
8

Intelligent Agent-based Multilingual Information Retrieval System

Sumam Mary Idicula David Peter S

Abstract

The goal of this work is to develop an Open Agent Architecture for Multilingual information
retrieval from Relational Database. The query for information retrieval can be given in plain
Hindi or Malayalam; two prominent regional languages of India. The system supports
distributed processing of user requests through collaborating agents. Natural language
processing techniques are used for meaning extraction from the plain query and information
is given back to the user in his/ her native language. The system architecture is designed
in a structured way so that it can be adapted to other regional languages of India.

Keywords : Information Retrieval, Natural Language Processing, Multilingual
Computing, Indian Languages.

0. Introduction

Information is playing an increasingly important role in our lives. Information has become an instrument
that can be used for solving problems. An intelligent information agent is one that acts on behalf of its
user for information gathering [1]. It is capable of locating information sources, accessing information,
resolving inconsistencies in the retrieved information and adapting to human information needs over
time. An information agent is responsible for providing intelligent information services. Information market
has now been transformed from supply-driven to demand-driven.

India being a multilingual country, information agents have to work in multilingual environment. To handle
multilingual environment, specific requirements and good language knowledge is needed. Every
language has a set of language resources like characters, lexicons, grammars and keyboard mappings.
Agent should be open to updates in language resources. An information agent should be able to configure
to the user preferred language and usage style. An agent should exhibit the capacity to learn new languages
to increase the degree of multilingualism.

A multilingual information agent should have properties like

? Language autonomy- capability to control state and behavior according to the language.

? Reactivity : The ability to perceive and respond to multilingual percepts.

? Pro-activity : Ability to perform language oriented goal-directed behavior.

? Social–ability : Ability to exhibit interact in language sensitive environments.

? Learning : Ability to adapt to user’s language preferences and new languages.

1. Objectives & Motivation

This work is aimed at developing an intelligent agent based system for information retrieval from database.
Database hold huge quantities of data. There are several artificial languages for manipulating the data.
But their usage needs knowledge about the database structure, language syntax etc. Several Natural
language front-ends have been developed as a result of rigorous works done in this field of artificial
intelligence. But majority of them use English as the natural language. India being a multi-lingual country

3rd International CALIBER - 2005, Cochin, 2-4 February, 2005, © INFLIBNET Centre, Ahmedabad

9

with only 5% of the population having education up to matriculation level, their use is limited. In this
context, information retrieval in regional languages from database has tremendous impact. It is of very
great use in application areas like e-governance, agriculture, rural health, education, national resource
planning , disaster management , information kiosks etc. Even research organizations can make of use
of such systems to bring their findings to common man.

The agent based information system developed can retrieve information in Hindi and Malayalam from
the National Resource Information database. The user can give his/ her query to the system as if he/ she
delegates a human being for information gathering. There is no rigid syntax for asking the query. The
system using NLP techniques tries to extract meaning of the query and retrieve information from data
stores and present the information to the user in his/ her own native language [2]. This system provides
the following advantages to the user.

? the user can communicate with data stores in the regional languages

? flexibility in communication

? shielding the users from complexities of database model, DDL, DML etc

? handling anaphoric and elliptical queries

? capability of handling user misconceptions

2. System Design

The information retrieval system is implemented using Open Agent Architecture (OAA). The OAA is a
framework in which a community of software agents running on distributed machines can work together
on tasks assigned by human or non-human participants in the community [3]. The system is configured
as a multi-agent system. The agents collaborating in the system are user-interface agent, morph-
analyser agent, parser agent, SQL agent and facilitator agent. The communication language used among
the agents are Interagent Communication Language (ICL). Fig.1 presents the basic architecture of the
system.

Interagent Communication Language(ICL)

SQL
Agent

Parser
Agent

Morph
Agent

User–interface
Agent

Facilitator Agent
Global Agent Data Routing and Planning

Fig 1 . System architecture

Sumam Mary Idicula, David Peter S

10 Intelligent Agent-based Multilingual Information Retrieval System

These agents are distributed over a network of machines. There is only one database server. Multiple
users can use the system at the same time. For running the system all the machines should have J2DK
1.4.0 and OAA software package. All the client machines should have the User Agent loaded in them.

2.1 User Interface Agent

It accepts queries from the user. Query can be input through the key board or through the window keypad
with the help of touch pen. Both Malayalam and Hindi languages have been supported.

Seeing the difficulties of input/output in Indian languages, we decided to develop some convenient
approaches to tackle this problem. They include

? Keyboard

? Window Keypad & Touch pen/Mouse

2.1.1 Keyboard Input

The commonly used method for entering text into the computer is with the help of a keyboard. Most of the
computers are provided with QWERTY keyboard, which do not have enough keys to support all letters of
Indian languages. So better utilization of available keys along with well-designed key assignments play
an important role in the usability of keyboard in Indian context. As most of the users are well versed in
using English keyboard, we decided to map Indian letters to English keys based on extent of similarity in
pronunciation. For example Hindi letter ‘Û ‘ is assigned to key ‘k’, letter ‘•Ö’ to key ‘j’ etc. We are inputting
joint letters with the help of key combination, for example the typing of the sequence › + Ë + œ will result
in ù. The system will check the key sequences and will do automatic transformation. This technique will
help to enter all letters in Indian languages within the current keyboard limitations.

Another problem in Indian language software creation is the rendering of characters. The standard used
for information exchange is ISCII, which is an 8 bit-character encoding scheme where the Indian language
characters are assigned to a unique ASCII value within the range of –127 to –1. A font that satisfies ISCII
standard can render letters without any problem. But popular programming languages like Java use two
byte Unicode characters. So if we want to render Indian letters in Java GUI controls, we have to map ISCII
to Unicode. Now Unicode is emerging as an International standard for all languages. There is a Unicode
standard for all Indian language scripts, Devanagari (U0900) ranges from 0900 to 097F and Malayalam
(U0D00) ranges from 0D00 to 0D7F. As it’s found as difficult to get fonts that satisfies both ISCII &
Unicode we are doing a font specific mapping The Indian fonts used for Hindi and Malayalm are DVBW-
TTYogeshEN and MLB-TTIndulekha respectively developed by C-DAC.

2.1.2 Entering Text Using Window Keypad & Touch pen / Mouse

The problems in key assignments and lack of sufficient keys to support Indian languages force as to
provide a Keypad window with the text controls. The Keypad contains buttons for all letters for a particular
language and users can activate the Keypad by right clicking on any text control. The users can enter text
by selecting buttons on the Keypad with the help of Mouse or Touch pen. Even though this is not as
flexible as typing from Keyboard, this will provide an additional feature mainly for the users who are not
well versed with the key assignments. The end-users can either use the keyboard or the Keypad to enter
text to a GUI Text component. The sample view of Hindi text control and Keypad is given below.

11

2.2 Morph Agent

Morphological analysis is the process of finding the root and the grammatical features of a word . This
agent performs activities like splitting the query into individual words, spelling correction, domain dependent
word grouping and attaching semantic properties to each word group. In this work the Morphological
Analysis of words is conducted in a domain (database) specific way rather than a language specific way.
For example consider the string “greater than”. In database specific sense it is a relational operator, but
in language sense the words “greater” & “than” come under different grammatical categories and later
we have to combine these to form a relational operator that requires one more processing step. So the
main advantages of domain specific analysis are: -

? It will be easier to tokenize the incoming user query.

? It is the natural way in which human experts are performing.

Here the token represents a “meaningful unit” in database context and the morphological analysis is the
process of identification of tokens present in the natural language query with the help of a lexicon.
Knowledge content of Tokens are stored as frames. The output of morphological analysis will be a table
that contains tokens.

Each token have following slots: -

? Tag

? Id

? Value

? Optional

Tag is a string that implies the database specific category of the token. A list of most significant tags &
interpretations are given below in Table 1.

Sumam Mary Idicula, David Peter S

12 Intelligent Agent-based Multilingual Information Retrieval System

Tag Interpretation

<CFLD> Character attribute of a database table

<NFLD> Numeric attribute of a database table

<CVAL> Character value

<NVAL> Numeric value

<FUNC> An SQL function

<AND> The logical operator AND

<OR> The logical operator OR

<COND> Relational operator

Table 1 Token Table

The tag labels are selected to imply database specific meaning. Id is an integer that along with tag will
uniquely identify a token in a token table. The value is the actual content of the token and optional is a
location that can be used to store additional information if necessary. The tag sequences that we can
extract from the token table can be used for syntactic and semantic analysis. The Morph agent makes
use of a Lexicon and Vibakthi Lexicon for its processing.

Lexicon Structures : The objective of the lexicon design is that it should contain sufficient information
about words to fill the necessary slots of the token. So the lexicon should also contain almost similar
attributes as that of tokens. Each record in a lexicon table contains following set of attributes: -

? Word

? Tag

? Meaning

? Optional

The word attribute is a string containing single or multiple words that form a domain specific “meaningful
unit”. Tag is having similar purpose as in the case of token and meaning is the domain specific meaning
of the word and optional is for additional information about word if required.

A sample filling of lexicon is given in Table 2.

Word Tag Meaning Optional

•Ö®ÖÃÖÓÜµÖÖ <NFLD> Demography.totp

†î¸ <AND> AND

ÃÖ²ÖÃÖê †×¬ÖÛú <FUNC> MAX

ÃÖê ÃÖ×¬ÖÛú <COND> >

Ûêú¸»Ö <CVAL> Kerala State.sname

Table 2 Lexicon

13

2.2.1 Vibhakthi Lexicon

The lexicon structure given above is enough for Hindi morphological analysis, but in Malayalam and
other Dravidian languages the Vibhakthi is always attached to the words and will play a significant role in
understanding the relation between words in a string. The following example will demonstrate the
difference between Hindi & Malayalam: -

For a Hindi string: Ûêú¸»Ö ´ÖêÓ

Malayalam equivalent is: ¶‰¥¨Ì°Þ

Which is a combination of: ¶‰¥¨¹ and ƒÞ

From the above example it is clear that for doing morphological analysis in Malayalam there is a
requirement for additional information, which will help to extract word & vibhakthi from a combined word.
The conventional way of doing this is either by storing all forms of a word or by storing the type of
transformations occuring while adding each vibhakthi. But in our problem the NRI database contains
thousands of words that represent proper nouns such as state names, district names, village names
etc. We have to address the problem of expansion (for example addition of a new state) and modification
(for example the re-naming of an existing place). So following the conventional way will lead to a situation
that, once a new word is added to database we have to add that word and vibhakthies manually to lexicon.
Another factor of consideration is the size & complexity of the lexicon. To address the above-mentioned
problems we have designed an effective strategy by building an additional lexicon for Malayalam
morphological analysis. The lexicon structure and sample records are given in Table 3.

Word1-Word2 Word2-Word1 Vibhakthi Tag

¹ µÌ¾¯à <KAL>

¹ Ì°µú <INTE>

¹ Ì°Þ <IL>

¸ °µú <INTE>

Table 3. Vibakthi Lexicon

The Word1 is the root word that is present in the lexicon and Word2 is the word that is present in the user
query. The first attribute is the result of Word1 minus Word2 and second attribute is the result of reverse
process. The vibhakthi tag is the identifier for a particular vibhakthi. The minus operator performs a
character level comparison from left to right and if there is a miss match between letters, it will add the
letter of the first word to difference. The following examples will give the clear picture: -

Word1 ¶ ‰ ¥ ¨ ¹

Word2 ¶ ‰ ¥ ¨ Ì ° Þ

Word1 - Word2 - - - - ¹ - -

Word1 ¶ ‰ ¥ ¨ ¹

Word2 ¶ ‰ ¥ ¨ Ì ° Þ

Word2 - Word1 - - - - Ì ° Þ

Sumam Mary Idicula, David Peter S

14 Intelligent Agent-based Multilingual Information Retrieval System

Only the root word is stored in the lexicon and all valid transformation rules are stored in the vibakthi
lexicon in the form as narrated above. So the word in the user query is compared with the words in lexicon
and if it satisfies the above equations then we can find the root word (word in lexicon) and the vibhakthi
attached to it. The completeness of the vibhakthi lexicon determines the accuracy of the whole process.
The noted advantages of this method are: -

? As the same vibhakthi transformation rule can be applied to a class of words, the size & complexity
of the lexicon is reduced considerably.

? In the event of a database record modification, the system can automatically check for new words
by querying the database to get values of all attributes that are having string data type.

Automatic Spell Checking & Correction : In an effort to give more flexibility to the end-user, the system will
perform a word level automatic spell checking and will correct the spelling if there is a reasonable level
of matching. The spell checking is performed with the help of lexicon. The words in the incoming query
are compared with the words that are present in lexicon. Note that the lexicon contains string of words in
the Word field, but the spell checking is performing at individual word level. So there is a necessity to build
a linear list of words from lexicon. The process of spell checking will proceed by performing the following
steps: -

? Check whether the word represents numeric value.

? Check for an exact word match

? Check for Word + Vibhakthi (For Malayalam only)

? Check for a reasonable match

? Mark word as JUNK

The process will systematically perform each step and if all the initial four steps fail then the word will be
considered as a junk word. The incoming word that is having more that 2/3 match to lexicon word(s) is
considered as a candidate for spell correction and is replaced with maximum matched lexicon word. A bi-
directional checking along with size comparison is required to find the extent of matching between two
words.

Word Grouping : This is the final phase of Morphological Analysis. After spell checking & correction the
refined words are grouped together to form database specific tokens. Token may contain a single word
or group of words. As said earlier tokens are the ‘meaningful units’ that help in domain specific processing.
Word grouping identifies all the tokens that are present in the user query. The algorithm will handle
possible ambiguities that might arise during grouping. The algorithm initially check for a valid token by
grouping maximum number of words and if no match is found then will proceed the checking by eliminating
last word from the group. For example after word grouping the sentence “Ûêú¸»Ö Ûêú ÃÖ²ÖÃÖê †×¬ÖÛú
•Ö®ÖÃÖÓÜµÖÖ” will produce following set of tokens: -

Token Ûêú¸»Ö Ûêú ÃÖ²ÖÃÖê †×¬ÖÛú •Ö®ÖÃÖÓÜµÖÖ

Tag <CVAL> <KE> <FUNC> <CFLD>

The word grouping will produce a token table that contains all necessary information about tokens, which
itself is the f inal output of the entire Morphological Analysis task. The tag str ing
<CVAL><KE><FUNC><CFLD> is used for doing syntactic and semantic analysis of the user query. The
additional information about the tokens are used for SQL generation.

15

2.3 Parser Agent

The syntactic analysis is the process of checking the validity of a sentence. It checks whether the sentence
is grammatically correct . Here pattern driven parsing is used. Each pattern has got specific database
mapping meaning. These patterns are then mapped to columns & conditions in a database.

The parsing is with the help of a set of production rules. The production rules contain natural language
pattern as antecedent and category as consequence. The incoming query is split to form a tree, which
contain patterns found in the natural language query. Since our main aim is to find the conditions and
columns for generating SQL, we are having only two category items. They are <CONDITION> and
<COLUMN>. If any pattern is not following any of the antecedent of a production rule then it will be treated
as a <FILLER>. The Table 4 gives some of the production rules used: -

Pattern (Antecedent) Category (Consequence)

<NFLD><NVAL><COND> <CONDITION>

<FUNC><NFLD> <COLUMN>

<CVAL><CFLD> <CONDITION>

<CFLD> <COLUMN>

<FUNC><CFLD> <COLUMN>

<CVAL> <CONDITION>

<NFLD><NVAL><NVAL><COND> <CONDITION>

<FUNC><NFLD> <COLUMN>

Table 4 Antecedents & Consequents of production rules

After parsing the tokens that match with the antecedent of a production rule, they are grouped together to
form a node. The node contains information about the pattern, category and participating tokens, which
is the final output of the overall understanding process. These nodes are passed to the next module for
SQL generation.

The natural language understanding is done by the collaborative work of all the above-mentioned
agents. The natural language query will go through each of these agents and undergoes certain type of
transformation/processing. The final output is used for SQL generation.

Example

The overall understanding process can be explained with the help of an example as shown below: -

Consider the following natural language query after spell correction: -

×ÛúŸÖ®Öê ÝÖÖÑ¾Ö ´ÖêÓ •Ö®ÖÃÖÓÜµÖÖ 2500 ÃÖê †×¬ÖÛú Æî

The word grouping will result in following set of tokens: -

[×ÛúŸÖ®Öê] [ÝÖÖÑ¾Ö] [´ÖêÓ] [•Ö®ÖÃÖÓÜµÖÖ] [2500] [ÃÖê †×¬ÖÛú] [Æî]

Sumam Mary Idicula, David Peter S

16 Intelligent Agent-based Multilingual Information Retrieval System

The tagging is done as follows: -

Token ×ÛúŸÖ®Öê ÝÖÖÑ¾Ö ´ÖêÓ •Ö®ÖÃÖÓÜµÖÖ 2500 ÃÖê †×¬ÖÛú Æî

Tag <FUNC> <CFLD> <MEM> <NFLD> <NVAL> <COND> <HY>

The token table produced as a result of Morphological Analysis is given below. The id is used for identifying
tokens of similar category. For example if one more function is available then it will be having an id ‘2’.

Tag Id Meaning Optional

1 <FUNC> 1 COUNT

2 <CFLD> 1 Village.vname

3 <MEM> 1 mem

4 <NFLD> 1 Demography.totp

5 <NVAL> 1 2500

6 <COND> 1 >

7 <HY> 1 hy

The parsing is done on the tag sequence: -

<FUNC><CFLD><MEM><NFLD><NVAL><COND><HY>

Parsing results in identification of following set of patterns, which is used by the SQL generator: -

Pattern Category Tokens

<FUNC><CFLD> <COLUMN> Tokens 1 & 2

<MEM> <FILLER> Token 3

<NFLD><NVAL><COND> <CONDITION> Token 4,5 & 6

<HY> <FILLER> Token 7

2.4 SQL Agent

This agent generates SQL equivalent of the user inputted natural language query. After the understanding
task, we will get some clear indications of required columns & conditions in the final SQL. The SQL is
generated based on the underlying database structure and set of expert rules for query building. So there
should be provisions for: -

? Getting information about the underlying database structure, which includes meta-data of individual
tables

? Building SQL by interpreting the meaning of particular natural language pattern and with the help
of database specific information.

17

2.4.1 Understanding Database Structure

As many tables are there in the database, the type of relation between tables and the conditions for
joining tables have significant effect on the final SQL. Also there should be sufficient data about the
individual tables such as fields, data type, constraints etc. The table structures shown in Table 5 and
Table 6 are used for SQL generation. The Table 5 is used for storing information about individual tables
and Table 6 is used for storing information about the relation between tables in the database.

Database Table Field Database Table Data Type Constrain

State.scode State CHAR PKEY

State.sname State CHAR

Demograhy.totp Demography NUMBER

Table 5 Metadata of database tables

Database Table 1 Database Table 2 Table Join Condition Relation Type

State Village State.scode=Village.scode Master-Detail

Village Transport Village.vcode=Transport.vcode Detail-Detail

Transport Landuse Transport.vcode=Landuse.vcode Detail-Detail

State Landuse State.scode=Landuse.scode Master-Detail

Table 6 Table Join Conditions

The Tables 5 & 6 will provide database specific information to the SQL generator as and when required.

2.4.2 Building SQL

Interpretation of the natural language patterns that we received as a result of parsing is required for
generating SQL. The system will have to interpret the expert rules that are having a format similar to the
one that is given below: -

IF (pattern = “Some natural language pattern”)
 {
 —————————————————
 Actions for building SQL
 —————————————————
 }

For example: -

IF (pattern = “<FUNC><NFLD>”)
 {
 ADD ‘<FUNC>(<NFLD>)’ TO COLUMNS;
 ADD TABLE(<NFLD>) TO TABLES;
 }

Sumam Mary Idicula, David Peter S

18 Intelligent Agent-based Multilingual Information Retrieval System

There are two methods for storing and interpreting the expert rules. These are: -

? Hard-code the rules in a programming language

? Create rule-interpreter for interpreting rules stored in a rule-base.

The first method is having the advantage that it is easy to implement. But if we want to add new rules then
the only way we could do is by making changes to the program itself. If we are using the second method,
we can add/modify rules in the rule-base without making any modification to the program. The rule-base
can be created as an XML document, so that the processing can be done easily with the help of already
available XML parsers.

The rule-base will look something similar to the one given below: -

<Rule-Base>

 <Rule>

 <Pattern> FUNC NFLD </Pattern>

 <Action>

 <Exec> ADD ‘FUNC(NFLD)’ TO COLUMNS</Exec>

 <Exec> ADD TABLE(NFLD) TO TABLES</Exec>

 </Action>

 </Rule>
</Rule-Base>

The rule-base given above is the simplified form, the original one will embed programming language
codes such as function calls inside the <Exec> </Exec> tags. The rule interpreter will parse this XML
document and will execute the statements in the <Exec> </Exec> tags. The great aspect of this approach
is that in future we will be in a position to formulate some meta-rules for producing rule-base for a new
database. The meta-rules contain instructions to build rule-bases for different database structures. So it
will be possible to produce configurable natural language interface (NLI), which will reduce the time &
effort required for producing interfaces separately.

2.5 Facilitator Agent

The facilitator agent is a server agent that is responsible for coordinating agent communication and
control and for providing a global data store to its client agents. It maintains a registry of agent service and
data declarations [4]. The facilitator agent breaks tasks into subtasks, matches subtasks to service
providers, routes and collects information among distributed participants.

2.6 Interagent Communication Language (ICL)

ICL is the interface language shared by all agents, no matter what machine they are running on or what
computer language they are programmed in. Every agent participating in the system defines and publishes
a set of capabilities specifications expressed in the ICL, describing the services that it provides [5,6].
These establish a high-level interface to the agent, which is used by a facilitator in communicating with
the agent and delegating service requests to agents. The capabilities are referred as “solvables”. In this
work parsing a token string is a solvable for the parser agent. Displaying the output on the screen is a
solvable for the user-interface agent. While performing a task, an agent can request the service provided
by other agents through the procedure “Solve()”

19

3. Results

Some sample screen shots of the multilingual information retrieval system are given below. Since we
have only developed a prototype of the system, we haven’t populated the database considerably. Hence
only few records are seen in the output. The User Agent displays the results at the client machines.

The screen shots display the results of queries given in Hindi and Malayalam. The user typed query and
the corresponding SQL statement generated by the SQL Agent and the result obtained can be seen in the
screen shots.

The Hindi and Malayalam queries are given below.

ÝÖã•Ö̧ÖŸÖ ÃÖÓÃŸÖÖ®Ö Ûêú ×Ûú®Ö ×Ûú®Ö ÝÖÖÑ¾Ö ́ÖêÓ •Ö®ÖÃÖÓÜµÖÖ 10000 ÃÖê †×¬ÖÛú †Öȩ̂ Ã¾ÖÖÃ£µÖ Ûêú®£Î 1 Ûêú ÃÖ́ÖÖ®Ö Æî

¶‰¥¨Ì°Þ 1500Þ ‰³”²Þ •œ¹Š» „á˜²¹ £¯˜´ «°«² ¹¥À— ¶‰½Ñ¹
1 Þ

‰³”²Þ „á˜²£¯£ ª°¶ß•²‰à ‡ª

Sumam Mary Idicula, David Peter S

20 Intelligent Agent-based Multilingual Information Retrieval System

4. Conclusion & Future work

The advantage of this system is that the user can query the data store in his/ her own native language
without knowing the complexity of the database structure and location of the database. The agents
involved in the system are adaptive to the user language and the usage style. It is the facilitator agent who
is planning and coordinating the sequence of tasks involved in query processing. The Open Agent
Architecture is useful for building complex systems in which there are many heterogeneous components
and in which flexibility and extensibility is important. The user interface can be made more friendly by
adding agents capable of processing multimodal inputs like speech and gesture. Now the output is only
in text form. It can be extended to include spatial information by integrating this system with spatial
database. It adds more value to the result and can be effectively used by government bodies for resource
planning. The common language framework used, makes this system adaptable to other regional
languages of India .

5. Acknowledgement

This research work was sponsored by Indian Space Research Organization. We thank I.C Matieda of
Space Applications Center, Ahmedabad for providing many analyses and suggestions that helped an
efficient implementation.

21

6. References

1. Gerhard Weiss, Multiagent Approach to Distributed Artificial Intelligence, MIT Press 1999.

2. Bahrathi A, Chitanya V and Sangal R, Natural Language Processing – A Paninian Perspective,
Printice-Hall of India, 1996

3. Michael N Hunhs, Munindar P Singh , Readings in Agents, Morgan Kaufmann 1997

4. Jeffrey M Bradshaw, Software Agents, AAAI Press, 1997

5. Nicholas R Jennings, Michael J Woodridge, Agent Technology - Foundation, Application and
Markets, Springer , 1999

6. M. Sugumaran and P. Narayanasamy, “An Intelligent Multiagent Meeting Schedule”r in the
proceedings of the International Conference on Artificial Intelligence in Engineering and Technology,
Malaysia, 2002

About Authors

Dr. Sumam Mary Idicula is Reader in Computer Science, Cochin University of
Science & Technology. She holds Ph.D in Computer Science from Cochin University
of Science & Technology. She has contributed 18 Technical papers in the proceedings
of International Conferences & Journals. Her area of Interest are Multilingual
Computing, Intelligent Agent-based Systems, Software Engineering.
E-mail : sumam@cusat.ac.in

Sh. David Peter S is Reader in Computer Science Cochin University of Science &
Technology. He holds M.Tech in Computer Science & Engineering from IIT, Chennai.
He has to his credit 17 Technical papers in the proceedings of International
Conferences & Journals. His fields of Interest is Intelligent Agent-based Systems,
Software Engineering, Neural Networks.
E-mail : davidpeter@cusat.ac.in

Sumam Mary Idicula, David Peter S

