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4.3.1.2 Steady-State Analysis . . . . . . . . . . . . 136

4.3.1.3 Stability Condition . . . . . . . . . . . . . . 142

4.3.2 The Steady-State Probability Distribution of Ã . . . 143
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Chapter 1

Introduction

The term ‘inventory’ usually refers to items or goods that are kept in a

system for the purpose of business. Inventory management is primarily

concerned with identifying the number of the item that are to be kept in

stock and also with making decision about the exact level or situation at

which an order is to be placed, and also about how much to order.

Inventory systems are usually managed by one of the three following

replenishment policies: (1) order up to level S (2) random size (3) fixed

ordering quantity. In order up to level S policy, the number of items ordered

equals the number of items required to bring the level back to S at the time

of replenishment. In random size order policy, the decision on number of

the item to be ordered is based on a discrete probability function on the

set of integers {1, 2, 3, . . . , S}. In fixed order quantity, the number of items

ordered is fixed and is equal to Q = S − s. In an (s,Q) inventory system,

we take s as the reorder level and Q as the fixed ordering quantity. Usually

Q is taken sufficiently large so that once the replenishment occurs, the

inventory level in the system is greater than the reorder level s. Status of

an (s,Q) inventory system with positive lead time can be observed from

the inventory level; that is, the number of items in stock reflects whether

the replenishment has occurred or not since the most recent replenishment

order is placed.

In all the work reported on inventory systems before 1992, it was as-

1



2 CHAPTER 1. INTRODUCTION

sumed that serving of items to the customers is instantaneous; that is,

only negligible service time is required to deliver the item to the customer.

We call inventory problems with negligible service time, as ‘classical type’,

where the customer is supplied the required item instantaneously, provided

that sufficient inventory is available on stock at the epoch of arrival of a

demand. The results dealing with inventory with negligible service time is

insufficient to handle many of the real-life situations which involve positive

service time to give away the inventory on hand. When a positive amount

of service time is needed to give away the on hand inventory, it may result

in queueing up of the customers, and it is advisable to maintain a balance

between waiting of customers and the number of items in the inventory

as safety stock and also the quantity to be ordered at an order placement

epoch. There comes the relevance of analyzing such problems.

If the items are assumed to have infinite life time, then they are said to

be non-perishable. But practically this need not be the situation in many

cases. We can find certain items having only fixed or finite lifetime in several

cases. Such goods are refered to as perishable items. Food items having

natural degradation, mobile recharge coupons with prespecified validity,

medicines labelled with exact month of expiry etc. can be considered as

good examples of such items.

Also there can be perishability independent of expiry, where items are

always subject to decay, that is a fixed ratio of inventory is lost in a con-

tinuous manner during the course of inventory management. Radioactive

substances, alcohol, petrol, diesel etc. are good examples of such inven-

tory. The term perishability may also be viewed in another dimension—the

inventory becomes outdated when new versions of the model arise in the

market. In such a case, the old model may be left unsold and finally may

forcefully get discarded. Electronic goods, ready made dresses, fashion ac-

cessories, motor cars etc. are good examples of such inventory. Physically

such goods are not perished but they become obsolete.

In stochastic perishable inventory problems, the system state may be

reviewed continuously or periodically, the first refers to review of inventory

level in a continuous manner, and the second refers to review of inventory
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level at discrete points in time. During earlier times, periodic review was

commonly practised but, now-a-days continuous review of stock is becoming

more and more common owing to automation in inventory management.

In an (s, S) production inventory system, when the inventory level

reaches s, production process is switched ‘on’ and is kept in the ‘on’ mode

till the inventory level reaches S. In such inventory systems, information

regarding the status of the production process that is, whether is in ‘on’

or ‘off’ mode, as well as the inventory position are to be observed to un-

derstand the system status. We consider situations where items produced

in the production plant require a positive amount of time to get processed

before it is served to the customer. The time taken to process a demand is

referred to as the service time in production inventory.

Coxian distributions are usually applied in Computer science and telecom-

munication. This distribution is denoted by Cm or Km. It is a special case

of phase-type distribution.

Matrix Analytic Methods are considered as powerful tools that help us

in analyzing complex stochastic problems. The methods can be used to

measure the performance of various real life models, of which the most

common example is that of telecommunication systems.

1.1 Preliminaries

1.1.1 Markov Chain

A stochastic process {X(t), t ∈ T} is said to be a Markov chain if it satisfies

the condition P (X(tn) = xn|X(tn−1) = xn−1, X(tn−2) = xn−2, . . . , X(t0) =

x0) = P (X(tn) = xn|X(tn−1) = xn−1), for t0 < t1 < · · · < tn and xi ∈ S for

all i = 0, 1, . . . , n where S is the state space of the process.

1.1.2 Poisson Process

Let N(t) denote the number of occurrences of a specified event in an interval

of length t. Let Pn(t) = P (N(t) = n), n = 0, 1, 2, . . . . Then {N(t), t ≥ 0}



4 CHAPTER 1. INTRODUCTION

is said to be a Poisson process with parameter λ if it satisfies the following

postulates:

(i) Independent increments: The number of events occuring in two dis-

joint intervals of time are independent.

i.e. if t0 < t1 < . . . , then the increments N(t1) − N(t0), N(t2) −
N(t1), . . . are independent random variables.

(ii) Homogeneity in time: The random variable {N(t+s)−N(s)} depends

on the length of the interval t and not on s or on the value of N(s).

(iii) Regularity or orderliness: Let h be an interval of infinitesimal length.

Then the probability of exactly one occurrence in h is

P1(h) = λh+ o(h)

and the probability of two or more occurrence in h is

∞∑
k=2

Pk(h) = o(h).

Then N(t) will follow Poisson distribution with parameter λt.

1.1.3 Exponential Distribution

A continuous random variable X is said to follow exponential distribu-

tion with parameter λ if its probability density function is f(x) = λe−λx,

x ≥ 0, λ > 0. Exponential distribution is the only univariate continuous

distribution having memoryless property and so this distribution has great

importance in applied probability.

Memoryless property. Let X be a random variable following exponential

distribution. Then P (X > t+ x|X > t) = P (X > x) for any t ≥ 0.
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1.1.4 PH-Distribution

Consider a Markov chain on the states {1, 2, . . . ,m + 1} with infinitesimal

generator

Q =

[
T T0

0 0

]
where the m × m matrix T satisfies Tii < 0, for 1 ≤ i ≤ m, and Tij ≥
0, for i 6= j. Also T ē + T0 = 0, where ē is a column vector of 1’s of

appropriate order. Let the initial probability vector of Q be (α, αm+1),

with αē +αm+1 = 1. The states 1, 2, . . . ,m are assumed to be transient, so

that absorption into the state m+ 1 from any initial state, is certain. The

necessary and sufficient condition for the states 1, 2, . . . ,m to be transient

is that the matrix T is non singular.

Definition. A probability distribution F (·) on [0,∞) is a distribution

of phase type (PH-distribution) iff it is the distribution of the time until

absorption in a finite Markov chain in the form of Q as defined above. It is

given by

F (t) = 1−α exp(Tt)ē.

The pair (α, T ) is called a representation of F (·) (Neuts [40]).

1.1.5 Level Independent Quasi-Birth-Death

(LIQBD) Process

Definition.

Consider a Markov chain {X(t), t ≥ 0} with state space

∞⋃
n=0

{(n, j) : 1 ≤ j ≤ m}

The first component n is called level of the chain and the second component

j is called phases of the nth level. The MC is called a QBD process if one-

step transitions from a state are restricted to states in the same level or

in the two adjacent levels: it is possible to move in one step from (n, j) to

(n1, j1) only if n1 = n, n+ 1 or n− 1 (provided that n ≥ 1 in the last case).
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The process is said to be LIQBD process if it is independent of the levels;

else it is called level dependent QBD process.

1.1.6 Matrix Analytic Method

Assume that the QBD process with infinitesimal generator Q of the form

Q =


B1 A0

B2 A1 A0

A2 A1 A0

. . . . . . . . .


is irreducible and ergodic; therefore it has a unique steady-state solution.

Let x be the steady-state probability vector of Q and is partitioned as x =

(x 0,x 1, . . . ). x i has matrix-geometric form x i = x 0R
i for i ≥ 1. R is the

minimal non-negative solution of the matrix equation R2A2+RA1+A0 = O,

R is called rate matrix.

Theorem. The QBD process with infinitesimal generator Q of the above

form is positive recurrent iff the minimal non-negative solution R of the

matrix quadratic equation R2A2 + RA1 + A0 = O has all its eigen values

inside the unit disc and the finite system of equations x 0(B1 + RB2) = 0

and the normalizing equation x 0(I − R−1)ē = 1 has a unique solution

x 0. If the matrix A = A0 + A1 + A2 is irreducible, then Sp(R) < 1 iff

πA0ē < πA2ē where π is the stationary probability vector of A. The

stationary probability vector x = (x 0,x 1, . . . ) of Q is given by x i = x 0R
i

for i ≥ 1 (Neuts [40]).

1.1.7 Coxian-2 Distribution

A random variable X is said to follow Coxian-2 distribution with parameter

(b, µ1, µ2) if it can be represented as

X =

X1 +X2 with probability b

X1 with probability 1− b
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where X1 and X2 are independent random variables having exponential

distributions with means 1/µ1 and 1/µ2 respectively. Without loss of gen-

erality it can be assumed that µ1 ≥ µ2.

The probability density of the Coxian-2 distributed random variable X

is given by

f(t) =

p1µ1e
−µ1t + (1− p1)µ2e

−µ2t if µ1 6= µ2

p1µ1e
−µ1t + (1− p1)µ2

1te
−µ1t if µ1 = µ2

where p1 = 1− bµ1/(µ1 − µ2) if µ1 6= µ2

and p1 = 1− b if µ1 = µ2.

1.2 Review of Literature

The well-known EOQ formula (Economic Order Quantity formula), intro-

duced by Ford Harris in 1915 [20] forms the basis of inventory theory. EOQ

formula is also called Harris-Wilson economic lot size formula, due to the

popularization of the same by Wilson in 1918. EOQ formula points out the

optimal ordering quantity so that the total cost which includes holding cost,

reordering cost, order procurement cost, shortage cost etc. is a minimum.

Active research on stochastic inventory models started in 1950’s, and

progressed in a faster pace since 1960. Early works on stochastic inven-

tory models include Arrow, Harris and Marschak [2], Churchman et al.

[11], Arrow, Karlin and Scarf [3], Hadley and Whitin [19], Veinott [57] and

Ryshikov [42]. Sivazlian and Stanfel [50] contains application of renewal

theory to stochastic inventory system. Also certain realistic examples on

inventory systems can be viewed in Tijms [53]. Srinivasan [51] considers

(s, S) inventory policy with renewal demands and general lead time distri-

bution. Sahin [44] considers an (s, S) inventory system in which lead time

is a constant while demand quantity is a continuous random variable. In

her paper that appeared in 1982 [45], she generalizes the work of Srinivasan

by analyzing an (s, S) inventory system involving compound renewal de-

mands and arbitrarily distributed lead time. Kalpakam and Arivarignan



8 CHAPTER 1. INTRODUCTION

[22] analyze an (s, S) inventory system involving different types of sources

of demands.

The first work on inventory with positive service time was by Sigman

and Simchi-Levi [48], involving M/G/1 queue with inventory. This work

was closely followed by Berman et al. [6] in which both the demand and

service rates are assumed to be deterministic and constant. Berman and

Kim [7] use dynamic programing method for cost optimization of stochastic

inventory models with positive service time. They consider a model where

order replenishments are instantaneous, and the optimal policy is never to

order when the system is empty, and to place an order only when the in-

ventory level drops to zero (see also [35]) for the stochastic case). Berman

and Sapna [8] consider an inventory system with service facilities where

there is limited waiting space for customers. Sivakumar and Arivarignan

[49] consider a perishable inventory system at service facilities with neg-

ative customers. Krishnamoorthy et al. [25] analyse an (s, S) inventory

system with positive service time in which the effective utilization of server

idle time is considered. In this model, if an item is available on stock at

a service completion epoch, processing of it is done by the server, even in

the absence of a customer. Deepak et al. [14] consider an inventory system

with positive service time and obtain an explicit product-form solution be-

cause of the assumption of zero lead time. Lalitha [36] considers different

(s, S) inventory systems with positive service time and lead time but fails

to produce product form solution; even closed form solution could not be

arrived at by her.

For more detailed reports on inventory systems with positive service

time, one may refer the survey paper by Krishnamoorthy et al. [26], even-

though few of the important developments till then are missing in that

paper. Schwarz et al.[46] are the first to produce product form solution in

M/M/1 queueing inventory with positive lead time. Krishnamoorthy et al.

[35] also could achieve this fete for the N-policy; however they restrict the

lead time to be zero. Saffari et al. [43] consider an M/M/1 queue with

associated inventory where the lead time for replenishment is arbitrarily

distributed; they produce product form solution for the system state distri-
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bution. Anoop et al. [1] deal with a multi-server inventory model with zero

lead time in which the servers are essentially the inventoried items. This

paper is a class in itself for the simple reason that a server vanishes with a

service completion. This means that the number of servers available in the

service station depends on the number of inventoried items with the system.

Though they are not able to arrive at a product form solution because of

the heavy dependence of the number of customers and the number of in-

ventoried items in the system, despite the fact that the lead time is zero,

a number of conditional distributions are derived by the authors. Krish-

namoorthy et al. [27] is one of most recent of the work giving product form

solution when lead time is assumed to be positive. Their work generalizes

some of the results in Schwarz et al.[46].

Deepak et al. [13] consider an inventory model with two parallel service

facilities. Customers are transferred from longer to shorter queue whenever

their difference reaches a prescribed quantity. Simultaneously, depending

on the availability of items, a certain number of inventory is also transferred

from one service facility to the other.

Perishable inventory models were analysed by dynamic programming

technique in Fries [16] and Nahmias [38]. A continuous review perishable

inventory model was studied in Kalpakam and Arivarignan [23]. Kalpakam

and Sapna [24] consider continuous review (s, S) inventory system with

random lifetimes and positive lead times. Nahmias [39] gives a detailed

survey of the literature on periodic review models.

Control policies such as N -policy, T -policy, D-policy and their combi-

nations discussed in queueing literature have been extended to inventory

with negligible service time by several researchers (see [28], [29] and [41] for

details). N -policy was first introduced in 1963 by Yadin and Naor [59] in

queueing literature to minimize the total operational cost in a cycle. Bal-

achandran [5], Teghem [52], Artalejo [4] and Gakis et al. [17] also considered

N -policy in queueing problems. Krishnamoorthy and Raju [28, 29] used

N -policy in (s, S) inventory system with lead time and negligible service

time, involving perishable as well as non-perishable items. Krishnamoorthy

and Raju [30] used N -policy for a production inventory system with ran-
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dom lifetimes and negligible service time. Krishnamoorthy et al. [35] used

N -policy in (s, S) inventory system with positive service time, where the

server, when becomes idle, waits till N customers accumulate to begin the

next cycle of service. Krishnamoorthy et al. [32] considered N -policy in

reliability where a k-out-of-n system with repair was analyzed. Ushakumari

and Krishnamoorthy [55] considered k-out-of-n system with general repair

under N -policy.

T -policy has been discussed by Artalejo [4] in M/G/1 queueing systems

with removable server. T -policy in inventory systems with negligible ser-

vice time was investigated by Krishnamoorthy and Rekha [31]. T -policy in

reliability was considered by Rekha [41] in which k-out-of-n systems with

repair under T -policy were analysed. Heyman [21] used T -policy in order

to sense customer arrivals in an M/G/1 queueing model where the server

cannot continuously monitor the queue. Here T -policy is introduced in such

a way that the server is activated at T time units after the end of the last

busy period. Ushakumari and Krishnamoorthy [56] considered a k-out-of-n

system with repair under max (N, T ) policy where max (N, T ) policy is

used in such a way that the repair facility is activated for repair of failed

units whenever the maximum of an exponentially distributed time duration

T and the sum of N (1 ≤ N ≤ n− k) random variables is realized.

The concept of local purchase has been introduced in (s, S) inventory

system by Krishnamoorthy and Raju in a series of research papers [28, 29]

involving models with negligible service time. In their models, local pur-

chase was based on N -policy. Krishnamoorthy and Rekha [31] considered

T -policy in (s, S) inventory system with negligible service time, where local

purchase was done based on T -policy. It is common practice that when

an item is not available in a shop for which a demand arrives, the same is

purchased from other shops locally and supplied to the customer.

Doshi et al. [15] consider a continuous review (s, S) production inven-

tory system with a compound Poisson arrival of demands. Sharafali [47]

considers an (s, S) production inventory system in which the machine is

subject to failure and the repair time follows general distribution. William

et al. [58] consider a periodic review production inventory system with non
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stationary demand process.

The first work on production inventory with positive service time was

by Krishnamoorthy and Viswanath [33] in which MAP arrivals and MPP

(Markovian Production Process) are involved. Krishnamoorthy and

Viswanath [34] consider a production inventory model with positive service

time in which stochastic decomposition is obtained because of the assump-

tion that no customer joins the queue when the inventory level is zero.

Important works on Coxian distribution can be viewed in Cox [12], Ge-

lenbe and Mitrani [18], Yao and Buzacott [60], Botta et al. [10] and Bert-

simas and Papaconstantinou [9]. Tijms [54] compared an M/Cox2/1 and

M/D/1 and showed that Cox2 acts as a very good approximation to deter-

ministic service. One can see certain Coxian-2 queueing models in Tijms

[53].

Matrix analytic methods was introduced by Neuts [40], in which an al-

gorithmic analysis of M/G/1 and GI/M/1 type stochastic queueing models

were considered. Detailed discussion on matrix-analytic methods can also

be viewed in Latouche and Ramaswami [37].

1.3 Present Work in a Nutshell

In this thesis, certain continuous time inventory problems with positive

service time under local purchase guided by N/T -policy are analysed. In

most of the cases analysed, we arrive at stochastic decomposition of system

states, that is, the joint distribution of the system states is obtained as the

product of marginal distributions of the components.

The thesis is divided into five chapters where chapter 1 is of introductory

nature, which include the literature survey and certain prerequisites.

In chapter 2, (s,Q) inventory systems involving perishable as well as

non-perishable items are considered. In both the models, arrivals are ac-

cording to a Poisson process, service time and lead time follow independent

exponential distributions. Ordering quantity is fixed and is Q = S − s

(Q > s). N -policy is defined as follows: As and when the inventory level

drops to s − N (where s ≥ N) during a lead time, an immediate local
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purchase of Q + N units is made, by cancelling the order already placed.

Cancellation of order is taken into account since, otherwise, the inventory

level goes beyond S as making local purchase. Also it is assumed that sup-

ply of items is instantaneous in local purchase. In the model of perishable

goods, we assume that the items are subject to decay with the decay time

following exponential distribution. We arrive at product form solution in

both the models. Several performance measures are derived. Explicit cost

functions are obtained and are analysed numerically.

In chapter 3, (s,Q) inventory systems with exponential service time,

involving perishable as well as non-perishable items, where T -Policy is

adopted during lead time, are considered. Arrival of demands are according

to a Poisson process and lead time follows exponential distribution. T is

an exponentially distributed random variable with parameter α. In both

the models considered, T -Policy is introduced as follows: As and when the

inventory level drops to the reorder level s, an order is placed for Q = S−s.
If the replenishment doesn’t occur within a time of T units from the order

placement epoch, then a local purchase is made to bring the inventory level

to S, by cancelling the order that is already placed. If the inventory level

reaches zero before the realization of T time units, and before the occur-

rence of replenishment, regardless of the number of customers present in

the system, an immediate local purchase of S units is made, by cancelling

the order that is already placed. Local purchase can be done when T is re-

alized or when the inventory level reaches zero, whichever occurs first. It is

assumed that supply of items is instantaneous in local purchase. We derive

stability condition for both models. Also we establish stochastic decom-

position of the system state. Certain performance measures are derived.

Convexity of the total expected cost per unit time as a function of α is

exhibited numerically.

In chapter 4 we consider two (s, S) production inventory models involv-

ing local purchase. In both the models, arrival of demands is according

to a Poisson process. As and when the inventory level reaches s, the pro-

duction process is switched ‘on’. The production process is such that the

items are produced one at a time, and the time taken to produce an item
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follows exponential distribution. The produced item requires a processing

time before it is served to the customer, and the processing time is a ran-

dom variable which follows exponential distribution. Once the production

process is switched ‘on’, it will be kept in the ‘on’ mode till the inventory

level reaches S. As soon as the inventory level reaches S, the production

process is switched ‘off’. In the first model, we assume that as and when

the inventory level reaches zero, a local purchase of one unit is made at a

higher cost, to avoid customer loss. In the second model, we assume that

as and when the inventory level reaches zero, a local purchase of N units is

made (where 2 ≤ N < s) at a higher cost, to avoid customer loss. Supply of

items is instantaneous in local purchase. In both the models, stability con-

ditions and certain performance measures are derived. Also we obtained

stochastic decomposition of system state. Convexity of cost functions is

verified numerically.

In chapter 5, we consider an (s,Q) inventory system with positive ser-

vice time and lead time. The reorder level is s and ordering quantity is

fixed as Q = S − s. We assume that there is only one server. The inter-

arrival time has a Coxian-2 distribution with parameters (b, λ1, λ2). The

arrival mechanism may be considered as follows: An arriving customer first

goes through phase 1 for an exponentially distributed time with param-

eter λ1 and gets into the system with probability 1 − b, or goes through

a second phase with probability b. The sojourn time in phases are inde-

pendent exponentials with means 1/λ1 and 1/λ2 respectively, that is, the

arrival mechanism is consisting either of only one exponential stage with

mean 1/λ1 (with probability 1 − b) after which the arrival is admitted to

the system, or of two successive independent exponential stages with means

1/λ1 and 1/λ2 respectively, after which absorption occurs. Also, we assume

that the service time of a customer has a Coxian-2 distribution with pa-

rameters (θ, µ1, µ2). The service mechanism may be considered as follows:

The customer first goes through phase 1 to get his service completed with

probability 1 − θ, or goes through a second phase with probability θ. The

sojourn time in the two phases are independent exponential random vari-

ables with means 1/µ1 and 1/µ2 respectively, that is, the service mechanism
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consists either of one exponential stage (with probability 1− θ) with mean

1/µ1 after which the service is completed, or of two independent exponen-

tial stages with means 1/µ1 and 1/µ2 respectively, after which the service

is completed, the probability of the second stage of service is θ. The model

also involves exponentially distributed lead time during which N -policy is

adopted as follows: As and when the inventory level drops to s−N (where

s ≥ N) due to N service completions after placing a natural purchase order,

an immediate local purchase of Q+N units is made, by cancelling the order

already placed. Also it is assumed that supply of items is instantaneous in

local purchase. The problem is modelled as a continuous time Markov chain

and is analyzed using matrix geometric method. Several performance mea-

sures of the model are obtained. Convexity of cost function is established

numerically.

The thesis concludes with the publication details of the research pa-

pers/books cited in the text.



Chapter 2

(s,Q) Inventory Systems with

Positive Lead Time and

Service Time under N-Policy

2.1 Introduction

In this chapter1, we consider two (s,Q) inventory models with positive

service time involving perishable as well as non perishable items, where

local purchase driven by N -policy is made during the lead time. In model

I, items are assumed to be non-perishable. In model II, the items are

subject to decay and the decaying time follows exponential distribution with

parameter β. In both the models, the ordering quantity is fixed and is equal

to Q = S−s where s is the reorder level. The models involve replenishment

lead time which follows exponential distribution with parameter γ. Arrival

of demands is according to a Poisson process with parameter λ and service

time follows exponential distribution with parameter µ. N -policy is adopted

during a lead time and is as follows: As and when the inventory level drops

to s−N (where s ≥ N) during a lead time, after placing a natural purchase

order, an immediate local purchase of Q + N units is made, by cancelling

1Part of this chapter is included in the following paper: Krishnamoorthy A., Resmi
Varghese and Lakshmy B., An (s,Q) Inventory System with Positive Lead Time and
Service Time under N -Policy, 2013 (Communicated).

15
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the order already placed (Cancellation of order is necessary since, otherwise,

the inventory level go beyond S). In otherwords, we will not permit the

inventory level to reduce beyond s − N + 1. We go for an immediate

local purchase at the moment at which the inventory level drops to s−N ,

regardless of the number of customers present in the system. Also it is

assumed that supply of items is instantaneous in local purchase, and at a

higher cost.

2.2 Model I: Non-Perishable Items

2.2.1 Model Formulation and Analysis

Let X(t) = Number of customers in the system at time t and

I(t) = Inventory level at time t.

{(X(t), I(t)), t ≥ 0} is a CTMC with state space E = E1 × E2 where

E1 = {0, 1, 2, . . . , } and E2 = {s−N+1, s−N+2, . . . , S} where s−N+1 > 0.

Therefore

E = {(i, j)|i ∈ E1, j ∈ E2}.

2.2.1.1 Infinitesimal Generator Ã

We write infinitesimal generator of the process as

Ã = (a((i, j), (m,n)))

where (i, j), (m,n) ∈ E.

The elements of Ã can be obtained as

a((i, j), (m,n)) =



λ, m = i+ 1; i = 0, 1, 2, . . .

n = j; j = s−N + 1, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = j − 1; j = s−N + 2, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = S; j = s−N + 1

and
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a((i, j); (m,n)) =



γ, m = i; i = 0, 1, 2, . . .

n = j +Q; j = s−N + 1, . . . , s

−(λ+ γ), m = i; i = 0

n = j; j = s−N + 1, . . . , s

−λ, m = i; i = 0

n = j; j = s+ 1, . . . , S

−(λ+ γ + µ), m = i; i = 1, 2, 3, . . .

n = j; j = s−N + 1, . . . , s

−(λ+ µ), m = i; i = 1, 2, 3, . . .

n = j; j = s+ 1, . . . , S

0, otherwise.

Ã can be written in terms of sub matrices as follows:

Ã =


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where A0 = λIQ+N ,

A1 =

−(λ+ γ + µ)IN ON×(Q−N) γIN

O(Q−N)×N −(λ+ µ)IQ−N O(Q−N)×N

OIN ON×(Q−N) −(λ+ µ)IN

 ,
A2 =

[
01×(Q+N−1) µI1

µIQ+N−1 0(Q+N−1)×1

]
and

B1 =

−(λ+ γ)IN ON×(Q−N) γIN

O(Q−N)×N −λIQ−N O(Q−N)×N

OIN ON×(Q−N) −λIN

 .
A1, A2 and B1 are square matrices of order Q+N .
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2.2.1.2 Steady-State Analysis

Let A = A0 + A1 + A2 be the generator matrix of order Q + N and is

obtained as

-(γ + µ) γ µ

µ -(γ + µ)

µ
. . . . . .

-(γ + µ) γ

µ -µ

. . . . . .

µ -µ


First we investigate the stationary distribution of A. This will help in an-

alyzing the stability of the larger system, namely the CTMC {(X(t), I(t)), t ≥
0} as t→∞.

Theorem 2.2.1. The steady-state probability distribution

Φ = (φs−N+1, φs−N+2, . . . , φS) corresponding to the matrix A is given by

φj = qjφs−N+1, j = s−N + 1, . . . , S (2.1)

where

qj =



1, j = s−N + 1

(γ+µ
µ

)j−s+N−1, j = s−N + 2, . . . , s+ 1

(γ+µ
µ

)N , j = s+ 2, . . . , S −N + 1

(γ+µ
µ

)N + 1− (γ+µ
µ

)j−S+N−1, j = S −N + 2, . . . , S

and φs−N+1 is obtained by solving the equation Φē = 1, as

φs−N+1 =

[
N +Q

(
µ+ γ

µ

)N]−1
.
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Proof. We have ΦA = 0 and Φē = 1

ΦA = 0⇒

− φl(γ + µ) + φl+1µ = 0, (2.2)

for l = s−N + 1, . . . , s.

− φlµ+ φl+1µ = 0, (2.3)

for l = s+ 1, . . . , S −N .

− φlµ+ φl+1µ+ φl−Qγ = 0, (2.4)

for l = S −N + 1, . . . , S − 1.

− φSµ+ φsγ + φs−N+1µ = 0. (2.5)

Equation (2.2) gives

φs−N+x =

(
γ + µ

µ

)x−1
φs−N+1,

for x = 1, 2, . . . , N + 1,

or φj =

(
γ + µ

µ

)j−s+N−1
φs−N+1, (2.6)

for j = s−N + 1, . . . , s+ 1.

Equation (2.3) gives

φj =

(
γ + µ

µ

)N
φs−N+1, (2.7)

for j = s+ 1, . . . , S −N + 1.

Equation (2.4) gives,

φS−N+x =

[(
γ + µ

µ

)N
+ 1−

(
γ + µ

µ

)x−1]
φs−N+1,

for x = 1, 2, 3, . . . , N ,

or φj =

[(
γ + µ

µ

)N
+ 1−

(
γ + µ

µ

)j−S+N−1]
φs−N+1, (2.8)
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for j = S −N + 1, S −N + 2, . . . , S.

Hence equation (2.1) is obtained from the equations (2.6), (2.7) and

(2.8).

Next, we proceed to find φs−N+1. Consider the normalizing condition

Φē = 1. This implies[
1 +

s+1∑
j=s−N+2

qj +
S−N+1∑
j=s+2

qj +
S∑

j=S−N+2

qj

]
φs−N+1 = 1. (2.9)

We can get

s+1∑
j=s−N+2

qj =

(
γ + µ

γ

)(
γ + µ

µ

)N
−
(
γ + µ

µ

)
. (2.10)

S−N+1∑
j=s+2

qj = (Q−N)

(
γ + µ

µ

)N
. (2.11)

Also,

S∑
j=S−N+2

qj =

(
γ + µ

µ

)N
N −

(
γ + µ

µ

)N
+N − 1

−
(
γ + µ

γ

)(
γ + µ

µ

)N−1
+

(
γ + µ

γ

)
. (2.12)

Using (2.10), (2.11) and (2.12) in (2.9), we get[
1 +

(
γ + µ

γ

)(
γ + µ

µ

)N
−
(
γ + µ

γ

)
+Q

(
γ + µ

µ

)N
−N

(
γ + µ

µ

)N
+N

(
γ + µ

µ

)N
−
(
γ + µ

µ

)N
+N − 1−

(
γ + µ

γ

)(
γ + µ

µ

)N−1
+

(
γ + µ

γ

)]
φs−N+1 = 1.

On simplification, [
N +Q

(
γ + µ

µ

)N]
φs−N+1 = 1.



2.2. MODEL I: NON-PERISHABLE ITEMS 21

Hence we get

φs−N+1 =

[
N +Q

(
γ + µ

µ

)N]−1
.

Hence the theorem.

2.2.1.3 Stability Condition

The result in Theorem 2.2.1 enables us to compute the stability of the

CTMC {(X(t), I(t)), t ≥ 0}.

Theorem 2.2.2. The process {(X(t), I(t)), t ≥ 0} is stable iff λ < µ.

Proof. Since the process under consideration is an LIQBD process, it will

be stable iff

ΦA0ē < ΦA2ē (2.13)

(Neuts [40]), where Φ is the steady-state distribution of the generator ma-

trix A = A0 + A1 + A2.

ΦA0ē = (φs−N+1φs−N+2 . . . φS)λIQ+N


1

1
...

1


(Q+N)×1

= λ.

ΦA2ē = (φs−N+1φs−N+2 . . . φS)1×(Q+N)


0 0 . . . µ

µ 0 . . .

µ

µ 0




1

1
...

1


(Q+N)×1

= µ.

Hence using (2.13) we get λ < µ.

Having obtained the condition for the system to stabilize, we turn to

compute the long-run probability distribution of the system state. Infact

we show that the joint distribution of the system can be written as the

product of the marginal distributions of the component random variables.
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2.2.2 The Steady-State Probability Distribution of Ã

2.2.2.1 Stochastic Decomposition of System States

Let π̄ be the steady-state probability vector of Ã.

π̄ = (π(0),π(1),π(2), . . . )

where π(i) = (π(i,s−N+1), π(i,s−N+2), . . . , π(i,S)), i = 0, 1, 2, . . . and

π(i,j) = lim
t→∞

P (X(t) = i, I(t) = j)

where (i, j) ∈ E.

π(i,j) is the steady-state probability for the state (i, j).

We claim that

π(i) = Kρi∆, i ≥ 0 (2.14)

where ∆ = (rs−N+1, rs−N+2, . . . , rS) is the steady-state probability vector

when the service time is negligible, K is a constant to be determined and

ρ = λ
µ
.

Proof. We have π̄Ã = 0 and π̄ē = 1.

π̄Ã = 0⇒ (π(0),π(1),π(2), . . . )


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 = 0

which gives

π(0)B1 + π(1)A2 = 0 (2.15)

π(i+2)A2 + π(i+1)A1 + π(i)A0 = 0 (2.16)

i = 0, 1, 2, . . . .

When (2.14) is true, we get from (2.15),

Kρ0∆B1 +Kρ∆A2 = 0

∆(B1 + ρA2) = 0

That is, ∆Q̃ = 0, which is true,
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since ∆ = (rs−N+1, rs−N+2, . . . , rS) is the steady-state probability vector

corresponding to the generator Q̃ associated with the Markovian chain of

the inventory process under consideration when service time is negligible.

Q̃ is given as

-(γ + λ) γ λ

λ -(γ + λ)

λ
. . . . . .

-(γ + λ) γ

λ -λ

. . . . . .

λ -λ


When (2.14) is true, we get from (2.16),

Kρi+2∆A2 +Kρi+1∆A1 +Kρi∆A0 = 0

where i = 0, 1, 2, . . .

That is, ∆(ρA2 + A1 +
1

ρ
A0) = 0

That is, ∆Q̃ = 0,

which is true, by following the same argument given above.

Hence the stochastic decomposition of system state is verified.

2.2.2.2 Determination of K

We have
∞∑
i=0

S∑
j=s−N+1

π(i,j) = 1

That is,
∞∑
i=0

S∑
j=s−N+1

Kρirj = 1 (Using (2.14))

which gives K = 1− ρ.



24 CHAPTER 2. (s,Q) INVENTORY SYSTEMS WITH POSITIVE · · ·

2.2.2.3 Explicit Solution

From the above discussions, we can write the steady-state probability vector

explicitly as in the following theorem:

Theorem 2.2.3. The steady-state probability vector π̄ of Ã partitioned as

π̄ = (π(0),π(1),π(2), . . . ), where each π(i), i = 0, 1, 2, . . . again partitioned

as

π(i) = (π(i,s−N+1), π(i,s−N+2), . . . , π(i,S))

are obtained by

π(i,j) = (1− ρ)ρirj (2.17)

where ρ = λ
µ

and rj; j = s−N + 1, s−N + 2, . . . , S represent the inventory

level probabilities when service time is negligible and are given as

rj =


aωj−s+N−1, j = s−N + 1, . . . , s

aωN , j = s+ 1, . . . , S −N + 1

a(ωN − ωj−S+N−1 + 1) j = S −N + 2, . . . , S

(2.18)

where a = rs−N+1 = (N +QωN)−1 and ω = λ+γ
λ

.

The result indicated by (2.18) is obtained in Krishnamoorthy and Raju

[29]. The result indicated by (2.17) not only tells us that the original sys-

tem possess stochastic decomposition but also the important fact that the

system state distribution is the product of the distribution of its marginals:

one component is the classical M/M/1 whose long run distribution for i

customers in the system is (1− ρ)ρi, i ≥ 0 and the other factor is the prob-

ability of j items in the inventory. Next we turn to find out how the system

performs. The measures given in the following section are pointers to the

system performance.
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2.2.3 System Performance Measures

(a) Expected inventory held in the system (Mean inventory level),

E(I) =
∞∑
i=0

S∑
j=s−N+1

jπ(i,j)

=
∞∑
i=0

(1− ρ)ρi
S∑

j=s−N+1

jrj

=
S∑

j=s−N+1

jrj

= [(s−N + 1)a+ (s−N + 2)aω + (s−N + 3)aω2 + · · ·+ saωN−1]

+ [(s+ 1)aωN + (s+ 2)aωN + · · ·+ (S −N + 1)aωN ]

+ [(S −N + 2)a(ωN + 1− ω) + (S −N + 3)a(ωN + 1− ω2) + . . .

+ Sa(ωN + 1− ωN−1)]

= S1 + S2 + S3 (2.19)

where a = rs−N+1, ω = λ+γ
λ

,

S1 = (s−N + 1)a+ (s−N + 2)aω + (s−N + 3)aω2 + · · ·+ saωN−1,

S2 = (s+ 1)aωN + (s+ 2)aωN + · · ·+ (S −N + 1)aωN and

S3 = (S −N + 2)a(ωN + 1− ω) + (s−N + 3)a(ωN + 1− ω2)

+ · · ·+ sa(ωN + 1− ωN−1).

Let us write S1 as

S1 = a[x1 + (x1 + 1)ω + (x1 + 2)ω2 + · · ·+ (x1 +N − 1)ωN−1]

where x1 = s−N + 1. That is,

S1 = aS4 (2.20)

where S4 = x1 + (x1 + 1)ω + (x1 + 2)ω2 + · · ·+ (x1 +N − 1)ωN−1.

(1− ω)S4 = x1 +
ωN − ω
ω − 1

− sωN .
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Therefore, we get

S4 =
s(1− ωN)(1− ω) + (1−N)(1− ω)− (ωN − ω)

(1− ω)2
. (2.21)

Using (2.21) in (2.20), we get

S1 =
a[s(1− ωN)(1− ω) + (1−N)(1− ω)− (ωN − ω)]

(1− ω)2
. (2.22)

On simplification, S2 is obtained as

S2 =
1

2
(Q−N + 1)(S + s−N + 2)aωN . (2.23)

S3 can be written as

S3 = a[x2(ω
N + 1− ω) + (x2 + 1)(ωN + 1− ω2) + (x2 + 2)(ωN + 1− ω3)

+ · · ·+ (x2 +N − 2)(ωN + 1− ωN−1)]

(where x2 = S −N + 2)

which gives

S3 = a[(ωN + 1)(N − 1)(x2 +
N − 2

2
)− x2

(ωN − ω)

ω − 1
− ω2S5] (2.24)

where S5 = 1 + 2ω + 3ω2 + 4ω3 + · · · + (N − 2)ωN−3 which can be

obtained as

S5 =
1− ωN−2[1− (N − 2)(ω − 1)]

(ω − 1)2
. (2.25)

Substituting (2.25) in (2.24) and on simplification, we get

S3 = a

[
(ωN + 1)(N − 1)(S +

N

2
+ 1)− (S −N + 2)

(ωN − ω)

ω − 1

− ω2

[
1− ωN−2[1− (N − 2)(ω − 1)]

(ω − 1)2

]]
. (2.26)

Using (2.22), (2.23) and (2.26), in equation (2.19), we get

E(I) =
a(s(1− ωN)(1− ω) + (1−N)(1− ω)− (ωN − ω))

(1− ω)2
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+
1

2
(Q−N + 1)(S + s−N + 2)aωN

+ a((ωN + 1)(N − 1)(S − N

2
+ 1)− (S −N + 2)

(ωN − ω)

ω − 1

− ω2

(ω − 1)2
(
1− ωN−2(1− (N − 2)(ω − 1)))

)
(2.27)

where a = rs−N+1 = (N + ωNQ)−1 and ω = λ+γ
λ

.

(b) Mean waiting time of customers in the system,

WS =
L

λ

where

L = Expected number of customers in the system

=
∞∑
i=0

S∑
j=s−N+1

iπ(i,j)

=
∞∑
i=0

i(1− ρ)ρi
S∑

j=s−N+1

rj

=
ρ

1− ρ
.

Therefore,

WS =
1

λ
(

ρ

1− ρ
)

=
1

µ− λ
. (2.28)

(c) Mean reorder rate,

Rr = µ

∞∑
i=1

π(i,s+1)

= µ

∞∑
i=1

(1− ρ)ρirs+1

= λωN(N + ωNQ)−1 (2.29)

where ω = λ+γ
λ

.
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(d) Mean local purchase rate (Mean order cancellation rate),

RLP = µ

∞∑
i=1

π(i,s−N+1)

= µ
∞∑
i=1

(1− ρ)ρirs−N+1

= λ(N + ωNQ)−1. (2.30)

2.2.3.1 Analysis of Inventory Cycle Length

In an (s,Q) inventory system with lead time we define a cycle length as the

expected time elapsed between two consecutive order placement epochs.

The inventory cycle length of the model under consideration is a random

variable which follows Phase-Type distribution.

Let i be the number of customers in the system when the inventory level

is s. (i.e. i is the number of customers in the starting state of the cycle).

In order to analyze the inventory cycle length, let us consider the following

cases:-

Case I: 0 ≤ i < Q+N . Then

Theorem 2.2.4. Let (i, s) be the starting state, where s is the reorder level.

(i) If N − 1 ≤ i < Q + N , then the time till absorption to {∆1}, i.e.,

τ1i follows Phase-Type distribution with representation (ᾱ1i, T1i) where

{∆1} denotes the absorbing set of states and is given by

{∆1} = {(i, S), (i−1, S−1), (i−2, S−2), . . . , (i−(N−1), S−N+1),

(i−N,S), (i−(N+1), S−1), (i−(N+2), S−2), . . . , (i−(2N−1), S−N+1),

(i− 2N,S), (i− (2N + 1), S − 1), (i− (2N + 2), S − 2), . . . ,

. . . , (i− (3N − 1), S −N + 1), · · · upto N terms when i = N − 1

& upto N + 1 terms when i > N − 1}. (2.31)

(ii) If 0 < i < N−1, then the time till absorption to {∆2} i.e., τ2i follows

Phase-Type distribution where {∆2} denotes the absorbing state and
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is given by

{∆2} = {(i, S), (i+ 1, S), . . . , (N − 1, S)}

∪ {(i− 1, S − 1), (i, S − 1), . . . , (N − 1, S − 1)}

∪ · · · ∪ {(0, S − i), (1, S − i), . . . , (N − 1, S − i)}

∪ {(0, S − (i+ 1)), (1, S − (i+ 1)), . . . , (N − 1, S − (i+ 1))}

∪ · · · ∪ {(0, S −N + 1), (1, S −N + 1), . . . , (N − 1, S −N + 1)}

∪ {(0, S)(1, S), . . . , (N − 2, S)}.
(2.32)

(iii) If i = 0, then the time till absorption to {∆3}, i.e., τ00 follows Phase-

Type distribution where {∆3} denotes the absorbing state and is given

by

{∆3} ={(0, S), (1, S), . . . , (N − 1, S)} ∪ {(0, S − 1), (1, S − 1), . . . ,

(N − 1, S − 1)} ∪ {(0, S − 2), (1, S − 2), . . . , (N − 1, S − 2)}

∪ · · · ∪ {(0, S −N + 2), (1, S −N + 2), . . . , (N − 1, S −N + 2)}

∪ {(0, S −N + 1), (1, S −N + 1), . . . , (N − 1, S −N + 1)}.
(2.33)

Proof. Starting from a state with inventory level s, we need to find the time

till absorption to the states with inventory levels S, S − 1, . . . , S − N + 1.

Let us consider the Markov chain

Y1(t) = {(X1(t), I1(t))},

where X1(t) denotes the number of customers in the system at time t and

I1(t) denotes the inventory level at that instant.

(i) Let N − 1 ≤ i < Q+N .

The state space of Y1(t) is {(m,n)}∪{∆1} where i−(N−1) ≤ m ≤ i,

s − N + 1 ≤ n ≤ s and {∆1} denotes the absorbing state which is

given by (2.31).

Clearly Y1(t) is a finite state Markov chain. The possible transitions

and the corresponding instantaneous rates are given in Table 2.1.
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Table 2.1: Transitions and corresponding instantaneous rates for Y1(t) in
part (i) of Theorem 2.2.4. (Also for Z1(t) in Theorem 2.2.7)

From To Rate
(m,n) (m− 1, n− 1) µ where (m,n) belongs to

{(i− (N − 2), s−N + 2),
(i− (N − 3), s−N + 3),
. . . , (i, s)}

(m,n) {∆1} γ where (m,n) belongs to
{(i− (N − 1), s−N + 1),
(i− (N − 2), s−N + 2),
. . . , (i, s)}

(m, s−N + 1) {∆1} µ only when i > N − 1 and
m = i− (N − 1)

When N − 1 ≤ i < Q + N , future arrivals need not be considered

to reach {∆1}.

Hence the infinitesimal generator Q1i of the Markov chain Y1(t) is of

the form [
T1i T0

1i

0 0

]
with initial probability vector ᾱ1i = (0, 0, . . . , 1, 0, . . . , 0) where 1 is

in the ith position. T1i is a square matrix of order N . ᾱ1i has N

elements.

Therefore, when N−1 ≤ i < Q+N , the time till absorption to {∆1},
denoted by τ1i, follows Phase-Type distribution with representation

(ᾱ1i, T1i). It’s mean value is given by

E(τ1i) = −ᾱ1i(T1i)
−1ē.

(ii) Let 0 < i < N − 1.

The state space of Y1(t) is {(m,n)} ∪ {∆2} where 0 ≤ m ≤ N − 1,

s − N + 1 ≤ n ≤ s and {∆2} denotes the absorbing state which is

given by (2.32).

Clearly Y1(t) is a finite state Markov chain. The possible transitions

and the corresponding instantaneous rates are given in Table 2.2.
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Table 2.2: Transitions and corresponding instantaneous rates for Y1(t) in
part (ii) of Theorem 2.2.4

From To Rate

(m, s−N + 1) {∆2} µ for m = 1, 2, . . . N − 1

(m,n) {∆2} γ where (m,n) ∈ {(i, s), (i+ 1, s), . . . ,
(N − 1, s), (i− 1, s− 1), (i, s− 1), . . . ,
(N − 1, s− 1), · · · · · · · · · ,
(0, s− i), (1, s− i), . . . , (N − 1, s− i),
(0, s− (i+ 1)), (1, s− (i+ 1)), . . . ,
(N − 1, s− (i+ 1)), · · · · · · · · · ,
(0, s−N + 1), (1, s−N + 1), . . . ,
(N − 1, s−N + 1)}.

(m,n) (m+ 1, n) λ where (m,n) ∈ {(i, s), (i+ 1, s), . . . ,
(N − 2, s),(i− 1, s− 1), (i, s− 1), . . . ,
(N − 2, s− 1), · · · · · · · · · ,
(0, s− i), (1, s− i), . . . , (N − 2, s− i),
(0, s− (i+ 1)), (1, s− (i+ 1)), . . . ,
(N − 2, s− (i+ 1)), · · · · · · · · · ,
(0, s−N + 1), (1, s−N + 1), . . . ,
(N − 2, s−N + 1)}.

(m,n) (m− 1, n− 1) µ where (m,n) ∈ {(i, s), (i+ 1, s), . . . ,
(N − 1, s), (i− 1, s− 1), (i, s− 1), . . . ,
(N − 1, s− 1), · · · · · · · · · ,
(1, s− i), (2, s− i), . . . , (N − 1, s− i),
(1, s− (i+ 1)), (2, s− (i+ 1)), . . . ,
(N − 1, s− (i+ 1)), · · · · · · · · · ,
(1, s−N + 2), (2, s−N + 2), . . . ,
(N − 1, s−N + 2)}.

When 0 < i < N − 1, future arrivals till the number of customers

sufficient to take away the available inventory are to be considered to

reach the absorbing state {∆2}.

Hence the infinitesimal generator Q2i of the Markov chain Y1(t) is of

the form [
T2i T0

2i

0 0

]

with initial probability vector ᾱ2i = (0, 0, . . . , 1, 0, . . . , 0) where 1 is in

the ith position.
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T2i is a square matrix of order N2 − i
2
(1 + i), ᾱ2i has N2 − i

2
(1 + i)

elements.

Therefore, when 0 < i < N − 1, the time till absorption to {∆2},
denoted by τ2i, follows Phase-Type distribution with representation

(ᾱ2i, T2i).

It’s mean value is given by

E(τ2i) = −ᾱ2i(T2i)
−1ē.

(iii) Let i = 0.

The state space of Y1(t) is {(m,n)} ∪ {∆3} where 0 ≤ m ≤ N − 1,

s − N + 1 ≤ n ≤ s and {∆3} denotes the absorbing state which is

given by (2.33).

Clearly Y1(t) is a finite state Markov chain. The possible transitions

and the corresponding instantaneous rates are given in Table 2.3.

When i = 0, future arrivals that are sufficient to reach the absorbing

state {∆3} are to be considered.

Hence the infinitesimal generator Q00 of the Markov chain Y1(t) is of

the form [
T00 T0

00

0 0

]
with initial probability vector ᾱ00 = (1, 0, 0, . . . , 0).

T00 is a square matrix of order N(Q+N). ᾱ00 has N(Q+N) elements.

Therefore, when i = 0, the time till absorption to {∆3}, denoted by

τ00, follows Phase-Type distribution with representation (ᾱ00, T00).

It’s mean value is given by

E(τ00) = −ᾱ00(T00)
−1ē.
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Table 2.3: Transitions and corresponding instantaneous rates for Y1(t) in
part (iii) of Theorem 2.2.4

From To Rate

(m,n) {∆3} γ where (m,n) ∈ {(0, s), (1, s), . . . ,
(N − 1, s), (0, s− 1), (1, s− 1), . . . ,
(N − 1, s− 1), (0, s− 2), (1, s− 2), . . . ,
(N − 1, s− 2), · · · · · · · · · ,
(0, s−N + 2), (1, s−N + 2), . . . ,
(N − 1, s−N + 2), (0, s−N + 1),
(1, s−N + 1)), . . .
. . . , (N − 1, s−N + 1)}.

(m,n) (m+ 1, n) λ where (m,n) ∈ {(0, s), (1, s), . . . ,
(N − 2, s), (0, s− 1), (1, s− 1), . . . ,
(N − 2, s− 1), · · · · · · · · · ,
(0, s−N + 2)(1, s−N + 2), . . . ,
(N − 2, s−N + 2), (0, s−N + 1)
(1, s−N + 1), . . .
. . . , (N − 2, s−N + 1)}.

(m,n) (m− 1, n− 1) µ where (m,n) ∈ {(1, s), (2, s), . . . ,
(N − 1, s), (1, s− 1), (2, s− 1), . . . ,
(N − 1, s− 1), (1, s− 2), (2, s− 2), . . . ,
(N − 1, s− 2), · · · · · · · · · ,
(1, s−N + 2), (2, s−N + 2), . . .
. . . , (N − 1, s−N + 2)}.

(m, s−N + 1) {∆3} µ for m = 1, 2, . . . , N − 1.

Corollary 2.2.1. The time till absorption to states with inventory levels

S, S−1, . . . , S−N +1, starting from a state (i, s), where 0 ≤ i < Q+N , is

denoted by τa1, and τa1 follows Phase-Type distribution with representation

(ᾱ3i, T3i), where

ᾱ3i =


ᾱ1i, when N − 1 ≤ i < Q+N

ᾱ2i, when 0 < i < N − 1

ᾱ00, when i = 0

and

T3i =


T1i, when N − 1 ≤ i < Q+N

T2i, when 0 < i < N − 1

T00, when i = 0.
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Proof. The proof immediately follows from the above theorem.

Corollary 2.2.2.

E(τa1) = (1−ρ)(N +QωN)−1ωN−1
[
E(τ00) +

N−2∑
i=1

ρiE(τ2i) +

Q+N−1∑
i=N−1

ρiE(τ1i)
]

where ω = λ+γ
λ

.

Proof.

E(τa1) = π(0,s)E(τ00) +
N−2∑
i=1

π(i,s)E(τ2i) +

Q+N−1∑
i=N−1

π(i,s)E(τ1i)

= (1− ρ)ρ0rsE(τ00) + (1− ρ)rs

N−2∑
i=1

ρiE(τ2i) + (1− ρ)rs

Q+N−1∑
i=N−1

ρiE(τ1i)

= (1− ρ)(N +QωN)−1ωN−1
[
E(τ00) +

N−2∑
i=1

ρiE(τ2i) +

Q+N−1∑
i=N−1

ρiE(τ1i)
]

where ω = λ+γ
λ

.

Theorem 2.2.5. Let 0 ≤ i < Q + N . Then the time till absorption to s

i.e., τb1, starting from {∆1}∪{∆2}∪{∆3} follows Phase-Type distribution

with representation (v̄, T̃ ).

Proof. Consider the Markov chain Y2(t) = {(X2(t), I2(t))} where X2(t) is

the number of customers in the system at time t and I2(t) is the inventory

level at time t.

The state space of Y1(t) is {(m,n)} ∪ {∆4} where 0 ≤ m ≤ Q + N ,

s + 1 ≤ n ≤ S, and {∆4} denotes the absorbing state {(m, s)} where

0 ≤ m ≤ Q + N − 1. Clearly Y2(t) is a finite state Markov chain. The

possible transitions and the corresponding instantaneous rates are given in

Table 2.4.

Hence the infinitesimal generator Q̃ of the Markov chain Y2(t) is of the

form (
T̃ T̃0

0 0

)
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with initial probability vector v̄ = (1, 0, 0, . . . , 0), and of appropriate order

which depends upon the starting state. T̃ is a square matrix whose order

depends upon the starting state.

Therefore the time till absorption to s, denoted by τb1 , starting from

{∆1} ∪ {∆2} ∪ {∆3}, follows Phase-Type distribution with representation

(v̄, T̃ ).

It’s mean value is given by

E(τb1) = −v̄(T̃ )−1ē.

Theorem 2.2.6. Let 0 ≤ i < Q + N , where i = Number of customers in

the initial state. Let τc1 be the time elapsed between two order placement

epochs. Then τc1 follows Phase-Type distribution.

Proof. Let τa1 be the time till absorption to {∆1} ∪ {∆2} ∪ {∆3}, starting

from a state with inventory level s and τb1 be the time till absorption to

s, starting from {∆1} ∪ {∆2} ∪ {∆3}. We have τa1 follows Phase-Type

distribution with representation (ᾱ3i, T3i) for each i where 0 ≤ i < Q + N

and τb1 follows Phase-Type distribution with representation (v̄, T̃ ).

τc1 = τa1 + τb1 is the time elapsed between two order placement epochs.

Let F1(·) be the probability distribution of τa1 and F2(·) be the prob-

ability distribution of τb1 . Let F (·) be the probability distribution of τc1 .

The convolution F1 ∗F2(·) is a Phase-Type distribution with representation

Table 2.4: Transitions and corresponding instantaneous rates for Y2(t)

From To Rate
(m,n) (m+ 1, n) λ for m ∈ {0, 1, 2, . . . , Q+N − 1}

n ∈ {s+ 1, . . . , S}
(m,n) (m− 1, n− 1) µ for m ∈ {1, 2, . . . , Q+N},

n ∈ {s+ 2, . . . , S}
(m, s+ 1) {∆4} µ for m > 0, m ∈ {1, 2, . . . , Q+N}
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(ū1, L1) where

ū1 =


(ᾱ1i, αN+1v̄) when N − 1 ≤ i < Q+N,

(ᾱ2i, αN2− i
2
(1+i)+1v̄) when 0 < i < N − 1,

(ᾱ00, αN(Q+N)+1v̄) when i = 0

and

L1 =



T1i T0
1iv̄

O T̃

 when N − 1 ≤ i < Q+NT2i T0
2iv̄

O T̃

 when 0 < i < N − 1T00 T0
00v̄

O T̃

 when i = 0

We know, F (·) = F1 ∗ F2(·).
Hence we get τc1 follows PH-distribution.

Corollary 2.2.3. When 0 ≤ i < Q+N , the expected inventory cycle time

E(τc1) is given by

E(τc1) = (1− ρ)(N +QωN)−1ωN−1[E(τ00) +
N−2∑
i=1

ρiE(τ2i)

+

Q+N−1∑
i=N−1

ρiE(τ1i)]− v̄(T̃ )−1ē

where ω = λ+γ
λ

.

Proof.

E(τc1) = E(τa1 + τb1)

= (1− ρ)(N +QωN)−1ωN−1[E(τ00 +
N−2∑
i=1

ρiE(τ2i))

+

Q+N−1∑
i=N−1

ρiE(τ1i)]− v̄(T̃ )−1ē

where ω = λ+γ
λ

.
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Case II: i ≥ Q+N . Then,

Theorem 2.2.7. Let (i, s) be the starting state, where s is the reorder

level. Then the time till absorption to {∆1}. i.e., τa2 follows Phase-Type

distribution where {∆1} denotes the absorbing state and is given by (2.31).

Also

E(τa2) = E(τ1i).

Proof. Staring from a state with inventory level s, we need to find the time

till absorption to the states with inventory levels S, S−1, . . . S−N+1. Let

us consider the Markov chain Z1(t) = {(X3(t), I3(t))} where X3(t) denotes

the number of customers in the system at time t and I3(t) denotes the

inventory level at that time.

The state space of Z1(t) is the same as that of Y1(t) (given in part (i)

of Theorem 2.2.4) and {∆1} denotes the absorbing state which is given by

(2.31).

Clearly Z1(t) is a finite state Markov chain. The possible transitions

and the corresponding instantaneous rates are given in Table 2.1. When

i ≥ Q + N , further arrivals need not be considered. The infinitesimal

generator of the Markov chain Z1(t) is Q1i and is of the form[
T1i T0

1i

0 0

]

with initial probability vector ᾱ1i = (0, 0, . . . , 1, 0, . . . , 0) where 1 is in the

ith position. T1i is square matrix of order N . ᾱ1i has N elements.

Therefore, τa2 = τ1i, and hence τa2 ∼ PH (ᾱ1i, T1i) and E(τa2) = E(τ1i).

Theorem 2.2.8. Let i ≥ Q + N . Then the time till absorption to s i.e.,

τb2 starting from {∆1} follows Erlang distribution.

Proof. Consider the Markov chain Z2(t) = {(X4(t), I4(t))} where X4(t) =

Number of customers in the system at time t and I4(t) = Inventory level at

time t. The state space of Z2(t) is {(m,n)}∪{∆5} where i−Q+1 ≤ m ≤ i,
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Table 2.5: Transitions and corresponding instantaneous rates for Z2(t)

From To Rate

(m,n) (m− 1, n− 1) µ where (m,n) belongs to
{(i−N − (Q− 2), s+ 2),
. . . , (i−N,S)},
when starting from the
state (i−N,S) and
(m,n) belongs to
{(i−Q+ 2, s+ 2),
(i−Q+ 3, s+ 3), . . . ,
(i, S)}, when starting
from the states (i, S),
(i− 1, S − 1), . . . ,
(i− (N − 1), S −N + 1)

(i−Q+ 1, s+ 1) {∆5} µ when starting from the
states
(i, S), (i− 1, S − 1), . . . ,
(i− (N − 1), S −N + 1)

(i−N − (Q− 1), s+ 1) {∆5} µ when starting from the
state
(i−N,S)

s + 1 ≤ n ≤ S, and {∆5} denotes the absorbing state {(m, s)} where

m ≥ i−N −Q.

Clearly Z2(t) is a finite state Markov chain. The possible transitions

and the corresponding instantaneous rates are given in Table 2.5.

Hence τb2 follows Erlang distribution with parameter µ, and is of order

Q− l, l = 0, 1, 2, . . . , N − 1.

Theorem 2.2.9. Let i ≥ Q + N , where i = Number of customers in the

starting state. Let τc2 be the time elapsed between two order placement

epochs. Then τc2 follows Phase-Type distribution.

Proof. Let τa2 be the time till absorption to {∆1}, starting from (i, s).

Then τa2 ∼ PH (ᾱ1i, T1i).

Let τb2 be the time till absorption to s, starting from {∆1}. Then τb2

follows Erlang distribution. Hence, the time elapsed between two order

placement epochs can be written as τc2 = τa2 + τb2 .
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Let G1(·), G2(·) and G(·) be the probability distributions of τa2 , τb2 and

τc2 respectively.

We know G(·) = G1 ∗G2(·) and G1 ∗G2(·) follows Phase-Type distribu-

tion. Hence we get τc2 follows Phase-Type distribution.

2.2.4 Cost Analysis

Next, we find a cost function. Let the various costs involved in the model

be as given below:

CH : Inventory holding cost per unit item per unit time

CS: Set up cost per unit order, under natural purchase

CW : Waiting time cost per customer per unit time

CLP: Local purchase cost per unit order

CNP: Natural purchase cost per unit order

CC : Cancellation cost per unit order cancelled.

The total expected cost per unit time,

TEC = CHE(I) + (CS + CNPQ)Rr + CLPRLP(Q+N) + CCRLP + CWWS.

Using (2.27), (2.28), (2.29) and (2.30) we get TEC as

TEC =

{
CH

[s(1− ωN)(1− ω) + (1−N)(1− ω)− (ωN − ω)

(1− ω)2

+
1

2
(Q−N + 1)(S + s−N + 2)ωN

+ (ωN + 1)(N − 1)(S − N

2
+ 1)− (S −N + 2)

(ωN − ω)

ω − 1

− ω2

(ω − 1)2
[1− ωN−2(1− (N − 2)(ω − 1))]

]
+ ((CS + CNPQ)ωN + CLP(Q+N) + CC)λ

}
(N + ωNQ)−1

+ CW (
1

µ− λ
). (2.34)

To verify the convexity of the above cost function with respect to N ,

the derivative with respect to N may be computed, then equate it to zero.
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Nevertheless, solving it is a laborious task. This can be viewed from the

following Lemma.

Lemma 2.2.1. The necessary condition for cost function to be optimal with

respect to N is

CH

[
1

ω − 1
(sωN loge ω + 1) + S(1 + ωN) +

3

2
−N − ω

ω − 1

+ωN loge ω[−(ω − 1)−2(N − 1)− S(ω − 1)−1 +
Q

2
(S + s+ 1)]

]
+ λ[(cS + CNPQ)ωN loge ω + CLP ]

= F1(N + ωNQ)−1(1 +QωN loge ω) (2.35)

where

F1 = CH

[
s(1− ωN)(1− ω) + (1−N)(1− ω)− (ωN − ω)

(1− ω)2

+
1

2
(Q−N + 1)(S + s−N + 2)ωN + (ωN + 1)(N − 1)(S − N

2
+ 1)

−(S −N + 2)

(
ωN − ω
ω − 1

)
− ω2

(ω − 1)2
[1− ωN−2(1− (N − 2)(ω − 1))]

]
+ (CS + CNPQ)λωN + CLP(Q+N)λ+ Ccλ

and ω = λ+γ
λ

.

Proof. ∂
∂N

(TEC) = 0 gives the required condition on simplification.

Remark. Note that while computing the zeros of the above equation,

which are values of N , we could admit only a positive integer as the value

of N , since N is the number of service completions after placing a natural

order.

2.2.4.1 Numerical Analysis of TEC

Analysis of TEC as function of s, S or N is quite complex. Hence we give

a few numerical illustrations:

Case 1: Analysis of TEC as function of N .

Here change in the values of cost function as N varies, is analyzed.
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Input data: S = 20, λ = 23 , µ = 25, γ = 20, CNP = 30, CLP = 35,

CH = 0.5, CS = 1000, CC = 16, CW = 1200.

Table 2.6: Effect of N on cost function TEC

N TEC when s = 8 TEC when s = 9
1 3564.8 3724.3
2 3359.8 3518.5
3 3270.3 3432.0
4 3232.2 3397.5
5 3217.1 3385.3
6 3211.9 3382.3
7 3210.7 3382.6
8 3210.9 3383.9

In Table 2.6, the total expected costs per unit time against various values

of N for a given set of input parameters are displayed.

When s = 8 and N varies from 1 to 8, the TEC values decrease, reach a

minimum at N = 7, and then increase. When s = 9 and N varies from 1 to

8, the TEC values decrease, reach a minimum at N = 6, and then increase.

Hence the convexity of cost function is verified numerically.

Case 2: Analysis of TEC as a function of S.

Input data: λ = 23, µ = 25, γ = 20, N = 5, s = 8, CNP = 30, CLP = 35,

CH = 0.5, CS = 1000, CC = 16, CW = 1200.

In Table 2.7, the total expected costs per unit time against various values

of S for a given set of input parameters are displayed.

Table 2.7: Effect of S on TEC

S TEC
20 3217.1
21 3074.7
22 2952.4
23 2846.2
24 2753.2
25 2670.9
26 2597.8
27 2532.2
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Table 2.7 shows that as S increases, TEC function is monotonically

decreasing and hence convex.

Case 3: Analysis of TEC when s, S and N are varied simultaneously.

Here change in the values of cost function as s, S and N varies simulta-

neously, is analyzed.

Input data: λ = 23, µ = 25, γ = 20, CNP = 30, CLP = 35, CH = 0.5,

CS = 1000, CC = 16, CW = 1200.

In Table 2.8, total expected cost per unit time against various values

of the triplet (s, S,N) are displayed. We can observe that TEC values

decrease, reach a minimum at the values (11,30,10) of (s, S,N) and then

increase. Hence convexity of cost function is verified numerically.

Table 2.8: Effect of (s, S,N) on cost function TEC

(s, S,N) TEC
(9,28,8) 2511.8862
(10,29,9) 2511.0493
(11,30,10) 2510.9289
(12,31,11) 2511.1480
(13,32,12) 2511.5251
(14,33,13) 2511.9741
(15,34,14) 2512.4546

2.3 General Case-Model II: Perishable

Items

2.3.1 Model Formulation and Analysis

Let X(t) = Number of customers in the system at time t and

I(t) = Inventory level at time t.

{(X(t), I(t)), t ≥ 0} is a CTMC with state space E = E1 × E2 where

E1 = {0, 1, 2, . . . } and E2 = {s−N+1, s−N+2, . . . , S} where s−N+1 > 0.

Therefore,

E = {(i, j)|i ∈ E1, j ∈ E2}
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2.3.1.1 Infinitesimal Generator Ã

We write the infinitesimal generator Ã of the process as

Ã = (a((i, j), (m,n))), where (i, j), (m,n) ∈ E.

The elements of Ã can be obtained as

a((i, j), (m,n)) =



λ, m = i+ 1; i = 0, 1, 2, . . .

n = j; j = s−N + 1, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = j − 1; j = s−N + 2, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = S; j = s−N + 1

γ, m = i; i = 0, 1, 2, . . .

n = j +Q; j = s−N + 1, . . . , s

jβ, m = i; i = 0, 1, 2, . . .

n = j − 1; j = s−N + 2, . . . , S

jβ, m = i; i = 0, 1, 2, . . .

n = S; j = s−N + 1

−(λ+ jβ + γ), m = i; i = 0

n = j; j = s−N + 1, . . . , s

−(λ+ jβ), m = i; i = 0

n = j; j = s+ 1, . . . , S

−(λ+ jβ + γ + µ), m = i; i = 1, 2, 3, . . .

n = j; j = s−N + 1, . . . , s

−(λ+ jβ + µ), m = i; i = 1, 2, 3, . . .

n = j; j = s+ 1, . . . , S

0, otherwise.
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We can write Ã interms of submatrices as follows:

Ã =


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where A0 = λIQ+N and

A2 =

[
01×(Q+N−1) µI1

µIQ+N−1 0(Q+N−1)×1

]
.

A1, B1 are given in page 45.

The elements dj, j = s−N + 1, . . . , S in A1 are given by

dj =

λ+ jβ + γ + µ, j = s−N + 1, . . . , s

λ+ jβ + µ, j = s+ 1, . . . , S.

and elements fj, j = s−N + 1, . . . , S in B1 are given by

fj =

λ+ jβ + γ, j = s−N + 1, . . . , s

λ+ jβ, j = s+ 1, . . . , S.

A0, A1, A2 and B1 are square matrices of order Q+N .

2.3.1.2 Steady-State Analysis

Let A = A0 + A1 + A2 be the generator matrix and is given in page 47.

The elements hj, j = s−N + 1, . . . , S in A are given by

hj =

jβ + γ + µ, j = s−N + 1, . . . , s

jβ + µ, j = s+ 1, . . . , S

and A is a square matrix of order Q+N .

First we investigate the stationary distribution of A. This will help in

analysing the stability of the larger system, namely the CTMC {(X(t), I(t)), t ≥
0} as t→∞.
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A
1
=

                            

−
d
s
−
N

+
1

γ
(s

−
N

+
1
)β

(s
−
N

+
2
)β

−
d
s
−
N

+
2

γ

(s
−
N

+
3
)β

−
d
s
−
N

+
3

. .
.

. .
.

(s
−

1
)β

−
d
s
−
1

γ
sβ

−
d
s

γ
(s

+
1
)β

−
d
s
+
1

0
. .
.

. .
.

(S
−

1
)β

−
d
S
−
1

S
β

−
d
S

                            

B
1
=

                            −
f s

−
N

+
1

γ
(s

−
N

+
1
)β

(s
−
N

+
2
)β

−
f s

−
N

+
2

γ

(s
−
N

+
3
)β

−
f s

−
N

+
3

. .
.

. .
.

(s
−

1
)β

−
f s

−
1

γ
sβ

−
f s

γ
(s

+
1
)β

−
f s

+
1

0
. .
.

. .
.

(S
−

1
)β

−
f S

−
1

S
β

−
f S
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Theorem 2.3.1. The steady-state probability distribution

Φ = (φs−N+1, φs−N+2, . . . , φS) corresponding to the matrix A is given by

φj = qjφs−N+1, j = s−N + 2, . . . , S (2.36)

where

qj =



η̃(s−N+1,j−1)
ψ̃(s−N+2,j)

j = s−N + 2, . . . , s+ 1

1
jβ+µ

η̃(s−N+1,s)

ψ̃(s−N+2,s)
, j = s+ 2, . . . , S −N + 1

1
jβ+µ

(
η̃(s−N+1,s)

ψ̃(s−N+2,s)
− γ
)
, j = S −N + 2

1
jβ+µ

(
η̃(s−N+1,s)

ψ̃(s−N+2,s)
− γ

−γ
∑j−Q−2

k1=s−N+1
η̃(s−N+1,k1)

ψ̃(s−N+2,k1+1)

)
,

j = S −N + 3, . . . , S

where η̃(j1, j2) =

j2∏
k̃=j1

(k̃β + γ + µ) and

ψ̃(j1, j2) =

j2∏
k̃=j1

(k̃β + µ)

φs−N+1 can be obtained by solving the equation Φē = 1 as

φs−N+1 =
[
1 +

s+1∑
j=s−N+2

η̃(s−N + 1, j − 1)

ψ̃(s−N + 2, j)

+ c̃
S−N+1∑
j=s+2

( 1

µ+ jβ

)
+

c̃− γ
µ+ (S −N + 2)β

+
S∑

j=S−N+3

[ 1

µ+ jβ

(
c̃− γ − γ

j−Q−2∑
k1=s−N+1

η̃(s−N + 1, k1)

ψ̃(s−N + 2, k1 + 1)

)]]−1
where

c̃ =
η̃(s−N + 1, s)

ψ̃(s−N + 2, s)
.
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.
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sβ
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1
)β
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µ
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.
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)β
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µ
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S
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S
β
+
µ
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S
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Proof. We have ΦA = 0 and Φē = 1

ΦA = 0⇒

− φl(lβ + γ + µ) + φl+1((l + 1)β + µ) = 0, (2.37)

for l = s−N + 1, . . . , s.

− φl(lβ + µ) + φl+1((l + 1)β + µ) = 0, (2.38)

for l = s+ 1, . . . , S −N .

− φl(lβ + µ) + φl+1((l + 1)β + µ) + φl−Qγ = 0, (2.39)

for l = S −N + 1, . . . , S − 1. Also we get

− φS(Sβ + µ) + φsγ + φs−N+1((s−N + 1)β + µ) = 0. (2.40)

Consider equation (2.37).

Equation (2.37) gives

φj =
η̃(s−N + 1, j − 1)

ψ̃(s−N + 2, j)
φs−N+1 (2.41)

for j = s−N + 2, . . . , s+ 1.

Note that

η̃(j1, j2) =

j2∏
k̃=j1

(k̃β + γ + µ) and

ψ̃(j1, j2) =

j2∏
k̃=j1

(k̃β + µ).

Equation (2.38) gives

φj =
1

(jβ + µ)

η̃(s−N + 1, s)

ψ̃(s−N + 2, s)
φs−N+1 (2.42)

for j = s+ 2, . . . , S −N + 1.



2.3. GENERAL CASE-MODEL II: PERISHABLE ITEMS 49

Using equation (2.39) we get

φS−N+2 =
1

(S −N + 2)β + µ

(
η̃(s−N + 1, s)

ψ̃(s−N + 2, s)
− γ
)
φs−N+1 (2.43)

and

φj =
1

(jβ + µ)

(
η̃(s−N + 1, s)

ψ̃(s−N + 2, s)
− γ − γ

j−Q−2∑
k1=s−N+1

η̃(s−N + 1, k1)

ψ̃(s−N + 2, k1 + 1)

)
× φs−N+1 (2.44)

for j = S −N + 3, . . . , S.

Using equations (2.41), (2.42), (2.43) and (2.44), we get equation (2.36).

Now to find φs−N+1. Consider Φē = 1.(
1 +

s+1∑
j=s−N+2

qj +
S−N+1∑
j=s+2

qj + qS−N+2 +
S∑

j=s−N+3

qj

)
φs−N+1 = 1. (2.45)

s+1∑
j=s−N+2

qj =
s+1∑

j=s−N+2

(∏j−1
k̃=s−N+1

(µ+ γ + k̃β)∏j

k̃=s−N+2
(µ+ k̃β)

)
. (2.46)

S−N+1∑
j=s+2

qj =
S−N+1∑
j=s+2

1

µ+ βj
c̃ (2.47)

where

c̃ =

∏s
k̃=s−N+1(µ+ γ + k̃β)∏s
k̃=s−N+2(µ+ k̃β)

.

qS−N+2 =
c̃− γ

µ+ (S −N + 2)β
(2.48)

S∑
j=S−N+3

qj =
S∑

j=S−N+3

(
1

µ+ jβ

(
c̃− γ − γ

j−Q−2∑
k1=s−N+1

η̃(s−N + 1, k1)

ψ̃(s−N + 2, k1 + 1)

))
(2.49)

Using equations (2.46), (2.47), (2.48), (2.49) and on simplification, we get
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equation (2.45) as

φs−N+1 =

[
1 +

s+1∑
j=s−N+2

η̃(s−N + 1, j − 1)

ψ̃(s−N + 2, j)
+ c̃

S−N+1∑
j=s+2

(
1

µ+ jβ
)

+
c̃− γ

µ+ (S −N + 2)β

+
S∑

j=S−N+3

(
1

µ+ jβ

(
c̃− γ − γ

j−Q−2∑
k1=s−N+1

η̃(s−N + 1, k1)

ψ̃(s−N + 2, k1 + 1)

))]−1

where

c̃ =
η̃(s−N + 1, s)

ψ̃(s−N + 2, s)
,

η̃(j1, j2) =

j2∏
k̃=j1

(µ+ γ + k̃β) and

ψ̃(j1, j2) =

j2∏
k̃=j1

(µ+ k̃β).

Hence the proof is completed.

2.3.1.3 Stability Condition

The result in Theorem 2.3.1 enables us to compute the stability of the

CTMC {(X(t), I(t)), t ≥ 0}.

Theorem 2.3.2. The process {(X(t), I(t)), t ≥ 0} is stable iff λ < µ.

Proof. Since the process under consideration is an LIQBD, it is stable iff

ΦA0ē < ΦA2ē (2.50)

(Neuts [40]), where Φ is the steady-state distribution of the generator ma-

trix A = A0 + A1 + A2.
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It can be shown that

ΦA0ē = (φs−N+1φs−N+2 . . . φS)λIQ+N


1

1
...

1


(Q+N)×1

= λ.

ΦA2ē = (φs−N+1φs−N+2 . . . φS)

[
01×(Q+N−1) µI1

µIQ+N−1 0(Q+N−1)×1

]
1

1
...

1


(Q+N)×1

= µ.

Using (2.50) we get λ < µ.

Having obtained the condition for the system to stabilize, we turn to

compute the long-run probability distribution of the system states. Infact

we show that the joint distribution of the system state can be written as

the product of the marginal distributions of the components.

2.3.2 The Steady-State Probability Distribution of Ã

2.3.2.1 Stationary Distribution when Service Time is Negligible

The generator matrix corresponding to the process when service time is

negligible is denoted by Q̃ and is given in page 53.

The elements h̃j, j = s−N + 1, . . . , S in Q̃ is given by

h̃j =

jβ + γ + λ, j = s−N + 1, . . . , s

jβ + λ, j = s+ 1, . . . , S.

Theorem 2.3.3. The steady-state probability distribution

∆ = (rs−N+1, rs−N+2, . . . , rS) corresponding to the matrix Q̃ is given by

rj = q̃jrs−N+1, j = s−N + 2, . . . , S (2.51)
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where

q̃j =



η̂(s−N+1,j−1)
ψ̂(s−N+2,j)

j = s−N + 2, . . . , s+ 1

1
jβ+λ

η̂(s−N+1,s)

ψ̂(s−N+2,s)
, j = s+ 2, . . . , S −N + 1

1
jβ+λ

(
η̂(s−N+1,s)

ψ̂(s−N+2,s)
− γ
)
, j = S −N + 2

1
jβ+λ

(
η̂(s−N+1,s)

ψ̂(s−N+2,s)
− γ

−γ
∑j−Q−2

k1=s−N+1
η̂(s−N+1,k1)

ψ̂(s−N+2,k1+1)

)
,

j = S −N + 3, . . . , S

where

η̂(j1, j2) =

j2∏
k̃=j1

(k̃β + γ + λ) and

ψ̂(j1, j2) =

j2∏
k̃=j1

(k̃β + λ).

rs−N+1 can be obtained by solving the equation ∆ē = 1 as

rs−N+1 =
[
1 +

s+1∑
j=s−N+2

η̂(s−N + 1, j − 1)

ψ̂(s−N + 2, j)

+ ĉ
S−N+1∑
j=s+2

( 1

λ+ jβ

)
+

ĉ− γ
λ+ (S −N + 2)β

+
S∑

j=S−N+3

[ 1

λ+ jβ

(
ĉ− γ − γ

j−Q−2∑
k1=s−N+1

η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

)]]−1
where

ĉ =
η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
.

Proof. We have ∆Q̃ = 0 and ∆ē = 1.

∆Q̃ = 0⇒

− rl(lβ + γ + λ) + rl+1((l + 1)β + λ) = 0, (2.52)



2.3. GENERAL CASE-MODEL II: PERISHABLE ITEMS 53

                              

-h̃
s
-N

+
1

γ
(s
-N

+
1
)β

+
λ

(s
-N

+
2
)β

+
λ

-h̃
s
-N

+
2

γ

(s
-N

+
3
)β
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λ
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sβ
+
λ

-h̃
s

γ
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+
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)β
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.
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λ
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for l = s−N + 1, . . . , s.

− rl(lβ + λ) + rl+1((l + 1)β + λ) = 0, (2.53)

for l = s+ 1, . . . , S −N .

− rl(lβ + λ) + rl+1((l + 1)β + λ) + rl−Qγ = 0, (2.54)

for l = S −N + 1, . . . , S − 1. Also,

− rS(Sβ + λ) + rsγ + rs−N+1((s−N + 1)β + λ) = 0. (2.55)

Equation (2.52) gives

rj =
η̂(s−N + 1, j − 1)

ψ̂(s−N + 2, j)
rs−N+1 (2.56)

for j = s−N + 2, . . . , s+ 1. Note that

η̂(j1, j2) =

j2∏
k̃=j1

(k̃β + γ + λ) and

ψ̂(j1, j2) =

j2∏
k̃=j1

(k̃β + λ).

Equation (2.53) gives

rj =
1

(jβ + λ)

η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
rs−N+1 (2.57)

for j = s+ 2, . . . , S −N + 1.

Equation (2.54) gives

rS−N+2 =
1

(S −N + 2)β + λ

(
η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
− γ

)
rs−N+1 (2.58)

and

rj =
1

(jβ + λ)

(
η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
− γ − γ

j−Q−2∑
k1=s−N+1

η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

)
× rs−N+1 (2.59)
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for j = S −N + 3, . . . , S.

Using equations (2.56), (2.57), (2.58) and (2.59), we get equation (2.51).

Now to find rs−N+1. Consider ∆ē = 1.

(
1 +

s+1∑
j=s−N+2

q̃j +
S−N+1∑
j=s+2

q̃j + q̃S−N+2 +
S∑

j=S−N+3

q̃j

)
rs−N+1 = 1 (2.60)

s+1∑
j=s−N+2

q̃j =
s+1∑

j=s−N+2

(∏j−1
k̃=s−N+1

(λ+ γ + k̃β)∏j

k̃=s−N+2
(λ+ k̃β)

)
(2.61)

S−N+1∑
j=s+2

q̃j =
S−N+1∑
j=s+2

1

λ+ βj
ĉ (2.62)

where

ĉ =

∏s
k̃=s−N+1(λ+ γ + k̃β)∏s
k̃=s−N+2(λ+ k̃β)

.

q̃S−N+2 =
ĉ− γ

λ+ (S −N + 2)β
(2.63)

S∑
j=S−N+3

q̃j =
S∑

j=S−N+3

(
1

λ+ jβ

(
ĉ− γ − γ

j−Q−2∑
k1=s−N+1

η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

))
.

(2.64)

Using equations (2.61), (2.62), (2.63) and (2.64), and on simplification, we

get equation (2.60) as

rs−N+1 =

[
1 +

s+1∑
j=s−N+2

η̂(s−N + 1, j − 1)

ψ̂(s−N + 2, j)
+ ĉ

S−N+1∑
j=s+2

(
1

λ+ jβ
)

+
ĉ− γ

λ+ (S −N + 2)β

+
S∑

j=S−N+3

(
1

λ+ jβ

(
ĉ− γ − γ

j−Q−2∑
k1=s−N+1

η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

))]−1
,
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where

ĉ =
η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
,

η̂(j1, j2) =

j2∏
k̃=j1

(λ+ γ + k̃β) and

ψ̂(j1, j2) =

j2∏
k̃=j1

(λ+ k̃β).

Hence the proof is completed.

Remark. The results given by equation (2.51) is obtained in an equivalent

form by Krishnamoorthy and Raju [28] using balance equations.

2.3.2.2 Stochastic Decomposition of System State

Let π̄ be the steady-state probability vector of Ã.

π̄ = (π(0),π(1),π(2), . . . )

where π(i) = (π(i,s−N+1), π(i,s−N+2), . . . , π(i,S)), i = 0, 1, 2, . . . and

π(i,j) = lim
t→∞

P (X(t) = i, I(t) = j), (i, j) ∈ E.

π(i,j) is the steady-state probability for the state (i, j). We claim that

π(i) = Kρi∆, i ≥ 0 (2.65)

where ∆ = (rs−N+1, rs−N+2, . . . , rS) is the steady-state probability vector

when the service time is negligible, K is a constant to be determined and

ρ = λ
µ
.

Proof. We have π̄Ã = 0 and πē = 1.

π̄Ã = 0⇒ (π(0),π(1),π(2), . . . )


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 = 0
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which gives

π(0)B1 + π(1)A2 = 0 (2.66)

π(i+2)A2 + π(i+1)A1 + π(i)A0 = 0 (2.67)

i = 0, 1, 2, . . . .

When (2.65) is true, we get from (2.66),

Kρ0∆B1 +Kρ∆A2 = 0

i.e., ∆(B1 + ρA2) = 0

i.e., ∆Q̃ = 0,

which is true since ∆ = (rs−N+1, rs−N+2, . . . , rS) is the steady-state proba-

bility vector corresponding to the generator Q̃ associated with the Marko-

vian chain of the inventory process under consideration when service time

is negligible.

When (2.65) is true, we get from (2.67),

Kρi+2∆A2 +Kρi+1∆A1 +Kρi∆A0 = 0

where i = 0, 1, 2, . . .

i.e., ∆(ρA2 + A1 +
1

ρ
A0) = 0

i.e., ∆Q̃ = 0,

which is true, by following the same argument given above.

Hence the stochastic decomposition of system state is verified.

2.3.2.3 Determination of K

We have

∞∑
i=0

S∑
j=s−N+1

π(i,j) = 1

K

(
∞∑
i=0

ρi

)(
S∑

j=s−N+1

rj

)
= 1 (using (2.65))

Therefore, K = 1− ρ.
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2.3.2.4 Explicit Solution

From the above discussions, we can write the steady-state probability vector

explicitly as in the following theorem:

Theorem 2.3.4. The steady-state probability vector π̄ of Ã partitioned as

π̄ = (π(0),π(1),π(2), . . . ), where each π(i), i = 0, 1, 2, . . . again partitioned

as

π(i) = (π(i,s−N+1), π(i,s−N+2), . . . , π(i,S))

are obtained by

π(i,j) = (1− ρ)ρirj (2.68)

where ρ = λ
µ

and rj; j = s − N + 1, . . . , S, represent the inventory level

probabilities when service time is negligible and are given as

rj =



η̂(s−N+1,j−1)
ψ̂(s−N+2,j)

rs−N+1, j = s−N + 2, . . . , s+ 1

1
jβ+λ

η̂(s−N+1,s)

ψ̂(s−N+2,s)
rs−N+1, j = s+ 2, . . . , S −N + 1

1
jβ+λ

(
η̂(s−N+1,s)

ψ̂(s−N+2,s)
− γ
)
rs−N+1, j = S −N + 2

1
jβ+λ

(
η̂(s−N+1,s)

ψ̂(s−N+2,s)
− γ

−γ
∑j−Q−2

k1=s−N+1
η̂(s−N+1,k1)

ψ̂(s−N+2,k1+1)

)
, j = S −N + 3, . . . , S

where

η̂(j1, j2) =

j2∏
k̃=j1

(k̃β + γ + λ),

ψ̂(j1, j2) =

j2∏
k̃=j1

(k̃β + λ) and

rs−N+1 =
[
1 +

s+1∑
j=s−N+2

η̂(s−N + 1, j − 1)

ψ̂(s−N + 2, j)
+ ĉ

S−N+1∑
j=s+2

( 1

λ+ jβ

)
+

ĉ− γ
λ+ (S −N + 2)β

+
S∑

j=S−N+3

[ 1

λ+ jβ

(
ĉ− γ − γ

j−Q−2∑
k1=s−N+1

η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

)]]−1
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where

ĉ =
η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
.

The above result not only tells us that the original system possesses

stochastic decomposition but also the important fact that the system state

distribution is the product of the distribution of its marginals: one compo-

nent is the classical M |M |1 whose long run distribution for i customers in

the system is (1 − ρ)ρi, i ≥ 0 and the other factor is the probability of j

items in the inventory. Next we turn to find out how the system performs.

The measures given in the following section are pointers to the system per-

formance.

2.3.3 System Performance Measures

(a) Expected inventory held in the system (Mean inventory level),

E(I) =
∞∑
i=0

S∑
j=s−N+1

jπ(i,j)

=

(
∞∑
i=0

(1− ρ)ρi

)(
S∑

j=s−N+1

jrj

)

=
S∑

j=s−N+1

jrj

=

{
s−N + 1 +

s+1∑
j=s−N+2

(
j
η̂(s−N + 1, j − 1)

ψ̂(s−N + 2, j)

)

+ ĉ
S−N+1∑
j=s+2

(
j

λ+ jβ

)
+

(S −N + 2)(ĉ− γ)

λ+ (S −N + 2)β

.+
S∑

j=S−N+3

(
j

λ+ jβ

×

(
ĉ− γ − γ

j−Q−2∑
k1=s−N+1

(
η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

)))}
× rs−N+1.
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(b) Mean decay rate, RD = βE(I)

(c) Mean waiting time of customers, Ws = L
λ

where

L = Expected number of customers in the system

L =
S∑

j=s−N+1

∞∑
i=0

iπ(i,j)

=

(
∞∑
i=0

i(1− ρ)ρi

)(
S∑

j=s−N+1

rj

)
=

ρ

1− ρ
where ρ = λ/µ.

Therefore

WS =
1

µ− λ
.

(d) Mean reorder rate,

Rr = µ
∞∑
i=1

π(i,s+1) + (s+ 1)β
∞∑
i=0

π(i,s+1)

= µ
∞∑
i=1

(1− ρ)ρirs+1 + (s+ 1)β
∞∑
i=0

(1− ρ)ρirs+1

=
η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
rs−N+1.

(e) Mean local purchase rate,

RLP = µ
∞∑
i=1

(1− ρ)ρirs−N+1 + (s−N + 1)β
∞∑
i=0

(1− ρ)ρirs−N+1

= (λ+ (s−N + 1)β)rs−N+1.

Remark. If we put β = 0 the above measures will get reduced to those of

model I.

2.3.4 Cost Analysis

Next, we find a cost function. Let the various costs involved in the model

be as given below:
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CH : Inventory holding cost per unit item per unit time

CS: Set up cost per unit order, under natural purchase

CW : Waiting time cost per customer per unit time

CLP: Local purchase cost per unit order

CNP: Natural purchase cost per unit order

CC : Cancellation cost per unit order cancelled

CD: Decay cost per unit item per unit time.

The total expected cost per unit time,

TEC = (CS + CNPQ)Rr + CLP(Q+N)RLP + CCRLP

+ CHE(I) + CDRD + CWWS

=

[
(CS + CNPQ)

η̂(s−N + 1, s)

ψ̂(s−N + 2, s)

+ (CLP(Q+N) + CC)(λ+ (s−N + 1)β)

+ (CH + CDβ)

{
s−N + 1 +

s+1∑
j=s−N+2

(
j
η̂(s−N + 1, j − 1)

ψ̂(s−N + 2, j)

)

+ ĉ
S−N+1∑
j=s+2

(
j

λ+ jβ

)
+

(S −N + 2)(ĉ− γ)

λ+ (S −N + 2)β

+
S∑

j=S−N+3

(
j

λ+ jβ

(
ĉ− γ − γ

j−Q−2∑
k1=s−N+1

(
η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

)))}]

× rs−N+1 + CW

(
1

µ− λ

)

where

rs−N+1 =

[
1 +

s+1∑
j=s−N+2

η̂(s−N + 1, j − 1)

ψ̂(s−N + 2, j)
+ ĉ

S−N+1∑
j=s+2

(
1

λ+ jβ
)

+
ĉ− γ

λ+ (S −N + 2)β

+
S∑

j=S−N+3

(
1

λ+ jβ

(
ĉ− γ − γ

j−Q−2∑
k1=s−N+1

η̂(s−N + 1, k1)

ψ̂(s−N + 2, k1 + 1)

))]−1
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where

ĉ =
η̂(s−N + 1, s)

ψ̂(s−N + 2, s)
, η̂(j1, j2) =

j2∏
k̃=j1

(λ+ γ + k̃β) and

ψ̂(j1, j2) =

j2∏
k̃=j1

(λ+ k̃β).

To verify the convexity of the above cost function with respect to s, S

or N , the corresponding derivative may be computed, then equate it to

zero. Nevertheless, solving it is a laborious task. Since analysis of TEC as

function of s, S or N is complex, we give a few numerical illustrations.

2.3.5 Numerical Analysis

Case 1: Analysis of TEC as a function of S.

Input Data:

CNP = 12, CLP = 15, CH = 0.5, CS = 15, CC = 8, CW = 30 , CD = 7,

λ = 23, µ = 25, γ = 16, β = 0.2, s = 9, N = 2

Table 2.9: Effect of S on TEC

S TEC (β = 0.2) TEC (β = 0)
19 531.1766 452.8553
20 530.6603 450.1204
21 530.6305 447.8557
22 530.9799 445.9583
23 531.6299 444.3531
24 532.5222 442.9843
25 533.6123 441.8095

Table 2.9 shows that as S increases from 19 to 25, TEC values decrease,

reach a minimum at S = 21 and then increase (when β = 0.2). Hence

convexity of TEC with respect to S is verified numerically.
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Case 2: Analysis of TEC as function of N .

Input Data:

CNP = 12, CLP = 15, CH = 0.5, CS = 15, CC = 8, CW = 30 , CD = 7,

λ = 23, µ = 25, γ = 16, β = 0.2, s = 9, S = 20

Table 2.10 shows that TEC function is monotonically decreasing, as N

increases from 1 to 9 (when β = 0.2).

Table 2.10: Effect of N on TEC

N TEC (β = 0.2) TEC (β = 0)
1 599.001 534.0973
2 530.6603 450.1204
3 471.0809 401.6862
4 433.7624 372.8300
5 409.9854 355.4405
6 394.6799 344.9396
7 384.7420 338.6094
8 378.2326 334.8041
9 373.9357 332.5230

Comparison of Perishable and Non-Perishable Inventory Models

In the above input data, if we put β = 0 and CD = 0, we get the TEC values

of non-perishable inventory model and are given in Tables 2.9 and 2.10. We

can see from Table 2.9 that as S increases, TEC function is monotonically

decreasing (when β = 0). Also on comparing the TEC values in Table 2.9

we get that, TEC as function of S is higher in the case of perishable items.

From Table 2.10 we get that as N increases, TEC function is monotonically

decreasing (when β = 0). Also on comparing the TEC values in Table 2.10

we get that, TEC as function of N is higher in the case of perishable items.





Chapter 3

(s,Q) inventory systems with

positive lead time and service

time under T -policy

3.1 Introduction

In the previous chapter we investigated the effect of N -policy on local pur-

chase for both non-perishable and perishable items. Next we proceed to

analyze the effect of the T -policy.

In this chapter1, we consider two (s,Q) inventory models with service

time, in which T -policy is adopted during lead time. In model I, items

are assumed to be non-perishable. In Model II, items are subject to decay

and the time to decay follows exponential distribution with parameter β. In

both the models, arrival of demands are according to a Poisson process with

parameter λ and lead time follows exponential distribution with parameter

γ. Service time follows exponential distribution with parameter µ. The

reorder level is s. T -policy is brought into it as follows. T is assumed to

be a random variable whose distribution will be specified in the course of

1Part of this chapter is included in the paper: Krishnamoorthy A., Resmi Varghese
and Lakshmy B. “(s,Q) inventory systems with positive lead time and service time
under T -policy” (Accepted for presentation in 23rd Swadeshi Science Congress, a national
seminar organized by SSM, 6–8 Nov, 2013 at M. G. University, Kottayam, Kerala).

65
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discussion. As and when the inventory level drops to s, an order is placed

for Q = S − s units. After placing an order, if the replenishment does not

occur within a time of T units from the order placement epoch, then a local

purchase is made to bring the inventory level to S, by cancelling the order

that is already placed. (Cancellation of order is necessary since, otherwise

the inventory level may go beyond S as and when the replenishment against

the most recent order placed takes place). If the inventory level reaches

zero before the realization of T time units and also before the occurrence of

replenishment, regardless of the number of customers present in the system,

an immediate local purchase of S units is made, by cancelling the order that

is already placed. Local purchase can be done when T is realized or when

the inventory level reaches zero, which ever occurs first. T is assumed as a

random variable which follows exponential distribution with parameter α.

3.2 Model I: Non-Perishable Items

3.2.1 Model Formulation and Analysis

Let X(t) = Number of customers in the system at time t and

I(t) = Inventory level at time t.

{(X(t), I(t)), t ≥ 0} is a CTMC with state space E = E1 × E2 where

E1 = {0, 1, 2, . . . , } and E2 = {1, 2, . . . , S}. Therefore

E = {(i, j)|i ∈ E1, j ∈ E2}.

3.2.1.1 Infinitesimal Generator Ã

We write the infinitesimal generator of the process as

Ã = (a((i, j), (m,n)))

where (i, j), (m,n) ∈ E.
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The elements of Ã can be obtained as

a((i, j), (m,n)) =



λ, m = i+ 1; i = 0, 1, 2, . . .

n = j; j = 1, 2, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = j − 1; j = 2, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = S; j = 1

γ, m = i; i = 0, 1, 2, . . .

n = j +Q; j = 1, 2, . . . , s

−(λ+ γ + α), m = i; i = 0

n = j; j = 1, 2, . . . , s

−λ, m = i; i = 0

n = j; j = s+ 1, . . . , S

−(λ+ γ + µ+ α), m = i; i = 1, 2, 3, . . .

n = j; j = 1, 2, . . . , s

−(λ+ µ), m = i; i = 1, 2, 3, . . .

n = j; j = s+ 1, . . . , S

0, otherwise.

Ã can be written in terms of sub matrices as follows:

Ã =


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where A0 = λIS. A1 is
−(λ+ γ + α+ µ)Is−1 0(s−1)×1 O(s−1)×(S−2s) γIs−1 αē(s−1)×1

01×(s−1) −(λ+ γ + α+ µ)I1 01×(S−2s) 01×(s−1) (γ + α)I1

O(S−2s)×(s−1) 0(S−2s)×1 −(λ+ µ)IS−2s O(S−2s)×(s−1) 0(S−2s)×1

O(s−1)×(s−1) 0(s−1)×1 O(s−1)×(S−2s) −(λ+ µ)Is−1 0(s−1)×1

01×(s−1) 01×1 01×(S−2s) 01×(s−1) −(λ+ µ)I1

,
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A2 =

[
01×(S−1) µI1

µIS−1 0(S−1)×1

]
and

B1 =


−(λ+ γ + α)Is−1 0(s−1)×1 O(s−1)×(S−2s) γIs−1 αē(s−1)×1

01×(s−1) −(λ+ γ + α)I1 01×(S−2s) 01×(s−1) (γ + α)I1

O(S−2s)×(s−1) 0(S−2s)×1 −λIS−2s O(S−2s)×(s−1) 0(S−2s)×1

O(s−1)×(s−1) 0(s−1)×1 O(s−1)×(S−2s) −λIs−1 0(s−1)×1

01×(s−1) 01×1 01×(S−2s) 01×(s−1) −λI1


A0, A1, A2 and B1 are square matrices of order S.

3.2.1.2 Steady-State Analysis

Let A = A0 +A1 +A2 be the generator matrix of a MC on the finite state

space {1, . . . , S} and is obtained as



-(γ + α + µ) γ α + µ

µ -(γ + α + µ) α

µ
. . . . . .

...
. . . γ α

-(γ + α + µ) γ + α

µ -µ

. . . . . .

µ -µ


A is a square matrix of order S.

First we investigate the stationary distribution of A. This will help us in

analyzing the stability of the larger system, namely the CTMC {(X(t), I(t)), t ≥
0} as t→∞.

Theorem 3.2.1. The steady-state probability distribution Φ = (φ1, φ2, . . . , φS)

corresponding to the matrix A is given by

φj = qjφ1, j = 1, 2, . . . , S (3.1)
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where

qj =



(
µ+γ+α

µ

)j−1
, j = 1, 2, . . . , s+ 1(

µ+γ+α
µ

)s
, j = s+ 2, . . . , S − s+ 1(

µ+γ+α
µ

)s
− γ

γ+α

((
µ+γ+α

µ

)j−Q−1
− 1

)
,

j = S − s+ 2, S − s+ 3, . . . , S

and φ1 can be obtained by solving the equation Φē = 1, as

φ1 =
µ(B − 1)2

(µ(B − 1)2Q+ α)Bs + sγ(B − 1)− α
(3.2)

where B = µ+γ+α
µ

.

Proof. We have ΦA = 0 and Φē = 1.

ΦA = 0 ⇒
For l = 1, 2, . . . , s,

−φl(µ+ γ + α) + φl+1µ = 0 (3.3)

For l = s+ 1, . . . , S − s, we have

−φlµ+ φl+1µ = 0. (3.4)

Next for l = S − s+ 1, . . . , S − 1, we have

φl−Qγ − φlµ+ φl+1µ = 0. (3.5)

Also,

φ1(α + µ) + (φ2 + φ3 + · · ·+ φs−1)α + φs(γ + α)− φSµ = 0. (3.6)

Equation (3.3) gives

φj =

(
µ+ γ + α

µ

)j−1
φ1 (3.7)

for j = 2, 3, . . . , s+ 1. From (3.4), we have

φj =

(
µ+ γ + α

µ

)s
φ1 (3.8)
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for j = s+ 2, s+ 3, . . . , S − s+ 1.

Now pass on to (3.5) to get

φS−s+x =

[(
µ+ γ + α

µ

)s
− γ

γ + α

((
µ+ γ + α

µ

)x−1
− 1

)]
φ1,

where x = 2, 3, 4, . . . , s.

The above equation can be rewritten as

φj =

[(
µ+ γ + α

µ

)s
− γ

γ + α

((
µ+ γ + α

µ

)j−Q−1
− 1

)]
φ1 (3.9)

where j = S − s+ 2, S − s+ 3, . . . , S.

From equations (3.7), (3.8) and (3.9), we get the relation (3.1).

Now to get φ1, consider the normalizing condition Φē = 1. That is,

φ1

[
1 +

s+1∑
j=2

Bj−1 +
S−s+1∑
j=s+2

Bs +
S∑

j=S−s+2

(Bs − γ

γ + α
(Bj−Q−1 − 1))

]
= 1

(3.10)

where B = µ+γ+α
µ

.

s+1∑
j=2

Bj−1 =
B(Bs − 1)

B − 1
. (3.11)

S−s+1∑
j=s+2

Bs = Bs(S − 2s). (3.12)

S∑
j=S−s+2

(
Bs − γ

γ + α
(Bj−Q−1 − 1)

)
= (s− 1)(Bs +

γ

γ + α
)− (

γ

γ + α
)B

(Bs−1 − 1)

B − 1
. (3.13)

Using equations (3.11), (3.12) and (3.13), we get equation (3.10) as

φ1

[
1 +

B(Bs − 1)

B − 1
+Bs(S − 2s)

+(s− 1)

(
Bs +

γ

γ + α

)
− (

γ

γ + α
)B

(Bs−1 − 1)

B − 1

]
= 1.
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φ1

(B − 1)(γ + α)
[(γ + α)(Bs+1 − 1 + (Bs+1 −Bs)(S − s− 1))

− γ(Bs −B − (B − 1)(s− 1))] = 1.

φ1

(B − 1)(γ + α)
[Bs+1(γ + α)Q−Bs((γ + α)Q− α + sγ(B − 1)− α] = 1.

This gives

φ1 =
µ(B − 1)2

Bs(µ(B − 1)2Q+ α) + sγ(B − 1)− α
.

Hence the theorem.

3.2.1.3 Stability Condition

The result in Theorem 3.2.1 enables us to compute the stability of the

CTMC {(X(t), I(t)), t ≥ 0}.

Theorem 3.2.2. The process {(X(t), I(t)), t ≥ 0} is stable iff λ < µ.

Proof. For an LIQBD process it is well known that

ΦA0ē < ΦA2ē (3.14)

(Neuts [40]), where Φ is the steady-state distribution of the generator ma-

trix A = A0 + A1 + A2.

It can be shown that

ΦA0ē = (φ1φ2 . . . φS)λIS


1

1
...

1


S×1

= (λ(φ1 + φ2 + · · ·+ φS)) = λ.

ΦA2ē = (φ1φ2 . . . φS)

[
01×(S−1) µI1

µIS−1 0(S−1)×1

]
1

1
...

1


S×1

= (µ(φ1 + φ2 + · · ·+ φS)) = µ.

Using equation (3.14), we get λ < µ.
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Having obtained the condition for the system to stabilize, we turn to

compute the long-run probability distribution of the system states. Infact

we show that the joint distribution of the system state can be written as

the product of the marginal distributions of the components.

3.2.2 The Steady-State Probability Distribution of Ã

3.2.2.1 Stationary Distribution when Service Time is Negligible

Let Q̃ be the generator matrix associated with the Markovian chain of the

inventory process under consideration when service time is negligible, and

∆ = (r1, r2, . . . , rS) be the stationary probability vector corresponding to

Q̃. We get Q̃ as



-(γ + α + λ) γ α + λ

λ -(γ + α + λ) α

λ
. . . . . .

...
. . . γ α

-(γ + α + λ) γ + α

λ -λ

. . . . . .

λ -λ


Theorem 3.2.3. The steady-state probability distribution ∆ = (r1, r2, . . . , rS)

corresponding to the matrix Q̃ is given by

rj = q̃jr1, j = 1, 2, . . . , S (3.15)

where

q̃j =


(
λ+γ+α

λ

)j−1
, j = 1, 2, . . . , s+ 1(

λ+γ+α
λ

)s
, j = s+ 2, . . . , S − s+ 1(

λ+γ+α
λ

)s − γ
γ+α

((
λ+γ+α

λ

)j−Q−1 − 1
)
, j = S − s+ 2, . . . , S
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and r1 can be obtained by solving the equation ∆ē = 1, as

r1 =
λF 2

(λF 2Q+ α)M s + sγF − α
(3.16)

where F = M − 1 and M = λ+γ+α
λ

.

Proof. We have ∆Q̃ = 0 and ∆ē = 1.

∆Q̃ = 0 ⇒
−rl(λ+ γ + α) + rl+1λ = 0 (3.17)

for l = 1, 2, . . . , s;

−rlλ+ rl+1λ = 0 (3.18)

for l = s+ 1, . . . , S − s and

rl−Qγ − rlλ+ rl+1λ = 0 (3.19)

where l = S − s+ 1, . . . , S − 1.

Finally we have

r1(α + λ) + (r2 + r3 + · · ·+ rs−1)α + rs(γ + α)− rSλ = 0. (3.20)

Consider the equation (3.17).

We have

rj =

(
λ+ γ + α

λ

)j−1
r1 (3.21)

for j = 2, 3, . . . , s+ 1.

Consider the equation (3.18). From this we have

rj =

(
λ+ γ + α

λ

)s
r1 (3.22)

for j = s+ 2, s+ 3, . . . , S − s+ 1.

Next with equation (3.19) we have

rS−s+x =

[(
λ+ γ + α

λ

)s
− γ

γ + α

((
λ+ γ + α

λ

)x−1
− 1

)]
r1
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for x = 2, 3, . . . , s. The above equation can be rewritten as

rj =

[(
λ+ γ + α

λ

)s
− γ

γ + α

((
λ+ γ + α

λ

)j−Q−1
− 1

)]
r1 (3.23)

where j = S − s+ 2, S − s+ 3, . . . , S.

Hence from equations (3.21), (3.22) and (3.23) we get equation (3.15).

Now to get r1, consider the normalizing condition ∆ē = 1. We have

r1

[
1 +

s+1∑
j=2

M j−1 +
S−s+1∑
j=s+2

M s +
S∑

j=S−s+2

(
M s − γ

γ + α
(M j−Q−1 − 1)

)]
= 1

(3.24)

where M = λ+γ+α
λ

.

s+1∑
j=2

M j−1 =
M(M s − 1)

M − 1
. (3.25)

S−s+1∑
j=s+2

M s = M s(S − 2s). (3.26)

S∑
S−s+2

(M s − γ

γ + α
(M j−Q−1 − 1))

= (s− 1)(M s +
γ

γ + α
)−

(
γ

γ + α

)
M(M s−1 − 1)

M − 1
. (3.27)

Using equations (3.25), (3.26) and (3.27), we get equation (3.24) as

r1

[
1 +M

(M s − 1)

M − 1
+M s(S − 2s) + (s− 1)

(
M s +

γ

γ + α

)

− γ

γ + α

M(M s−1 − 1)

M − 1

]
= 1.

r1
(M − 1)(γ + α)

[(γ + α)(M s+1 − 1 + (M s+1 −M s)(S − s− 1))

− γ(M s −M − (M − 1)(s− 1))] = 1.
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r1
(M − 1)(γ + α)

[M s+1(γ + α)Q−M s((γ + α)Q− α) + sγ(M − 1)− α] = 1.

r1 =
(M − 1)(γ + α)

M s((γ + α)Q(M − 1) + α) + sγ(M − 1)− α

=
λ(M − 1)2

M s(λ(M − 1)2Q+ α) + sγ(M − 1)− α
.

Hence the theorem.

3.2.2.2 Stochastic Decomposition of System State

Let π̄ be the steady-state probability vector of Ã.

π̄ = (π(0),π(1),π(2), . . . )

where π(i) = (π(i,1), π(i,2), . . . , π(i,S)), where i = 0, 1, 2, . . . and

π(i,j) = lim
t→∞

P (X(t) = i, I(t) = j), (i, j) ∈ E.

π(i,j) is the steady-state probability for the state (i, j).

We claim that

π(i) = Kρi∆, i ≥ 0 (3.28)

where ∆ = (r1, r2, . . . rS) is the steady-state probability vector when the

service time is negligible, K is a constant to be determined and ρ = λ
µ
.

Proof. We have π̄Ã = 0 and π̄ē = 1.

π̄Ã = 0⇒ (π(0),π(1),π(2), . . . )


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 = 0

which gives

π(0)B1 + π(1)A2 = 0 (3.29)

and π(i+2)A2 + π(i+1)A1 + π(i)A0 = 0, (3.30)
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i = 0, 1, . . . .

When (3.28) is true, we get from (3.29),

Kρ0∆B1 +Kρ∆A2 = 0.

That is K∆(B1 + ρA2) = 0.

That is ∆Q̃ = 0.

which is true since ∆ = (r1, r2, . . . , rS) is the steady-state probability vector

corresponding to the generator Q̃ associated with the Markovian chain of

the inventory process under consideration when service time is negligible.

When (3.28) is true, we get from (3.30),

Kρi+2∆A2 +Kρi+1∆A1 +Kρi∆A0 = 0, i = 0, 1, 2, . . .

That is ∆(ρA2 + A1 +
1

ρ
A0) = 0.

That is ∆Q̃ = 0,

which is true, by following the same argument given above.

Hence, the stochastic decomposition of system states is verified.

3.2.2.3 Determination of K

We have

∞∑
i=0

S∑
j=1

π(i,j) = 1.

K

(
∞∑
i=0

ρi

)(
S∑
j=1

rj

)
= 1.

That is, K
∞∑
i=0

ρi = 1.

Therefore, K = 1− ρ.

3.2.2.4 Explicit Solution

From the above discussions, we can write the steady-state probability vector

explicitly as in the following theorem:
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Theorem 3.2.4. The steady-state probability vector π̄ of Ã partitioned as

π̄ = (π(0),π(1), . . . ) where each π(i), i = 0, 1, 2, . . . again partitioned as

π(i) = (π(i,1), π(i,2), . . . , π(i,S), ) are obtained by

π(i,j) = (1− ρ)ρirj (3.31)

where ρ = λ
µ

and rj, j = 1, 2, . . . , S, represent the inventory level probabili-

ties when service time is negligible and are given as

rj =


(
λ+γ+α

λ

)j−1
r1, j = 2, 3, . . . , s+ 1(

λ+γ+α
λ

)s
r1, j = s+ 2, . . . , S − s+ 1(

λ+γ+α
λ

)s − γ
γ+α

[(
λ+γ+α

λ

)j−Q−1 − 1
]
r1, i = S − s+ 2, . . . , S

and

r1 =
λF 2

(λF 2Q+ α)M s + sγF − α

where F = M − 1 and M = λ+γ+α
λ

.

The result indicated by (3.31) not only tells us that the original system

possess stochastic decomposition but also the important fact that the sys-

tem state distribution is the product of the distribution of its marginals:

one component is the distribution of the classical M/M/1 queue whose long

run distribution for i customers in the system is (1 − ρ)ρi, i ≥ 0, and the

other factor is the probability of j items in the inventory. Next we turn to

find out how the system performs. The measures given in the following are

pointers to the system performance.

3.2.3 System Performance Measures

(a) Expected inventory held in the system (Mean inventory level),

E(I) =
∞∑
i=0

S∑
j=1

jπ(i,j)

=
( ∞∑
i=0

(1− ρ)ρi
)( S∑

j=1

jrj

)
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=
S∑
j=1

jrj

= r1

(
1 +

s+1∑
j=2

jM j−1 +
S−s+1∑
j=s+2

jM s

+
S∑

j=S−s+2

j(M s − γ

γ + α
(M j−Q−1 − 1))

)
. (3.32)

s+1∑
j=2

jM j−1 = 2M + 3M2 + 4M3 + · · ·+ (s+ 1)M s.

Let SM = 2M + 3M2 + 4M3 + · · ·+ (s+ 1)M s.

(1−M)SM = 2M +
M2(M s−1 − 1)

M − 1
− (s+ 1)M s+1

=
M2 − 2M − (s+ 1)M s+2 +M s+1(s+ 2)

M − 1
.

Therefore, SM =
M2 − 2M − (s+ 1)M s+2 +M s+1(s+ 2)

(M − 1)(1−M)
.

Therefore,

s+1∑
j=2

jM j−1 =
2M −M2 −M s+1(s+ 2) +M s+2(s+ 1)

(M − 1)2
. (3.33)

S−s+1∑
j=s+2

jM s = M s[(s+ 2) + (s+ 3) + · · ·+ (S − s+ 1)]

= M s

(
S − 2s

2

)
(s+ 3). (3.34)

S∑
j=S−s+2

j(M s − γ

γ + α
(M j−Q−1 − 1))

= M s

S∑
j=S−s+2

j − γ

γ + α

S∑
j=S−s+2

jM j−Q−1 +
γ

γ + α

S∑
j=S−s+2

j. (3.35)
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S∑
j=S−s+2

j =
(s− 1)

2
(2S − s+ 2). (3.36)

S∑
j=S−s+2

jM j−Q−1 = (S − s+ 2)M + (S − s+ 3)M2 + (S − s+ 4)M3

+ · · ·+ (S − s+ s)M s−1. (3.37)

Let ŜM = (S − s+ 2)M + (S − s+ 3)M2 + (S − s+ 4)M3 + . . .

+(S − s+ s)M s−1.

(1−M)ŜM = (S − s+ 2)M +M2

(
M s−2 − 1

M − 1

)
− SM s

=
−SM s+1 + (1 + s)M s +M2(S − s+ 1)−M(S − s+ 2)

M − 1
.

ŜM =
SM s+1 − (s+ 1)M s −M2(Q+ 1) +M(Q+ 2)

(M − 1)2
.

Therefore, equation (3.37) becomes

S∑
j=S−s+2

jM j−Q−1 =
SM s+1 − (S + 1)M s −M2(Q+ 1) +M(Q+ 2)

(M − 1)2
.

(3.38)

Hence using (3.36) and (3.38), we get (3.35) as

S∑
j=S−s+2

j(M s − γ

γ + α
(M j−Q−1 − 1))

=
(s− 1)

2
(2S − s+ 2)

(
M s +

γ

γ + α

)
− γ

γ + α

(
SM s+1 − (S + 1)M s −M2(Q+ 1) +M(Q+ 2)

(M − 1)2

)
.

(3.39)



80 CHAPTER 3. (s,Q) INVENTORY SYSTEMS WITH · · ·

Now, using (3.33), (3.34) and (3.39), we get (3.32) as

E(I) = r1

[
1 +

2M −M2 −M s+1(s+ 2) +M s+2(s+ 1)

(M − 1)2

+M s

(
S − 2s

2

)
(S + 3) +

(s− 1)

2
(2S − s+ 2)

(
M s +

γ

γ + α

)
− γ

γ + α

(
SM s+1 − (S + 1)M s −M2(Q+ 1) +M(Q+ 2)

(M − 1)2

)]
= r1(1 + R̂ + P̂ + Q̂). (3.40)

where

R̂ =
(2M −M2 −M s+1(s+ 2) + (s+ 1)M s+2)

(M − 1)2

− γ(M(Q+ 2)−M2(Q+ 1)− (S + 1)M s + SM s+1)

(γ + α)(M − 1)2
,

P̂ = M s
[(

S−2s
2

)
(S + 3) +

(
s−1
2

)
(2S − s+ 2)

]
and Q̂ =

γ

γ + α

(
s− 1

2

)
(2S − s+ 2). (3.41)

On simplification, we get

P̂ =
M s

2
[S(S + 1)− s(s+ 3)− 2] (3.42)

and

R̂ = {M [2α− γQ]−M2[α− γQ] + γ(S + 1)M s

−M s+1[(s+ 2)(γ + α) + γS] +M s+2(s+ 1)(γ + α)}

× 1

(γ + α)(M − 1)2
. (3.43)

Hence using equations (3.41), (3.42) and (3.43) we get equation (3.40)

as

E(I) = r1

[
1 +

M(2α− γQ)

(γ + α)(M − 1)2
− M2(α− γQ)

(γ + α)(M − 1)2
+

γ(S + 1)M s

(γ + α)(M − 1)2

−M s+1 ((s+ 2)(γ + α) + γS)

(γ + α)(M − 1)2
+
M s+2(s+ 1)

(M − 1)2

+
M s

2
(S(S + 1)− s(s+ 3)− 2) +

γ

γ + α
(
s− 1

2
)(2S − s+ 2)

]
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=
1

V
[λF 2 +

M

F
(2α− γQ)− M2

F
(α− γQ)

+M s(
1

2
(S(S + 1)− s(s+ 3)− 2)λF 2 +

γ

F
(S + 1))

−M s+1((s+ 2)λ+
γS

F
) +M s+2(s+ 1)λ+ γF (s− 1)(S − s

2
+ 1)]

(3.44)

where V = (λF 2Q+ α)M s + γsF − α,

F = M − 1 and M =
λ+ γ + α

λ
.

(b) Mean waiting time of customers in the system,

WS =
L

λ

where L = Expected number of customers in the system

=
∞∑
i=0

S∑
j=1

iπ(i,j)

=

(
∞∑
i=0

i(1− ρ)ρi

)(
S∑
j=1

rj

)
=

ρ

1− ρ
.

Therefore Ws =
L

λ

=
1

µ− λ
. (3.45)

(c) Mean reorder rate,

Rr = µ

∞∑
i=1

π(i,s+1)

= µ
∞∑
i=1

(1− ρ)ρirs+1

= λrs+1

=
λ2M sF 2

V
. (3.46)
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(d) Mean local purchase rate (Mean order cancellation rate), RLP

Let RLP1 = Local purchase rate due to T -realization and RLP2 = Local

purchase rate resulting from zero inventory level.

RLP1 = α
∞∑
i=0

s∑
j=1

π(i,j)

= α(1− ρ)

(
∞∑
i=0

ρi

)(
s∑
j=1

rj

)
. (3.47)

∞∑
i=0

ρi = (1− ρ)−1. (3.48)

s∑
j=1

rj =
s∑
j=1

M j−1r1

=
(M s − 1)

M − 1
r1. (3.49)

Using equations (3.48) and (3.49) we get the equation (3.47) as

RLP1 = α(1− ρ)× 1

(1− ρ)

(M s − 1)

(M − 1)
r1

= α(M s − 1)
λF

V
. (3.50)

RLP2 = µ

∞∑
i=1

π(i,1)

= µ

∞∑
i=1

(1− ρ)ρir1

=
λ2F 2

V
. (3.51)

RLP = RLP1 +RLP2

= (λF + α(M s − 1))
λF

V
,

by using (3.50) and (3.51)

(e) Expected (average) number of items locally purchased on T -realization,
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NLP =

Q+s∑
x=Q

xP (x)

where P (x) is the probability that x units are locally purchased.

NLP = Q
s∑
j=1

φj +
s−1∑
j=0

jφs−j. (3.52)

s∑
j=1

φj =
(Bs − 1)

B − 1
φ1. (3.53)

s−1∑
j=0

jφs−j = BsS 1
B
φ1.

where S 1
B

=
( 1

B

)2
+ 2
( 1

B

)3
+ · · ·+ (s− 1)

( 1

B

)s
.

(
1− 1

B

)
S 1

B
=
( 1

B

)2(1−
(

1
B

)s−2)
1−

(
1
B

) − (s− 1)
( 1

B

)s+1

.

S 1
B

=

(
1
B

)2
−
(

1
B

)s
− (s− 1)

(
1
B

)s+1

+ (s− 1)
(

1
B

)s+2

(1− 1
B

)2
.

s−1∑
j=0

jφs−j =
(Bs −B2 − (s− 1)(B − 1))φ1

(B − 1)2
(3.54)

where

φ1 =
µ(B − 1)2

(µ(B − 1)2Q+ α)Bs + γs(B − 1)− α
.

Using (3.53) and (3.54) in (3.52) we get

NLP = (Q(Bs − 1)(B − 1) +Bs −B2 − (s− 1)(B − 1))
µ

W
(3.55)

where W = (µ(B − 1)2Q+ α)Bs + γs(B − 1)− α.

3.2.4 Cost Analysis

Now we introduce a cost function. Let the various costs involved in the

model be as given below:

CH : Inventory holding cost per unit item per unit time
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CS : Set up cost per unit order, under natural purchase

CW : Waiting time cost per customer per unit time

CLP : Local purchase cost per unit order

CNP : Natural purchase cost per unit order

CC : Cancellation cost per unit order cancelled.

The total expected cost per unit time,

TEC = CHE(I) + (CS + CNPQ)Rr + CCRLP + CWWS

+ CLP(RLP1NLP +RLP2S).

RLP1NLP +RLP2S =
[
λS +

α(M s − 1)

F
(Q(Bs − 1)(B − 1)

+Bs −B2 − (s− 1)(B − 1))
µ

W

]λF 2

V

where V = (λF 2Q+ α)M s + γsF − α.

TEC =
CH
V

[λF 2 +
M

F
(2α− γQ)

− M2

F
(α− γQ) +M s(

1

2
(S(S + 1)− s(s+ 3)− 2)λF 2 +

γ

F
(S + 1))

−M s+1
(

(s+ 2)λ+
γS

F

)
+M s+2(s+ 1)λ+ γF (s− 1)(S − s

2
+ 1)]

+ (CS + CNPQ)
λ2M sF 2

V
+

CW
µ− λ

+ CC
λF

V
(λF + α(M s − 1))

+ CLP[λS +
α

F
(M s − 1)(Q(Bs − 1)(B − 1)

+Bs −B2 − (s− 1)(B − 1))
µ

W
]
λF 2

V
.

3.2.4.1 Numerical Analysis

To verify the convexity of the above cost function, the derivative with re-

spect to α may be computed, then equate it to zero. Nevertheless, solving

it is a laborious task. Since analysis of TEC as a function of α is quite

complex, we give a few numerical illustrations.
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Case 1: Analysis of TEC as a function of α.

Input data: S = 21, s = 9, λ = 23, µ = 25, γ = 16, CNP = 30, CLP = 35,

CH = 0.5, CS = 1000, CC = 16, CW = 1250.

Table 3.1: Effect of α on TEC

α TEC
7 3206.7
8 3205.5
9 3204.7
10 3204.1
11 3203.8
12 3203.7
13 3203.8
14 3204.0
15 3204.3
16 3204.6
17 3205.1

Table 3.1 shows that as α varies from 7 to 17, TEC values decrease,

reach a minimum at α = 12, and then increase. Hence convexity of TEC

as a function of α is verified numerically.

Case 2: Analysis of TEC during simultaneous variation of (s, S, α).

Input data: λ = 23, µ = 25, γ = 16, CNP = 30, CLP = 35, CH = 0.5,

CS = 1000, CC = 16, CW = 1250.

Table 3.2 shows that as values of (s, S, α) increases simultaneously, the

TEC values decrease, reach a minimum at the values (11,23,10) of (s, S, α)

Table 3.2: Effect of simultaneous variation of (s, S, α) on TEC

(s, S, α) TEC
(8,20,7) 3206.6
(9,21,8) 3205.5
(10,22,9) 3205.0
(11,23,10) 3204.9
(12,24,11) 3205.1
(13,25,12) 3205.5
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and then increase. Hence convexity of TEC, as (s, S, α) varies simultane-

ously, has been verified numerically.

3.3 Model II: Perishable Items

3.3.1 Model Formulation and Analysis

Let X(t) = Number of customers in the system at time t and

I(t) = Inventory level at time t.

{(X(t), I(t)), t ≥ 0} is a CTMC with state space E = E1 × E2 where

E1 = {0, 1, 2, . . . } and E2 = {1, 2, . . . , S}.

E = {(i, j)|i ∈ E1, j ∈ E2}.

3.3.1.1 Infinitesimal Generator Ã

We write the infinitesimal generator Ã of the process as Ã = (a((i, j), (m,n)))

where (i, j), (m,n) ∈ E.

a((i, j), (m,n)) =



λ, m = i+ 1; i = 0, 1, 2, . . .

n = j; j = 1, 2, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = j − 1; j = 2, 3, . . . , S

µ, m = i− 1; i = 1, 2, 3, . . .

n = S; j = 1,

γ, m = i; i = 0, 1, 2, . . .

n = j +Q; j = 1, 2, . . . , s

α, m = i; i = 0, 1, 2, . . .

n = S; j = 1, 2, . . . , s
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and

a((i, j), (m,n)) =



jβ, m = i; i = 0, 1, 2, . . .

n = j − 1; j = 2, 3, . . . , S

β, m = i; i = 0, 1, 2, . . .

n = S; j = 1

−(λ+ jβ + γ + α), m = i; i = 0

n = j; j = 1, 2, . . . , s

−(λ+ jβ), m = i; i = 0

n = j; j = s+ 1, . . . , S

−(λ+ µ+ γ + α + jβ), m = i; i = 1, 2, . . .

n = j; j = 1, 2, . . . , s

−(λ+ µ+ jβ), m = i; i = 1, 2, . . .

n = j; j = s+ 1, . . . , S

0, otherwise.

We can write Ã interms of submatrices as follows:

Ã =


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where A0 = λIS and

A1 =



−h1 γ α+ β

2β −h2 α

3β

. . .
. . .

...

−hs−1 α

sβ −hs γ + α

(s+ 1)β −hs+1

(s+ 2)β

. . .
. . .

−hS−1

Sβ −hS


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where

hi =

λ+ µ+ γ + α + iβ, i = 1, 2, . . . , s

λ+ µ+ iβ, i = s+ 1, . . . , S.

Also

A2 =

[
01×(S−1) µI1

µIS−1 0(S−1)×1

]
and

B1 =



−g1 γ α+ β

2β −g2 α

3β

. . .
. . .

...

−gs−1 α

sβ −gs γ + α

(s+ 1)β −gs+1

(s+ 2)β

. . .
. . .

−gS−1

Sβ −gS


where

gi =

λ+ γ + α + iβ, i = 1, 2, . . . , s

λ+ iβ, i = s+ 1, . . . , S.

A0, A1, A2 and B1 are square matrices of order S.

3.3.1.2 Steady-State Analysis

Let A = A0 + A1 + A2 be the generator matrix and is given in page 89.

A is a square matrix of order S.

First we investigate the stationary distribution of A. This will help in an-

alyzing the stability of the larger system, namely the CTMC {(X(t), I(t)), t ≥
0} as t→∞.

Theorem 3.3.1. The steady-state probability distribution

Φ = (φ1, φ2, . . . , φS)
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A
=

                         λ
-h

1
γ

α
+
β

+
µ

µ
+

2
β

λ
-h

2
α

µ
+

3
β

λ
-h

3
. .

.
α

. .
.

. . .
λ

-h
s
-1

γ
α

µ
+
sβ

λ
-h

s
γ

+
α

µ
+

(s
+

1
)β

λ
-h

s
+
1

. .
.

λ
-h

S
-s

µ
+

(S
-s

+
1
)β

λ
-h

S
-s
+
1

. .
.

λ
-h

S
-1

µ
+
S
β

λ
-h

S

                         
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corresponding to the matrix A is given by

φj = qjφ1, j = 1, 2, . . . , S (3.56)

where

qj =



1, j = 1

η∗(1,j−1)
ψ∗(2,j)

, j = 2, 3, . . . , s+ 1

1
µ+jβ

η∗(1,s)
ψ∗(2,s)

, j = s+ 2, . . . , Q+ 1

1
µ+jβ

[
η∗(1,s)
ψ∗(2,s)

− γ
]
, j = Q+ 2

1
µ+jβ

[
η∗(1,s)
ψ∗(2,s)

− γ − γ
∑j−Q−2

k1=1
η∗(1,k1)

ψ∗(2,k1+1)

]
,

j = Q+ 3, . . . , S.

where

η∗(j1, j2) =

j2∏
k̃=j1

(k̃β + µ+ γ + α)

and

ψ∗(j1, j2) =

j2∏
k̃=j1

(k̃β + µ).

φ1 can be obtained by solving the equation Φē = 1 as

φ1 =

[
1 +

s+1∑
j=2

η∗(1, j − 1)

ψ∗(2, j)
+
η∗(1, s)

ψ∗(2, s)

Q+1∑
j=s+2

1

µ+ jβ

+
1

µ+ (Q+ 2)β

[
η∗(1, s)

ψ∗(2, s)
− γ
]

+
S∑

j=Q+3

1

µ+ jβ

[
η∗(1, s)

ψ∗(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗(1, k1)

ψ∗(2, k1 + 1)

]]−1
.

Proof. We have ΦA = 0 and Φē = 1 for l = 1, 2, . . . , s.

ΦA = 0⇒
For l = 1, 2, . . . , s,

φl(λ− hl) + φl+1(µ+ (l + 1)β) = 0. (3.57)

For l = s+ 1, . . . , S − s,

φl(λ− hl) + φl+1(µ+ (l + 1)β) = 0. (3.58)
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For l = 1, 2, . . . , s− 1,

φlγ + φQ+l(λ− hQ+l) + φQ+l+1(µ+ (Q+ l + 1)β) = 0. (3.59)

Finally we have

φ1(α+β+µ)+(φ2 +φ3 + · · ·+φs−1)α+φs(α+γ)+φS(λ−hS) = 0. (3.60)

Equation (3.57) gives for l = 1, 2, . . . , s,

φl+1 = − (λ− hl)
µ+ (l + 1)β

φl,

=

(
µ+ γ + α + lβ

µ+ (l + 1)β

)
φl

from which we get

φj =
η∗(1, j − 1)

ψ∗(2, j)
φ1 (3.61)

for j = 2, 3, . . . , s+ 1.

Equation (3.58) gives

φl+1 =
(hl − λ)φl
µ+ (l + 1)β

=

(
µ+ lβ

µ+ (l + 1)β

)
φl (3.62)

for l = s+ 1, . . . , S − s, from which we get

φj =

(
1

µ+ jβ

)
η∗(1, s)

ψ∗(2, s)
φ1 (3.63)

for j = s+ 2, . . . , Q+ 1.

Equation (3.59) gives for l = 1, 2, . . . , s− 1,

φQ+l+1 =
φQ+l(hQ+l − λ)− φlγ
µ+ (Q+ l + 1)β

(3.64)

from which we get

φQ+2 =
(hQ+1 − λ)φQ+1 − γφ1

µ+ (Q+ 2)β

=

(
1

µ+ (Q+ 2)β

)(
η∗(1, s)

ψ∗(2, s)
− γ
)
φ1 (3.65)
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and, for j = Q+ 3, . . . , S,

φj =

(
1

µ+ jβ

)[
η∗(1, s)

ψ∗(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗(1, k1)

ψ∗(2, k1 + 1)

]
φ1. (3.66)

Hence from equations (3.61), (3.63) (3.65) and (3.66), we get (3.56).

Next, to find φ1. Consider the normalizing equation Φē = 1

That is

{
1 +

s+1∑
j=2

η∗(1, j − 1)

ψ∗(2, j)
+

Q+1∑
j=s+2

( 1

µ+ jβ

) η∗(1, s)
ψ∗(2, s)

+
( 1

µ+ (Q+ 2)β

)( η∗(1, s)
ψ∗(2, s)

− γ
)

+
S∑

j=Q+3

( 1

µ+ jβ

)[ η∗(1, s)
ψ∗(2, s)

− γ − γ
j−Q−2∑
k1=1

η∗(1, k1)

ψ∗(2, k1 + 1)

]}
φ1 = 1.

Hence

φ1 =

[
1 +

s+1∑
j=2

η∗(1, j − 1)

ψ∗(2, j)
+
η∗(1, s)

ψ∗(2, s)

Q+1∑
j=s+2

1

µ+ jβ

+
1

µ+ (Q+ 2)β

[
η∗(1, s)

ψ∗(2, s)
− γ
]

+
S∑

j=Q+3

1

µ+ jβ

[
η∗(1, s)

ψ∗(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗(1, k1)

ψ∗(2, k1 + 1)

]]−1
where

η∗(j1, j2) =

j2∏
k̃=j1

(k̃β + µ+ γ + α)

and

ψ∗(j1, j2) =

j2∏
k̃=j1

(k̃β + µ).

Hence the theorem.

3.3.1.3 Stability Condition

The result in Theorem 3.3.1 enables us to compute the stability of the

CTMC

{(X(t), I(t)), t ≥ 0}.
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Theorem 3.3.2. The process {(X(t), I(t)), t ≥ 0} is stable iff λ < µ.

Proof. Since the process under consideration is an LIQBD, it is stable iff

ΦA0ē < ΦA2ē (3.67)

(Neuts [40]), where Φ is the steady-state distribution of the generator ma-

trix A = A0 + A1 + A2 and ē is a column vector of 1’s of appropriate

order.

It can be shown that

ΦA0ē = (φ1φ2 . . . φS)λIS


1

1
...

1


S×1

= λ.

ΦA2ē = (φ1φ2 . . . φS)

[
01×(S−1) µI1

µIS−1 0(S−1)×1

]
1

1
...

1


S×1

= µ.

Using equation (3.67), we get λ < µ.

It may be noted that decay of items and positive lead time do not have

a bearing on the stability condition, despite the strong correlation between

the number of customers joining during a lead time and the decay time.

This could be attributed to the local purchase which keeps the inventory

level always positive.

Having obtained the condition for the system to stabilize, we turn to

compute the long-run probability distribution of the system states. Infact

we show that the joint distribution of the system state can be written as

the product of the marginal distributions of the components.

3.3.2 The Steady-State Probability Distribution of Ã

3.3.2.1 Stationary Distribution when Service Time is Negligible

Let Q̃ be the generator matrix associated with the Markovian chain of the

inventory process under consideration when service time is negligible, and
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∆ = (r1, r2, . . . , rS) be the stationary probability vector corresponding to

Q̃. We get Q̃ as in page 95.

The elements hi in Q̃ are given as

hi =

λ+ µ+ γ + α + iβ, i = 1, 2, . . . , s

λ+ µ+ iβ, i = s+ 1, . . . , S.

Theorem 3.3.3. The steady-state probability distribution ∆ = (r1, r2, . . . , rS)

corresponding to the matrix Q̃ is given by

rj = q̃jr1 (3.68)

where j = 1, 2, . . . , S and

q̃j =



1, j = 1

η∗1(1,j−1)
ψ∗
1(2,j)

, j = 2, 3, . . . , s+ 1

1
λ+jβ

η∗1(1,s)

ψ∗
1(2,s)

, j = s+ 2, . . . , Q+ 1

1
λ+jβ

[
η∗1(1,s)

ψ∗
1(2,s)

− γ
]
, j = Q+ 2

1
λ+jβ

[
η∗1(1,s)

ψ∗
1(2,s)

− γ − γ
∑j−Q−2

k1=1
η∗1(1,k1)

ψ∗
1(2,k1+1)

]
,

j = Q+ 3, . . . , S

where

η∗1(j1, j2) =

j2∏
k̃=j1

(k̃β + λ+ γ + α)

and

ψ∗1(j1, j2) =

j2∏
k̃=j1

(k̃β + λ)

r1 is obtained by solving the equation ∆ē = 1 as

r1 =

[
1 +

s+1∑
j=2

η∗1(1, j − 1)

ψ∗1(2, j)
+
η∗1(1, s)

ψ∗1(2, s)

Q+1∑
j=s+2

1

λ+ jβ

+
1

λ+ (Q+ 2)β

[
η∗1(1, s)

ψ∗1(2, s)
− γ
]

+
S∑

j=Q+3

1

λ+ jβ

[
η∗1(1, s)

ψ∗1(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

]]−1
.
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Q̃
=

                         µ
-h

1
γ

α
+
β

+
λ

λ
+

2β
µ

-h
2

α

λ
+

3β
µ

-h
3

. .
.

α
. .

.
. . .

µ
-h

s
-1

γ
α

λ
+
sβ

µ
-h

s
γ

+
α

λ
+

(s
+

1
)β

µ
-h

s
+
1

0
. .

.

µ
-h

S
-s

λ
+

(S
-s

+
1
)β

µ
-h

S
-s
+
1

. .
.

µ
-h

S
-1

λ
+
S
β

µ
-h

S

                         
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Proof. We have ∆Q̃ = 0 and ∆ē = 1.

∆Q̃ = 0⇒
For l = 1, 2, . . . , s,

rl(µ− hl) + rl+1(λ+ (l + 1)β) = 0. (3.69)

For l = s+ 1, . . . , S − s,

rl(µ− hl) + rl+1(λ+ (l + 1)β) = 0. (3.70)

For l = 1, 2, . . . , s− 1,

rlγ + rQ+l(µ− hQ+l) + rQ+l+1(λ+ (Q+ l + 1)β) = 0 (3.71)

and finally

r1(α+β+λ) + (r2 + γ3 + · · ·+ rs−1)α+ rs(α+ γ) + rS(µ−hS) = 0. (3.72)

Equation (3.69) ⇒

rl+1 = −
(

(µ− hl)
λ+ (l + 1)β

)
rl

=

(
λ+ γ + α + lβ

λ+ (l + 1)β

)
rl

for l = 1, 2, . . . , s, from which we get

rj =
η∗1(1, j − 1)

ψ∗1(2, j)
r1, (3.73)

for j = 2, 3, . . . , s+ 1.

Equation (3.70) gives

rl+1 =
(hl − µ)rl
λ+ (l + 1)β

=

(
λ+ lβ

λ+ (l + 1)β

)
rl

for l = s+ 1, . . . , S − s, from which we get

rj =

(
1

λ+ jβ

)
η∗1(1, s)

ψ∗1(2, s)
r1 (3.74)
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for j = s+ 2, . . . , Q+ 1.

Equation (3.71) ⇒

rQ+l+1 =
rQ+l(hQ+l − µ)− rlγ
λ+ (Q+ l + 1)β

for l = 1, 2, . . . , s− 1, from which we get

rQ+2 =
(hQ+1 − µ)rQ+1 − γr1

λ+ (Q+ 2)β

=

(
1

λ+ (Q+ 2)β

)(
η∗1(1, s)

ψ∗1(2, s)
− γ
)
r1 (3.75)

and

rj =

(
1

λ+ jβ

)[
η∗1(1, s)

ψ∗1(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

]
r1, (3.76)

for j = Q+ 3, . . . , S.

Hence from equations (3.73), (3.74),(3.75) and (3.76), we get (3.68).

Next, to find r1. Consider the normalizing equation

∆ē = 1.

That is

{
1 +

s+1∑
j=2

η∗1(1, j − 1)

ψ∗1(2, j)
+

Q+1∑
j=s+2

( 1

λ+ jβ

) η∗1(1, s)

ψ∗1(2, s)

+
( 1

λ+ (Q+ 2)β

)( η∗1(1, s)

ψ∗1(2, s)
− γ
)

+
S∑

j=Q+3

( 1

λ+ jβ

)[ η∗1(1, s)

ψ∗1(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

]}
r1 = 1.

r1 =

[
1 +

s+1∑
j=2

η∗1(1, j − 1)

ψ∗1(2, j)
+
η∗1(1, s)

ψ∗1(2, s)

Q+1∑
j=s+2

1

λ+ jβ

+
1

λ+ (Q+ 2)β

[
η∗1(1, s)

ψ∗1(2, s)
− γ
]

+
S∑

j=Q+3

1

λ+ jβ

[
η∗1(1, s)

ψ∗1(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

]]−1
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where

η∗1(j1, j2) =

j2∏
k̃=j1

(k̃β + λ+ γ + α)

and

ψ∗1(j1, j2) =

j2∏
k̃=j1

(k̃β + λ).

Hence the theorem.

3.3.2.2 Stochastic Decomposition of System State

Let π̄ be the steady-state probability vector of Ã.

π̄ = (π(0),π(1),π(2), . . . )

where π(i) = (π(i,1), π(i,2), . . . , π(i,S)), where i = 0, 1, 2, . . . and

π(i,j) = lim
t→∞

P (X(t) = i, I(t) = j), (i, j) ∈ E.

π(i,j) is the steady-state probability for the state (i, j).

We claim that

π(i) = Kρi∆, i ≥ 0 (3.77)

where ∆ = (r1, r2, . . . rS) is the steady-state probability vector when the

service time is negligible, K is a constant to be determined and ρ = λ
µ
.

Proof. We have π̄Ã = 0 and π̄ē = 1.

π̄Ã = 0⇒ (π(0),π(1),π(2), . . . )


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 = 0

which gives

π(0)B1 + π(1)A2 = 0 (3.78)

and π(i+2)A2 + π(i+1)A1 + π(i)A0 = 0 (3.79)
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i = 0, 1, . . . .

When (3.77) is true, we get from (3.78),

Kρ0∆B1 +Kρ∆A2 = 0.

That is K∆(B1 + ρA2) = 0.

That is ∆Q̃ = 0,

which is true since ∆ = (r1, r2, . . . , rS) is the steady-state probability vector

corresponding to the generator Q̃ associated with the Markovian chain of

the inventory process under consideration when service time is negligible.

When (3.77) is true, we get from (3.79),

Kρi+2∆A2 +Kρi+1∆A1 +Kρi∆A0 = 0, i = 0, 1, 2, . . .

That is ∆(ρA2 + A1 +
1

ρ
A0) = 0.

That is ∆Q̃ = 0,

which is true, by following the same argument given above.

Hence, the stochastic decomposition of system states is verified.

3.3.2.3 Determination of K

We have

∞∑
i=0

S∑
j=1

π(i,j) = 1.

K

(
∞∑
i=0

ρi

)(
S∑
j=1

rj

)
= 1 using (3.77).

That is, K
∞∑
i=0

ρi = 1.

Therefore, K = 1− ρ.

3.3.2.4 Explicit Solution

From the above discussions, we can write the steady-state probability vector

explicitly as in the following theorem:
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Theorem 3.3.4. The steady-state probability vector π̄ of Ã partitioned as

π̄ = (π(0),π(1), . . . ) where each π(i), i = 0, 1, 2, . . . again partitioned as

π(i) = (π(i,1), π(i,2), . . . , π(i,S), ) are obtained by

π(i,j) = (1− ρ)ρirj (3.80)

where ρ = λ
µ

and rj, j = 1, 2, . . . , S, represent the inventory level probabili-

ties when service time is negligible and are given as

rj = q̃jr1

where j = 1, 2, . . . , S and

q̃j =



1, j = 1

η∗1(1,j−1)
ψ∗
1(2,j)

, j = 2, 3, . . . , s+ 1

1
λ+jβ

η∗1(1,s)

ψ∗
1(2,s)

, j = s+ 2, . . . , Q+ 1

1
λ+jβ

[
η∗1(1,s)

ψ∗
1(2,s)

− γ
]
, j = Q+ 2

1
λ+jβ

[
η∗1(1,s)

ψ∗
1(2,s)

− γ − γ
∑j−Q−2

k1=1
η∗1(1,k1)

ψ∗
1(2,k1+1)

]
,

j = Q+ 3, . . . , S

where

η∗1(j1, j2) =

j2∏
k̃=j1

(k̃β + λ+ γ + α)

and

ψ∗1(j1, j2) =

j2∏
k̃=j1

(k̃β + λ).

r1 is obtained by solving the equation ∆ē = 1 as

r1 =

[
1 +

s+1∑
j=2

η∗1(1, j − 1)

ψ∗1(2, j)
+
η∗1(1, s)

ψ∗1(2, s)

Q+1∑
j=s+2

1

λ+ jβ

+
1

λ+ (Q+ 2)β

[
η∗1(1, s)

ψ∗1(2, s)
− γ
]

+
S∑

j=Q+3

1

λ+ jβ

[
η∗1(1, s)

ψ∗1(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

]]−1
.
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The result indicated by (3.80) not only tells us that the original system

possess stochastic decomposition but also the important fact that the sys-

tem state distribution is the product of the distribution of its marginals:

one component is the distribution of the classical M/M/1 queue whose long

run distribution for i customers in the system is (1 − ρ)ρi, i ≥ 0 and the

other factor is the probability of j items in the inventory. Next we turn to

find out how the system performs. The measures given in the following are

pointers to the system performance.

3.3.3 System Performance Measures

(a) Expected inventory held in the system (Mean inventory level),

E(I) =
∞∑
i=0

S∑
j=1

jπ(i,j)

=
( ∞∑
i=0

(1− ρ)ρi
)( S∑

j=0

jrj

)
=

S∑
j=1

jrj

=

[
1 +

s+1∑
j=2

j
η∗1(1, j − 1)

ψ∗1(2, j)
+
η∗1(1, s)

ψ∗1(2, s)

Q+1∑
j=s+2

( j

λ+ jβ

)
+

(Q+ 2)

λ+ (Q+ 2)β

[
η∗1(1, s)

ψ∗1(2, s)
− γ
]

+
S∑

j=Q+3

( j

λ+ jβ

)( η∗1(1, s)

ψ∗1(2, s)
− γ − γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

)]
r1.

(b) Mean waiting time of customers in the system,

WS =
L

λ
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where

L = Expected number of customers in the system

=
∞∑
i=0

S∑
j=1

iπ(i,j)

=

(
∞∑
i=0

i(1− ρ)ρi

)(
S∑
j=1

rj

)
=

ρ

1− ρ
.

Therefore Ws =
L

λ

=
1

µ− λ
. (3.81)

(c) Mean reorder rate,

Rr = µ
∞∑
i=1

π(i,s+1) + (s+ 1)β
∞∑
i=0

π(i,s+1)

= µ(
∞∑
i=1

(1− ρ)ρi)rs+1 + (s+ 1)β(
∞∑
i=0

(1− ρ)ρi)rs+1

= (λ+ (s+ 1)β)
η∗1(1, s)

ψ∗1(2, s+ 1)
r1

=
η∗1(1, s)

ψ∗1(2, s)
r1.

(d) Mean local purchase rate (Mean order cancellation rate), RLP

Let RLP1 = Local purchase rate due to T -realization

= α
∞∑
i=0

s∑
j=1

π(i,j)

= α
∞∑
i=0

s∑
j=1

(1− ρ)ρirj

= α

(
s∑
j=1

rj

)
.
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Let RLP2 = Local purchase rate resulting from zero inventory level

= µ
∞∑
i=1

π(i,1) + β

∞∑
i=0

π(i,1)

= µ(1− ρ)

(
∞∑
i=1

ρi

)
r1 + β

(
∞∑
i=0

(1− ρ)ρi

)
r1

= (λ+ β)r1.

RLP = RLP1 +RLP2

= α

(
s∑
j=1

rj

)
+ (λ+ β)r1

=

[
α

(
1 +

s∑
j=2

η∗1(1, j − 1)

ψ∗1(2, j)

)
+ λ+ β

]
r1.

(e) Mean decay rate,

RD = βE(I).

(f) Expected number of units locally purchased due to T -realization,

NLP =

Q+s∑
x=Q

xP (x)

where P (x) = Probability that x units are locally purchased

= Qφs + (Q+ 1)φs−1 + · · ·+ (Q+ (s− 1))φ1

= Q(
s∑
j=1

φj) +
s−1∑
j=0

jφs−j.

Remark. If we put β = 0 the above measures will get reduced to those of

model I.

3.3.4 Cost Analysis

Now, we introduce a cost function. Let the various costs involved in the

model be as given below:
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CH : Inventory holding cost per unit item per unit time.

CD : Decay cost per unit item per unit time.

CS : Set up cost per unit order, under natural purchase.

CW : Waiting time cost per customer per unit time.

CLP : Local purchase cost per unit order.

CNP : Natural purchase cost per unit order.

CC : Cancellation cost per unit order cancelled.

TEC = CHE(I) + (CS + CNPQ)Rr + CCRLP + CDRD

+ CWWS + +CLP(RLP1NLP +RLP2S)

=

{
(CH + CDβ)

[
1 +

s+1∑
j=2

j
η∗1(1, j − 1)

ψ∗1(2, j)
+ (G+ γ)

Q+1∑
j=s+2

j

λ+ jβ

+U +
S∑

j=Q+3

(
j

λ+ jβ

)(
G− γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

)]

+ (CS + CNPQ)(G+ γ) + CC

[
λ+ β + α

(
1 +

s∑
j=2

η∗1(1, j − 1)

ψ∗1(2, j)

)]

+ CLP

[(
α

s∑
j=1

q̃j

)(
Q

s∑
j=1

qj +
s−1∑
j=0

jqs−j

)
φ1

+(λ+ β)S]

}
r1 + CW

(
1

µ− λ

)
where

G =
η∗1(1, s)

ψ∗1(2, s)
− γ and U =

(Q+ 2)G

λ+ (Q+ 2)β

and

r1 =

[
1 +

s+1∑
j=2

η∗1(1, j − 1)

ψ∗1(2, j)
+ (G+ γ)

Q+1∑
j=s+2

(
1

λ+ jβ

)

+
G

λ+ (Q+ 2)β
+

S∑
j=Q+3

(
1

λ+ jβ

)(
G− γ

j−Q−2∑
k1=1

η∗1(1, k1)

ψ∗1(2, k1 + 1)

)]−1
.

To verify the convexity of the above cost function, with respect to s, S

or α the corresponding derivative may be computed, then equate it to zero.
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Nevertheless, solving it is a laborious task. Since analysis of TEC as a

function of s, S or α is quite complex, we give a few numerical illustrations.

3.3.4.1 Numerical Analysis

Case 1. Analysis of TEC as a function of s (when β = 0.2).

Input Data:

CH = 0.5, CD = 7, CS = 15, CNP = 12, CC = 8, CLP = 15, CW = 30,

α = 20, λ = 23, µ = 25, γ = 16, β = 0.2, S = 17.

Table 3.3: Effect of s on TEC

s TEC (β = 0.2) TEC (β = 0)
2 425.8603 381.3717
3 395.2335 351.6098
4 385.7502 341.4396
5 385.1315 339.4069
6 388.4944 341.0169
7 393.9350 344.5680
8 400.8004 349.5299

Table 3.3 shows that as s increases, TEC values decrease, reach a min-

imum at s = 5 and then increase (when β = 0.2). Hence it is numerically

verified that TEC function is convex with respect to s.

Case 2. Analysis of TEC as a function of S (when β = 0.2).

Input Data:

CH = 0.5, CD = 7, CS = 15, CNP = 12, CC = 8, CLP = 15, CW = 30,

α = 20, λ = 23, µ = 25, γ = 16, β = 0.2, s = 2.

Table 3.4 shows that as S increases, TEC values decrease, reach a min-

imum at S = 17 and then increase (when β = 0.2). Hence it is numerically

verified that TEC function is convex with respect to S.

Case 3. Analysis of TEC as a function of α (when β = 0.2).

Input Data:

CH = 0.5, CD = 7, CS = 15, CNP = 12, CC = 8, CLP = 15, CW = 30,

λ = 23, µ = 25, γ = 16, β = 0.2, S = 17, s = 2.
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Table 3.4: Effect of S on TEC

S TEC (β = 0.2) TEC (β = 0)
10 437.4388 406.6912
11 433.3057 400.6476
12 430.3947 395.7957
13 428.3858 391.8263
14 427.0613 388.5287
15 426.2681 385.7543
16 425.8952 383.3953
17 425.8603 381.3717
18 426.1010 379.6226
19 426.5691 378.1012
20 427.2271 376.7707

Table 3.5: Effect of α on TEC

α TEC (β = 0.2) TEC (β = 0)
21 424.1680 379.9000
22 422.5521 378.3900
23 421.0081 376.9480
24 419.5318 375.5700
25 418.1194 374.2522
26 416.7672 372.9913
27 415.4720 371.7840
28 414.2307 370.6275
29 413.0402 369.5188
30 411.8979 368.4555
31 410.8013 367.4351

Table 3.5 shows that as α increases, TEC function is monotonically

decreasing and hence convex with respect to α (when β = 0.2).

Comparison of Perishable and Non-Perishable Inventory Models

Finally we compare the optimal values of TEC as function of s, S or α in

non-perishable and perishable cases.

In the above set of input data, if we put β = 0 and CD = 0, we get the

TEC values of non-perishable items which are given in Tables 3.3, 3.4 and

3.5.
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When β = 0, Table 3.3 shows that as s increases, TEC values decrease,

reach a minimum at s = 5 and then increase. Hence it is numerically

verified that TEC function is convex. Also, on comparing the TEC values

in Table 3.3 we get that the total expected cost per unit time as a function

of s is highest in the case of perishable items.

When β = 0, Table 3.4 shows that as S increases, TEC function is

monotonically decreasing, and hence convex. Also, on comparing the TEC

values in Table 3.4 we get that the total expected cost per unit time as a

function of S is highest in the case of perishable items.

When β = 0, Table 3.5 shows that as α increases, TEC function is

monotonically decreasing, and hence convex. Also, on comparing the TEC

values in Table 3.5 we get that the total expected cost per unit time as a

function of α is highest in the case of perishable items.





Chapter 4

(s, S) Production Inventory

Systems with Positive Service

Time

4.1 Introduction

In the previous two chapters we considered replenishment in bulk against

orders placed on the inventory level reaching s. In this chapter we consider

the case of addition taking place to stock one at a time through a pro-

duction process. As in the case of bulk replenishment, in the present case

also production is switched on when inventory level depletes to s from S.

Thereafter the production process remains on until the inventory level is

back at S. The time to produce an item (inter-production time/lead time)

is assumed to be exponentially distributed.

In this chapter, we consider two different (s, S) production inventory

models involving positive service time. In both the models, it is assumed

that there is only one server. As soon as the inventory level drops to zero

due to demand, a local purchase is made to prevent customer loss, thereby

ensuring customer satisfaction, and thus their goodwill. Also in both the

models it is assumed that arrivals are according to Poisson process with

parameter λ. As and when the inventory level reaches s, the production

109
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process is switched ‘on’. Time taken to produce an item is exponentially

distributed with parameter η. The produced item requires a processing time

before it is served to the customer, and the processing time is a random

variable which follows exponential distribution with parameter µ. Once the

production process is switched on, it will be kept in the ‘on’ mode till the

inventory level reaches S. As soon as the inventory level reaches S, the

production process is switched ‘off’.

In model I, we assume that as and when the inventory level reaches

zero, a local purchase of one unit at a time is made at a higher cost, and in

model II, a local purchase of N units is made (where 2 ≤ N < s) at a time

at higher cost. Also it is assumed that supply of items is instantaneous in

local purchase. The above situations can be modelled as continuous time

Markov chains as follows.

4.2 Model I: Local Purchase of One Unit

4.2.1 Model Formulation and Analysis

Let X(t) = Number of customers in the system at time t,

I(t) = Inventory level at time t and

K(t) = Status of the production process:

K(t) =

1, if production process is ‘on’ at time t

0, if production process is ‘off’ at time t

{(X(t), I(t), K(t)), t ≥ 0} is a CTMC with state space

{(i, j)|i ≥ 0, 1 ≤ j ≤ s} ∪ {(i, j, k)|i ≥ 0; s+ 1 ≤ j ≤ S − 1; k = 0, 1}

∪ {(i, S)|i ≥ 0}.

Note that K(t) = 1, whenever 1 ≤ I(t) ≤ s and so in the above description

of state space we have excluded the third element k from (i, j, k) for

j = 1, 2, . . . , s.

Also K(t) = 0, when I(t) = S and K(t) is either 0 or 1 when s+1 ≤ I(t) ≤
S − 1.
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4.2.1.1 Infinitesimal Generator Ã

The infinitesimal generator of the process under consideration is obtained

interms of submatrices as follows:

Ã =


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where A0 = λI2S−s−1

and

A1 =



G̃1 η

G̃1 η
. . . . . .

G̃1 η

G̃1 P1

G̃2 P2

. . . . . .

G̃2 P2

G̃2 P3

G̃3


where G̃1 = [−(λ+ η + µ)], G̃2 =

[
−(λ+ µ)

−(λ+ η + µ)

]
and

G̃3 = [−(λ+ µ)].

A2 =



µ

µ
. . .

µ

µ

H1

H2

. . .

H2

H3 0


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where H1 =

[
µ

µ

]
, H2 = µI2, H3 = [µ 0].

B1 =



G1 η

G1 η
. . . . . .

G1 η

G1 P1

G2 P2

. . . . . .

G2 P2

G2 P3

G3


where G1 = [−(λ+ η)], G2 =

[
−λ

−(λ+ η)

]
,

G3 = [−λ], P1 = [0 η], P2 =

[
0 0

0 η

]
and P3 =

[
0

η

]
.

A0, A1, A2 and B1 are square matrices of order 2S − s− 1.

4.2.1.2 Steady-State Analysis

Let A = A0 + A1 + A2 be the generator matrix and is obtained as

A =



−η η

µ Ĝ1 η

µ Ĝ1 η

. . .
. . .

. . .

µ Ĝ1 η

µ Ĝ1 P1

H1 Ĝ2 P2

H2 Ĝ2 P2

. . .
. . .

. . .

H2 Ĝ2 P2

H2 Ĝ2 P3

H3 Ĝ3


where Ĝ1 = [−(µ+ η)], Ĝ2 =

[
−µ 0

0 −(µ+ η)

]
and Ĝ3 = [−µ].

A is a square matrix of order 2S − s− 1.
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First we investigate the stationary distribution of A. This will help us in

analyzing the stability of the larger system namely, the CTMC

{(X(t), I(t), K(t)), t ≥ 0} as t→∞.

Theorem 4.2.1. The steady-state probability vector Φ of A is

Φ = (φ1, φ2, . . . , φs−1, φs, φ̃s+1, φ̃s+2, . . . , φ̃S−1, φS)

where

φ̃l1 = (φl1,0, φl1,1), l1 = s+ 1, . . . , S − 1

and

φl = (
µ

η
)s−l[

µ

η
+ (

µ

η
)2 + (

µ

η
)3 + · · ·+ (

µ

η
)Q]φS

where l = 1, 2, . . . , s.

φl,0 = φS, where l = s+ 1, s+ 2, . . . , S − 1.

φl,1 = [
µ

η
+ (

µ

η
)2 + (

µ

η
)3 + · · ·+ (

µ

η
)S−l]φS,

where l = s+ 1, . . . , S − 1.

When µ 6= η, φS can be obtained by solving Φē = 1 as

φS =
(1− µ

η
)2

µ
η
[(µ
η
)S − (µ

η
)s −Q] +Q− (1− µ

η
)2
.

Proof. We have ΦA = 0 and Φē = 1.

ΦA = 0⇒

φ1 ×−η + φ2µ = 0. (4.1)

φjη − φj+1(µ+ η) + φj+2µ = 0 (4.2)

for j = 1, 2, . . . , s− 2.

φs−1η + φs ×−(µ+ η) + φ̃s+1H1 = 0. (4.3)

φsP1 + φ̃s+1Ĝ2 + φ̃s+2H2 = 0. (4.4)

φ̃jP2 + φ̃j+1Ĝ2 + φ̃j+2H2 = 0. (4.5)

for j = s+ 1, s+ 2, . . . , S − 3.

φ̃S−2P2 + φ̃S−1Ĝ2 + φSH3 = 0. (4.6)

φ̃S−1P3 + φSĜ3 = 0. (4.7)
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Equation (4.1) gives

φ2 =
η

µ
φ1.

Equation (4.2) gives

φj+2 =

(
µ+ η

µ

)
φj+1 −

(
η

µ

)
φj (4.8)

for j = 1, 2, . . . , s− 2, from which we get

φl =

(
η

µ

)l−1
φ1 (4.9)

for l = 2, 3, . . . , s.

Equation (4.3) gives

φs+1,0 + φs+1,1 =

(
η

µ

)s
φ1. (4.10)

Equation (4.4) gives

φs+1,0 = φs+2,0 (4.11)

and

ηφs − (µ+ η)φs+1,1 + µφs+2,1 = 0. (4.12)

Substituting (4.11) in (4.10), we get

φs+2,0 + φs+1,1 =

(
η

µ

)s
φ1. (4.13)

Equation (4.7) gives

φS−1,1 =
µ

η
φS. (4.14)

Equation (4.6) gives

φS−1,0 = φS (4.15)

and ηφS−2,1 − (µ+ η)φS−1,1 = 0. (4.16)

Equations (4.16) and (4.14) give

ηφS−2,1 = µ(φS +
µ

η
φS).

φS−2,1 =

[
µ

η
+

(
µ

η

)2
]
φS. (4.17)
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Equation (4.5) gives

−µφj+1,0 + µφj+2,0 = 0 (4.18)

for j = s+ 1, s+ 2, . . . , S − 3, and

ηφj,1 − (µ+ η)φj+1,1 + µφj+2,1 = 0 (4.19)

for j = s+ 1, s+ 2, . . . , S − 3.

Using (4.11), (4.15) and (4.18) and after some steps, we get

φl,0 = φS (4.20)

for l = s+ 1, s+ 2, . . . , S − 1.

Using equations (4.19), (4.14) and (4.17), and after some steps, we get

φl,1 =

[
µ

η
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)S−l]
φS (4.21)

for l = s+ 1, s+ 2, . . . , S − 3.

Using (4.14), (4.17) and (4.21) we get

φl,1 =

[
µ

η
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)S−l]
φS (4.22)

for l = s+ 1, s+ 2, . . . , S − 1.

Equations (4.12) and (4.22) give

φs =

[(
µ

η

)
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)Q]
φS. (4.23)

Equations (4.9) and (4.23) give

φl =

(
µ

η

)s−l [(
µ

η

)
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)Q]
φS (4.24)

for l = 1, 2, . . . , s.

Using equation (4.20), (4.22) and (4.24), we get the required result.

Next, to find φS. Consider the normalizing equation

Φē = 1.
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s∑
l=1

φl +
S−1∑
l=s+1

φl,0 +
S−1∑
l=s+1

φl,1 + φS = 1. (4.25)

Let W1 = µ
η

+ (µ
η
)2 + (µ

η
)3 + · · ·+ (µ

η
)Q.

Using (4.20), (4.22) and (4.24), we get (4.25) as

φS

[
W1

(
s∑
l=1

(
µ

η

)s−l)

+Q− 1 +
S−1∑
l=s+1

(
µ

η
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)S−l)
+ 1

]
= 0. (4.26)

When µ 6= η, we get

S−1∑
l=s+1

(
µ

η
+

(
µ

η

)2

+ · · ·+
(
µ

η

)S−l)

=
µ

η

(
1− µ

η

)−1 Q− 1− µ

η

(
1− µ

η

)Q−1
1− µ

η

 (4.27)

s∑
l=1

(
µ

η

)s−l
=

1−
(
µ
η

)s
1− µ

η

. (4.28)

Also

W1 =

µ
η

(
1−

(
µ
η

)Q)
1− µ

η

. (4.29)

Hence by using equations (4.27), (4.28) and (4.29), we get equation

(4.26) as

φS(
1− µ

η

)2
{(

µ

η

)Q+s+1

−
(
µ

η

)s+1

+Q−Qµ
η
−
(

1− µ

η

)2
}

= 1.

Therefore,

φS =

(
1− µ

η

)2
µ
η

[(
µ
η

)S
−
(
µ
η

)s
−Q

]
+Q−

(
1− µ

η

)2 .
Hence the theorem.
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Remark. When µ = η, we get the following:

φl = QφS, where l = 1, 2, . . . , s.

φl,0 = φS, where l = s+ 1, . . . , S − 1.

φl,1 = (S − l)φS, where l = s+ 1, . . . , S − 1

and φS =
[
sQ+ (Q− 1)

(
1 +

Q

2

)
+ 1
]−1

.

4.2.1.3 Stability Condition

The result in Theorem 4.2.1 enables us to compute the stability of the

CTMC {(X(t), I(t), K(t)), t ≥ 0}.

Theorem 4.2.2. The process {(X(t), I(t), K(t)), t ≥ 0} is stable iff λ < µ.

Proof. Since the process under consideration is an LIQBD, it will be stable

iff

ΦA0ē < ΦA2ē (Neuts [40]) (4.30)

where Φ represents the steady-state probability vector of the generator

matrix A = A0 + A1 + A2 and ē is a column vector of 1’s of appropriate

order.

ΦA0ē = [λ(φ1 + φ2 + · · ·+ φs + φs+1,0 + φs+1,1 + . . .

+ φS−1,0 + φS−1,1 + φS)]

= λ.

ΦA2ē = [µ(φ1 + φ2 + · · ·+ φs + φs+1,0 + φs+1,1 + . . .

+ φS−1,0 + φS−1,1 + φS)]

= µ.

Hence the using (4.30) we get λ < µ. Hence the theorem.

Having obtained the condition for the system to stabilize, we turn to

compute the long-run probability distribution of the system states. Infact

we show that the joint distribution of the system state can be written as

the product of the marginal distribution of the components.



118 CHAPTER 4. (s, S) PRODUCTION INVENTORY SYSTEMS · · ·

4.2.2 The Steady-State Probability Distribution of Ã

4.2.2.1 Stationary Distribution when Service Time is Negligible

Let Q̃ be the generator matrix associated with the Markovian chain of the

inventory process under consideration when service time is negligible, and

∆ = (r1, r2, . . . , rS) be the stationary probability vector corresponding to

Q̃.

Q̃ is obtained as

Q̃ =



−η η

λ G1 η

λ G1 η
. . . . . . . . .

λ G1 η

λ G1 P1

Ĥ1 G2 P2

Ĥ2 G2 P2

. . . . . . . . .

Ĥ2 G2 P2

Ĥ2 G2 P3

Ĥ3 G3


where G1 = [−(λ+ η)], G2 =

[
−λ 0

0 −(λ+ η)

]
, G3 = [−λ], P1 = [0 η],

P2 =

[
0 0

0 η

]
, P3 =

[
0

η

]
, Ĥ1 =

[
λ

λ

]
, Ĥ2 = λI2 and Ĥ3 = [λ 0].

Theorem 4.2.3. The steady-state probability vector ∆ of Q̃ is

∆ = (r1, r2, . . . , rs−1, rs, r̃s+1, r̃s+2, . . . , r̃S−1, rS)

where

r̃l1 = (rl1,0, rl1,1), l1 = s+ 1, . . . , S − 1

and

rl = (
λ

η
)s−l[

λ

η
+ (

λ

η
)2 + (

λ

η
)3 + · · ·+ (

λ

η
)Q]rS,
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where l = 1, 2, . . . , s.

rl,0 = rS,

where l = s+ 1, s+ 2, . . . , S − 1.

rl,1 = [
λ

η
+ (

λ

η
)2 + (

λ

η
)3 + · · ·+ (

λ

η
)S−l]rS,

where l = s+ 1, . . . , S − 1.

When λ 6= η, rS can be obtained by solving ∆ē = 1 as

rS =
(1− λ

η
)2

λ
η
[(λ
η
)S − (λ

η
)s −Q] +Q− (1− λ

η
)2
.

Proof. We have ∆Q̃ = 0 and ∆ē = 1.

∆Q̃ = 0⇒

r1 ×−η + r2λ = 0. (4.31)

rjη − rj+1(λ+ η) + rj+2λ = 0 (4.32)

for j = 1, 2, . . . , s− 2.

rs−1η + rs ×−(λ+ η) + r̃s+1Ĥ1 = 0. (4.33)

rsP1 + r̃s+1G2 + r̃s+2Ĥ2 = 0. (4.34)

r̃jP2 + r̃j+1G2 + r̃j+2Ĥ2 = 0 (4.35)

for j = s+ 1, s+ 2, . . . , S − 3.

r̃S−2P2 + r̃S−1G2 + rSĤ3 = 0. (4.36)

r̃S−1P3 + rSG3 = 0. (4.37)

Equation (4.31) ⇒
r2 =

η

λ
r1.

Equation (4.32) ⇒

rj+2 =

(
λ+ η

λ

)
rj+1 −

(η
λ

)
rj (4.38)
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for j = 1, 2, . . . , s− 2.

Hence equation (4.38) gives

rl =
(η
λ

)l−1
r1 (4.39)

for l = 2, 3, . . . , s.

Equation (4.33) gives

rs+1,0 + rs+1,1 =
(η
λ

)s
r1. (4.40)

Equation (4.34) gives

rs+1,0 = rs+2,0 (4.41)

and

ηrs − (λ+ η)rs+1,1 + λrs+2,1 = 0. (4.42)

Substituting (4.41) in (4.40), we get

rs+2,0 + rs+1,1 =
(η
λ

)s
r1. (4.43)

Equation (4.37) gives

rS−1,1 =
λ

η
rS. (4.44)

Equation (4.36) gives

rS−1,0 = rS (4.45)

and ηrS−2,1 − (λ+ η)rS−1,1 = 0. (4.46)

Using (4.44) and (4.46) and after some steps we get

rS−2,1 =

[
λ

η
+

(
λ

η

)2
]
rS. (4.47)

Equation (4.35) gives

−λrj+1,0 + λrj+2,0 = 0 (4.48)

for j = s+ 1, s+ 2, . . . , S − 3, and

ηrj,1 − (λ+ η)rj+1,1 + λrj+2,1 = 0 (4.49)
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for j = s+ 1, s+ 2, . . . , S − 3.

Using (4.41), (4.45) and (4.48) and after some steps, we get

rl,0 = rS (4.50)

for l = s+ 1, s+ 2, . . . , S − 1.

Now, using (4.44) and (4.47) in (4.49) we get

rl,1 =

[
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−l]
rS. (4.51)

for l = s+ 1, s+ 2, . . . , S − 3.

Using (4.44), (4.47) and (4.51) we get

rl,1 =

[
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−l]
rS (4.52)

for l = s+ 1, s+ 2, . . . , S − 1.

Equations (4.42) and (4.52) give

rs =

[(
λ

η

)
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)Q]
rS. (4.53)

Hence equation (4.42) gives

rl =

(
λ

η

)s−l [(
λ

η

)
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)Q]
rS (4.54)

for l = 1, 2, . . . , s.

Using equations (4.50), (4.52) and (4.54), we get the required result.

Next, to find rS.

Consider the normalizing equation

∆ē = 1.

s∑
l=1

rl +
S−1∑
l=s+1

rl,0 +
S−1∑
l=s+1

rl,1 + rS = 1. (4.55)



122 CHAPTER 4. (s, S) PRODUCTION INVENTORY SYSTEMS · · ·

Let W1 = λ
η

+ (λ
η
)2 + (λ

η
)3 + · · ·+ (λ

η
)Q.

Also using equations (4.50), (4.52) and (4.54) we get (4.55) as

rS

[
W1

(
s∑
l=1

(
λ

η

)s−l)

+Q− 1 +
S−1∑
l=s+1

(
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−l)
+ 1

]
= 0. (4.56)

When λ 6= η we get,

S−1∑
l=s+1

(
λ

η
+

(
λ

η

)2

+ · · ·+
(
λ

η

)S−l)

=
λ

η

(
1− λ

η

)−1 Q− 1− λ

η

(
1− λ

η

)Q−1
1− λ

η

 (4.57)

s∑
l=1

(
λ

η

)s−l
=

1−
(
λ
η

)s
1− λ

η

. (4.58)

Also

W1 =

λ
η

(
1−

(
λ
η

)Q)
1− λ

η

. (4.59)

Hence by using equations (4.57), (4.58) and (4.59), we get equation

(4.56) as

rS(
1− λ

η

)2
{(

λ

η

)Q+s+1

−
(
λ

η

)s+1

+Q−Qλ
η
−
(

1− λ

η

)2
}

= 1.

Therefore,

rS =

(
1− λ

η

)2
λ
η

[(
λ
η

)S
−
(
λ
η

)s
−Q

]
+Q−

(
1− λ

η

)2 .
Hence the theorem.
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Remark. When λ = η, we get the following:

rl = QrS, where l = 1, 2, . . . , s.

rl,0 = rS, where l = s+ 1, . . . , S − 1.

rl,1 = (S − l)rS, where l = s+ 1, . . . , S − 1

and rS = [sQ+ (Q− 1)

(
1 +

Q

2

)
+ 1]−1.

4.2.2.2 Stochastic Decomposition of System States

Let π̄ be the steady-state probability vector of Ã.

π̄ = (π(0),π(1),π(2), . . . )

where π(i) = (π(i,1), π(i,2), . . . , π(i,s), π(i,s+1,0), π(i,s+1,1), . . . , π(i,S−1,0), π(i,S−1,1),

π(i,S)) where i = 0, 1, 2, . . . and π(i,j) = limt→∞ P (X(t) = i, I(t) = j) and

π(i,j,k) = limt→∞ P (X(t) = i, I(t) = j,K(t) = k).

π(i,j) is the steady-state probability for the state (i, j) and π(i,j,k) is the

steady-state probability for the state (i, j, k).

We claim that

π(i) = Kρi∆, i ≥ 0 (4.60)

where ∆ = (r1, r2, . . . , rs, rs+1,0, rs+1,1, . . . , rS−1,0, rS−1,1, rS) is the steady-

state probability vector when the service time is negligible, K is a constant

to be determined and ρ = λ
µ
.

Proof. We have π̄Ã = 0 and π̄ē = 1.

π̄Ã = 0⇒ (π(0),π(1),π(2), . . . )


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 = 0

which gives

π(0)B1 + π(1)A2 = 0. (4.61)

π(i+2)A2 + π(i+1)A1 + π(i)A0 = 0. (4.62)
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i = 0, 1, . . . .

When (4.60) is true, we get from (4.61),

Kρ0∆B1 +Kρ∆A2 = 0.

That is K∆(B1 + ρA2) = 0.

That is ∆Q̃ = 0,

which is true since ∆ = (r1, r2, . . . , rS) is the steady-state probability vector

corresponding to the generator Q̃ associated with the Markovian chain of

the inventory process under consideration when service time is negligible.

When (4.60) is true, we get from (4.62),

Kρi+2∆A2 +Kρi+1∆A1 +Kρi∆A0 = 0, i = 0, 1, 2, . . .

That is ∆(ρA2 + A1 +
1

ρ
A0) = 0.

That is ∆Q̃ = 0,

which is true, by following the same argument given above.

Hence, the stochastic decomposition of system states is verified.

4.2.2.3 Determination of K

We have π̄ē = 1. That is

∞∑
i=0

s∑
j=1

π(i,j) +
∞∑
i=0

S−1∑
j=s+1

π(i,j,0) +
∞∑
i=0

S−1∑
j=s+1

π(i,j,1) +
∞∑
i=0

π(i,S) = 1.

That is,

K

[
∞∑
i=0

ρi
s∑
j=1

rj +
∞∑
i=0

ρi
S−1∑
j=s+1

(rj,0 + rj,1) +
∞∑
i=0

ρirS

]
= 1.

Therefore K
∑∞

i=0 ρ
i = 1.

Therefore K = 1− ρ where ρ = λ
µ
.

4.2.2.4 Explicit Solution

From the above discussions, we can write the steady-state probability vector

explicitly as given in the following theorem:
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Theorem 4.2.4. The steady-state probability vector π̄ of Ã partitioned as

π̄ = (π(0),π(1),π(2), . . . ),

where each π(i), i = 0, 1, 2, . . . again partitioned as π(i) = (π(i,1), π(i,2), . . . ,

π(i,s), π(i,s+1,0), π(i,s+1,1) . . ., π(i,S−1,0), π(i,S−1,1), π(i,S)) are obtained by

π(i) = (1− ρ)ρi∆, i ≥ 0 (4.63)

where ρ = λ/µ and ∆ = (r1, r2, . . . , rs, rs+1,0, rs+1,1, . . . , rS−1,0, rS−1,1, rS)

be the steady state probability vector when the service time is negligible.

∆ can be obtained from:

rl =

(
λ

η

)s−l(
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)Q)
rS

where l = 1, 2, . . . , s.

rl,0 = rS

where l = s+ 1, s+ 2, . . . , S − 1.

rl,1 =

(
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−l)
rS

where l = s+ 1, s+ 2, . . . , S − 1 and when λ 6= η,

rS =

(
1− λ

η

)2
λ
η

[(
λ
η

)S
−
(
λ
η

)s
−Q

]
+Q−

(
1− λ

η

)2 .
The result indicated by (4.63) not only tells us that the original system

possess stochastic decomposition but also the important fact that the sys-

tem state distribution is the product of the distribution of its marginals:

one component is the classical M/M/1 whose long run distribution for i

customers in the system is (1− ρ)ρi, i ≥ 0 and the other factor is the prob-

ability of j items in the inventory. Next we turn to find out how the system

performs. The measures given in the following are pointers to the system

performance.
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4.2.3 System Performance Measures

When λ 6= η, we get the following:

(a) Expected number of customers in the system,

Ei =
∞∑
i=0

i(1− ρ)ρi

=
ρ

1− ρ

=
λ

µ− λ
.

(b) Expected inventory held in the system,

E(I) =
∞∑
i=0

s∑
j=1

jπ(i,j) +
∞∑
i=0

S−1∑
j=s+1

j(π(i,j,0) + π(i,j,1))

+
∞∑
i=0

Sπ(i,S)

=
∞∑
i=0

(1− ρ)ρi

[
s∑
j=1

jrj +
S−1∑
j=s+1

j(rj,0 + rj,1) + SrS

]

=
s∑
j=1

jrj +
S−1∑
j=s+1

j(rj,0 + rj,1) + SrS. (4.64)

s∑
j=1

jrj =
s∑
j=1

j

(
λ

η

)s−j (
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)Q)
rS

=

λ
η

(
1−

(
λ
η

)Q)
1− λ

η

s∑
j=1

j

(
λ

η

)s−j
rS. (4.65)

s∑
j=1

j

(
λ

η

)s−j
=

(
λ

η

)s−1
+ 2

(
λ

η

)s−2
+ 3

(
λ

η

)s−3
+ . . .

+ (s− 1)
λ

η
+ s.

Let

S1 =

(
λ

η

)s−1
+ 2

(
λ

η

)s−2
+ 3

(
λ

η

)s−3
+ · · ·+ (s− 1)

λ

η
+ s.
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(
λ

η
− 1

)
S1 =

(
λ

η

)s
+

(
λ

η

)s−1
+

(
λ

η

)s−2
+ · · ·+

(
λ

η

)2

+

(
λ

η

)
− s.

S1 =

λ
η

(
1−

(
λ
η

)s)(
1− λ

η

)(
λ
η
− 1
) − s

λ
η
− 1

.

Therefore, equation (4.65) becomes

s∑
j=1

jrj =

λ
η(

1− λ
η

)3
[

1−
(
λ

η

)Q][
s

(
1− λ

η

)
− λ

η

[
1−

(
λ

η

)s]
rS

]
.

By expanding and then simplifying, we get

s∑
j=1

jrj =

[
s− (s+ 1)λ

η
+
(
λ
η

)s+1

−
(
λ
η

)S+1

− s
(
λ
η

)Q
+ (s+ 1)

(
λ
η

)Q+1
]
λ
η(

1− λ
η

){
λ
η

[(
λ
η

)S
−
(
λ
η

)s
−Q

]
+Q−

(
1− λ

η

)2} .

(4.66)

S−1∑
j=s+1

j(rj,0 + rj,1)

=
S−1∑
j=s+1

j

(
rS +

[
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−j]
rS

)

=
rS

1− λ
η

[(Q− 1)

(
s+

Q

2

)
− S2] (4.67)

where

S2 = (s+1)

(
λ

η

)Q
+(s+2)

(
λ

η

)Q−1
+(s+3)

(
λ

η

)Q−2
+· · ·+(S−1)

(
λ

η

)2

.

(1− η

λ
)S2 = (s+ 1)

(
λ

η

)Q [(
λ

η

)Q−1
+

(
λ

η

)Q−2
+ · · ·+

(
λ

η

)2

+
λ

η

]
− (s+Q)

λ

η
.

S2 =
(s+ 1)

(
λ
η

)Q
1− η

λ

+

λ
η

(
1−

(
λ
η

)Q−1)
(

1− λ
η

) (
1− η

λ

) − (s+Q)λ
η

1− η
λ

.
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Therefore, equation (4.67) becomes

S−1∑
j=s+1

j(rj,0 + rj,1)

=

(
1− λ

η

)
λ
η

[(
λ
η

)S
−
(
λ
η

)s
−Q

]
+Q−

(
1− λ

η

)2 [(Q− 1)(s+
Q

2
)

+

λ
η

1− η
λ

((
λ

η

)Q−1(
1

1− λ
η

− (s+ 1)

)
+ s+Q− 1

1− λ
η

)]
.

(4.68)

Using equations (4.66) and (4.68), we get equation (4.64) as

E(I) =

{
λ
η

1− λ
η

[s− (s+ 1)
λ

η
+ (

λ

η
)s+1 − (

λ

η
)S+1 − s(λ

η
)Q

+ (s+ 1)(
λ

η
)Q+1] + (1− λ

η
)[(Q− 1)(s+

Q

2
)

+

λ
η

1− η
λ

[(
λ

η
)Q−1((1− λ

η
)−1 − (s+ 1)) + (s+Q)− (1− λ

η
)−1]]

+S(1− λ

η
)2
}
× [

λ

η
[(
λ

η
)S − (

λ

η
)s −Q] +Q− (1− λ

η
)2]−1.

(c) Expected rate at which production process is switched ‘on’,

RON = µ
∞∑
i=1

π(i,s+1,0)

= µ(1− ρ)
∞∑
i=1

ρirs+1,0

=
λ(1− λ

η
)2

λ
η
[(λ
η
)S − (λ

η
)s −Q] +Q− (1− λ

η
)2
.

(d) Expected production rate,

RP =
( ∞∑
i=0

s∑
j=1

π(i,j) +
∞∑
i=0

S−1∑
j=s+1

π(i,j,1)
)
η
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=
∞∑
i=0

(1− ρ)ρi

[
s∑
j=1

rj +
S−1∑
j=s+1

rj,1

]
η

=
[ s∑
j=1

rj +
S−1∑
j=s+1

rj,1

]
η. (4.69)

s∑
j=1

rj =
s∑
j=1

(
λ

η

)s−j (
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)Q)
rS

=

(
λ
η

)[
1−

(
λ
η

)s
−
(
λ
η

)Q
+
(
λ
η

)S]
λ
η

[(
λ
η

)S
−
(
λ
η

)s
−Q

]
+Q−

(
1− λ

η

)2 . (4.70)

S−1∑
j=s+1

rj,1 = rS

S−1∑
j=s+1

[
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−j]

=
(Q− 1)λ

η
−
(
λ
η

)2
+
(
λ
η

)Q+1

λ
η

[(
λ
η

)S
−
(
λ
η

)s
−Q

]
+Q−

(
1− λ

η

)2 . (4.71)

Using equation (4.70) and (4.71), we get equation (4.69) as

RP =
η[(λ

η
)S+1 − (λ

η
)s+1 +Q(λ

η
)− (λ

η
)2]

λ
η
[(λ
η
)S − (λ

η
)s −Q] +Q− (1− λ

η
)2
.

(e) Expected local purchase rate,

RLP = µ
∞∑
i=1

π(i,1)

= µ(1− ρ)

(
∞∑
i=1

ρi

)
r1

=
λ[(λ

η
)s − (λ

η
)S + (λ

η
)s+1 + (λ

η
)S+1]

λ
η
[(λ
η
)S − (λ

η
)s −Q] +Q− (1− λ

η
)2
.

(f) Mean waiting time of customers in the system

WS =
L

λ
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where L = Expected number of customers in the system

=
∞∑
i=0

s∑
j=1

iπ(i,j) +
∞∑
i=0

S−1∑
j=s+1

i(π(i,j,0) + π(i,j,1)) +
∞∑
i=0

iπ(i,S)

=
∞∑
i=0

i(1− ρ)ρi
s∑
j=1

rj +
∞∑
i=0

i(1− ρ)ρi
S−1∑
j=s+1

(rj,0 + rj,1)

+
∞∑
i=0

i(1− ρ)ρirS

=
ρ

1− ρ
.

Therefore

WS =
L

λ

=
1

λ

(
ρ

1− ρ

)
=

1

µ− λ
.

Remark. When λ = η, we get the following performance measures:

(a) E(I) = [Qs(s+1)+(S+1)(Q−1)(S+s)
2

−
∑S−1

j=s+1 j
2 + S]rS.

(b) RP = Q
2

[s(s+ 1) +Q− 1]ηrS.

(c) RON = λrS.

(d) RLP = λQrS.

4.2.4 Cost Analysis

Next, we find a cost function. Let the various costs involved in the model

be as given below:

CH : Holding cost per unit time per unit inventory

CP : Cost of production per unit time per unit inventory

CS : Fixed cost for starting the production

CLP : Cost per unit item per unit time under local purchase
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CW : Waiting time cost per customer per unit time.

The total expected cost per unit time,

TEC = CHE(I) + CPRP + CSRON + CLPRLP + CWWS.

When λ 6= η, we get,

TEC =

[
CH

{
λ

η

(
1− λ

η

)−1 [
s− (s+ 1)

λ

η
+

(
λ

η

)s+1

−
(
λ

η

)S+1

−s
(
λ

η

)Q
+ (s+ 1)

(
λ

η

)Q+1
]

+

(
1− λ

η

)[
(Q− 1)(s+

Q

2
) +

λ

η

(
1− η

λ

)−1
[(

λ

η

)Q−1((
1− λ

η

)−1
− (s+ 1)

)
+ S −

(
1− λ

η

)−1]]}

+ (CHS + CSλ)

(
1− λ

η

)2

+ (CPη + CLPλ)

[(
λ

η

)S+1

−
(
λ

η

)s+1
]

+ CPη

(
Q
λ

η
−
(
λ

η

)2
)

+ CLPλ

((
λ

η

)s
−
(
λ

η

)S)]

×

[
λ

η

[(
λ

η

)S
−
(
λ

η

)s
−Q

]
+Q−

(
1− λ

η

)2
]−1

. (4.72)

Remark. When λ = η, we get the cost function as

TEC =

{
CH

[
Q
s(s+ 1)

2
+ (S + 1)(Q− 1)

(S + s)

2
−

S−1∑
j=s+1

j2 + S

]

+CP
Qη

2
[s(s+ 1) +Q− 1] + CSλ+ CLPλQ

}
rS + CW

(
1

µ− λ

)
.

To verify the convexity of the above cost functions, the derivative with

respect to s or S may be computed, and then equate it to zero. Nevertheless,

solving it is a laborious task. Since analysis of TEC as a function of s or S

is quite complex, we give a few numerical illustrations.
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4.2.4.1 Numerical Analysis

Case 1: Analysis of TEC as function of s (when λ 6= η).

Input Data:

CH = 50, CP = 200, CS = 2000, CLP = 220, CW = 2250, S = 25, λ = 2,

µ = 3, η = 2.5.

Table 4.1: Effect of s on TEC (λ 6= η)

s TEC
2 5182.2
3 5160.6
4 5149.6
5 5147.0
6 5151.3
7 5161.2
8 5175.9
9 5194.6
10 5216.9

Table 4.1 shows that as s increases from 2 to 10, the TEC values de-

crease, reach a minimum at s = 5 and then increase. Hence it is numerically

verified that TEC function is convex with respect to s.

Case 2: Analysis of TEC as a function of S (when λ 6= η).

Input Data:

CH = 50, CP = 200, CS = 2000, CLP = 220, CW = 2250, s = 2, λ = 2,

µ = 3, η = 2.5.

Table 4.2 shows that as S increases from 10 to 18, the TEC values

decrease, reach a minimum at S = 15 and then increase. Hence it is nu-

merically verified that TEC function is convex with respect to S.

Case 3: Analysis of TEC when s and S are varied simultaneously (when

λ 6= η).

Input Data:

CH = 50, CP = 200, CS = 2000, CLP = 220, CW = 2250, λ = 2, η = 2.5,

µ = 3.
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Table 4.2: Effect of S on TEC (λ 6= η)

S TEC
10 5147.5
11 5125.0
12 5109.1
13 5098.5
14 5092.3
15 5089.9
16 5090.6
17 5094.0
18 5099.6

Table 4.3: Effect of simultaneous variation of (s, S) on TEC (λ 6= η)

(s, S) TEC
(2,25) 5182.2
(3,26) 5178.1
(4,27) 5187.2
(5, 28) 5206.5
(6,29) 5233.5
(7,30) 5266.6

Table 4.3 shows that as (s, S) values increase simultaneously, TEC values

decrease, reach a minimum, at the values (3, 26) of (s, S) and then increase.

Hence it is numerically verified that TEC function is convex.

Case 4: Analysis of TEC as a function of S when λ = η.

Input Data:

CH = 50, CP = 200, CS = 2000, CLP = 220, CW = 2250, λ = η = 1.5,

µ = 6, s = 5.

Table 4.4: Effect of S on TEC (λ = η)

S TEC
28 432.9668
29 394.0952
30 355.5556
31 317.3181
32 279.3567
33 241.6484
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Table 4.4 shows that as S increases, TEC function is monotonically

decreasing and hence convex.

4.3 Model II: Local Purchase of N Units

(where 2 ≤ N < s)

4.3.1 Model Formulation and Analysis

Let X(t) = Number of customers in the system at time t,

I(t) = Inventory level at time t and

K(t) = Status of the production process.

K(t) =

1, if production process is ‘on’ at time t

0, if production process is ‘off’ at time t.

{(X(t), I(t), K(t)), t ≥ 0} is a CTMC with state space

{(i, j)|i ≥ 0; 1 ≤ j ≤ s}

∪ {(i, j, k)|i ≥ 0; s+ 1 ≤ j ≤ S − 1; k = 0, 1}

∪ {(i, S)|i ≥ 0}.

K(t) = 1, when 1 ≤ I(t) ≤ s, K(t) = 0, when I(t) = S and K(t) is either

0 or 1, when s+ 1 ≤ I(t) ≤ S − 1.

4.3.1.1 Infinitesimal Generator Ã

The infinitesimal generator of the process under consideration is obtained

in terms of submatrices as follows:

Ã =


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


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where B1 =



G1 η

G1 η
. . . . . .

G1 η

G1 P1

G2 P2

. . . . . .

G2 P2

G2 P3

G3


where G1 = [−(λ+ η)],

G2 =

[
−λ

−(λ+ η)

]
,

G3 = [−λ], P1 = [0 η],

P2 =

[
0 0

0 η

]
and P3 =

[
0

η

]
.

B is a square matrix of order 2S − s− 1.

A0 = λI2S−s−1,

A1 =



G̃1 η

G̃1 η
. . . . . .

G̃1 η

G̃1 P1

G̃2 P2

. . . . . .

G̃2 P2

G̃2 P3

G̃3


where G̃1 = [−(λ+ η + µ)], G̃2 =

[
−(λ+ µ)

−(λ+ η + µ)

]
and

G̃3 = [−(λ+ µ)].
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A1 is a square matrix of order 2S − s− 1.

A2 =



0 µ

µ

µ
. . .

µ

H1

H2

. . .

H2

H3 0



.

A2 is a square matrix of order 2S − s− 1.

4.3.1.2 Steady-State Analysis

Let A = A0 + A1 + A2 be the generator matrix and is obtained as

A =



Ĝ1 η µ

µ Ĝ1 η

µ Ĝ1 η
. . . . . . . . .

µ Ĝ1 η

µ Ĝ1 P1

H1 Ĝ2 P2

H2 Ĝ2 P2

. . . . . . . . .

H2 Ĝ2 P2

H2 Ĝ2 P3

H3 Ĝ3


where Ĝ1 = [−(µ + η)], Ĝ2 =

[
−µ 0

0 −(µ+ η)

]
, Ĝ3 = [−µ], H1 =

[
µ

µ

]
,

H2 = µI2 and H3 = [µ 0].

A is a square matrix of order 2S − s− 1.



4.3. MODEL II: LOCAL PURCHASE OF . . . 137

Theorem 4.3.1. The steady-state probability vector Φ of A partitioned as

Φ = (φ1, φ2, . . . , φN , . . . , φs−1, φs, φ̃s+1, φ̃s+2, . . . , φ̃S−1, φS)

where

φ̃l1 = (φl1,0, φl1,1); l1 = s+ 1, s+ 2, . . . , S − 1

and when µ 6= η, φ̃l is given by

φl =
(µl − ηl)
µl−1(µ− η)

µs(µQ − ηQ)

ηQ(µs − ηs)
φS,

l = 1, 2, . . . , s (and l 6= N + 1)

φN+1 =
η

µN
(µN − ηN)

µ− η
µs

(µQ − ηQ)

ηQ(µs − ηs)
φS

φl,0 = φS, l = s+ 1, . . . , S − 1

φl,1 =
µ(µS−l − ηS−l)
ηS−l(µ− η)

φS,

l = s+ 1, . . . , S − 1

and φS can be obtained by using Φē = 1 as

φS =

{
1

µ− η

[
(χQ1 − 1)χs1

(χs1 − 1)
(µ(s− 1) + η)− µ+ (1−Q)η

]
+ 1

}−1
where χ1 = µ/η.

Proof. We have ΦA = 0 and Φē = 1.

ΦA = 0⇒

φ1 ×−(µ+ η) + φ2µ = 0. (4.73)

φjη + φj+1 ×−(µ+ η) + φj+2µ = 0 (4.74)

for j = 1, 2, . . . , s− 2 and j 6= N − 1.

φ1µ+ φN−1η + φN ×−(µ+ η) + φN+1µ = 0. (4.75)

φs−1η + φs ×−(µ+ η) + φ̃s+1H1 = 0. (4.76)

φsP1 + φ̃s+1Ĝ2 + φ̃s+2H2 = 0. (4.77)

φ̃jP2 + φ̃j+1Ĝ2 + φ̃j+2H2 = 0. (4.78)
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for j = s+ 1, s+ 2, . . . , S − 3.

φ̃S−2P2 + φ̃S−1Ĝ2 + φSH3 = 0. (4.79)

φ̃S−1P3 + φSĜ3 = 0. (4.80)

Equation (4.73) gives

φ2 =

(
1 +

η

µ

)
φ1 (4.81)

Equation (4.74) gives

φj+2 =

(
1 +

η

µ

)
φj+1 −

η

µ
φj (4.82)

for j = 1, 2, . . . , s− 2 and j 6= N − 1.

Equation (4.82) gives

φl =
(µl − ηl)φ1

µl−1(µ− η)
(4.83)

for l = 1, 2, . . . , s and l 6= N + 1.

Equation (4.75) gives

φN+1 =

(
1 +

η

µ

)
φN − φ1 −

η

µ
φN−1

which reduces to

φN+1 =
η

µN

(
µN − ηN

)
(µ− η)

φ1. (4.84)

Equation (4.76) gives

φs+1,0 + φs+1,1 =

[
1 +

η

µ
+

(
η

µ

)2

+

(
η

µ

)3

+ · · ·+
(
η

µ

)s]
φ1. (4.85)

Equation (4.77) gives

φs+1,0 = φs+2,0 (4.86)

and ηφs − (µ+ η)φs+1,1 + µφs+2,1 = 0. (4.87)
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Using (4.86) in (4.85) we get

φs+2,0 + φs+1,1 =

[
1 +

η

µ
+

(
η

µ

)2

+

(
η

µ

)3

+ · · ·+
(
η

µ

)s]
φ1. (4.88)

Equation (4.80) gives

φS−1,1 =

(
µ

η

)
φS (4.89)

Equation (4.79) gives

φS−1,0 = φS (4.90)

and ηφS−2,1 − (µ+ η)φS−1,1 = 0. (4.91)

Equation (4.91) and (4.89) gives

φS−2,1 =

[
µ

η
+

(
µ

η

)2
]
φS. (4.92)

Equation (4.78) gives

µφj+1,0 = µφj+2,0 (4.93)

for j = s+ 1, s+ 2, . . . , S − 3 and

ηφj,1 − (µ+ η)φj+1,1 + µφj+2,1 = 0 (4.94)

for j = s+ 1, s+ 2, . . . , S − 3.

Using (4.93), (4.90) and (4.86) we get

φl,0 = φS (4.95)

for l = s+ 1, s+ 2, . . . , S − 1.

Using (4.89) and (4.92) in (4.94) we get

φl,1 =

(
µ

η
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)S−l)
φS (4.96)

for l = s+ 1, . . . , S − 3.

Using (4.89), (4.92) and (4.96), and after some steps, we get

φl,1 =

(
µ

η
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)S−l)
φS (4.97)

That is φl,1 =
µ

ηS−1
(µS−l − ηS−l)

(µ− η)
φS (4.98)
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for l = s+ 1, . . . , S − 1.

Equation (4.87) gives

φs =

(
1 +

µ

η

)
φs+1,1 −

µ

η
φs+2,1.

Also using (4.97) in the above equation, we get

φs =

[
µ

η
+

(
µ

η

)2

+

(
µ

η

)3

+ · · ·+
(
µ

η

)Q]
φS (4.99)

Equation (4.83) and (4.99) gives

φ1 =
µs(µQ − ηQ)

ηQ(µs − ηs)
φS. (4.100)

Using (4.83) and (4.100), we get

φl =
(µl − ηl)
µl−1(µ− η)

µs(µQ − ηQ)

ηQ(µs − ηs)
φS (4.101)

for l = 1, 2, 3, . . . , s and l 6= N + 1.

Using (4.100) we get (4.84) as

φN+1 =
η

µN
(µN − ηN)

µ− η
µs(µQ − ηQ)

ηQ(µs − ηs)
φS. (4.102)

Hence equations (4.101), (4.102), (4.95) and (4.98) gives the required result

when l = 1, 2, 3, . . . , S − 1.

Next, to find φS. Consider the normalizing equation Φē = 1. That is,

s∑
l=1

(l 6=N+1)

φl + φN+1 +
S−1∑
l=s+1

φl,0 +
S−1∑
l=s+1

φl,1 + φS = 1. (4.103)

s∑
l=1

(l 6=N+1)

φl =
µs

ηQ
(µQ − ηQ)

(µs − ηs)(µ− η)

s∑
l=1

(l 6=N+1)

(µl − ηl)
µl−1

φS. (4.104)

s∑
l=1

(l 6=N+1)

(µl − ηl)
µl−1

φS =

[
µ− η +

µ2 − η2

µ
+
µ3 − η3

µ2
+ · · ·+ µN − ηN

µN−1
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+
µN+2 − ηN+2

µN+1
+ · · ·+ µs − ηs

µs−1

]
φS

=

[
(s− 1)µ− ηµ(µs − ηs)

µs(µ− η)
+ η

(
η

µ

)N]
φS.

Therefore (4.104) becomes

s∑
l=1

(l 6=N+1)

φl =
µs

ηQ
(µQ − ηQ)

(µs − ηs)(µ− η)

[
(s− 1)µ− ηµ

µs
(µs − ηs)
(µ− η)

+ η

(
η

µ

)N]
φS.

(4.105)

S−1∑
l=s+1

φl,0 = (Q− 1)φS. (4.106)

S−1∑
l=s+1

φl,1 =
S−1∑
l=s+1

µ(µS−l − ηS−l)
ηS−l(µ− η)

φS

=
µ

ηS(µ− η)

[
S−1∑
l=s+1

(µS−l − ηS−l)
η−l

]
φS. (4.107)

S−1∑
l=s+1

µS−l − ηS−l

η−l
=

S−1∑
l=s+1

(ηlµS−l − ηS)

= ηs+1µ
(µQ−1 − ηQ−1)

µ− η
− (Q− 1)ηS. (4.108)

Using (4.108) in (4.107) we get

S−1∑
l=s+1

φl,1 =

[
µ2

ηQ−1
(µQ−1 − ηQ−1)

(µ− η)2
− (Q− 1)µ

µ− η

]
φS. (4.109)

Using (4.102), (4.105), (4.106) and (4.109) and on simplification, we get

(4.103) as{
1

µ− η

[
(χQ1 − 1)χs1
χs1 − 1

(µ(s− 1) + η)− µ+ (1−Q)η

]
+ 1

}
φS = 1

where χ1 = µ/η. Therefore

φS =

{
1

µ− η

[
(χQ1 − 1)χs1
χs1 − 1

(µ(s− 1) + η)− µ+ (1−Q)η

]
+ 1

}−1
.

Hence the theorem.
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Remark. When µ = η, we get the following:

φl = (l + 1)
Q

s
φS, where l = 1, 2, . . . , s (and l 6= N + 1).

φN+1 = N
Q

s
φS.

φl,0 = φS, where l = s+ 1, . . . , S − 1.

φl,1 = (S − l)φS, where l = s+ 1, . . . , S − 1.

φS =
[Q
s

(
s2

2
+

3

2
s− 2 +N) + (Q− 1)

(
Q

2
+ 1

)
+ 1]−1.

4.3.1.3 Stability Condition

The result in the Theorem 4.3.1 enables us to compute the stability of the

CTMC {(X(t), I(t), K(t)), t ≥ 0}.

Theorem 4.3.2. The process {(X(t), I(t), K(t)), t ≥ 0} is stable iff λ < µ.

Proof. Since the process under consideration is an LIQBD, it will be stable

iff

ΦA0ē < ΦA2ē (Neuts [40]) (4.110)

where Φ represents the steady-state probability vector of the generator

matrix A = A0 + A1 + A2.

ΦA0ē = [λ(φ1 + φ2 + · · ·+ φs + φs+1,0 + φs+1,1 + . . .

+ φs−1,0 + φs−1,1 + φS)]

= λ.

ΦA2ē = [µ(φ1 + φ2 + · · ·+ φs + φs+1,0 + φs+1,1 + . . .

+ φS−1,0 + φS−1,1 + φS)]

= µ.

Hence the using (4.110) we get λ < µ. Hence the theorem.

Having obtained the condition for the system to stabilize, we turn to

compute the long-run probability distribution of the system states. Infact

we show that the joint distribution of the system state can be written as

the product of the marginal distribution of the components.
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4.3.2 The Steady-State Probability Distribution of Ã

4.3.2.1 Stationary Distribution when Service Time is Negligible

Let Q̃ be the generator matrix associated with the Markovian chain of the

inventory process under consideration when service time is negligible, and

∆ = (r1, r2, . . . , rS) be the stationary probability vector corresponding to

Q̃.

Q̃ is obtained as

Q̃ =



G1 η λ

λ G1 η

λ G1 η
. . . . . . . . .

λ G1 η

λ G1 P1

Ĥ1 G2 P2

Ĥ2 G2 P2

. . . . . . . . .

Ĥ2 G2 P2

Ĥ2 G2 P3

Ĥ3 G3


where G1 = [−(λ + η)], G2 =

[
−λ 0

0 −(λ+ η)

]
, G3 = [−λ], P1 = [0 η],

P2 =

[
0 0

0 η

]
, P3 =

[
0

η

]
, Ĥ1 =

[
λ

λ

]
, Ĥ2 = λI2 and Ĥ3 = [λ 0].

Theorem 4.3.3. The steady-state probability vector ∆ of A is

∆ = (r1, r2, . . . , rN , . . . , rs−1, rs, r̃s+1, r̃s+2, . . . , r̃S−1, rS)

where

r̃l1 = (rl1,0, rl1,1); l1 = s+ 1, s+ 2, . . . , S − 1

and when λ 6= η, ∆ is given by

rl =
(λl − ηl)
λl−1(λ− η)

λs(λQ − ηQ)

ηQ(λs − ηs)
rS,
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l = 1, 2, . . . , s (and l 6= N + 1)

rN+1 =
η

λN
(λN − ηN)

λ− η
λs

(λQ − ηQ)

ηQ(λs − ηs)
rS

rl,0 = rS, l = s+ 1, . . . , S − 1

rl,1 =
λ(λS−l − ηS−l)
ηS−l(λ− η)

rS, l = s+ 1, . . . , S − 1

and rS can be obtained by using ∆ē = 1 as

rS =

{
1

λ− η

[
(χQ − 1)χs

(χs − 1)
(λ(s− 1) + η)− λ+ (1−Q)η

]
+ 1

}−1
where χ = λ/η.

Proof. We have ∆Q̃ = 0 and ∆ē = 1

∆Q̃ = 0⇒

r1 ×−(λ+ η) + r2λ = 0 (4.111)

rjη + rj+1 ×−(λ+ η) + rj+2λ = 0 (4.112)

for j = 1, 2, . . . , s− 2 and j 6= N − 1.

r1λ+ rN−1η + rN ×−(λ+ η) + rN+1λ = 0 (4.113)

rs−1η + rs ×−(λ+ η) + r̃s+1Ĥ1 = 0 (4.114)

rsP1 + r̃s+1G2 + r̃s+2Ĥ2 = 0 (4.115)

r̃jP2 + r̃j+1G2 + r̃j+2Ĥ2 = 0 (4.116)

where j = s+ 1, s+ 2, . . . , S − 3.

r̃S−2P2 + r̃S−1G2 + rSĤ3 = 0. (4.117)

r̃S−1P3 + rSG3 = 0. (4.118)

Equation (4.111) gives

r2 =
(

1 +
η

λ

)
r1. (4.119)
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Equation (4.112) gives

rj+2 =
(

1 +
η

λ

)
rj+1 −

η

λ
rj (4.120)

where j = 1, 2, . . . , s− 2 and j 6= N − 1.

Equation (4.120) gives

rl =
(λl − ηl)r1
λl−1(λ− η)

(4.121)

where l = 1, 2, . . . , s and l 6= N + 1.

Equation (4.113) and (4.121) gives

rN+1 =
η

λN

(
λN − ηN

)
(λ− η)

r1. (4.122)

Equation (4.114) gives

rs+1,0 + rs+1,1 =

[
1 +

η

λ
+
(η
λ

)2
+
(η
λ

)3
+ · · ·+

(η
λ

)s]
r1. (4.123)

This equation (4.115) gives

rs+1,0 = rs+2,0 (4.124)

and ηrs − (λ+ η)rs+1,1 + λrs+2,1 = 0 (4.125)

Using (4.124) in (4.123) we get

rs+2,0 + rs+1,1 =

[
1 +

η

λ
+
(η
λ

)2
+
(η
λ

)3
+ · · ·+

(η
λ

)s]
r1. (4.126)

Equation (4.118) gives

rS−1,1 =

(
λ

η

)
rS. (4.127)

Equation (4.117) gives

rS−1,0 = rS (4.128)

and ηrS−2,1 − (λ+ η)rS−1,1 = 0. (4.129)

Equation (4.129) and (4.127) gives

rS−2,1 =

[
λ

η
+

(
λ

η

)2
]
rS. (4.130)
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Equation (4.116) gives

λrj+1,0 = λrj+2,0 (4.131)

where j = s+ 1, s+ 2, . . . , S − 3 and

ηrj,1 − (λ+ η)rj+1,1 + λrj+2,1 = 0 (4.132)

where j = s+ 1, s+ 2, . . . , S − 3.

Hence by using (4.128), (4.124) and (4.131) we get

rl,0 = rS (4.133)

where l = s+ 1, s+ 2, . . . , S − 1.

Using (4.127) and (4.130) in (4.132), we get

rl,1 =

(
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−l)
rS (4.134)

where l = s+ 1, . . . , S − 3.

Using (4.127), (4.130) and (4.134), we get

rl,1 =

[
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)S−l]
rS (4.135)

That is, rl,1 =
λ

ηS−1
(λS−l − ηS−l)

(λ− η)
rS (4.136)

where l = s+ 1, . . . , S − 1.

Equation (4.125) gives

rs =

(
1 +

λ

η

)
rs+1,1 −

λ

η
rs+2,1.

Also using (4.135) in the above equation, we get

rs =

[
λ

η
+

(
λ

η

)2

+

(
λ

η

)3

+ · · ·+
(
λ

η

)Q]
rS. (4.137)

Equations (4.121) and (4.137) give

r1 =
λs(λQ − ηQ)

ηQ(λs − ηs)
rS. (4.138)
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Using (4.121) and (4.138), we get

rl =
(λl − ηl)
λl−1(λ− η)

λs(λQ − ηQ)

ηQ(λs − ηs)
rS (4.139)

where l = 1, 2, 3, . . . , s and l 6= N + 1.

Using (4.138) we get (4.122) as

rN+1 =
η

λN
(λN − ηN)

λ− η
λs(λQ − ηQ)

ηQ(λs − ηs)
rS. (4.140)

Hence equations (4.139), (4.140), (4.133) and (4.136) gives the required

result when l = 1, 2, 3, . . . , S − 1.

Next, to find rS.

Consider the normalizing equation ∆ē = 1. That is,

s∑
l=1

(l 6=N+1)

rl + rN+1 +
S−1∑
l=s+1

rl,0 +
S−1∑
l=s+1

rl,1 + rS = 1. (4.141)

s∑
l=1

(l 6=N+1)

rl =
λs

ηQ
(λQ − ηQ)

(λs − ηs)(λ− η)

s∑
l=1

(l 6=N+1)

(λl − ηl)
λl−1

rS. (4.142)

s∑
l=1

(l 6=N+1)

(λl − ηl)
λl−1

rS =

[
λ− η +

λ2 − η2

λ
+
λ3 − η3

λ2
+ · · ·+ λN − ηN

λN−1

+
λN+2 − ηN+2

λN+1
+ · · ·+ λs − ηs

λs−1

]
rS

=

[
(s− 1)λ− ηλ(λs − ηs)

λs(λ− η)
+ η

(η
λ

)N]
rS.

Therefore (4.142) becomes

s∑
l=1

(l 6=N+1)

rl =
λs

ηQ
(λQ − ηQ)

(λs − ηs)(λ− η)

[
(s− 1)λ− ηλ

λs
(λs − ηs)
(λ− η)

+ η
(η
λ

)N]
rS.

(4.143)

S−1∑
l=s+1

rl,0 = (Q− 1)rS. (4.144)
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S−1∑
l=s+1

rl,1 =
λ

ηS(λ− η)

[
S−1∑
l=s+1

(λS−l − ηS−l)
η−l

]
rS. (4.145)

S−1∑
l=s+1

λS−l − ηS−l

η−l
=

S−1∑
l=s+1

(ηlλS−l − ηS)

= ηs+1λ
(λQ−1 − ηQ−1)

λ− η
− (Q− 1)ηS. (4.146)

Using (4.146) in (4.145) we get

S−1∑
l=s+1

rl,1 =

[
λ2

ηQ−1
(λQ−1 − ηQ−1)

(λ− η)2
− (Q− 1)λ

λ− η

]
rS. (4.147)

Using (4.140), (4.143), (4.144) and (4.147) and on simplification, we get

(4.141) as{
1

λ− η

[
(χQ − 1)χs

χs − 1
(λ(s− 1) + η)− λ+ (1−Q)η

]
+ 1

}
rS = 1

where χ = λ/η. Therefore

rS =

{
1

λ− η

[
(χQ − 1)χs

χs − 1
(λ(s− 1) + η)− λ+ (1−Q)η

]
+ 1

}−1
.

Hence the theorem.

Remark. When λ = η, we get the following:

rl = (l + 1)
Q

s
rS, where l = 1, 2, . . . , s (and l 6= N + 1)

rN+1 = N
Q

s
rS

rl,0 = rS, where l = s+ 1, . . . , S − 1

rl,1 = (S − l)rS, where l = s+ 1, . . . , S − 1

and rS =
[Q
s

(s2
2

+
3

2
s− 2 +N

)
+ (Q− 1)

(
Q

2
+ 1

)
+ 1
]−1

.

4.3.2.2 Stochastic Decomposition of System States

Let π̄ be the steady-state probability vector of Ã.

π̄ = (π(0),π(1),π(2), . . . )
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where π(i) = (π(i,1), π(i,2), . . . , π(i,N), . . . , π(i,s), π(i,s+1,0), π(i,s+1,1), . . . , π(i,S−1,0),

π(i,S−1,1), π(i,S)) where i = 0, 1, 2, . . . and π(i,j) = limt→∞ P (X(t) = i, I(t) =

j) and π(i,j,k) = limt→∞ P (X(t) = i, I(t) = j,K(t) = k).

π(i,j) is the steady-state probability for the state (i, j) and π(i,j,k) is the

steady-state probability for the state (i, j, k).

We claim that

π(i) = Kρi∆, i ≥ 0 (4.148)

where ∆ = (r1, r2, . . . , rN , . . . , rs, rs+1,0, rs+1,1, . . . , rS−1,0, rS−1,1, rS) is the

steady-state probability vector when the service time is negligible, K is a

constant to be determined and ρ = λ
µ
.

Proof. We have π̄Ã = 0 and π̄ē = 1.

π̄Ã = 0⇒ (π(0),π(1),π(2), . . . )


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 = 0

which gives

π(0)B1 + π(1)A2 = 0 (4.149)

π(i+2)A2 + π(i+1)A1 + π(i)A0 = 0 (4.150)

i = 0, 1, . . . .

When (4.148) is true, we get from (4.149),

Kρ0∆B1 +Kρ∆A2 = 0

That is K∆(B1 + ρA2) = 0.

That is ∆Q̃ = 0.

which is true since ∆ = (r1, r2, . . . , rS) is the steady-state probability vector

corresponding to the generator Q̃ associated with the Markovian chain of

the inventory process under consideration when service time is negligible.
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When (4.148) is true, we get from (4.150),

Kρi+2∆A2 +Kρi+1∆A1 +Kρi∆A0 = 0, i = 0, 1, 2, . . .

That is ∆(ρA2 + A1 +
1

ρ
A0) = 0.

That is ∆Q̃ = 0,

which is true, by following the same argument given above.

Hence, the stochastic decomposition of system states is verified.

4.3.2.3 Determination of K

We have π̄ē = 1. That is

∞∑
i=0

s∑
j=1

(j 6=N+1)

π(i,j) +
∞∑
i=0

π(i,N+1) +
∞∑
i=0

S−1∑
j=s+1

(π(i,j,0) + π(i,j−1)) +
∞∑
i=0

π(i,S) = 1.

That is,

K

[
∞∑
i=0

ρi

] s∑
j=1

(j 6=N+1)

rj + rN+1 +
S−1∑
j=s+1

(rj,0 + rj,1) + rS

 = 1.

That is, K
∑∞

i=0 ρ
i = 1.

Therefore K = 1− ρ where ρ = λ
µ
.

4.3.2.4 Explicit Solution

From the above discussions, we can write the steady-state probability vector

explicitly as in the following theorem:

Theorem 4.3.4. The steady-state probability vector π̄ of Ã partitioned as

π̄ = (π(0),π(1),π(2), . . . ),

where each π(i), i = 0, 1, 2, . . . again partitioned as π(i) = (π(i,1), π(i,2), . . . ,

π(i,N), . . . , π(i,s), π(i,s+1,0), π(i,s+1,1) . . ., π(i,S−1,0), π(i,S−1,1), π(i,S)) are ob-

tained by

π(i) = (1− ρ)ρi∆, i ≥ 0 (4.151)
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where ρ = λ/µ and

∆ = (r1, r2, . . . , rN , . . . , rs, rs+1,0, rs+1,1, . . . , rS−1,0, rS−1,1, rS) be the steady

state probability vector when the service time is negligible.

∆ can be obtained from:

rl =
(λl − ηl)
λl−1(λ− η)

λs(λQ − ηQ)

ηQ(λs − ηs)
rS,

l = 1, 2, . . . , s (and l 6= N + 1).

rN+1 =
η

λN
(λN − ηN)

λ− η
λs

(λQ − ηQ)

ηQ(λs − ηs)
rS.

rl,0 = rS, l = s+ 1, . . . , S − 1.

rl,1 =
λ(λS−l − ηS−l)
ηS−l(λ− η)

rS, l = s+ 1, . . . , S − 1

and rS can be obtained by using ∆ē = 1 as

rS =

{
1

λ− η

[
(χQ − 1)χs

(χs − 1)
(λ(s− 1) + η)− λ+ (1−Q)η

]
+ 1

}−1

where χ = λ/η.

The result indicated by (4.151) not only tells us that the original sys-

tem possess stochastic decomposition but also the important fact that the

system state distribution is the product of the distribution of its marginals:

one component is the classical M/M/1 whose long run distribution for i

customers in the system is (1− ρ)ρi, i ≥ 0 and the other factor is the prob-

ability of j items in the inventory. Next we turn to find out how the system

performs. The measures given in the following are pointers to the system

performance.
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4.3.3 System Performance Measures

(a) Expected number of customers in the system,

Ei =
∞∑
i=0

i(1− ρ)ρi

=
ρ

1− ρ

=
λ

µ− λ
.

(b) Expected inventory held in the system,

E(I) =
∞∑
i=0

s∑
j=1

(j 6=N+1)

jπ(i,j) + (N + 1)
∞∑
i=0

π(i,N+1)

+
∞∑
i=0

S−1∑
j=s+1

j(π(i,j,0) + π(i,j,1)) +
∞∑
i=0

Sπ(i,S)

=

(
∞∑
i=0

(1− ρ)ρi

) s∑
j=1

(j 6=N+1)

jrj + (N + 1)rN+1

+
S−1∑
j=s+1

j(rj,0 + rj,1) + SrS

]

=
s∑
j=1

(j 6=N+1)

jrj + (N + 1)rN+1 +
S−1∑
j=s+1

j(rj,0 + rj,1) + SrS

=

 (χQ − 1)

(1− χ−1)(1− χ−s)

 s∑
j=1

(j 6=N+1)

j(1− χ−j)


+

(N + 1)(1− χ−N)(χQ − 1)

(χ− 1)(1− χ−s)

+

(
S−1∑
j=s+1

j

)
+

(
S−1∑
j=s+1

j(χS−j − 1)

)
1

1− χ−1
+ S

]
rS (4.152)
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s∑
j=1

(j 6=N+1)

j(1− χ−j) =
s∑
j=1

(j 6=N+1)

j −
s∑
j=1

(j 6=N+1)

jχ−j. (4.153)

Put δ = χ−1

s∑
j=1

(j 6=N+1)

j =
s(s+ 1)

2
− (N + 1) (4.154)

s∑
j=1

(j 6=N+1)

jχ−j = ψ1 + ψ2 (4.155)

where

ψ1 = δ + 2δ2 + 3δ3 + · · ·+NδN and

ψ2 = (N + 2)δN+2 + (N + 3)δN+3 + · · ·+ sδs

ψ1 can be obtained as

ψ1 =
δ(1− δN)

(1− δ)2
−N δN+1

1− δ
(4.156)

and ψ2 can be obtained as

ψ2 =
(N + 2)δN+2 − sδs+1)

1− δ
− δN+31− δs−N−2

(1− δ)2
(4.157)

S−1∑
j=s+1

j = (Q− 1)

(
Q

2
+ s

)
. (4.158)

Also we get on simplification

S−1∑
j=s+1

j(χS−j − 1) = χQ−1
(1− χ−(Q−1))

1− χ−1

(
s+

1

1− χ−1

)
− (Q− 1)

[
(1− χ−1)−1 + s+

Q

2

]
. (4.159)



154 CHAPTER 4. (s, S) PRODUCTION INVENTORY SYSTEMS · · ·

Using (4.153), (4.154), (4.155), (4.156), (4.157), (4.158) and (4.159) in

(4.152) and on simplification, we get,

E(I) =

[
(χQ − 1)

(1− χ−1)(1− χ−s)

[
s(1 + s)

2
− (N + 1)

− χ−1(1− χ−N)

(1− χ−1)2
+
Nχ−(N+1)

1− χ−1

− [(N + 2)χ−(N+2) − sχ−(s+1)]

1− χ−1
− χ−(N+3) (1− χ−(s−N−2))

(1− χ−1)2

]
+

(N + 1)(1− χ−N)(χQ − 1)

(χ− 1)(1− χ−s)
+ (Q− 1)(s+

Q

2
)

+

[
χQ−1

(
1− χ−(Q−1)

1− χ−1

)(
s+

1

1− χ−1

)
−(Q− 1)

(
1

1− χ−1
+ s+

Q

2

)](
1

1− χ−1

)
+ S

]
rS.

(c) Expected rate at which production process is switched ‘on’

RON = µ
∞∑
i=1

π(i,s+1,0)

= µ(1− ρ)
∞∑
i=1

ρirs+1,0

= λrS.

(d) Expected production rate

RP =
( ∞∑
i=0

s∑
j=1

π(i,j) +
∞∑
i=0

S−1∑
j=s+1

π(i,j,1)
)
η

=

(
∞∑
i=0

(1− ρ)ρi

)( s∑
j=1

rj +
S−1∑
j=s+1

rj,1

)
η

=
[ s∑
j=1

rj +
S−1∑
j=s+1

rj,1

]
η. (4.160)

Using Theorem 4.3.3 and on simplification, we get

s∑
j=1

rj =
(χQ − 1)χs

χs − 1

[(
χ

χ− 1

)2

((s− 1)(1− χ−1)
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−χ−1(1− χ−s − χ−N(1− χ−1))) +
χN − 1

χN(χ− 1)

]
rS (4.161)

and

S−1∑
j=s+1

rj,1 =
1

(1− χ−1)2
[Q(χ−1 − 1) + χ−1(χQ − 1)]rS. (4.162)

Using (4.161) and (4.162) in (4.160), we get

RP =

{
(χQ − 1)χs

χs − 1

[(
χ

χ− 1

)2

((s− 1)(1− χ−1)− χ−1

×(1− χ−s − χ−N(1− χ−1))) +
χN − 1

χN(χ− 1)

]
+

1

(1− χ−1)2
[Q(χ−1 − 1) + χ−1(χQ − 1)]

}
ηrS.

(e) Expected local purchase rate,

RLP = µ

∞∑
i=1

π(i,1)

= µ

∞∑
i=1

(1− ρ)ρir1

= λ
(χQ − 1)

(1− χ−s)
rS.

(f) Expected waiting time of customers in the system,

Ws =
L

λ
where
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L = Expected number of customers in the system

=
∞∑
i=0

s∑
j=1

iπ(i,j) +
∞∑
i=0

iπ(i,N+1)

+
∞∑
i=0

S−1∑
j=s+1

iπ(i,j,0) +
∞∑
i=0

S−1∑
j=s+1

iπ(i,j,1) +
∞∑
i=0

iπ(i,S)

=

[
∞∑
i=0

i(1− ρ)ρi

] ∑
j=1

(j 6=N+1)

rj + rN+1 +
S−1∑
j=s+1

(rj,0 + rj,1) + rS


=

ρ

1− ρ
.

Therefore

WS =
1

λ

(
ρ

1− ρ

)
=

1

µ− λ
.

Remark. When λ = η, we get the following performance measures:

(a) E(I) = [Q
6

(s+ 1)(2s+ 4) + (N + 1)NQ
s

+1
2
[(S + 1)(Q− 1)(S + s)−

∑S−1
j=s+1 j

2 + S]rS

(b) RP = [Q
s
( s(s+1)

2
+ s− 2) + NQ

s
+ Q(Q−1)

2
]ηrS

(c) RON = λrS

(d) RLP = 2λQ
s
rS

4.3.4 Cost Analysis

Next, we find a cost function. Let the various costs involved in the model

be as given below.

CH : Holding cost per unit time per unit inventory

CP : Cost of production per unit time per unit inventory

CS : Fixed cost for starting the production
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CLP : Cost per unit item per unit time under local purchase

CW : Waiting time cost per customer per unit time.

The total expected cost per unit time is

TEC = CHE(I) + CPRP + CSRON + CLPRLPN + CWWS.

When λ 6= η, we get,

TEC =

[
CH

{
(χQ − 1)

(1− χ−1)(1− χ−s)

[
s(1 + s)

2
− (N + 1)− χ−1(1− χ−N)

(1− χ−1)2

+
Nχ−(N+1)

1− χ−1
− [(N + 2)χ−(N+2) − sχ−(s+1)]

1− χ−1
− χ−(N+3) (1− χ−(s−N−2))

(1− χ−1)2

]
+

(N + 1)(1− χ−N)(χQ − 1)

(χ− 1)(1− χ−s)
+ (Q− 1)

(
s+

Q

2

)
+

[
χQ−1

(1− χ−(Q−1))
1− χ−1

(
s+

1

1− χ−1

)
−(Q− 1)

(
1

1− χ−1
+ s+

Q

2

)](
1

1− χ−1

)
+ S

}
+ CP

{
(χQ − 1)χs

χs − 1

[(
χ

χ− 1

)2

((s− 1)(1− χ−1)

−χ−1(1− χ−s − χ−N(1− χ−1))) +
χN − 1

χN(χ− 1)

]
+

1

(1− χ−1)2
[Q(χ−1 − 1) + χ−1(χQ − 1)]

}
η

+CSλ+ CLP

{
λ

(χQ − 1)

(1− χ−s)

}
N

]
rS + CW ×

1

µ− λ

where χ = λ
η

and

rS =

[(
1

λ− η

)(
(χQ − 1)χs

(χs − 1)
(λ(s− 1) + η)− λ+ (1−Q)η

)
+ 1

]−1
.
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Remark. When λ = η, we get the cost function as

TEC =

{
CH

[
Q(s+ 1)(2s+ 4)

6
+ (N + 1)N

Q

s
+ (S + 1)(Q− 1)

(S + s)

2

−
S−1∑
j=s+1

j2 + S

]
+ CP

[
Q

2

(
s(s+ 1)

2
+ s− 2

)
+
NQ

s
+
Q(Q− 1)

2

]
η

+λ(CS + CLP
2Q

s
)

}
rS + CW

(
1

µ− λ

)
.

To verify the convexity of the above cost functions with respect to s, S

or N , the corresponding derivative is to be computed, then equate it to

zero. Nevertheless, solving it is a laborious task. Since analysis of TEC as a

function of s, S or N is quite complex, we give a few numerical illustrations.

4.3.4.1 Numerical Analysis

Case 1: Analysis of TEC as a function of S.

Input Data:

CH = 25, CP = 200, CS = 3000, CLP = 220, CW = 3500, s = 9, N = 5,

λ = 1.5, µ = 5, η = 2.5.

Table 4.5 shows that as S increases, TEC values decrease, reach a min-

imum at S = 25 and then increase. Hence it is numerically verified that

TEC function is convex in S.

Table 4.5: Effect of S on TEC (λ 6= η)

S TEC
19 1960.1
20 1942.4
21 1929.6
22 1920.6
23 1914.7
24 1911.3
25 1909.8
26 1910.0
27 1911.5
28 1914.2
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Table 4.6: Effect of N on TEC (λ 6= η)

N TEC
2 1916.7
3 1915.4
4 1913.3
5 1909.8
6 1903.9
7 1893.9
8 1877.3

Table 4.7: Effect of N on TEC (λ = η)

N TEC
2 1588.0
3 1586.9
4 1586.3
5 1586.0
6 1586.1
7 1586.6
8 1587.4

Case 2: Analysis of TEC as a function of N .

Input Data:

CH = 25, CP = 200, CS = 3000, CLP = 220, CW = 3500, s = 9, S = 25

λ = 1.5, µ = 5, η = 2.5.

Table 4.6 shows that as N increases, TEC function is monotonically

decreasing, and hence convex.

Case 3: Analysis of TEC as function of N (when λ = η)

Input Data: CH = 25, CP = 200, CS = 3000, CLP = 220, CW = 3500,

λ = η = 1.5, µ = 5, s = 9, S = 25.

Table 4.7 shows that as N increases, TEC values decrease, reach a min-

imum at N = 5 and then increase. Hence it is numerically verified that

TEC function is convex in N .





Chapter 5

(s,Q) Inventory Systems with

Positive Lead Time and

Service Time under N-Policy

with Coxian-2 Arrivals and

Services

5.1 Introduction

So far we have restricted the distributions involved to be exponential.

Though mathematically it is a very nice function, its applicability is limited.

However our purpose of concentrating to exponential distribution as under-

lying distribution starts from our primary objective of deriving stochastic

decomposition of the systems under study. Now we go beyond exponential

distribution. A nice object of the next stage is Coxian distribution of order

2. Tijms [54] compared an M/Cox2/1 and M/D/1 and showed that Cox2

acts as a very good approximation to deterministic service.

In this chapter an (s,Q) inventory system with service time, in which

N -policy is adopted during lead time, is considered. The reorder level is s

and ordering quantity is fixed at Q = S − s. A replenishment lead time

161
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which follows exponential distribution with parameter γ is assumed. It is

assumed that there is only one server. Also suppose that the inter-arrival

time has a Coxian-2 distribution with parameters (b, λ1, λ2). Without loss

of generality we may assume that λ1 ≥ λ2. The arrival mechanism may be

described as follows: An arriving customer first goes through phase 1 for an

exponentially distributed time with parameter λ1 and gets into the system

with probability 1 − b, or goes through a second phase with probability b.

The sojourn time in phases are independent exponentials with means 1/λ1

and 1/λ2 respectively, that is, the arrival mechanism is consisting either of

only one exponential stage with mean 1/λ1 (with probability 1 − b) after

which the arrival is admitted to the system, or of two successive indepen-

dent exponential stages with means 1/λ1 and 1/λ2 respectively, after which

absorption occurs.

Also, suppose that the service time of a customer has a Coxian-2 dis-

tribution with parameters (θ, µ1, µ2). Without loss of generality we may

assume that µ1 ≥ µ2. The service mechanism may be considered as fol-

lows: The customer first goes through phase 1 to get his service completed

with probability 1 − θ, or goes through a second phase with probability

θ. The sojourn time in the two phases are independent exponential ran-

dom variables with means 1/µ1 and 1/µ2, respectively, that is, the service

mechanism consists either of one exponential stage (with probability 1− θ)
with mean 1/µ1 after which the service is completed, or of two independent

exponential stages with means 1/µ1 and 1/µ2 respectively, after which the

service is completed, the probability of the second stage of service being θ.

In this model, N -policy is adopted during a lead time, and is as follows:-

As and when the inventory level drops to s−N (where s ≥ N) during

a lead time, due to N service completions after placing a natural purchase

order at level s, an immediate local purchase of Q + N units is made,

by cancelling the order that is already placed. Cancellation of order is

necessary, since otherwise the inventory level may go beyond S at the time

of the replenishment against that order. In otherwords, we will not permit

the inventory level to reduce beyond s − N + 1. We go for an immediate

local purchase at the moment at which the inventory level drops to s−N ,
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regardless of the number of customers present in the system. Also it is

assumed that supply of items is instantaneous in local purchase but at a

much higher cost. This idea of local purchase is used in Saffari et al. [43] to

obtain product form solution for arbitrary distributed replenishment time.

5.2 Model Formulation and Analysis

Let X(t) = Number of customers in the system at time t,

I(t) = Inventory level at time t,

Z1(t) = Phase of the inter-arrival time in progress at time t and

Z2(t) = Phase of the service time in progress at time t.

Ỹ = {(X(t), Z1(t), I(t), Z2(t)), t ≥ 0}

is a continuous-time stochastic process with state space

{(i, z1, j, z2)|i ≥ 1; z1 = 1, 2; j = s−N + 1, . . . , S; z2 = 1, 2}

∪ {(0, z1, j)|z1 = 1, 2; j = s−N + 1, . . . , S}.

Let X(0) = 0, I(0) = S, Z1(0) = 1.

5.2.1 Infinitesimal Generator Ã

Ã can be obtained in terms of submatrices as follows:

Ã =


B1 B0

B2 A1 A0

A2 A1 A0

. . . . . . . . .


where

A0 =

[
λ1(1− b)I2(Q+N) O2(Q+N)

O2(Q+N) λ2I2(Q+N)

]
and
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where J1 =

[
−(γ + λ1 + µ1) θµ1

0 −(γ + λ1 + µ2)

]
,

J2 =

[
−(γ + λ2 + µ1) θµ1

0 −(γ + λ2 + µ2)

]
,

T1 =

[
−(λ1 + µ1) θµ1

0 −(λ1 + µ2)

]
, T2 =

[
−(λ2 + µ1) θµ1

0 −(λ2 + µ2)

]
,

D1 = γI2 and D2 = λ1bI2.

B1 is obtained as given in page 165.

B0 =



J4

J4
. . .

J4

J5
. . .

J5


where J4 = [(1− b)λ1 0] and J5 = [λ2 0].
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B
1
=

                                        −
(γ

+
λ
1
)

γ
bλ

1

. .
.

. .
.

−
(γ

+
λ
1
)

γ

−
λ
1

. .
.

. .
.

−
λ
1

bλ
1

−
(γ

+
λ
2
)

γ

. .
.

. .
.

−
(γ

+
λ
2
)

γ
−
λ
2

. .
.

−
λ
2

                                        
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B2 =



02×1 J6

J6
. . .

J6

02×1 J6

J6
. . .

J6 02×1



where J6 =

[
(1− θ)µ1

µ2

]
.

A2 =



J3

J3
. . .

J3

J3

J3
. . .

J3



where J3 =

[
(1− θ)µ1

µ2

]
.

A0, A1, A2 are square matrices of order 4(Q + N), B0 is a matrix of order

2(Q + N)× 4(Q + N), B1 is a square matrix of order 2(Q + N) and B2 is

a matrix of order 4(Q+N)× 2(Q+N).

5.2.2 Steady-State Analysis

Let A = A0 + A1 + A2 be the generator matrix and is obtained as
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

T7 D1 J3 D2

J3
. . .

. . .
. . .

. . . T7 D1

T8

. . .

. . .

T8 D2

T9 D1 J3
. . .

. . .

T9 D1

T10

. . .

J3 T10


Note that A is a square matrix of order 4(Q+N).

5.2.3 Stability Condition

Theorem 5.2.1. The process under study is stable iff

λ1(1− b)
S∑

j=s−N+1

2∑
z2=1

φ1,j,z2 + λ2

S∑
j=s−N+1

2∑
z2=1

φ2,j,z2

< µ1(1− θ)
S∑

j=s−N+1

2∑
z1=1

φz1,j,1 + µ2

S∑
j=s−N+1

2∑
z1=1

φz1,j,2. (5.1)

Proof. Since the process under consideration is a level-independent quasi-

birth-death process, it is stable iff

ΦA0ē < ΦA2ē (5.2)

(Neuts [40]), where Φ is the steady-state distribution of the generator ma-

trix A = A0 + A1 + A2. Write

Φ = (φ1,s−N+1,1, φ1,s−N+1,2, φ1,s−N+2,1, , φ1,s−N+2,2,

. . . , φ1,S,1, φ1,S,2, φ2,s−N+1,1, φ2,s−N+1,2, . . . ,

φ2,s−N+2,1, φ2,s−N+2,2, . . . , φ2,S,1, φ2,S,2).
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Then after some algebra we get

ΦA0ē = λ1(1− b)
S∑

j=s−N+1

2∑
z2=1

φ1,j,z2 + λ2

S∑
j=s−N+1

2∑
z2=1

φ2,j,z2

and

ΦA2ē = (1− θ)µ1

S∑
j=s−N+1

2∑
z1=1

φz1,j,1 + µ2

S∑
j=s−N+1

2∑
z1=1

φz1,j,2.

Hence by using equation (5.2), we get the stability condition as

λ1(1− b)
S∑

j=s−N+1

2∑
z2=1

φ1,j,z2 + λ2

S∑
j=s−N+1

2∑
z2=1

φ2,j,z2

< µ1(1− θ)
S∑

j=s−N+1

2∑
z1=1

φz1,j,1 + µ2

S∑
j=s−N+1

2∑
z1=1

φz1,j,2.

Theorem 5.2.2. When the stability condition holds, the steady-state prob-

ability vector π̄ which is partitioned as π̄ = (π(0),π(1),π(2), . . . ) where each

π(i) = (π(i,1,s−N+1,1), π(i,1,s−N+1,2), π(i,1,s−N+2,1), π(i,1,s−N+2,2), . . . ,

π(i,1,S,1), π(i,1,S,2), π(i,2,s−N+1,1), π(i,2,s−N+1,2), . . . , π(i,2,S,1), π(i,2,S,2)),

where i ≥ 1 and

π(0) = (π(0,1,s−N+1), π(0,1,s−N+2), . . . , π(0,1,S),

π(0,2,s−N+1), π(0,2,s−N+2), . . . , π(0,2,S))

is given by

π(i) = π(0)Ri, i = 0, 1, 2, . . .

The matrix R is the minimal non-negative solution of the matrix-quadratic

equation R2A2 + RA1 + A0 = O and the vector π(0) is obtained by solv-

ing π(0)(B1 + RA2) = 0 and π(0)(B0 + RA1 + R2A2) = 0 subject to the

normalizing condition π(0)(I −R)−1ē = 1 (Neuts [40]).
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Proof. Since Markov process is regular, the stationary probability distribu-

tion exists and is given by

π̄Ã = 0 and π̄ē = 1

where

Ã =


B1 B0

B2 A1 A0

A2 A1 A0

. . . . . . . . .

 .

π̄Ã = 0⇒

π(0)B1 + π(1)B2 = 0 (5.3)

π(0)B0 + π(1)A1 + π(2)A2 = 0 (5.4)

π(i)A0 + π(i+1)A1 + π(i+2)A2 = 0 (5.5)

where i = 1, 2, . . . .

In order to express the solution in a recursive form, we assume that

π(i) = π(0)Ri, i = 0, 1, 2, 3, . . . (5.6)

where the spectral radius of R is less than 1, which is ensured by the stability

condition given by (5.1).

(5.6) in (5.3) ⇒

π(0)(B1 +RB2) = 0. (5.7)

(5.6) in (5.4) ⇒

π(0)(B0 +RA1 +R2A2) = 0. (5.8)

(5.6) in (5.5) ⇒
π(0)Ri(A0 +RA1 +R2A2) = 0,

where i = 1, 2, 3, . . . .

That is, π(i)(A0 +RA1 +R2A2) = 0, (5.9)
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where i = 1, 2, 3, . . . .

Since (5.9) in true for i = 1, 2, 3, . . . we get

R2A2 +RA1 + A0 = O (5.10)

where A0, A1 and A2 are known.

Hence R is a solution of the matrix-quadratic equation (5.10).

Also, we have π̄ē = 1 which is the normalizing condition.

∞∑
i=0

π(i)ē = 1.

∞∑
i=0

(π(0)Ri)ē = 1.

π(0)(I −R)−1ē = 1. (5.11)

π(0) is obtained by solving (5.7) and (5.8) subject to the normalizing con-

dition (5.11).

Hence the theorem.

5.3 System Performance Measures

(a) Expected inventory held in the system,

E(I) =
∞∑
i=1

2∑
z1=1

S∑
j=s−N+1

2∑
z2=1

jπ(i,z1,j,z2) +
2∑

z1=1

S∑
j=s−N+1

jπ(0,z1,j).

(b) Mean waiting time of customers in the system,

WS =

(
1

λ1
+ b

1

λ2

)
L

where

L =
∞∑
i=1

2∑
z1=1

S∑
j=s−N+1

2∑
z2=1

iπ(i,z1,j,z2),

is the expected number of customers in the system.
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(c) Mean reorder rate

Rr = (1− θ)µ1

∞∑
i=1

2∑
z1=1

π(i,z1,s+1,1) + µ2

∞∑
i=1

2∑
z1=1

π(i,z1,s+1,2).

(d) Mean local purchase rate

RLP = (1− θ)µ1

∞∑
i=1

2∑
z1=1

π(i,z1,s−N+1,1) + µ2

∞∑
i=1

2∑
z1=1

π(i,z1,s−N+1,2).

5.4 Cost Analysis

Now we obtain a cost function. Let the various costs involved in the model

be as given below:

CH : Inventory holding cost per unit item per unit time

CS : Fixed setup cost per unit order, under natural purchase

CC : Cost per unit order cancelled

CW : Cost of waiting time per customer per unit time

CLP : Cost per unit order under local purchase

CNP : Cost per unit order under natural purchase.

TEC = CHE(I)+(CS+CNPQ)Rr+CLP(Q+N)RLP+CCRLP+CWWS.

5.4.1 Numerical Analysis

Case 1. Analysis of TEC and certain performance measures as functions

of N .

Input Data:

s = 8, S = 20, b = 0.3, θ = 0.6, λ1 = 23, λ2 = 20, µ1 = 25, µ2 = 24, γ = 20,

CH = 0.5, CS = 1000, CC = 16, CW = 1200, CLP = 35, CNP = 30.

Table 5.1 shows that as N increases, TEC values decrease, reach a min-

imum at N = 7 and then increase. Hence it is numerically verified that

TEC function is convex with respect to N .

Table 5.2 shows that mean reorder rate Rr is a convex function in N .

Also we get that as N increases, both E(I) and RLP are monotonically

decreasing.
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Table 5.1: Effect of N on TEC

N TEC
1 2902.7886
2 2727.6583
3 2655.2768
4 2626.3241
5 2615.6430
6 2612.3043
7 2611.6755
8 2611.8947

Table 5.2: Effect of N on E(I), Rr and RLP

N E(I) Rr RLP

1 14.2486 1.5993 0.8086
2 13.9919 1.5985 0.4089
3 13.7986 1.6145 0.2086
4 13.6711 1.6313 0.1062
5 13.5937 1.6442 0.0539
6 13.5495 1.6530 0.0273
7 13.5253 1.6587 0.0137
8 13.5126 1.6621 0.0069

Case 2. Analysis of TEC and certain performance measures as functions

of S.

Input Data:

N = 5, s = 8, b = 0.3, θ = 0.6, λ1 = 23, λ2 = 20, µ1 = 25, µ2 = 24, γ = 20,

CH = 0.5, CS = 1000, CC = 16, CW = 1200, CLP = 35, CNP = 30.

Table 5.3: Effect of S on TEC

S TEC
20 2615.6430
21 2490.8471
22 2383.7080
23 2290.7326
24 2209.2922
25 2137.3705
26 2073.3955
27 2016.1232
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Table 5.3 shows that as S increases, TEC function is monotonically

decreasing.

Table 5.4: Effect of S on E(I), Rr and RLP

S E(I) Rr RLP

20 13.5937 1.6442 0.0539
21 14.0954 1.5193 0.0498
22 14.5968 1.4120 0.0463
23 15.0980 1.3189 0.0432
24 15.5991 1.2373 0.0406
25 16.1001 1.1652 0.0382
26 16.6009 1.1011 0.0361
27 17.1016 1.0436 0.0342

Table 5.4 shows that as S increases, Rr and RLP are monotonically

decreasing and E(I) is monotonically increasing.

Case 3. Analysis of TEC and certain performance measures when (N, s, S)

varies simultaneously.

Input Data: b = 0.3, θ = 0.6, λ1 = 23, λ2 = 20, µ1 = 25, µ2 = 24, γ = 20,

CH = 0.5, CS = 1000, CC = 16, CW = 1200, CLP = 35, CNP = 30.

Table 5.5: Effect of simultaneous variation of (N, s, S) on TEC

(N, s, S) TEC
(5,11,28) 2138.8705
(6,12,29) 2131.8418
(7,13,30) 2129.0491
(8,14,31) 2128.1484
(9,15,32) 2128.0742
(10,16,33) 2128.3515
(11,17,34) 2128.7727

Table 5.5 shows that as (N, s, S) values increase simultaneously, TEC

values decrease first, reach a minimum at the values (9, 15, 32) of (N, s, S)

and then start increasing. Hence it is numerically verified that TEC func-

tion is convex.



174 CHAPTER 5. (s,Q) INVENTORY SYSTEMS WITH · · ·

Table 5.6: Effect of simultaneous variation of (N, s, S) on E(I), Rr and RLP

(N, s, S) E(I) Rr RLP

(5,11,28) 19.1001 1.1652 0.0382
(6,12,29) 20.0545 1.1697 0.0193
(7,13,30) 21.0289 1.1725 0.0097
(8,14,31) 22.0151 1.1742 0.0049
(9,15,32) 23.0077 1.1752 0.0025
(10,16,33) 24.0039 1.1757 0.0012
(11,17,34) 25.0019 1.1761 0.0006

Table 5.6 shows that as (N, s, S) values increase simultaneously, RLP is

monotonically decreasing but E(I) and Rr are monotonically increasing.



Concluding Remarks

In this thesis we have considered certain queuing-inventory models with pos-

itive service time and lead time. In all the models considered, the concept

of local purchase has been introduced to prevent customer loss, thereby

ensuring customer satisfaction and goodwill. It is common practice that

when an item is not available in a shop for which a demand arrives, the

same is purchased from other shops locally and supplied to the customer.

It is assumed that local purchase of items is made at a larger cost, and

is done during a lead time. For the models considered in the thesis, lo-

cal purchase is driven by N/T -policy. Also supply of items is assumed to

be instantaneous in local purchase. These are aimed at getting stochastic

decomposition of system state and also product form solution. Hence our

assumptions turn out to be sharper. The only exception to this is the last

chapter where we have brought in Coxian distribution of order 2. We are

encouraged to do this in the light of the paper by Tijms [54].

In chapters 2 and 3, we have considered perishable as well as non-

perishable (s,Q) inventory systems with Poisson arrivals, exponential ser-

vice time and lead time. When the inventory level depletes to s from S,

a replenishment order of Q = S − s units is placed. In both the models

given in chapter 2, local purchase is guided by N -policy and in both the

models given in chapter 3, local purchase is guided by T -policy. Also, for

the inventory models in these two chapters, we considered replenishment in

bulk against orders placed on the inventory level reaching s.

In chapter 4, we have considered (s, S) production inventory models,

with positive service time that follows exponential distribution. Arrivals

of demands are according to Poisson process. Here additions of items take

place to stock one at a time through the production process. As in the case

of bulk replenishment, in this case also, production is switched on when in-

ventory depletes from s to S. Therefore, the production process is on till the

inventory level reaches S. The time to produce an item (inter-production



time/lead time) is assumed to be exponentially distributed. The produced

item requires a processing time before it is supplied to the customer, and

the processing time (service time) is a random variable following exponen-

tial distribution. In all models in chapters 2, 3 and 4, we have arrived at

product-form solution for the state probabilities. Explicit cost functions are

analyzed encouraged by the stochastic decomposition property enjoyed by

the models. We have established convexity of cost function numerically. In

chapter 5, we considered an (s,Q) queueing inventory model with positive

service time and lead time in which both inter-arrival time and service time

are assumed to follow Coxian-2 distribution. Lead time is assumed to follow

exponential distribution and whenever the inventory level drops to s − N
during a lead time, a local purchase of Q + N units is made to raise the

inventory level to S. In this model, we are not able to reach at product-

form solution, and the situation is analyzed using matrix-geometric method.

Nevertheless, convexity of this cost function is established numerically.

The results in this thesis can be extended to more general situations,

such as MAP arrivals and phase type service time. The results in chapters

4 and 5 can be extended to the case of perishable items with or without

common life time. Also we aim at analyzing inventory models with positive

service time driven by D-policy and also by dyadic policies like Max (N, T ),

Min (N, T ), Min (N,D) etc.
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