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Abstract Hepcidin is cysteine-rich short peptide of

innate immune system of fishes, equipped to perform pre-

vention and proliferation of invading pathogens like bac-

teria and viruses by limiting iron availability and activating

intracellular cascades. Hepcidins are diverse in teleost

fishes, due to the varied aquatic environments including

exposure to pathogens, oxygenation and iron concentration.

In the present study, we report a 87-amino acid (aa)

preprohepcidin (Hepc-CB1) with a signal peptide of 24 aa,

a prodomain of 39 aa and a bioactive mature peptide of 24

aa from the gill mRNA transcripts of the deep-sea fish

spinyjaw greeneye, Chlorophthalmus bicornis. Molecular

characterisation and phylogenetic analysis categorised the

peptide to HAMP2-like group with a mature peptide of

2.53 kDa; a net positive charge (?3) and capacity to form

b-hairpin-like structure configured by 8 conserved cyste-

ines. The present work provides new insight into the mass

gene duplication events and adaptive evolution of hepcidin

isoforms with respect to environmental influences and

positive Darwinian selection. This work reports a novel

hepcidin isoform under the group HAMP2 from a non-

acanthopterygian deep-sea fish, C. bicornis.
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Introduction

Antimicrobial peptides (AMPs) are evolutionarily con-

served key effectors of innate immunity produced by

nearly all organisms, from bacteria to plants and animals

including fishes which represent the transition form

between species depending only on innate immunity and

species highly rely upon adaptive immunity [1, 2]. Gen-

erally, they are cationic small peptides of size less than

10 kDa (15–45 aa) with hydrophilic as well as hydrophobic

residues, which account for their specificity towards pro-

karyotic cell membrane, its disintegration and there by the

death of the microorganisms [3, 4]. Since the discovery of

the first AMP, cecropin from insects [5], more than thou-

sands of AMPs have been reported [6]. Based on the three-

dimensional structure, amino acid composition and mode

of action, AMPs have been classified under several head-

ings, in which cysteine-rich peptides stabilised by disul-

phide bonds formed the largest group [7], which include

defensins, tachyplesins, protegrins and hepcidins [8].

The first report of hepcidin was from human blood ultra-

filtrate [9] as liver-expressed antimicrobial peptide (LEAP-1).

Later, it was isolated from human urine and was named as

hepatic antimicrobial peptide (HAMP) [10]. Since then

more than 68 hepcidin-like AMPs have been reported [11],

bass hepcidin was the first isolated non-human vertebrate

hepcidin from striped hybrid bass, Morone chrysops 9

M. saxatilis [12]. Multiple copies of hepcidin isoforms

were identified from many fishes including, Scophthalmus

maximus [13], Acanthopagrus schlegelii [14], Lates
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calcarifer [15], Alphestes immaculatus [16], Pagrus auriga

[17], Pseudosciaena crocea [18], Sparus aurata [19],

Dicentrarchus labrax [20], Paralichthys olivaceus [21],

Gadus morhua [8], Oreochromis mossambicus [22] and

Antarctic notothenioid fishes [23]. Hepcidins are diverse in

teleost fishes, due to the diversity of aquatic environments,

that is, exposure to pathogens, oxygenation and iron con-

centration [23]. Apart from antimicrobial properties, hep-

cidin exhibits pivotal roles in immunomodulation and iron

homeostasis [24, 25]. It also has anticancerous [26] and

antiviral [27] properties. They are evolutionarily conserved

with a capacity to mobilise shortly after infection and act

rapidly to neutralise a broad range of microbes.

Though a number of hepcidins have been reported from

various fishes, no HAMP2-like hepcidin sequences were

detected from non-acanthopterygian fishes so far. In the

present study, we report a novel HAMP2 peptide sequence

from a non-acanthopterygian deep-sea fish spinyjaw

greeneye (Chlorophthalmus bicornis, Chlorophthalmidae),

its molecular characterisation and phylogenetic analysis.

Materials and Methods

Sample Collection

Live samples of C. bicornis were collected from a depth of

500 m from Andaman coast using a high-speed demersal

trawl (HSDT) net operated on-board FORV Sagar Samp-

ada (Ministry of Earth Sciences, Govt. of India) during

Cruise No. 292. They were killed humanely, gills were

carefully dissected out immediately after the death of the

animal and preserved in 100 % methanol at the Biological

Laboratory on-board the Research Vessel.

Total RNA Extraction and Reverse Transcription

Total RNA was extracted from the preserved tissue with

TRI� Reagent (sigma) in accordance with the manufac-

turer’s instructions. Purity and quality of the RNA was

analysed on 0.8 % agarose gel, and the total purified RNA

was quantified using spectrophotometer (A260:A280). Only

those RNAs having an absorbance ratio greater than 1.8

were used for the present work. The first-strand cDNA

synthesis was carried out by reverse transcription in a 20 ll

reaction mixture containing 5 lg total RNA, 19 RT buffer,

2 mM dNTPs, 2 mM oligo d(T20), 20 U of RNase inhibitor

and 100 U of MMLV Reverse transcriptase (Fermentas,

Inc.). The reaction was carried out at 42 �C for 1 h fol-

lowed by an inactivation step at 85 �C for 15 min. The

efficacy of the reverse transcription reaction was tested

using primers (F: 50-gatcatgttcgagaccttcaacac-30, R: 50-cga

tggtgatgacctgtccgtc-30) for the control gene b-actin.

PCR Amplification

The PCR amplification of cDNA from C. bicornis were

performed in a 25 ll reaction volume containing 19

standard Taq buffer (10 mM Tris–HCl, 50 mM KCl, pH

8.3), 3.5 mM MgCl2, 200 mM dNTPs, 0.4 mM each pri-

mer and 1U Taq DNA polymerase (Fermentas, Inc.). The

primers F: 50-cgaagcagtcaaaccctcctaagatg-30, R: 50-gaacctg

cagcagacaccacatccg-30 [28] were used for the amplifica-

tion. The PCR condition involved an initial denaturation of

94 �C for 2 min followed by 35 cycles of 94 �C for 15 s,

60 �C for 30 s, 68 �C for 30 s and a final extension at

68 �C for 10 min. The amplicons were analysed by elec-

trophoresis in 1.5 % agarose gel in TBE buffer, stained

with SYBR� safe and visualised under UV light. The PCR

products were purified and sequenced with an ABI Prism

sequencing kit (Big-Dye Terminator Cycle) at SciGenom,

India.

Sequence Analysis and Molecular Characterisation

The sequences were analysed, trimmed and assembled using

GeneTool software. The cDNA-based gene sequences were

translated using Expert Protein Analysis System (http://au.

expasy.org/). Homology searches of nucleotide sequence as

well as the deduced amino acid sequence were performed using

BLASTn and BLASTp algorithm of the National Centre for

Biotechnological Information (http://www.ncbi.nlm.nih.gov/

blast). Predeposited preprohepcidin sequences were retrieved

from NCBI and multi-aligned using ClustalW and GeneDoc

computer programmes. A rooted phylogenetic tree was con-

structed using MEGA 5.05 by neighbor-joining (NJ) method

with complete deletion of gaps and subjected to 1,000 iterations

of bootstrap. The cleavage site for the signal peptide was pre-

dicted using SignalP software (http://www.cbs.dtu.dk/services/

SignalP), and the motif RX (K/R) R, typical of the propeptide

convertase, was identified by MEGA 5.05 [17]. The physico-

chemical properties of preprohepcidin, its signal peptide, pro-

peptide and the mature peptide were characterised separately

using the ProtParam tool (http://cn.expasy.org/cgi-bin/

protparam) as well as antimicrobial peptide database (APD)

(http://aps.unmc.edu/AP/main.php) prediction. The structural

modelling of the mature peptide region of Hepc-CB1 was car-

ried out with the software ViewerLite 4.2, with the PDB data

generated by SWISS-MODEL server using the crystal structure

of hybrid white-striped bass hepcidin (PDB ID: 1S6W) as

template.

Results

A 294-bp fragment cDNA having an ORF of 87 amino

acids (Fig. 1) was obtained from the mRNA of gill tissue of
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C. bicornis by RT-PCR. BLAST analysis of the nucleotide

and deduced amino acid sequences revealed that the pep-

tide belonged to hepcidin super family and will be referred

as Hepc-CB1 here after. The obtained nucleotide sequences

and deduced amino acid sequences were deposited in

GenBank database (GenBank Accession number: JX163299).

SignalP software predicted the cleavage site for signal

peptidases between Ala24 and Gly25 resulting in a

24-amino acid signal peptide. Multiple alignments (Fig. 2)

identified the motif RX (K/R) R, after which, is the

cleavage site for propeptide convertase typical of hepcidin.

This cleavage of the propeptide would result in a mature

peptide of 24 amino acids and a prodomain of 39 amino

acids. ScanProsite recognised a cysteine-rich region between

amino acids 68 and 85, which forms the C-terminal region

of mature peptide. The mature peptide of C. bicornis was

found to be cationic with a net charge of ?3, whereas the

prepropeptide (-1) and propeptide (-5) were found to be

anionic. The 24-amino acid mature hepcidin was found to

have 2.53 kDa and a theoretical isoelectric point (pI) of

8.54 as predicted by ProtParam. APD predicts its hydro-

phobic potential as 54 %, which is contributed by amino

acids Val (1) Phe (2) Cys (8) Met (1) and Ala (1). As per

the similarity searches using BLAST algorithm, the

87-amino acid Hepc-CB1 showed 81 % similarity with

hepcidin 2 precursor of Acanthopagrus schlegelii (AS-

hepc2) (AY669377.2) and 80 % similarity with hepci-

din-like precursor of Pagrus major (AAS66305.1). The

24-amino acid Hepc-CB1 mature peptide differs from the

mature peptide of AS-hepc2 sequence only by two amino

acids. The N-terminal amino acids Ser65 and C-terminal

Arg87 of AS-hepc2 were replaced by the amino acids Asp64

and Lys86 in Hepc-CB1, respectively (http://aps.unmc.edu/

AP/main.php). The structural model created by ViewerLite

4.2 exhibits b-hairpin-like structure framed of two anti-

parallel beta sheets (Fig. 3) stabilised by four disulphide

bonds formed in the following pattern, Cys68–Cys85,

Cys71–Cys84, Cys72–Cys81 and Cys74–Cys75. The b1 sheet

composed of amino acids from Arg69 to Cys71, and b2

sheets composed of amino acids Gly82 to Cys84.

The phylogenetic tree constructed by neighbor-joining

method shaped a tree having seven sub clusters within a

main cluster and a small separate cluster (Fig. 4) formed by

atgaagactttcagggttacagtagcagtggccgtcatgctcacctttatttgtattcag 
 M  K  T  F  R  V  T  V  A  V  A  V  M  L  T  F  I  C  I  Q 
gagagctctgctggtccagtctctgaagtacaagagctggaggagccaatgaacaatgac 
 E  S  S  A G  P  V  S  E  V  Q  E  L  E  E  P  M  N  N  D  
aatccagttgttgtgcatgaagagatgtcagaagaatcctggaagatgccgtataacaga 
 N  P  V  V  V  H  E  E  M  S  E  E  S  W  K  M  P  Y  N  R  
cagaagcgtaaccctgctggctgtaggttttgctgtggttgctgtcccaacatgcgcgga
 Q  K  R N  P  A  G  C  R  F  C  C  G  C  C  P  N  M  R  G  
Tgtggtgtctgctgcaagttctga
 C  G  V  C  C  K  F  * 

Fig. 1 Nucleotide and deduced amino acid sequences of HAMP2

isoform from the gill mRNA transcripts of C. bicornis. The cleavage

site of 24-amino acid signal peptide is marked between Ala24 and

GLy25 , and the region is showed as underlined. The mature active

peptide is indicated in bold letters followed by stop codon which is

denoted by an asterisk

Fig. 2 ClustalW multiple alignment of amino acid sequences of

C. bicornis with hepcidin-like antimicrobial peptide sequences of

fishes and mammals obtained using GeneDoc programme version

2.7.0. The predicted cleavage site of propeptide convertase (where the

RX (K/R) R motif ends) is marked with arrows
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mammalian sequences. The main cluster could be subdi-

vided into two groups, HAMP1 and HAMP2. The first

group, HAMP1, composed of both acanthopterygian and

non-acanthopterygian fishes, while only acanthopterygian

fishes framed the second group HAMP2. As portrayed by

the phylogenetic tree, the C. bicornis Hepc-CB1 belongs to

HAMP2 class and closely related to antimicrobial peptides

from perciform fish, A. schlegelii.

Discussion

Hepcidin is one of the most studied antimicrobial peptides

from fishes [16, 29], mainly because of its physiological

relevance as antimicrobial peptide and iron-regulating

hormone [25]. Iron is an essential nutrient for bacterial

growth, and its overload increases the susceptibility to

intracellular and blood pathogens [30, 31]. In order to limit

pathogenic invasion and its multiplication, host immune

system has specific mechanisms of withholding iron from

microbes. This includes the production of iron-binding

proteins, reducing dietary iron assimilation and increasing

hepatic production of haemoglobin and hemin scavengers

[10]. Hepcidin can directly bind to iron-binding proteins

like ferroprotein, which leads to its internalisation and

degradation resulting in limited availability of iron for

bacterial growth [15, 32]. The iron regulatory activity of

hepcidin thereby further enhances its antimicrobial activ-

ity. Though the first report of hepcidin was from mammals,

adaptive evolution of hepcidin gene is prominent in fishes,

since mammals except mice possess a single copy of

HAMP1 gene and fishes more than two copies of hepcidin

genes. These multiples always fell in HAMP2 class, which

were reported only in acanthopterygian fishes [11]. In

repudiation with this statement, we report a novel 87 res-

idue hepcidin prepropeptide from the mRNA transcripts of

gill tissue of a non-acanthopterygian fish C. bicornis,

belonging to the order Aulopiformes [33].

The antimicrobial peptide hepcidin is generally syn-

thesised as a prepropeptide. Proteolytic cleavage of the

signal peptide and prodomain from the prepropeptide

yields the bioactive mature peptide [9, 34, 35]. Highly

conserved cysteine residues in the mature peptide regions

form the core domain signature, which serves as the

disulphide-bridged back bone of the b-hairpin-like struc-

tures. The structural organisation and bonding pattern of

Hepc-CB1 are similar to the earlier reported hepcidins of

A. schlegelli [14], humans [36] and bass [37]. The pre-

dicted cleavage site of signal peptide between Ala24 and

Gly25 of C. bicornis Hepc-CB1 is exactly similar to that of

the cleavage sites of A. schlegelli hepc-2 and hepc-6

(Fig. 1). Net positive charge of ?3, amphipathic nature

(Hydrophobic index 54 %), a predicted molecular weight

of 2.53 kDa and the formation of b-sheet-like structure by

the C-terminal-conserved cysteines, in the light of avail-

able literature, confirm C. bicornis Hepc-CB1 as an anti-

microbial peptide. The replacements of N-terminal polar

hydrophilic serine of A. schlegelli hepc-2 by hydrophilic

asparagine and the C-terminal positively charged arginine

by similarly charged lysine in C. bicornis Hepc-CB1 do not

make a prominent difference in the property of the peptide.

However, further characterisation of the peptide with

regard to its antimicrobial activity needs to be carried out

with synthetic or recombinant peptide in order to ascertain

the activity of the peptide. The reason for this high diver-

sity of mature peptide region in fishes could be due to

synonymous substitution of amino acids and positive

Darwinian selection [38].

Phylogenetic analysis revealed the position of C. bicornis

Hepc-CB1 to HAMP2 group. The N-terminal region of the

mature peptide of HAMP1 significantly differs from that of

the HAMP2 in having, either the mammalian motif (DTHFP)

or fish motif (QSHLS), which is essential for ferroprotein

internalisation. The prepropeptide, propeptide and mature

peptide of HAMP1 is cationic. However, for HAMP2

fish sequence, though the mature peptide is cationic, the

prepropeptide and propeptide are anionic [11, 15]. The

Fig. 3 Three-dimensional structure of the mature peptide of

C. bicornis Hepc-CB1 was created with the software ViewerLite

4.2 using the PDB data generated by SWISS-MODEL server. The

crystal structure of hybrid white-striped bass hepcidin (PDB ID:

1S6W) was used as template for the data generation. The spatial

structure (a) and the diagrammatic representation of the b-hairpin

structure (b) are presented in figure. The disulphide bonds which

stabilise b-hairpin are highlighted with asterisks
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absence of QSHLS/DTHFP motif in the N-terminal region of

the mature peptide, anionic nature of prepropeptide and

propeptide further confirmed the identity of C. bicornis as

HAMP2. Duplication of HAMP genes and retention of both

HAMP1- and HAMP2-like lineages in acanthopterygian

fishes and Antarctic notothenioid fishes could be favoured by

the radiation of teleosts to different marine and brackish

water environments and positive Darwinian selection [17,

23, 38]. The extreme habitats of the deep sea might have

produced fascinating evolutionary events [33] like gene

duplication and conservation of HAMP2-like genes in non-

acanthopterygian fishes also. More investigation is required

in this context to get a clear picture of the molecular evolu-

tion and functional diversification of HAMP2-like genes in

deep-sea fishes, which is living in an environment where

heterotrophy dominates.

Conclusion

This is the first report of a novel HAMP2-like peptide from

a non-acanthopterygian fish, which may provide useful

information to the distribution of HAMP2-like genes in

non-acanthopterygian fishes, its molecular evolution and

phylogenetic relationships. High similarity of C. bicornis

Hepc-CB1 with other hepcidins of proven antimicrobial

activity and its physicochemical properties in agreement

with those of traditional antimicrobial peptides strongly

endorse it to be an antimicrobial peptide. Further studies on

the antimicrobial activity of Hepc-CB1 as a synthetic or

recombinant peptide would reveal the potentials of this

new hepcidin isoform as a possible therapeutant in aqua-

culture/medicine.
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