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MicroRNAs are short non-coding RNAs that can regulate gene expression during various crucial cell processes
such as differentiation, proliferation and apoptosis. Changes in expression profiles of miRNA play an impor-
tant role in the development of many cancers, including CRC. Therefore, the identification of cancer related
miRNAs and their target genes are important for cancer biology research. In this paper, we applied
TSK-type recurrent neural fuzzy network (TRNFN) to infer miRNA–mRNA association network from paired
miRNA, mRNA expression profiles of CRC patients. We demonstrated that the method we proposed achieved
good performance in recovering known experimentally verified miRNA–mRNA associations. Moreover, our
approach proved successful in identifying 17 validated cancer miRNAs which are directly involved in the
CRC related pathways. Targeting such miRNAs may help not only to prevent the recurrence of disease but
also to control the growth of advanced metastatic tumors. Our regulatory modules provide valuable insights
into the pathogenesis of cancer.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

MicroRNAs (MiRNAs) constitute a class of small non-protein-
coding RNAs which regulates protein-coding genes at the post tran-
scriptional and translational level (Carthew, 2006). There are at
least 800 miRNAs within the human genome, each of which has a
different function. MicroRNAs bind to partially complementary sites
in the messenger RNA of other genes and inhibit the translation of
these genes. They have been found to regulate a wide range of biolog-
ical processes such as cell differentiation, proliferation, growth, mo-
bility and apoptosis in diverse cancer-related biological processes
(Lynam-Lenno et al., 2009; Schickel et al., 2008). Accumulating evi-
dence suggests that altered miRNA expression correlates with the
pathogenesis of cancers. The over-expression of several miRNAs
results in tumor formation; however, some miRNAs are consistently
downregulated in tumors and may have tumor-suppressive effects
(Voorhoeve, 2010; Zhang et al., 2007). For example, microRNAs in
the let-7 and miR-34 families may act as tumor suppressors by
repressing certain oncogenes (Johnson et al., 2005; Tazawa et al.,
2007) while miR-106b and miR-21 play roles in oncogenesis (Chang
et al., 2005; Ivanovska et al., 2008). A recent study suggested that
NA;miRO,Micro RNAOntology
tative Reverse Transcriptase
g-type Recurrent Neural Fuzzy
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microRNAs can identify cancer tissue origin accurately (Rosenfeld et
al., 2008). This is of great clinical importance because microRNAs
may be used for tracing the tissue from which cancers of unknown
primary origin arose. Thus the identification of miRNAs linked to can-
cer susceptibility is useful for cancer diagnosis, prognosis, treatment
and drug target discovery (Volinia et al., 2006).

Recent experiments also show that miRNAs upregulate genes in
one condition, but act as a negative regulator in another condition.
For example, let7 and the synthetic microRNA miRcxcr4-likewise
upregulate target mRNAs upon cell-cycle arrest; yet, they inhibit
translation in proliferating cells (Vasudevan et al., 2007). The abun-
dance and diversity of miRNA targets result in a large number of pos-
sible miRNA regulatory mechanisms. It is not feasible to test all the
possibilities through biological experiments. Therefore, the develop-
ment of various computational methods to recognize crucial regula-
tory functions of miRNA has been widely applied to cancer research
as a powerful supplement to experimental methods.

Colorectal cancer is the third most commonly diagnosed cancer in
the world and contributes to over 655,000 deaths per year. However,
in almost all cases, early diagnosis can lead to complete cure.
Uncontrolled growth of cells and loss of apoptosis function usually
results in cancer formation. MicroRNAs have been found to regulate
mechanisms such as cell growth and apoptosis (Cheng et al., 2005).
Recognition of miRNAs that are differentially expressed in tumor
and normal tissues may help to identify those miRNAs that are in-
volved in pathogenesis of human cancers. Experimental methods
such as microarray profiling and qRT-PCR have been used to monitor
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expression levels of miRNAs in various types of cancers. Microarray
profiling is a powerful technique that can be used to systematically
detect the differential expression of miRNAs in cancer and normal
samples. By integrating miRNA target genes, cancer genes, miRNA
and mRNA expression profile information, an interaction network
can be developed to link miRNAs to cancer target genes.

Several computational methods have been proposed to study
miRNA regulatory mechanisms through expression data. Huang et
al. used Bayesian data analysis algorithm (Gene MIR++) (Huang et
al., 2007) to identify miRNA targets by utilizing paired expression
profiles of miRNA and mRNA. However the algorithm used in that
paper is based on pairwise correlation method which may fail to un-
dermine collinearities among the covariates (miRNAs). Partial least
square (PLS) regression approach (Li et al., 2011) by Xiaohong et al.
overcomes these issues and explores likely associations between
miRNA andmRNA by taking advantage of the known inverse relation-
ship between miRNAs and target mRNAs.

In the present paper we use Takagi Sugeno Kang type recurrent
neural fuzzy network (TRNFN) (Vineetha et al., 2012) to model
miRNA–mRNA interaction network from paired expression profiles
of miRNA and mRNA for both colon tumors and normal tissues. This
method combines the advantages of both neural network and fuzzy
logic. Neural Fuzzy network has been previously used to simulate
gene regulatory networks (Maraziotis et al., 2007; Vineetha et al.,
2010a, 2012) but not for finding miRNA–mRNA interaction network
yet. This hybridized model combines the features of connectionist and
Fig. 1. Schematic diagram of the overall procedure fo
fuzzy logic approaches and infers information on gene interactions in
the form of fuzzy rules and considers the dynamic aspects of gene reg-
ulation. Unlike other neural fuzzy model, there was no predefined
structure and rules in TRNFN, all of them are constructed during online
learning. The TRNFN includesmemory elements in the form of feedback
connections to store prior system states so that it can perform dynamic
mapping of inputs and outputs. To achieve better performance TRNFN
adopts a global feedback structure where the output of all rule nodes
are fed back and summed, so each rule's firing strength depends not
only on its previous value but also on others. Furthermore, the inclusion
of TSK-type consequence can significantly reduce the rule number
(Juang, 2002). TRNFN is characterized by small network size and fast
learning speed.

In this study, using paired miRNA and mRNA microarray data pre-
viously collected from CRC cancer patients (Chia-Feng and Chin-Teng,
1991), we were able to capture a complex miRNA–mRNA association
network. All these findings reveal the potential of microRNA profiling
in cancer diagnosis.

2. Material and methods

The schematic diagram of the whole procedure is shown in Fig. 1.
The TSK type recurrent neural fuzzy network was proposed by
Chia-Feng Juang in 2002 (Juang, 2002). The model is constructed
from a series of fuzzy if–then rules, with the consequence of each
rule being of TSK-type fuzzy reasoning. The network precondition
r generating miRNA–mRNA interaction network.
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part includes external variables and internal variables derived from
fuzzy firing strengths, and the consequence is a linear combination
of them plus a constant term. Each rule i has the following form:

R ið Þ ¼ if x1 tð Þ is Ai1 and x2 tð Þ is Ai2 and…xn tð Þ is Ain and hi tð ÞisG
then y t þ 1ð Þ ¼ ai0 þ∑

j
aij·xj tð Þ þ aj nþ1hi tð Þ ð1Þ

where A and G are fuzzy sets, h is the internal variable and a is the
parameter for the inference output y. In TRNFN, there are two learning
phases — structural and parameter learning. The structural learning
phase is responsible for the construction of fuzzy if- then rules and
the identification of feedback structure. The parameter learning phase
is for tuning of free parameters of the network structure.

2.1. Architecture

The architecture of TRNFN is illustrated in Fig. 2. TRNFN is a six
layered network, including a feedback layer that brings the temporal
processing ability into a feed forward neural fuzzy network. Layer 1
acts as an input layer. Layer 2 is used to fuzzify the input value. Gauss
membership function is employed in this layer. Nodes in layer 3 are
called rule nodes and a new node will be created each time a new rule
is generated during the structural learning phase. Nodes in this layer
perform the precondition matching of the rule and compute the firing
strength of each rule for the given input. Since Tasaki Sugeno output
membership functions are linear, nodes in the layer 4 perform a linear
summation of the external input variables and context node to evaluate
the consequent. Layer 5 is called the feedback layer. The outputs of the
feedback termnodes contain thefiring history of the fuzzy rules. Layer 6
Fig. 2. TRNFN ar
performs the defuzzification operation. Detailed description of the func-
tion and the equations used in each layerwere reported in (Juang, 2002;
Vineetha et al., 2012).

2.2. Learning process

TRNFN performs the structural as well as parameter learning pro-
cess simultaneously during the training phase. The way the input
space is partitioned determines the number of rules extracted from
the training data. During the training phase, when a new rule is gen-
erated, it corresponds to the creation of a new cluster in the input
space. The spatial firing strength of each rule represents the degree
to which an input pattern belongs to the corresponding cluster. The
spatial firing strength is computed using the following equation

Fi xð Þ ¼ ∏n
k¼1Ok

2ð Þ ¼ exp −
Xn
j¼1

xj−mij

� �2

σ2
ij

8><
>:

9>=
>;
∈ 0;1½ � ð2Þ

where Ok
2ð Þ is the output of the kth rule node in layer 2, xj is the jth

component of the input x, σ and m are the center and width of the
Gauss membership function. The value of Fi(x) determines whether
a fuzzy rule should be generated or not. Since there were no rules ini-
tially, for the first incoming pattern x(0), a new fuzzy rule is generated
with center and width of Gauss membership function is assigned as

m1i ¼ xi 0ð Þ and σ1i ¼ σ init ; for i ¼ 1:n ð3Þ

I ¼ arg max
i≤i≤≤r tð Þ

Fi xð Þ ð4Þ
chitecture.

image of Fig.�2


Table 1
Set of known relations predicted by TRNFN.

Target
genes

miRNAs associated

EPAS1 hsa-miR-103, hsa-miR-107, hsa-miR-138, hsa-miR-150, hsa-miR-182,
hsa-miR-30b

ANXA1 hsa-miR-221, hsa-miR-222
C18B11 hsa-let-7g,hsa-miR-136
ACP1 hsa-miR-141, hsa-miR-18, hsa-miR-98, mmu-miR-106a
HBE1 hsa-miR-218
LDHA hsa-miR-15a,hsa-miR-15b,hsa-miR-16,hsa-miR-182,hsa-miR-30a,

hsa-miR-30b,hsa-miR-30c, hsa-mir-30e,hsa-miR-33
MVP hsa-miR-150
PCBP2 hsa-let-7a, hsa-let-7b, hsa-let-7c,hsa-miR-150,hsa-miR-15a,

hsa-miR-195,hsa-miR-200a
PPP1CC hsa-miR-21
PSMA3 hsa-let-7b,hsa-miR-135,hsa-miR-182,hsa-miR-210,hsa-miR-221,

hsa-mir-32,mmu-miR-135b
RELN hsa-miR-200c, hsa-miR-138,mmu-miR-200b
TIAF1 hsa-miR-150,hsa-miR-24,hsa-miR-30a,hsa-miR-30b,hsa-miR-30c,

hsa-miR-30d
TRIP10 hsa-let-7d, hsa-miR-106b, hsa-miR-142-5p,hsa-miR-214, hsa-miR-195,

mmu-miR-106a
UBE2D3 hsa-let-7b, hsa-miR-103,hsa-miR-107, hsa-miR-135,hsa-miR-138,

hsa-miR-140, hsa-miR-144, hsa-miR-154,hsa-miR-185,hsa-miR-185,
hsa-miR-203,hsa-miR-21, hsa-miR-9,mmu-miR-101b
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where r(t) is the number of rules at time t. The new rule is generated, if
FI≤Fin(t), where Fin(t)∈(0, 1) is a pre-specified threshold that decays
during learning process. The center and width of the new rule can be
set according to the first nearest neighbor heuristic as

m r tð Þ þ 1ð Þi ¼ xi tð Þ and

σ r tð Þ þ 1ð Þi ¼ β·∑n
j¼1

xj−mIj

� �2

σ2
Ij

ð11Þ

whereβ≥0 decides thedegree of overlap between the two clusters. The
number of rules generated is determined by the parameters Fin and β.

After the generation of new rules the consequent nodes in layer 4
and context node in layer 5 are computed. The output, h, of the new
context node in layer 4 is fed back as input in the precondition part
of the newly generated rule. Thus, each rule has its own memory ele-
ments for memorizing the temporal firing strength history. For every
incoming training data, the above process is repeated, new rules are
generated one after another and a whole TRNFN is constructed finally.
The free parameters such as m, σ, parameters in layer 4 and link
weight w are tuned using the real time recurrent learning algorithm
(Chia-Feng and Chin-Teng, 1991; Juang, 2002).

3. Results and discussion

We applied TRNFN to the paired miRNA and mRNA microarray
data sets for both human colon tumors and normal tissues obtained
from the cancer dataset provided by Broad Institute (http://www.
broadinstitute.org/cgi-bin/cancer/datasets.cgi; Lu et al., 2005). The
dataset originally consist of the expression profiles of 218 tumor
samples representing 14 common human cancer classes out of which
10 are colon tumor tissue samples and 5 are normal colon tissue sam-
ples. We have taken 7 colon tumor tissue samples and 4 normal colon
tissue samples which passed quality control criteria (Ramaswamy
et al., 2001). Unpaired t-tests were used to identify a set of miRNAs
which are differentially expressed in different conditions under the
Fig. 3. miRNA–mRNA interaction
investigation. We selected 56 miRNAs whose p-value less than 0.05
for further analysis.

From our previous works, we identified a set of 27 genes, which
are found to be highly regulated in CRC patients (Vineetha et al.,
2010a, 2010b, 2011, 2012). In this work we chose to analyze the
above 27 genes to model the miRNA–mRNA association network.
We implemented 27 multi input–single output TRNFN model. Each
model describes the state of output gene based on the expression
value of the 56 miRNAs. Among the 11 available samples, 6 samples
were used to train the network and the remaining 5 samples were
used for testing the consistency. Training and test dataset contains
samples from both healthy and unhealthy tissues. Structure of each
network predicted by TRNFN.

image of Fig.�3


Table 4
CRC related miRNAs and target genes involved in cancer related canonical pathways.

Cancer related canonical
pathways

Target genes in
respective
pathways

The no. of CRC related
miRNAs associated
with the target genes

Hypoxia signaling pathway EPAS1,LDHA,UBE2D3 8
Protein ubiquitination pathway PSMA3, UBE2D3 8
Polyamine regulation in colon
cancer

PSMA3 4

Pyruvate metabolism LDHA 3
Insulin signaling pathway TRIP10, PPP1CC,

EPAS1
8

Renal cell carcinoma EPAS1 3
Signaling by Wnt PSMA3 4
Apoptosis PSMA3, TIAF1 6
Cdc20:phospho-APC/C mediated
degradation of cyclin A

PSMA3 4

Regulation of activated PAK-2p34
by proteasome mediated
degradation

PSMA3 4

APC/C:Cdh1-mediated
degradation of Skp2

PSMA3 4

VEGF signaling pathway EPAS1 3

Table 2
List of 17 miRNAs and target genes associated with colorectal cancer.

CRC related miRNAs miRNA family Target genes predicted by TRNFN

hsa-let-7b Let-7b PCBP2,UBE2D3,PSMA3
hsa-let-7 g Let-7 g PCBP2,C18B11
hsa-miR-106b miR-106 TRIP10
hsa-miR-107 miR-107 EPAS1,UBE2D3
hsa-miR-140 miR-140 UBE2D3
hsa-miR-141 miR-141 ACP1
hsa-miR-15b miR-15 LDHA
hsa-miR-182 miR-182 LDHA,EPAS1,PSMA3
hsa-miR-195 miR-195 PCBP2,TRIP10
hsa-miR-203 miR-203 UBE2D3
hsa-miR-21 miR-21 PPP1CC,UBE2D3
hsa-miR-221 miR-221 ANXA1,PCBP2,PSMA3
hsa-miR-25 miR-25 RPL10A
hsa-miR-29b miR-29 PPP1CC
hsa-miR-30c miR-30 LDHA,PCBP2,ACP1,TIAF1,TRIP10,

DGKZ,EPAS1
hsa-mir-32 mir-32 PSMA3
hsa-miR-34b miR-34 TIAF1,TRIP10
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model is generated using the training dataset and the parameter
tuning is done by the repeated learning. The fuzzy rule set derived
from 27 TRNFN model was used to build a miRNA–mRNA interaction
network. The inferred association network using TRNFN is shown in
Fig. 3. There were two disjoint sets of nodes in this graph, miRNA
(green circle) and mRNA genes (pink circle). A direct connection
placed from a miRNA to an mRNA indicates that the mRNA was pre-
dicted to be the target of the miRNA. An edge→ indicates activation
of transcription, whereas, an edge⊣ indicates repression of transcrip-
tion. Cytoscape software (Shannon et al., 2003) has been used to
draw the network. The resulting network had 76 nodes and 119
connections.

In order to better understand the biological processes linked to
these miRNAs and their predicted target mRNAs in the context of
colorectal cancer, we compared our results with the experimentally
known miRNA–mRNA association available in literature. MicroRNA.org
(Doron et al., 2008), is a widely used web resource for miRNA target
prediction and expression profiles. In microRNA.org database, target
predictions are based on a development of the miRanda algorithm
Table 3
CRC related miRNAs and their associated processes.

CRC related
miRNA

Associated biological processes

hsa-miR-34b Regulation of cyclin-dependent protein kinase activity, angiogenesis, ubi
polymerase II promoter, regulation of apoptosis

hsa-miR-32 Beta-catenin binding, regulation of apoptosis, BMP signaling pathway, re
hsa-miR-21 Cell proliferation; anti-apoptosis, ubiquitin–protein ligase activity
hsa-let-7g Cell proliferation; anti-apoptosis, ubiquitin-protein ligase activity, anaph

catabolic process, response to oxidative stress, regulation of transcription
hsa-miR-140 Cell cycle arrest, regulation of cell proliferation
hsa-let-7b Cell proliferation, ubiquitin–protein ligase activity, anaphase-promoting

process, response to oxidative stress and regulation of apoptosis, hemopo
hsa-miR-30c Polyamine biosynthetic process, ubiquitin-dependent protein catabolic p
hsa-miR-106b Angiogenesis, regulation of cyclin-dependent protein kinase activity, regu

promoter
hsa-miR-107 Anaphase-promoting complex-dependent proteasomal ubiquitin-depend

Wnt receptor signaling pathway
hsa-miR-15b Anti-apoptosis, regulation of cell proliferation, anaphase-promoting com
hsa-miR-182 BMP signaling pathway, apoptosis, angiogenesis, activation of MAPK acti

ubiquitination during ubiquitin-dependent protein catabolic process,
hsa-miR-195 Wnt receptor signaling pathway, BMP signaling pathway, anaphase-prom

process, regulation of apoptosis
hsa-miR-141 Angiogenesis, regulation of transcription, DNA-dependent, hemopoiesis,
hsa-miR-203 Regulation of cell growth, activation of MAPKK activity, anti-apoptosis, B
hsa-miR-221 Cytokine and chemokine mediated signaling pathway, regulation of Wnt
hsa-miR-25 Angiogenesis, anti-apoptosis, BMP signaling pathway, regulation of cell p

protein catabolic process
has-miR-29b Regulation of cell proliferation, angiogenesis, BMP signaling pathway, reg
(John et al., 2004) which incorporates current biological knowledge
on target rules. The set relations predicted by TRNFN and are confirmed
in mircoRNA.org database are listed in Table 1. For example, the
down regulation of UBE2D3 by miR-107, miR-135 and miR-140 were
predicted correctly by our algorithm and are confirmed in the literature.
Further, by searching miR2Disease: a manually curated database for
microRNA deregulation in human disease (Qinghua et al., 2009) we
identified that 17 of our 56 miRNAs are known to be actively involved
in the pathways associated with colorectal cancer. Table 2 lists each of
those miRNAs and their target genes which have been previously
reported to have associations with colorectal cancer.

It is interesting to investigate further the biological process and
cancer related canonical pathways associated with these miRNAs
which are associated with colon cancer. To obtain the biological pro-
cess in which the above cancer related genes are involved, we used
the miR-Ontology database (miRo) (Lagana et al., 2009).The results
are presented in Table 3. A more detailed functional analysis has
quitin-dependent protein catabolic process, regulation of transcription from RNA

gulation of cell proliferation, ubiquitin-dependent protein catabolic process

ase-promoting complex(APC)-dependent proteasomal ubiquitin-dependent protein
, DNA-dependent

complex(APC)-dependent proteasomal ubiquitin-dependent protein catabolic
iesis
rocess, and regulation of apoptosis
lation of cell proliferation, regulation of transcription from RNA polymerase II

ent protein catabolic process, anti-apoptosis, angiogenesis, BMP signaling pathway,

plex(APC)-dependent proteasomal ubiquitin-dependent protein catabolic process
vity, regulation of Wnt receptor signaling pathway through beta-catenin, protein

oting complex-dependent proteasomal ubiquitin-dependent protein catabolic

regulation of cell proliferation
MP signaling pathway,
receptor signaling pathway, regulation of Wnt receptor signaling pathway
roliferation, regulation of Wnt receptor signaling pathway, ubiquitin-dependent

ulation of transcription from RNA polymerase II promoter, regulation of apoptosis
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been done to identify the cancer related canonical pathways in which
these miRNAs and target genes are involved. The identified pathways
are listed in Table 4.Overall, it is clear that the above CRC related
miRNAs are involved in many biological processes and pathways by
regulating the target genes predicted by our approach.
4. Conclusion

MicroRNAs are a class of non-coding RNAs that hybridize to
mRNAs and regulate their activities at post transcriptional as well as
translational level. Recently it has been reported that the miRNAs
play an important role in the development of many cancers, including
CRC. Therefore, identifying cancer related miRNAs and their target
genes is a key step towards the diagnosis and treatment of cancer.
In this paper, we applied TSK-type recurrent neural fuzzy network
(TRNFN) to infer miRNA–mRNA association network frommicroarray
gene expression data of CRC patients. Here, we are focusing on a small
number of relevant genes, each of which can fairly classify colon
tumor tissues from normal ones. Using TRNFN, we were able to iden-
tify miRNAs which are involved in the regulation of above cancerous
genes. We demonstrated that the method we proposed achieved
good performance in recovering known experimentally verified
miRNA–mRNA associations. Moreover, we were able to identify 17
miRNAs which are directly involved in the CRC related pathways.
Targeting such miRNAs may help not only to prevent the recurrence
of disease but also to control the growth of advanced metastatic
tumors. Our interaction network will provide valuable insights into
cancer diagnostics, prognostics and therapy.
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