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The focus of this paper is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim
we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions
between the vertex set and the hyperedge set of a hypergraph 𝐻, by defining a vertex-hyperedge correspondence. This allows us
to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of𝐻. This paper also
studies the concept of morphological adjunction on hypergraphs for which both the input and the output are hypergraphs.

1. Introduction

Mathematical morphology, appeared in 1960s, is a theory
of nonlinear information processing [1–4]. It is a branch
of image analysis based on algebraic, set-theoretic, and
geometric principles [5, 6]. Originally, it is developed for
binary images by Matheron and Serra. They are the first to
observe that a general theory of mathematical morphology
is based on the assumption that the underlying image space
is a complete lattice. Most of the morphological theories
at this abstract level were developed and presented without
making references to the properties of the underlying space.
Considering digital objects carrying structural information,
mathematical morphology has been developed on graphs [7–
10] and simplicial complexes [11], but little work has been
done on hypergraphs [12–15].

When dealing with a hypergraph𝐻, we need to consider
the hypergraph induced by the subset𝑋∙ of vertices of𝐻 (see
Figures 1(a) and 1(b), where the blue vertices and edges in
(b) represent 𝑋). We associate with 𝑋

∙ the largest subset of
hyperedges of𝐻 such that the obtained pair is a hypergraph.
We denote it by 𝐻(𝑋

∙

) (see Section 3.1 and Figure 1(b)). We

also consider a hypergraph induced by a subset 𝑋× of the
edges of𝐻, namely,𝐻(𝑋

×

).
Here we propose a systematic study of the basic operators

that are used to derive a set of hyperedges froma set of vertices
and a set of vertices from a set of hyperedges.These operators
are the hypergraph extension to the operators defined by
Cousty et al. [7, 8] for graphs. Since a hypergraph becomes
a graph when |V(𝑒)| = 2 for every hyperedge 𝑒, all the
properties of these operators are satisfied for graphs also. We
emphasise that the input and output of these operators are
both hypergraphs. The blue subhypergraph in Figure 1(c) is
the result of the dilation [Δ, 𝛿](𝑋) of the blue subhypergraph
𝑋 in Figure 1(b) proposed in this paper. Here the resultant
subhypergraph in Figure 1(c) is not induced by its vertex set.

This paper is organized as follows. In Section 2 we
recall some related works on graphs and hypergraphs. In
Section 3, we recall some preliminary definitions and results
onmathematical morphology and hypergraphs. In Section 4,
we define the vertex-hyperedge correspondence along with
various dilations, erosions, and adjunctions on hypergraphs.
The properties of these morphological operators are studied
in this section. Section 5 concludes the paper with possible
future works in this regard.
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2. Related Works

Graph theoretic methods have found increasing applications
in image analysis. Morphological operators are well studied
on graphs. Vincent [10] defined morphological operators on
a graph 𝐺 = (𝑉, 𝐸), where 𝑉 represents a set of weighted
vertices and 𝐸 represents a set of edges between vertices.
The dilation (resp., erosion) replaces the value of each vertex
with the maximum (resp., minimum) value of its neighbors.
Cousty et al. [7, 8] considered a graph as a pair 𝐺 = (𝐺

∙

, 𝐺
×

),
where 𝐺∙ is the set of vertices and 𝐺

× is the edge set of the
graph 𝐺. They define morphological operators on various
lattices formed by the graph 𝐺 by defining an edge-vertex
correspondence. This powerful tool allows them to recover
the classical notion of a dilation/erosion of a subset of vertices
of 𝐺. This leads them to propose several new openings,
closings, and granulometries and alternate sequential filters
acting on the subsets of the edge sets, subsets of vertex sets,
and the lattice of subgraphs of 𝐺. These operators are further
extended to functions that weight the vertices and edges of 𝐺
[16] and are found to be useful in image filtering. In this work
we aim to develop morphological operators on hypergraphs
by defining a vertex-hyperedge correspondence.

The theory of hypergraphs originated as a natural gen-
eralisation of graphs in 1960s. In a hypergraph, edges can
connect any number of vertices and are called hyperedges.
Considering the topological and geometrical aspects of an
image, Bretto et al. [17] have proposed a hypergraph model
to represent an image. The theory of hypergraphs became
an active area of research in image analysis. The study of
mathematical morphology operators on hypergraphs started
recently, and little work is being reported in this regard.
Properties of morphological operators on hypergraphs are
studied in [15], in which subhypergraphs are considered as
relations on hypergraphs. Recently, Bloch and Bretto [12]
introduced mathematical morphology on hypergraphs by
forming various lattices on hypergraphs. Similarity and pseu-
dometrics based on mathematical morphology are defined
and illustrated in [14]. Based on these morphological oper-
ators, similarity measures are used for classification of data
represented as hypergraphs [13].

3. Preliminaries

3.1. Hypergraphs. We define a hypergraph [12, 18] as a pair
𝐻 = (𝐻

∙

, 𝐻
×) where 𝐻∙ is a set of points called vertices and

𝐻
× is composed of a family of subsets of𝐻∙ called hyperedges.

We denote 𝐻
× by 𝐻

×

= (𝑒
𝑖

)
𝑖∈𝐼

where 𝐼 is a finite set of
indices.The set of vertices forming the hyperedge 𝑒 is denoted
by V(𝑒). A vertex 𝑥 in 𝐻

∙ is called an isolated vertex of 𝐻 if
𝑥 ∉ ∪

𝑖∈𝐼

V(𝑒
𝑖

). The empty hypergraph is the hypergraph 𝐻
𝜙

such that𝐻∙ = 𝜙 and𝐻× = 𝜙.The partial hypergraph𝐻󸀠 of𝐻
generated by 𝐽 ⊆ 𝐼 is the hypergraph𝐻

󸀠

= (𝐻
󸀠
∙

, 𝐻
󸀠
×) where

𝐻
󸀠
∙

= 𝐻
∙ and 𝐻

󸀠
×

= (𝑒
𝑗

)
𝑗∈𝐽

. A hypergraph 𝑋 = (𝑋
∙

, 𝑋
×

) is
called a subhypergraph of 𝐻, denoted by 𝑋 ⊆ 𝐻, if 𝑋∙ ⊆ 𝐻

∙

and𝑋
×

⊆ 𝐻
×.

Let 𝑋∙ ⊆ 𝐻
∙ and 𝑋

×

⊆ 𝐻
× where 𝑋× = (𝑒

𝑗

), 𝑗 ∈ 𝐽 such
that 𝐽 ⊆ 𝐼.We denote by𝑋∙ (resp.,𝑋×) by the complementary

set of 𝑋∙ (resp., 𝑋× ). Let 𝐻(𝑋
∙

) and 𝐻(𝑋
×

), respectively,
denote the hypergraphs (𝑋∙, {𝑒

𝑖

, 𝑖 ∈ 𝐼 | V(𝑒
𝑖

) ⊆ 𝑋
∙

}) and
(∪
𝑗∈𝐽

V(𝑒
𝑗

), (𝑒
𝑗

)
𝑗∈𝐽

).
While dealing with a hypergraph 𝐻, we consider the

subhypergraph induced by a subset 𝑋
∙ of vertices of 𝐻,

namely, 𝐻(𝑋
∙

), and the subhypergraph induced by a subset
𝑋
× of hyperedges, namely, 𝐻(𝑋

×

). 𝐻(𝑋
∙

) is the largest
subhypergraph of 𝐻 with 𝑋

∙ as vertex set and 𝐻(𝑋
×

) is the
smallest subhypergraph of𝐻 with𝑋

× as its hyperedge set.

3.2. Mathematical Morphology. Now let us briefly recall
some algebraic tools that are fundamental in mathematical
morphology [5–7, 19]. Given two lattices L

1

and L
2

, any
operator 𝛿 : L

1

→ L
2

that distributes over the supremum
and preserves the least element is called a dilation (i.e., ∀𝜀 ⊆
L
1

, 𝛿(∨
1

𝜀) = ∨
2

{𝛿(𝑋) | 𝑋 ∈ 𝜀}). Similarly an operator
that distributes over the infimum and preserves the greatest
element is called an erosion.

Two operators 𝜖 : L
1

→ L
2

and 𝛿 : L
2

→ L
1

form
an adjunction (𝜖, 𝛿), if for any 𝑋 ∈ L

1

and any 𝑌 ∈ L
2

,
we have 𝛿(𝑋)≤

1

𝑌 ⇔ 𝑋≤
2

𝜖(𝑌), where ≤
1

and ≤
2

denote the
order relations in L

1

and L
2

, respectively [19]. Given two
operators 𝜖 and 𝛿, if the pair (𝜖, 𝛿) is an adjunction, then 𝜖

is an erosion and 𝛿 is a dilation. IfL
1

,L
2

, andL
3

are three
lattices and if 𝛿 : L

1

→ L
2

, 𝛿󸀠 : L
2

→ L
3

, 𝜖 : L
2

→ L
1

,
and 𝜖
󸀠

: L
3

→ L
2

are four operators such that (𝜖, 𝛿) and
(𝜖
󸀠

, 𝛿
󸀠

) are adjunctions, then the pair (𝜖 ∘ 𝜖󸀠, 𝛿 ∘ 𝛿
󸀠

) is also an
adjunction.

Given two complemented lattices, L
1

and L
2

, two
operators 𝛼 and 𝛽 are dual with respect to the complement
of each other, if for each 𝑋 ∈ L

1

, we have 𝛽(𝑋) = 𝛼(𝑋). If 𝛼
and 𝛽 are dual of each other, then 𝛽 is an erosion whenever 𝛼
is a dilation.

4. Hypergraph Morphology: Dilations,
Erosions, and Adjunctions

In a hypergraph 𝐻, we can consider sets of points as well
as sets of hyperedges. Therefore it is convenient to consider
operators that go from one kind of sets to the other one. In
this section we define such operators and study their mor-
phological properties. Based on these operators, we propose
several dilations, erosions, and adjunctions on various lattices
formed by𝐻.

Hereafter the workspace (see [7, 8] for a similar structure
defined for graphs) is a hypergraph 𝐻 = (𝐻

∙

, 𝐻
×) and we

consider the sets H∙,H×, and H of,respectively, all subsets
of𝐻∙, all subsets of𝐻×, and all subhypergraphs ofH.

The set H of all subhypergraphs of a hypergraph 𝐻

forms a complete lattice [15]. H is not a Boolean algebra as
the complement of a subhypergraph of 𝐻 needs not be a
subhypergraph of 𝐻. But H∙ and H× are Boolean algebras.
We define morphological operators on these lattices. We
establish a correspondence between the vertex set and the
hyperedge set of 𝐻. Composing these mappings produces
morphological operators on the latticesH∙,H×, andH.
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(a) 𝐻 (b) 𝑋 (c) Dilation [Δ, 𝛿](𝑋)

Figure 1: Illustration of hypergraph dilation.

(a) 𝐻 (b) 𝑋 (c) 𝛿∙(𝑋×) (d) 𝜖×(𝑋∙)

(e) 𝜖∙(𝑋×) (f) 𝛿×(𝑋∙) (g) 𝛿(𝑋∙) (h) 𝜖(𝑋∙)

(i) Δ(𝑋×) (j) 𝜀(𝑋×) (k) [𝛿, Δ](𝑋) (l) [𝜖, 𝜀](𝑋)

Figure 2: Illustration of dilations and erosions.

Definition 1 (vertex-hyperedge correspondence). We define
the operators 𝛿∙, 𝜖∙ from H× into H∙ and the operators 𝛿×,
𝜖
× fromH∙ intoH× as in Table 1.

These operators are illustrated in Figures 2(a)–2(f). The
choice of 𝐻 is in such a way that every hyperedge of 𝐻
is incident with exactly four vertices, and the choice of 𝑋
is made to present a representative sample of the different
possible configurations on subhypergraphs.

Property 1. For any 𝑋∙ ⊆ 𝐻
∙ and any 𝑋× ⊆ 𝐻

×, where 𝑋× =
(𝑒
𝑗

), 𝑗 ∈ 𝐽 such that 𝐽 ⊆ 𝐼

(1) 𝛿∙: 𝐻× → 𝐻
∙ is such that 𝛿∙(𝑋×) = ∪

𝑗∈𝐽

V(𝑒
𝑗

);
(2) 𝜖×: 𝐻∙ → 𝐻

× is such that 𝜖×(𝑋∙) = {𝑒
𝑖

, 𝑖 ∈ 𝐼 | V(𝑒
𝑖

) ⊆

𝑋
∙

};
(3) 𝜖∙: 𝐻× → 𝐻

∙ is such that 𝜖∙(𝑋×) = ∩
𝑗∉𝐽

V(𝑒
𝑗

);
(4) 𝛿× : 𝐻

∙

→ 𝐻
× is such that 𝛿×(𝑋∙) = {𝑒

𝑖

, 𝑖 ∈ 𝐼 |

V(𝑒
𝑖

) ∩ 𝑋
∙

̸= 𝜙}.

Proof. (1) and (2) follow from the definition of 𝛿∙ and 𝜖
×.
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Table 1

H× → H∙ H∙ → H×

Provide the object with a
hypergraph structure 𝑋

×

→ 𝛿
∙

(𝑋
×) such that (𝛿∙(𝑋×),𝑋×) =𝐻(𝑋

×

) 𝑋
∙

→ 𝜖
×

(𝑋
∙

) such that (𝑋∙, 𝜖×(𝑋∙) =𝐻(𝑋
∙

)

Provide its complement with a
hypergraph structure 𝑋

×

→ 𝜖
∙

(𝑋
×) such that (𝜖∙(𝑋×), 𝑋×) =𝐻(𝑋×) 𝑋

∙

→ 𝛿
×

(𝑋
∙

) such that (𝑋∙, 𝛿×(𝑋∙) =𝐻(𝑋∙)

(3)𝐻(𝑋×) = (∪
𝑗∉𝐽

V(𝑒
𝑗

), (𝑒
𝑗

)
𝑗∉𝐽

). Thus,

𝜖
∙

(𝑋
×

) = ⋃

𝑗∉𝐽

V (𝑒
𝑗

)

= ⋂

𝑗∉𝐽

V (𝑒
𝑗

) (By De Morgan’s Law) .
(1)

(4) 𝛿×(𝑋∙) = {𝑒
𝑖

, 𝑖 ∈ 𝐼 | V(𝑒
𝑖

) ⊆ 𝑋∙}). Thus, 𝛿×(𝑋∙) =

{𝑒
𝑖

, 𝑖 ∈ 𝐼 | V(𝑒
𝑖

) ∩ 𝑋
∙

̸= 𝜙}.

Note that 𝛿∙(𝑋×) = {𝑥 ∈ 𝐻
∙

| ∃𝑒
𝑗

∈ 𝑋
× such that 𝑥 ∈

V(𝑒
𝑗

) for some 𝑗 ∈ 𝐽}. This property states that 𝛿∙(𝑋×) is the
set of all vertices which belong to a hyperedge of 𝑋×, 𝜖×(𝑋∙)
is the set of all hyperedges whose vertices are composed
of vertices of 𝑋∙, 𝜖∙(𝑋×) is the set of all vertices which do
not belong to any edge of 𝑋×, and 𝛿

×

(𝑋
∙

) is the set of all
hyperedges in𝐻× with at least one vertex in𝑋∙.Therefore the
previous property locally characterizes the operators defined
in vertex-hyperedge correspondence. This property leads to
simple linear time algorithms (with respect to |𝐻∙| and |𝐻×|)
to compute 𝛿∙, 𝛿×, 𝜖∙, and 𝜖

×.

Property 2 (dilation, erosion, adjunction, and duality). (1)
Operators 𝜖× and 𝛿

× (resp., 𝜖∙ and 𝛿
∙) are dual of each other.

(2) Both (𝜖
×

, 𝛿
∙

) and (𝜖
∙

, 𝛿
×

) are adjunctions.
(3) Operators 𝜖∙ and 𝜖

× are erosions.
(4) Operators 𝛿∙ and 𝛿

× are dilations.

Proof. (1) We will prove that 𝛿×(𝑋∙) = 𝜖
×

(𝑋
∙

) and 𝛿∙(𝑋×) =

𝜖
∙

(𝑋
×

):

𝛿
×

(𝑋∙) = {𝑒
𝑖

, 𝑖 ∈ 𝐼 | V (𝑒
𝑖

) ∩ 𝑋∙ ̸= 𝜙}

(By Property 1 of 𝛿×)

𝛿× (𝑋∙) = {𝑒
𝑖

, 𝑖 ∈ 𝐼 | V (𝑒
𝑖

) ⊆ 𝑋
∙

}

= 𝜖
×

(𝑋
∙

) .

(2)

Thus, 𝜖× and 𝛿
× are duals:

𝛿
∙

(𝑋
×

) = ⋃

𝑗∈𝐽

V (𝑒
𝑗

)

𝛿
∙

(𝑋×) = ⋃

𝑗∉𝐽

V (𝑒
𝑗

)

𝛿∙ (𝑋×) = ⋃

𝑗∉𝐽

V (𝑒
𝑗

)

= ⋂

𝑗∉𝐽

V (𝑒
𝑗

) (By De Morgan’s Law)

= 𝜖
∙

(𝑋
×

) .

(3)

Therefore, 𝜖∙ and 𝛿
∙ are duals.

(2) Suppose that𝑋× ⊆ 𝜖
×

(𝑌
∙

). Then,

𝑥 ∈ 𝛿
∙

(𝑋
×

) 󳨐⇒ 𝑥 ∈ ⋃

𝑗∈𝐽

V (𝑒
𝑗

)

󳨐⇒ 𝑥 ∈ V (𝑒
𝑗

) for some 𝑗 ∈ 𝐽

󳨐⇒ ∃𝑒 ∈ 𝑋
× such that 𝑥 ∈ V (𝑒)

󳨐⇒ 𝑒 ∈ 𝜖
×

(𝑌
∙

) (∵ 𝑋
×

⊆ 𝜖
×

(𝑌
∙

))

󳨐⇒ 𝑒 ∈ {𝑒
𝑖

, 𝑖 ∈ 𝐼 | V (𝑒
𝑖

) ⊆ 𝑌
∙

}

󳨐⇒ V (𝑒) ⊆ 𝑌
∙

󳨐⇒ 𝑥 ∈ 𝑌
∙

(∵ 𝑥 ∈ V (𝑒)) .

(4)

Therefore, 𝛿∙(𝑋×) ⊆ 𝑌
∙.

Conversly, if 𝛿∙(𝑋×) ⊆ 𝑌
∙, then,

𝑒 ∈ 𝑋
×

󳨐⇒ V (𝑒) ⊆ 𝛿
∙

(𝑋
×

)

󳨐⇒ V (𝑒) ⊆ 𝑌
∙

(∵ 𝛿
∙

(𝑋
×

) ⊆ 𝑌
∙

)

󳨐⇒ 𝑒 ∈ 𝜖
×

(𝑌
∙

) .

(5)
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Thus,𝑋× ⊆ 𝜖
×

(𝑌
∙

). Therefore, (𝜖×, 𝛿∙) is an adjunction:

𝛿
×

(𝑋
∙

)⊆ 𝑌
×

⇐⇒ 𝜖× (𝑋∙) ⊆ 𝑌
×

(By duality of 𝜖× and 𝛿
×

)

⇐⇒ 𝑌× ⊆ 𝜖
×

(𝑋∙)

⇐⇒ 𝛿
∙

(𝑌×) ⊆ 𝑋∙

(By adjunction property of (𝜖
×

, 𝛿
∙

))

⇐⇒ 𝑋
∙

⊆ 𝛿∙ (𝑌×)

⇐⇒ 𝑋
∙

⊆ 𝜖
∙

(𝑌
×

) (By duality of 𝜖∙ and 𝛿
∙

) .

(6)

Therefore, (𝜖∙, 𝛿×) is an adjunction.
Properties (3) and (4) follow from the dilation/erosion

property of adjunctions.

Definition 2 (vertex dilation, vertex erosion). We define 𝛿 and
𝜖 that act onH∙ by 𝛿 = 𝛿

∙

∘ 𝛿
× and 𝜖 = 𝜖

∙

∘ 𝜖
×.

Property 3. For any𝑋∙ ⊆ 𝐻
∙,

(1) 𝛿(𝑋∙) = {𝑥 ∈ 𝐻
∙

| ∃𝑒
𝑖

, 𝑖 ∈ 𝐼 such that 𝑥 ∈

V(𝑒
𝑖

) and V(𝑒
𝑖

) ∩ 𝑋
∙

̸= 𝜙};
(2) 𝜖(𝑋∙) = {𝑥 ∈ 𝐻

∙

| ∀𝑒
𝑖

, 𝑖 ∈ 𝐼 such that𝑥 ∈ V(𝑒
𝑖

), V(𝑒
𝑖

) ⊆

𝑋
∙

}.

Proof. Consider the following:
(1)

𝛿 (𝑋
∙

) = 𝛿
∙

(𝛿
×

(𝑋
∙

))

= 𝛿
∙

[{𝑒
𝑖

, 𝑖 ∈ 𝐼 | V (𝑒
𝑖

)⋂𝑋
∙

̸= 𝜙}]

(By Property 1 of 𝛿×)

= ⋃

𝑖∈𝐼,V(𝑒𝑖)∩𝑋∙ ̸= 𝜙

V (𝑒
𝑖

) (By Property 1 of 𝛿∙)

= {𝑥 ∈ 𝐻
∙

| ∃𝑒
𝑖

, 𝑖 ∈ 𝐼 such that 𝑥 ∈ V (𝑒
𝑖

) ,

V (𝑒
𝑖

)⋂𝑋
∙

̸= 𝜙} ,

(7)

(2)

𝜖 (𝑋
∙

) = 𝜖
∙

(𝜖
×

(𝑋
∙

))

= 𝜖
∙

[{𝑒
𝑖

, 𝑖 ∈ 𝐼 | V (𝑒
𝑖

) ⊆ 𝑋
∙

}]

(By Property 1 of 𝜖×)

= ⋂

𝑖∈𝐼,V(𝑒𝑖) ̸⊆𝑋∙
V (𝑒
𝑖

) (By Property 1 of 𝜖∙)

= {𝑥 ∈ 𝑋
∙

| ∀𝑒
𝑖

∈ 𝐻
× with 𝑥 ∈ V (𝑒

𝑖

) , V (𝑒
𝑖

) ⊆ 𝑋
∙

} .

(8)

Definition 3 (hyper-edge dilation, hyper-edge erosion). We
define Δ and 𝜀 that act onH× by Δ = 𝛿

×

∘ 𝛿
∙ and 𝜀 = 𝜖

×

∘ 𝜖
∙.

Property 4. For any𝑋× ⊆ 𝐻
×,𝑋× = (𝑒

𝑗

)
𝑗∈𝐽

:

(1) Δ(𝑋×) = {𝑒
𝑖

, 𝑖 ∈ 𝐼 | ∃𝑒
𝑗

, 𝑗 ∈ 𝐽 such that V(𝑒
𝑖

) ∩

V(𝑒
𝑗

) ̸= 𝜙};

(2) 𝜀(𝑋×) = {𝑒
𝑗

, 𝑗 ∈ 𝐽 | V(𝑒
𝑗

) ∩ V(𝑒
𝑖

) = 𝜙, ∀𝑖 ∈ 𝐼 \ 𝐽}.

Proof. Consider the following:
(1)

Δ (𝑋
×

) = 𝛿
×

∘ 𝛿
∙

(𝑋
×

)

= 𝛿
× [

[

⋃

𝑗∈𝐽

V (𝑒
𝑗

)]

]

(By property 1 of 𝛿×)

=

{

{

{

𝑒
𝑖

, 𝑖 ∈ 𝐼 | V (𝑒
𝑖

)⋂[

[

⋃

𝑗∈𝐽

V (𝑒
𝑗

)]

]

̸= 𝜙

}

}

}

.

(By property 1 of 𝛿∙)

={𝑒
𝑖

, 𝑖 ∈ 𝐼 | ∃𝑒
𝑗

, 𝑗 ∈ 𝐽 such that V (𝑒
𝑖

)⋂ V (𝑒
𝑗

) ̸= 𝜙} ,

(9)

(2)

𝜀 (𝑋
×

) = 𝜖
×

∘ 𝜖
∙

(𝑋
×

)

= 𝜖
×

[⋂

𝑖∈𝐼\𝐽

V (𝑒
𝑖

)] (By property 1 of 𝜖∙)

= { 𝑒
𝑗

, 𝑗 ∈ 𝐽 | V (𝑒
𝑗

) ⊆ [⋂

𝑖∈𝐼\𝐽

V (𝑒
𝑖

)]

= {𝑒
𝑗

, 𝑗 ∈ 𝐽 | V (𝑒
𝑗

) ⊆ [⋃

𝑖∈𝐼\𝐽

V (𝑒
𝑖

)]}

(By De Morgan’s Law)

= {𝑒
𝑗

, 𝑗 ∈ 𝐽 | V (𝑒
𝑗

)⋂ V (𝑒
𝑖

) = 𝜙, ∀𝑖 ∈ 𝐼 \ 𝐽} .

(10)

Remark 4. Being the compositions of, respectively, dilations
and erosions, 𝛿 and 𝜖 are, respectively, a dilation and an
erosion [19]. Moreover by composition of adjunctions and
dual operators, 𝛿 and 𝜖 are dual and (𝜖, 𝛿) is an adjunction.
In a similar manner (𝜀, Δ) is also an adjunction.

Definition 5 (hypergraph dilation, hypergraph erosion).
We define the operators [𝛿, Δ] and [𝜖, 𝜀] by, respectively,
[𝛿, Δ](𝑋) = (𝛿(𝑋

∙

), Δ(𝑋
×

)) and [𝜖, 𝜀](𝑋) = (𝜖(𝑋
∙

), 𝜀(𝑋
×

)),
for any𝑋 ∈ H.

Theorem 6. The operators [𝛿, Δ] and [𝜖, 𝜀] are, respectively, a
dilation and an erosion acting on the lattice (H, ⊆).
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Proof. We will prove that for every 𝑒 ∈ Δ(𝑋
×

), V(𝑒) ⊆ 𝛿(𝑋
∙

).
𝑒 ∈ Δ(𝑋

×

) implies that there exists some 𝑗 ∈ 𝐽 such that
V(𝑒)∩V(𝑒

𝑗

) ̸= 𝜙. But V(𝑒
𝑗

) ⊆ 𝑋
∙, since 𝑗 ∈ 𝐽.Thus, V(𝑒)∩𝑋∙ ̸= 𝜙.

Therefore, V(𝑒) ⊆ ∪
𝑗∈𝐽,V(𝑒𝑖)∩𝑋∙ ̸= 𝜙V(𝑒𝑖) = 𝛿(𝑋

∙

). This implies
[𝛿, Δ](𝑋) ∈ H.

If 𝑒 ∈ 𝜀(𝑋
×

), then V(𝑒) ∩ V(𝑒
𝑖

) = 𝜙 for every 𝑖 ∈ 𝐼 \ 𝐽, and
so V(𝑒) ∩ [∪

𝑖∈𝐼\𝐽

V(𝑒
𝑖

)] = 𝜙:

V (𝑒) ⊆ ⋃

𝑖∈𝐼\𝐽

V (𝑒
𝑖

)

= ⋂

𝑖∈𝐼\𝐽

V (𝑒
𝑖

)

⊆ ⋂

V(𝑒𝑖) ̸⊆𝑋∙
V (𝑒
𝑖

) (Since V (𝑒
𝑖

) ⊆ 𝑋
∙

, ∀𝑖 ∈ 𝐽)

= 𝜀 (𝑋
∙

) (By Property 3 of 𝜀) .

(11)

Therefore, [𝜖, 𝜀](𝑋) ∈ H.

Theorem 7. ([𝜖, 𝜀], [𝛿, Δ]) is an adjunction.

Proof. Let 𝑋 and 𝑌 be two hypergraphs inH. The following
statements are equivalent:

[𝛿, Δ] (𝑋) ⊆ 𝑌

𝛿 (𝑋
∙

) ⊆ 𝑌
∙

, Δ (𝑋
×

) ⊆ 𝑌
×

𝑋
∙

⊆ 𝜖 (𝑌
∙

) , 𝑋
×

⊆ 𝜀 (𝑌
×

)

(since [𝜖, 𝜀] , and [𝛿, Δ] are adjunctions on H)

𝑋 ⊆ [𝜖, 𝜀] (𝑌) .

(12)

Thus the pair ([𝜖, 𝜀], [𝛿, Δ]) is an adjunction, which implies
that [𝜖, 𝜀] is an erosion and [𝛿, Δ] is a dilation.

5. Conclusion

This paper investigates the lattice of all subhypergraphs
of a hypergraph 𝐻 and provides it with morphological
operators. By the composition of the operators presented in
this paper, we can define other adjunctions on hypergraphs.
The proposed framework can be extended to morphological
filtering on hypergraphs and is left to the future work.
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