy the
boundary admittance conditions
v - _H j 9E,
n=———=
128 wyocx/coshz u— cos?v 9
at u=uj,uz (9)

Considering the even mode first

Y, = J

2 key/cosh?u — cos? v

[Je’n (hnme, cosh ;! ) + g: Ne!, <hnme, cosh 1 )]

[Jen (h/nme, cosh ;! ) + g: Ne,, (hnme, cosh ;! )]
(10)

X
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Fig.2 Equivalent AERMA to find reactive power in the fiinge field annular
volume

where the prime indicates derivatives with respect to #. The
unknown constants are evaluated after finding the bound-
ary admittances. The equivalent boundary admittances at
the ring edges make the ring structure an annular cavity
with magnetic side walls at the edges and electric walls at
the top and bottom. The power flow through the side
surfaces Su; and Su, shown in Fig. 2 can be represented
for each mode by

1
[
2 ney;

Syl
where E,,,, and E,,, are the fringing fields at the edges u =
u; and u = uy, respectively. P and P4 are the radiated
and reactive powers from the respectlve edges. The nor-
malised Y, with respect to free space admittance Y, leads

to

2
E_

Zﬁu

ds™ = P, 9 + P (11)
U2

Ynetl = gne"1 +]bne;g (12)

b
and Pren and Pien can be found using [9]. The computed
&nets and byen are given by

s ()
o U7 ) o)

ne
g a1
az

n? 1 2
XQql=e — — yne::;%,
k257“ (Z;) 5»,«
. (13)
and
27 ®/2 2
k? 4J" f {I: ;:| +C0520 [g;] }s1n0d9d¢
gnelﬁé - 16t (Z;) -
(14)
where
uy 27
T, = / /Sen(hnme,cos v)[sinh u cos v cos ¢
u1—6 0

+ cosh u sin v sin ¢le %" dudv
(15)
w27
/ / Sen (Rnme,cosv)[coshu cos ¢ sinv
wr—6 0
— sinh u sin ¢ cos v]e ¥ dudv

(16)
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T, and P, are same as that of 7} and P, but the first inte-
gral limit is from u, to u, + & for region 2. Therefore
eqn. 12 can be simplified as

_ ket a1 + b1
%%%—%%+]<2><@+@

_on 1
ke, (Zi)z N ()

Constants 4, and B, are found by ﬁndmg the roots of the
above quadratlc equation and comparing with eqn. 10.
Proceeding in a similar way for the odd modes, constants
C, and D, are also found.

2
x<1—

w1 2
ynen2 0

4 Modal field distributions

The AERMA shown in Fig. 1 is excited by a line current
I along z-direction by a coaxial feed located at (g, 45°) to
produce circular polarisation. The current source, assumed
to be uniform (f << Ag), along z due to the probe can be
expressed as

J=2I6(u—u) 0<z<t (18)

Hence the modal fields will have no z variation. The only

non-zero components are £,, H, and H,. The eigen value
equations of the ring resonator takes the form

Je! (Pnme,coshuy)

Ne!, (hpme, coshuy)

Jel (h osh
— 7( nmeac S Uz) (19)
Ne;, (hnme, coshus)
On solving the above and the corresponding odd mode
eigen value equations, the corresponding resonant frequen-

cies are obtained. The electric field inside the cavity is then
represented by the equation

E; = jwuolo(Go + Ge) (20)

5 Evaluation of radiated fields

The computation of radiation field at any point (, 6, ¢) in
the upper half plane z > 0 is based on the Fourier trans-
form given by [12] of the aperture fields E, in the plane z =
0. Since the resonator surface at z = 0 is assumed to be per-
fectly conducting, the contribution to the radiation field
originates from the fringing fields at the patch edges.
Assuming that the fringing fields extend uniformly up to a
distance ¢ from the edges and zero beyond that [13], we
have |Ey| = E,Jy=u1n = Elu=u 4, I the two apertures defined
by uy -0 <u<u and u, < u < u + 6, where 7 in x, y co-
ordinates is equal to J in u, v coordinate system.

E, =2E, + §E, (21)

where E, = E, sinh v cos v' and E, = E, cosh ' sin v'. The
(x, y) components of the Fourier transforms are obtained
as

fa =jwM0[0/ /02 [wnme(u')Sen(hnme,cosv’)

+ Vnmo (U )S0n (Animo, cosv’)
x sinh o cosv'e=7*¥" du' dv'

(22)

fu= jwuolo/ /02 [¢nme(u’)8en(hnme,cosv’)
app
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+ Unmo (1) S0n (Rrmo, COS v’)]

x coshu'sinv'e™7*" du'dv’
(23)
where ¥’ = x' sin 6 cos ¢ + ¥’ sin 8sin ¢.

Radiated fields will add up when aperture field distribu-
tions at = u; and u, are both polarised in the same direc-
tion. This means that E, in the ring structure must alter its
polarisation [13)]. The radiated fields are computed from the
Fourier transforms computed using the equations given in
[12].

6 Inputimpedance

The input impedance seen by the coaxial feed Z;, is deter-
mined by the conservation of energy principle i.e. by equat-
ing the power input to the feed pin with the total power
loss

7 (Pf + P. + Pd) (24)

. ]- I
where Py, P, and Py are power losses on feed pin, conduc-
tor and the ground plane and the imperfect dielectric sub-
strate, respectively. Feed pin loss is computed using the
procedure given by [9]. The feed pin geometry is shown in
Fig. 1. For d << p; in cylindrical coordinate system

dcosy
2po

The corresponding parameter in elliptical coordinate sys-
tem is given by

dsi
6= - -

and p=po+ (25)

dsiny
2

p= C\/cosh2 up — cos? vy + (26)

Also
p = cVcosh® u — cos? v (27)

Using eqns. 25-27 u and v corresponding to p and ¢ are
computed. The above transformation is applied to [9] and
Py is written as

2
_ t 0

P = jwuo /Z Yne(W)Sen (Anme, COSV)
o n=l

+no(w)S0n (hnmo, COS v)} dy

(28)
Conductor loss P, in the ring strip is computed as [1]

e [ (5

where R, = Vouy8c and o is the conductivity of elliptical
ring patch conductor. The dielectric loss Py can be deter-
mined by integrating the E field inside the cavity over the
cavity volume [1] and is expressed as

2 2
‘ % ) dudv  (29)
Ov

wepe, tan é
2
t ugz 27

X // / |E.|?c?(cosh? u — cos? v)dtdudv

0 up O

Py=

(30)

Substituting eqns. 28-30 in eqn. 24 the value of Z,, can be
calculated.
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7 Results and discussion

An AERMA with dimensions @; = 1.45cm, b; = 1.34cm,
a, = 4cm, by = 3.96cm, ¢ = 0.159cm and ¢, = 2.55 is con-
sidered. The feed is placed at 2 cm from the centre at an
angle of 45° with respect to the x-axis. The resonant fre-
quencies for various TM,,, modes are computed using
eqn. 19 and are given in Table 1 and it is seen that the res-
onant frequencies for the odd modes are higher than that
of the even modes for TM,;; modes and the reverse for the
modes with m = 1.

Table 1: Resonant frequencies of an AERMA

Resonant frequencies

Modes odd (GHz) even {GHz)
™y, 1.151 1.123
™, 3.820 3.940
TMy3 7.449 7.694
TMy, 2.169 2.145
TM, 4.634 4711
TMys 7.818 7.985
TMy; 3.107 3,083
TM3; 5.534 5.630
TMa33 8.325 8.470

® & & o o » o 0 o
e o 9 & ¢ ¢ o 0o o
o & o o o 0 o o 0 ¢ o

b
Fig.3  Field patterns of elliptical ring resonator even modes
g TM;; b TM,
s f —A—
E; = +++

Modal field patterns and current distributions on the
AERMA for various TM,,, even modes are shown in
Figs. 3a, 3b, 4a, 4b and 5. The modal field patterns for the
TM™,,,, odd modes can be obtained by rotating the corre-
sponding even modes by 5/2n degrees in the anticlockwise

382

b
Fig.4 Field patiems of elliptical ring resonator even modes
¢ TM;3 6 TMy,
s = —A—
E, = +++

direction. From these modal field patterns, we can observe
that the far fields get added when the fringing fields at the
inner and outer edges are pointing in the same direction,
giving rise to a maximum amplitude in the boresight direc-
tion and get subtracted otherwise, giving rise to a null field
in the boresight direction. The radiation patterns of various
modes are studied out of which a few are shown in
Figs. 6a, 6b, 7a and 7b. The radiated fields for all the
modes are normalised with respect to the £y component of
the TM;, mode in the ¢ = w2 plane. The TM,,, modes
show maximum radiation in the boresight direction. TM,,
mode is the only mode which gives maximum amplitude
radiation at the centre with two small side lobes (Fig. 4b)
and is in good agreement with the results of [4]. The modes

IEE Proc.-Microw. Antennas Propag., Vol. 146, No. 6, December 1999



0 destructive interference of the fringing fields. Figs. 8 and 9
show the effect of substrate dielectric permittivity and
thickness on the radiation pattern of the TM;, mode,
respectively. It can be seen that as g, decreases, the radia-
tion amplitude of the main lobe as well as side lobe
increases and hence beam width becomes narrower. As
substrate thickness ¢ decreases, the amplitude of the main
lobe of the radiation pattern as well as the side lobes
increases and hence radiation pattern becomes narrower as
the nulls shift towards the centre. Therefore it is interesting
'90 60 30 0 30 P 90 to note that a reduction in substrate dielectric permittivity
8, deg. or thickness or both should be employed for narrow band
a applications. The input impedance of the patch has been
computed for the dominant TM;;, mode and is compared
with available experimental data [4] as shown in Fig. 10
and a good agreement has been found, which validates well
the present model.

Fig.6 Radiation patterns of an anmular elliptical ring microstrip antenna
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Fig.7  Radiation patterns of an annular elliptical ring microstrip antenna 3 0 R
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with neven and m = 1, 2, 3, ... show a deep null at the cen- Fia.10 ) i i o
tre as expected. The modes with n = 3 and m = 1, 2, 3 have 749,10 11 Compertson of theoretical and experimental input impedance curves

poor radiation in the boresight direction because of the O experimental, theoretical
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Conclusion

Analytical expressions for the cavity model Green’s func-
tion of a confocal annular elliptical ring microstrip antenna
have been derived. Modal, radiated fields and input imped-
ance of various modes are computed using these expres-
sions. A reduction in the substrate dielectric permittivity or
the substrate thickness should be employed for narrow
band applications.
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