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Chapter 1
Introduction

Many real world phenomena require the analysis of systems in a probabilistic rather
than deterministic setting. Stochastic models are becoming increasingly important for un-
derstanding and for assessing performance evaluation of complex systems in broad spec-
trum of fields such as Operations Research, Computer Science, Telecommunication and
Engineering. In this thesis T-policy is implemented to the (s.S) inventory system with
random lead time and also repair in the reliability of k-out-of-n system.

In this thesis we analyze an (s,S) inventory system with random lead time under T-
policy and also a repairable k-out-of-n system with control policy governed by T -policy.

Inventory may be defined as a physical stock of goods kept in a system for the smooth
and eflicient business transactions. Inventory system may be considered as the system of
kecping records of the amounts of commodities tn stock. In an inventory problem lead time
is defined as the time between the placement of order and the actual time at which units
reach system. Several policies may be used to control an inventory system, of these. the
most widely used is the (5. 5) policy. Under this policy. whenever the position inventory
rcaches a level less than or equal to s for the first time measured from the previous replen-
ishment epoch, a procurement is made to bring its level to S. Under a continuous review
system, the (s..5) policy will usually imply the procurement of a fixed quantity M/ = S -«
of the commodity, while in periodic review systems the procurement quantity will vary.
The (s, 5) policy incorporates two decision variables s and S. The variable s is called the

reorder level, which identifies when to order, while § — s identifics how much to order.



During the lead time it may happen that there is no backlog, finite backlog (which will
be met immediately on replenishment) or a large number of lost sales. In the latter two
cases there is every chance of loss of customer goodwill and consequent loss to the system.
Inorder to overcome this, T-policy is introduced during lead time.

We define the T'-policy as follows: a replenishment does not occur within 7" units (a r.v)
after the placement of an order, a local purchase is made either (i) bring the inventory level
to S cancelling the replenishment order placed or (i1) to bring the inventory level to s or
(iii) to bring the inventory level to O without cancelling the order (that is to meet all the
backlogs, if any, without cancelling the order).

Local purchases by shop keepers are very common. This will ensure goodwill of cus-
tomer to a great extent. Situations of this sort arise in practice. In shops when certain goods
run out of stock and reaches a threshold (a negative level) due to backlogging the owner
goes for local purchase. The local purchase involve higher cost to the system. The intro-
duction of T-policy ensures the minimum number of loss of demands by taking decision at
the right moment.

Inventory system of (s..5) type had been extensively studied in the past. A systematic
account of such inventory system was first provided by Arrow, Karlin and Scarf [1958].
Further details of work carried out in this field can be found in Hadley and Whittin {1963),
Veinott [1966], Sivazlian [1974]. (s.S) inventory policy with renewal demands and gen-
eral lead time distribution was first considered by Srinivasan [1979]. Sahin [1979] deals
with (s..5) policy where demand quantity is a continuous random variable and lead time is
a constant. Sahin {1983] compute the binomial moments of the inventory level in an (s. S)
inventory with compound renewal demand and arbitrarily distributed lead time. Manoha-
ran, Krishnamoorthy and Madhusoodan [1987] investigate (s. S) inventory policy with unit
demand and non-identically distributed inter-arrival times of demands having arbitrary lead
time distribution.

Several models for perishable inventory systems can be found in the review article by
Nahmias [1982]. N-policy in the queueing setup has been discussed by several authors
(see Artalejo [1992], Gakis ct.al [1995], Teghem Jr.[1986]. Heyman [1967]. Balachandran
[1973].

(s,.5) inventory system with V-policy during lead time have been introduced and in-



vestigated through a series of paper by Krishnamoorthy and Raju [1998, 1999] and Raju
[1998]. In N-policy a local purchase is made when the number of backlogs reaches N

We can make a note on some control policies in queueing system. Consider a steady
state AM//G/1 queueing system. Server remains in the system till all waiting customers are
served. When the number of customers in the system reaches N, where .V > 1, for the
first time after the server is removed, it returns immediately and provides service until there
are no customers in the system. This operating policy is called the /' -policy in queueing
context. In the T-policy the removed server returns to the system and provides service, on
the elapse of T" time units from the epoch of server removal, if there is at least one customer
present in the waiting line. He continues to serve until there are no customers in the system,
al which time the server is removed again to return after T time units. This process contin-
ues. Finally, if the workload or backlog, which is equal to the sum of the service time of
waiting customers, excecds D (where D > (}) for the first time after removal of the server,
it returns to the system and provides service to all customers when the system is empty.
Together with these, six different dyadic policies which are different combinations of the
T-policy, N-policy and the D-policy are also studied in queueing literature. They are (i)
the T* /N -policy (ii) the T*' / D-policy (iii) the min(.\'. D)-policy (iv) min(T. :V')-policy
(v) the min(T, D)-policy (vi) the max(N. D)-policy. In the T* /N-policy, a T-policy is
first used once the server becomes idle. If following an idle period no customer appears in
the first AIT time units, where A/ = 1,2, ... | is a given quantity, then the server switches
to an /V-policy. Thus, an /V-policy is used if the scrver remains idle for M/ T time units, the
N-policy is initiated at the end of M T time units. In the T /D policy a T-policy is again
used first once the server becomes idle. If no customer appears during the first M 7T time
units, where M = 1.2,... , is a given quantity, the server switches to a D-policy. Thus a
D-policy is used if the server remains idle for M T time units.

Reliability of k-out-of-n system under D-policy has been studied by A Krishnamoor-
thy and P.V. Ushakumari {2000]. In the min(.V. D) policy. following the start of an idle
period or on completion of an idle period the server restarts serving and hence initiates a
busy period, if cither NV customers have accumulated in the system (N > 1) or the total
accumulated backlog of customers service time exceed D. whichever occurs first. Sim-

ilar interpretations can be given to other policies also. For further details one may refer



to Yadin and Naor [1963], Heyman [1977], Levy and Yechiali [1975]. Balachandran and
Tijms [1975], Bell [1971,73,80]. Tegham {1986] and Gakis, Rhee and Sivazlian [1995].

We have also introduced the repair of a k-out-of-n system under T-policy. Several
models are analysed under this set up.

Reliability is generally characterized or measured by the probability that an entity can
perform one or several required functions under given conditions for a given time interval.
The term ‘entity’ is used here to denote any component, subsystem, system or equipment
that can be individually considered and tested separately. According to the entities, the
notion of time interval should be replaced by the notion of number of cycles, distance
travelled etc.

Reliability is defined as the ability of an entity to perform a required function under
given conditions for a given time interval. It is measured by the probability that an entity
E can perform a required function under given conditions for the time interval {0, ¢]. Thus
R(t) = P(L does not fail during [0, t]). The reverse of this ability is called unreliability.
A system is a deterministic entity comprising an interconnected or interacting collection of
discrete elements.

Suppose that a system has finite number n of independent components labelled 1,2. . . .
n-and that the system is capable of just two modes of performance. Represent the mode of
performance of the system by the Bernoulli r.v. .X'. Suppose that, given the structure of a
system, the knowledge of its performance can be determined from that of its components.

The system structures generally considered are described below.

i) Series system The system functions iff all the n components functions. We have .\ =

min(.\), Xy, ....\},);, the reliability of n components is givenby P = (X = 1) =

P(min(.Xy, X, ... .. \p)=1) =P, = 1.\, =1...... N, = 1) =[I., 7
(Here .\'; = 1 indicates that ith component is operational and I’ = (Y, = 1),
r=1.2.....n)

i) Parallel system : The system functions iff at least one of the n components functions.



We have X = max(.\',.Xy,...,.X,). The system reliability is given by

P=PrP\X=1) = P(max(X, Xy, ..., X)) =1)
=1-P(\y=0.X,=0.... .. \, =0)
=1-[I.,(1 - P)

iii) k-out-of-n system : The system function iff at least k(1 < k < n) of the n components
functions. As particular cases, we get the series system for k = n and the parallel

system for k = 1.

k-out-of-n system have been studied extensively (see, for example Angus [1988]. God-
bole, Potter and Sklar [1998], Pham and Upadhyaya [1988]. Madhujain and Ghimira
[1997] discuss the reliability of A-r-out-of-n system. h-out-of-n system in discrete time
with multiple repair facilities has been discussed in kapur, Garg. Sehgal and Jha [1997].

k-out-of-n system with the N-policy for repair of failed units has been discussed in
detail by Krishnamoorthy, Ushakumari and Lakshmi [1998] under the assumption of ex-
ponential life times for components. Under this policy a server is called for repair as soon
as the number of failed units reach N (< n — k). Further Ushakumari and Krishnamoor-
thy[1998] examine the control problem of obtaining the optimal N value when the service
times of units have arbitrary distribution. They analyze the semi-Markov process and the
embedded Markov chain arising in this setup.

The optimal number of repairs in the context of analysing systems subject to shocks
have been considered by Shen and Griffith [1996]. This can be regarded as the optimal
N-policy for replacement. Rangan and Sarada [1992 a.b] discuss the optimal strategies of
replacement for deteriorating system with changing failure distributions. Lam Yeh [1990}
analyses a single repairable replacement model and in {1991] he obtains the optimal number
of repairs before replacement.Rangan and Grace [1989] provide the optimal replacement
policics for deteriorating systems with imperfect maintenance.  Ushakumari [1998] has
analyses a A-out-of-n system with repair of failed units under (.\N'. T')-policy. Here the
amount of time for which the server is not available in the system is a random variable

which is the minimum of an exponentially distributed time duration 7" and the sum of .\



independent exponentially distributed random variables that are not neccessarily identically
distributed (ie. a generalized Erlang variate).

For some of the combination policies it is impossible to get analytical solution (eg.
probability distribution of the system state). In such cases one can resort to numerical
studies and also analyse certain performance characteristics.

In this thesis, we have considered a k-out-of-n system with repair under T-policy.
Server is activated after the elapse of T time units where T is exponentially distributed
with parameter o from the epoch at which it was inactivated after completion of repair of
all failed units in the previous cycle, or the moment n—k failed units accumulate, whichever
occurs [irst. Thus server is activated at the moment which is min{T". E,, _x »} after his pre-
vious departure where E,,_x » is an Erlang distributed r.v. with parameters n — k& and A. He
continues to remain active until all the failed units are repaired and then inactivated. The
process continues in this fashion. The repaired units are assumed to be as good as new.
Life time ol components and service time (repair times) are assumed to be exponentially
distributed with rates A and yr, respectively. We consider three different situations: (a) cold
system (b) warm system (c) hot system. A k-out-of-n system is called cold, warm or hot
according as the functional units do not fail. fail at alower rate or fail at the same rate when
system is shown as that when it is up.

k-out-of-n system with repair and two modes of service under N-policy has been in-
troduced by A. Krishnamoorthy and P.V. Ushakumari [1999]. In this thesis, we consider
k-out-of-n system with repair and two modes of service under T-policy. In this case first
server is available always and second server is activated on elapse of T time units. Re-
liability of a k-out-of-n system with repair and retrial of failed units has been introduced
by A. Krishnamoorthy and P.V. Ushakumari [1999]. Retrial queues have been extensively

studied by many researchers, an excellent account of which can be found in Falin and
Templeton[ 1997}



Basic concepts

1.1 Definition : Renewal Process

Consider a specific phenomenon that occurs randomly in time. Let w,, w,,... be the
times between its successive occurrences. Write So = 0: S5y = S,y + W41, n € N. This
sequence defines the times of occurrence of the event assuming that the time origin is taken
to be an instant of such an occurrence. The sequence S = {S,.n € N} is called a renewal
process provided that w,, w,, ... are independent and identically distributed non-negative
random variables. Then the S, n € N is called the nth renewal epoch.

Consider the number of renewals N, in the interval [0.t]: this is Ny (w) = 3> Ty
(Sp(w)), t > 0, w € §2, where Iy(r) = 1 or 0 according as r € .1orr ¢ A. Note
that Np(w) > 1 always, and that NVy(w) = inf{n € N Sp(w) > t}. Thus the event
{N, = k} is equal to the event {Sx_y < £: Sk > t} = {Sk-1 < 1t} N{Se < 1}, and
{Sk <t} € {Sk-1 < t}. Since S > Si_y. Thus, forany k = 1,2.... P(N, = k) =
P(Si_y < t) = P(Sk < t) = F*=(¢t) — F®)(#) where FV(.) is the I-fold convolution
of I with itsclf. One can compute the expected member of renewals in [0. ¢] by using this
distribution :

x

R(t) = E[IVg] = Z E[[[()Jl(sn)] = ZP(S,, < f) = Z F"(f)
n=0

n=0 n=0n

The function R = 1 + F + F?+ ... is called the renewal function corresponding to the

distribution .

1.2 Definition : Regenerative Process

Consider a stochastic process Z = {Z,.t > 0} with state spacc E. Suppose that
every time a specificd event occurs, the future of the process Z after that time becomes a
probabilistic replica of the past. Such times (usually random) are called regeneration times
of Z, and the process Z is then said to be regenerative.

Let 7 be a regencrative process with a discrete state space, and consider the probability

() that Z, = 7 for some fixed state 7. We condition the event {Z, = i} on the time S,
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of first regeneration, and argue as follows. The process 7 regenerates itself at Sy and the
future process Z delined by Z,, = Zg, 4, has the same probability law as Z itself. Given

S, if Sy =S5 <t then Z;, = Z,_,, and therefore
P(Z,=i/S)=P(Zi_s=1) = f(t —s)on {S) = s < t}

Hence, if we define ¢(t) = I’{Z, = i, S, > t} then we have f(t) = g(f)+yj'[0‘f] F(ds)f(t-
s). This equation is called a renewal equation. Renewal theory is the study of the renewal
equation f = g + F * f where F is a distribution function on R+ and f and g are func-
tion which are bounded over finite intervals. The renewal equation has one and only one
solution f = R x g where R = 3 F" is the renewal function corresponding to F.

It is wellknown that with probability 1, %‘ - ﬁ as t = oc where yt = j:o TdF (1) (see

for example Ross [1970])

1.3 Markov Renewal Process

Definition : The Stochastic process (X', 7)) = {X,.T,,.n € N} is said to be a Markov

renewal process with state spacefprovided that

1){'\."{-1 = j~ Tn+l - Tn S '/-\-0- -\-l ----- \ -n- T(l- ce Tn}
P{Nps1 =, Toer = Tw <t/NXp} = QUi jit) forallne N.Je E

and t € I+ (Cinlar [1975])

Markov renewal theory combines renewal theory with the theory of Markov chains to
create tools that are more powerful than those which cither could provide. Consider a
process which moves from one state to another with random sojourn times in between such
that the successive states visited form a Markov chain and the sojourn time has distribution
which depends on the state being visited as well as the next state to be cntered.

The family of probabilities Q = {Q(i.j.1) : i.j € E.t € R+} is called a semi-
Markov kerncl over £. For each pair (i. j) the function f — (Q(i. j. t) has all the properties
of a distribution function except that P(i. j} = lim Q1. j.t) is not nccessarily equal
o onc,we can sce that °(i, j) > o, Ziﬂ:‘ P’(i.J) = 1 thatis. the (7. j) are the transition

probabilitics for some Markov chain with state space £



1.4 Proposition

X = {X,,n € N} is a Markov chain with state space E and transition matrix /°.
Another convenient picture in describing a Markov renewal process is provided by the

process Y = {1} : t > 0} defined by putting foreach t > 0 and w € ()

Vo) No(w) if T (w) <t < Ty (w)
w) =
VAN if t > sup,, T,(v') where A is apointnotin E
The stochastic process Y = {1} : t > 0} defined as above is called the minimal semi-

Markov process associated with (.X, T')

1.5 Markov Renewal Function

Let (N.1) = {(X,,.1,,); n € N} be a Markov renewal process with semi-Markov

kernel Y over a countable state space E. Define
Q"(i, 5, t) =P{N,=j,T,<t/Xo=1}, i.j€ E;t € R+

forall n € N, with
1 ifi=
Qi j.t) = { nre

0 otherwise

Then for n > 0 we have the succesive refation Q"*'(i. k. f) = Y ek /o’ Q(i.J.ds)
Q"(j, k,t — s). Where the integration is on [0. t].

Consider the function R(i, j.t) = 3 > (PN, = j.T,, < 1) = 302, Q"(i.j.1).
The functions t+ — J2(i. j. t) are called Markov renewal functions and the collection I? =
{R(i, ], .); 4, j € I} of these function is called a Markov renewal kernel.

Let j € E be fixed. and define S3. S7.. .. as the successive T}, for which X', = j. Then
S; = {S]; n € N} isa(possibly delayed) renewal process.

Let I7(4, j, t) be the distribution of the first passage time from state 7 to state j, that is,
let (i, j,1) = 1’,(5’3 < )i # jand let F(J. j.t) be the distribution of time between
successive ocuurence of j, thatis. let F'(j. j.t) = P {S] <t} (1(S) =0) = 1)

Q. j.t) = Zf”nf

n=0



and R(i,j,t) = ][; F(i,j.ds)R(j.j,t—s).i # j where F"(j. j..) is the n-fold convolution
of the distribution F'(j, j,.) with itself.

1.6 Scope of the Work

The thesis comprises five chapters. In Chapter 1 a brief summary of the topics relevant
to the thesis, including the contributions of the author is given.

In Chapter 2, we introduce 7'-policy during lead time in (s. S) inventory system. In
T-policy whenever a replenishment doesn’t occur after the placement of an order within T
units of time (a r v) a local purchase is made either to bring the inventory level to S can-
celling the replenishment order placed or to bring the inventory level to s or to () without
cancelling the order (the last policy serves to meet all the backlogs if any, without can-
celling the order). The demand process is assumed to be Poisson with rate \. As and when
the inventory level drops to s, on order is placed for A/ = S — s units. The lead time is cx-
ponentially distributed with parameter jt and T is exponentially distributed with parameter
. We denote by I(t) the inventory level attime ¢, t > 0. {I(f).t > 0} is a finite state space
Markov chain with state space 1 = {—k, =k + 1.... .3 s....S} when k is the maximum
number of backlogs, allowed. We choose A such that A/ — A > s to avoid perpe tual order
placement. The probability of transition to 7 at time # starting from S at time 0 is denoted
by Pi(t). i € A. Ps;(t) = P(I(1) = i/1(0) = S). The time dependent and stcady system
probabilitics are computed. Also the optimal value of 4 is found out in the three cases by
fixing s and S. The situation where T follows a general distribution is also considered. As
above, demands are assumed to be Poisson with rate A and lead time exponential with rate
jt. The replenishment epochs 17, 15, ... follow a regencrative process. Here, we consider
only the first case. Time dependent probabilitics are found out. Cost function is found out
by examining the embedded Markov renewal process.

In Chapter 3 the reliability of a A-out-of-n system with repair under T policy is studied.
T-policy in the queueing set up has been extensively studied (see Artalejo [1992]) However,
this has not been brought to the investigation of the reliability of k-out-of-n system with

repair inorder to minimize the system reliability. The repair is according to T-policy,server
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is called to the system after the elapse of T  time units, where T is exponentially distibuted
with parameter «, since his departure after completion of repair of failed unit or the moment
n — k failed units accumulate whichever occur first. He continue to remain in the system
until all the failed units are repaired, once he arrives. We consider lhl:ee different situations
(a) cold system (b) warm system (c) hot system. The k-out-of-n system is called a cold
system, warm or hot if once the system is down, the functioning components do not fail,
fail at a lower rate or fail at the same rate.

Life times of units are assumed to have independent exponential distribution with pa-
rameter \; when 7 units are functioning. Repair time is also assumed to be exponentially
distributed with rate ;1. We have obtained the profit function and numerically, we have
found optimal v which maximize the profit.

Next, the distribution of sevice time is taken as general. In this casc we examine the sys-
tem state at repair completion epochs. These epochs form a regenerative process provided
failure time of components are exponentially distributed with rate A and random variable
T is assumed to follow exponential distribution with parameter value a. Here also, we
consider three different states of components (i) cold (ii) warm and (iii) hot. In all these
cases it is established that the cost function is convex and hence global minimum exists.

Chpater 4 deals with T-policy for k-out-of-n system with two modes of service. k-oul-
of-n system with repair time distribution of the 1 server exponential with rate 4, and that
of the 11 server with rate yrp. Here, we consider only cold system. Here, the I server is
activated after the elapse of T" time units since becoming idle from the time of completion
of most repair of all failed units. Since, we are considering cold system. functional compo-
nents do not fail after the system is down. We have obtained system rate probabilities and
some performance measures. Some numerical illustrationsare provided.

In Chapter 5 we discuss some special models in reliability of a k-out-of-n system with
repar under T-policy. In the first model, the repair is provided by an unreliable server.
Here, T" is assumed to be exponentially distributed with parameter value a. Repair time is
exponentially distributed with rate ji. Server is subject to breakdown. The failure rate is as-

sumed to be exponential with rate 3 and repair of server is also exponential with parameter
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value . .\'(t) denotes the number of failed units

0 if Sever is inactive
Y (t) = < 1 if Serveris activated

2 if Server is activated but down

system state probabilities and some characteristics are obtained.

In the second model, though, the server is switched on after the elapse of T time units,
he gets activated only after a random length of time. Let U be the activation time and is
assumed to be exponentially distributed with rate 6. T is exponentially distributed with
rate v and repair time exponentially distributed with rate . Hence the time elapsed until
activation starting from all units operational, has generalized Erlang distribution. Here,
X(t) represent the number of failed units. Y (t) equals 2, if server is active at time ¢, 1, if
server is only switched on but not activated and O otherwise. Steady state probabilities and
some performance measures are found out.

In the third model. we consider the time for the server to get inactivated. The system
does not go directly to state (0,0) from (1, 1), it goes to a state (0,2) and then to (0.0).

Here X () represents the number of failed units at ¢.

0 of server is inactive
Y(t) = ¢ 1 ifserveris active

2 if server is switched off, but not inactivated

Here the inactivation time is assumed to be exponentially distributed with rate 1. All other
assumption are as in the above models. Here also system state probabilities and some
characteristics are obtained. In all the above three models, some numerical illustrations are

provided.



Chapter 2

(s, S) Inventory system with lead time

the T'-policy

2.1 Introduction

In this chapter we consider an (s, S) inventory system with T-policy during lead time.
During the lead time it may happen that there is no backlog, finite backlog (which will be
met immediately on replenishment) or a large number of lost sales. In the latter two cases
there is every chance of loss of customer goodwill and the consequent loss to the system.
In order to over come this, we introduce T -policy during lead time to the (5. S) inventory
system. (s..5) inventory system with /V-policy during lead time have been introduced and
investigated though a series of papers by Krishnamoorthy and Raju (1998, 1999 ). In
N-policy a local purchase is made when the number of backlogs reaches A\

T'-policy in the queueing set up has been discussed by several authors (See Artalejo
(1992)). In T-policy whenever a replenishment doesn’t occur after the placement of an
order within a time of 1" units from the order placement epoch a local purchase is made
cither to bring the inventory level to S cancelling the replenishment order placed or to
bring the inventory level to s or to clear all the backlogs without cancelling the order (that
is to meet all the backlogs). if any without cancelling the order.

In Section 2.2 we analyse the three models and in Scection 2.3 various characteristics of

the modcls arc established. Section 2.4 1s concerned with the cost analysis and numerical
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illustration are given in Section 2.5. In Section 2.6. the general case of T following an

arbitrary distribution is considered.

2.2 Mathematical Formulation and Analysis of the Model

The demand process is assumed to be Poisson with rate A\. As and when the inventory
level drops to s, an order is placed for Af = S — s units. The lead time is exponentially
distributed with rate y« and T is exponentially distributed with parameter a. As mentioned
above we consider three cases. It is to be noted that for the second and third cases several
local purchases may take place before a replenishment takes place from the time of order
placement. That is several T units may elapse before a replenishment takes place however,

a local purchase may not be required at every such instant.

2.2.1 Analysis of the Model

Let {I(t).t > 0} be the inventory level at time t. Then {I(t).t > 0} is a finite state
space Markov chain with state space £ = {-k. -k + 1,...,s,... .5} where k is the
maximum number of backlogs. We choose k such that M/ — & > s to avoid perpetual order
placement. At time (0 the system is assumed to be full. that is /(0) = S. We denote the
transition probability of moving from S to ¢ at time t by Pi(t) = P(t) = {PI(t) =
i/1(0) = 5)}

2.2.2 Model 1

If no replenishment takes place within a time of T" units after the placement of order, a

local purchase is made to bring the level to S. Then (1) satisfies the system of equations

Pi(t) = =APs(t) + nPy(t) + a Xye, Pil1)

Pit) = =APu(t) + APy (1) + pPac (.M =k <n < S -1 2
Pi(t) = —APy(t) + APy i(t).s +1<n < M =k =1

P = =ML = 8y k) + gt + ) Pult) + APy (1) =k < 0 < s
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where §; ; represents Kronecker delta. Taking limit as f — 2o, on both sides of the above

system of equations and solving the resulting balance equations, we get the steady state

distribution.

2.2.3 Steady State Distribution

Theorem 2.2.1. Let q,, = limy_,o, P,(t), n € E. These are given by

(Akgin)kon l(l;ﬂ)q i
A
0= (S )R+ (E£2) i
n
A pta
[(RHEEe)R+s(e52) — (§)(
[(A+y+a k+s— l(g (:+n
\ A A

~-k+1<n<s+1

s+2<n< M-k

/\+;+o n-(M-k)y L M —k+1<n<S-1

F(Q(HE g, n=S

(2.2)

Using the normalising condition Zfz_k gn = 1, we obtain the value of ¢_.

A+ a+p
( A

+(

(1—k=[

)k+s+l

A

+(

A+«

Adp+a .. 1+ a 0
SRS - s = (B 4 ()
kts—1g0 0 0 HQ _ K " -1
) ((,\)( A [l+()‘)+[l+(l]

2.2.4 Time Dependent Solution

The system of equations (2.1) can be written in the form P'(¢) = .1P(¢) where P'(t) =

(PLe(t), Plyy (1), -

coefficient matrix and P’(0) =

Since . is finite, the series converges and the solution is unique.

canonical form of | given by

, P6(1))", the column vector of first derivative of 1 (f)'s and A is the
(0.0....

.1)7. The solution is given by P(t) = " P(0).

We have the Jordan
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[ (1t + «) 0 0 ]
—(A+p+a)
0 0
A=C'"AC = 0 ~A+p+a)
X - 0
0 0 0
i 0 )

On solving, we get P(t) = CeMC~'P(0).

2.2.5 Model 2
If no replenishment takes place upto time T measured from order placement point, a

local purchase is madc to bring the level to s without cancelling the order. Here we get the

following system of equations which is satisfied by I’(?) :

"'/\Pn(f) + /\(1 - 671.«)Pn+l(f) + llr)rv .\l(”--‘l -k S n S S

Pt =
PUt) = =APy(1) + APusi(t)os + 1< n< M —k—1 .
Pl(t) = =(A+p)P(t) + APy i (1) + 3, aL(1)

Pit) = —(M1=6nt) + 11+ Q)Pa(t) + APssr(t). =k <m <51

2.2.6 Steady State Distribution

Let ¢, = limy_, (), n € E. Then the balance equation are given by

b gkbn-t(ede )y k41 <n < s+ 1
+ta
A

>

( ( At
(

~—

ks 1< <M~k

(&y(Atgtayn-(M=k+jg M —k+1<n<S~1

(n hak+s( 1
(=) (5) = (&
\ [(_L~’\+,\'“‘)k+s—|(;§)(l‘_§2)](1_k,n =5
(2.4)
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. v o S . .
Using the normalising condition >, __, g, =1, we obtain the value of q_;

P 2 N [ A+ g, T /\+;1+u .
gor = (D)Mo (T2 (S — o - ) 1]+ (SR
i, nt+a n |
= - +
((/\)( A ) (;t+n) /l,+0]

2.2.7 Time dependent solution

As in model 1, we obtain time dependent solution.

2.2.8 Model 3

If no replenishment takes place upto time T (r.v) measured from order placement point,
a local purchase is made to meet all the backlogs, if any, without cancelling the replenish-
ment order. There may be several instances of local purchase. We get the following system

of difference differential equations.

PUt) = —APu(t) + M1 = 6,00 Pass(t) + nPan(t). M —k<n<S

Pty ==AP,(t)+ NP (t), s+1<n<M-k-1

Pi(t) =—(AN+p)P(t) + APa(t), 1<n<s (2.5)
Po(t) = =N+ ) Po(t) + AP (1) + @ 370 PL1).

Pty =—(M1—=06nx) +p+a)P(t)+ AP, (1), =k <n<s-1

As in the above two models solving the above equations after taking limit as ¢ — >c on

both sides, we get the steady state distribution.

2.2.9 Steady State Distribution

(A"!}(',li)/\“lll”]( o )(]—k _ I\ + 1 S_ n S 0
(%)" l(M‘(H‘) (5)g-x 1<n<s+1
=0 () g s+2<n< M-k

3

A
[(/\+,<+“)k(‘xl)(,\_,tﬂ)s _ (;Xl)()&;(-}n)n—(.\l—k+l)]q r M-k+1 <n< M+1
[ (MR (2) — (IR D gy M+2<n < S

(2.6)
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Using the normalising condition an_k q» = 1, we obtain the value of g_y,

Ata+ At A+ A+ L
g = (SRS (L ETD S - s - () - 1)
A prta g, pn+ A 1] ooy
H——)" (= )‘(,‘\)(“““””“4-01

Here also, we obtain time dependent solution as in model 1.

2.3 Characteristics of the Models

Model 1

2.3.1 Expected inventory level and expected backlog in the steady

state

Expected inventory level in the steady state in given E(]) = Z:’:] 1q,
Thus,

/\+/1+nk A Ap+a,, A
E(I) = +s+l 1 k
() {( A l(s+1) ;1+n]+( A )(;H-n‘)

A+ p+a a0 (S=5=2)(S+s+1) p+a Sa
) > =)+ ]

N
+ M-k - {/
TEwSE 51 + D+ ) = (N + pp + )]
A+ o AJt e+ ) T Jt
+ A ) (yt + a)? 5 -

+(

)}Q-k

+
A2 t+a 4+ a

and the expected backlog E(DB) = Z:_k l71q

/\+/l+(l)k~| A + 1) - A

L(B) =
(B) = A t+a i+ a

g x (2.7)

Theorem 2.3.1. The distribution of time between two order placement epochs is given by

/-1 / —/\ll \“)l . (,—nu(,-,\(y-_u)(’\(l, _ ”)),\'—s—l—l/\
= ——— J1C
wu=0Jr (S—,Q—I—l)!

dv du
=op=0
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if replenishment takes place before the elapse of T units of time. Otherwise,

"+"' —/\u “Mr—u)()\(p — S-s-1)
/ / /\u) €AY nugemoul (G u))' dv du
u=0 .1 (S i 1)

=U=0
and expected time elapsed between two order placement epochs is given by
1 1 A a l

L(r) = ”ii“’(l-; + X((S —5) - mi"([l—l]-5+ k))) + s “(;; + %(S - s))

Expected number of demand lost per unit time

L n A ﬂ A
Er) o+ “(llldl\(O, p (s +K))) + ~ " “(max(O. ~ = (s +k))

E(D) =

To arrive at the above expressions we proceed as follows.

Let 7 be the time between successive order placement epochs. Consider an order place-
ment epoch which is identified as time origin and in time u. measurcd from this epoch [
demands occur. Suppose replenishment takes place before the elapse of T units of time.
The maximum number [ of demands met during the period is < s + k where k is the max-
imum number of backlogs permitted. After replenishment. the level becomes S — . To
reach the level s, (S — s — [) demands have to occur. Then the distribution G, (.) between

two consecutive order placement epochs is given by

dv du

/ / —,\u /\ll) i (,—nue-/\(v-»-u)(l\(l, _ u)).“' -s—l-—l/\
e "
w=0Jr= (.S—S—,"“ l)'

e l -{)
On the other hand if T occurs before replenishment then a local purchase is made to bring
the level to S. To reach the level s, an additional (S — «) demands should occur. Then the
distribution function (G»(.) is given by

k+s

-—\u /\ N — S—s--1
/ / () — LT e e M) GlC - w) /\(h' du
n= S o (S - 8- l)'
Expected time elapsed between two order placement epochs is given by
poo 11 . A O 11
E(r) = -+ —((S~-5s)- -|. k -+ —(5~:
(™) a4 /\(( s) mln([“] sHR + (1+;1(u * ,\(S 5))
and expected number of demands lost per unit time is
. | / A A
(D) = ——( (max(0, — = (s + &) + (max(0. — - (s + k))

E(r) o +p Jt T O
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2.3.2 Model 2

Expected inventory level in the steady state is given by E(]) = Zi, i g;. Thus,

e (e N e PO s )+ (R
(#ia>+ (uia)[w—kﬂ)— A:ﬁ2“1+<"+’;+“)*+v"'(71—’fn—)2
+s(“(“; = B [l-l:-(} u+o }q ¢
and the expected backlog E(B) = Y.i.'_, lila:
B(B) = {(H’im)k"(,,ia P = e

Lemma 2.3.1. The distribution of time between two order placement epochs is given by

_ny Oy)m o e —n(u—,l/) —Au—-y) (/\(ll - y))'
TR DU
y=0 Ju=y m—l ’” - 1) a

—,\(r ") _ S—g-r x —Al: /\
(/\(L' ll)‘) ({l/([ll + / / ”) l",—;m(',uu
(S i ’.) u=0Jr=u y_g4

(,-—,\(:- u)(\( ”))S s -r— l/\
(S—s—-r—-1)!
Proof : In this model, several local purchases may take place during a lead time. Suppose

drdu

there are m instances of elapsed T — times before a replenishment. But, a local purchase
may not be required at each of these instants. The inventory level at an order placement
epoch is s. Identifying this as the time origin, assume m local purchases take place within a
time of y units. Immediately after the last local purchase the level is s. During the interval
(y, u], I demands occur and a natural replenishment takes place in (u. v + du] with density
function o=, No local purchase takes place is (y. u]. This has p.d.f ¢ ~(v=¥),

In the remaining time the inventory level becomes s due to the arrival of S — s — r demands
where 7 is the number of demands met in (y. u] that is r = min(l, s + k).

Expected elapsed time between two order placement epochs.

Let 7 be the time clapse(l between two order placemcnl epochs. Then,

E(T):(yill(/—l /\(( —9)-—mlu([ ]9+L)))+ \;“ %[‘l’l] p

4-1(’9 - 8) - min([—]. s+ k)
A jt
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Expected number of demands lost per unit time is given by

1 Jt 0
';' = ———— —— ¢ - II . 4 -
E(D) 50 (- “(mw (0. [ (s + 1)) —— “]\'I v}

2.3.3 Model 3

Expected inventory level in the steady state is given by E(/) = Ziu 14

g Atpta Atp A Atp+a, A
E(I) = {(—5—)"(—==)"{s+1) ]+(—_/\ )(u)
A A 5 2
ARl AT s 5222 (4 a))
Adpto, A+, A A+ o
(— ) ( 3 )“(;—(s—2))+(—x——)"
At p _.é At ptang,, pA
( N(Ar=+2) #)+( o ((Il+a)2
H 1 . _Atp+ta .
S G M A+ S (O =k ) = (e ))}a_x

and the expected backlog E(B) = Zi;'hk Vi) g

A+ 4o, A A
A +1) -

A jt+ o 1+ o

E(B) = {( b -

Theorem 2.3.2. The distribution of time between two order placement epochs is given by

Hy(.) + Hy(.) where

x x -Au - \Mv—u) . S—s-min(l.s+k)-1
_ _ e Au)e AMv — u
=/ / ¢ pe g (Au) (M ) dvdu
u=o0 v=u

I (S —s—min(l.s+ k) - 1)!
m,m-1_,—a s -2
/ / / (‘ Y ¢ ' ull(,—uu —-a(u- y)Z y(’\l/
y=0Ju=y Jv=u, (’”—1) =0
x ¢ ~ X(m- ”)(\(“—lj r —A(v ")\(\(l _ ”))S-; (4 min{l.s+hk-N-1)
dv du

r! (S—=s—(+min(l.s+k-1)-1)!

~
|
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and

/ / / / Z ! Ui —— T
y=0 Ju=y Jy,,=yp, 1 =0 (by = 2)!

m
bi=b1-2 by-by~1,—alm,-1-w,)

Ayp, 1) Y ¢
—Ayp, ~1 ( Jl)l 1 —ays, br-by -1
E:“ T % (bg — by — 2)!

=0

— - - — m-bp—1 _
e AW =1 =W ) om0l Uy 1) L gty b alynr -ysp)

Ny ERLUES D FEVT )
(;_’\(.’/m_.'lbp)Zl < :v v) Zr < (‘ 22yl

Yy

(,-,\(v—u)(/\(u . ”))S—s—l——r 1
S—s—l-r—1)

dvdudyy, - - lw cr = min(l. k)

Proof : Consider the time interval (0, y]. The inventory level at an order placement epoch
is s which is ldentified as the time origin. Let there be m instances of elapse of T time units
from the order placment epoch to the subsequent local purchase epochs 4y, ¥2,. .. Ym=1. Y-
In the time interval (u, u+du] natural replenishment takes place. Suppose no local purchase
takes place in (0, y]. The inventory level at time y can be at most s. Assume ! demands
occur is (Ym, y]- In (y, u] no local purchase is made and the number of demands met is r,
where 7 = min(l, s + k — l).prior to time u, the inventory level will bc s — (I + min(/, s +
k—1)). Attime u after replenishment the level will be S — (I + min(l. s + k = 1)). In (u, v,
in order to reach the level 5,5 — s — (I + min(l. s + & — 1)) demand should occur.

Suppose in (0, y] there are p instances at which local purchase take place, that is, let
Y, Ybys - - - Y, DE a subsequence of yy, ya. . .. . Ym—1, Y at which local purchase takes place.
At y,, the level will be zero. In (y,.y]. Supposce I demands occur and the number of
demands met in (y, u] is » where r = min(/. k). At time u, natural replenishment takes
place and the levels is S — I — r. To reach the levels in the remaining time. S — s — { — r
demands should occur. The distribution /1(.) of the time between two order placement
epochs is the sum of [1,(.) and H,(.) where /1,(.) is the distribution of time when no local
purchase is made and H,(.) that when at least one local purchase is made. In the first case
the number of instances of T-time units preceeding lead time is zero. Hence the distribution
H(.)is givenby H,(.) + H,(.)

Expected time clapsed between two order placement epochs and expected demands lost

are same given by the expressions as in model 2.
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2.4 Cost Analysis

Let the various costs under the steady state be:
f-fixed cost of order placement, v-variable cost, hi-holding cost per unit - shortage cost
per unit, L-cost associated with local purchase per unit, C-Cancellation cost per unit, I2-

unit cost for lost sales.

2.4.1 'Total expected cost per unit time (TEC)

Model 1

$ Q 1 Qa 1
T =1 A . s—|t
(TEC), 'E([)+PE(B)+L(II+.'=Z_;<|Ilq' H)n-l—llE(T) +Cn+ﬂE(T)

I 1
+(f +vM)——
(f +van-4

<E RE(D)

24.2 Model 2

Here also the various costs are assumed to be as given for model 1. However there is

no cancellation cost. Thus the total expected cost per unit time

. . 1
TEC), = hE(I) + PE(B) + L(s + e ) —— s
(TEC), = hE(I) + PE(B) + L(s .;""" W B

H(f 4 et 2

i+ aE(7)

+ RE(D)

243 Model 3

The various costs are as in the above two models with no cancellation cost. The ob-

jective function is the total expected cost. We have to find an optimal value of k& which



minimises the total expected cost.

(TEC)s = hE() + PE(B) + (Y 11 40 75— 75
i=—k
+(f +oeM)—— : + RE(D)

j+aE(7)
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The objective in all the above models is to find an optimal value of k which minimises

the total expected cost. It's very difficult to obtain an analytic solution. It may be possible,

but extremely hard due to unwieldy nature of the cost function, to prove that it is convex in

k for given values of s, S and parameter values. However one can find numerically optimal

value of k for fixed values of S, s and other paramcters. Numerically we found that, with

increasing values of & total expected cost function is convex in model | and monotonically

decreasing in model 2 and 3.

2.5 Numerical Illustrations

The optimal value of k for the three models are found out with A = 23, o = 20, p = 16,
s=2,h=17,P=20,L=15,C=8 R=11 f=15v =12

(TEC), FOR MODEL 1

k

195!

19

20

21

22

23

493.145
493.070
493.076
493.082
493.086
493.088
493.089
493.089
493.089
493.089
493.090
493.090
493.090
493.090

O 00 ~J O\ R Wb =

N R Wo =

501.667
501.667
501.597
501.601
501.604
501.606
501.607
501.607
501.608
501.608
501.608
501.608
501.608
501.608
501.608

510.188
510.116
510.116
510.119
510.122
510.123
510.124
510.124
510.124
510.124
510.124
510.124
510.124
510.124
510.124

518.707
518.635
518.633
518.635
518.637
518.638
518.63Y
518.639
518.640
518.640
518.640
518.640
518.640
518.640
518.640

527.225
527.153
527.149
527.150
527.152
527.153
527.153
527.153
527.153
527.154
527.154
527.154
527.154
527.154
527.154




kK\S]19]20 21 22 23

16 | — | —[510.124 | 518.640 | 527.154

17 | —|— — | 518.640 | 527.154

18 | — | — — — [ 527.154

(T"EC), FOR MODEL 2
k\ S 19 20 21 22 23
I [ 342311 [ 349.314 | 356.472 | 363.762 | 371.165
2 | 328.166 | 335.184 | 342.356 | 349.658 | 357.071
3| 323.021 | 330.022 | 337.178 | 344.466 | 351.868
4 | 321.139 | 328.127 | 335.271 | 342.548 | 349.940
5 | 320.455 | 327.434 | 334.571 | 341.842 | 349.228
6 | 320.207 | 327.182 | 334.315 | 341.583 | 348.966
7 | 320.118 | 327.091 | 334.222 | 341.488 | 348.869
8 | 320.086 | 327.058 | 334.189 | 341.454 | 348.834
9 | 320.074 | 327.047 | 334.177 | 341.441 | 348.822
10 | 320.070 | 327.042 | 334.172 | 341.437 | 348.817
11| 320,069 | 327.041 | 334.171 | 341.435 | 348.815
12 | 320.069 | 327.040 | 334.170 | 341.435 | 348.815
13 | 320.068 | 327.040 | 334.170 | 341.434 | 348.815
14 | 320.068 | 327.040 | 334.170 | 341.434 | 348.814
15 — | 327.040 | 334.170 | 341.434 | 348.814
16 — — | 334.170 | 341.434 | 348.814
17 — — — | 341.434 | 348.814
18 = — — — [ 348.814
(TEC)3 FOR MODEL 3

k\ S 19 20 21 22 23
I [303.173 [ 501.667 |{ 510.188 [ 518.707 | 527.225
2 | 302.442 | 310.580 | 318.762 | 326.981 | 335.229
3 | 301.857 | 310.050 | 318.280 | 326.541 | 334.827
4 | 301.378 | 309.602 | 317.859 | 326.245 | 334.453
5 1300912 | 309.160 | 317.439 | 325.744 | 334.071
6 | 300431 | 308.702 | 317.003 | 325.327 | 333.672
7 1299.929 | 308.225 | 317.003 | 324.894 | 333.257
8 |299.410 | 307.733 | 316.549 [ 324.447 | 332.830
9 |298.877 | 307.228 | 316.080 | 323.990 | 332.394
10 | 298.335 | 306.714 | 315.600 | 323.525 | 231.951
11 ] 297.786 | 306.195 | 314.620 | 323.056 | 331.503
12 |297.234 | 305.672 | 314,123 [ 322.584 | 231.053

27



28

k\ S 19 20 21 22 23
13 | 296.678 | 305.146 | 313.625 | 322.110 | 330.601
14 | 296.120 | 304.619 | 312.125 | 321.635 | 330.148

15 — 1304.091 | 312.624 | 321.158 | 329.694

16 —_ — { 312.122 | 320.681 | 329.239

17 _— —_ — 1 320.204 | 328.784

18 — — — — | 328.329
Conclusion

The objective function is optimal for k = 3 in Model 1 for the other two Models
optimal & is the value corresponding to minimum T EC. In the latter models the function

is monotonically decreasing with increasing values of k.

2.6 General case

T arbitrarily distributed in the case of model 1.

Here we assume that T follows a general distribution F(.). Also, one more condition
is imposed on model I, namely that if no replenishment occurs when the inventory level
reaches k, a local purchase is made to bring the level to S, cancelling the order for replen-
ishment.

Let0 = Tp < T) < T < --- < T, < ... be the replenishment epochs and
Xn = X(1},+)be the inventory level immediately after the n'* replacement. Then { .\, =
X(To+),n = 0,1,2,...} is a Markov chain and {(.X,,7,,).n = 0.1.2....} is a Markov
renewal process with states space Ey = {M — k + 1.... S5} embedded at replenishment

epochs of the semi-Markov process {.\'(t),t € R, }.

Demands form a Poisson process with rate A. The lead time is exponentially distributed
with rate yo. Assume that X (Tpy+) = S
2.6.1 The Semi-Markov Kernel

{QG,4,t),4,) € Ey, t >0} where Q(i, j. 1) = P(X (T 1) = j. oy = T, < t/X(T,) =
1) is given by
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¢ 4
Q@, S, t) = / Ei_sa(u)e 29 ye=#v=u)(1 — F(v — u))dv du
u=0Juv=u

ot v s+k-1 —-AMv-u) Ay — r
+/ / Ei_sa(u) Z ¢ (r|(l u)) f(v—u)e ™"y du
0 u=0 :

r=0

t U
+ / / Ei_g (W) Eysra(v — u)e ™" (1 — F(v — u))dvdu. i€ E,
u=0

and

A
/ Ei_sa(u)e " ")( s T u)) pe U1 — F(v — u))dv du,
u=0Juv=u
l=1.23,...s+k-1

The steady state probabilities at the embedded points are obtained as the solution to

HP = 11 with Y, mi=y where 7 = (Tar_k41, ... s) and P = (limoc Q(7, J, 8), 1,5 € Ey).

2.6.2 Time Dependent system State Distribution

{X(#),t € R+} is a semi-Markov process on the set £ = {-k,—-k + 1,...,S}.
The embedded Markov Renewal process is {(Xn, T,).n = 0.1,2....}. Let Ps(t) =
P(X(t) =i/X(0+) = S),i € E. Q(...,t) defined by Q(i.j.t) = P(XNps1 = 7, Tnsy —
T, <t/X,=1)1i,j € E, is given above.

Define R(S,7,t) = Y o Q"™ (S,i,t) where Q*™(....t) is the m-fold convolution of
Q(.,.,t) with itself and Q*%(¢, j, t) = 1 if i = j and 0 otherwise.

Then P;(t) = K(S,1,1) +f0 (S. 1, du)Pi(t — u) fori € E, where (S,i,t) = P(X(t) =
1, 1) > t|‘\ 04+) = §), whose solution is given by

_ k—i
/ Q™ (S. k, duye—-w L= W) (2.8)

>okem>.us (k ~1)!
and

Jo v 0 @S, S, du)e M-,
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2.6.3 Limit Distribution

We shall compute ¢,, r € E, which represent the limiting probabilities of the sys-
tem state at arbitrary epoch. First we compute the limiting probabilities immediately
after a replenishment epoch. For this, consider the transition probability matrix P =
(limye0 Q(4,7,1),4,7 € Ey) of the Markov chain {.X,}. The limiting probabilities are
solution for ITP = II, with ), m; = 1. First consider the expected sojourn time m,.
mi = [0 (1= X QUi k. t))dt

Limiting probabilities of the system state at arbitrary epoch is given by

qr = llj}n P(X(t)=r|N(0+)=S) r€E,

Then,

o
T -
qs = —/ e Mdt
Zi€E| mimy Jo

qr = Ur=8-s-k,....5-1

Zjeb‘. ngr Tj /oo (’-_'\"(/\U)j—rc{
ZiE[;l mmi  Jo (G—r)
_ e ™ /°° e M (Au) 7'y
B Zieg. pimi Jo (j—r)

Ur=M—-k—-1,...5+1

2.6.4 Distribution of time between consecutive replenishment epochs

Consider the levels at two replenishment epochs T,, and T4, i.j be the levels at T,
and T, 4, respectively. Consider the order placement epoch u in (T, T,,H]. The level at u
is s. We have to find the distribution of time between replenishment epochs resulting in the

following types of trarsitions:

They are (1) S -» S, (i) i <5 = S, (i) S 2 j< S (iV)i<S—> ;<8

i)S—>S
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—,\u S-s—-1
Gi(t) = / / L2 (= P - w)e e dudu

—s—1)!
t —/\u(/\u S-s-1) S e M- (A (2 = w))!
/ / —— f(v— u)e“‘("—") E ' dvdu
§ 1) =0 i
—,\u /\ S~s- l/\ —A(vr—u) A _ s+k (v
/ / (S(—us o (i vak)| st - Plo - w)dvda
i<S—>S

—Au /\ t—5— l/\
/ / «) e M=) ye=re=u)(] _ F(v — u)drdu

(i—s-1)
e~ /\uz s~ 1/\’“‘ ! ‘*“()\u)'
7 f(r - u)e " Ydydu, i€ E
/ / (i—s—1)! lg; I l
i) S—=>j<S

/ / —,\u(/\u S—s— l/\e—/\(L u)(/\(l _ u)) ue‘l'("‘")
-s—1)! (S - )

(1 — F(v — u))dvdu S-s—-k+1<j;<S§5-1,j€E

v)i<S—-j<$§

/ / e M (\u) N e M (Ne —w))ST
[l(’
7_9-1)' (-

(1 - F(v—u))dvdu, s<j<8§

Expected elapsed time between two order placement epochs

Let 7 be the elapsed time between two order placement epochs. Then
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(S—s-— min([%], s+k-1))
A

E(1) = ( 3 ) + (; /000 pert(1 — F(t))e Mdt) +

oo $+k—-1  _ ~ .
1 /0 Z f,'il(!/\—t)lue“"(l - F(t))dt + (S,\ S) + (Q,/O emH f(t)e~Mdt

30””“']6—/\!(/\,)1 ot
+/0 > — e M (1))

=1

=1

where a = [[°(1 — F(t))dt

2.6.5 Cost Analysis

Let C; holding cost per unit time, C; Backlogged cost per unit per unit time, C; Cost
due to natural purchase per unit, C4 Cost due to local purchase per unit, Cs Cancellation
cost per unit.

Expected invcnlory lcvel at an arbitrary epoch is E(/) = Ei, 1I’; expected backlog
E(B) = 1~~k+l |i| P
Therefore,

-1

S oo
TEC=C Y iPi+Cy Y. ECj (f+v(5—s))/ (1 — F(u))pe " du
0

i=1 i=—k+1 ( )

C i —»\u(/\“)swc
(S =+ (3 SHEEN 1>,+H)f (1- (u))—(—k)!—du))

+E(;)/0 f(u)e™#"du

where (2], = {[2]if 2 <s+k-Ls+k—-1if2>s+k-1

The particular case of exponentially distributed was discussed in the previous sections.

Some numerical illustrations were also provided there.
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Chapter 3

k-out-of-n system with repair: 7T-policy

3.1 Introduction

In this chapter, we consider a k-out-of-n system. In k-out-of-n system, the system
functions iff at least k(1 < k < n) of the n components function. Server is activated
on the elapse of T time units where T is exponentially distributed with parameter a from
the epoch of it being inactivated previously. The activation time after switching on, is
negligible. Thus server is brought to the system at the moment which is min{T, epoch
of failure of n — k units } after his previous departure. He continues to remain in the
system until all the failed units are repaired, once he arrives. The process continues in this
fashion. Both the continuous time Markovian case and the embedded Markov chain case
are considered. Embedded case is discussed in section 3.3. We consider three different
situations (a) cold system (b) warm system and (c) hot system. These are defined in section
3.2.1. We aim at finding out optimal T to maximize the profit, that is, to minimize the
running cost and maximize the system reliability.

N-policy for repair of the k-out-of-n system has been studied extensively in Krish-
namoorthy, Ushakumari and Lakshmi (1998). k-out-of-n system with general repair under
N-policy has been studied by Ushakumari and Krishnamoorthy (1998). In these, the au-
thors obtain the optimal number of components to fail before repair facility is activated
inorder to minimize the running cost and maximize the system reliability.

Waiting until a large number of units (very close to n — k) fail inorder for the server
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to be called may lead to the system being down for longer duration thereby decreasing its
up time and hence the reliability. Activating the server frequently results in high fixed cost.
Hence we go for T-policy.

The chapter is presented as follows. Section 3.2 deals with the analysis of the model
and it gives some preliminaries, notations, modelling and analysis of the problem under in-
vestigation. We outline the system state distribution in the finite time and in the long run for
all the three models. Section 3.3 is devoted to the study of some measures of performance
and section 3.4 discusses a control problem. It also provides some numerical illustration.

Section 3.5 gives the general case where T is assumed to be arbitrarily distributed.

3.2 Analysis of the Model

Life times of units are assumed to have independent exponential distributions with pa-
rameter A;, when 7 units are functioning. T is exponentially distributed with parameter a.

Repair time is also assumed to be exponentially distributed with rate .

Definition 3.2.1. The k-out-of-n system is called a cold svstem if once the system is down
(that is exactly k — 1 functional units) there is no further failure of units that are not in

failed state, until system starts functioning.

Definition 3.2.2. The system is called a warm system if functional units continue to dete-

riorate and so fail even when the system is down, but now ar a lesser rate.

Definition 3.2.3. A hot system is one in which components deteriorate at the same rate

during the system down state as they deteriorate when the system is up.

We discuss these three situations separately. First, we introduce some notations.
X (t) : number of functional components at time ¢.
Y'(t) : server state at time ¢,

Write
1 if the server is available at time ¢

0 otherwise
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Under assumptions made on the distribution of repair time, life time of components and on
T, we see that {(X(t),Y(t)),t € R;} is a Markov chainon £} = {(i,0)|k +1 < i <
n} U {(i,1)|i = k = 1,...n} for model a. (Definition 3.2.1) and E, = {(i,0)|k +1 <
i < n}U{(#1)]0 < i< n} for models b and c (Definition 3.2.2 and 3.2.3 respectively).
Denote by P;;(t) the system state probability at time ¢ given X' (0) = n, Y (0) = 0 that is
P;(t) = P((X (1), Y (t) = (&, HI(X(0), Y (0)) = (n,0)) for (i, ) € E1(E3))

3.2.1 Transient Solution

Model a

Here the functioning units do not deteriorate while the system is down. The Kolmogrov

forward differential difference equations satisfied by P;;(t) are

Pylnl(t) = _(nl/\m + ;u(l - 6nm)Pml(t) + (’n + 1)/\m+l(1 - (smn)Pm-H,l(t)
+CY(1 - (Smk)Pm()(t) + ("l + 1)/\,"4.](5,,,,‘-1),,,4.]‘0(’) + [LI),n_lJ(t), k S m S n
P,,no(t) = _(7"'/\171 + Q)PmO(t) + ("l + l)/\m+l(l - 6mn)1)m+l.0(”

+/1'6mnpm—l,l(t)v k<m<n
Py 1(8) = kMDPr(t) — pPi-1a(t)

3.1

where d;; is the Kronecker delta. The solution of equations 3.1 is given by P(t) = e''P(0)
where P(0) is the initial probability vector which has | corresponding to state (n,0) and

rest zeros. A is the matrix of coefficients on the right side of the system of equations.

3.2.2 Steady State Probabilities

From the above equations, by setting g;; = lime o P(t). (1,j) € E;, we get steady
state probabilities

n-1
(Y

(nA, + )
1 = —Vno u-11 = ”l—lqn() 1 = H

(1 + 1) Ay
,l/\”

n-k < < -
Y qo +1<r<n-1

l=r
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_n=r+ DAt o (n—1+2)A\_rs2
(In—r,l - dn-r+1,1 — —Qn-r41,0 — n-r+2.1,
" T p

2<r<n-k

gn-ty Where | = 1,2,...n — k and go_yo for{ = 1,2,...n — k — 1 can be expressed

in terms of gno, gk—11 = %’lqk, gno can be determined from the relation ZLHI gio +
v ;1 = 1. However the expressions for g, _; ; for different 2 values is unwieldy and so
i=k-1 q 1 p q . y

we consider the particular case of \; = % in further development. It is reasonable to make

the assumption since deterioration rate increases with decreasing number of operational

units.

3.2.3 Model b

In this model, when the number of functional components reduce to k£ — 1, the units that
have not failed start deteriorating at arate § < A. Then life time of functioning components

are exponential with parameter §. The Kolmogorov forward differential equations are

(B = = (A + (1 = n )} Pon (1) + a(1 = 6k ) Pno(t)
+ (77l + 1)/\m+l(1 - 677111)Pm+l.l(t) + (7” + l)’\m+l‘5mk1)k+l.0(t) (32)
+ N(l - 677111)Pm—l.l(t)7 k S m S n

mol(t) = —(mAy + ) Pro(t) + (m + 1) Ams1(1 = 6mn) Pnsr0(t) + 180 P11 (8).
kF+1<m<n
Pri(t) = —(mby + ) Prmi(t) + (m + 1)6ma1 Pmara(t) + tPrm_y4(t)
+(m+ DAt 10ms—1 Pnsra(t), 0<m<k-1
o(t) = —pPor(t) + 8Py (t)
These lead to the system state probabilities in the steady state with evolution of time
Q1) = (=l 1/)[(5k-1+1 T Il(lk—l-H.l ! +I;2)6k_'+2(1k—l42.12 <U<k

The rest of the system state probabilities are as in model a gx_;41 and gx_149,, | =

2,3,...k are available in terms of g, which in turn can be obtained from the relation
n
Dtk Qo+ D iogy i =1
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3.2.4 Model C

Here the functional components deteriorate at the same rate during down state of the
system as that when the system is up. The time dependent system state distribution can be

obtained as in model a. The long run system state probabilities are given by

k=104 DM_s1 + k—142) -
Qk-1,1 =( Lk s MQk—Hl.l ! ”) > l+2Qk—l+2,h 2<I<k

and the rest of the system state probabilities are as in model a. The normalizing condition

i D i g)e % = 1.

3.3 Some Performance Measures

We compute the optimal a for the three models. To do this, we need to compute the
distribution of time during which the server is continuously available we assume \; = %
fori = k,...,nformodela, \; = 3 fori = k,...nand§; = ¢fori =1,2... k-1
for model b, \; = %, 1= 1,2,...,n for model c. This assumption states that failure rate

decreases with increasing number of functioning units, which is quite reasonable.

3.3.1 Model a

Theorem 3.3.1. The system state probabilities in the long run are given by

A+ a
]

«
dn1 = X(InOy gn-1,1 = Gno

Qn-rn = [/\'—'(/\ +a)" T+ AN p((A+ o) P+ A a4 )+

+uA+a) P+ A+ 0)2)]q,,0\;1'(,\ +a) !

2<r<n-k

_ A = ( A
Gk-11 = #le, qgro = Y+ a

)"—rq"O- A‘ + l S r S n - ]
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Proof. Consider the equation (3.1) from the equation
a1 (t) = =nAn Poy(t) + aPro(t)
we can write the steady state equation as
0= —nAgm + agno

Hence, gn1 = 5-gno- Rest of the steady state equations are

0 = —(7”'/\m + /L(l - (svnrl))qynl + (”l + 1)’\m+|(1 - 6mn)‘]m+l.l + O(l - (smk)q:nO
+(7TL + 1))‘m+167nka+l.0 + Hdm-1,1, k S m S n
0 =—(MAm +a)gmo + (M + 1)Ans1@m10, k+1<m<n.

0 = kAegx1 — HGr-1,1

Solving the above equations, we get steady state probabilities in terms of gy0. O

Note : The system availability at any epoch is given by 1 — gx_,,;. Hence the fraction of

time the system is not available is g, ;. Under the normalizing condition, we get gyo.

3.3.2 Distribution of the time server is continuously available

Consider the Markov chain on the state space {(k — 1,1)....,(n,0)} with state (n,0)
absorbing and the rest all transient. We have to compute the distribution of the time until
reaching (n, 0) starting from one of the transient states (corresponding to server arrival).

The infinitesimal generator of this chain is

(k-1,1) (k,1) (n-11) (n,1) (n0)

(k—=1,1) ( - D 0 0 \
(k,1) A -A+p) p O 0

0 A

: _[ M, e, ]
(n-1,1) 0 0 0 A —(A+p) 0 T g 0
(n,1) 0 0 A -A 0
(n,0) 0 0 )
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where M, is the matrix obtained by deleting the last row and last column of the gen-
erator and Cu is the column vector with last but one entry i and all other zero. 0 is a
row vector of zeros. The distribution of time till absorption is of phase type given by
Fi(z) = 1 — oy exp(Tiz)e, for z > 0, where a, is the row vector of initial probabil-
ity with entries ax_y, 0, ... ,an Where ax_y = 0, ax = 1 — (a4 + ... + a,) with
ai = P(Sp—i < T < Sp_iy1) fori = k + 1,...,n where the random variable S; is
the time till 7 failures take place starting from the instant at which all units function write

So =0, then wehave Sy < Sy < ... < S,_¢and e, = (1,1,...,1)7.

3.3.3 Expected duration of time the server is busy in a cycle is given

by
n-2 Ayn—1i
1 o Akt =(2)"T) .
n—1)— (- —————P(Sh_is1 < T < S,
“ TER AR TE I )
‘ L Ak @
+(H—/\)(l (u) )a+A
where
P(Suin <T<Sni)= 22" hcicnoi
n—-i-1 n-i) = (/\+Q)"_i‘ sStsn—1.

Let T; denote the time to reach (i + 1, 1) starting from (i. 1), i > k — 1. We can recursively

compute E(T;), i > k—1 from the relation E(T;) = ‘l‘+ﬁE(T.-_,) starting from E(T;_,) =
1

u
From the state (¢, 1) both (i + 1,1) and (¢ — 1. 1) can be reached

(,1) = (+1,1)

T; denote the time to reach (i + 1, 1) from (i. 1). Hence

b ALy E(T) + E(T)
ie, E(T}):& = + ﬁE(T;-l)

+u

N
|
-3
— o

>
+
®
>
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Thus we get the relation

E(T) = 142E(T.,),i2k-1
— L AL A _
= 4+ 35+ 2E(Ti2))
= 1AL (AVE(T
- p+‘—17+(u) E(]‘l—2)
_ l(l—(;\—‘)'_k*’z) _ (]__(%)u—k-}-?)
T Y R Y

The expected time to reach (n, 0) conditional on server getting activated between (n —
i)th and (n—7+ 1)th component failures is Z;.';.' E(T;|Si < T < Six1)P(Si < T < Siq1)s
where the random variable S; is the time till ¢ failures take place starting from the instant
at which all units functions write So = 0, then we have Sy < S; < ... < S,_¢. With this

the expected time to reach (n, 0) is

n-2 Ayn-—1
1 A (L =(2)"7)

(n—i)— (2)y*2 28 \p(S, ., < T < Sa_,

— (n—A) ) (u (1= A) 1 )

1 A o)
+ 1-(= n-k+1
(u—/\)( (u) )a+/\
where P(Sp_i—1 < T < Sp_i) = (‘T\I\T'::_)";-l' k < i< n—1andis obtained as follows.
P(Snoic1 < T < Suoi) = fooc ;): N—:E;\_li)_l%\ae""e"“"“’dudr
= ((:\,_\*_':)'n-_l. ) k S 1 S n-—1

3.3.4 Expected time the server is not in the system in a cycle is given
by

2 A
2 - (——
(t( (,\+n

)n—k)

From the state (n,0) the system can move either to (n.1) or (n — 1,0). If it goes to
(n—1,0), then from this the system further moves to (n—2,0) or (n—1, 1). This processing
go on till the state (k + 1,0) is reached. From (k + 1.0) it can either goto (k + 1,1) or

(k,1). At (k +1,1) on failure of one unit the system goes to (k. 1) by an assumption. Thus
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the expected amount of time the server is not in the system in a cycle is

IPT<S)+ (L +1) PSI<T<S)+ -+ (L+25)P(Spok-1 < T < Sni)

A2
+P(T > Sn—k)'T\£ = 3,\+a +( )(A+a)7 +( + )(fm)i +.
n—k-1 -
by moety T ka0 D a (e

3.3.5 Expected duration of time the system is down in a cycle is

Al Minckst nokes Atatpm) A (1= ()"
((;) kﬁ(/\+a)+(;) k4 kam;:k_—, (;) k! (/\_:J'a_u) )

It is well known that ==Lt q" LL gives the expected number of visits to (k — 1, 1) before first
return to (n, 0) (starting from (n,0)) (see Tijms (1994)). Further 2 . is the expected amount
of time system remains in (k — 1, 1) during each visit to that state. Hence expected duration

qkll

of time system is down is == which is equal to

Ak 1 Akt B 53 +a +p)
(Gt a)+ (Gt ol on
:\_ n—k-H(1 _ (I+Lo)n—k_3)
+(/1) A+a-p)

3.3.6 Model b

System state probabilities in the long run are the same as in model a for states {(k —

1,1),...,(n-1,1),(k +1,0),...,(n,0)}. Further since the functional units deteriorate

even when the system is down, we have for | = 2,... [ k.qx_yy = (%)"‘qk_,,,. 2 <
| < k. The system is down for the fraction of time 3"/_/ ¢i1. So the system reliability is

k §/u
1-3 i ogn=1- g(—l(ﬁ))—lfh 11

3.3.7 Distribution of server availability

Consider the Markov chain on the state space {(0,1),(1.1),...,(k,1),...(n = 1,1),
(n,0)} with state (n,0) absorbing. This distribution of phase type given by Fy(x) = 1 —

oy exp(Maz)ey, where M, is the matrix
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(0,1) (L, 1) (n—1,1)
(0»1) —1 H 0 0
(1,1) 0 —(u+é) p O 0
(n-1,1) 0 0 0 0 A —(A+p)

a; is the row vector of initial probabilities with first k entries zero, the rest of the entries
are Otk 41, Ok 42y -+« 3 Qp,y Qg Where apyy = 1—(Qp42+ ... +anyy) and oy = P(Spoin <

T<Snoiz2)i=k+2,...n.0n41=P(T<S),eg=1(1,1,...,1)7.

3.3.8 Expected duration of time the server is continuously busy

As in the earlier model, T; denote the time to enter state (z + 1. 1) starting from (z, 1).
Here E(Ty) = -

1 - ()%
B(T) = ~(1+2) E(Tk_,)zl%_)
H M T (1_‘_‘)

1 A1(=($)H)
E(Ti)=-+2-—#~
(Tk) PRSP

We can recursively compute E(T;), ¢ > 0 from the relation E(T;) = ‘l‘ + ‘%E(T.-_l) starting
from E(Ty-,) = "‘l(T("ﬁ:—‘))— Thus
1 [1= (A p)y*-* (1-(5/m)")
E(T;) = — + (M p)*- "———
) #[ 1= (Mp) /m) ~6/n)

The expected time to reach (n, 0) conditional on server reaches between (n — #)th and
(n — 7+ 1)th component failures is Z" ! E(T;|Si<T < S541)P(S; <T < Si;y) which

is equal to

n-ln-1
1[1=(\/p)ytt=k A 1—(6/p)*
it + (=)t ]PS,,_,-_ <T < 8.,
P J=,.u[ 1-(Mp) (u) (1-6/n) ( ' /)
where P(S,_i_.1 < T < S,_;) = (‘:\’\T';)',,—'; k<i<n-1
P(T<S)=—

A4 a
Expected time the server remains inactive during a cycle is same as in model a.



3.3.9 Expected duration of time the system is down in a cycle

To this end note that :

Tk-1,1

qno

gives the expected number of visits to (k — 1, 1) before first return to (2. 0). Consider
—(E)*

the class {(0,1),(1,1)....(k—1,1)}. The process spends on the average ,l,“(_l(f{))_) amount

of time in this class during each visit before returning to state (k,1). Henc“e expected

duration of time the system is down in a cycle is

(] é
1(1- (%) geoia _1a- (,—,)k)((é k(A ta) é),,_k+,“,,_k_3
po(1=2) a0 o (1-(2) Tk i 7
Atatp) Al - G
(A + )kt T, A+a—p

3.3.10 Modelc

System state probabilities in the long run are the same as in model a for states (k —
1,1),...,(n—1.1),(k + 1,0),...,(n,0). Further since the functional units deteriorate
at the same rate even when the system is down as when it is up gx_y; = (ﬁ)"'qk_l,, for
[ =2,3,...,k can be expressed in terms of g,o. System reliability is computed as earlier.
¢no Can be obtained using the normalizing condition leéfz gi; = 1.

The distribution of the duration of time the server continuously remains in the system
is given by

Fi3(z) =1 - azexp(Mzr)es

where «y is a (n + 1) component row vector with first & entries zero the rest of the entries
are gy 1y Ok42s - - QO Oyp Where gy =1 —(agq2+ ... +ay) and a; = P(Sp-iyy <
T <Sp_it2),i=k+2,...,na, = P(T < §)). e is also of the same dimension with
all entries 1. Al is a non-singular matrix of order n gives by first n rows and n columns of
the matrix [ — P> where [ is of order (n 4 1) and P is the transition probability matrix of
the chain on the set {(0,1),(1,1),...,(n = 1.1),(n,1).(n,0)}.
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3.3.11 Expected amount of time the server is continuously busy

In this case E(T;) = ,1111—"9%;&12] > 0 starting with E(Tp) = ... As in model b, we
get E(Ty) = 377 YE(T\Si < T < Sin),
n-1 n-1 ;
11— (A/p)*!
. i = — P n-i— T n—i/y
P(S; < T < Siy1) ?:o ,-Em- ”[ - \/n JP(Sn-i-1 < T < Spy)

where P(Sp_i-1 < T < Sp_i) = {%‘n—;ﬂ k<i<n-1Thus

ot i =Gr) axeeic
=2 G Sk

Hl- Gy

Here also the expected time the server is not in the system is the same as in the above two

models.

3.3.12 Expected amount of time the system is nonfunctional

_ )
The process spends on the average -~ ——SJ-‘g— amount of time in the class {(0,1), (1,1),...

(k —1,1)}. Expected amount of time the system is non-functional in a cycle is

(-G g1

1
u 1_,": ano

3.4 A Control Problem

Here we attempt to find the optimal value of a by maximizing the profit and the system

reliability. The following costs are considered.
1. Cost C per unit time due to the machine remaining non-functional
2. Profit per unit time when the server is not activated in the system.

Let C' denote the cost per unit time due to the machine remaining non-functional and w

denote the wages given to the server.
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3.4.1 Model a

Profit per unit time when the server is not activated = w(2(1 - (:25)*7%)).

Expected cost per unit time due to the system remaining non functional = C( )"iq;—:’*l =

1
m

Ain ol prEB3 A+ a4+ ) (1= ()Y
C('/;) k+l((X)L‘—2(/\+a)+ (/\+Q)"—k_] (/\_:a_u) )

Therefore the total expected profit per unit time (T E P), is

2 ) Akt By 1 u""“a(z\+a—u)
WG = (553)"™) = O™ (B 50+ o)+ ot
1_(1_+La)n—k—3

Ata—p )

The above function is concave in a as it can be seen by differentiating it twice with respect

to a. However it is difficult to find optimal a value from the first derivative equated to zero.

34.2 Modelb

In model b, the total expected profit per unit time (T EP)y is

A A
(TEP) = w(Z(1 - (552" ~ CUEI ™ 500+ a)
Avnok4l, nok-3 At a+p Alnok+ (1 - (Fh5)"*%) 1 - ()"
+(u) a (A + )k (u) Ado—p ) ,u—pd

Here again (T EP), is a concave function in « as can be seen by differentiating the
profit function with respect to a. ,

3.4.3 Modelc

In this case the total expected profit per unit time (T EP), is

2 A ek Mg 1 .
TEP) = w(Z(1 = (752" = CUEI™ S0 +a)
] n-k- A
+(é)n—k+l“n—k—3 ’\+Q'{:,I_ +(é)n—k+l(1_ :}m) k 3) 1_(‘-,)k
IT (A+a)n=k=1 " 2y (A a—p) TR

which is concave in « and hence has global maximum
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3.4.4 Numerical illustration

For illustration, we calculate the total expected profit per unit time for given parameters
for the three models and for various value of a. On comparing the three models for different

set of parameters, we can see that total expected profit is maximum for model b.

Comparison of three models

n=12,A=75n=13, k=6, w=70,C =80, =5

Total expected profit/unit time

a [ (TEP), | (TEP)y | (TEP),
3 | 38.986 | 40.284 | 40.209
3.1 | 38.052 | 39.315 | 39.242
321 37.156 | 38.386 | 38.315
331 36.296 | 37.495 | 37426
3.4 | 35471 36.64 36.573
351 34.679 | 35819 | 35.753
3.6 33917 35.03 34.966
3.7 33.184 | 34.271 | 34.209
3.8 32479 | 33.541 3348
39 31.8 32.839 | 32.779
4 | 31.146 | 32.162 | 32.104
4.1 30516 3151 31.453
421 29908 | 30.882 | 30.820
4.3 29.322 | 30.276 | 30.221
4.4 28756 | 29.691 | 29.637
45| 2821 29.126 | 29.073
4.6 | 27.682 | 28.581 | 28.529
4.7 27.171 28.054 | 28.003
4.8 | 26.678 | 27.544 | 27.494
4.9 26.2 27.051 | 27.002
5 | 25.738 | 26575 | 26.526

n=I18 k=7 A=95,p=1Luw=80,C=110,6 =4

Total expected profit/unit time
o | (TEP)e | (TEP)y | (I'EP),
2 | 49.157 50.57 50.402
2.1 1 47.805 | 49.153 | 48.992
22 46518 | 47.805 | 47.652
2.3 45.292 | 46.523 | 46.376




Total expected profit/unit time

a | (TEP), | (TEP)y | (TEP),
24| 44.124 | 45302 | 45.161
25| 43.01 44.138 | 44.003
26| 41946 | 43.028 | 42.898
27| 40929 | 41968 | 41.844
2.8 | 39.957 | 40.955 | 40.835
29| 39.027 | 39.986 | 39.871
3 | 38.136 | 39.059 | 38.949
3.1 37.282 | 38.172 | 38.065
3.2 | 36.463 | 37.321 | 37.218
3.3 | 35.677 | 36.505 | 36.406
34| 34922 | 35.722 | 35.627
35| 34796 | 35.03 | 35.002
3.6 | 33.499 | 34.248 | 34.158
3.7 32.828 | 33.553 | 33.466
3.8 32.182 | 32.885 | 32.806
39| 31.56 32.241 | 32216
4 30.96 31.621 | 31.542

n=10, K =5 \A=55,n1=10,w=50,C =100,6 =3

Total expected profit/unit time

o [ (TEP), | (TEP), | (TEP),

3 27.435 29.251 29.106
3.1} 26.737 | 28512 | 28.37
321 26.069 | 27.806 | 27.667
33| 2543 27.131 | 26.995
34| 24819 | 26484 | 26.351
35| 24232 | 24865 | 25.734
361 23.67 25.271 | 25.143
3.7 23.13 24.702 | 24.576
38 22612 | 24.156 | 24.032
391 22,114 | 23.631 | 23509
4 | 21.635 | 23.126 | 23.007
4.1 21.174 | 22.641 | 22.524
421 2073 22,174 | 22.059
4.3 20303 | 21725 | 21.611
441 19891 | 21.292 | 21.18

47
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Total expected profit/unit time
« | (TEP), | (TEP)y |(TEP),
451 20.047 | 20953 20.88
46| 19.11 20.472 | 20.363
47| 18.739 | 20.083 | 19.976
48| 18382 | 19.708 | 19.602
49| 18.036 | 19.346 | 19.24]
5 17.701 18.996 | 18.893

3.5 General case

Here we assume that the repair time is arbitrarily distributed with distribution function
G(.) having density g(.). The server is activated after the elapse of T" time units since last
inactivation after completion of most recent repair of all failed units or when the number
of failed units accumulate to n — & units, whichever occurs first. Life times of components

are i.¢.d random variables. T is exponentially distributed with parameter a

3.5.1 Formulation and Analysis of the problem

Assume that at time Ty = 0 the last of the failed units completed repair. That is we
start the system at time zero with all units operational. \X'(#) be the number of working
components and Y (¢). the state of the repair man at time ¢. Write X\, = \(T,+) and
Y, =Y(T,+)forne Z.

We consider three cases (i) cold system (ii) warm system (iii) hot system where we
designate the system as cold, warm or hot according as the functional components do not
fail, fail at a slower rate or at the same rate during system down state as when the system

functions, respectively.

We observe that {(.X'(¢),Y(t)).t € I?.} is a semi-Markov process on Ey = {(k —
L1 (A D)oo c(n=1 1) (k+1.0)...(n.0).(n. 1)} inmodel 1and on E, = {(0.1).... .
(k= 1.1), (A, 1) ... (n 1) (A + 1.0).... (n.0)} in models 2 and 3 (the warm and hot
systems).

Let time Ty = 0, the system starts with all components operational. Thus X (04+) =
No=nand Y(04+) =Yy = 0. Let T, T,. .. . 1,,. ... be the successive repair completion
epochs of failed units.
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A server is activated after the clapse of T time units since inactivation after completion
of the most recent repair of all failed units or when the number of failed units accumulate

to n — k, whichever occur first. Then, we have

Theorem 3.5.1. {(\X',,T5,), n € Z,} is a Markov renewal process with state space E3 =
{(k,1),. ., (n=1,1),(n,0)} formodel I and Ey = {(1.1)....(n—=1.1),(n,0)} for model
2 and 3 with semi-Markov kernel (i, j, t) define as Q(i, j.t) = P((Nn41- Yn+1) = (4, 1))
Tot1 —Tn St (X5, Y0) = (D). te Ry

Proof. For model 1. there are given by

Qi 1)y, 1),t) = / (—_M—J—;g(u)du J<i+l,i#n-1

o (—-Jj+1)!

Q((n—1,1),(n,0),¢) = | e *g(u)du

> ST

(,—«\u( \”)n j-1

Q((n—1,1),(,1)t) = /0 (1 - G(u))du, j<n-1

(n—j7-1)
't t N
Q((n,0),(n,0),t) = / / / ae " Ae Mg — v)e M "dwdvdu
u=0Jr=uJuw=u
t N t
+/ / Ae Mae g (uw — v)e" M dwdredu
u=0 =u Ju=r
Q0.6 1,0 = [ | / > "‘*"(‘“)’ Qe (A (1 — u)r=ima )
R Ju=0 r=u o ] ”‘"'"'_]'f‘l)
g(v — u)dvdu + / / / TauN -\"g(zl' - z')r"'\("'"")
u=0Jr=uJu=
(/\(“' - ))
T:Tdu lll (111
For model 2, we have
e -Au \ll 1—j+1
Q((z, 1), /0 ,_J+1'J(u)du i=k... . n-1k<j<i+1

e Sn (5 i-j+1
O, 1), /‘, jil|mwm,i=Lz””k—n15i+1
-
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—/\u l -k -6(v—u) _ k—-1-{3-1)
Q(,1), / / T .}u/\ A¢ (6((: — ;1))') g(r)dvdu
w=0Jov=u " :

i=kk+1,...n-1.3=12,...k

Q((n—-1,1),(n,0),t) = /t MG (u)du

t t t /\e—/\u Au)"" —k-1 Cou Mw—u) b0
N R B e o N LR
u=0Juw=uJr=w
L k—i t n -1
(9 u) — L dvduw du+/ / / /
(I\ _z n=0Ju=ry Jr=u Ju=r) j=1

S '\ gtz A2 = 1)) Ig(v — )
(-1t (n— k — j)le-Au-11)
5

_J(U—“)( (U - fz))k

dvdr,dudr,

/ / / / e " \e -Aw ( _ ”,)e—z\(r—w)
u=0Ju=uJr=wJuv=r

(A = w))t ke r=(§ (e — x))k

(n-—k). (k=1)!

dvdrdwdu. 1=1,2,... k
for model 3, we get Q(i, j, t) as,

) ¢ —,\u(\“) -1+1 '
Q((:,1),(5,1),¢t) = / (W)du 1=1.2,... k=1 j<i+1

n=0 (I —.] + 1)' 7
e M (Au)'

(2((1,1),(_},1),0: W(](H)({H.I:A.k'{'l..n—l _]'—'1,2,,k
Ju=z() . :
t ot /\(’_'\"(/\ll)"—k 1 _'\("—")(,\(l' _ u))k—i+l
y 1 t — '-('IU — .
QUm0 1) = [ [ Xt (e v
ot t n-k-1 _,y ] -Ar—u) n—-j—i+1
e M Auy M (0 — )
+ . [¢17] - ) — !‘
/u=o/,-=u ; i ae Tpr——— g(v — u)dvdu
t t N ~Alw—v) MMuw — v n—t
+ / / ae™ ™A Mg (w - 1')P ( (“. v)) dwdvdu
u=0Jrv=uJuw=r (71 - 1)'

a
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3.5.2 Time dependent solution
Model 1

Let Pyjiinin)(t) = P((X(t) = i, Y(t) = j2 | XN(0) = 71.Y(0) = ;1)) and
P, jy(t) = PU(X(t) = 4, Y (t) = ji | X(0) = n.Y(0) = 0)). These probabilities
are obtained {rom the definition of (i, j, t), i.j € Ej5. Define

U((i,1), G, 1), ) = P((X (1), Y (1)) = (51, 1). Th > 1] (X(0),Y(0)) = (21, 1))

Then U((iy, 1), (i, 1)) = (1= G() (25 k=1 < 4.5y < n—land jy < iy

Further define

H((n,0),(n,0),t) = ju oJL _, e e ZD,Q" n—1,1),(n.0),t — v)dvdu
+j0 Son kl le—?'\—",ff}"—)m— TS e @ ((n— m. 1), (n,0),t — u)du
—Aupy)n—k-1 —au .
+ fo TR s k(}’((l\ 1), (n,0),t — u)du

where (Q*!((i, 1), (j, 1), t) is the [-fold convolution of () with itself and:

1 ifi=
Q0 = 7 This represents the distribution of time of first return to (1, 0)
0 otherwise

starting from (n, 0)

Piog(t) = jo > oo HH((11,0), (n,0), du)e= M= ")('\—(:T"Z))—:—'du i=k+1,...n

Piy(t) -—jo SUC lQ (n,0). (J. 1), du) P 1y iyt — u)du

3.5.3 Limiting distribution

Let Q = (limy_o Q(71, 1)\ (22, J2), 1)), (1. 1) (12. j2) € Ezand [1 = (n (K, 1), n(k +
L1),...,m(n—1,1),m(n,0)) is the stationary vector where 7(7, j) = liln,400 P(\, =
LWY,=7|No=nYy=0)where j=0ifi=nandj=1wheni=AKk+1,... ,n -1
These probabilities can be computed from [1Q = ITand Y~ A' m(2.1) + m(n,0) = 1. The

long run system state distribution at arbitrary epoch can be derived as follows. Define
gij = Jim P((X() =1,Y(t) = j | X(0) = n,)(0) = 0))

fori=k+1,...,n—-1nj=0,i=k-1,....n=1,)=1.
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Model 1

Let p = [;°(1 — G(t))dt which we assume to be finite. Then,

m(n,0) m(n,0)a m(n.0) -t :
=—'" g,=——— Qo= — i=k+1.... ,n-1
ano U Gn1 (/\ + Q)M Gio T (O’ + /\)n—|+l : n

~, 1 00 '—/\u A -t
q“=§:”J)/ RO (1 - Gu))du
< M 0 (-
Next, we find g(x_1,1). State (k—1. 1) can be reached fromthe states (5. 1), j = k,... ,n—1
and (n,0). We have derived 7(j,1), j = k.... .n — 1 and 7 (n,0). From the state (j, 1)
state (k — 1, 1) can be reached by the failure of the j — & + 1 units. From state (n, 0), state
(k —1,1) can be reached due to failure of n — k + 1 units. Here we consider three cases
(i) server arrives before any failure (ii) server arrives between ['* and (/ + 1)th failure (iii)

server arrives only on the failure of n — k units.

Therefore,
i ' /'°° 6*“(,\11)j‘k+'(1 Gu))du + 7 (n.0)
. — G(u))du
= = 2 o (—k+1) T
100 oo n—k+l ——/\ll -A(r—u n—-k-I+1
e M) e MU (N (e = u)) +
[/u: /_u ; T ae =k =13 1) (1 - G(v - u))dvdu

100 —Au \ n k- I\
+/ / ,fl ly-”m G(t ~ w)Je =Nt = u))dtdu
u=0Ji= - -

o0 [e3) 00 —,\(u'-v) . _ p)\n—k
+ / —uu \ —Av (/\(ll ! ))
u=0 Jv=u (n = k)

(1-G(w - v))dwdvdu]
Model 2

We have Q = (limy5 Q((11. 1), (22, J2) ). (11 1) (12, J2) € E
with m(2, 7) = lim, 0o P(Xy = 4.}, = Jj), (i.7) € Ey. Let 1l = {a(1,1),7(2,1),...,
m(n — 1,1),m(n,0)}. Then Il is given by 11Q = II with Z(r.;)el:‘., m(1.J) = 1. Next, we

find out gi5, (¢, J) € Ey. ¢ij = limy, P(X(t) = i.Y (1) = j). These have the same form
as in model 1, except for g,y fori =0,1.2,... .k = 2.
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—/\u m-k —4(v—u) . k-1-1t
- (m,1) / / /\u \e au® (d(t 1.1)) (1 - Gl(u))dvdu
m>k u=0

Hl - (k —-1- 1)!
_,\u /\U n— k/\ —au e—&(v—u)((s(l‘ _ u))k—l-i
u=0 Jv=u (k —1-—1)! (1 = G(u))dvdu

A / LU il k) i
' —AQe - - 1
u=0Jur=u Jw= j=0 . ("—}‘-J+l)-

__,\(u ')(/\(ll‘ _ U))k—i ,
k —1)! glw =

v)dwdvdu

Model 3

In the case of model 3, we have Q = (litny— o Q((71. J1)- (72.J2), t))s (71, J1)s (12, J2) €
E4. Here the failure rate is A even when the system is down. The limiting system state

probabilities can be obtained. The expressions for g,; remains identical except for the
states (¢,1),i=0,1,2,... ,k - 2.

,” 1 —/\u(\” m-—k A _m‘(,—/\(zwu)(:\(l. _ ”))l- 1-1
"o m A /u 0 / (m — k)! Tm-kt (k=1 —1)! (1= Glu))du
—Au \u n-— k/\ . (,—/\(r—u)(/\(l. _ “))k—l—v .
T G—1=7) (1 = G(u))dvdu
N / / /oo "Zk:_l (,-,\u(/\“)j( (’_n"(,—l(v'—u)(’\(v _ “))n—k—J-H
ara— ;
Ju=0Jrv=uJw=r j=0 J' (” - k- J+ 1)'

e M= (N — )k
(k=)

g(w — v)dwdvdu]

3.6 Control problem

Here we derive optimal value of a for a suitable cost function associated with the prob-
lem. For that, first we compute the distribution of time between two successive (n.0) to
(1, 0) transition that is the distribution of the time of the first return. The distribution of the
time duration since the server arrival till all the failed units are repaired can be derived as

follows.
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3.6.1 Model 1l

Suppose B(t) is the distribution of the random variable. Let u be the time at which i
units are repaired. During this time there may be none, one or more failures. Suppose there

are j failures. Thus busy period generated by j failures has distribution B;(.). Thus

-k-

B(t) = B,(t)P(T < Sy) + 2: (Si < T < Si1)Bi(t) + P(T > Sn_i)Bu_(t) =
i=1
tn k-1 '\“(/\ll) n-k-1 tn—k-1 '
——— Bt —u)du + P(S;i< T < S; *
a+/\/ ;1 J( u)du ,le: ( +l)/0 ; 9" (u)
—Au ) j tn—k-1 —,\n
f—%ﬁl&u—m@+Pu>swu/ Z:f"Ml ;N)&u—m@
. 0

where g(.) is the density of the service time of a single unit. When n — k is large we have

B(t) = 335 Jy X520 9(u) ==L By(t — u)du
+ YT (S < T < Sin) fy Tp g () =R Bt — w)du (3.4)
+P(T > Sui) fy S50 97" M () =2 Bi(t — u)du

)
b(t) is the density function corresponding to B(t). Differentiating (3.4) and taking Laplace

transform, we get
L(b(t)) = =25 L(g(u)) | 8" = s+ X = AL(b(1))
+ i A LT () |8 = s+ A= AL(b(1)) (3.5)
+(525)" KL () | 8" = s+ A = AL(b(1))

inverting this, we get

I

>-
—
e

s
- . 1 - on—
=1

Let b be the expected length of the busy period. Differentiating (3.4) and using

—d —d
l( L(g())/s=0 = ! and —1:‘1«(”(’))/s:0 = b.
ds

we get b = ‘ll(l + Ab) which gives b = —-(“L\)
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3.6.2 Expected length of time the server continuously remains inactive

is given by

1 1
lP(T<S|)+(—+—\)P(Sl<T<52)+...
« t /
1 -k -1 —k
+ (5 + S5 )P(Sakt < T < Spek) + S5 PT > Snci)
(81 /
_ 1 « +(1+1) a\ +l+g a/\2_-+
a a4+ )\ a AN (A+a)? a AN(A+a)
1 n—k—-1_ aA*! D S T A
+(E+ =

-t _ =z (D yn-k
A (A +a)r-k +(/\+n) A u(l /\+()) )

3.6.3 Expected duration of a busy cycle (that is the length of the time

of first return to (n, 0) starting from (n,0)) is

1 2 Ak
(/1—/\)+;(1_ /\+n) )

The fraction of time the server remains continuously in the system is

_r
(u-2A)

1 2 A -k
Gi=N) + Z(l - (m)" )

3.6.4 Total expected cost per unit time

Let '} be the fixed cost of hiring the server and (', the wage of the server per unit
time. The total expected cost per unit time

1 2 A
(TEC), = Cl(—(“ — /\)+g(1—(m

1 1 2 Ao
TES L TE RS A

It is seen that (TEC), is convex in a. Hence global minimum value o* that minimizes
(TEC), exists.

)G

3.6.5 Model 2

Inorder to compute the distribution of the time of first return to (1. 0). note that, once

the system is down, further failures take place at rate 4. The distribution of the time duration
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the system is in the set of states {(0,1),(1,1),...(k — 2,1)} continuously is obtained by
considering a process that starts at (k — 2, 1) and returns to (k — 1, 1) for the first time. The

distribution is given by

-2 e“’"(éu)

i Bj(t — u)du

For large k, we get

g o« ,—bu
=/ (u) Ze 6u Bj(t — u)du
j=

This has mean b = ——. Thus the expected time between two successive visits to (n, 0) is
1 1 1 2 A
(1 - n-k )

(/‘—‘5)+(I‘+(5)+(/l—/\)+n( (/\+u) )
Therefore

1 2y 2 A ke 1 2
TEC), =C + + 201 - (—)"H'+C
( ) 1[(,u.—/\) (12 —6?) a( (,\+u) ) 2[(,,,_,\) +#2—52]

1 2u 2 A sk
TESYRR T T L e i

[

This is convex in a and so global minimum value a* of a exists.

3.6.6 Model3

In this case the first return to (n, 0) starting from (n. 0) has on the average the duration

sy + (7,%—) + 2(1 = (522)"7")]. Hence the expected cost per unit time is

1 2 2 A
TEC), = 2,
TECk =0l —n+e—wm Yol - Gia

l

2
/\)+;12—/\2]
1 21 Ao
(y1 = N) (/12—\2) (1_(/\+(r) k)]

PN+ Cal

This is also convex in «v. Hence optimal value of a that minimize (T E'(7)3 exists.



3.6.7 Numerical illustration

For illustration we calculate the total expected cost for giv

models and for values of . On compari

ng the three models for different sets of paramcters,

we can see that total expected cost is minimum for model 3.

'l‘ablel.01:100C2=80n=10k=5/\=5.5;1.=1l)6=3

Total expected cost per unit time
a [ (TEC), | (TEC), | (TEC)3
20| 116944 | 110.063 | 108.564
2.1 1 119.240 | 112.307 | 110.670
221 122669 | 1145201 112736
231 125555 | 116700 | 114772
241 128424 1 118.846 | 116.771
251 131.273 | 120.962 | 118.735
2.6 | 134.103 | 123.043 | 120.665
2.7 | 136.783 [ 125.092 | 122.562
2.8 139.698 | 127.108 | 124.425
29| 142464 | 129.091 | 126.255
3.0 | 145.205 | 131.043 | 128.051

Table2. C;, =200C, = 110n =12k =6\=85pu=156=5

Total expected cost per unit time

(t

(TEC),

(I'EC),

(I'EC)3

20
2.1

248.882
254.551

228.390
232.817

Lo

227.394

To

tal expected

cost per unit time

(4]

(LLC),

(T'EC),

(TEC);

2.2
23
24
2.5
2.6
2.7
2.8
29
3.0

260.211
265.865
271.512
276.690
282.770
288.378
293972
299.548
305.106

237.209
241.567
245.886
250.169
254414
258.621
262.790
266.920
271.009

231.494
235.548
239.565
243.539
247.474
251.367
255.217
259.026
262.792

en parameters for the three
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Chapter 4

k-out-of-n system with repair and two

modes of service : the T'-policy

4.1 Introduction

For a k-out-of-n system with repair, we assume that there are two types of servers; |
server (S)) and Il server (S;). S is available always and attends repair onc at a time. How-
ever S, is activated only after elapse of 1" units of time from the epoch since the most recent
completion of repair of all failed units. S, repairs failed units with exponentially distributed
service times with rate ji;, where as S, provides service which is exponentially distributed
with rate ji, (again with single repair at a time). When all units are back to working state S,
is switched off to be activated again on elapse of a random duration T" which is assumed to
follow an exponential distribution with rate a. Life times of components are exponentially
distributed with rate \. Repaired units are assumed to be as good as new.

k-out-of-n system with repair and two modes of service under /N-policy has been in-
vestigated by Krishnamoorthy and Ushakumari [1999]. In this case Sy is always alert and
is serving if any unit is waiting for repair. S, is activated only when the number of failed
units accumulate to N(> 1). S, is activated to increase the repair rate in order that the
system will have failure free operation for a longer duration.

Scction 4.2 deals with the modeling and analysis and provides the system state distribu-

tions in finite time and in the long run. Section 4.3 is devoted to the study of some measures
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of performance.

4.2 Modelling and Analysis

Life times of components are exponentially distributed with rate A when the number of
failed units reaches n — k + 1, the system is down. Once the system is down, operational
components do not deteriorate further until the system starts functioning.

Let X (t) be the number of failed units at time ¢ and }'(t) be the state of S at that epoch.
Write
Y(t) =

1 if S;isactive at ¢
0 otherwise

Then the bivariate process {(.X (t), Y (t)), t € R, } is a Markov process on the state space
E={n-k+1Ln—-k, .. ,1} x {0,1} U {0.0}. Define P;(t) = P{(.X(t),Y(t)) =

(¢,7), (i,7) € E} and let P((.X(0),Y(0)) = (0.0)) =1

The Kolmogorov forward differential difference equations satisfied by /%;(t) are

Poo(t) = =ADooll) + ju Pro(t) + 2 Pra(t)

Piy(t) = —(A+a+p)Polt) + inPisrolt) + AP yo(t). 1<i<n—-k

Pi(t) = —(M1l = din-r+1) o + A )P () + (i 4 p2)(1 = bin—k )
Pipia(t) + ali(t) + M1 = 6i)Poga(t). 1<i<n—k+1

PrlD = -@m) BL40 + ARG @

where §;; is the Kronecker delta.

4.2.1 Transient solution

The above system of differential equations has a unique solution given by P(t) =

¢M'IP(0) where P(0) is the initial probability vector which has 1 corresponding to state

(0,0)and rest zeros. A is the matrix of coefficient on the right side of (4.1)
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4.2.2 Steady state solution

Theorem 4.2.1. The stationary probability vector I1 = [mo. 11y ... [1l_x4y] is given by
H,-=7r0QRi1§i§n—k.

l—In—k-i-l = ﬂOéRn_k(_/\S—l)

where my = {Q[Z?:—ok RE— AR S e} " and R = M\ — AB°° — S)~! where B°° =
e.B where ¢ is the column vector of Is’ and B is the initial probability vector.
The infinitesimal generator of the Markov chain is given [refer next page]. We write the
states Iexicographically as (0,0),(1,0),(1,1).(2.0),(2.1) ... ,(n—k+1,0),(n—-k+1.1)
Stationary probability vectors of the system state are given by II; = ﬂgéRi, 1<:i <
n—kand [l,_41 = mBR"¥(—AS™") where R = A\(A] — AB°° — 5)' and B°° = ¢j.
B is the initial probability vector, ie. 3 = (8y, 3;) (see M. F. Neuts [1981])

1 13 13‘
B°° = Bial=1" 7.
1 d] 132

ML=51)+a+ 1y —(A32 + «)
- A3 A = 3) +n + po
and my = {B(Tisy I = AR"KSY)e} !

-1

=X

4.2.3 Numerical illustration

For given values of parameters, we obtain the stationary probability vector as follows.

A=6, =8, =10, a=8n=15k=53 =1 3, = % we get

g | 0319 0191
0.032 0.319

mo = 0.597; 11} = [0.076.0.165): 11, = [0.03.0.067)

I13 = [0.012,0.027); I, = [0.005.0.011): II; = [0.002.0.004]
Il = [7.149X107%,0.002] IT; = (2.835X107,6.902X 1671
g = [L.125X107 12716 X 10 ") 1ly = [L16TX107%,1.092X 101
[y = [L77AX107° 434X107° 11 = [6.653 X105, 1.742X1077)
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4.3 Some performance measures

4.3.1 Distribution of the time duration of continuous activity of S,

There are two possibilities, one of them is return to (0, 0) without S, activated and in
the other, return to (0, 0) with S, activated in between. Consider the Markov chain on the
state space {(0,0),(1,0),(2,0),...,(n =k +1.0).(1.1).(2,1),...(n — k+1,1)}. The
distribution of the first part is of phase type given by (1 — ¥, exp(11x)c) Z:.:]k“ %_—%—,
where ¥, is the initial probability vector, 1] is the matrix obtained by deleting the rows and
columns corresponding to the states (0,0),(1,1).(2.1)....(n —k+1.1) T%T is the
probability of reaching (0, 0) before going to (7. 1) starting from (1, 0).

Distribution of the second part, ie., distribution of the time taken to return to (0, 0)
with S, activated in between is given by (1 — ¥y exp(1,1)e,) *E) o where ¥y is the initial
probability vector. V5 is the matrix obtained by deleting the row and column corresponding

to (0, 0). Hence distribution of the time duration of continuous activity of Sy is

n- k1 1 - (Z\_)l
1

(1 = ¥y exp(Vir)er) Z m

=1

+ (1 — &oxp(\é.r)(_z) * E o

where ¢, and e, are column vectors of 1s’ with appropriate orders.

4.3.2 Distribution of continuous activity of S,

Distribution of the time till absorption into (0.0) starting from (7, 1). Consider the
Markov chain on the state space {(0,0).(1.1).(2.1)....(n — k + 1.1)}. Then the dis-
tribution of time till absorption into (0,0) starting from (i.1) is of phase type given by
[1 = Wy exp(Vyr)es] where Vi is the matrix obtained from the infinitesimal generator by

deleting the row and column corresponding to the state (0. 0).

4.3.3 Distribution of the time required to reach (i,1) starting from
(0,0)

Consider the Markov chain on the state space {(0.0). (1.0).... .(n =k +1,0).(:. 1)}

The distribution of the time required to reach (. 1) starting from (0, 0) is 1 = ¥ exp(Vyr)ey
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where V} is the matrix obtained by deleting the row and column corresponding to the state

(2,1)

4.3.4 Distribution of cycle length

To find the distribution of the time required to reach (0, 0) starting from (0, 0).
(0,0) can be reached from (¢, 0). From (z,0), (0, 0) can be reached with S; activated or

without S, activated. The distribution of this time duration is in 5.2.1

n—k+1 1 - (
ie(1 — ¥exp(Viz)e) Z ———— + (1 = Yyexp(lar)er) x By

1=1
Next we compute the distribution of time taken to reach (z, 0) from (0.0). To this end con-
sider the Markov chain in the state space {(0,0), (1,0),(2,0) ..., (n—=k+1,0),(1,1),(2,1),
...(n — k + 1,1)}. The distribution of time required to reach (i, 0) starting from (0, 0) is

given by 1 — ¥sexp(lsx)es where 15 is the matrix obtained by deleting the rows and

columns corresponding to (2.0).(3,0),....(n — k + 1.0).
Hence distribution of cycle length is equal to
n--ki1 1 _(N)v
(1 =Wy exp(Var)es)«[(1 =¥ exp(Vyr)e) ﬁ"‘li'“ + (1 =Yyexp(Vor)ey) « By o)
=t~ \p

4.3.5 Expected length of time S5 is continuously busy

Fori:=1,2,...,n —k + 1 define Tj; as the time to reach (: — 1, 1) starting from (¢, 1)
and T, be the time to reach (0, 0) starting from (1.1). From the state (7. 1), the system

moves to the state (¢ + 1,1) or (7 — 1.1).

1
E(T,_x =
(T-k+1) P
Then
N 1 o+ A
E(T;) = E(T, (T
(Tu) Ay pa A4y + 1y ,\+;1|+;12[,\+/11+/12+ (Tisra) + E(T)]

Thus, we get the relation

l /\

E(Ty) = +
o+ [ 1P

E(Ti41.).



Recursively, we obtain

] - (____/_\___)H-k-”?
E(Ty) =

e

(i +12) — A

fori=1,2,...,n—k+1.
The expected time the server is busy is the expected time to reach (0, 0) starting from

some state (7, 1). We can find out this from the above relation. Expected time server is busy

is given by
n- n—k Y ki
flE(T'1)= ZH _(le-Hr.’) ko2 _ (”—k-{-l) _ h
i=1 t i=1 (“l + /12) - /\ ((ll] + l[2) — /\) (,[1 + “2)2
— A n-k+1
M1+ p2

4.3.6 The expected time the first server alone is continuously active is

given by

n-k+1 _( A )n—k—i+2

Z m+a
(i + ) = N\)

fori =1,2,... .n—k + 1. Define T} as the time to reach (+ — 1,0) starting from (2, 0)
without S, activated. From state (i.0), the system movesto (7 + 1,0) or (7 — 1,0) or (2, 1).
Here, we have to find the expected time S, alone is active. So, we consider conditional
expectation that is expected time given S, is not activated. Hence for (¢, 0), transitions to

(i 4+ 1,0) or (z — 1,0) are only considered.

« 1 t A 1
E(Tw)(1 - ) = oy (
A4+« A+ m+ad+m+a A4+ m+a\d+ iy +a
(8} (q]
+E(T, 1 - ——— )+ E(To)(l ~ -——————
( H'U)( A +n) (Zro)( A +0))
Thus, we get the relation
: 1 A
E(Ty) = + E(Ti410)

mt+a  n+a

Finally we obtain the relation starting with E(T,,_x410) = e

A n-k 142
l - (;414-())

E(Tw) = ((yty + ) = N)
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fori = 1,2,...n — k + 1. Thus the expected length of a cycle with first server alone is
active is given by

n—k+1

v (n=—k+1) A 3 A k41
2 BT = =N " Gare - v

i=1

4.3.7 Expected time to reach (i, 0) starting from (0, 0) with S; not ac-
tivated

Fori = 0,1,2,...,n — k define T}, denote the time to reach (z + 1, 0) starting from
(z,0). From (i, 0), the system can go to (i + 1,0) or ( — 1,0) or (¢, 1). Here, since we have
to find the expected time with S; not activated we have to assume that S, is not activated.

So, we consider expected time to reach (i, 0) start from (0, 0) with S, not activated. Then,

v 1 A 1 1

E(T})(1 - = +
(To)( /\+u1+a) Adm+ar+m+a A4y +a(/\+u,+a
a a
+E(T! l- ———— )+ E(T)) 1 - ——
()1 = ) + BT = )
from above, we get the relation
15(1q )__ 1 Iy 15(74 )
WA+ a Ata =10
E(T3y) = 317 recursively we get the relation
1 - o yn+l
E(T}) = _&
(A+a)—n
fori =0,1,...,n — k. Thus expected time to reach (n — k + 1, 0) starting from the state
(0,0) is given by
n—k IR Y R E
1 - (A) (n - k) 1 "

n—-k
E(T.) = Ata — n-k+1
Z ( lq) 12:; (A a) — ) )

i=0 ((’\+0)_l’l)—(/\+n—“,)2(1_(,\+0
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Chapter 5

Some special models in Reliability of
k-out-of-n system with repair under

T-policy

5.1 Introduction

In this chapter, we consider a k-out-of-n system with (i) an unreliable server (ii) activa-
tion time for the server which is a positive random variable (iii) positive inactivation time
of the server.

First we consider a repair facility which consists of a single server which is subject to
failure. Here lifetimes of components are exponentially distributed with rate A. Repair time
ol components are exponentially distributed with parameter ji. Failure of the server and its
repair are exponentially distributed with rate .3 and 7. We call this model 1.

Next a k-out-of-n system with repair under T-policy with positive activation time of
the server is considered. Here, though the server is switched on, it gets activated only after
random length of time. Let U be the activation time of the server, ie.. the amount of time
required to get activated from the time it is switched on. The activation time is assumed to
be exponentially distributed with rate 6. Lifetimes of components and their repair times are
cxponentially distributed with rate A and y respectively. T is assumed to be exponential

with rate «v. This i1s referred to as model 2.
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Finally, we consider a k-out-n-system with repair with inactivation time of the server.
Here, server gets activated on clapse of T time units or the moment n — k units fail,
whichever occurs first. In the models discussed earlier the system goes to (0,0) from
(1, 1) on repair of a failed unit. In this model since there is a positive inactivation time the
system goes to (0, 2). On the server being switched off, where the status 2 of the server is
defined later. From (0, 2) it may go to (0, 0) or (1, 1) depending on whether a failure does
not or does occur before inactivation. That is, though the server is switched off, he does
not get inactivated. Denote by 1™ the time required for the server to get inactivated from
the moment it is switched off. I1" is assumed to be exponentially distributed with rate 7.
Lifetimes of the components and repair times are assumed to be exponential with rate A
and p respectively. These are the assumptions underlying model 3.

In all the three models, we obtain system state probabilities and some characteristics.
Also we investigate the system reliability in the case of a cold system above.

Section 5.2 considers modelling and analysis of k-out-of-n system with unreliable
server. Section 5.3 gives the stationary probability distribution and some numerical illustra-
tions. Section 5.4 is devoted to some system state characteristics. Section 5.5 analyses the
model of k-out-of-n system with an activation time for the server. Section 5.6 gives system
state probabilities of this model and section 5.7 deals with some performance measures.

Finally in Scction 5.8 we analyse the last mentioned model.

5.2 Modelling and analysis
Model 1

Here we assume that the server is switched on only if there is at least one failed unit the

system.

Let X (t) = number of failed units at time ¢.

(e}

if server is inactive (but not in failed state)
Y(t) =

—

if server is active at time f

()

if server is activated but down at ¢
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{( '(t),Y'(t), t € Ry)} is a Markov chain on the state space.
={(,0)/0 <7 <n—k+1}U{(3,1)/1 <i < n—k+1}U{(7,2)/1 < i< n—k+1}. Let
I’i]»( ) = P((N(), Y (1)) = (4,7)/(X(0), Y (0)) = (0,0)). State transition are as follows,

A A
(0.0) (1.0) (2.0) (30) —> - ------- —— (n-k.0) — (n-k+1.0)
il A ]
(1) @2.1) = G —> .. —> (n-k.) — (n-k+l,])
_________ — k,2) ——>
(12) — (2.2) (3.2) (n-k. 2) (n-k+1,2)

5.3 Stationary Probability Distribution

The infinitesimal generator of the Markov chain is given [refer next page]. We write the

states lexicographically ie. (0,0).(1,0),(1.1),(1,2),(2.0),....... .(n—=k+1,1),(n -
k+1,2)

We now write the infinitesimal generator in the following form,

0 1 2 3 (n—=k) (n-k+1)
0 DY 0 0 0 0 \
1 SIS DY 0 0
2 0 0 S°B° S—MN )\ 0
(n — k) 0 0 0 S°B° S — Al Al
(n—k+1) \ 0 0 0 0 S°Be s )
0 00 0

where S°= | 1 |,S8°B°= 10 p 0
0 000



(n

.0)

.0)

D

- k., 0)

- k.2)

-k +i.0)

-k 4+ 1.1)

-k +1.2)

(0.0)

(1,0)

(L

“(A+u+3)

(1.2)

3

=(A+79)

The infinitesimal generator of the Markov chain

(2,0)

-(AN + )

0

a

(A +pu+d)

-(A+19)

(n - k,0)

-(A 4+ a)

(n—k,1)

A+ u+3)

"

(n—k,2)

-2 +7)

(n-k+1.0)

(n—k+11) (n-k+1.2)
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—-(A+ ) « 0
S—Al = 0 (A +h) 3
0 g —(A+1) |
In this case, the stationary probability vectors are given by I; = my 30, 1 <1 <n-k
and I _g41 = moBR"*(—AS™!) where R = MAI — AB°° — S)~'and B°° = ¢.B. B is
the initial probability vector (See Neuts (1981)).
1 3 32 B3
B°=¢f=|1|[Rdd]=|38 8 6
1 Bi B2 Bs
A1=B)+a  ~(\Br+a) VA
R=A\ —AB) A1 =3)+u+3 —(A33+ 1)
=B —(Ad2 +1) AM1=8)+

and mp = {B(X 0y B — ARMFS e} 1.

5.3.1 Numerical illustration

For given values of paramcters, we obtain the stationary probability vectors as follows.
A=06,p=10,0=8,=57v=9,5=1/3.3,=1/2,3=1/6,n =15,k = 5.
we get
0.545 0.164 0.109

0.121 0.503 0.224
0.182 0.455 0.636

R =

Heren — k=10

7o = 0.098; [T, = (0.036,0.04,0.027)

I, = (0.029,0.038,0.03);

m = (0.024, 0.037,0.031);
= (0.023,0.036,0.03);
= (0.022,0.035, 0.029),;

l[m = (0.021, 0.031,0.029);

(
m = (0.026,0.037,0.031)

= (0.023,0.037,0.031)
n7 (0.022, 0.036, 0.030)
e = (0.022.0.035, 0.029)
I, = (0.014.0.045,0.012)
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5.4 Some system state characteristics

5.4.1 Distribution of first passage time to break down state

Consider the Markov chain on the state space {(0,0).(1,0),...,(n—-k+1,0),(1,1),(2,1),
S, (n=k+1,1),(1,2),(2,2),...(n = k+1,2)}. Consider the class {(1,2),(2,2),...,
(n — k +1,2)}. To find the distribution of the time required to reach (,2) for1 <1 <

n—k+1. Let (¢,1), where | = 0 or | be any of the transient states. The infinitesimal gener-

, i QR Q°
ator of ((X'(t), Y'(¢)) be denoted by 0 0

rows and columns corresponding to the states in the class {(1.2),(2,2),... .(n—k+1,2)}.

] . Here Q is the matrix obtained by deleting the

The distribution of the time required to reach (7,2) is of phase type given by F\(z) =

1 — a, exp(Qx)e with o, the initial probability vector.

5.4.2 Distribution of the time from server activation till all failed units

are repaired

We have to find the distribution of time required to reach (0,0) starting from (z,1)
without visiting (#,2) for 1 <7 < n —k + 1. Let (2, be the matrix obtained by deleting
the rows and columns corresponding to the states (1.2).(2.2)....,(n—k+1,2) and state
(0,0). the distribution of time required to reach (0.0) starting from (/. 1) is of phase type
given by F,(x) = 1 — o, exp(Q).r)e where q, is the initial probability vector.

Then, the distribution of the time required to reach (0.0) starting from (i, 1) before

going to (7. 2) is given by

n—k+1

- (A p)
D

i=1
5.4.3 Distribution of time server remains continuously in the system

We need to find the distribution of the time required to reach (0,0) starting from some
(7, 1), at which an (7,0) to (7, 1) transition took place. for 1 < i < n -k + 1. Let Q,

be the matrix obtained by deleting the row and column corresponding to the state (0, 0).
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Distribution of the time required to reach (0,0) is given by Fi(z) = 1 — azexp(Qa1)e.

Distribution of time server remains continuously in the system given by F3(x).

5.4.4 Distribution of cycle length

To find the distribution of the time required to each (0,0) starting from (0,0).

Consider the infinitesimal generator of the transition probabilities. Regard (0,0) as an
absorbing state. Then distribution of the time required to reach (0,0) starting from any of
the transient states (7, 1) is F3(x) = 1 — agexp(Q2z)c. Distribution of the time required
to reach (0,0) starting from (0,0) is given by P(S; < T < S;41) Eix * Ey 4 * F3(z) where

E; » is an Erlang distribution of order 7, parameter A. S; is the time till 7 failures take place.

5.4.5 Expected time server remains continuously in the system

From the distribution of time server remains continuously in the system (Section 5.4.3),
we can compute the expected time as —a;Q; 'e. To find the inverse is a difficult task. So,
we go for an iterative procedure.

Let T3, denote the time to reach (¢ — 1. 1) starting from (i,1) and 7}, denote the time to

reach (¢, 1) starting from (i, 2). Th possible transitions are :

(1) =>+L1) > (E+12)> (1) > (1 —1.1)
(i,1) 2 (1,2) > (i.1) = (1 = 1.1)
(i, 1) = (i - 11)
Thus
_ 1 Jt + 3 ( 1 +
A+ BAF 4B AN+ p+ 3 N+ pu+
A 1 1 :
+ ( +
A pn+B8\AN+pu+3 AN+p+3X+p+3

E(Ty)

E(Ty) + E(Ty))

+ E(Tigr2) + E(Tinn) + E(Ta) )
where

1 o) A 1 .. 1 I
E(Ty) = + + E(T) 0, 2) + :
(Ti2) A9\ +A ,\+')(/\+') L ,\+/:+13,\4;1+H)
/\/1 /\

1
= - EXT, 4 — i=1.2,....,n—k
(A+ )N+ e+ 3)? I_,\+,) (Lis12) + Ntn 1=1.2 n—-k+1




73

Hence
A+ B+ BAN+ 1+ 7)
E(Ty) = ( )

T oA +)  u e+ B)AN+1)

A
E(Ti+l.2) + ;E(Tiﬂ.l)

n(A+1)
which gives
E(T'1)=(/\+ﬂ+7)+ [3/\(/\+;1+w), MM+ 8+7)
’ py pA+V)A+p+8)2  AA+7)(A+p+ 8)?
N(A+3+19) A

n—k-i _
TIoFF ey T MmET)

Recursively, we get

v AEB L= (AR BAN+ 1+ )
Elfa) =1 1y i 1-Au I+ A+ ) A+ p+ B)?
(1—(A//t)""‘+"‘)+ NA+3+9) (= (/)
1= (M p) YA+ A+u+3)2 1= (A/n)

XA+ B4 A

o i G T AT e ()
1
A n—k+1-1 "
+ (A p) p
ie.,
oy At B+ AN+ 0+ 17) AN+ 3+ %)
ST Yy S ) PR 1) SRS PP Y BT Wit Ty w1
_ n—k+1-1 n—-k+1-—z ’\/l(’\ + .7+ ’7)” l
(1= m) )+ i) (7(z\+u+ﬂ)"’(u— G+ T u)
AA+B+9)1

— Ayn-k+1-i — _
TOF A= (AT fere = L ke

Now, S_"F*! E(Ty,) gives the expected time server remains continuously in the system

which is equal to

A+ 3+ ANN+ 1+ 17) AN+ 3+19)

- k+1

(n =+ 1) Y =2A) (AN + e+ 3)2 (= A) 0+ Nt = A A+ p+ 13)2]
1t neksly (AT O+ SMAN+ 1+ 7)

- 1- (A +

e VI P e P ETE Ty

Nu(A+8+7) 1 _ n—k+1

YA+ (e = AN+ e+ /3)2] * (1 — ,\)(1 (M) )

(l AN+ 3 +7) L A(A+ 3 +9) (A +) A

5 — - ; ( _(__)n-k+l)
o YA+ B = (A+9)) AN+ e+ 3)2( = (A +19)) Aty
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5.4.6 Expected time server remains in down state

The expected number of visits to (z,2) before visiting the state (0,0) is q'yo_:' Expected
time the system remains in the state (¢, 2) is 13— ,\+ ,wheni = 1.2,... ,n—k and the expected
time the system remains in the state (n — A +1,2) is % Hence, expected time the server is

in breakdown state during a cycle is
n-k

Z (112 l On-k+1.2
A+ qoo ')‘ oo

Thus, expected time server remains busy in a cycle
n-k

gz 1 Gn-k+12 1
=E (E(Th) — —. + E(Thok412) — —— .=
(E(T}) . /\+7) (Th-k+12) PR

i=1

where ¢;2/qoo can be computed for given parameters of the process.

5.5 k-out-of-n system with activation time

Lifetimes of the components are assumed to be exponentially distributed with parameter
A. Server is switched on after the elapse of T time units since the epoch of its inactivation.
(ie. complction of repair of all failed units in the previous cycle) or until accumulation of
n — k failed units, whichever occurs first. The server does not get activated the moment it
is switched on. It takes a random length of time " which is assumed to be exponentially
distributed with rate 0. T is exponentially distributed with rate o and repair time exponen-
tially distributed with rate y1. Hence the time elapsed until activation starting from all units
operational, has generalized Erlang distribution. In chapter 3. we considered the case when

activation time is zero. We get the results there by taking limg_, o in this section.

5.5.1 Mathematical Formulation
Let .X (¢) represent the number of failed units at time .
2 if server is active at time ¢

Y1) = ¢ L if serveris only switched on but not active at ¢

0 otherwise
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{(X(t), Y (t)),t € Ry} is a Markov chain with state space.

A={(50)/0<i<n-k—-1}U{(1)/0<i<n-k+1}U{(;2)/0<i<n—-k+1}

The difference-differential equations satisfied by P;;(t) are

Pot)
Py, (t)
Py, (t)
)
)

PIIO(
lel (t

II

Pi,2(t) =

— AP (t

—(/\+(1)P()()( )+/1P12( )
—(/\+())Pm(t)+a1 o(t)
)+

0 Po (1
()\'*‘CI) )+/\P,10(t)' ISlsn—k—l
—

A+ 0)Pi(t) + APisy1(t) + aPio(t)(1 — din—k) + AMin—k Piz10(t);
1<i<n-—-k

— (M1 = Gin—ks1) + 1) Pia(t) + AP;_y2(t) + pPig1 2(t)(1 = Sin—x41)

+ B(1 = bin—k+1) Pir(t) + AMin-gs1 Picrn(t); 1<i<n—k+1

5.6 Steady state distribution

Let ¢;; = limyo D (t). Then the steady state probabilities are given by go1 = 3559003

Q12 = (T)(Ioo, qo2 = m(mo, gio=(MN(A+a))qu.1<i<n—-k-1

o= (Y/\i ( 1 + 1 N 1 o k
=N O+ N @+ N a+ N + (OJ”\)._), <i<n—k-1
o« Ay a+ AL . .
Y (1+,\)(1 (0+/\) Jgofor1 <i<n-k-1
A O’/\"—k—l 1 1 | .
QH—k,l—(/\+9)( g+ A (((}+/\)n—k—|+(a+/\)0+/\) 4+

A

n—k—
o) H ) D

:(,\

A+ 0

/\ : ()+/\
(1 -
,\+(t)( (()+/\

)'H)]‘loo
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a4+ A L= (AN p) a1 A |
" o —_— —_— +
i = J )[1— /\//l.)] /1(6’+/\)(/\+n+/\ 0+/\)
1212 afN ! N ! N
= 2“] @+ ) 0+/\)f @+ A YHa+ )
+ 1 + o+ ! + l + : )
(@ + A)? A a+A 0+ A
a+ A afX 1 1 1 A3
= ( ) — (7 + + ) — 2
B— A p@+A)'A a+A 0+ (@ —ao)a+ A2 (u—-2A)
N af\? ((/\//z)"'2 WO+ n-))“2)
(a+ A0 -a)A+a—p) (£—2A) a
afBN?(6 + ) ((/\/(0 + )2 3 (z\/;t)“"’)
(0 —a)(a+ )20+ A —p) 0 (11— A)
goo can be obtained using the normalizing condition
n-k-1 n—k n-k+1

Z Qi0+ZQil + Z gi2 =1
1=0 i=1

i=1
The system reliability is given by 1 — q,,_x4+) 2. Fraction of time the system is down is

Qn—k+1,2

3.7 Some performance measures

5.7.1 Distribution of duration of server availability

Consider the Markov chain on {(0,0),(1,2).(2.2)....,(n — k + 1,2)}. We have to

compute the distribution of time until the system reaches (0,0) starting from one of the
0

transient states (%, 2). Consider the infinitesimal generator [ }, where S is the matrix

0 0
obtained by deleting the row and column corresponding to the state (0,0). Then distribution

of time to reach (0, 0) starting from (i, 2) is phase type given by 1 — 71 exp(Sr)e, where

71 1s the initial probability vector.
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5.7.2 Expected duration of time the system remains non-functional in
a cycle

q—’%—l gives the expected number of visits to (n — & + 1, 2) before first return to (0,0).

Further ,ll is the expected amount of time system remains in that state during each visit to

it. Hence expected duration of time system is down is ‘—""—"'qt);"’ which is equal to
';l_[(a+/\)_ af\ (l+ 1 N 1 - A3
plip=A)y pw@+A)'A o+ 6+ (a+ A)2(0—-a)(p—A)
+ af\? ((,\//1)"'k‘l (/A + a))"k-1 )
@ —a)(a+ M) (A+a—p) (n—=A) «
4 afA\2(6 + )\) [(,\/(9 + A))nk-1 3 (A p)—k-! ]]
(0 —a)(a+A)*(0+A—p) o (v —A)

5.7.3 Expected time server remains active during a cycle

Define T;, as the time to reach (z — 1, 2) starting from (z.2). The following transitions
are possible
(,2) > (t+1,2) = (1.2) = (1 - 1.2)
(1,2) = (1 — 1,2)
1 Jt A 1

E(Ty) = : +
(T2) A A+ /\+;1(/\+/1

+ E(Tis2) + E(Tw))
Hence E(T};) = ; + § E(Ti112) recursively we get

N 1 - (,\//l)n—k-+2—l
B o= A

E(T})

fori =1,2,... ,n—k+1starting with E(T,,_x412) = ‘1‘ The expected time to reach (0,0)
starting from (z,2) is Z;’z'okH E(T;3), where Ty, denote the time to reach (0,0) starting
from (0, 2).

5.7.4 Expected amount of time server is inactive in a cycle

From the state (0,0), the system goes to (1, 0) on failure of one unit or it goes to (0,1)

on elapse of 1" time units.
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From the state (0,1), system goes to (0,2) on elapse of activation time or it goes to (1,1)
on failure of one unit. The process goes on in this fashion. a possible transition is indicated

in the diagram.

A
0,2) —= (1,2) 2,2) —=> e —> (n-k-1.2) — (n-k.2) — (n-k+l,2)
0 ‘ /
0, 1) —= (1, 1) (2, 1) — e — (n-k-1.1) —>(n-k. 1)
o
A
0, 0) (1,0) (2,0)—=> e —  (n-k-1.0)

The expected time server is not in the system

1 11
=(l +SP(T+U < 8)+( +0+A)P(Sl <T+U<5)
1 1 n-k-1 —k
Foot (G4 G T )P(Sackrt < THU < Spn) + = P(T+U > S0)
where
e M (Au)" A af(em —e7%)
P(S;<T+U<Siyy) / / e =¥ dydu
u=0Jur=u ’_1 (0_0)
(!/\() 1

= 0-a'07 a)‘“ T o)

fori=0,1,...,n=k—1land P(T +[J> Su—s) = “(‘;"_";;(O(H:))n_k - 0(A+10)"“)' Thus

we get expected time server is not in the system

_ l 1_ Ak, (20 4+ @) B Ak, 20480
=25 - G T Gy~ G k(9(0—a))

3.7.5 Expected cycle length

E(r) = E(busy period) + E( time server remains inactive in the system )
From 5.7.3 and 5.7.4, we get
(n—Fk)(jr — A\) + 2p— 3\ + A A

” _ Zyn—k+2 l l
B(r) = (= A)2 (e — ,\)2(/1) + 2(0' + ())
1 A ek (2040) ( A )"_k(2(r+9)

A+a a@—a) ‘A+80 6(0 — a)
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5.7.6 Cost Analysis

Let Cy be the fixed cost of hiring the server, w be the wage of the server per unit time
and C, be the cost per unit time due to the system remaining non-functional.

Then, total expected cost per unit time,

(n—k+2) A D P
TEC=C/E(n)+w - (1-(=)" N/ E(T)
EO Ty T G )
+ Czl(lrr—k+l.2
H oo
where ﬁq"‘qﬁl is the expected time the system remains non-functional is a cycle and is

given in 5.7.2. TEC is convex in a. Hence, global minimum value a* that minimizes
TEC exits. Numerically, T EC is evaluated for given set of parameters and various values

of a and is given below.

Total expected cost per unit time

ol =100, w=50,A=5,0u=10|Cy =30, w=20A=15p=20

n=20,=10,0=4,C,=60 | n=30,K =10,0 =1C;, =10
2.0 64.403 18.679
2.1 64.993 18.842
2.2 65.554 18.989
2.3 66.084 19.120
24 66.583 19.241
2.5 67.054 19.349
2.6 67.494 19.450
2.7 67.903 19.542
2.8 68.281 19.628
29 68.624 19.709
3.0 68.926 19.782

5.8 k-out-of-n system with inactivation time
Model 3

5.8.1 Mathematical modelling and analysis

Lifetimes of components are assumed to be exponentially distributed with rate A. Ser-
vice time follows on exponential distribution with rate . T is exponentially distributed

with rate o.



80

Let X (t) denote the number of failed units at time .

4
0 if server is inactive at ¢

1 if serveris active at t

2 if server is switched off, but has not

| become inactive at ¢

In models discussed earlier from the state (1, 1), the state (0,0) is reached on completion of
repair of the failed units provided no units fail in between. Here the system goes to (0, 2)
from (1, 1) before reaching (0,0) provided no failure takes place during this period.
{(X(t),Y(t)), t € Ry} from a Markov chain on the state space.
B=A0)0<i<n-k=-1}Uu{ED0<i<n-k-1}U{(0,2)}

The difference-differential equations satisfied by F;;(t) are given by

Poo(t) = — (A + @) Poo(t) + nlua2(t)
Poa(t) = = (X + 1) Poo(t) + pPyy(t)
k() = = (N + ) Pucik i (1) + APu_k-10(t) + APy_k-1a(t)

+ 1l g a(t)
—(A+ Q) Po(t) + APpyp(t); O<m<n-k+1
—(/\ + [l)Pml(t) + /l[)m-H.l(t) + /\I)m-l.l(t) + aPmO(t) + ’\(smlPO?(t)

O<m<n—-k-1

Pr’nO(t)
Pri(t)

P(;l(t) = =Py (t) + ﬂp()()(t)

ki 11() = APk (t) — 1 Puki1,y

5.8.2 Steady state probabilities

Let g;; = limy_, (1), 7, j € B On solving the equations, we get

=2 = (2 Yo i = 1,2 k=1
qu"/\QOO qdio = M+ Qoo 1= L,4,... , n— K —
A a A4y A+a
qo2 = ( )00 qu = ( ])( )‘100

H
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3 A2 é A4, A+a
Q21—[m+(u)( p ) 7 )lg00
)3 23 A A+, At+a
o= rap F e HO) T e
/\i(l— (1\%)1’-3) /\'(/\+Q+ll) /\+7] A4+«

e
% = [(/\+a)i“1(u— (A +a))  u"kA+a)? +(u) ( " I ] 1400
4<i1<n—k

n—-k+1 Ata\yn—k-3 n—
APTER(L = (550) ) AR O+ a+ p)

At e (u—(A+a) | pF(A+a)
A A+n, A+a
S )]400

dn—k+1,1 =

Zyn—k
O

System reliability is given by 1 — gn_x+1,1. Fraction of time system is down is g, _k41,1-

qgoo can be obtained using normalising condition

n-k-1 n-k+1
Z Gio + Z Gir + qoz =1
=0 i=0

A4«
a

A \? A+
o = (50 - (5 + G+ oy )

+_1____(1_(/\/ﬂ)n—k+l)((’\+’I)(’\+O)ﬂ NA+a+p)

VRS . CGrap
M A M A
- (1-(= n—-k-3y __ n—-k-3
+a()\+a)2( (,u) ) a/t(/\+a)2(,\+a)
/\n—k+2 /\n—k+2

-1
B fre( A + @) r=Hu — (N + a)) + a(A+a)u" k3 (p — (N + a))]

5.8.3 Distribution of time duration server remains continuously in the

system

This is the distribution of time from activation till it becomes inactive. Consider the
Markov chain on the state space {(0,0), (0,2),(1,1),...,(n =k =1,1),(n - k,1),(n —
k + 1,1)}. The distribution of time taken to reach (0,0) starting from any of the transient
states (z, 1) is given by Gy (r) = 1—aexp(Dur)e where D is the matrix obtained by deleting

the row and column corresponding to state (0.0) and a is the initial probability vector.
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5.8.4 Expected time server remains busy in a cycle

First, we find expected time to reach cycle (0, 2) starting from some (i, 1). Define 15,
fori = 1,2,...,n — k + 1 as the time required to reach (0, 2) from (2, 1). Following are

the possible transitions

(i,1) > (i —1,1)
(i,1) = (i+1,1) = (i.1) = (i — 1,1)

Then,

1 U + A ( 1
A+pur+p  A+pA+p

. 1 A
ie. E(Ty)) = — + —E(Ti11.1)
poop

E(Ty) = + E(Ti11,1)) + E(Th)

fori =1,2,...,n — k+ 1. From the above relation, recursively we get

1 — (,\/ll)n—k+2-i
(1= A)

starting from E(T,_k411) = 1 Z:‘z'lk“ E(T;;) gives the expected time to reach (0, 2)

I_“

E(Ta) =

starting from (n — k + 1,1). Next, we find the expected time to reach (0,0) starting from

(0,2). The following tiansitions are possible

2) — (0,0)
(0,2) = (1,1) = (0,2) — (0,0)

Let Ty, denote the time to reach (0,0) starting from (0, 2). Then,

1 n /\ 1
E(Ty,) =
(To2) /\+'I/\+71+ /\+11(A+71+E(T”)+E(T02))
. /\ /\+7 /\
ie. B(Toy)(1 — ——) J E(Ty)

= (,\+7;)2+A+1)

- n-k+1
mEmM:%+%“ %@L )

A+

Expected time server remains continuously in the system is the expected time to reach (0, 2)

from (0,0) and to reach (0,0) from (0, 2). Thus, expected time server remains continuously
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in the system is given by

n—k+1

Z E(T) + E(Tw)

i=1

(n—A) (b —A)? 7 n n p—A

— (” —k+ 2) A (1 _ (i\_)n—k+2) + _]; + é(l _ (’\/ﬂ)n_k+l)

5.8.5 Expected time system remains non-functional

In-k-1,1

o ives the expected number of visits to (n—k+1,1) before first return to (0, 0).

‘1‘ is the expected sojourn time in the state (n — k + 1,1). Thus, expected time system

remains non-functional is given by

/\n—k+1(1 _ (L\_tg)n—k—:{)

1 qn_ ; Ak A a+ ) AL i1 A+n A+a
Liw i ‘ (Gl AL

= +
pogo At a) (- (A +a)) prFH A+ Tt g op U]

5.8.6 Expected time server remains inactive during a cycle

From state (0, 0) system goes to (1,0) or (0,1) on failure of one unit or on elapse of T
time units respectively. From state (1,0), system goes to (1, 1) or (2,0). The process goes

on like this. The possible transition are given below.

A
0.1 (Lh eh=—— " (n-k-1.1) (n-k.1) (n-k+1,1)
vy T
0,2)
(04
/ "

00) — (1,0) — Qo)== e (n-k-1.0)

A

Expected time server remains inactive
1

=IPT < S)+E+5PSI <T<S)+...+ (; + "—','{;‘)P(Sn_k_l <T<
Sy-k) + L'A'ﬁl’(T > S, ) where S; denote the time till i failures take place. Write Sg = 0
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and Sp < 5, < 8y < Sy

al'

P(S;i<T < Sip) = O Faye

for0<i<n—-k-1

. . . . . . _ 2 A \n—k
This, expected time server remains inactive during a cycle = (1 ~ (553)" ")

5.8.7 Cost Analysis

Let C denote the cost per unit time due to the machine remaining non functional and w
be the wage of the server per unit time.

Then, total expected profit per unit time,

2 Ancky  Clnoknrg _ 2 A g
TEP =w=(1-(3)"™") T w—(1 (——,\+a) )
C (/\n—k+l(1 _ (M_o)n—k—a))

- H
it LA+ a)* k= = (p+ a))

AR O a4 p Mok A+ A+
( /)+(__) k( 1

)

k(N + a)? 7] Q m )]

It is seen that T E'P is concave in . The objective is to find an optimal (v which maximizes
the profit. Numerically T'E'P is evaluated for given parameters and for various values of o

and is given below.

Total expectedprot per unit time
0% C=30,A=10,u=12 C=50,w=100A=5pu=12
E=5,w=50,n=30n=35 n=>50,k=5n=2

2.0 49.236 100

2.1 46.551 95.238
2.2 44.529 90.909
2.3 42.667 86.957
24 40.448 83.333
2.5 39.358 80.000
2.6 37.882 76.923
2.7 36.511 74.074
2.8 35.232 71.429
29 34.038 68.966
3.0 32.92 66.662
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