
 
 
 
 
 
 
 
 
 
 

Abstract-Embedded systems, especially Wireless Sensor Nodes 
are highly prone to Type Safety and Memory Safety issues. 
Contiki, a prominent Operating System in the domain is even 
more affected by the problem since it makes extensive use of 
Type casts and Pointers. The work is an attempt to nullify the 
possibility of Safety violations in Contiki. We use a powerful, 
still efficient tool called Deputy to achieve this. We also try to 
automate the process. 

 
Keywords-wireless sensor networks, type safety, memory 

safety, Deputy, Contiki OS.  
 

I. INTRODUCTION 

 
Untrapped memory errors are particularly harmful in 

sensor networks. The major reasons are: 1)It is easy to 
accidentally corrupt OS code; 2) Since memory objects are 
tightly packed, walking even one element past the allotted 
space is likely to corrupt RAM; 3) Deployed motes are 
difficult to debug, so it can be very hard to tell when memory 
corruption is the root cause of a serious deployment problem. 
Safety violations can even let others’ programs intrude into a 
sensor node [1]. 

Safety violations are inevitable in WSNs. A feasible yet 
reliable approach is to avoid them by detection during 
application development. Our work focuses on the Safety 
issues pertaining to a popular Operating System for WSNs – 
the Contiki OS [2, 8]. Our aim is to make it free of all safety 
violations. We make use of a powerful analyzer for C 
programs viz, Deputy [3], that provides safety checking for 
both Type and Memory safety. The motivation behind the 
work was the successful implementation of Safe TinyOS [5], 
which used the same tool, Deputy to make Tiny OS, another 
popular OS for WSN, free of safety violations. 

This paper is the continuation of our work in [10] with the 
addition of an attempt to automate the process and the 
provision of making safety an optional feature.  

The rest of the paper is organized in the following manner. 
Section II gives a background of the work by describing the 
Contiki OS – the subject of the work, the Deputy – the tool 
used and the Safe Tiny OS – the motivation behind this work.  
Section III will give the details of the implementation and the 
current status of the work. Section IV provides with some 
examples of the possible safety violations in Contiki and the 
modifications we have done. And finally Section V will 
conclude the paper by describing the expected final output of 
the work. 

 
 
 
 
 
 
 
 
 

II. BACKGROUND 
 

A. Contiki OS 
 

Contiki is an open source, highly portable, multi-tasking 
operating system for memory-efficient networked embedded 
systems and wireless sensor networks. A typical Contiki 
configuration is 2 kilobytes of RAM and 40 kilobytes of 
ROM. Contiki consists of an event-driven kernel, on top of 
which application programs can be dynamically loaded and 
unloaded at run time. 

Contiki provides IP communication, both for IPv4 and 
IPv6. It was developed by a group of developers from 
industry and academia lead by Adam Dunkels from the 
Swedish Institute of Computer Science. Contiki's 
protothreads, have been used in many different embedded 
systems. Its idea of using IP communication in low-power 
sensor networks has lead to an IETF standard and an 
international industry alliance. The uIP embedded IP stack, is 
today used by hundreds of companies. Contiki programs are 
written in the C programming language. To ease software 
development for Contiki, Instant Contiki provides a single-
file download that contains all necessary tools and compilers 
for developing software for Contiki.  

 
B. Deputy 

 
Deputy is a C compiler that is capable of preventing 

common C programming errors, including out-of-bounds 
memory accesses as well as many other common type-safety 
errors. It is designed to work on real-world code, up to and 
including the Linux kernel itself. Deputy verifies that your 
program adheres to these invariants through a combination of 
compile-time and run-time checking. Deputy is implemented 
using the CIL infrastructure for C program analysis and 
transformation, and it uses gcc as a back end. It was 
implemented in OCaml and the code size is around 20,000 
lines. 

Deputy uses the information provided by the programmer 
to ensure Type and Memory Safety. The information is given 
to Deputy through certain keywords called Annotations. Most 
of the Annotations of Deputy are self explanatory and suits 
the different situations that a C programmer commonly faces 
while using constructs like Pointers and Union that are highly 
prone to safety violations. The details of different Deputy 
Annotations can be found elsewhere [4]. 
 

 
Safe Contiki OS: Type and Memory Safety for Contiki OS 

Department of Computer Science, Cochin University of Science and Technology, Cochin, Kerala, India – 682022 
                                         tomsypaul@hotmail.com                         san@cusat.ac.in 

 
Tomsy Paul and G. Santhosh Kumar 

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.126

169

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.126

169

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.126

169

Authorized licensed use limited to: COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on June 19,2010 at 17:18:25 UTC from IEEE Xplore.  Restrictions apply. 



C. Safe Tiny OS – The Motivation 
 

Safe Tiny OS was first presented in [6], which proposed 
some modifications to the existing Tiny OS tool chain. A Tiny 
OS [9] application is an assembly of components plus a small 
amount of runtime support.  Typically, components are 
written in nesC, a dialect of C. The nesC compiler (ncc) 
translates an assembly of components into a monolithic C 
program, which is then compiled and optimized by gcc.  

Safe TinyOS suggests the use of Deputy along with 
another tool cXprop [7] meant for optimization. The modified 
tool chain used Deputy and cXprop between ncc and gcc. The 
developers had to modify ncc to ignore the Deputy 
annotations. The output from Deputy was fed to cXprop and 
then given to gcc to generate the final safe machine code. The 
modifications required to the source code to become safe, on 
average, were only 0.74%, the target code size was increased 
only by 13% and the target data size was decreased by 2.3%.  

 
III. SAFE CONTIKI 

 
The source code of Contiki consists of nearly one thousand 

two hundred files, including both the OS core and the 
application programs. The OS core itself consists of around 
300 files. The work comprises of annotating each pointer 
access in all these files and recompiling with Deputy. Once 
the core is free of Type/Safety errors, we can go for the safety 
of applications. After this step, we will set Deputy as the 
default compiler of Contiki. Programmers will have to adapt 
to the annotations of Deputy, which are very simple and easy 
to learn.  

We use Instant Contiki version 2.2.1. and Deputy version 
1.1; both being the latest versions. 

The flow graph of Safe Contiki development is shown in 
Fig 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Contiki, there can be 4, or in some cases 5, makefiles 
associated with each application. This facilitate the use of 
make command to build applications for different platforms 
and CPUs by simply changing the arguments to make. We 
started the implementation by replacing gcc with deputy in 
the makefile for the ‘native’ processor in the cpu directory. 
Then we started the making of ‘hello-world’ in the examples 
directory. Since the making of this application initially 
depends on more than 80 different source files, we have to 
fully annotate all these files to compile the program ‘safe’ly. 
Currently we have annotated about 70 files and the total 
annotations are 397 which consists of 31 COUNT, 146 
SAFE, 179 TC, 12 NTS, 2 TRUSTED, 10 NTDROP, 16 
BOUND and 1 NTEXPAND. Once the annotations of the 
hello-world related files are over, we can go the next example 
and so on. After annotating the examples, there would be only 
a few core files left which will be found out and annotated. 
The developers of Safe TOS also had followed a similar 
strategy of incremental annotation.  

Since Contiki make use of pointers in an extensive manner, 
the work is more laborious, compared with the development 
of Safe TOS. The better part of this work is that not much 
change was required in the tool chain; a simple replacement 
of gcc with deputy was enough. In the case of the former, 
they required the modification of the ncc.  

Currently, we have not included cXprop in the tool chain, 
compromising with a little larger target code. Our primary 
goal is Safety, and we do not bother about optimization, for 
the time being. However, as mentioned in [6], the inclusion of 
cXprop in the tool chain would not be a tough task and could 
be done at a later stage.  

We have given the provision for making Safety an optional 
feature. The reason is that many of the traditional Contiki 
programmers might be reluctant towards the use of Safety 
features. We introduce a new make variable called SAFETY. 
Only if its value is set to ‘yes’ will we go for safe 
compilation; otherwise, normal compilation. A problem 
related with this was the handling of the Deputy annotations 
during unsafe compilation. gcc was used for the unsafe 
compilation and the Deputy annotations were simply strange 
words to gcc resulting in Syntax errors and/or lexical errors. 
The solution was to use the –D flag of gcc to erase the 
Annotations when the source files are fed to gcc. 

The performance of the Safe Contiki will be evaluated 
considering the three factors of Code Size, Data Size and the 
Speed of Execution. These give the requirements of ROM, 
RAM and CPU. Once these are measured with some sample 
applications for the Safe version, we can compare it with the 
corresponding values for the unsafe version. 

From the very beginning of the work we were 
contemplating on the possibility of automating the process of 
Annotation, as soon as we realized the huge amount of 
manual work to be done. We found that annotations like TC, 
SAFE and NTS could be inferred from the error message, in 
many of the cases. These were also the most prominent 
Annotations used in the work. A rough estimate on the gain of Fig.1 Safe Contiki Development 

Semi Automated 
Annotation 

Deputy 

Existing Contiki Files        
(Core/application) 

Error/Warning Messages 

gcc 

Safe Contiki Files 

Safe Executable code 

Errors 

Successful 
Compilation 

170170170

Authorized licensed use limited to: COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on June 19,2010 at 17:18:25 UTC from IEEE Xplore.  Restrictions apply. 



automating the process revealed that Automation was 
feasible. We designed a software tool that provides 
suggestion by analyzing the error message from Deputy. If 
the suggestion is accepted, it does the modification in the 
source file and also updates the log files. If the suggestion is 
incorrect, manual annotation can be done. This has 
considerably reduced the labor. 

 
IV. EXAMPLES 

 
As we started with the implementation we could find out a 

lot of portions of Contiki susceptible to safety violations. This 
section depicts a few of them. First we describe the violations 
and then we mention the Deputy annotations we gave. 

 
A. Possible Safety violations found in Contiki 

Possible Violation #1 static uint8_t *packetbufptr;  
This is the declaration of packetbufptr in the file pcketbuf..c. 
This pointer points to the packet buffer used in the sending 
and reception of radio packets. The vulnerability here is that 
an application developer can accidentally use this pointer to 
access any location in the entire memory of the sensor node, 
possibly corrupting it. It is a typical example of Memory 
safety violations in C. We must set a limit on the area 
accessible through this pointer. 

Possible Violation#2 char *name; 
From mac.h which contains declarations for Medium Access 
Control layer functions and variables. This is the declaration 
of a variable to hold the name of a MAC driver. A typical C 
character string. If the user accidentally modifies the null 
character, an strcpy–like function might corrupt the entire 
memory. 

Possible Violation#3 void *item 
From list.c which is a basic linked list library. This is a 
parameter to list_push which adds an item to the beginning of 
a list.  This declaration is prone to both Memory and Type 
safety violations.  

 
B. Annotating the Violations 

Possible Violation #1 static uint8_t *packetbufptr; 
Gave the COUNT annotation, 
static uint8_t * COUNT (PACKETBUF_SIZE) packetbufptr; 
where PACKETBUF_SIZE is a macro defined in packetbuf.h 

Possible Violation#2 char *name; 
Gave the NTS annotation, 
char * NTS name; 

Possible Violation#3 void *item  
Gave the BOUND annotation, 
void list_push(list_t list,void *BOUND(__auto,__auto) item);  
Since it was difficult to give the apt Annotation for item, we 
left it to Deputy using BOUND Annotation. 
 

V. CONCLUSION 
 

The Contiki OS, which uses pointers and type casts 
extensively, is an ideal platform for the application of Safety 

measures. As Deputy could free Tiny OS from Safety issues, 
we expect it can provide more assistance to Contiki, just like 
a real deputy. So far, a few possible safety violations have 
been discovered and corrected. The use of Automated 
Annotation has lead to considerable reduction in the manual 
work load and boosted up the speed of the process. As the 
work completes, we will also be able to assess the cost of 
safety in terms of speed of execution, code size and data size 
and in terms of the total modifications needed. 

 
ACKNOWLEDGMENT 

 
We thank the Almighty for His endless blessings. Sincere 

thanks to John Regehr and David Gay for sharing their 
experiences with the development of Safe Tiny OS and to 
Zach Anderson and Jeremy Condit for help on Deputy. 
Special thanks to Adam Dunkels for his interest in the work. 
 

REFERENCES 
 
[1] Aurélien Francillon and Claude Castelluccia, “Code 

injection attacks on harvard-architecture devices” In 
Proceedings of the 15th ACM Conference on Computer 
and Communications Security, Alexandria, Virginia, 
USA October 27 - 31, 2008 pp 15-26   

[2] Adam Dunkels, Bjorn Gronvall and Thiemo Voigt 
“Contiki - A Lightweight and Flexible Operating System 
for Tiny Networked Sensors” In Proceedings of the 29th 
Annual IEEE International Conference on Local 
Computer Networks,16-18 November 2004, Tampa, FL, 
USA pp 455 - 462 

[3] (2007)The Deputy Project. http://deputy.cs.berkeley.edu 
[4] (2007)The Deputy On-line Manual 

http://deputy.cs.berkeley.edu/manual.html 
[5] (2008)The Safe TinyOS. 

http://docs.tinyos.net/index.php/Safe_TinyOS 
[6] Nathan Cooprider, Will Archer, Eric Eide, David Gay and 

John Regehr “Efficient memory safety for TinyOS” In 
Proceedings of the 5th international conference on 
Embedded networked sensor systems, Sydney, Australia 
Nov. 2007 pp 205-218 

[7] Nathan Cooprider and John Regehr. “Pluggable abstract 
domains for analyzing embedded software”. In Proc. of 
the 2006 Conf. on Languages, Compilers, and Tools for 
Embedded Systems (LCTES), Ottawa, Canada, June 
2006, pp 44 -53. 

[8] The Contiki OS, http://www.sics.se/contiki/ 
[9] Philip Levis, David Gay, Vlado Handziski, et al “T2: A 

second generation OS for embedded sensor networks”.  
Technical Report TKN – 05 – 007, Telecommunication 
Networks Group, Technische Universitat, Berlin, 
November 2005. 

[10] Tomsy Paul and G. Santhosh Kumar “Safe Contiki OS” 
In Proceedings of the National Conference on Education 
and Research (ConfER 2009) Cochin, India organized by 
IEEE CS and CSI division V 11-14 March, 2009. 

171171171

Authorized licensed use limited to: COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on June 19,2010 at 17:18:25 UTC from IEEE Xplore.  Restrictions apply. 


