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Abstract A packed bed bioreactor (PBBR) was devel-

oped for rapid establishment of nitrification in brackish

water hatchery systems in the tropics. The reactors were

activated by immobilizing ammonia-oxidizing (AMON-

PCU-1) and nitrite-oxidizing (NIONPCU-1) bacterial

consortia on polystyrene and low-density polyethylene

beads, respectively. Fluorescence in situ hybridization

demonstrated the presence of autotrophic nitrifiers belong

to Nitrosococcus mobilis, lineage of b ammonia oxidizers

and nitrite oxidizer Nitrobacter sp. in the consortia. The

activated reactors upon integration to the hatchery system

resulted in significant ammonia removal (P \ 0.01) cul-

minating to its undetectable levels. Consequently, a

significantly higher percent survival of larvae was observed

in the larval production systems. With spent water the

reactors could establish nitrification with high percentage

removal of ammonia (78%), nitrite (79%) and BOD (56%)

within 7 days of initiation of the process. PBBR is con-

figured in such a way to minimize the energy requirements

for continuous operation by limiting the energy inputs to a

single stage pumping of water and aeration to the aeration

cells. The PBBR shall enable hatchery systems to operate

under closed recirculating mode and pave the way for

better water management in the aquaculture industry.
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Introduction

On assuming the dimensions of an industry, aquaculture

systems are bound to operate under strict environmental

safety standards. With high land and water costs, the sys-

tems are destined to maintain high biological carrying

capacity in relatively little space with minimal water

exchange. These requirements led to the advent of recir-

culating aquaculture systems (RASs) which allowed

companies to (1) be competitive in both domestic and

world commodity markets by locating production closer to

markets, (2) improve environmental control, (3) reduce

catastrophic losses due to diseases, (4) avoid violation of

environmental regulations on effluent discharge, (5) reduce

management and labor costs, and (6) improve product

quality and consistency [29].

Driven by the above demands, several attempts have

been made to develop and optimize RAS focusing on total

ammonia nitrogen (TAN) as the key limiting water quality

parameter [18, 31, 33]. The toxic effects of ammonia have

been demonstrated for several cultured crustaceans [26, 27,

72] and found more pronounced in early developmental

stages. Nitrite is also harmful to larvae as it causes

reduction of hemolymph oxyhemocyanin (in Penaeus

monodon) with concomitant increase in the partial pressure

of oxygen (pO2) in hemolymph and reduced oxygen

affinity (P50) [9]. However, it is less toxic than ammonia
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[3], and only under conditions of long-term exposure the

toxicity is manifested [69] in the reared animals. Likewise,

ammonia and nitrite toxicity in Macrobrachium rosen-

bergii adults and larvae have been investigated by various

researchers [7, 8, 43, 65] and felt the need for their regu-

lation for successful larval production. However, nitrate is

relatively harmless to the cultured aquatic organisms [62].

In biological ammonia removal systems nitrifying

activity of bacteria suspended in seawater has been repor-

ted to be extremely low primarily due to their slow growth

rate and inhibition of nitrification by free ammonia and

nitrite [19]. However, immobilization techniques have

been useful to overcome the situation [61] and accordingly,

fixed film nitrification biofilters are commonly used for

TAN removal in RAS [56, 57, 70]. In such installations

attached growth as biofilm offers several advantages over

suspended culture-based systems, such as handling con-

venience, increased process stability to shock loading and

prevention of the bacterial population from being washed

off [17, 44]. In the light of the emergence of various types

of biofilters, a performance rating strategy as well as

standards for reporting the performance have been brought

out to benefit the customers to choose the most appropriate

one [10, 14, 38]. In spite of following such protocols, at

least in a few cases, the immobilized nitrifiers in RAS have

exhibited low performance, besides demanding too long a

start-up period imposing operational difficulties [23, 61].

Therefore, instead of selecting a nitrification system from

market it became imperative for the tropics to develop a

user-friendly and economically viable technology having

the advantages of short start-up time and easiness to

integrate to the existing hatchery designs without modifi-

cations. Accordingly, a specialized nitrifying packed bed

bioreactor (PBBR) (Patent application no. 828/DEL/2000

of 13 September 2000) was developed with indigenous

nitrifying bacterial consortia (NBC) and tested for its

potential for nitrification in a M. rosenbergii seed pro-

duction system in support of the industry.

Materials and methods

Fabrication of the PBBR

Cross-sectional view of the nitrifying bioreactors (ammo-

nia oxidizing and nitrite oxidizing) connected serially is

given in Fig. 1. Both the reactors have the same configu-

ration consisting of shell made of fiberglass with a base of

30 cm2 and an overall height of 45 cm. A perforated base

plate made of Perspex, carrying 30 cm long and 2 cm

diameter 9 PVC pipes (airlift pumps) fixed at 10 cm

equidistance, is positioned at the base of the reactor. When

air gets passed through, the 10 cm3 area filled with the

support medium surrounding each airlift pump acts as an

aeration cell. The base plate is elevated by 5 cm from the

bottom supported by 5 cm long PVC pipes having 3 cm

diameter. An inlet pipe is fixed at a water discharge height

of 35 cm up from the base of the reactor. The outlet pipe,

which emerges from the base of the reactor, bends upward

at water discharge height of 35 cm from the base to the

next reactor.

Based on a previous study [1], polystyrene (PS) and

low-density polyethylene (LDPE) were selected as suitable

support materials for immobilizing ammonia-oxidizing and

nitrite-oxidizing consortia, respectively. This selection was

based on percentage consumption of NH4–N/NO2–N and

production of NO2–N/NO3–N by the immobilized nitrifiers

on the beads, cost of the raw material and easiness to mold

into beads. The beads were having 5 mm diameter and a

surface area of 0.785 cm2 with spikes on the surface. The

reactors have been packed with the respective support

material; the characteristics are described in Table 1.

Nitrifying bacterial consortia

Two types of NBC, ammonia-oxidizing non-penaeid cul-

ture-1 (AMONPCU-1) and nitrite-oxidizing non-penaeid

culture-1 (NIONPCU-1), developed by enrichment tech-

nique from brackish water systems under perpetual salinity

regimes around 15 g/L were used after getting optimized

growth and culture conditions [2]. This consisted of simple

seawater-based medium having 15 g/L salinity supple-

mented with 10 mg/L substrate ((NH4)2�SO4/NaNO2),

2 mg/L KH2PO4 at an optimum temperature of 28�C and

pH 8.5 for ammonia and 7.5 for nitrite oxidizers. After

harvesting, the cultures were maintained at 4�C with

Fig. 1 Cross-sectional view of the bioreactors connected serially

(AOB ammonia-oxidizing bioreactor, NOB nitrite-oxidizing bioreac-

tor, BP base plate, FM filter media, OS outer shell, IP inlet pipe, OP
outlet pipe, AT aeration tubes, AS air supply)
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periodic addition of the substrate ((NH4)2�SO4/NaNO2) and

adjustment of pH (using 1% Na2CO3) to the optimum. For

generating sufficient biomass in order to facilitate their

immobilization in the reactors, both the consortia were

acclimated to room temperature (27 ± 0.5�C) in 250 mL

conical flasks on a shaker for 7 days, amplified in a 2 L

baby fermentor for 1 month and subsequently mass pro-

duced in an indigenous NBC production unit (NBCPU)

under optimum pH, temperature and salinity. The NBCPU

consists of a 200 L fermentor vessel made of polyethylene,

fixed with a central 0.5 HP AC/DC agitator (500 W,

0–500 rpm). Provisions have been given for (a) tempera-

ture regulation employing a thermo-circulator, (b) pH

probe insertion, (c) addition of medium, (d) supply of filter

sterilized air and (e) harvesting matured consortium [28].

Fluorescence in situ hybridization (FISH)

of the consortia

As a preliminary characterization, FISH analysis of the

consortia was carried out using seven different nitrifier-

specific 16S rRNA-targeted oligonucleotide probes labeled

with Cy3, Cy5 or fluorescein (Table 2). The fluorescent

oligonucleotide probes were purchased from Thermo

Electron Corp. (Germany). The specificity and the

hybridization conditions were confirmed with ‘Probebase’

[32]. Actively growing consortia, harvested by centrifu-

gation, were fixed in 4% paraformaldehyde in phosphate

buffered saline (PBS) containing KH2PO4 and NaCl, pre-

pared in diluted seawater having salinity 15 g/L. The

samples were stored at -20�C in a 1:1 mixture of

PBS:ethanol until further processing. Hybridizations were

performed on six-well Teflon-coated slides (Electron

Microscopy Sciences, USA). Prior to the hybridization, the

slides were coated with poly-L-lysin, 10 lL of the fixed

consortia were spread on to the well, dried at 46�C for

10 min, and dehydrated by successive passage through 50,

80 and 98% ethanol (3 min each). Working solutions of the

probes were prepared to obtain a final concentration

5 pmol/lL for CY3/5 and 8.3 pmol/lL for fluorescein-

labeled probes. Hybridization buffer (2 mL) containing

360 lL 5 M NaCl, 40 lL 1 M Tris–HCl (pH 8.0), 4 lL

10% SDS and formamide were added according to the

probe used (Table 2). For hybridization, 10 lL hybridiza-

tion buffer was dispensed into the wells, and then 1 lL

probe stock solution was added. A hybridization tube was

prepared by folding a tissue paper into a 50 mL falcon tube

into which the remainder of the hybridization buffer was

dispensed. After the addition of probes, the slides were

immediately transferred into the hybridization tube and

incubated for 1.5 h at 46�C in a hybridization oven

(Thermo Electron Corp.). Washing buffer containing 1 M

Tris/HCl, 5 M NaCl and 0.5 M EDTA at pH 8 was pre-

pared as per the formamide concentration in the

hybridization buffer in a separate 50 mL Falcon tube and

made up to 50 mL by adding MilliQ. Finally, 50 lL of

10% (w/v) SDS was added and the washing buffer was

preheated at 48�C in a water bath. On elapse of the

Table 1 Filter and media characteristics of the PBBR

Filter height (m) 0.45

Water height (m) 0.40

Water discharge height (m) 0.35

Filter volume (L) 40

Total surface area of media (m2) 4.71

Total media volume (m3) 0.023

Specific surface area (m2/m3) 205

Table 2 Oligonucleotide probes and hybridization conditions applied in this study

Probe Target organisms Probe sequence (50–30) Fluorescent

dye used

for labeling

FAa

(%)

NaClb

(mM)

Reference

NSO190 Ammonia-oxidizing b subclass

proteobacteria
CGATCCCCTGCTTTTCTCC CY3 55 20 [41]

NEU Halophilic and halotolerant

members of the genus

Nitrosomonas

CCCCTCTGCTGCACTCTA CY5 40 56 [66]

NSV443 Nitrosospira spp. CCGTGACCGTTTCGTTCCG CY3 30 112 [41]

NmV Nitrosococcus mobilis lineage TCCTCAGAGACTACGCGG Fluorescein 35 80 [49]

NIT2 Nitrobacter species CGGGTTAGCGCACCGCCT Cy5 40 56 [67]

Ntspa712 Phylum Nitrospira CGCCTTCGCCACCGGCCTTCC CY3 50 28 [11]

S-Amx-0820-a-A-22 Anaerobic ammonium-

oxidizing bacteria

AAAACCCCTCTACTTAGTGCCC Fluorescein 40 56 [54]

a Percentage of formamide in the hybridization buffer
b Concentration of the sodium chloride in the washing buffer
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incubation period, the hybridization slides were taken out

and rinsed and transferred to the washing buffer, where the

slides were incubated for 10–20 min at 48�C. After the

incubation the slides were rinsed with MilliQ water and

dried. The cells were counter stained with DAPI having the

final concentration of 0.2 lg/mL for 1 min, washed, dried

and added an anti-fading mounting fluid (Vectashield,

Vector Laboratories Inc., Burlingame, CA). The slides

were observed under Olympus BX 51 epifluorescent

microscope equipped with a monochromatic camera

(Evolution VF, Media Cybernetics Inc., MD, USA). Ima-

ges were processed using the ‘‘Image pro-express’’

software (Media Cybernetics Inc., MD, USA).

Activation of the reactors with NBC

The beads (substratum) were immersed in 0.1 N HCl for

3 h, washed with 10% Extran (Enviroeuip, Sydney, Aus-

tralia), rinsed with tap water followed by distilled water

and air dried. The reactor 1 was filled with 60,000 PS beads

and the reactor 2 with the same number of LDPE. The

ammonia-oxidizing and the nitrite-oxidizing consortia

(20 L each) were introduced into the reactors 1 and 2,

respectively, and airlift pumps operated by supplying 1 L/

min to effect adequate circulation of the culture through the

beads and to assure supply of O2 and CO2 for activation.

Optimum culture conditions, as described under ‘‘Nitrify-

ing bacterial consortia’’, were maintained in each reactor

during the activation period. The substrate concentrations

(NH4–N/NO2–N) in both the reactors were made up to

10 mg/L daily by the addition of aqueous ammonium

sulfate or sodium nitrite. Evaporation loss was made up by

adding distilled water daily.

Integration of the bioreactors into M. rosenbergii seed

production system

The facility used consisted of two larval rearing tanks of

5,000 L capacity, one integrated with the activated reactors

and the other without any, used as control. Chlorinated–

dechlorinated seawater (salinity 15 g/L) was used for all

the experiments. The tanks were initially filled with

2,000 L seawater, freshly hatched mysis of M. rosenbergii,

dipped in 0.025 mg/L formalin (SRL, Mumbai, India) for

20 s, 0.03 mg/L iodophore (Growel Formulations, Hyder-

abad, India) for 20 s and washed in running seawater, were

introduced into the tanks at a stocking density of 0.2 mil-

lion per tank.

The process flow diagram of the experimental system is

given in Fig. 2. The ammonia-oxidizing and nitrite-oxi-

dizing reactors were connected serially. The influent from

the rearing tank was pumped into an overhead tank (282 L)

from where water flowed through the two reactors serially

by gravitation and got collected in a 140 L collection tank,

from where the treated water got into the larval rearing

tank. Pumping of the influent from the larval rearing tank

was controlled by an automated water level controller (V-

guard, Kerala, India) fitted inside the overhead tank. A

regulator valve was connected to the overhead tank to

maintain a flow rate of 4 L/min to the system attaining a

total circulation of 5,760 L/day.

During the experiment, the rearing water was supple-

mented with 1 mg/L EDTA (Matrix Formulations,

Hyderabad, India), 5 mg/L sulfated vitamin C (Matrix

Formulations, Hyderabad, India) and 1 mg/L treflan

(Growel Formulations, Hyderabad, India). The larvae were

fed with freshly hatched Artemia nauplii up to stage 9

(when pleopods with setae appear) and with both Artemia

nauplii and egg custard subsequently. The experiment was

continued for 17 days till the larvae metamorphosed to

post-larvae, and repeated three times for concurrent results.

At the end of the experiment the survival was estimated by

counting the larvae manually and the relative percentage

survival (R.P.S.) was estimated as the following equation

[21]:

R:P:S: ¼ ½1� ð% mortality in the test tank/

% mortality in the control tankÞ� � 100

In another experiment, the reactor was tested for its

nitrification potential in spent water after the larval culture.

Water from the larval rearing tanks, subsequent to harvest

of post-larvae, was collected and stored in a 5,000 L

capacity storage tank. This was subsequently circulated

OHT

AOB NOB CT

LRT

Aeration

Pump

Influent

Fig. 2 Process flow diagram of the reactors integrated into the larval

rearing tank (OHT overhead tank with automatic water level

controller, AOB ammonia-oxidizing bioreactor, NOB nitrite-oxidizing

bioreactor, CT collection tank for the treated water, LRT larval rearing

tank)

358 J Ind Microbiol Biotechnol (2009) 36:355–365

123



through the bioreactor assembly at a rate of 2 L/min.

Meanwhile, another system without integration of the

reactor was kept as the control. The experiment was

repeated three times.

Analyses

When the reactors were in the activation mode, substrate/

product levels were determined daily by estimating

ammonia (TAN) [59], nitrite (NO2–N) [5] and nitrate

(NO3–N) [60]. The nitrifying biomass was determined

gravimetrically by passing 10 mL bacterial suspension

from the reactors through pre-weighed cellulose acetate

syringe filters of 0.22 lm porosity with a diameter of

13 mm. Water samples from the larval rearing tanks were

analyzed once in 3 days for alkalinity, hardness [4],

ammonia, nitrite and nitrate as above. The heterotrophic

bacterial community of the rearing water was determined

once in a week by standard spread plate method employing

ZoBell’s Marine Agar 2216 E prepared in diluted seawater

of salinity 15 g/L.

In spent water nitrification experiments, water quality

parameters such as phosphate, sulfate, iron, chloride, dis-

solved oxygen, BOD [4], ammonia, nitrite and nitrate as

above were estimated for 8 days.

Statistical analyses

The relationship between removal of ammonia and nitrite

and the biomass in suspension during the activation mode

was estimated by simple correlation coefficient analysis.

The nitrification efficiency and significant percent survival

of larvae in the control and reactor integrated tanks were

estimated by one-way analysis of variance. Least signifi-

cant difference (LSD) at 0.1% level was calculated for

delineation of the two treatments.

Results

FISH of the consortia

Fluorescence in situ hybridization analysis of the two NBC

with seven nitrifying bacterial specific probes confirmed

the presence of autotrophic nitrifiers (Fig. 3). Most of the

nitrifiers observed were in the form of aggregates. FISH of

AMONPCU-1 revealed presence of the autotrophic

ammonia oxidizer, Nitrosococcus mobilis, lineage of b
ammonia oxidizers, and that of NIONPCU-1 the auto-

trophic nitrite oxidizer, Nitrobacter sp. However,

Nitrosomonas, Nitrosospira, anaerobic ammonia oxidizers

Fig. 3 Fluorescence in situ

hybridization of the nitrifying

bacterial consortia

(a epifluorescent image of

AMONPCU-1 with CY3-

labeled probe NSO190 targeting

b ammonia oxidizers;

b epifluorescent image of

AMONPCU-1 with fluorescein-

labeled probe NmV targeting

Nitrosococcus mobilis lineage;

c epifluorescent image of

NIONPCU-1 with CY5-labeled

probe NIT2 targeting

Nitrobacter sp.)
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and nitrite oxidizers belonging to phylum Nitrospira were

not detected in both the consortia.

Activation of the reactors

Activation kinetics of PBBR during the period of immo-

bilization of the consortia, AMONPCU-1 and NIONPCU-

1, are presented in Fig. 4. In both the reactors nitrification

could be established within 24 h of initiation of the process

and there was progressive reduction in the suspended

biomass and increase in NO2–N and NO3–N, respectively.

The system was monitored for 7 days, during which there

was reduction of more than 90% of the bacterial biomass

from the activation medium with 78% TAN and 75.3%

NO2–N removal. There was negative correlation between

the percentage removal of TAN (r = - 0.96, P \ 0.01),

NO2–N (r = - 0.93, P \ 0.01) and the suspended bio-

mass. Average ammonia and nitrite removal rates in the

reactor at the end of the activation period were

46.82 mg TAN/(m2 day) and 45.14 mg NO2–N/(m2 day).

Integration of the reactors into the hatchery system

The minimum and maximum values of pH, temperature,

salinity, alkalinity, hardness and total bacterial count in the

rearing water of the experimental and control tanks during

each treatment are summarized in Table 3. Heterotrophic

bacterial community expressed as colony forming units

(CFUs) in ZoBell’s Marine Agar in the control tank

increased substantially and there was no remarkable dif-

ference in the other water quality parameters between the

tanks. The extent of nitrification during the period is pre-

sented in Fig. 5. In the control tanks TAN exhibited

progressive increase with its subsequent decline and con-

comitant increase of NO2–N after 14 days; however, NO3–

N was never found built up in the system. Meanwhile, there

was significant TAN removal (P \ 0.01) in the experi-

mental tanks with significant (P \ 0.05) NO2–N removal.

Within 8 days both TAN and NO2–N concentrations were

below detectable levels. NO3–N exhibited progressive

increase to 7.6 mg/L within 17 days of the experiment.

The overall percent survival of larvae in the control and

test tanks was estimated and presented in Table 4. The tank

with the reactor exhibited significantly higher (P \ 0.001)

percentage survival (LSD at 0.1% = 15.19) with an aver-

age R.P.S. of 22.86%.

The average water quality parameters of the spent water

are given in Table 5. TAN, NO2–N and NO3–N were lower

in the experimental tanks than in those of the controls

(fourth day) indicating higher percentage removal of TAN

(78%), NO2–N (79%) and BOD (56%).

Discussion

Proper selection and sizing of biofilters are critical to the

technical and economic viability of RAS [38]. In saltwater

systems RAS plays an important role in the production of

healthy and properly sized fingerlings [16] and has sig-

nificant implications in maintaining the required water

quality as the system demands operations under oligo-

trophic conditions. The PBBR described here are packed

with plastic media having specific surface area of 205 m2/

m3. This is comparable to those in trickling filters used in

aquaculture [25]. The plastic beads with spikes on the

surface provide high void ratios that avoid clogging [15]

increase the aeration within the system; poor aeration

reduces nitrification capacity of the biofilter [71]. As a

matter of fact most of the biofilters on recirculation systems

have been focusing on aerobic fixed films [30, 52, 58] and

in several systems plastic media used to be the substrata for
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Fig. 4 Activation kinetics of PBBR immobilized with nitrifying

consortia developed for M. rosenbergii hatchery systems
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immobilization [22, 52, 56]. In the present case plastic

beads have been used due to its reusability and inertness

besides the cost factor and preferential acceptability by the

NBC for attachment and growth.

The NBC used here originated from a brackish water

environment by enrichment with confirmed nitrification

potential and designated as AMONPCU-1 and NIONPCU-1

[2]. Transmission electron microscopic observations

demonstrated characteristic cyst formation and intracyto-

plasmic membranes similar to autotrophic nitrifiers [28].

Using FISH the consortia could be partially characterized,

demonstrating the presence of N. mobilis, lineage of b
ammonia oxidizers and Nitrobacter sp. in AMONPCU-1

and NIONPCU-1, respectively. Where as, other nitrifiers

such as Nitrosomonas, Nitrosospira, phylum Nitrospira,

and anaerobic ammonia oxidizers were not observed. In

literature oligonucleotide probe-based FISH, targeting

signature regions of the 16S rRNA of ammonia and nitrite-

oxidizing bacteria, has been successfully applied for phy-

logenetic identification in environmental and engineered

systems [24, 41, 45, 55, 68]. Rowan et al. [51] studied the

composition and diversity of ammonia-oxidizing bacterial

communities in a biological aerated filter (BAF) and a

trickling filter and all the samples analyzed appeared to be

dominated by AOB most closely related to N. mobilis.

As a general principle low concentration of nutrients in

aquaculture systems [48] results in slow growth of nitrifiers

and low bacterial yield to form effective biofilm by natural

process. This necessitates activated bioreactors with high

attached bacterial density for optimal performance. Under

such situations the time required for activating the reactors

becomes a crucial factor for their successful and timely

starting up and operation. To satisfy this requirement, NBC

were used for activating the reactors by which nitrification

could be established within 24 h of initiation and attained

78% ammonia and 75.3% nitrite removal by the seventh

day. Attachment of the NBC and formation of biofilm were

irreversible, which demonstrated the soundness of the

technology. Wherever such activations had not been car-

ried out, 2–3 months were reported for the establishment of

nitrification in marine [39] and 2–3 weeks in freshwater

systems [40].

On integrating the PBBR to the larval rearing system,

ammonia oxidation was established within a day and it

took 8 days for nitrite oxidation. Meanwhile, in the control

larval rearing systems 14 days were required for the

Table 3 Physico-chemical and

microbial quality of rearing

water in the hatchery during the

experiment

Water quality parameters Test tank Control tank

pH 7.5–8.0 7.5–8.0

Salinity (g/L) 14–15 14–15

Temperature (�C) 28–31 28–31

Alkalinity (mg CaCO3/L) 64–70 66–70

Hardness (mg CaCO3/L) 2,876–2,900 2,987–2,900

Total heterotrophic community

in ZoBell’s Marine Agar (CFU/mL)

2.51 9 105 to 4.21 9 107 1.91 9 105 to 1.14 9 109
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Fig. 5 Nitrification in M. rosenbergii hatchery system integrated

with PBBR
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initiation of nitrification. The delay in establishing active

nitrite oxidation in the reactor integrated system suggests a

consequence of lower multiplication rate of nitrite oxidiz-

ers compared to that of ammonia oxidizers [47]. Under the

‘nitrifying bioreactor integrated mode’ the maximum

average TAN and NO2–N concentrations in the larval

rearing tanks were 0.18 and 0.25 mg/L, respectively, the

values typical of any marine system. It has to be empha-

sized that marine larval rearing systems demand TAN and

NO2–N levels below 0.1 mg/L well below the maximum

limit (0.3 mg N/L) under the oligotrophic category [37].

During the progression of the experiment the NO3–N

concentrations increased progressively up to 7.6 mg/L,

however, it remained well below the toxic levels for M.

rosenbergii larval culture [34]. Management of ammonia in

the larval rearing systems of M. rosenbergii is important as

significantly lower survival rates (0–20%) of larvae were

noticed at total ammonia concentrations ranging from 1 to

8 mg/L with 0.43–3.41 mg/L non-ionic ammonia at pH 9

[35]. The higher relative percent survival (22.86%)

obtained in the reactor integrated experimental system

proved the impact of the technology in enhancing the larval

survival.

Under oligotrophic conditions ammonia diffuses into

a relatively thin vertically homogenous biofilm that is

dominated by autotrophs, principally due to low BOD

(\5 g/m3) of the culture water [36]. Such a situation could

be observed here where organic loading to the system was

as low as 0.31 mg/L BOD. On the basis of the above BOD–

nitrification relationship, it may be inferred that there has

been minimal heterotrophic inhibition of nitrification

[53, 73] in the reactors as also evidenced by the progressive

increase in the rate of nitrification from the day of initia-

tion. Since nitrification reactions occur in the biofilm and

not in the bulk fluid [42], the substrate utilization rate

depends on local substrate concentrations within the bio-

film. At such local reaction sites, reactant concentrations

are depressed and products elevated [6]. This warranted

circulation of water through the cartridge with the biofilm,

and the rate of TAN removal could be theoretically pro-

portional to the rate of circulation. That was why the

reactors were designed to have both vertical and horizontal

flow of water through the aeration cells for providing oxic

conditions. Zhu and Chen [74] established that the turbu-

lence caused by diffused air substantially improved the

nitrification efficiency of fixed film biofilters. Tschui et al.

[63] ascertained that nitrification rates could be increased

with increased water velocities along with increased air-

flow. This sort of stronger turbulence in the reactor

cartridge decreases the laminar boundary layer and simul-

taneously enhances diffusion. Such highly aerated systems

reduce the chances for the generation of anaerobic pockets

with in the reactor.

RAS adoption for larvae, fry and fingerling production is

driven by bio-security issues [46, 50] and water recircula-

tion dramatically reduces the possibility of pathogen

introduction [12, 20]. In this context integration of PBBR

for nitrification of hatchery spent water with high per-

centage removal of ammonia (78%), and nitrite (79%) by

fourth day strengthens the possibility of reuse of water with

limited discharge and reduced intake paving the way for

bio-security.

Table 4 Larval survival after

the integration of PBBR into the

M. rosenbergii hatchery system

Treatment % survival Average %

survival

Relative %

survival

ANOVA

Source of

variation

df Mean sum

of squares

P

Control tank 18 18.33 ± 1.53 22.86 Between treatments 1 522.67 \0.001

17

20

Test tank 36 37 ± 2.65 Within treatment 4 4.67

35

40

Table 5 Mean water quality parameters of the spent water from

hatchery during the experiment

Parameter Control tank Test tank

Salinity (g/L) 15.33 ± 0.47 15 ± 0.41

pH 8.09 ± 0.07 8.36 ± 0.12

Eh 110 ± 0.82 104.33 ± 16.46

Ammonia (mg/L) 3.71 ± 0.43 0.83 ± 1.46

Nitrite (mg/L) 2 ± 0.23 0.43 ± 0.55

Nitrate (mg/L) 0.3 ± 0.09 13.28 ± 6.57

Phosphate (mg/L) 0.03 ± 0.04 0.02 ± 0.01

Sulfate (mg/L) 15.93 ± 1.23 13.35 ± 0.37

Alkalinity

(mg CaCO3/L)

79.33 ± 0.94 79.83 ± 5.34

Hardness

(mg CaCO3/L)

2,483.33 ± 107.81 2,672.83 ± 134.64

Chloride (mg/L) 10,273.513 ± 295.31 10,505.83 ± 504.00

DO (mg/LO2) 5.73 ± 0.39 5.81 ± 0.64

BOD (mg/LO2) 0.71 ± 0.018 0.31 ± 0.29
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Packed bed biofilter systems have been utilized in a

variety of formats for recirculating shrimp production

systems because of their economic feasibility [13, 64]. The

PBBR designed and evaluated here was configured in such

a way that the flow of water could be maintained by

gravitational force and the energy needed could be

restricted to pumping water to the reservoir tank and to

operate an air pump to effect aeration. If nitrification is not

completed during a single circulation, there is provision to

recirculate it through the treatment system over and again.

However, such requirements might be overcome by

increasing the biomass of the nitrifying consortia used for

activation of the reactors or by enhancing the hydraulic

retention time. Another specialty of the package is up-

gradeability of the system with different types of filters for

removal of particulate matter and UV disinfection equip-

ment for elimination of pathogens which might enter the

system accidentally.

The PBBR evaluated here shall enable hatchery systems

to operate as closed recirculation systems, maintaining

water quality during the operation and minimizing dis-

charge of spent water. Collectively the technology shall

pave way for better water management in the aquaculture

industry. Besides, by integrating the reactors during larval

production significantly high percentage larval survival

also could be obtained. The PBBR designed here is flexible

as it is interchangeable between prawn (salinity 15 g/L)

and shrimp (salinity 30 g/L) larval rearing systems by

replacing the NBC depending on the salinity [2]. A mod-

ification of the system can be used for shrimp maturation

facility too as recirculation is one of its prime requirements

for maturation in the perspectives of water quality and bio-

security.
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