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ABSTRACT 

 Underwater target localization and tracking attracts tremendous 

research interest due to various impediments to the estimation task caused 

by the noisy ocean environment. This thesis envisages the implementation 

of a prototype automated system for underwater target localization, 

tracking and classification using passive listening buoy systems and target 

identification techniques. An autonomous  three buoy system has been 

developed and field trials have been conducted successfully. Inaccuracies 

in the localization results, due to changes in the environmental parameters, 

measurement errors and theoretical approximations are refined using the 

Kalman filter approach. Simulation studies have been conducted for the 

tracking of targets with different scenarios even under maneuvering 

situations. This system can as well be used for classifying the unknown 

targets by extracting the features of the noise emanations from the targets. 
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CHAPTER 1         

INTRODUCTION 

Localization, tracking and classification of underwater targets bear 

immense significance and has attracted great attention in the past few 

decades due to its growing importance in various spheres critical to 

mankind like oceanographic as well as fisheries studies, sonar operations, 

military applications, research, etc.. This chapter addresses the concepts of 

underwater acoustics, the types of underwater noises and systems to detect 

underwater noises. The ensuing chapters of the thesis are also briefly 

introduced herein.  

1.1 Underwater Acoustics  

Sound is considered as the most suitable form of energy that 

propagates through the sea, as it is the most robust form of energy against 

attenuation by underwater conditions, especially when compared to other 

sources of radiations such as electromagnetic waves. Electromagnetic 

waves do not propagate over long distances underwater except at extremely 

low frequencies and is prohibitively expensive because of the large and 

powerful transmitters required. Over the past few decades, ocean 

exploration activity has been steadily increasing. The data collected by 

sensors placed underwater is transmitted to the surface of the ocean, from 

there, it is possible to relay the data via dedicated communication systems 

or satellites to a data collection centre [1, 2]. The technique that uses sound 

propagation underwater to navigate, communicate or detect objects 

underwater is SONAR (SOund NAvigation and Ranging). 
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An underwater acoustic channel has been characterized as a 

multipath channel due to signal reflections from the surface and bottom of 

the sea. Because of wave motion, the signal multipath components undergo 

time varying propagation delays that result in signal fading. In addition, 

there is frequency dependent attenuation which is approximately 

proportional to the square of the signal frequency. The sound velocity is 

normally about 1500 m/s, but the actual value will vary either above or 

below the normal value depending on the depth at which the signal 

propagates. 

The ambient ocean acoustic noise is caused by shrimp, fish, and 

various mammals. Near the harbours, there is also manmade acoustic noise 

in addition to the ambient noise. In spite of this hostile environment, it is 

possible to design and implement efficient and highly reliable underwater 

acoustic systems for different applications including position fixing and 

identification of underwater noises. 

Applications of underwater sound can be classified into civilian and 

military. Underwater sound originally employed for depth sounding, is now 

being used for wide variety of purposes like fish finding and spotting fish 

schools, fisheries aids for counting, luring and tagging individual fish, 

divers aids, position marking of underwater objects, acoustic flow meters, 

wave height sensors etc.. Military applications include acoustic mines and 

mine sweeping. Also, the acoustic radiations of ships and submarines are 

employed for passive detection of the vessels from a long distance. There 

are a wide variety of sonars like modern echo-range sonar, towed sonar, 

homing torpedoes, mine hunting sonar and sonar object locators. A number 

of special sonar equipments are also available viz., the underwater 

telephone and  sonobuoys. 
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1.2 Detection of Underwater Acoustic Signals using Sonar 

Systems 

Sonar is a device used for remotely detecting and locating objects 

underwater. They play a key role in ocean research due to the ease with 

which they can be used as instruments for detection of noise sources 

underwater. Since its introduction during the early half of the 20
th

 century, 

it has been undergoing various evolutionary stages and has remained as one 

of the priority areas of research in developed, developing as well as 

underdeveloped countries. Sonar uses sound propagation underwater, to 

navigate, communicate or detect other vessels or targets of interest. 

Sonar, which can be used as a means for the detection and 

localization of underwater targets, can be classified into two broad 

categories, viz., Active sonar and Passive sonar. Active sonars are those 

devices that generate sound waves of specific, controlled frequencies and 

also listen for the echoes of these emitted sound signals returned by remote 

objects underwater. Passive sonars are, essentially listening devices that 

record the sounds emitted by the objects underwater. Such devices can be 

used to detect seismic occurrences, early warning of ships, submarines, 

torpedoes, etc. and marine creatures that emit characteristic sounds of its 

own. The received signals in sonars are processed to estimate both the 

temporal and spatial structure of the received signal field. The sensor arrays 

in sonar  consists of sound-pressure sensing electromechanical transducers 

known as hydrophones, which are immersed in the underwater medium.  

Both active and passive sonars are extensively used in modern naval 

warfare and surveillance operations from various platforms like water-

borne vessels, aircrafts and fixed installations. The usefulness of active and 

passive sonar systems depends on the characteristics of the target of 
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interest. Although in World War II active sonar was mainly used, now a 

days, passive sonar is preferred for early detection and warning 

applications.   

1.2.1 Active Sonar 

Active sonar involves the transmission of an acoustic signal which, 

when reflected from a target, provides the sonar receiver with a basis for 

detection, estimation and localization of targets underwater as illustrated in 

Fig. 1.1. A signal, in the form of a sound pulse called ping, is emitted and 

the wave then travels in various directions and hits the objects on its 

propagation path [1].  

 

  Fig.  1.1  Principle of Active Sonar 

Some of the energy reflected will travel back to the transmitting 

system. The echo, along with other factors such as the frequency, energy of 

the received signal, depth, water temperature, etc., will enable the sonar 

system to compute the position of the target of interest, with vanishingly 

small errors. Ping of acoustic signals generated using a Sonar Projector 

working in conjunction with the signal generator, power amplifier and 
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transducer array, possibly with a beam former helps in target detection and 

estimation as depicted in Fig. 1.2. Acoustic signals can as well be generated 

underwater by other means such as detonation of explosives. 

 

Fig.  1.2  Scenario using Active Sonar 

The time elapsed between the transmission and reception of a signal 

is converted into the range parameter to estimate the distance of the target 

of interest using the velocity of sound. To measure the bearing, several 

hydrophones are used, which measure the relative time of arrival (TOA) of 

the reflected signal to each, or by measuring the relative amplitude of 

beams formed through beamforming, with an array of hydrophones. 

Beamforming is a technique that is used to manipulate the directionality, or 

sensitivity of a radiation pattern. When receiving a signal, it can increase 

the receiver sensitivity in the direction of the desired signals, while it 

decreases the sensitivity in the direction of interference and unwanted 

noises.   
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The use of an array reduces the spatial coverage and hence to 

achieve wider coverage, multi-beam systems are used. The echo returns 

together with noise is then subjected to various types of signal processing, 

which for simple sonars may be just energy detectors. It is then presented to 

some form of decision device, which will interpret the signal, within certain 

allowable tolerances. This decision device may be an operator with 

headphones or a display, or in more sophisticated and fully automated 

sonar systems, this function may be implemented by special purpose tools 

or platforms [1].  

Simple sonars generally use the TOA technique with a filter, wide 

enough to cover possible Doppler effects, while more complex ones 

generally employ the beamforming technique. Military sonars often have 

multiple beams to perform the surveillance of the entire space, while the 

simple ones only cover a narrow area. When single frequency transmission 

is used, the Doppler effect can be utilized to measure the radial speed of a 

target. The Doppler shift, which is the difference between the transmitted 

and received frequencies, is estimated and converted into a velocity term. 

Since Doppler shifts are caused by either the motions of the receiver or 

target platforms, appropriate correction terms deemed fit need to be taken 

into account to compensate for the radial speed of the sonar platform. The 

use of active transmissions from sonars, especially during war time, need to 

be analysed on the strategic point of view.  Active transmissions from such 

sonars will help the enemy vessels, around the radiating sonar, to infer the 

clues about the presence of active sonar, its transmitting frequency and its 

position making use of the received acoustic levels. 

Since active sonar platforms are very noisy, such sonars will not 

allow target identifications with significant success rates. Thus, this type of 
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detection is used by fast platforms such as planes and helicopters and by 

noisy platforms like surface ships, but rarely by submarines. When active 

sonar is used by surface ships or submarines, it is typically activated very 

briefly at intermittent periods, to reduce the risk of detection by the 

enemies.   

Depending on the number and position of the transmitters and 

receivers, the active sonar operation can be classified as mono-static, bi-

static and multi-static. When the transmitter and a receiver are in the same 

place, the operation is called mono-static, while in bi-static, they are 

separated.  When more transmitters or receivers are used, it is referred to as 

a multi-static operation. Generally, most sonars are used mono-statically 

with the same array often being used for transmission and reception. In 

certain mono-static system installations, if the platform is moving, it may 

be considered as bi-static. Multi-static operation is preferred in active 

sonobuoy field applications. 

1.2.2 Passive sonar 

 The passive sonar which is quite frequently referred to as listening 

sonar is essentially a listening device that records the sounds emitted by the 

objects underwater. Such device can be used to detect seismic occurrences, 

early warning of ships, submarines, torpedoes, etc. and marine creatures 

that emit characteristic sounds of its own. A passive sonar scenario is 

depicted in Fig. 1.3. Passive sonar systems, unlike the active sonars, do not 

radiate any signals. They detect the targets and perform estimations by 

analyzing the sound signals emitted by the target itself.   

The passive sonar has a much greater detection range than active 

systems and helps in performing the identification of the targets, estimating 
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the range and bearing as well as tracking of targets.  The noise generated by 

mechanized objects underwater is made use of, for performing the target 

detection. 

Once a signal is detected in a certain direction, referred to as 

broadband detection, it is possible to zoom in and analyze the signal 

received, referred to as narrow band analysis. Identification of the target is 

made possible, as every target generates its own characteristic noises and 

Fourier Transform techniques can be used to analyze the various frequency 

components in it. Another use of the passive sonar is to determine the 

target's trajectory by a technique referred to as Target Motion Analysis 

(TMA), which will provide the target's range, course, and speed [1].  

 

Fig.  1.3 Typical illustration of  Passive sonar 

Performance limitations arise as a result of the propagation loss and 

additive noise at the receiver, even though passive sonar is stealthy and 

very useful.  Major limitations result from the imprecise knowledge of the 

characteristics of the target emanations, and from dispersion in time and 

frequency of target emissions by the undersea medium.  
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1.2.3  Sonar Equations 

The sonar equations were devised to formulate the relationship 

between the effects of the medium, target and equipment in decibel levels 

and found to be useful in design calculations for sonar equipment. The two 

important practical functions served by them are the prediction of per-

formance of the sonar equipment of known or existing design and the 

design of the sonar system. The prediction of the performance 

characteristics, mostly in terms of detection probability, is achieved in 

sonar by the prediction of range, through the sonar parameter, 

Transmission Loss (TL). The equations are solved for transmission loss, 

which is then converted to the range through some assumption concerning 

the propagation characteristics of the medium [1]. 

The sonar equation is a tool for quantifying the performance of a 

sonar relating to the signal to noise ratio of the sonar to the source level of 

the transmitted sound, propagation loss and the background noise level. For 

finding solutions for the sonar design problems, for a given range, the 

equation is solved for the particular parameter, whose practical realisation 

is likely to cause difficulty. For example, the equation can be solved for the 

directivity required, along with other probable values of sonar parameters, 

to yield the desired range of detection in sonar.  

Once, the directivity needed to obtain the desired range has been 

achieved, the design continues with the trade-offs between the directivity 

index and other parameters. The design is finally completed through several 

computations using the equations and the design engineers‟ intuition and 

experience. The sonar parameters are expressed in units of decibels relative 

to the standard reference levels.  
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Certain sonar parameters are determined by the equipment, while 

some others are determined by the medium and the target as detailed below. 

 Parameters determined by the equipment 

 Projector Source Level  (SL) 

 Self Noise Level (NL) 

 Receiving Directivity Index (DI) and 

 Detection Threshold (DT) 

 Parameters determined by the medium  

 Transmission Loss (TL) 

 Reverberation Level  (RL)   

 Ambient Noise Level (NL) 

 Parameters determined by the target 

 Target Strength (TS) 

 Target Source Level (SL) 

 

It may be worth mentioning the fact that one of the parameters on 

account of the equipment, viz. the self noise level cannot be completely 

decoupled from the ambient noise level parameter determined by the 

medium and as such these two parameters are essentially identical and 

hence represented by the same notation. 

A sound source, by appropriate means, produces a source level of 

𝑺𝑳 decibels at a 1 m. When the radiated sound reaches the target, its level 

will be reduced by the transmission loss, and becomes 𝑺𝑳 −  𝑻𝑳. Upon 

reflection or scattering from the target of target strength TS, the reflected or 

backscattered level will be 𝑺𝑳 −  𝑻𝑳 +  𝑻𝑺 at a distance of 1 m from the 

acoustic centre of the target in the direction back towards the source.   In 

travelling back towards the source, this level is again attenuated by the 
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transmission loss and becomes   𝑺𝑳 −  𝟐𝑻𝑳 +  𝑻𝑺. This is the echo level 

at the hydrophone terminals. Turning now to the background and assuming 

it to be isotropic noise rather than reverberation, the background level is 

𝑵𝑳. This level is reduced by the directivity index (DI) of the transducer 

acting as a receiver or hydrophone so that at the terminals of the 

hydrophone, the relative noise power is 𝑵𝑳 −  𝑫𝑰. Hence, at the 

hydrophone terminals, the echo-to-noise ratio is 𝑺𝑳 −  𝟐𝑻𝑳 +  𝑻𝑺 −

 (𝑵𝑳 −  𝑫𝑰). 

In sonar scenario, a decision will be made by the human observer 

that a target is present, when the input signal-to-noise ratio is above a 

certain detection threshold, 𝑫𝑻, satisfying certain probability criteria, else 

the decision will be made that the target is not present. If the target is 

present, just at the point of detection, the signal-to-noise ratio will be equal 

to the detection threshold, and hence the equation becomes, 

 𝑺𝑳 −  𝟐𝑻𝑳 +  𝑻𝑺 − (𝑵𝑳 −  𝑫𝑰)  =  𝑫𝑻      (1.1) 

This is the active sonar equation for the mono-static case, in which 

the acoustic returns of the target is back towards the source. In some sonars, 

a separated source and receiver are employed and the arrangement is said to 

be bi-static and in this case, the two transmission losses, to and from the 

target, are not the same. Also in some modern sonar, it is not possible to 

distinguish between 𝑫𝑰 and 𝑫𝑻 and it becomes appropriate to refer to 

𝑫𝑰 −  𝑫𝑻 as the increase in signal-to-background noise ratio generated by 

the entire receiving system. 

For a reverberation background, we will replace the terms 𝑵𝑳 −

 𝑫𝑰 by an equivalent plane wave reverberation level 𝑹𝑳 observed at the 

hydrophone terminals. The active sonar equation then becomes  
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𝑺𝑳 −  𝟐𝑻𝑳 +  𝑻𝑺 =  𝑹𝑳 +  𝑫𝑻       (1.2) 

In the passive case, the target itself produces the signal by which it 

is detected, and the parameter source level now refers to the level of the 

radiated noise of the target at 1 m. In addition, the parameter target strength 

becomes irrelevant and as only one way transmission is involved, the 

passive sonar equation becomes  

𝑺𝑳 –  𝑻𝑳 =  𝑵𝑳 –  𝑫𝑰 +  𝑫𝑻     (1.3) 

1.3 Factors Affecting the Sonar Performance 

The detection, classification and localization performance of sonar 

depends on the environmental factors and the capabilities of the receiving 

equipment. In the case of active sonars, the performance is also determined 

by the transmitting subsystems, while the radiated noise characteristics also 

can be a factor that influences the performance of the passive sonar. 

1.3.1 Environmental Factors  

One factor which affect the sonar operations are variation in sound 

speed, particularly in the vertical plane. Sound speed is lower in fresh water 

than in seawater. Density of water affects the speed of sound and 

temperature, dissolved molecules, salinity and pressure in turn affect the 

density.  As the depth of the ocean changes, the water temperature changes 

and at depth ranges between 30 and 100 meters, there is often a significant 

variation in temperature, which is referred to as the thermocline. The 

thermocline divides the warmer surface water from the cold still waters that 

make up the rest of the ocean. This will lead to inaccuracies in sonar 

predictions, as a sound originating on one side of the thermocline tends to 

be bent or refracted off the thermocline. Since the wave propagation speed 
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is a time varying function of depth and range, in sonar operations which 

depend significantly on geographic location and season of the year, the 

estimations turn out to be cumbersome due to complex refractive 

phenomenon, more so when the propagating energy interacts with the sea 

surface or bottom. Motions of the water mass, sea surface, sonar platforms 

and targets, cause wide variety of channel dispersions in time, frequency 

and angle.   

1.3.2 Reverberation 

In active sonar operations, scattering phenomenon occurs from 

small objects in the sea as well as from the bottom and surface. This is one 

of the major sources of interference. This scattering is called reverberation 

and is different from that in room reverberation, which is a reflection 

phenomenon.  The reverberation phenomenon in the ocean is analogically 

similar to the scattering of light from the car‟s headlights in a foggy or 

misty environment. A high intensity pencil beam is able to penetrate the fog 

and since the car headlights are less directional, these scattering will result 

in white-out, where the return reverberation dominates. Hence, in the active 

sonar scenario in the ocean, the need is to transmit in narrow beams to 

reduce the effect of reverberation.  

1.3.3 Target Characteristics 

In the active sonar scenario, the sound reflection characteristics of 

the target, known as its target strength and in the passive sonar scenario, 

radiated noise characteristics of the target are the two main characteristics 

of the sonar targets which influence the performance of the sonar.  The 

radiated noise, in general, will consist of an unresolvable continuum of 

noise with superimposed or resolvable spectral lines on it, the lines or 

bands in the spectrum aid in classification. Echoes are also obtained from 
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marine species and other objects in the sea such as whales, wakes, schools 

of fish and rocks. 

1.3.4 Other Noises 

 The ocean is a propagation medium with full of interfering noise 

sources  like machinery noise from the shipping traffic, flow noise, wave 

noise, wind noise, noise from biologics and even intentional jammers, all of 

which may interfere with the desired target returns and emissions. 

1.4 Noise Sources in the ocean 

The ocean environment includes a variety of noise sources, which 

are of natural as well as manmade in origin. The general back ground noise 

which has the contributions from all the oceanic noise sources is termed as 

the ambient noise. The ambient noise has a broad frequency range and its 

characteristics depends on a number of factors including climate, wind 

speed, presence of aquatic organisms, etc.. The following sections briefly 

examine the principal sources of ambient noises and their characteristics. 

1.4.1 Natural Sources of Ambient Noise 

The natural sources of ambient noise can be broadly classified into 

the following categories:  

 Hydrodynamic sources 

 Thermal agitations  

 Seismic sources 

 Biological sources  

 Cracking of ice 
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1.4.2 Manmade Noises 

Various types of human activities also contribute greatly towards 

ambient noise. The main sources include shipping traffic, seismic surveys, 

oil and gas exploration / production, military operations, sonars etc. 

1.5 Importance of Localization and Tracking Systems 

 Underwater target localization and tracking attracts 

tremendous research interest due to various impediments to the estimation 

task caused by the noisy ocean environment. As underwater sound 

environment is characterized by a multitude of noise like signals and signal 

like noises, in many occasions a bewildering mix of signal and noise is 

obtained, which necessitates the need for having specialized systems with 

sophisticated signal processing techniques for extracting the signals of 

interest. Many specialized systems have been developed for localizing and 

tracking underwater noise sources and targets as solutions to definitive 

problems in active sonar scenario.  

Unlike active sonar systems that localize and range by measuring 

the time elapsed between the transmitted pings and its echo, passive 

systems rely on the time of arrival (TOA) or direction of arrival (DOA) 

solutions for localization and tracking of targets in a water body. One 

resorts to TOA approach, if the target emits known signals synchronized 

with certain timing information as in the GPS Intelligent Buoy Systems 

(GIBS) and Vemco Radio Acoustic Positioning systems (VRAP), while the 

DOA approach is used for the localization and tracking of unknown targets, 

making use of the target emanations.   

A three buoy automated system aids in localizing, tracking and 

classifying underwater targets using passive listening and target 
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identification techniques concepts has been developed and discussed in this 

thesis. The system consists of hydrophone elements and arrays of improved 

sensitivity and can identify targets with minimally configurable hardware 

resources.  

 The noise emanations sampled by the sensors at three locations in 

the ocean are analyzed for the decision making. The acoustic signals from 

the targets are used to estimate the direction of arrival of the noises at the 

nodes of an acoustic network, leading to the estimation of the position of 

the target of interest. Each sensor node comprises of mechanically steerable 

hydrophone array and support electronics. This minimally configurable 

three node network is deployed in the ocean at the vertices of a triangle. 

The buoys are moored at fixed positions in the ocean with the help of 

appropriate bottom mooring mechanisms.  

The measurement errors and inaccuracies in the localization 

estimates are refined using the Kalman Filter approach. This system has 

been developed and field trials have been conducted successfully. 

Simulation studies have also been conducted for the tracking of targets with 

different scenarios. This system also features a technique for classifying the 

unknown targets by extracting the features of the noise emanations from the 

target and using the classification procedures. 

The proposed technique achieves target localization by passive 

listening. Not many techniques are reported in open literature, for 

localization of unknown underwater targets using passive listening 

techniques. If at all some techniques are in use (may be unpublished/ 

patented), these may be outcomes of certain trial and error or thump rule 

approaches. 
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1.6 Highlights of the Work Carried out 

The salient highlights of the work carried out are briefly outlined in 

the following sections. 

1.6.1 Review of Past Work on Localization Systems 

Chapter 2 is devoted to the review of the past research works 

reported in open literature in the areas of underwater target localization, 

tracking and classification.  Many surveillance systems based on passive 

listening concepts have been developed and deployed in the past. To 

overcome the limitations associated with the conventional acoustic sensing 

and tracking systems, a versatile technique for position fixing and tracking 

of underwater targets using passive listening concepts has been developed. 

The highlights of the existing underwater target localization systems are 

addressed in this chapter along with their limitations.  

To overcome the limitations, a new approach using an acoustic 

three buoy system for localization is presented in this thesis. The 

localization estimates may vary due to the instabilities of the buoys, 

measurement errors caused by changes in environmental parameters and 

theoretical approximations. The inaccuracies in the localization estimates 

are refined using the Kalman filter approach and the algorithm is also 

extended for moving targets even under maneuvering situations. The 

literature survey on the Kalman filter approach is also covered in this 

chapter. The decision making on the classification of targets is 

implemented by comparing the extracted target specific features with the 

ones in the knowledge base. A literature survey on the techniques for the 

target feature record generation is also included.  
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1.6.2 Methodology 

 Chapter 3 addresses the methodologies adopted to perform 

the localization, tracking and classification of underwater targets based on 

passive listening concepts. As a prelude to the localization and tracking 

efforts, a simulation study was carried out, based on which a conceptual 

approach for a realizable three buoy system for the localization and 

tracking has been formulated.  

This system comprises of mechanically steerable hydrophone arrays 

and suitable electronics to localize the unknown target in the vicinity of the 

system which performs the localization, tracking and classification of 

unknown underwater targets. The angle from which the maximum signal 

arrives at each of the buoy system differs and from the direction of arrival 

information, the localization of the unknown underwater target is 

performed using triangulation techniques.  

The Kalman filter approach is implemented to reduce the 

inaccuracies of the localization estimates. The classification primarily 

involves the extraction of source specific features by analysing  the 

composite noise data waveforms by the signal processing modules of the 

surveillance system and compilation of the knowledge base, which forms 

the backbone of the classifier.    

1.6.3 Simulation of Target Localizer 

 Generally, the underwater surveillance systems depend on the noise 

emanations from the targets of interest. The proposed three buoy system 

consists of three mechanically steerable hydrophone arrays  which receive 

the acoustic signals and the required buoy electronics. The automated buoy 

system carries out the surveillance operations and processes the received 
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signals as well as manages the communication and power supply. The buoy 

electronics gather the geographical positions with the help of the GPS 

receiver attached to them. The buoys are deployed in the ocean with the 

help of appropriate mooring mechanisms. The buoys are deployed in the 

ocean with the help of appropriate mooring mechanisms. Buoys 

comprising of the arrays and support electronics are deployed at the 

vertices of a triangle. When target emanations are received, the hydrophone 

arrays get steered to the direction of maximum signal arrival, and the 

angular position information of the hydrophone arrays are used to estimate 

the position of the target using triangulation techniques. Applying geodetic 

latitude and longitude distance computations, trigonometric and 

triangulation techniques, the position of the target with reference to 

geomagnetic meridian can be computed. Three different approaches based 

on the mathematical formulae and software platforms are used for the 

localization and are summarized in Chapter 4. 

1.6.4 Prototype Localizer 

 The design and development of the prototype localizer is discussed 

in Chapter 5. To facilitate the localization, tracking and classification of 

unknown underwater targets, submerged hydrophone arrays should be 

deployed for capturing the acoustic signals from three different locations 

with suitable buoy systems. As the buoy needs specialized requirements for 

this application involving the steering of the submerged hydrophone arrays 

suspended from the gear assembly, a specialized structural buoy design 

SWAB (Small Water plane Area Buoy) has been formulated, conforming to 

the concept of minimizing the water plane area, so that the disturbances the 

buoy experiences, is brought to the minimum. The buoy electronics 

performs the vital task of mechanically steering the hydrophone arrays in 

the submerged buoys for the purpose of estimating the direction of arrival 
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of the captured signals with the help of the hydrophone array controller. 

The Direction of Maximum Arrival Estimator is used to compute the power 

received by the hydrophone array at various angular positions of the 

hydrophone array.   

 The heart of the DOA estimation system is the Microchip 

dsPIC30F6014A, a DSP enabled 16 bit microcontroller with a dedicated 

DSP Engine.  With the DOAs and the distance between the buoys, the 

distance of the target from the buoy system is computed using triangulation 

techniques. The prototype three buoy system has been  used for validating  

the technique during the field trials in a Reservoir in Kulamavu, Idukki and 

the results were promising. 

 The recoiling effect, caused due to the movement of the array from 

one position to another, the instabilities of the buoy system caused by the 

surface waves, etc. will lead to unpredictable errors in the estimates of the 

direction of arrival of the noise waveforms in each of the hydrophone 

arrays. With the help of Kalman filter, the imprecision in the estimated 

position values are reduced by minimizing the mean  square error. 

1.6.5 Target Tracking 

 Target tracking systems basically produce a stream of data related 

to the position of the target.  This scenario can be further divided into one 

dimensional motion of the target with inherent noises of different forms 

such as process noise and measurement noise. A study of one dimensional 

system is carried out and then extended to two dimensions, which can 

further be generalized to a multi-dimensional system depending on the 

nature of the problem.  
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 In the case of a maneuvering target, the errors observed are more 

complex in nature compared to the case of a  moving target and hence 

suitable correction measures has to be adopted. In the case of a highly 

maneuvering target, a chi-square based decision statistics can be applied for 

effecting necessary corrections to the Kalman filter algorithm, so that the 

system is capable of tackling such abrupt maneuvers. 

1.6.6 Target Classification 

 The surveillance system, apart from performing the task of 

localization and tracking, also performs the task of target classification. 

The noise emanations received by the hydrophone arrays of the buoy 

system may be of natural origin or man-made in nature. The target specific 

features of the unknown target are compared with  a set of archetypal 

features of a known pre-recorded sound files which have been previously 

generated and stored in a knowledge base, leading to the identification of 

the target.  

 The various digital signal processing techniques used to extract the  

signature features, leading to the classification of the  noise source are 

discussed in Chapter 7.  The Spectral and Bispectral features are used 

during the trials on the classifier performance, which yielded acceptable 

success rates. A Digital Signal processing hardware for the identification of 

the noise sources in the ocean has also been developed. The system has 

been realized using a  proprietary version of C language evolved for the 

digital signal processor TMS320C6713 development board.  The feature 

vectors for different noise sources were  computed in MATLAB as well as 

DSP hardware and the results were compared and summarised in this 

chapter.  
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1.7 Summary 

The importance and relevance of underwater target localization, 

tracking and classification have been discussed in this chapter. The 

concepts of sonar, different types of sonar systems, the sonar equations as 

well as the factors affecting the sonar performance are also elaborated. The 

different types of underwater noises are discussed along with the 

importance of underwater noises for localizing and classifying the various 

noise sources in the ocean. The salient highlights of the work undertaken 

are also briefly introduced. 
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CHAPTER 2  

REVIEW OF PAST WORK 

This chapter is devoted to the review of the past work reported in open 

literature in the areas of underwater target localization, tracking and 

classification. The highlights of the existing vessel monitoring systems and  

localization systems are discussed herein. A variety of systems and 

techniques are in wide spread use for monitoring and tracking of ships, 

fishing vessels and cargos making use of GPS and AIS. GIB (GPS 

Intelligent Buoy) systems and VRAP (Vemco Radio Acoustic Position) 

systems are used for localizing known targets. A system for monitoring air-

water borne noise generated by an aircraft flying over a water body and a 

method for screening the acoustic emissions from the underwater target 

have been patented. A method for determining the three dimensional 

location of an acoustic event using five or more sensing elements is also 

reported. Apart from discussions on existing localization systems, a 

literature survey on the application of Kalman filters for refining the 

localization and tracking estimates, including the maneuvering situations 

are also included. A survey on generation of different target specific 

features for the classification of unknown targets is also covered. 

2.1 Introduction 

Passive sonar system bases its detection and estimation on sounds, 

which emanate from the noise source itself, such as the machinery noise, 

flow noise, etc..  Performance limitations may arise as a result of imprecise 

knowledge of the characteristics of the noise emanations and dispersion in 
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time as well as frequency of the noise signals.  Moreover, the ocean is full 

of interfering sound sources, which include machinery noise from shipping 

traffic, flow noise, wave noise, biologics and even intentional jammers.  

Since the noise in the ocean is composite in nature, comprising of all the 

noise sources mentioned above, the localization, tracking and classification 

of unknown underwater target are challenging tasks. 

An approach for unknown underwater target localization, tracking 

and classification using three moored surface buoys is presented in this 

thesis. The literature survey undertaken during the design and development 

of the system is briefly reviewed in the following sections. 

Robert J. Urick [1] describes the sonar, active and passive sonar 

equations as well as the factors that affect the  propagation of sound in the 

sea. Sound propagation is affected by spreading, attenuation, multipath, 

absorption etc.. Velocity structure and thermocline of the sea, effects of sea 

surface and  sea bottom on sound propagation are also described. Various 

sources of ambient noises like tides, seismic disturbances, oceanic 

turbulence, thermal noise, biological noises, etc are considered in detail. 

The noises like the radiated noise and self noise as well as the methods to 

reduce them are also described.  John G. Proakis discussed about various 

characteristics of communication signals and systems as well as different 

coding techniques for various channels [2]. 

Richard O. Nielson [3] describes the sensor arrays, beamforming, 

detection and estimation in active and passive sonar. Conventional beam 

forming in time and frequency domains as well as the effects of quantized 

delays and other errors are considered. Active sonar signal processing and 

characteristics of sonar channel are illustrated in detail. An overview of 
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high resolution beamforming and spectral estimation are also discussed in 

this book.  

Array signal processing by Simon Haykin, is completely devoted to 

sonar and radar array signal processing [4]. The basic concepts in wave 

propagation as well as the theory and  applications of array signal 

processing in passive sonar are dealt with, in detail.  

William et al. [5] describes  main stream sonar  digital signal 

processing functions along with the associated implementation 

considerations. Monson H. Hayes briefs the different filtering problems and 

their solutions including Kalman filters with example problems in [6]. 

Digital signal processing theory is explained in [7] by Somanathan Nair,  in 

a simplified manner. 

2.2 Highlights of the Existing Underwater Systems 

The highlights of the existing vessel tracking/monitoring  systems 

and underwater target localization systems are discussed in the following 

sections. 

2.2.1 Vessel Monitoring Systems 

A variety of Tracking/Monitoring systems and techniques are in 

wide spread use for monitoring and tracking of ships, fishing vessels and 

cargos making use of GPS and AIS. 

Vessel Monitoring System (VMS) is a satellite based, near real 

time, positional tracking system. This system consists of a Global 

Positioning System (GPS) and a satellite data transmitter that provides 

information on vessel ID, location and activity. A VMS unit is about the 

size of a small radio with an antenna. Data is sent to a satellite, relayed to a 
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station on the ground and then sent to the designated vessel monitoring 

centre. This system provides important information to manage fisheries 

resources and  improves compliance with fisheries regulations by providing 

regular positional information of vessel activity. VMS also provides 

information about the status of fish stocks and fish movement. 

The VMS unit has a two-way data communication port that can provide 

email access while at sea [8]. VMS is widely used in many fisheries 

programmes throughout the world and helps to monitor vessel position, 

course and speed [9, 10]. 

AIS (Automatic Identification System) is a onboard broadcast 

transponder system making use of which, ships continually transmit their 

ID, position, course, speed and other data to all other nearby ships and port 

authorities on a common VHF radio channel. AIS is designed to operate in 

one of the following modes [11] : 

 Ship-to-ship mode 

 Ship-to-shore mode  

 Traffic management tool when integrated with a Vessel 

Traffic System (VTS).  

When integrated with shore-based vessel traffic systems, as shown 

in Fig. 2.1, AIS provides a powerful tool for monitoring and controlling the 

movement of vessels through restricted harbours and waterways. The AIS 

channels can be used to transmit port data, pilot age, berth assignments, 

shipping agency information, tides and currents, notices to mariners and 

other information from shore to ship, as well as ship-to-ship and ship-to-

shore AIS reports. It is also possible for the VTS to broadcast the complete 

harbour picture to all ships in the area, so that the masters and pilots all 

share the relevant information. 
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Fig.  2.1  AIS integrated with VTS [11] 

Vessel Traffic Monitoring and Management Systems developed  by 

Ledwood Technology Ltd., UK, provide a comprehensive situational 

awareness information that facilitates efficient management of waterways, 

ports  and  harbours as  well  as  helping  to  improve safety and reduce risk 

to the environment. They provide remote monitoring and control from a 

wide range of sensors that assist in the efficient management of waterways. 

Radar  and  AIS  track  data are  brought together from multiple sensors to 

present a traffic view that simultaneously support both marine and Inland 

standards. CCTV cameras can be tasked to look at or follow  any  track  or 

location  available  in  the  system. All  sensor  data  including  Radar,  

VHF  as well as CCTV can  be  remotely controlled and all available data, 

traffic information and events  are  recorded  to  enable  quick  and  

efficient  in  house  training and incident investigation [12]. 

Another category of  VMS, shown in Fig. 2.2, transmits a signal, 

typically once per hour, for identifying the exact latitude and longitude of a 

vessel. Such VMS consists of a three step process. First, the system itself, 
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which includes a mobile transceiver unit placed on the vessel, second, a 

communications service provider that supplies the wireless link between 

the unit on the vessel and Fisheries Service‟s Office for Law Enforcement 

(OLE), and third, a secure OLE facility where only OLE staff can receive 

and monitor compliance [13]. 

 

 Fig.  2.2  The Vessel Monitoring System reported in [14] 

PACTRACS is a Vessel Tracking System that employs AIS and 

Satellite Communications to aid safe, secure, efficient and environmentally 

sound maritime operations [14]. This system is designed to track and record 

the  vessel's locations, speed, route, destination etc. in the Pacific. This 

system is capable of receiving, processing and displaying the positions of 

vessels using AIS and satellite tracking systems. 

The Shipborne Automatic Identification System  is a ship and shore 

based broadcast system, operating in the VHF maritime band [15]. It is 
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capable of sending and receiving ship information such as ship ID, position, 

course, speed, ship particulars and cargo information to and from other 

ships. It uses Self Organizing Time Division Multiple Access (SOTDMA) 

technology to meet this high broadcast rate and ensure stable and reliable 

ship-to-ship and ship-to-shore operation. When used with an appropriate 

graphical display, shipboard AIS enables the provision of fast, automatic 

and accurate information regarding risk of collision by calculating Closest 

Point of Approach (CPA) and Time to Closest Point of Approach (TCPA) 

from the positional information transmitted by target vessels. The 

principles of SOTDMA is shown in Fig. 2.3. 

 

Fig.  2.3  Principles of SOTDMA [15] 

M. Redoutey et al. discussed the techniques that improve the 

existing Automatic Identification System by offering better and guaranteed 

tracking accuracies at lower communication costs. This system, identifies 

and locates vessels, transmits location related information from vessels to 
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ground stations that are part of Vessel Traffic Service (VTS), thus enabling 

these to track the movements of the vessels. This system offers better and 

guaranteed tracking accuracies and the techniques employ movement 

predictions that are shared between vessels and the VTS [16].  

The RFID based Rolta Command & Control solution for Tracking 

of Vessels (C2TV) [17] is a fully integrated system for automating the 

Control Centers of Law Enforcement agencies. The prime objective of this 

solution is to automate the processes at the local and main Control Centers 

by creating a shareable Situational Awareness (SA) picture providing 

operational functionalities amongst the individual members of watch teams 

at respective Control Centers. Making use of such systems, the Local 

Control Centers can maintain a very close watch on the activities of fishing 

boats and other vessels operating in the captive areas. 

Applied Weather Technology (AWT), provides a valuable tracking 

service, which is an indispensable tool for keeping track of a vessel's 

location and monitoring its estimated time of arrival. AWT will insert 

vessel's track into the AWT Route optimization system and using 

proprietary wind and wave data and vessel specific speed down algorithms, 

AWT can predict when the vessel will arrive at a specified port. The 

vessel's ETA is continuously updated throughout the voyage as new 

weather or position data is received. Automated polling service uses the 

vessel's inmarsat unit to schedule positions to be sent to AWT. This polling 

service is an ideal tool to keep track of the vessel's latest position and to 

monitor speed and heading [18]. 

A new approach using the WERA (WEllen RAdar) system, in order 

to monitor ship traffic over long distances is discussed in [19]. For ship 

detection and tracking procedures, the sea clutter can be considered to be an 
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unwanted, self generated interference which ultimately limit the detection 

capability of the radar system. To evaluate the quality of radar detection, a 

data set of GPS-acquired ship locations, provided by the Automatic 

Identification System was recorded for the same period of time. Due to 

external noise, radio frequency interference and different kinds of clutter, 

special techniques of ship detection using the WERA system have to be 

applied. The WERA HF radar system [20] was developed at the University 

of Hamburg, Germany in 1996, which allows a wide range of working 

frequencies, spatial resolution, and antenna configurations in order to 

operate as a low power oceanographic radar, providing simultaneous wide 

area measurements of sea surface currents, waves and wind parameters. 

The Ship Tracking Service Using Google Earth has been developed 

by SHIPPOS [21], specifically for shipping companies, offshore support & 

oil exploration companies and coastal fleet operators to track surface 

vessels. This tracking system is a web-based service that  provides an 

effective way of automatically tracking and managing vessels in real time. 

Access from Google Earth is controlled by a password protection scheme, 

which is administrated through a web interface. The system requirements 

are, a PC onboard with an attached GPS, and an Internet connection and 

GPS reader as well as a license to access the service. Another Internet-

based Vessel Tracking System (I-TRACK) reported in [22] is a user 

friendly web-based system, which aims to provide real-time information of 

vessel Positions in the port to the maritime industry.  

The role of AIS for small vessels monitoring has been discussed by  

Marek Dziewicki in [23]. The AIS, the limitations associated with the use 

of AIS, HELCOM (Helsinki Committee) AIS network  and a rescue boat 

test with AIS onboard are  also discussed. 



Chapter 2  Review of Past Work 

 32 

ORCA Vessel Tracking System [24] for Maritimes Authorities 

ensures safety, security & efficiency of ship traffic over wide areas or busy 

waterways and  provides a clear traffic picture and advanced automatic 

tools for traffic management. This is a fully integrated multi-sensor 

surveillance system providing a complete real-time maritime picture 

encompassing Radar and AIS. As a key breakthrough in VTS technology, 

this system offers an innovative interface with a complete set of user 

friendly displays combined with click and play controls and advanced tools, 

as shown in Fig. 2.4. 

 

Fig.  2.4  ORCA Vessel Tracking System reported in [24] 

Many VMS and VTS systems are used all over the world [25-32]. 

THEMIS (THEmatic Maritime Information System) [33] is a 

comprehensive data integration interface and a crucial tool for maintaining 

24 hour maritime surveillance based on a variety of data sources.  
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Kevin Gregory discusses about latest technological developments in 

vessel tracking and monitoring including usage of traffic image, CCTV 

applications and VTS charting [34]. Lemoine et al. presented an 

operational vessel detection system based on SAR imagery [35]. The 

system is capable of near real time delivery of vessel positions for matching 

to known positional records. 

A dynamically positioned (DP) [36] vessel maintains its position 

(fixed location or predetermined track) by means of active thrusters. The 

DP system can also be used in combination with mooring and anchoring to 

form position-mooring systems for energy efficiency. DP-operated vessels 

possess the ability to operate with positioning accuracy, safety, and 

reliability. Such systems have gained the trust and acceptance of the 

industry and the International Maritime Organization and have been 

successfully applied worldwide. The advantages of fully DP-operated 

vessels include the ability to operate with positioning accuracy and the 

flexibility to establish position and leave location fast, without the need for 

mooring lines to be deployed. In addition, there may be restrictions on the 

deployment of anchors due to the already installed subsea structures on the 

seabed. For certain deepwater exploration and production scenarios, DP-

operated vessels may be the only feasible solution due to the depth and 

length of mooring lines required. 

2.2.2 Target Localization Systems 

Many surveillance systems based on passive listening concepts have 

been developed and deployed in the past.  

 The GPS Intelligent Buoy (GIB) System for the position fixing of 

underwater targets is used for estimating the positions and tracking of 
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known underwater targets. GPS intelligent buoy systems are devices where 

the transducers are installed on GPS equipped sonobuoys that are either 

drifting or moored [37].  

The GPS Intelligent Buoy System, developed by Advanced 

Concepts Systems Architecture, South France, consists of four surface 

buoys equipped with GPS receivers and submerged hydrophones. A pinger 

housed onboard the target emits periodic acoustic signals. The hydrophone 

subsystem in the buoys receive these acoustic signals with different 

latencies, since all the buoys are positioned at different locations. Each of 

the hydrophones receives the acoustic impulses emitted periodically by a 

synchronized pinger installed onboard the underwater target and records 

their times of arrival (TOA). The buoys communicate via radio with a 

central station, where the position of the underwater target is computed and 

displayed. The pinger emits two successive acoustic pulses during each 

emission cycle, the time delay between the two pulses being proportional to 

the pinger depth. Accuracies up to 10 cms are reported to have obtained, 

when the buoys are placed 500 meters apart. 

The GIB, the portable tracking system is based on surface buoys 

network that measures the time-of-flight of acoustic signals emitted by an 

acoustic transmitter mounted on an AUV, ROV, diver, etc.. 

A. Alcocer et al. presented a method for underwater acoustic 

positioning systems based on buoys with GPS [38, 39]. This method is used 

to estimate the position of an acoustic pinger by measuring the times of 

arrival of acoustic signals at four surface buoys equipped with GPS 

receivers and submerged hydrophones. Each of the hydrophones receives 

the acoustic impulses emitted periodically by a synchronized pinger 

installed on-board the underwater platform and records their TOA. The 



Underwater Target Localization, Tracking and Classification 

 35 

pinger emits two successive acoustic pulses during each emission cycle. A 

constant value for the speed of sound is assumed to translate TOA into 

distance. The measured TOA data contains range and depth information as 

well as numerous outliers.  It is a critical issue for this kind of systems to be 

able to identify and properly reject acoustic outliers. If enough number of 

ranges are available, an instantaneous position solution can be obtained by 

triangulation or by using more sophisticated algorithms. Assuming that the 

pinger is synchronized with the buoys and that the speed of sound is 

constant and known, the measured times of arrival can be converted to 

distances.  

Hubert G. Thomas [40] investigated the GIB buoy systems and 

discussed different techniques allowing development of underwater 

applications of GPS. The tracking principle is based on measuring, on a set 

of buoys, the time of arrival of an acoustic pulse  sent by the  mobile target 

at a known time. At regular  interval, each buoy transmits to a processing 

centre, its GPS  position and  the time of arrival of  the acoustic  pulses.  

Knowing  the  sound  velocity, distances from the buoys to the mobile 

target can easily be calculated.  

Another commercial system existing for a similar application, is the 

Vemco Radio Acoustic Positioning (VRAP) system [41].  This system is 

similar to the GIB system. This system is also used for locating the known 

object, using the pinger signal generated from a tag attached to a fish, 

ROV, etc.. It does not make use of any GPS. The VRAP system measure 

real-time detailed position information from underwater acoustic 

transmitters using a series of three buoys and has a two way radio link to a 

base station. Depending on environmental conditions, the VRAP system is 

typically able to furnish position information with a resolution in the range 
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of 1 to 2 meters within the buoy triangle. The Pinger pulse width and 

frequency are selected in accordance with the depth and some other 

parameters. This signal is captured by the hydrophones and transmitted to 

the shore station for further processing.   

The VRAP system illustrated in Fig. 2.5, is used to investigate a 

wide range of species from lobsters to sharks. Applications include 

ecological impact studies, bioenergetics, spawning aggregate interaction, 

predator versus prey interaction and site residency studies. It is particularly 

useful in studying the impact of various environmental conditions such as 

changing tides, sea state, temperature and storms on the movement of 

aquatic organisms. 

 

Fig.  2.5  VRAP System [41] 

While deploying the Buoys, the geographical information and 

distance between each buoys has to be noted. Each buoy contains ultrasonic 

receiver, two way radio links, a microcontroller, solar panel and 
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rechargeable battery. The RF links of each buoy operate on different mode 

frequency, for buoy identity. The base station includes a two way 

communication RF link, timing circuitry and a PC serial data link. The 

hydrophones on each buoy receive the data from the pinger in the tag 

attached to the animal that is being tracked. This information is then 

transferred to the base station through the RF link and the position is 

computed and displayed in real time.  

When the system is initialized, the base station sends a radio 

command to each of the three buoys to determine „buoy-to-buoy‟ distances. 

Positioning is performed in sequence and each transmitter can be monitored 

for certain time period (in the order of seconds). Following initialization, 

each transmitter is positioned based on arrival time of the acoustic ping to 

each buoy.    

In this context, it is worth mentioning the fact that the estimation of 

position of known targets using the known transmitted data emanating from 

the pinger onboard the target is quite simple and straightforward.  

Sonobuoys are small sonar sets dropped by an aircraft for 

underwater listening or echo ranging. This compact, expendable device 

contains miniature radio transmitter for relaying signals picked up by its 

hydrophone. In submarine hunting from an aircraft, a specially packaged 

explosive charge is dropped by the aircraft, a sonobuoy is used to receive 

and transmit echoes and using these, explosive echo ranging can be 

performed. The pressure detonated explosive charge is the sound source for 

echo ranging and the sonobuoy is the link between the sound underwater 

and aircraft above [1]. 
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Lock et al. [42] discloses an acoustic sensing system, known as a 

sonobuoy, for detecting underwater acoustic signals of interest. It consists 

of a hydrophone or array of hydrophones deployed beneath the surface of 

water and suspended from a float for detecting the acoustic signals 

underwater.  The float also carries an antenna for transmitting the output of 

the hydrophone array.  This sonobuoy is typically operational for one to six 

hours, after which the float is punctured and the device falls to the seabed. 

Such devices are used only for sensing or detecting certain targets by 

dropping the sonobuoys from aircraft, at the desired locations of interest. 

The sonobuoy for detecting acoustic signals of interest is shown in Fig. 2.6. 

 

Fig.  2.6  A sonobuoy for detecting acoustic signals of interest  

[Courtesy : Lock (European Patent EP 0489593A1)] 

 

A system for monitoring air-water borne noise generated by an 

aircraft flying over a body of water has been reported in [43]. It comprises 

of a sonobuoy having a linear array of hydrophones suspended beneath the 
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surface of water and a radio transponder for locating the surface position of 

the sonobuoy.  

A number of electroacoustic buoys are positioned apart from the 

sonobuoy and the emitted acoustic pings are detected by the linear array, 

leading to the determination of the surface position of the sonobuoy. Such 

systems are used only for sensing or detecting certain targets by dropping 

the sonobuoys from an aircraft. The Perspective view of the system 

invented is depicted in Fig. 2.7 and the side elevation view of the data 

gathering sonobuoy is shown in Fig. 2.8. 

 

Fig.  2.7  Perspective view of the system for monitoring air-water borne 

noise  [Courtesy : Funk (US Patent 4114135)] 

 

Another system which discloses a method for screening the acoustic 

emissions, spectral line or narrow band, from the targets underwater from 
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among many acoustic signals of the same type with a certain threshold 

energy level [44]. 

 

Fig.  2.8  Side elevation view of the data gathering sonobuoy 

[Courtesy : Funk (US Patent 4114135)] 

 

This approach helps in reducing the number of unwanted signals 

interfering with the observation of useful signals, to be detected.  It 

introduces the concept of surveillance cells with two adjacent pickups, each 

pickup being associated with one or more target detection regions, defined 

as the geographic areas within which the presence of the target is deemed 

detectable.  This system also defines the conditions under which the noise 

generator is located and locating it relative to the special areas. This method 

is a heuristic approach centered around some thumb rules, and will work 

with targets that are in the neighborhood.  For targets which are far away, 

this will turn out to be inefficient, and will certainly fail as the acoustic 
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signal levels received by the system from far away targets will be very 

feeble and much less than the threshold level.   

A technique for determining the three dimensional location of an 

acoustic event using a system of five or more sound sensing elements has 

been reported [45]. The system using the aforesaid technique is shown in 

Fig. 2.9. 

 

 

 

Fig.  2.9  A system for determining the three dimensional location of an 

acoustic event  [Courtesy : Harvey (US Patent 7233545B2)] 

 

The sensing elements generate notification signals indicating the 

occurrence of the acoustic event. A central processor receives the 

notification signals and associates the locations of each of the sensing 

elements with the instants at which each sensing element sensed the sound 

and computes the three dimensional location of the acoustic event using the 

speed of sound. Like the GIBS and the VRAP systems, this system also 
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computes the position using the transit time, associated delays and speed of 

sound and will work well with acoustic sources, which are generating 

known and short lived acoustic events. The disadvantage associated with 

this approach is that the system will fail for acoustic signals that are emitted 

continuously by the target. 

An apparatus for estimating the range of a noise source has been 

developed by Turgut, utilizing the acoustic measurements carried out at two 

locations, using which the ratio of the distance of the source from the first 

passive vertical hydrophone array to the distance of the same from the 

second vertical hydrophone array is determined [46] and is as shown in 

Fig. 2.10. 

 

Fig.  2.10  An apparatus for estimating the range of a noise source  

[Courtesy : Turgut (US Patent 7471592B2)] 

Making use of the measured acoustic levels, concepts of mapping 

the virtual array output as a function of angular frequency or angular 

frequency shifts, patterns of acoustic intensity level curves and precise 

application of waveguide invariant theory to form virtual receiver arrays as 
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well as by generating a two-dimensional parameter space, the system 

performs acoustic ranging.  This system is mainly centered on the concepts 

of heuristics and suffers from all the limitations and disadvantages arising 

out of theoretical approximations, consequent to the formation of virtual 

receivers.  

A. Peter Klimley et al. [47] described a method, radio acoustic 

positioning (RAP), for continuously monitoring the movements and 

behaviour of large marine animals. An ultrasonic transmitter on the 

mammal can be localized with spatial accuracy of 2m to 10m within an 

area of 1km
2
, based on when the same pulse arrives at three hydrophones 

on sonobuoys, positioned at the vertices of a triangle as shown in Fig. 2.11. 

 

 

Fig.  2.11  Radio acoustic positioning  for studying site-specific behaviour 

of marine species 

   

Radio transceivers communicate with the base station, where the  x 

and y coordinates of the target are computed. The base station also plots the 

spatial position of the target and displays the information from the tag 

sensors in real time on a computer monitor. The base station must be 

situated either on land or on a vessel within the reception range of the three 
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buoys. The  RAP system was used to monitor the movements and 

behaviour of white sharks. This type of study throws light into their 

predatory behaviour because they patrol for seal prey within a zone less 

than 1300m from shore. The authors describe the implementation and 

operation of the system including acoustic triangulation, range of detection 

and positioning, data acquisition and analysis, and positional accuracy. 

 This thesis envisages a three buoy automated system for underwater 

target localization, tracking and classification, using passive listening buoy 

systems and target classification techniques. The system has been designed, 

developed and field tested. The recoiling effect, caused due to the 

movement of the array from one position to another, the instabilities of the 

buoy system caused by the surface waves, etc., will lead to unpredictable 

errors in the estimates of the direction of arrival of the noise waveforms, 

which in turn affect the accuracy of the localization system.  These 

inaccuracies in the localization estimates due to changes in the 

environmental parameters, measurement errors and theoretical 

approximations are resolved, to a certain extent, by applying the concepts 

of Kalman filter. 

2.3 Refinement of Localization Estimates  

In 1960, Rudolf E Kalman [48] introduced the Kalman filter theory. 

In his paper, the classical filtering and prediction problem is re-examined 

using the Bode-Shannon representation of random processes and the “state 

transition” method of analysis of dynamic systems. The formulation and 

methods of solution of the problem are applied without modification to 

stationary and nonstationary statistics and to growing-memory and infinite 

memory filters. A nonlinear difference or differential equation is derived 

for the covariance matrix of the optimal estimation error. From the solution 
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of this equation, the coefficients of the difference or differential equation of 

the optimal linear filter are obtained without further calculations. Also, the 

filtering problem is shown to be the dual of the noise free regulator 

problem.   

 In 2006, G. Welch and G. Bishop published papers and discussed 

the theory of Kalman filters through their website [49, 50]. The purpose is 

to provide a practical introduction to the discrete Kalman filter. This 

includes a description and some discussion of the basic discrete Kalman 

filter, a derivation, description and some discussion of the extended 

Kalman filter, and a relatively simple or tangible example with real 

numbers and results. 

Dan. Simon and T. Chia discussed Kalman Filtering and Kalman 

filter with state equality constraints during 2001-2002 [51, 52]. Kalman 

filters are commonly used to estimate the states of a dynamic system. 

However, in the application of Kalman filters  there is often known model 

or signal information that is either  ignored or dealt with heuristically. For 

instance, constraints on state values, which may be based on physical 

considerations, are often neglected because they do not fit easily into the 

structure of the Kalman filter. A rigorous analytic method of incorporating 

state equality constraints in the Kalman filter is developed. The constraints 

may be time varying. At each time step the unconstrained Kalman filter 

solution is projected onto the state constraint surface. This significantly 

improves the prediction accuracy of the filter.   

Chiman M. Kwan et al. discussed [53] a simple qualitative 

explanation to understand performance of Discrete Kalman Filter (DKF) 

and Continuous Kalman filter (CKF) which help to clear the 

misunderstanding that DKF is better than CKF. The three ways of Kalman 
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filter design depending upon the measurement process are Continuous 

Kalman Filter, Continuous-Discrete Kalman Filter and Discrete Kalman 

filter. CKF gives the best performance since there is a continuous flow of 

measurement data in to the Kalman filter. Also, the DKF and CDKF 

converge to the CKF as the sampling period tends to zero.  

Peter S. Maybeck reviewed Stochastic Models, Estimation and 

Control in his book [54] and has also discussed the introductory concepts of 

Kalman filtering, basic assumptions of Kalman filters and a simple example 

for understanding the working of the Kalman filter. 

2.4 Target Tracking  

Y. T. Chan et al. [55, 56] discussed a Kalman Tracker with a 

Simple input estimator for tracking space targets. Two Kalman filter based 

schemes are proposed for tracking maneuvering targets. Both schemes use 

least squares to estimate a target's acceleration input vector and to update 

the tracker by this estimate. The first scheme is simpler and by an 

approximation to its input estimator, the computation can be considerably 

reduced with insignificant performance degradation. The second scheme 

requires two Kalman filters and hence is more complex. However, since 

one of its two filters assumes input noise, it may outperform the first 

scheme when input noise is indeed present. A detector that compares the 

weighted norm of the estimated input vector to a threshold is used in each 

scheme. Its function is to guard against false updating of the trackers and to 

keep the error covariance small during constant velocity tracks.  

Samuel S. Blackman investigated Multiple-Target Tracking with 

Radar [57]. The author explains the basics of multiple target tracking and 

gives an overview of data association issues. The methods of filtering and 
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prediction including Kalman filters, its approximations and simplifications 

are also discussed. This book also covers the details of maneuver detection, 

gating as well as data associations. Yaakov Bar-shalom et al. discussed 

principles of estimation and tracking along with various techniques used 

[58, 59].  

A Kalman filter in the Cartesian coordinates is described by 

Radhakisan S. Baheti [60] for efficient approximation of Kalman Filter for 

Target Tracking and for a maneuvering target when the radar sensor 

measures range, bearing and elevation angles in the polar coordinates at 

high data rates. An approximate gain computation algorithm has been 

developed to determine the filter gains for online implementation. In this 

approach,  gains are computed for three uncoupled filters and multiplied by 

a Jacobian transformation determined from the measured target position 

and orientation. The algorithm is compared with the extended Kalman filter 

for a typical target trajectory in a naval gun fire control system. The filter 

gains and the tracking errors for the proposed algorithm are similar to the 

extended Kalman filter, while the computation requirements are reduced by 

a factor of four. 

In 1996, Tokumaru  et al. published a paper on improved tracking 

Kalman filter using a multilayered neural network [61]. In 2004, Lee et al. 

discussed an intelligent Kalman filter for tracking a maneuvering target by 

considering the unknown target  acceleration as additive process noise [62].  

In 2003, X. Rong Li and Vesselin P. Jilkov conducted a survey of 

Maneuvering Target Tracking on the basis of   tracking space targets and 

maneuvering problems and published the survey details in 6 parts including 

dynamic Models and Motion Models of Ballistic and Space Targets [63-

71]. It surveys various mathematical models of target motion or dynamics 
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proposed for maneuvering target tracking, including 2D and 3D maneuver 

models as well as coordinate-uncoupled generic models for target motion. 

This survey emphasizes the underlying ideas and assumptions of the 

models. Interrelationships among models and insight to the pros and cons 

of models are also provided. 

In 2004, M. Isabel Ribeiro [72] discussed Gaussian probability 

density functions, properties and error characterization. Author further  

explains normal random variables, normal random vectors, its properties 

and the concepts of covariance matrix and error ellipsoid. 

M. H. Bahari et al. [73-76] published papers on tracking a high 

maneuvering target based on intelligent matrix covariance resetting. In 

practice the conventional Kalman filters have a fast convergence rate at the 

beginning. However, after some iterations the Kalman filter steps become 

very small. To overcome this defect and to make effective use of Kalman 

filter capabilities, the matrix covariance resetting concept is used. The 

matrix covariance resetting is usually used to improve the tracking 

algorithm result, especially for highly maneuvering targets.   

In 2009, Zhang et al. presented a paper on improving the tracking 

performance of maneuvering target based on wavelet neural network [77]. 

2.5  Classification 

Another aspect that has been investigated during the course of my 

research work on localization and tracking system is the identification of 

the target of interest. The identification and selection of features play a 

crucial role in the realisation of the classifier with acceptable success rates. 

A number of features extracted from spectral and bispectral methods have 

been used for implementing various types of classifiers. The methods and 
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procedures that have been suggested for extracting some of the vital 

spectrally decomposable features reported are briefly discussed below.  

Marple et al. [78, 79] summarized the new techniques developed in 

spectrum analysis and discussed several modern spectral estimation 

techniques. Author  also throws some light on current spectral estimation 

research trends. In 1996, Ricardo S. Zebulum et al. in their work 

investigated the different spectral analysis models [80]. 

Chun Ru Wan et al.  [81] analysed the statistical property of the 

power spectrum observations and developed a novel tonal detector by 

optimally integrating the spectral inferences. The results from simulations 

and open ocean trial data have shown that the proposed detectors have a 

promising role in detecting tonals. 

Luzin et al. [82] proposed a high resolution spectral estimation 

algorithm based on the maximum likelihood approximation. This method 

allows the design of power spectrum estimating devices having rather 

simple structure for real time implementations.  

The impact of the Fast Fourier Transform on the spectrum of time 

series analysis has been carried out by Bingham [83]. The paper also 

discusses the raw and modified Fourier periodograms, bandwidth versus 

stability aspects  and  computational approaches to complex demodulation. 

Massino Aletto et al. [84] carried out a  comparison of different 

spectral estimation techniques applied to nonstationary signals. The 

comparison examines applications in which spectral analysis is applied to 

nonstationary signals. Different spectral analysis algorithms were tested in 

order to compare their behaviour in detecting defined harmonic 
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frequencies. A method for estimating signal harmonics in the spectrum is 

presented by Eftestol [85].  

Peretto et al. [86] describe signal spectrum analysis and a period 

estimation using delayed signal sampling The procedure relies on the 

evaluation of the input signal autocorrelation function in different delayed 

time instants, located at either equispaced or random time instants. 

Supriya et al. [87-91] discussed the techniques and algorithms 

towards improving the underwater target recognition using spectral and 

cepstral features. The author also addresses the implementation of a target 

classifier for the noise sources in the ocean as the operated assisted 

classification turns out to be tedious, laborious and time consuming. 

A new method for simultaneously estimating a number of power 

spectra has been suggested by Rodney et al.  in [92]. It is required that a 

prior estimate of each spectrum is available and new information is 

obtained in the form of values of the autocorrelation function of their sum. 

The method is compared with minimum cross-entropy spectral analysis.  

2.6 Summary 

 This chapter presents a state-of-the-art literature in the topic of the 

thesis on underwater target localization, tracking and classification. The 

literature survey summarizes the highlights of the existing systems for 

vessel monitoring and localization applications. The survey includes the 

Kalman filter approach applied for the refinement of localization estimates. 

The literature survey also covers the application of Kalman filters on 

tracking of targets including maneuvering situations. A literature survey on 

extraction of target specific features is also carried out. 
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CHAPTER 3  

METHODOLOGY 

This chapter addresses the methodology adopted for the realisation of the 

underwater target localization, tracking and classification system based on 

passive listening concepts. A three buoy system is used for localization of 

the underwater targets. The localization estimates may vary due to the 

instabilities of the buoys, measurement errors and theoretical 

approximations.  The Kalman filter approach is implemented to reduce the 

inaccuracies in the localization estimates and is extended for the tracking 

of a moving target by generating a time series data of the localization 

estimates. Modifications have been effected on to the algorithm in order to 

cater the situations caused by the abrupt maneuvering of moving targets. 

The classification of unknown target  involves the extraction of source 

specific features by analyzing the composite noise data waveforms and 

comparing the features with  the ones in the knowledge base. 

3.1 Introduction 

 Underwater target localization and tracking attracts interest, since a 

generalized solution has not yet been established, as the noisy ocean 

environment causes a multitude of impediments to the estimation task. An 

approach for localization, tracking and classification of underwater targets 

is discussed in this chapter, together with performance validation results 

from field trials. This prototype three buoy automated system design, aids 

in localizing, tracking and classifying underwater targets using passive 

listening and target identification techniques.  
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The propagation effects, responsible for the performance limitations 

in sonar systems are summarised here. The undersea propagation medium 

is a time-varying channel, which shows clear significant functional 

dependencies on geographic location, depth, range and season. Moreover, 

the temperature profile, multiple reflections and inhomogeneties present in 

the ocean cause a wide variety of channel dispersion effects on time, 

frequency and angle. The adverse effect of time spreading is due to 

multipath, while frequency spreading is caused by the wave motion of the 

sea surface, movement of water masses, underwater currents as well as the 

motions of the transmitter, receiver and targets.  Doppler spread of up to 

one percent or more are common in sonar.   

The sonar detection and estimation problems for signals of 

considerable spreading are much more cumbersome than the ones for 

simple systems, due to reasons that are obvious. A wide range of interfering 

noises are also present in the ocean such as the sea state noise, biological 

noise,  machinery and cavitation noise from the shipping traffic, in addition 

to the thermal noise. 

In passive listening scenario, the sources and kind of noises from 

the targets are used to localize and identify the targets.  The noise signals 

generated by such noisy targets will form the basis for passive sonar 

localization and classification.  The noise signals are characteristics of 

target concerned and may vary a great deal with time as well as class and 

type of target. Targets can be distinguished based on the specific signature 

feature vector obtained from the detailed analysis of the noise, which in 

turn can be compared with known signature patterns. Hence, the matching 

pattern which has a good degree of acceptability can be identified.  
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Sonar data can be judiciously used to locate and classify underwater 

targets. Target localization addresses the problem of determining the 

position of the target while classification addresses the problem of 

identifying or categorising the target. To facilitate this, knowledge about 

the way in which typical isolated individual bodies interact with sound 

wave is essential. In active sonar, such information are quantified by the 

parameter Target Strength and the process of classification is correlated to 

the localization and tracking functions as the target dynamics is severely 

affected and controlled by the target types and class. Passive sonars are the 

listening sonar systems which use sound, usually unwillingly, radiated by 

the target.  

The localization, detection and estimation procedures in sonar 

involve the computation of various statistics for improving the overall 

performance of the target localization, tracking and classification 

capabilities of the end system, taking into consideration all the undesirable 

propagation effects mentioned above.  

3.2 The Three Buoy Acoustic System  

The three buoy acoustic system for underwater target localization, 

tracking and classification encompasses the implementation of an 

automated system, with the help of which underwater targets can be 

localized, tracked and classified using passive listening buoy systems and 

target identification techniques.  The acoustic signals sampled by the 

hydrophone arrays at three spatially and non-collinearly distributed 

locations in the ocean are analyzed for the decision making.  Submerged 

hydrophone arrays should be deployed for capturing the acoustic signals 

from three different locations with suitable buoy systems.   
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The electronics modules onboard the buoy, controls the hydrophone 

arrays, performs the processing as well as manages the communication and 

power supply units with back up batteries and solar charging systems.  The 

signals from various subsystems are processed and the feature vectors of 

the targets extracted by the signal processing unit are to be sent to the shore 

station through the RF link for further processing and initiating appropriate 

actions for the target identifications, its position fixing and tracking.  This 

system can identify and locate the position of the targets of interests, 

ranging from marine species to manmade objects. 

This system accomplishes position fixing, tracking and 

classification of unknown  underwater targets by continuously triangulating 

its position using geometrical construction procedures as well as 

exchanging the feature vector information of probable targets of interest, 

within the detection range of the buoy system with the shore station.  The 

position information of the buoys, the direction of arrival, the signal level 

and other relevant information, gathered by the buoys from processing the 

received noise signals are used for fixing the position of the target. 

 As a critical part of the implementation of the system, following 

subsystems are developed, namely Steerable hydrophone arrays, Signal 

Processor modules which are capable of generating the feature vectors, 

Autonomous Buoy Systems and DOA Estimator.  Suitable algorithms are 

implemented for localization of the target from the position information 

and direction of maximum signal arrival  at each of the buoys by 

geometrical constructions. 

Fig. 3.1 shows the over view of the entire system, comprising of 

three Buoys, the shore station and target of interest. Each of the buoy 

comprise of  a submerged hydrophone array, having a receiving sensitivity 
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of  -200dB re 1V/μPa as well as the required buoy electronics for surveying 

the surroundings using the hydrophone arrays.   

 

 

Fig.  3.1  Principles involved in the position fixing and tracking of the 

underwater targets  

The hydrophone array can be rotated in such a way that, it orients 

itself to the maximum signal energy, at the desired frequencies, from the 

target of interest.  Each of the buoys also has an omni-directional 

hydrophone for generating an ALERT signal for the system. Upon receipt 

of an alert command from the shore station, the buoy systems will begin the 

surveillance operation. The shore station generates the commands either 

when the operator is suspicious of the presence of a target or the omni-

directional hydrophones of any of the buoy systems detect certain types of 

noise waveforms that are of interest to the deployed system. The signals so 

gathered by the hydrophone are processed and the feature vector 
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information will be sent to the shore station, based on which the shore 

station issues an alert command to the buoy systems. 

The buoys are deployed approximately 1 km apart and the signals 

captured by the hydrophone arrays are pre-processed using the signal 

conditioning module.  The digitized noise data waveforms are fed to the 

digital signal processor for extracting the target specific features. 

Each submerged hydrophone array in the Buoy is mounted on a 

steering mechanism, which will help in orienting the hydrophone array to 

the direction of maximum signal arrival (DOA) at the frequencies of 

interest or in accordance with the commands from the Signal Processor.  

The angular position information of the hydrophone array is also fed to the 

DSP processor for onward transmission to the shore station for estimating 

the position of the target by triangulation and geometrical construction 

methods. 

 The earth‟s magnetic axis is considered as the reference axis. 

Initially, the hydrophone arrays are aligned along the reference axis. Thus, 

the total output from the hydrophone array controller unit is the features 

captured from the signal and the angular position information of the 

hydrophone array.  The GPS receiver in the buoy furnishes the 

geographical position of the buoy.   

The hydrophone array system is also provided with a separate omni-

directional hydrophone, making use of which the system can perform 

effective surveillance of the region surrounding the buoy system. Whenever 

any of these omni-directional hydrophones capture noise waveforms, above 

certain threshold value, the buoy systems as well as the shore station 
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system will be alerted and the shore station initiates commands for 

performing the surveillance operation.  

Finally, the buoys B1 and B2 furnish the extracted features, GPS 

information, angular position information of the hydrophone array and 

timing information to the coordinator buoy.  The coordinator buoy sends its 

own data along with the data received from the other two buoys to the 

shore station using the RF communication link.  The entire target feature 

record including the spectral power at the desired tonal(s) or band(s) will be 

processed in the shore station.  Additional controlling commands, regarding 

a particular feature that needs to be tracked, as well as the angles to which 

the hydrophone arrays of the various buoys are to be aligned in situations of 

multiple target scenario are sent to the buoy(s) through the coordinator 

buoy.  The power supply requirements for the system are met by the 

backup batteries, which are charged from the solar panels.  

3.3 Target Localization Approaches 

Determining the position of the target near the deployed buoy 

system with reference to the earth‟s coordinate system is referred as target 

localization.  The global positioning system integrated in the buoy 

electronic system of the three buoys provide the location of the buoys with 

reference to the earth‟s magnetic meridian. Direction of Maximum Arrival 

of the noise data waveforms from the target is computed by the buoy 

electronics.  Applying geodetic latitude and longitude distance calculations, 

trigonometric and basic geometric laws, the position of the target with 

reference to the earth‟s coordinate system can be computed.  

 Three different approaches based on the mathematical formulae 

and software platforms, were used for the computation. The first approach 
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is using Haversine formula for great-circle distance and performed on 

AutoLISP platform. The second approach also uses Haversine formula for 

great-circle distance and is implemented on  MATLAB. The third approach 

is by using Vincenty formulae for ellipsoids and is implemented on 

MATLAB.       

3.4 Refinement of Localization Estimates 

One of the main requirements of most of the surveillance operations 

is the precise positioning and ranging of targets, which is implemented 

using approximate algorithms on real time data from such systems. In the 

proposed three buoy system, the noise emanations from the sources are 

used to estimate the direction of arrival of the noise in the three hydrophone 

arrays of the buoy system, leading to the estimation of the position of the 

target of interest, using triangulation technique. 

For the surveillance operation, the arrays are mechanically steered. 

Whenever the array moves from one position to another, there will be a 

recoiling effect on the entire buoy system.  This recoiling effect, caused due 

to the movement of the array from one position to another, will affect the 

orientation of the buoy, thus leading to inaccuracies in the angular positions 

of the hydrophone arrays and hence the direction of arrival. The 

instabilities of the buoy system caused by the surface waves will also lead 

to unpredictable errors in the estimates of the direction of arrival of the 

noise waveforms in each of the hydrophone arrays. The estimation of the 

direction of arrival and range of the target are also influenced by other 

factors such as effects of reverberation and occurrence of multi-target 

scenarios.  These issues warrant the need and requirement for refining the 

localization estimation, making use of Kalman Filters.  
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3.4.1 Kalman Filter 

A Kalman filter [48-54] is an optimal recursive data processing 

algorithm.  One aspect of optimality is that the Kalman filter incorporates 

all information that can be provided to it. It processes all available 

measurements, regardless of its precision, to estimate the current value of 

the variables of interest, with the use of knowledge of the system and 

measurement device dynamics, the statistical description of the system 

noises, measurement errors, uncertainty in the dynamic models and any 

available information about initial conditions of the variables of interest.  

 In 1960, R.E. Kalman published his famous paper describing a 

recursive solution to the discrete data linear filtering problem. Since then, 

the Kalman filter has been the subject of extensive research and 

application, particularly in the area of autonomous or assisted navigation. 

The Kalman filter is a set of mathematical equations that provides an 

efficient computational recursive means to estimate the state of a process, 

in a way that minimizes the mean of the squared error. The filter is very 

powerful in several aspects: it supports estimations of past, present, and 

even future states, and it can do so even when the precise nature of the 

modeled system is unknown. Recursive means the Kalman filter does not 

require all previous data to be stored and the program inherently 

incorporates discrete time measurement samples rather than continuous 

time inputs. 

3.4.1.1 System Model 

A physical system can be represented by a mathematical model that 

adequately represents some aspects of the behaviour of the system. 

Through physical insights, fundamental laws or empirical testing, the 

interrelationships between certain variables of interests, inputs to the 
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system and outputs from the system can be established. With such 

mathematical models, the tools provided by the system and the control 

theories,  the system structure and modes of response can be navigated. If 

desired, compensators that alter these characteristics and controllers that 

provide appropriate inputs to generate desired system responses also can be 

designed. In order to observe the actual system behaviour, measurement 

devices are constructed to output data signals proportional to certain 

variables of interest. These output signal and the known inputs to the 

system are the only information that is directly discernible about the system 

behaviour. If a feedback controller is being designed, the measurement 

device outputs are the only signals directly available for inputs to the 

controller. 

3.4.1.2 Introductory Concepts  

Fig. 3.2 depicts a typical situation in which a Kalman filter could be 

used advantageously. A system of some sort is driven by some known 

controls, and measuring devices provide the value of certain pertinent 

quantities. Knowledge of these system inputs and outputs are explicitly 

available from the physical system for estimation purposes. Often the 

variables of interest, some finite number of quantities to describe the state 

of the system, cannot be measured directly and some means of inferring 

these values from the available data must be generated. This inference is 

complicated by the fact that the system is typically driven by input other 

than the known controls and that the relationships among the various state 

variables as well as the measurements are also uncertain.  

Furthermore any measurement also will be corrupted to some 

degree by noise and other inaccuracies. Kalman filter combines all 

available measurement data and prior knowledge about the system and 
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measuring devices, to produce an estimate of the desired variables in such a 

manner that the error is minimized statistically, where the system can be 

described through a linear model and the system and measurement noise 

are white and Gaussian.   

 
 

Fig.  3.2  Typical Kalman Filter Application 

Linear systems are desirable because they are easy to manipulate 

with engineering tools and the linear theory is much more complete and 

practical than nonlinear systems. When nonlinearities do exist the approach 

is to linearize the system model. Whiteness implies that the noise is not 

correlated in time and has equal power at all frequencies. Within the band 
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pass of the system of interest, white noise assumption can be justified. 

Gaussian assumption can be justified by the fact that a system or 

measurement noise is typically caused by a number of small sources. When 

a number of independent random variables are added together, the summed 

effect can be described very closely by a Gaussian probability density, 

regardless of the shape of the individual ones and this assumption makes 

the analysis tractable too. 

Many signals can be described in the following way,  yk = akxk + nk  

where yk is the time dependent observed signal, ak is a gain term, xk is the 

information bearing signal and nk is the additive noise. The overall 

objective is to estimate xk. The difference between the estimate 𝑥 k and xk 

itself is termed the error;   f(ek)= f(xk -𝑥 k). The particular shape of f(ek) is 

dependent upon the application, however it is clear that the function should 

be both positive and increase monotonically.  

An error function which exhibits these characteristics is the squared 

error function, f(ek)= f( xk - 𝑥 k)
2
. Since it is necessary to consider the ability 

of the filter to predict many data over a period of time, a more meaningful 

metric is the expected value of the error function,   loss function = E [f 

(ek)], and this results in the mean squared error (MSE) function, E [ex
2
]. 

 

3.4.1.3 The Kalman model  

The Kalman filter uses recursion relations to estimate the state of a 

dynamic system from a series of incomplete and erroneous measurements. 

It helps to refine the localization measurements and bring them closer to the 

target‟s actual position by taking care of the effect of variances in the 

measurements. This filter is essentially a set of mathematical equations that 

implement a predictor-corrector type estimator that is optimal in the sense 
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that it minimizes the estimated error covariance. Kalman Filter is a  

recursive filter which means that, unlike most of the data processing 

concepts, the Kalman filter does not require all previous data to be kept in 

storage and reprocessed every time a new measurement is taken. This is of 

vital importance to the practicality of filter implementation. 

The Kalman filter addresses the general problem of estimating the 

state x, of a discrete-time controlled random process that is governed by the 

linear stochastic difference equations (3.1) and (3.2), 

xk = Axk-1 + Buk-1 + wk-1,     (3.1) 

with a measurement zk,  that is  

zk = Hxk + vk         (3.2) 

The matrix A in the difference equation relates the state x at the 

previous time step k-1 to the state x at the current step k, in the absence of 

either an optional control function u   or process noise w. The matrix B 

relates the optional control input to the state. The matrix H in the 

measurement equation relates the state to the measurement. 

In practice, the matrices might change with each time step or 

measurement, however here they are assumed to be constant. The random 

variables wk and vk represent the process and measurement noise 

respectively. They are assumed to be independent, white and with normal 

probability distributions, p(w) ~ N(0,Q) and p(v) ~ N(0,R). The process 

noise covariance Q and the measurement noise covariance R are assumed to 

be constant. The system model for Kalman filter is shown in Fig. 3.3. 
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Fig.  3.3  Kalman System Model 

3.4.1.4 Computational and Probabilistic Origins of the Filter 

If random variable  𝑥 𝑘
−

 is the a priori state estimate at step k, given 

knowledge of the process prior to step k, and random variable 𝑥  
 is the 

a posteriori state estimate at step k, given measurement  zk,. The a priori and  

a posterioi estimate errors are 𝑒𝑘
−

  =  𝑥  
- 𝑥 𝑘

−
 , and ek  = 𝑥  - 𝑥 

 
k.  

Then the  a priori estimate error covariance is, 

  𝑃𝑘
−  = E [𝑒𝑘

− 𝑒𝑘
−T

],       (3.3) 

and the a posteriori estimate error covariance is    

Pk =E [ek ek
T
].       (3.4) 

The a posteriori state estimate  can be written as a linear 

combination of an a priori estimate and a weighted difference between an 

actual  measurement and a measurement prediction as 
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 𝑥 k = 𝑥 𝑘
− + 

 
K (𝑧𝑘 −  𝐻𝑥 𝑘

−  
 
)     (3.5) 

 The difference (𝑧𝑘 −  𝐻𝑥 𝑘
−  )  is called the measurement innovation 

or the residual. The residual reflects the discrepancy between the predicted 

measurement and the actual measurement. A residual of zero means that 

the two are in complete agreement. The matrix K is the Kalman gain or 

blending factor that minimizes the a posteriori error covariance.  

The minimisation can be accomplished by first taking the derivative 

of equation for a posteriori error covariance after substituting the equations 

of  𝑥 k  and ek, with respect to K, and setting the result to zero, and then 

solving for K. One form of resulting K is given by 

 𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1    (3.6) 

        =  
𝑃𝑘

−𝐻𝑇

 𝐻𝑃𝑘
−𝐻𝑇+𝑅

     (3.7) 

 ie., as the measurement error covariance R approaches zero, the 

Gain K weights the residual more heavily. On the other hand, as the a prori 

error covariance 𝑃𝑘
− approaches zero, the gain K weights the residual less 

heavily. 

3.4.1.5 Discrete Kalman Filter Algorithm 

The Kalman filter estimates a process by using a form of feedback 

control. It also estimates the process state at some time and then obtains the 

predicted values. As such, the equations for the Kalman filter fall into two 

groups, viz., the time update equations and measurement update equations. 

The time update equations are responsible for projecting forward (in time) 

the current state and error covariance estimates to obtain the a priori 

estimates for the next time step. The measurement update equations are 



Chapter 3  Methodology 

 66 

responsible for mapping the predicted values into the a priori estimate to 

obtain an improved a posteriori estimate. 

The time update equations can as well be thought of as the predictor 

equations, while the measurement update equations can be thought of as 

corrector equations. Indeed the final estimation algorithm resembles that of 

a predictor-corrector algorithm for solving numerical problems. The 

following are the Predictor/corrected Kalman Filter Equations. 

Predictor Equations: 

 𝑥 𝑘
−=A𝑥 k-1 + Buk-1      (3.8) 

𝑃𝑘
− = APk-1A

T
 + Q      (3.9) 

𝑥 𝑘
− is the  a priori state estimate at step k, which is the estimate of 

the state based on measurements at previous time-steps and 𝑥 k is the 

a posteriori state estimate at step k, given measurement zk. The a priori 

estimate error covariance,  𝑃𝑘
− = E [𝑒𝑘

− 𝑒𝑘
−T

], and the a posteriori estimate 

error covariance, Pk =E [ek ek
T
], where the a priori estimate error, 𝑒𝑘

−
  =  𝑥  

-

 𝑥 𝑘
− , and the a posteriori estimate error ek  = 𝑥  - 𝑥 

 
k. 

Corrector Equations: 

Kk= 𝑃𝑘
−H

T 
(H𝑃𝑘

−H
T
 + R)

-1 
    (3.10) 

𝑥  
k =𝑥 𝑘

−  + Kk   (zk - H𝑥 𝑘
−) 

    
(3.11) 

Pk =(I - Kk H) 𝑃𝑘
−      (3.12) 

A complete picture of the operation of the Kalman filter, with the 

equations is given in Fig. 3.4. 
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3.5 Underwater Target Tracking 

Tracking of underwater targets is an important requirement in ocean 

surveillance systems. The purpose of target tracking is to accurately 

estimate the target states based on the observation data.  

 

Fig.  3.4  The operation of the Kalman filter 

The tracking performance depends on accurate description of the 

target state.  Accurate tracking of the target is achieved when the target 

state model matches with the target practical state. Among various 

techniques, Kalman filter tracking devices are getting more attention 

because of their practicality as this method does not require all previous 

data to be stored and reprocessed every time a new measurement is taken.  

 A moving target, represented in Cartesian co-ordinate system is 

considered for the analysis. Suitable transformations can be used if the 

measurement data are in a format other than the Cartesian system. 

However, the tracking system and design challenges are relatively 
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insensitive to the choice of the co-ordinate system.  Methods for  tracking 

and improving the tracking estimates for a target moving in one dimension 

and two dimensions including the maneuvering situations have been  

simulated and studied. 

When a target is maneuvering, the errors come across are more 

complex compared to the errors observed  for a target moving in a straight 

line fashion. This imprecision need to be reduced by applying appropriate 

correction measures. While tracking a maneuvering target, the main issue is 

to detect the point at which the target is maneuvering. Here a chi-square 

based decision method using measurement residuals is used. Upon 

detection, appropriate corrections are made in the Kalman filter algorithm 

to adapt to the highly maneuvering situation. 

3.6  Target Classification 

The hydrophone array as well as the omni-directional hydrophone 

element of each of the buoys, is capable of receiving, storing and analyzing 

the noise emanated from the target of interest. These signals can be used 

for the classification of underwater targets by comparing their signature 

features with those available in the knowledge base. 

The generalized structure of the target classifier is shown in 

Fig. 3.5.  The noise emanations from the target are received, processed and 

the target specific features are extracted. These target specific features are 

compared with the earlier detection or estimation decisions, which are 

stored in the knowledge base and the target is identified.  Over a time 

period, if a target feature is not updated, that  feature will be removed from 

the target feature record.  The most matching signature pattern is identified 

when the required classification clues are available in the target feature 
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record, from the known target signatures in the knowledge base, depending 

on the  user defined tolerance. 

 

Fig.  3.5  Generalized structure of the target classifier    

The methodology suggested to be adopted for realizing the target 

classifier involves the extraction of source features by analyzing the 

composite noise data waveforms and identifying the most matching feature 

vector using template matching technique leading to the identification of 

the target. For making the system fool proof and full-fledged one, the 

knowledge base has to be updated with the feature vectors and target 

dynamics for all the class and type of the targets. 

The spectral and bi-spectral features get modified, when the 

acoustic signal traverses from the radiating source to the receiver through 

the bounded channel due to many underwater propagation effects  in the 

sea such as multipath, spreading in time, Doppler shifts/spread, as well as 

disturbances from other sources like the sea state noise, sea micro-

organisms and shipping activities in addition to thermal noise. Moreover 

the signal distortion and interference structure depend on the source and 

receiver locations as well. This being too complex a problem, the channel 

distortion effect has not been incorporated while extracting the features. 

Moreover the classification function has been implemented as a part 

of underwater target localization and tracking system. The classifier 
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function in the proposed system has only limited capabilities and is mainly 

dedicated to identify and track the targets, making use of the operator 

provided/system generated target specific features and ignores the other 

objects in the vicinity of the system. This ensures the tracking of the target 

of interest by feature matching technique and hence a full-fledged classifier 

system is not implemented. 

3.6.1 Target Specific Signatures 

In passive sonar, targets are classified or identified based on the 

tonal components or signatures present in the frequency spectrum of the 

noise signals emanating from the targets using spectral estimation 

techniques.  

3.6.1.1 Spectral Features 

A totally random process with unknown features is normally 

modelled as a Gaussian random process for decision making purposes.  

Though the features are unknown, the receiver can have a rough 

knowledge of the spectral region that the signals may occupy, so that band 

limiting filters turn out to be a very powerful tool for regenerating the noise 

signal, devoid of noise power outside the predicted spectral region.  

This section presents a summary of some of the features that can be 

computed from the spectrum of a signal [89].  

Spectral Centroid 

The spectral centroid, which may also be referred to as the spectral 

brightness, gives an indication of the spectral shape and is defined as the 

amplitude-weighted average or centroid of the spectrum. It is a simple, yet 

efficient parameter, estimated by summing together the product of each 
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frequency component of the spectrum and its magnitude, which is further 

normalized by dividing with the sum of all the magnitudes.  

Spectral Range  

The spectral range or bandwidth refers to the range of frequencies 

that are present in the signal. It is computed using the spectral magnitude 

weighted average of the difference between each frequency component and 

the centroid.  

Spectral Roll off 

Another spectral feature, which gives a measure of the spectral 

shape, is the spectral roll off and is defined as the frequency below which 

85% of the magnitude distribution of the signal is concentrated.  

Spectral Flux 

This is a measure of the amount of local spectral change. This is 

defined as the squared difference between the normalized magnitude 

spectra of successive frames. Spectral flux is a measure of how quickly the 

power spectrum of the signal is changing and computed by comparing the 

power spectrum of one frame with that of the previous frame.  

Spectral Slope 

The spectral slope is also identified as one of the prominent 

signatures in the suggested algorithm and refers to the average slope of the 

power spectral density variation. 

Number of Peaks and the Peaking frequencies 

The total number of peaks in the power spectral density variation, 

which will help in identifying the tonal as well as continuous frequency 

components, is treated as one of the significant spectral features. For better 
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results, only the significant peaks above a certain preset threshold value are 

taken into account. The peaking frequencies, rising as well as falling slopes 

of the power spectral response of the target emanations are also considered 

for fine tuning the classification clues.  

3.6.1.2 Bispectral Features 

Conventionally, techniques like power spectral estimation is widely 

being used for the analysis of various acoustic sources in the ocean 

including that of marine origin. However, power spectral analysis is phase 

blind and cannot fully characterize the nonlinear signals as well as the noise 

generating mechanisms. Thus most of the signals are approximated as 

linear and analysis is carried out, which results in loss of many valuable 

information in the signal. As the demand for more detailed and accurate 

analysis as well as modelling has increased, researchers are now mainly 

focusing on techniques based on higher order spectra. 

Analysis using Higher Order Spectra, in particular the third order 

spectra called bispectrum, is being evolved as a powerful technique in the 

field of digital signal processing and allied areas. Bispectrum is a third 

order frequency domain measure, capable of providing more information 

than the conventional tools like power spectrum. While power spectrum 

can efficiently estimate the power of different frequency components of a 

signal, it in general fails to quantify any non-linear interactions between the 

component frequencies. Such interactions induced by the second order 

nonlinearities give rise to certain phase relations called Quadratic Phase 

Coupling (QPC). Bispectral analysis can reveal the presence of phase 

couplings as well as can provide a measure to quantify such couplings. 

Bispectrum is the two-dimensional Fourier Transform of the 

expected value of a signal at three time points. The use of bispectrum is 
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highly motivated by the fact that it can provide information regarding 

deviations from Gaussianity as well as presence of nonlinearities and phase 

information..  In situations where the stationary signals has non-Gaussian 

properties and the additive noise process is stationary Gaussian, the use of 

bispectral analysis become advantageous in estimating the signal features. 

Such an analysis is important, since all periodic, quasi-periodic as well as 

many of the signals emitted from various machineries and mechanical 

systems can be considered as non-Gaussian. 

Bispectral analysis can play a key role in the analysis of acoustic 

noise sources. A normalized form of bispectrum, called the bicoherence is 

found to be more appealing since its variance is independent of the energy 

content of the signal. Analysis of noise data wave forms generated by the 

noise sources in the ocean using bicoherence can reveal the deviation of the 

signals from Gaussianity as well as linearity, which is usually hidden in the 

traditional spectral analysis. Such information may be effectively utilized 

for generating certain target specific features, which can aid in the 

identification and classification of underwater targets  

3.6.2 Compilation of Knowledge Base  

The performance of the classifier relies on the target features 

available in the knowledge base. To generate the features of a target, the 

long-term spectra of the specific target class are to be collected and 

averaged.  The average spectrum so obtained is the characteristic spectrum 

for the specific target class or type under consideration. 

The information bearing signals sensed by the hydrophone array, on 

an average, is white in nature, comprising of a wide range of frequencies.  

By computing the noise spectral level, over the available frequency range, 
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one can infer the nature of the noisy target and by correlating this 

information with the available classification clues, it is possible to 

effectively identify the targets, within the limits of the variances of the 

classification clues. 

3.6.3 Decision making 

3.6.3.1 Feature Vector 

A feature vector is an n-dimensional vector of numerical features 

that represent an object and facilitates processing and statistical analysis. 

The vector space associated with these vectors is often called the feature 

space. In general, feature extraction involves simplifying the amount of 

resources required to describe a large set of data accurately. When 

performing analysis of complex data, one of the major problems stem from 

the number of variables involved. Analysis with a large number of 

variables generally requires a large amount of memory and computational 

power. In order to reduce the dimensionality of the feature space, a number 

of dimensionality reduction techniques can be employed. The feature 

extraction is a generic term for methods of constructing combinations of 

the variables to override these problems while describing the data with 

sufficient accuracy. 

3.6.3.2 Feature Selection 

Upon extracting a set of features, which forms the basis for 

classification, only those features are selected, that can indeed improve the 

performance of the classifier.  This process, known as feature selection, 

may lead to loss of information and is in many cases based on singular 

transformations. The feature selection process is significant because of the 

following reasons.  



Underwater Target Localization, Tracking and Classification 

 75 

More specific features are collected together in order to reduce 

noise generated by irrelevant features. Many classifiers are sensitive to 

irrelevant features, and will degrade their performance when such features 

are included. Distance based classifiers, such as the ones used in this work, 

are particularly sensitive to this. If a random feature is included, it will 

contribute to the distance measure just as much as any other feature. If the 

features were not scaled, they may contribute even more than a relevant 

feature. Thus, due to this distortion, a pattern may appear as similar to 

patterns of a different class. 

By selecting the relevant features, the risk of over fitting the 

training data can be reduced. The larger the number of features used, the 

more detailed the classifier will be. But if a classifier has too many degrees 

of freedom, it may adjust itself perfectly to the training data, but perform 

poorly when used with other data. By reducing the number of features, and 

thus the degrees of freedom of the classifier, it is possible to improve 

generalization for a given scenario.  

The classifier made computationally feasible by selecting 

appropriate features. The selection of too many features will demand 

substantial computing power for the purpose of feature extraction, training 

as well as classification process. Hence, the smaller the number of features 

the lesser will be the computational complexities of the classifier.  

Thus, the classification function operates in a multidimensional 

space formed by the various components of the feature vector. For the 

purpose of classification, an efficient inference system, capable of 

performing template matching by correlating the generated target features 

with the feature components available in the knowledge base, has to be 

realized. The classification decision becomes too hard and inappropriate if 
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too many features are considered for the decision making. The practical 

methods for the classification always involve a heuristic approach intended 

to find a good-enough  solution to the optimization problem.  

3.6.3.3 Euclidean Distance Model based Identifier 

A classifier system for identifying the noise sources in the ocean 

using the target specific features extracted from the noise emissions needs 

to be implemented for alleviating the inefficiencies in the operator assisted 

classification system. Though signal analysis can be carried out even in the 

time domain, most of the target specific signatures are extractable from the 

frequency domain representation
 
and its variants. The process of feature 

extraction can be carried out through various signal processing techniques, 

so that the raw data is transformed into new data sets that can be used by 

the classifier for the purpose of target identification.  

A simple and efficient classifier system could be implemented  to 

find out the nearest match using Euclidean distance model, making use of 

the feature vector. The weights for the feature vector components have 

been selected based on heuristics, the knowledge gained from the training 

examples as well as trial and error procedures. The Euclidean distance 

between the feature vectors of the unknown target and that of the various 

targets in the knowledge base is computed for the purpose of feature vector 

based classification. Normalization of vector components is done by 

standard deviation or the range of the features, across the knowledge base. 

After normalization, each feature is weighted in proportion to its 

significance in the similarity estimation. 
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3.7 Platforms  Used: 

3.7.1 AutoLISP   

 AutoLISP is a dialect of Lisp programming language built 

specifically for use with the full version of AutoCAD, which is a software 

application for computer aided design (CAD) and drafting, developed by 

Autodesk. The software supports both 2D and 3D formats. AutoLISP is a  

 dynamically scoped, dynamically typed list of programming dialect, 

records definition facilities, arrays, functions with variable number of 

arguments or let bindings. Aside from the core language, most of the 

primitive functions are for geometry, accessing AutoCAD's internal DWG 

database, or manipulation of graphical entities in AutoCAD. AutoCAD 

loads AutoLISP code from .LSP files. AutoLISP code can interact with the 

user through AutoCAD‟s graphical editor by use of primitive functions that 

allow user to pick points, choose objects on screen, input numbers and 

other data. AutoLISP also has a built-in GUI mini-language, the Dialog 

Control Language, for creating modal dialog boxes with automated layout, 

within AutoCAD. AutoLISP is one of a number of Application 

Programming Interfaces (APIs) built into AutoCAD but it is probably the 

easiest to use and therefore the most productive.   

3.7.2 MATLAB  

MATLAB, which is developed by MathWorks, is a numerical 

computing environment and fourth-generation programming language. 

MATLAB allows matrix manipulations, plotting of functions and data, 

implementation of algorithms, creation of user interfaces, and interfacing 

with programs written in other languages.  Although MATLAB is intended 

primarily for numerical computing, an optional package, Simulink, adds 

graphical multi domain simulation and Model Based Design for dynamic 
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and embedded systems. MATLAB is widely used in academic and research 

institutions as well as industrial enterprises.  

3.8  Summary 

The methodology used for the development of underwater target 

localization, tracking and classification system, and the elaborate  

description of the three buoy  system scenario including the approaches for 

the localization are detailed in this chapter. The Kalman filter theory, which 

is used for the refinement of the localization estimates and target tracking, 

is also looked into. The feature vector extraction methods as well as the 

classification algorithm used for the detection of unknown underwater 

targets are also discussed. The platforms used for the simulation purposes 

are also briefly touched upon. 
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CHAPTER 4  

SIMULATION OF TARGET LOCALIZER 

Model studies on the localization of underwater targets have been 

presented in this chapter. Simulation of a localizer system comprising of 

three buoy systems, each consisting of steerable hydrophone arrays and 

support electronics, positioned at the vertices of a triangle, is implemented 

to estimate the position of the target. The system picks up the noise 

emanations from the targets and the hydrophone arrays of each node gets 

aligned to the direction of maximum signal arrival. Using the Direction of 

arrivals for the three hydrophone arrays, the distances of the target from 

the three nodes are computed. Three different approaches for generating 

the localization estimates based on the mathematical formulae and 

software platforms have been implemented. 

4.1 Introduction 

 Most of the underwater surveillance systems rely on the acoustic 

signals emanating directly from the targets of interest. The ultimate 

requirement of surveillance systems is the precise position fixing and 

ranging of targets, making use of the real time data captured by the 

hydrophone arrays, with the help of suitable algorithms.  In underwater 

scenario, certain inherent errors due to the characteristics of the medium 

like reverberation, multipath effects, scattering and fading can affect the 

overall performance of the system. This is highly prominent in underwater 

scenario especially when the system is passive. These errors can be 

minimized to some extent by incorporating appropriate models of the 
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channel characteristics. An acoustic network of at least two nodes can be 

used for the localization of underwater targets. Additional nodes placed 

non-collinear with respect to the position of the target can significantly 

improve the accuracy of the measurement. This chapter discusses the 

simulation models for localization of underwater targets using different 

approaches for range estimation using Haversine and Vincenty formulae. 

The Haversine formula for great circle distance calculation assumes the 

earth‟s geometric plane to be spherical whereas Vincenty formula assumes 

the plane to be elliptical. 

4.2 Simulation of Target Localizer 

 The minimally configurable system consists of three, mechanically 

steerable hydrophone arrays of high sensitivity and directivity as well as 

the required electronic modules for carrying out the surveillance operations 

using the hydrophone arrays, processing the received signals, managing the 

communication and power supply. The arrays gather the geographical 

positions with the help of the GPS receiver attached to them. Buoys 

comprising of the arrays are deployed at the vertices of a triangle. The 

buoys are deployed in the ocean with the help of appropriate mooring 

mechanisms. The hydrophone arrays can be steered in such a way that, 

they orient themselves to the direction of maximum signal energy, from the 

targets of interest. 

For estimating the direction of arrivals to each array accurately, it is 

essential to have a reference orientation for the hydrophone array system. 

The geomagnetic meridian is considered as the reference axis and the 

angular position information of the hydrophone array is gathered with 

respect to the magnetic meridian using a magnetic compass.  Initially, the 

hydrophone arrays are aligned along the reference axis. When target 
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emanations are received, the hydrophone arrays get steered to the direction 

of maximum signal energy as depicted in Fig. 4.1. The angular position 

information of the hydrophone arrays are used to estimate the position of 

the target using the triangulation technique. To gather the direction of 

maximum signal arrival from the target of interest, the array is 

mechanically steered through small steps and in each step the signals are 

captured and analyzed using signal processing techniques.  

                    

Fig.  4.1  Horizontally deployed sensor arrays get aligned to the DOAs 

 when the target enters in the vicinity of the sensor network 

4.3 Target Localization Approaches 

Target localization refers to determining the position of the target 

near the deployed buoy system with reference to the earth‟s coordinate 

system.  The GPS modules integrated in the buoy electronic system of the 

three buoys provide the location of the buoys with reference to the earth‟s 

magnetic meridian. Direction of Maximum Arrival of the noise data 

waveforms from the target can be computed by the buoy electronics.  

Applying geodetic latitude/longitude distance calculations, trigonometric 

and basic geometric laws, the position of the target with reference to 
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earth‟s coordinate system can be computed.  Three different approaches 

based on the mathematical formulae and software platforms are used for 

the computation.  

The approaches and mathematical formulae used are: 

Approach 1. Using Haversine formula for great-circle distance on  

    AutoLISP 

(i) Haversine formula 

(ii) Sine Law 

(iii) Inverse Trigonometric Ratios 

Approach 2. Using Haversine formula for great-circle distance on  

  MATLAB 

(i) Haversine formula 

(ii) Sine Law 

(iii) Cosine Law 

(iv) Inverse Trigonometric Ratios 

Approach 3. Using Vincenty formula for ellipsoids on MATLAB 

(i) Vincenty Direct formula for Ellipsoids 

(ii) Vincenty Inverse formula for Ellipsoids 

(iii) Trigonometric Ratios 

(iv) Inverse Trigonometric Ratios 

(v) Sine Law 

(vi) Cosine Law 
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4.3.1 Range Estimation using Approach 1 

The GPS modules attached with the system give the latitude and 

longitude values of the locations of the hydrophone arrays [93-95]. If 

latitude and longitude values of two locations on the earth are known, the 

distance and bearing between the locations can be computed as detailed 

below. If La1, La2, Lo1 and Lo2 are the latitude and longitude values of the 

two locations, then, 

 𝛥𝐿𝑎 =  2La − 1La   and  𝛥𝐿𝑜 =  2Lo − 1Lo  

If R is the radius of the Earth, then the distance, d between the two 

locations can be computed using the Haversine formula as   

cRd .        (4.1) 

where      
)1(

tan2 1

a

a
c


   

and 𝑎 is computed as    
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The bearing, θ between the two locations with respect to the true north of 

the Earth can be computed as 

x

y1tan         (4.2) 

Where 2cos.sin LaLoy    and        

  LoLaLaLaLax  cos.cos.sinsin.cos 2121  
 

If Lan and Lon  are the latitude and longitude values of one node, the 

latitude of the target,  Lat  is given by  
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and the longitude of the target,  Lot  is given by, 
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               (4.4) 

The longitude and latitude values of the target position can be 

computed, if the distance to the target is known, using the equations (4.3) 

and (4.4). 

The procedures involved in the estimation of the range of the target 

from each of the nodes are described below. 

4.3.1.1 Computation of DOA 

The Direction of Maximum Arrival of the signal, with respect to the 

geomagnetic meridian can be estimated by comparing the power levels at 

different orientations of the hydrophone array. As the array is linear and 

broad side in nature and is mechanically steered, it will receive maximum 

signal energy when the acoustic axis of the array is along the line joining 

the target and the centre of the array. The direction of maximum signal 

arrival can be obtained by computing the received power levels at various 

orientations of the array. Knowing the DOAs and the angles and distance 

between the nodes, the position of the Target can be computed using 

triangulation techniques. The flowchart for estimating the position of the 

target is depicted in Fig. 4.2.  

4.3.1.2 Triangulation Technique  

Triangulation technique can be adopted for estimating the range of 

the target from the distance between the two buoys furnished by the GPS 

and the angle between the line joining the nodes and the direction of 

arrivals.   
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Fig.  4.2  Flowchart for localization of the Target 

 Consider a section of the buoy system, comprising of two buoys 

and the target as shown in Fig. 4.3, that perfectly position the target 

according to the maximum signal arrival criterion or the direction of arrival 

of noise waveforms that contain the desired band of frequencies as 

specified by the shore station system. The angles corresponding to this 

position be represented as 1 and 2, which refers to the angular positions 

of the hydrophone arrays in Nodes B1 and B2 respectively, when the 
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maximum signal arrival condition is satisfied.  The known distance D 

between B1 and B2 could be corrected with the help of GPS receivers, 

whenever required.              

 

Fig.  4.3  The proposed scenario for computing the ranges using two nodes 

Knowing the values of 1, 2 and , the distance  R1 and R2 of the 

target from the Buoys B1 and B2 can be computed. Similarly, using the 

other sections of the sensor system, R1 and R3 as well as R2 and R3  can also 

be computed.   From these, the distance of the target from B1, B2 and B3 are 

obtained, using which the position of the target can be estimated. 

4.3.1.3 Simulation  

 Simulation of this model is carried out using AutoLISP 

programming.  The buoys are positioned by calculating the distances and 

bearings between them by using Haversine formula.  All the bearings 

between the buoys are with respect to the true north.  Then, for the 

simulation of the source, Inverse beamforming is used to generate the 

appropriately delayed signals.  The directions of maximum signal arrivals 

towards each buoy are estimated by taking the power spectrum of the 

signals and hydrophone arrays are oriented to that direction.  After getting 

  B1   B2 
D 

1 
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 R2  
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the three DOAs from the three arrays, distances from the buoys to the 

target are calculated using triangulation techniques.   

 The simulation starts at an assumption that the GPS readings of the 

three Buoys are available and calculates the distances and bearings 

between the three Buoys from the corresponding GPS values and places the 

Buoys along with the hydrophone arrays in position.  The hydrophone 

arrays (HA) are aligned to the magnetic axes, here x- axis of the graphical 

plane. Now a noise source is introduced as target, and the hydrophone 

arrays automatically rotate and aligned along the acoustic axes.  The 

angular movements of the hydrophone arrays are noted and these angular 

measurements are used to estimate and display the absolute positions and 

the distances to the target from the buoys. The simulation is done using 

AutoLISP programming which is a supplement to AutoCAD. The buoy 

distances are verified with Google Earth and distances to the target from 

the buoys are verified with scaled drawing.  

Algorithm for Simulation of Localizer in AutoLISP 

  START  

       Create Diagrams for Buoys, HAs and Target 

   LABEL1 :   Read GPS values for the Buoys 

         Compute the Buoy Positions  

         Place Buoys and HAs in the Computed Positions 

         Align HAs to Magnetic Meridian  

   LABEL2 :   Insert Target in the vicinity of the Buoys  

         Align Hydrophone Arrays towards Target  

         Find the DOAs 

         Estimate the Position of the Target  
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                    To change Target Position, goto LABEL2 

         To repeat Simulation, goto LABEL1 

  STOP 

4.3.1.4 Results and Discussions 

The proposed model for the localization of targets using the 3-node 

buoy system has been simulated in AutoLISP environment. The GPS data 

for the three hydrophone arrays are furnished as the input of the program, 

which computes the node to node distances and using the directions of 

arrivals, depending on the position of the target, the range of the target 

from the nodes are computed. Fig. 4.4  depicts the GUI for setting  the 

position data of the nodes and the estimated distances are generated as 

shown in the screen shot furnished in Fig. 4.5. 

 

Fig.  4.4  GUI for furnishing the latitude and longitude values of the 

three Nodes 

Fig. 4.6  depicts the scenario in which the hydrophone arrays of all 

the nodes are aligned to the direction of the geomagnetic meridian, just 

before commencing the surveillance operation, while Fig. 4.7 depicts the 

case in which the hydrophone arrays have got aligned to the direction of 

maximum signal arrival, from the target of interest. 
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  Fig.  4.5  Screen shot of the estimated distances and bearings from 

the GPS data 

 

Fig.  4.6  Initial alignment of the arrays 

The estimated directions of the maximum signal arrival are 

furnished in the screen shot shown in Fig. 4.8 while Fig. 4.9 depicts the 

screen shot of the position estimates of the target from the three nodes. 
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Fig.  4.7  Arrays aligned to  the DOA 

 

            Fig.  4.8  Estimated DOAs for the three hydrophones 

 

             Fig.  4.9  Estimated Position of the Target 

4.3.2  Range Estimation using Approach 2 

 Approach 2 uses the Haversine formula for great circle distance and 

different triangulation techniques.  Fig. 4.10  shows the scenario of the 

three buoys and the target across the earth‟s geomagnetic plane.  
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Fig.  4.10  Scenario depicting the buoys and the target  

 As depicted, B1, B2 and B3 are the three buoys with the GPS 

coordinates as (La1, Lo1),   (La2, Lo2) and (La3, Lo3) respectively.  The 

known parameters are La1, La2, La3, Lo1, Lo2, Lo3 and the direction of 

arrival angles, 1, 2 and 3 respectively.  The radius of Earth, R is 

assumed as 6371 km approximately. 

4.3.2.1 Computation   

Let, 𝛥La = La2 – La1 and 𝛥Lo = Lo2 – Lo1 

a = sin
2
 (La/2) + cos (La1) cos (La2) sin

2
 (Lo/2)    (4.5) 

c = 2 tan
-1

 [√a/ √(1-a)]      (4.6) 

 d = R*c {Haversine Formula}     (4.7) 

where R is the radius of Earth 
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d1, d2 and d3 are the distances between the buoys which can be computed 

using  (4.7) 

y = sin (Lo) cos (La2)             

x = cos (La1) sin (La2) – sin (La1) cos (La2) cos (Lo)    

 = tan
-1

 (y / x)  {Haversine Formula}          (4.8) 

andare the bearings of the buoys with respect to the reference 

which can be computed using  (4.8) 

1 = cos
-1

 [(d1
2
 + d3

2
 – d2

2
) / (2d1d3)] {Cosine Law}    (4.9)

2 and 3 are calculated using  (4.9) 

TB12 = 1 - 1 + 2 - 1 + 3 – 180                     (4.10)     

  [Angle B1TB2 in diagram] 

TB23 = - 2 + 2 - 3 - 1 +2                       

 

   [Angle B2TB3 in diagram] 

TB13 = - 3 -1 + 3 - 2 + 3                

  [Angle B1TB3 in diagram] 

Distance towards the target from B1 computed using triangle B1TB2 

is r11 and distance towards the target from B1 computed using triangle 

B1TB3 is r12 

r11 = d1 sin (2 –1) / sin (TB12) {Sine Law}            (4.8) 

 r12 = d3 sin (3 – 3 + 2) / sin (TB13)                

 r21 = d1 sin (1 +3 – 1) / sin (TB12)       

r22 = d2 sin (3 – 2) / sin (TB23)  

r31 = d2 sin (2 – 1 – 2) / sin (TB23)                         
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r32 =d3 sin (3 –1) / sin (TB13)               

Distance of the target from the three buoys are computed as: 

 R1 = (r11 + r12) / 2  

 R2 = (r21 + r22) / 2 

R3 = (r31 + r32) / 2       

The target coordinates are computed using,    
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4.3.2.2 Algorithm for Target Localization using Approach 2 

 

START 

Read the GPS coordinates of the buoys and DOAs of the target  

Do necessary conversions on  the inputs for computation  

Find the distances between the buoys using Haversine formula 

Find the angles between each of the buoys using the Cosine law   

Apply geometric rules and trigonometric laws 

Find the various angles of the triangle 

Compute the distances to the target  by applying Sin law  

Take the mean of two sets of distances 

Compute the target coordinates  

END 
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4.3.3 Range Estimation using Approach 3 

 The digital signal processing unit of the buoy electronics estimates 

the direction of maximum arrival of the signals captured by the hydrophone 

array associated with each of the buoys.  The DOA furnished by the buoy 

system gives the orientation of hydrophone array with respect to the 

geomagnetic meridian.  The GPS system integrated with the buoy 

electronics provide the information about the location of the buoys.  The 

distances between the buoys are computed from the GPS data using the 

Vincenty formula for ellipsoids [95-98].  

4.3.3.1 Vincenty formulae for Ellipsoids 

  In 1975, Thaddeus Vincenty published a geodesic computation 

technique called the Vincenty distance formulae for ellipsoids.  It is an 

efficient technique used for GPS based computations involving parameters 

relating to the earth‟s latitude, longitude and bearing angles with reference 

to the earth‟s magnetic poles.  

The following two Vincenty distance formulae are in widespread use.  

 Vincenty Direct formula  

 Vincenty Inverse formula     

Notations 

a, b, Semi major axis and semi minor axis of ellipsoid 

f,  flattening = (a-b)/a 

φ, geodesic latitude, positive north of the equator  

L, difference in longitude, positive east 

s, length of the geodesic 

𝛼1, 𝛼2,  azimuths of the geodesic, clockwise from north  𝛼2 in the 

 direction P1 P2 produced 
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𝛼, azimuth of the geodesic at the equator  

𝑢2 = 𝑐𝑜𝑠2 α (𝑎2  − 𝑏2 )/𝑏2 

𝑈, reduced latitude, defined by tan 𝑈 =  (1 − 𝑓) 𝑡𝑎𝑛 φ 

𝜆, difference in longitude on an auxiliary sphere 

𝜎 , angular distance P1 P2 on the sphere.  

𝜎1 , angular distance on the sphere from the equator to  P1 

 𝜎𝑚 , angular distance on the sphere from the equator to the 

 midpoint of the line. 

Direct formula 

𝑡𝑎𝑛 𝜎1 = 𝑡𝑎𝑛 𝑈1 / 𝑐𝑜𝑠 ∝1     (4.14) 

𝑠𝑖𝑛 ∝ = 𝑐𝑜𝑠 𝑈1 𝑠𝑖𝑛 ∝1     (4.15) 

𝐴 = 1 +
𝑢2

16384
 4096 +  𝑢2  −768 + 𝑢2  320 − 175𝑢2     (4.16) 

𝐵 =
𝑢2

1024
{256 +  𝑢2  −128 + 𝑢2  74 − 47𝑢2   }   (4.17) 

2𝜎𝑚 =  2𝜎1 +  𝜎       (4.18) 

𝛥𝜎 = 𝐵 𝑠𝑖𝑛 𝜎  {𝑐𝑜𝑠 2𝜎𝑚 +  
1

4
𝐵[𝑐𝑜𝑠𝜎 

 −1 + 2 𝑐𝑜𝑠 2 2𝜎𝑚 −
1

6
 𝐵 𝑐𝑜𝑠 2𝜎𝑚  (−3 + 4 𝑠𝑖𝑛2 𝜎)(−3 +

4 𝑐𝑜𝑠2  2𝜎𝑚  )]}       (4.19) 

𝜎 =
𝑠

𝑏𝐴
+ 𝛥𝜎        (4.20) 

Equations (4.18), (4.19) and (4.20) are iterated until there is a 

negligible change in 𝜎. The first approximation of 𝜎  is the first term of 

(4.20).   
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𝑡𝑎𝑛  𝜑2  

=  
𝑠𝑖𝑛 𝑈1 cos 𝜎 + cos 𝑈1 sin 𝜎 cos ∝1

 1 − 𝑓 [𝑠𝑖𝑛 2  ∝  + 𝑠𝑖𝑛 𝑈1 sin  𝜎 −  𝑐𝑜𝑠 𝑈1  cos  𝜎 cos ∝1   2] 
1

2

  

        (4.21) 

tan  𝜆 =  
sin  𝜎 sin  ∝1

cos  𝑈1  cos  𝜎−𝑠𝑖𝑛 𝑈1 sin  𝜎 cos ∝1
   (4.22) 

𝐶 =  
𝑓

16
 𝑐𝑜𝑠 2 ∝ [4 + f (4 − 3 cos2 ∝)]    (4.23) 

𝐿 =  𝜆 −  1 − 𝐶 𝑓 sin ∝ { 𝜎 + 𝐶 sin 𝜎[ cos  2𝜎𝑚 +  𝐶 cos 𝜎 (−1 +

                 2cos22𝜎𝑚)]}              (4.24)      

tan ∝2 =  
sin ∝

−𝑠𝑖𝑛 𝑈1 sin  𝜎+𝑐𝑜𝑠  𝑈1  cos  𝜎 cos ∝1 
  (4.25) 

Inverse Formula 

𝜆 = 𝐿 (𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛) 

𝑠𝑖𝑛 2 𝜎 =

(𝑐𝑜𝑠 𝑈2 𝑠𝑖𝑛  𝜆)2 + (𝑐𝑜𝑠  𝑈1 𝑠𝑖𝑛  𝑈2 – 𝑠𝑖𝑛 𝑈1  𝑐𝑜𝑠 𝑈2 𝑐𝑜𝑠 𝜆)2 (4.26) 

𝑐𝑜𝑠 𝜎 = 𝑠𝑖𝑛 𝑈1  𝑠𝑖𝑛 𝑈2 + 𝑐𝑜𝑠 𝑈1 𝑐𝑜𝑠 𝑈2 𝑐𝑜𝑠 𝜆  (4.27) 

𝑡𝑎𝑛 𝜎 = sin 𝜎 / 𝑐𝑜𝑠 𝜎      (4.28) 

𝑠𝑖𝑛 ∝ =  𝑐𝑜𝑠 𝑈1  𝑐𝑜𝑠𝑈2 sin 𝜆/ sin 𝜎    (4.29) 

cos  2𝜎𝑚 = 𝑐𝑜𝑠 𝜎 − 2  sin 𝑈1 𝑠𝑖𝑛𝑈2 /𝑐𝑜𝑠2 ∝     (4.30) 

𝜆  is obtained by equations (4.23) and (4.24). This procedure is iterated 

starting with equation (4.26)  until the change in 𝜆 is negligible. 

𝑠 = 𝑏𝐴 𝜎 −  𝛥𝜎  ,           (4.27) 
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where 𝛥𝜎 comes from equations (4.16), (4.17) and (4.19) 

tan ∝1 =  
cos 𝑈2 sin  𝜆

cos 𝑈1 𝑠𝑖𝑛𝑈2  −sin 𝑈1 𝑐𝑜𝑠𝑈2  𝑐𝑜𝑠𝜆  
    (4.28) 

4.3.3.2 Vincenty Direct Formula 

 Given a geodesic point (φ1, λ1) on the surface of the ellipsoid along 

with the starting azimuth α1 and geodesic distance ‘s’, Vincenty direct 

formula can be used to find the destination point (φ2, λ2) and reverse 

azimuth α2 of the geodesic at (φ2, λ2). For example, given the starting 

coordinate X(10°02'43"E, 76°19'30"N), distance to reach destination Y, 

XY = 4277.5m and bearing angle from starting point to destination,  = 

94.25°.  On applying Vincenty direct formula, the destination coordinate Y 

is computed as  (10°02'32.67", 76°21'50"), as shown in Fig. 4.11. 

 

Fig.  4.11  Vincenty Direct Formula  

4.3.3.3 Vincenty Inverse Formula  

Given two geodesic points (φ1, λ1) and (φ2, λ2) on the surface of the 

ellipsoid where φ refers to the latitude and λ refers to the longitude, 

Vincenty inverse formula can be used to find the geodesic distance „s‟  

between them and the forward azimuth α1 and reverse azimuth α2 of the 

geodesic at (φ1, λ1) and (φ2, λ2) respectively.  For example, given two GPS 

coordinates, A(10°02'43", 76°19'30") and B(10°02'08", 76°19'54").  

Vincenty inverse formula calculates distance AB and finds the angle „‟ 
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which is the deviation of line AB from magnetic North in the North – 

South plane through East of the earth‟s magnetic field. On applying 

Vincenty inverse formula, the distance AB is computed as 1300.198 m as 

illustrated in Fig. 4.12. 

 

Fig.  4.12  Vincenty Inverse Formula  

The sine law can be used to determine the angles of the triangle 

formed by the three buoys and knowing the distances between the buoys 

computed from the GPS values, the cosine law can be used to compute the 

distances between the target and the buoys.   

4.3.3.4 Algorithm for Target Localization using Approach 3  

START 

Read the GPS coordinates of the buoys and DOAs of the target  

Do necessary conversions for  the inputs   

Find the distances between the buoys using Vincenty Inverse 

 formula 

Find the angles between each of the buoys  using the Cosine  law  

Apply geometric rules and trigonometric laws 

Find the various angles of the triangle 

Compute the sides of the triangles using Sin law 

Take the mean of two sets of distances 

Compute the target coordinates using the  Vincenty Direct formula 

END 

N 

S 

A (10°02'43"E,        

    76°19'30"N) 

B 

(10°02'08"E, 

 76°19'54"N) 

 
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4.3.3.5 Simulation 

For the simulation, the known data are GPS location of each buoys 

and the DOAs and the parameters to be computed are distances between the 

three buoys, angles between the lines joining the buoys, distance of the 

target from each of the buoys and the target coordinates. The GUI for the 

simulation of the localizer is given in Fig. 4.13. 

Input to the Localizer 

GPS coordinate of buoy B1 =  (10°02'43'',76°19'30'') 

GPS coordinate of buoy B2 =  (10°02'08'',76°19'54'') 

GPS coordinate of buoy B3 =  (10°02'00'',76°19'20'') 

DOA of buoy B1 =  51.37° 

DOA of buoy B2  =  68.59° 

DOA of buoy B3 =  66.07° 

Output of the Localizer 

Distance between Target and Buoy B1,  =  4277.5m 

Distance between Target and Buoy B2,  =  4410.3m 

Distance between Target and Buoy B3,  =  3354.7m 

Coordinates of Target  =  (10°04'10''N, 76°21'20''E) 
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Fig.  4.13  GUI for the Simulation of  localizer 

4.4 Results and Discussions   

 The results of simulation studies carried out for localizing 

underwater targets using the Vincenty, Haversine and triangulation 

techniques have been consolidated and tabulated in Table 4.1.  Angular 

position values for all the computations are considered with reference to 

the earth‟s magnetic meridian.  The Haversine formula for great circle 

distance computation assumes that the earth‟s geometric plane is spherical, 

whereas the Vincenty formula assumes that the plane is elliptical. As an 

attempt to minimise the error variances, it is proposed to make use of 

Kalman filter approach for generating a fairly acceptable localization 

estimate.  
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Table 4.1 Consolidated Simulation Results using the Three different 

Approaches 

Parameters 

Haversine 

Approach 

(AutoLISP) 

Approach using 

Haversine and 

triangulation 

techniques 

Vincenty 

Approach 

Distance between 

Target and Buoy 

B1 

4.39 km 4.46 km 4.28 km 

Distance between 

Target and Buoy 

B2 

4.30 km 4.55 km 4.41 km 

Distance between 

Target and Buoy 

B3 

3.34 km 2.91 km 3.35 km 

Latitude of Target 10°04'11"N 10°04'13"N 10°04'10"N 

Longitude of 

Target 
76°21'22"E 76°21'24"E 76°21'20"E 

 

(The GPS coordinates of B1, B2 and BC are (10°02'43"N, 76°19'30"E), 

(10°02'08"N, 76°19'54"E) and (10°02'00"N, 76°19'20"E) respectively)  

4.5 Summary 

 A model for localization of underwater target has been simulated 

using MATLAB and AutoLISP environments. The results have been 

verified using GOOGLE EARTH and scaled drawings. All the approaches 

for range estimation  have been implemented and the results are 

consolidated. The methodology adopted in this chapter has been used to 

localize the target within the field of view of hydrophone arrays, which 

capture the signals emanating from the target. 
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CHAPTER 5  

PROTOTYPE LOCALIZER  

A prototype system for the localization of unknown underwater targets 

using three moored surface buoy systems is presented in this chapter. 

Each buoy consists of steerable hydrophone array and support electronics 

for control and processing. The hydrophone arrays of the localizer system 

pick up the noise emanations from the targets and the arrays of each node 

gets aligned to the direction of maximum signal arrival. Using the 

direction of arrivals at the three hydrophone arrays, the distances of the 

target from the three nodes are computed. The prototype localizer model 

has been field tested and the validation tests yielded encouraging results 

within the limits of theoretical approximations and measurement errors, 

which necessitated the need for refining the estimates using Kalman filter.   

5.1 Introduction 

 An approach for the localization of underwater targets using a 

minimally configurable three buoy system has been prototyped and 

presented together with performance validation results from the field trials. 

This prototype three buoy automated system aids in localization, tracking 

and classification of underwater targets using passive listening concepts 

and target identification techniques.  The acoustic signals sampled by the 

sensors at three spatially and non-collinearly distributed locations in the 

ocean are analyzed for the decision making. The system comprises of three 

fixed surface buoy systems, each consisting of steerable hydrophone arrays 

and support electronics, positioned at the vertices of a triangle. The sensor 
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system picks up the noise emanations from the targets of interest and the 

hydrophone arrays of each node gets aligned to the direction of maximum 

signal arrival (DOA). Using the DOAs measured at each buoy system, the 

distances of the target from the three nodes are computed using the 

triangulation technique.  The unpredictable errors in the estimates of 

direction of arrivals due to the recoiling effect of the rotating hydrophone 

arrays and the instabilities of the buoy systems caused by surface wave etc. 

will affect the accuracy of the localization estimates. These inaccuracies 

are resolved to a certain extent by smoothing the estimates using the 

concepts of Kalman filters. 

5.2  Methodology  

 An acoustic network of at least two nodes can be used for the 

localization of underwater targets. Additional nodes placed non-collinear 

with respect to the position of the target can significantly improve the 

accuracy of the measurement. A three node network deployed as minimally 

configurable autonomous buoy systems, each consisting of a mechanically 

steerable hydrophone array of high sensitivity and directivity along with 

necessary support electronics, moored in such a way as to form a triangle, 

has been implemented for carrying out the ocean surveillance operations. 

The buoy systems are capable of initiating the surveillance operations 

when the ambient acoustic activity crosses a threshold limit. Since the 

buoys are meant to operate in remote areas of the ocean, it has been 

powered using solar panels, with adequate backup and suitable charging 

circuits. 

 The buoy systems remain in dormant mode to conserve the limited 

power available onboard.  An Omni directional hydrophone element of 

very high sensitivity, which forms a part of the submerged hydrophone 
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system, constantly listens to the ambient noise.  Any approaching target 

adds up to this ambient noise level, which alerts the buoy systems and 

triggers the surveillance operations, once these levels cross a set threshold 

limit.  An alert warning will also be sent to the shore station, indicating the 

activity through an RF link. 

 Initially, all the hydrophone arrays are aligned along a reference 

axis which is the geomagnetic meridian of the Earth.  The hydrophone 

arrays are then mechanically steered through finite steps over the 

horizontal plane and the spectral power of the ambient acoustic noise 

captured by the hydrophone array at each step is computed to obtain a 

pattern of the noise power variation. The power spectra over the horizontal 

plane are then analyzed to find the direction of maximum signal arrival 

using signal processing techniques. The information gathered by the 

onboard GPS of the buoy systems together with the direction of maximum 

signal arrival is passed on to the shore station, where the localization of the 

target is computed using triangulation techniques. The localization 

estimates furnished by the system vary in accordance with the variations in 

the medium and environmental conditions and hence it is appropriate to 

make use of adaptive filters like Kalman filter to generate an efficient and 

effective means to mitigate the errors of random nature. 

The buoy system was field tested in a reservoir. The main objective 

of the field trial was to verify the direction of arrival of each of the buoys 

and hence the localization of the target using the three buoys setup.  The 

trial was conducted using various noise sources including the pre-recorded 

acoustic signals and engine noises. 
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5.2.1 Estimation of Direction of Arrival 

 Estimation of direction of arrival of the noise waveform at two or 

more distinct positions using the buoy system is used to evolve the 

techniques for the localization and tracking of noise sources in the ocean 

using passive listening concepts. The signal processing hardware for 

obtaining the direction of arrival of noise waveforms emanating from the 

target under consideration, making use of the 20-element hydrophone 

array, which is mechanically steered by a hydrophone array controller, 

computes the signal power of a source, within a user selectable band of 

frequencies.  The hardware can be set for various gains, bandwidths and 

integration cycles. The flowchart for extracting the direction of arrival is 

depicted in Fig. 5.1. The direction of maximum arrival of the signal with 

respect to the geomagnetic meridian can be estimated by comparing the 

power levels at different orientations of the hydrophone array. As this 

linear array is broad side in nature and is mechanically steered, it will 

receive maximum signal energy when the acoustic axis of the array is 

along the line joining the target and the center of the array. The direction of 

maximum signal arrival can be obtained by computing the received power 

levels at various orientations of the array.  

5.2.2 Estimation of Range of the Target 

 The GPS modules attached to the buoy electronics give the latitudes 

and longitudes of the locations of the buoy systems.  If latitudes and 

longitudes of two locations on the earth are known, the distance and 

bearing between the locations can be computed and if the direction of 

maximum signal arrival  of two or more nodes is known, the distance to the 

target can be computed using triangulation techniques.  
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Fig.  5.1  Estimation of Direction of Arrival 
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5.3 Specifications of the Buoy System 

 To facilitate the localization, tracking and classification of 

underwater targets, submerged hydrophone arrays should be deployed with 

suitable buoy systems. As the buoy needs specialized requirements for this 

application involving the steering of the submerged hydrophones mounted 

to the gear assembly, a specialized structural buoy design SWAB (Small 

Water plane Area Buoy) has been formulated, conforming to the concept of 

minimizing the water plane area, so that the disturbances that the buoy 

experiences, is brought to the minimum.  

5.3.1 Design Considerations 

The buoy is intended to be a floating platform to house the 

electronic equipments, battery, solar panels, DC motor with shaft and the 

submerged rotating hydrophone array. The basic design requirements are 

listed below.  

 The motions of the buoy due to wave, wind and current action should 

be minimized, especially yaw, roll, heave and pitch in order to 

achieve accurate target tracking  

 The size and structure of the buoy should be optimized such that the 

submerged structural components of the buoy do not cause any 

significant interference to the receiving of acoustic signals.  

 The buoy should have adequate stability in free floating and moored 

conditions. 

 A minimum of 3 buoys are required for accurate target positioning 

and tracking. 

 The cost of the buoy should be minimized. 
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5.3.2 Selection of Buoy Type 

Conical or cylindrical buoys are the easiest to design and fabricate. 

However, such buoys suffer from high motions in waves, especially heave, 

due to the large water plane area. It was therefore decided to adopt a semi-

submersible type buoy, which is relatively transparent to waves and current 

and with a small water plane area. The basic buoy configuration will 

consist of four completely submerged cylindrical floats joined to form a 

square and four partially submerged cylindrical vertical struts and the struts 

provide the required buoyancy. They also act as the support for the 

framework on which the payload and the electronics chamber is mounted. 

5.3.3 Design of the Electronic Chamber 

The payload and the electronics chamber was designed with a view 

to minimizing its size, weight and surface area leading to minimization of 

wind loads, lowering of the overall centre of gravity of the buoy and a 

consequent improvement in stability.  The floor area of the cabin should be 

sufficient to accommodate the electronic equipment, motor and battery. The 

height of the cabin should be sufficient to accommodate the solar panels 

mounted on its sidewalls.  Adequate access to install and maintain the Buoy 

Electronics in the chamber has been provided at the top. 

5.3.4 Sizing of the Floats and Struts 

The diameters of the floats and struts are initially estimated so as to 

provide the required buoyancy, which should be equal the total weight of 

the buoy for equilibrium. The diameters and thicknesses of floats and struts 

are optimized to achieve the design objectives, subject to the constraints of 

buoyancy and stability. The design details, stability considerations as well 

as the mooring details are given in Appendix I. 
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5.4 Buoy Electronics 

The buoy electronics perform the vital task of mechanically steering 

the hydrophone arrays in the submerged buoys for the purpose of 

estimating the direction of arrival of captured signals with the help of the 

hydrophone array controller.  The block diagram of buoy electronics is 

depicted in Fig. 5.2. 

 

Fig.  5.2  Block diagram of Buoy Electronics 

5.4.1 Hydrophone Array  

 The hydrophone array system used in this model comprises of 

20 element linear array [1, 5] and the elements are spaced 15 cm apart, so 

that the total length of the array is approximately 3 meters.  The 
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arrangement of elements in the array is depicted in Fig. 5.3. A hydrophone 

pre-amplifier has been provided at the centre of the array. When 20 

elements are separated with a distance of 15cms and operating at 2500 Hz 

(n = 20, d=15 cm and f=2500 Hz), the generated beam pattern of the array 

is shown in Fig. 5.4, which is more narrower than the beam pattern of the 

10 element linear hydrophone array.  

    

Fig.  5.3  The arrangement of elements in the 20-element hydrophone array 

       

Fig.  5.4  The beam pattern of the 20-element and the 10-element 

hydrophone arrays at 2500 Hz 

5.4.1.1 Specifications of the hydrophone array  

Number of Elements  : 20 

5 cm  

5 cm  

300  cm 

Omni 

directional 

element 

3 cm Pre-amplifier 
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Element Dimensions  : Cylindrical with 30mm diameter &  

         26mm height  

Receiving Sensitivity  : -200dB re 1 V/μPa 

Frequency Response  : 5Hz to 10 kHz  

Preamplifier Response : 5Hz to 12 kHz  

5.4.2 Hydrophone Array Controller  

The hydrophone array controller (HAC) controls the angular 

position of the hydrophone array, which is horizontally suspended with 

help of a Brushless DC Motor and a Gearbox. The hydrophone array can be 

mechanically steered through 0˚ to 360˚ in steps of 1˚ with reference to the 

direction of the geomagnetic meridian using the hydrophone array 

controller. In each position, the noise emissions are captured and processed 

by a processing module so as to gather the direction of maximum signal 

arrival. The block diagram of the hydrophone array controller and noise 

acquisition system is shown in Fig. 5.5. The pictorial representation as well 

as the photograph of the gearbox assembly are given in Fig. 5.6 and 

Fig. 5.7. The DSP enabled microcontroller manages and controls the 

hydrophone array controller function. 

 

 

Fig.  5.5  Block diagram of the HAC and noise acquisition system 
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 The hydrophone array subsystem also houses an omni-directional 

hydrophone, making use of which the system can perform effective 

surveillance of the region surrounding the buoy system. Whenever any of 

these Omni-directional hydrophones capture noise waveforms, above 

certain threshold level, the buoy systems as well as the shore station system 

will be alerted and the shore station initiates commands for performing the 

surveillance operation. 

  

Fig.  5.6  Pictorial representation of the gear arrangement 

 

 

Fig.  5.7  Photograph of the Gearbox assembly 

 A Digital Magnetic Compass placed on the shaft senses the angular 

position of the hydrophone array with reference to earth‟s magnetic 

meridian.  The relative displacement of the array from its initial position is 
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read back from shaft encoder.  Optical proximity limit switches are 

attached to the anticlockwise and clockwise limits of the setup, which are 

720° apart, so that the encoder can make absolute references of the angles 

and prevent the hydrophone array cable from entangling on the shaft setup.                                

 The hydrophone array controller is interfaced with the GPS module, 

thus making available the position of the buoys. The RS-232 

communication port of the hydrophone array controller receives and 

transmits data to the RF Link controller, which is one of the integral parts 

of the buoy electronics. The hydrophone array controller makes use of the 

communication controller and communication unit of the buoy electronics 

to pass the data and commands between the hydrophone array controller 

and the remote station. 

5.4.2.1 Working of the Array Controller 

On power up, the microcontroller initializes the array towards the 

anticlockwise limit. This is fed back by the optical limit sensor provided in 

the gearbox.  Upon reaching this limit, the array is rotated clockwise 360 

degrees to attain the centre position of the allowable rotational limit of 720 

degrees. 

All the operations commence from this point. The angle that the 

array makes with reference to the magnetic meridian at this position is read 

back from the digital magnetic compass attached to the array shaft, which is 

vital for DOA of any target by the buoy electronics.  The array controller 

works with the DOA estimator by issuing commands and processes the 

results to create a complete 360° track for the purpose of estimating the 

direction of maximum signal arrival. 
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5.4.2.2 Mechanical Steering System  

Beam steering is achieved by mechanically rotating the hydrophone 

array by the hydrophone array controller. Communication and control of 

the HAC by a remote shore station is carried out through an RF link.  The 

three meter long linear hydrophone array is immersed underwater using a 

40 mm stainless steel shaft, 6 meters long, connected to a gearbox with 

worm-gear arrangement driven by a brushless DC motor.  The whole setup 

is kept afloat on the platform of a buoy.  The motor is controlled by a 

driving circuitry built with the hydrophone array signal controller using its 

built-in motor control PWM (Pulse Width Modulation) module [99, 100]. 

Angular position of the array is fed back from a shaft encoder which 

makes use of the integrated Hall Effect switches of the BLDC (brushless 

DC) motor, reducing the complexity and cost. The mechanical steering 

system of the buoy consists of a gearbox with a suitable reduction ratio 

(750:1 or 540:1) and a Brush Less DC motor of 4000 rpm.   

The gearbox is specially constructed with a worm gear arrangement 

limiting the maximum speed of the end shaft to 5.3 rpm, which can further 

be reduced with the help of the PWM driving circuitry, making slow and 

precise movements.  Angular movements to the extent of 1°, even less are 

possible.  PWM signals are generated by the digital signal controller of the 

HAC in synchronization with the position feedback from the integrated 

Hall Effect sensors of the Brushless DC Motor.  The mechanical steering 

system takes about 11.2 seconds for a complete 360 degrees of rotation of 

the end shaft together with the hydrophone array, which apparently is 

limited to avoid stress on the shaft and hence to the buoy platform.   
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5.4.2.3 Pre-processing Module 

 This module is a set of hardware and software filters implemented 

in the system to avoid unwanted spectral noises from the signals received 

by the hydrophone array.  The module consists of an analog hardware 

signal conditioner and filter, an analog to digital conversion stage and a 

high order software filter, designed to work with the other subsystems of 

signal processing module within the buoy electronics.  

5.4.2.4 Communications Controller 

 The communication controller of the buoy system, which is vital for 

establishing the communication between the shore station and the buoys as 

well as between each of the buoys transfers data using data packets in a 

predefined format under the control of the main system.  As the whole 

system is powered by solar energy, power consumption of the 

communications controller should be minimal and power management is 

critical. 

The formatted data are furnished to the communication module 

through its RS232 port. The HAC and the power management controller 

are connected to the Xbee-Pro communication module. When the controller 

specific commands from the shore station are received, the corresponding 

controller responds. 

5.4.3 Signal  Power Computing Hardware 

The analog output of the 20-element hydrophone array is directly 

coupled to the power computing hardware.  The array carries within itself 

an internal amplifier, powered through external circuits, so that the 

amplified signals can be transmitted from the array to the receiving side, 

which helps in reducing the noise effects.  The array is designed to work on 
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6.8VDC, with a simple driving circuit.  The signals from this driving circuit 

are directly fed to the preamplifier and signal conditioner of the power 

computing hardware.  The block diagram of the analog section of the power 

computing hardware is shown in Fig. 5.8.  

        
  Fig.  5.8  Block Diagram of the Power Computing Hardware 

Signals from the hydrophone array need to be amplified to the 

dynamic range of the built in ADC of the microcontroller.  The output from 

the hydrophone preamplifier is an inverted signal varying from a few micro 

volts to milli volts, depending on the source level of the noisy target.  A 

level shifting, amplification and filtering must be performed on this signal 

to generate a compatible signal for the ADC.   Since the signal processing 

module has a bandwidth of 0~5 kHz, higher frequencies can cause 

problems like aliasing in DSP operations.  Hence, a fifth order Butterworth 

filter has been implemented in hardware.  The filter has been built in 3 

stages, two of which are second order Butterworth filters in Sallen-Key 

topology, while the third stage is an inverting active low pass filter of first 

order.   

The analog section of the power computing hardware is built around 

a low power, matched quad op amp IC.  The input and output parameters 
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for all the four stages are matched.  The Unity Gain Bandwidth product of 

each amplifier is 3 MHz, with a slew rate of 13V/µs.  The CMRR and 

PSRR values are above 70dB.  The op amp also features high impedance 

JFET inputs and short circuit protection at the output, rendering it fit for the 

proposed application. 

5.4.3.1 Direction of Maximum Arrival Estimator 

The direction of maximum arrival estimator is used to compute the 

power received through the hydrophone array at every rotation step of the 

hydrophone array.  The DOA estimator constitutes both hardware and 

software, the heart of the system being Microchip dsPIC30F6014A, a DSP 

enabled 16 bit microcontroller with a dedicated DSP Engine [101-103].   

The input of the analog section of the microcontroller can accept 

signals with 5VPP and needs to be filtered in hardware to around 5 kHz to 

avoid problems like aliasing in the digital domain.  A signal conditioner is 

designed and incorporated with the DOA Estimator to condition the signals 

received from the hydrophone array for the input of the microcontroller by 

applying necessary level shifting and amplification. A fifth order 

Butterworth filter hardware is also used to set a cutoff at 5 kHz before 

feeding the signal to the microcontroller, which is then fed to the analog 

input of the microcontroller, where the signals are sampled at a rate of 

10.24 kHz and encoded digitally.    

The computation of power within the selected band of frequencies 

is performed using the microcontroller. The microcontroller has a 

maximum throughput of 30 MIPS and has many integrated peripherals, 

including a 12 bit ADC with a maximum conversion rate of 100 kbps and 

two UART modules.  The processor is configured to run on an internal RC 

oscillator at 14.74 MHz.  The ADC module is configured to operate at a 
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sampling rate of 10.24 ksps, giving a bandwidth of 5.12 kHz.  The UART 

module in the DSP controller is configured to operate at 9600 baud, making 

it compatible for communicating with the hydrophone array controller. 

Normally, the DSP hardware is in power down mode, until data 

capture or surveillance operations are initiated through the command 

interface.  Upon reception of a valid command, the ADC begins sampling 

the output of the signal conditioner, and records samples of 100 ms 

duration in a buffer.  When this buffer is full, the 12-bit integer data is 

converted to double precision values and transferred to a separate buffer for 

further processing.  An FFT is performed on this data, and the results are 

used to compute the power in the desired band of the signal. 

5.4.3.2 DOA Estimator Software 

The microcontroller based power computing software performs 

various procedures, based on user selectable parameters. The hydrophone 

array controller issues the commands to the power computing hardware 

through the communication module of the microcontroller.  The software 

recognizes six commands, for the spectral power estimation and averaging 

count, selecting the gain, selecting the upper and lower cutoff frequency of 

the desired spectrum, for extracting the previous direction of maximum 

signal arrival and step angle.  Each command results in responses, which 

specify the actions already initiated. 

The microcontroller program is divided into the Communication 

Service and the Data Sampling service.  In line with the power management 

considerations, the power estimator hardware is required to consume least 

power possible.  Hence, the hardware is kept in power down mode unless 

any surveillance operation is being undertaken. Powering down the 

hardware during data sampling enhances the performance of the data  
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sampler by minimizing clock switching that can cause high frequency 

noises. The communication module receives and transmits predefined 

commands and responses respectively. On receiving a valid command 

block, this service identifies and verifies the validity of the command, and 

extracts the parameters from the block, while initiating necessary actions.  

Powering up the DOA estimator system and all other operations can 

be handled remotely. The system initially aligns the array to a position 

which is 360° away from both clockwise and anticlockwise rotational limits 

when the power is up. The system is now ready to begin the surveillance 

operations. The remote station can request for a spectral power 

computation, which is carried out in the power computing controller.  The 

spectral power is then transferred to the remote station along with the GPS 

reading and the alignment angle of the array with reference to the magnetic 

axis of the Earth. 

5.4.4  Power Management System  

The buoy electronics works solely on the solar power tapped using 

the solar panels installed on the dome of the buoy.  Solar power can be 

optimally utilized only with sophisticated drivers for managing the 

charging and discharging of the batteries.  A dedicated microcontroller, 

PIC16F88, power efficient with Nano-Watt technology, is used to manage 

the charging cutoff and the power supplies in the buoy [104-106].  Solar 

power is tapped using 8 solar panels, connected in parallel as series pairs, 

providing a 24V source for charging the batteries.  The charging process is 

fully controlled by the power management system, and the charging voltage 

is cut off when the batteries are fully charged.  The power stored in the 

batteries is discharged through four different SMPS voltage levels of 12V, 
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5V, -5V and 3.3V generated by SMPS1 and SMPS2, for usage of the buoy 

electronics.   

The power management controller maintains the battery voltage at 

levels greater than 22V while discharging and less than 30V while 

charging. If the battery voltage goes below a low battery early warning 

level of 23V, the situation is monitored and the matter will be indicated to 

the shore station.  If the battery again discharges to a low battery cut off 

level (22.5V) it switches off the SMPS2, which powers the HAC and hence 

suspends any further array steering. The communication link is kept 

operating even at this situation, as it is powered from SMPS1 and will shut 

down only at low battery critical shutdown level of 22V, when all 

communication with the shore station is suspended.    

5.5 Deployment of  the Three Buoy system  

The test was conducted in a reservoir at Kulamavu, Idukki, at a 

depth of around 30-40 meters.  The test facility houses the necessary 

systems such as a barge and a floating platform facility with crane, power 

supply connections and generators. The buoys brought to the test site were 

unloaded from the trucks using the crane of the floating platform facility, 

and the floating platform can be moved anywhere in the reservoir with the 

help of a barge.   The platform can also be linked to power supplies from 

the shore.  The photograph of the buoys boarded on the floating platform 

prior to deployment is shown in Fig. 5.9. 

The three buoys were loaded on to the floating platform using the 

crane of the platform.  The buoy electronics, the motor assembly and the 

first shaft section of the hydrophone array were mounted on the buoys 

while the platform was near the shore.  The platform was then tugged to a 
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viable point at around the centre of the reservoir for conducting the 

experiment.  The preliminary installation of parts were completed, and the 

buoys were tugged one by one to the designated locations of deployment in 

the reservoir using the barge. 

 

  Fig.  5.9  The three buoys are being taken for deployment  

The hydrophone array was fixed to the motor shaft using the 

connecting shaft after the buoy was firmly tied to the barge at the point of 

deployment.  The connection of the hydrophone arrays were confirmed to 

avoid any damage to the hydrophone array setup, while tugging the buoy 

through water.  Each buoy was tested for communication and basic 

functionality at the point of deployments.   

The buoys were deployed approximately 400 meters apart and the 

signals captured by the hydrophone arrays were pre-processed using the 

signal conditioning module.  The digitized noise data waveforms were fed 

to the digital signal processor for extracting the target specific features. 
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The buoys B1 and B2 deployed at locations (9°48'41"N, 76°53'10"E) 

and  (9°48'10"N, 76°53'19"E) are shown in Fig. 5.10 and Fig. 5.11 while 

Fig. 5.12  shows the coordinator buoy BC deployed at  location  

(9°47'56"N, 76°53'19"E).  

 

  Fig.  5.10  Buoy B1 deployed at the location (9°48'41"N, 76°53'10"E) 

 

  Fig.  5.11  Buoy B2 deployed at the location (9°48'10"N, 76°53'19"E) 
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  Fig.  5.12  Buoy BC deployed at the location (9°47'56"N, 76°53'19"E) 

5.6 Field Testing of The Buoy System  

 A shore station, which identifies the buoys and continuously gathers 

the status of each buoy, by sending appropriate commands with the buoy 

address in a time slotted manner, was emulated within the fair reach of the 

RF link. One of the Buoys BC acts as a Coordinator Buoy, which is 

responsible for relaying the information from the other two buoys to the 

shore station as well as coordinating all the surveillance operations 

autonomously. A communication controller is used to establish such a 

communication link between the shore station and the buoys. This 

subsystem which is based on the RF link is also capable of transferring the 

target feature records and status data from the buoys to the shore station.  

 The three-meter long linear hydrophone array of each buoy was 

immersed underwater using a 40 mm stainless steel shaft which measured 6 

meters long and connected to a gearbox with worm-gear arrangement 

driven by a brushless DC motor. The buoy platform keep the whole setup 

afloat. The buoys were moored at positions to form a triangle and the noise 
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generated by the barge, high speed boat and other engines were used for 

localizing the target during the localization trials. 

 The hydrophone array was rotated in steps for capturing and 

preprocessing the noise signals. In each step the target features were 

extracted. The process is continued till it covers the entire 360°. The 

angular position at which the power in the characteristic band peaks up is 

taken as the direction of arrival of the noise signal. Fig. 5.13 depicts the 

graphical user interface (GUI) used to estimate the direction of arrivals. 

 

Fig.  5.13  GUI for DOA Estimation Field Trials 

The shore station identifies the buoys by unique addresses 0x31, 

0x32 and 0x33 respectively for the buoys, B1, B2, and Bc. The necessary 

commands were issued using the frame format shown in Fig. 5.14. The 

shore station always gathers the status of each buoy by sending appropriate 

commands with the buoy address in a time slotted manner.  The buoys 

cannot initiate any transaction by itself. It responds in accordance with the 

command received from the shore station. During idle conditions, the shore 
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station frequently collects the status of the buoys. Whenever the status data 

indicates that the buoy has encountered with a trigger event, then the shore 

station issues commands to the buoys to initiate necessary actions. 

 
Fig.  5.14  Frame format used for Gathering the DOAs during the Field 

Trials.   

  All the operations including powering up the HAC can be handled 

remotely.  When the power is up, the HAC initially aligns the array to a 

position, which is 360° away from both clockwise and anticlockwise 

rotational limits.  The system is now ready to begin the surveillance 

operations.  The remote station can now request the HAC for a spectral 

power computation, which is carried out in the power computing controller.  

The spectral power is then transferred to the remote station along with the 

GPS reading of the HAC and the alignment angle of the array with 

reference to the magnetic axis of the Earth. Since the HAC is responsible 

for all remote communications, it remains active even if the battery power 
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level is critically low.  Under critically low battery conditions, the HAC 

shuts down itself, and all communications with the remote station are 

relinquished till power is replenished. The GUI for the HAC and Buoys are 

shown in Fig. 5.15  and Fig. 5.16. 

 

Fig.  5.15  Hydrophone array controller 

Noise generated from the barge, the high speed boat and ITC 1007 

projector were used as targets.  The barge was moved to a distance of about 

250m away from the platform. The noise signals were generated from the 

ITC 1007 projector, using the recorded wave file after due amplification 

using the B&K 2713 power amplifier. The engine of the barge was turned 

off to minimise the ambient noises. The pre-processor hardware at the 

platform was tuned to the characteristic band of the target and the 

hydrophone array was rotated in steps for capturing and pre-processing the 

noise signals. In each step, the target features are extracted and frequencies 

were computed for estimating the direction of arrival.  When the DSP 

hardware for feature extraction is interfaced to the Buoy Electronics, the 

frame format of the specified type has to be used. The process is continued 

till it covers the entire 360. The angular position at which the power in the 

characteristic band peaks up is taken as the direction of arrival of the noise 
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signal.  Similarly, the directions of arrival of engine noises of barge and 

high speed boat were also estimated.    

 

Fig.  5.16  GUI for Buoys 

The preliminary test results were successful and when the 

communication was established, all the buoys reported their status and 

internal parameters.  The system was initially programmed to remain in the 

idle mode, so that all the internal parameters of the buoy and the signal 

level at the Omni directional hydrophone will be available at the control 

station and can be closely monitored.  

The buoys were then tested for the trigger event generation.  With 

the full system working, and the buoys in idle state, a boat was started and 

maneuvered along the reservoir to find out the strength of the signal it 

produces on to the omni directional hydrophone element.  The signal levels 

were noted in all the three buoys in the idle state.  Later a value close to the 
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strength previously obtained was set as the trigger threshold level of the 

buoys and the boat was made to move in the reservoir. The buoys 

successfully indicated that trigger events were generated as expected.   

 The direction of arrivals as sensed by the three buoy systems were 

used for localizing the target under consideration. The necessary commands 

are issued for estimating the direction of arrivals using the predefined frame 

format. The shore station will sample the DOAs of all the buoys 

periodically and gathers the information as and when it is ready.    

5.7 Results and Discussions on Localizer 

 A suitable test site for conducting the field trials in a hydroelectric 

reservoir was identified. The three buoy system for localizing the unknown 

underwater targets was deployed and the performance of the system was 

validated. The field trial was conducted by deploying the three buoys in the 

reservoir at the locations (9°48'41"N, 76°53'10"E), (9°48'10"N, 

76°53'19"E) and (9°47'56"N, 76°53'19"E) by mooring them to the bottom 

and placing the noisy target at the location of (9°47'55"N, 76°53'18"E). The 

DOA estimates for different trials, the spectrum computed at the shore 

station  for different noise sources and the localization estimates computed 

are listed in the following sections. 

5.7.1 DOA Measurements 

 The directions of arrival of the noise waveforms emanating from the 

noise sources were estimated using the DOA estimator in a hydroelectric 

reservoir and the DOAs as seen by the buoy hydrophones were estimated 

with reference to the magnetic meridian. 
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 The Signal Power Estimator Module has been realized and field 

tested with the hydrophone array controller and the estimator is capable of 

reporting the DOA, which is the absolute angle with reference to the 

Earth‟s magnetic meridian during the field trials. The DOAs measured by 

the buoy systems will help in fixing the position and ranging of underwater 

targets of interest. The absolute ranges and positions of the targets will 

certainly depend on the precision of the GPS data and the magnetic 

compass readouts. The angular variations of the estimated power from 0 to 

360 degrees for various targets have been recorded and three of which are 

depicted in Fig. 5.17, Fig. 5.18 and Fig. 5.19. As illustrated in Fig. 5.17, the 

DOA for the Barge engine has been estimated as 39° with reference to the 

geomagnetic meridian. 

 

 
 

 Fig.  5.17  The estimation of DOA as 39° for the Barge engine 
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Fig.  5.18  The estimation of DOA as 203° for the Engine noise 

 

Fig.  5.19   The estimation of DOA as 45° for idling Boat engine 
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 The angular power variation for the Engine noise is illustrated in 

Fig. 5.18  for which the DOA is estimated as 203°. Fig. 5.19 depicts the 

angular power variation and  DOA estimation of Idling Boat Engine and 

the DOA is found to be 45°.  

 The spectrum of pre-recorded Engine noise transmitted using ITC 

1007 projector, Idling Barge Engine and Idling Boat Engine, over the band 

0 Hz to 5 kHz, are depicted in Fig. 5.20, Fig. 5.21 and Fig. 5.22 

respectively.  

 

Fig.  5.20  Spectrum of Engine noise transmitted using ITC 1007 projector 
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Fig.  5.21  Spectrum of idling Barge Engine 

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000

Frequency in Hz

S
ig

n
al

 S
tr

en
g

th



Chapter 5  Prototype Localizer 

 132 

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000

Frequency in Hz

S
ig

n
a

l 
S

tr
e

n
g

th

 

Fig.  5.22  Spectrum of idling Boat Engine 

5.7.2 Localization Estimates  

 The field trial was carried out by deploying the three buoys in the 

trial site,  in a hydroelectric dam at predetermined locations and fixing the 

position of the noisy target located at (9°47'55"N, 76°53'18"E). Repeated 

localization trials yielded the positional values of the target as  (9°47'50"N, 

76°53'15"E), (9°47'50"N, 76°53'11"E), (9°47'56"N, 76°53'25"E), 

(9°47'48"N, 76°53'10"E), (9°48'04"N, 76°53'09"E), (9°47'54"N, 

76°53'19"E), (9°47'57"N, 76°53'22"E) and (9°47'56"N, 76°53'10"E). 

 The results of the field trials were quite encouraging, as far as the 

basic functionality is concerned, except for the small discrepancies in the 

localization estimates. The discrepancies and inconsistencies in the 

localization estimates are assignable to the fact that the buoys were 

deployed at close distances.  Efforts are also made for further improving the 

consistencies in the localization estimates.  

5.7.3 Need for Refinement of Localization Estimates 

The model developed makes use of linear hydrophone arrays for 

deriving the directions of arrival of the noise waveforms emanating from 
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the target under consideration.  The system can perform the surveillance 

operation in the horizontal plane only.  Though it captures the noise 

waveforms from the targets located outside this plane, as the beam is 

roughly omni directional in the vertical plane, it cannot provide any depth 

information of the target.  Due to the lack of depth information, the position 

estimates furnished by the system are likely to be slightly erroneous. The 

inaccuracies in the position estimates, consequent to the lack of depth 

information can be resolved by replacing the linear hydrophone arrays with 

planar arrays or at least with a cross arrays formed by combining two 

mutually bisecting linear arrays at right angles.  

Also, as the array is mechanically steerable, whenever the array 

moves from one position to another, there will be a recoiling effect on the 

entire buoy system.  This recoiling effect, caused due to the movement of 

the array from one position to another, will affect the orientation of the 

buoy, thus leading to inaccuracies in the angular positions of the 

hydrophone arrays. The instabilities of the buoy system caused by the 

surface waves will also lead to unpredictable errors in the estimates of the 

direction of arrival of the noise waveforms in each of the hydrophone 

arrays. These issues warrant the need and requirement for refining the 

range estimation making use of Kalman Filters. 

5.8 Improving Localization Estimates Using Kalman Filters 

The values of latitude and longitude of the target estimated may not 

be accurate due to the inherent errors in the estimation of DOAs, due to the 

recoiling effects of the buoy systems, varying environmental conditions and 

the mathematical approximations which are involved in the range 

computations.  
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These inaccuracies can be resolved to some extent by applying the 

concepts of Kalman filter, making use of which an accurate position of the 

underwater target is estimated by reducing the mean square error. The 

flowchart and the graphical user interface for improving the localization 

and tracking estimates are depicted in Fig. 5.23 and Fig. 5.24  respectively. 

                           

 Fig.  5.23  Flowchart for improving the accuracy of Localization estimates 
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Fig.  5.24  GUI for Target localization and tracking 

5.8.1 Results and Discussions on Refinement 

The simulation of improving the localization estimates has been 

carried out using MATLAB. As the data from the localizer output is 

assumed to be erroneous, its latitude and longitude values are taken as X 

and Y dimensional values separately and filtered using Kalman filter for 

reducing the error in both the dimensions. In this simulation, the assumed 

values of latitude data and longitude data are 10
o
04'00" and 76

o
21'00", 

respectively. 100 distinct measured values for the latitude with error 

distributed around zero and a deviation of 1', were fed to the Kalman filter. 

The Kalman filter iterates these values, by minimizing the error covariance 

and eventually converges.   

For improving the estimation of target localization, the erroneous 

latitude data is simulated and given to the Kalman filter and the output  is 
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shown in Fig. 5.25. It can be seen that the error in the latitude data is 

minimized using the Kalman filter. The estimated output of the Kalman 

filter is generated from the particular iteration, where the Kalman Gain and 

the estimated error covariance converge and remain stable as depicted in 

Fig. 5.26. 
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Fig.  5.25  Kalman filter output for the latitude data 

From this variation, it can be seen that after 31 iterations, the filter 

converges and the estimated output of the Kalman filter for the latitude data 

is 10
o
04'02". The same algorithm is extended to the erroneous longitude 

values too. The output of the Kalman filter for the longitude data is shown 

in Fig. 5.27. 
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Fig. 5.26 Convergence of Kalman Gain and estimated error covariance 

 

Fig.  5.27  Kalman filter output for the longitude data 
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A set of randomly fluctuating positional values indicated by „O‟ 

markings, in Fig. 5.28 have been used for generating the corrected 

positional values by the Kalman filter. These values are simulated by 

adding random error to the assumed values of latitude and longitude data, 

10
o
04'00" and 76

o
21'00" respectively. The Kalman output comprise of the 

points marked with „•‟ markings within the circled region in Fig. 5.28. The 

filter converges and the estimated output of the Kalman filter is the position 

with latitude 10
o
04'02" and longitude 76

o
21'01".  
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Fig.  5.28  Kalman filter applied to the noisy measurements of stationary 

target 

 Moreover, at the test site,  repeated localization trials yielded the 

positional values of the target as  (9°47'50"N, 76°53'15"E), (9°47'50"N, 

76°53'11"E), (9°47'56"N, 76°53'25"E), (9°47'48"N, 76°53'10"E), 

(9°48'04"N, 76°53'09"E), (9°47'54"N, 76°53'19"E), (9°47'57"N, 

76°53'22"E) and (9°47'56"N, 76°53'10"E) for a noisy target located at 
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(9°47'55"N, 76°53'18"E). When these positional values were fed to the 

Kalman filter, the estimated position output of the Kalman filter for the 

position of the target was seen to be (9°47'54.63"N, 76°53'17.5"E) as 

depicted in Fig.  5.29. 

 

Fig.  5.29  KF gives the position of the target as (9°47'54.63"N, 76°53'17.5"E) 

5.9 Multi-Target Scenario 

The system works satisfactorily with one or two targets, whereas in 

multi-target scenario, the Shore Station System may have to issue 

commands to the buoy systems to align their hydrophone arrays to the 

targets that are emitting certain tonals or bands of frequencies as detected 

by either any one of the omni-directional hydrophones or the hydrophone 

arrays in the system. Execution of such missions by the buoys in a two-

target scenario is comparatively easy, because in such situations, in all 
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probability, the target feature vectors generated by two of the buoy systems 

are likely to be in agreement. If this is the case, making use of geometrical 

reconstructions, the shore station system can compute the likely orientation 

to which the hydrophone array of the third buoy system, which disagreed in 

the target feature vector, has to be steered for acquiring the noise 

waveforms from the target under consideration. The action to be initiated 

by the concerned buoy system for handling multi target scenario is 

illustrated in the flowchart furnished in Fig. 5.30.   

5.10 Summary 

A prototype for the localization of underwater targets, using a buoy 

system  with passive listening concepts has been developed and deployed. 

The field trials for the localization of the underwater targets has been 

carried out by mooring three buoys in a trial site at predetermined locations 

and by fixing the position of the noisy target. The performance of the 

system was evaluated and the localization estimates were found to be 

acceptable within the limits of the mathematical approximations and 

experimental errors [107-110]. The inconsistencies in the localization 

estimates have been reduced, to a certain extent, by minimizing the 

measurement errors using Kalman filters.  
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Fig.  5.30  Realignment Mode for handling Multi-target Scenario 
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CHAPTER 6  

 TARGET TRACKING 

Target tracking pertains to the estimation of current state and prediction 

of the future states of a moving target, based on the outcome of 

measurements made by the observing sensor. Target tracking systems 

basically produce a stream of data related to the position of the target.  

This problem can be further divided into one dimensional motion of the 

target with inherent noises of different forms such as process noise and 

measurement noise. A study of one dimensional system is carried out and 

then extended to two dimensions, which can further be generalized to a 

multi-dimensional system depending on the nature of the problem. The 

observed errors in the case of a maneuvering target are more complex in 

nature than the one in the case of a target which is moving with constant 

velocity and hence need to be mitigated by using suitable estimation 

techniques. In the case of a highly maneuvering target, a chi-square 

based decision statistics can be applied for effecting necessary 

corrections to the Kalman filter algorithm, so that the system is capable 

of handling such abrupt maneuvers. 

6.1 Introduction 

Tracking of targets using various techniques in an underwater 

scenario is a problem of unfathomable extent, owing to the characteristics 

of the ambient environment. As the localization estimates may vary due to 

sensor and environmental errors, various techniques are applied to obtain 

reliably accurate estimates of localization. The results of tracked targets can 
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be mostly misleading, if enough measures for minimizing errors in every 

stage of the system are not employed.  One of the major problems faced by 

underwater target tracking systems is the effects of noises of various forms, 

right from the ambient noises to system induced noises, which have to be 

dealt with, for reliable results. 

The purpose of target tracking is to accurately estimate the target 

positions based on the observation data. The tracking performance depends 

on accurate description of the target state, and accurate tracking of the 

target can be obtained when the target state model matches with the target 

practical state. Among various techniques, Kalman filter tracking devices 

are getting more attention because of their practicality, as this method does 

not require the entire previous data to be stored and reprocessed every time 

a new measurement is taken.  

 Target tracking systems furnish a stream of data related to the target 

positions. This scenario is further segregated into one dimensional motion 

of the target with inherent noises of different forms such as process noise 

and measurement noise.   A study of one dimensional system is carried out 

in the first section and then extended to two dimensions, which can further 

be generalized to a multi-dimensional system depending on the nature of 

the problem.  

 In the case of a maneuvering target, the observed errors are complex 

in nature than the one in the case of a target which is moving with constant 

velocity and hence appropriate correction measures need to be 

implemented. The main cause of such errors in tracking targets, is their 

abrupt change in velocity, which becomes difficult to be identified by the 

tracking device.  This major issue is associated with tracking of 

maneuvering targets with highly adaptive generic filters like the Kalman 
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filters also, since these filters end up producing an output, erroneously 

considering the measured values in response to the maneuvering target, as 

noise. Hence optimizing the performance of the Kalman filter in a 

maneuvering target scenario warrants certain modifications, which are 

discussed in the final section of this chapter.  

6.2 Scenario Overview 

The key to successful target tracking lies in the effective extraction 

of useful  information about the state of the target from the observations. A 

good model of the target facilitates the information extraction to a great 

extent. Tracking algorithms are mostly model based because some 

knowledge of target motion is available and a good model-based tracking 

algorithm will greatly outperform any model-free tracking algorithm.  

 Targets with single and two dimensional movements, measured in 

Cartesian co-ordinate system, are considered for the analysis in this 

chapter, with position and velocity as the quantities being tracked. Suitable 

transformations can be used, if the measurement data are in a format other 

than the Cartesian system. However the tracking system and design 

challenges are relatively insensitive to the choice of the co-ordinate system. 

The measurements expressed in Cartesian coordinates are not independent, 

but the effect of ignoring this fact is negligible in practice [57]. 

 A target moving with nearly constant velocity is characterized by a 

state vector with position and velocity as elements. The observations made 

can be  assumed as a linear combination of the target state corrupted by 

additive measurement noise. The Kalman gain is used to derive the 

estimates of the state vector which in turn is used to compute the estimates 

predicted for the  next measurement state.   



Underwater Target Localization, Tracking and Classification 

 145 

 The difference between the measured or observed value and the 

predicted value is defined as the residual or innovation. The residual 

reflects the discrepancy between the predicted measurement and the actual 

measurement. In addition to being used for updating the filtered estimates, 

the residual values can be checked for consistency. This consistency check 

can be used to adjust the filter parameters when large residual values are 

interpreted as due to increased target dynamics or the detection of 

maneuvering of the target. The estimation accuracy provided by the 

Kalman filter through the covariance matrix is useful for detection of 

maneuver. Upon detecting such maneuver, the Kalman filter also provides 

an efficient way to adapt to a scenario of varying target dynamics [63]. 

6.2.1 Linear Systems Approximation for Kalman Filtering 

 The transition and observation matrices of the Kalman equations,  

(3.1) to (3.7) of Chapter 3, needed to be modified for tracking a target, 

according to the scenario under consideration. The Kalman filter is a tool 

that can estimate the variables of a wide range of processes. The Kalman 

filter theory is explained in the section 3.4. In mathematical terms, a 

Kalman filter estimates the states of a linear system. The Kalman filter not 

only works well in practice, but, it is theoretically attractive because it can 

be shown that, of all possible filters, it is the one that minimizes the 

variance of the estimation error. In order to use a Kalman filter to remove 

noise from a signal, the process under consideration for measurement must 

be able to be described by a linear system.  

 Many physical processes, like movement of a target, can be 

approximated as linear systems. A linear system is simply a process that 

can be described by the following two equations: 
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State equation: 

xk+1= Axk+ Buk+wk        (6.1) 

Output equation: 

   yk= Cxk + zk       (6.2) 

In the above equations A, B and C are matrices, k is the time index, 

x is called the state of the system,  u is a known input to the system,  y is the 

measured output and w & z are the noises. The variable w is called the 

process noise and z is called the measurement noise. Each of these 

quantities is a vector and therefore contains more than one element. The 

vector x contains all of the information about the present state of the 

system. As x cannot be measured directly, y is measured as a function of x, 

which is corrupted by the noise z. y  can be used to obtain an estimate of x, 

but  cannot necessarily take the information from y at face value because it 

is also corrupted by noise. 

6.3 Tracking of a Moving Target 

An underwater target moving in two dimensions with nearly 

constant velocity is characterized by a state vector with position and 

velocity as elements. The observations made can be assumed as a linear 

combination of the state vector corrupted by additive measurement noise 

due to the wave action and other physical parameters of the ocean. 

Hence the velocity υ  for an arbitrary time step k+1, can be written 

as 

kkkk υ+ Tu=υυ ~
1  ,       (6.3) 

where u is the acceleration,  T is the time interval and υ~   is the velocity 
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noise. A similar equation for position s can be expressed as, 

kkkkk s+ u T+ Tυ=ss ~

2

1 2

1       (6.4) 

where s~  is the position noise.  

For an n dimensional system, the state vector at time step k, can be 

described as, 
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For a target moving in one dimension,   
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Since the measurement vector contains only the position element, the linear 

system equations can be represented as, 

kkkk wu
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  kkk vxz  01      (6.8) 
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The process noise wk, represents the trajectory perturbations due to 

uncertainty in the target state whereas the measurement noise vk,  represents 

the inability of the tracking device to precisely measure the position of the 

target due to unavoidable errors in the measurement system. Both these 

noises are assumed to be random Gaussian processes. The acceleration u 

can be assumed to be zero without disturbing the generality of the system 

for a target moving with a constant velocity. 

 The process noise is a Gaussian random process with zero mean and 

known covariance matrix Q. In general, the covariance of a vector of 

random variable, X is defined as Cov(X)=E{(X-E[X])(X-E[X])
T
},where 

E[X] is the mean of random variable X.  

  Because of the possible errors in the measuring device, 

measurement noise is added to the measurement vector. This represents the 

deviation between the positions that should be measured and the positions 

that are actually measured. This  is also a Gaussian random process that 

follows a multivariate normal distribution with covariance matrix, R.   

6.4 Tracking of a Target Moving in Two Dimensions 

 In this scenario, the target is moving in two dimensions with a 

constant velocity, and the measured data is represented in Cartesian 

coordinates. The state, prediction and correction equations of the model are 

the same as that of the one dimensional scenario, except that all the vectors 

are of dimension 2. 

The true position of the target at the time k+1, given the position at 

time k is:  kkk wAxx 1          (6.9) 

The state vector at time step k , when n = 2 is, 
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and the state transition model A is: 
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
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I

ITI

0
A ,

      

(6.11) 

where I2 is the identity matrix of order 2x2 and 0 is all zero matrix 

of 2x2. 

The state vector keeps track of the positions of the target and 

velocities in different dimensions, which usually are the X and Y 

dimensions. The purpose of the Kalman filter is to estimate the true state 

vector given a series of discrete measurements. The state transition model 

updates the state vector in each time step by updating each position by 

adding the time interval between each measurement multiplied by the 

velocity in the same dimension. 

Again, the measurement vector is a function of the state vector and 

a random noise process, expressed as,  

  kkk vHxz        (6.12)

 where the measurement vector is:    







2

1

s

s
kz    (6.13) 

and the observation model H is: 

   0H 2I        (6.14) 

 As the velocity is not measured directly, the observation model H is 

operated on the state vector in order to obtain the measurement vector. 
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6.5 Tracking of a Maneuvering Target 

The primary objective of target tracking is to estimate the state 

trajectories of a moving target. Although a target is almost never really a 

point in space and the information about its orientation is valuable for 

tracking, a target is usually treated as a point object without a shape 

especially in target dynamic models. A target dynamic/motion model 

describes the evolution of the  target state with respect to time. Almost all 

maneuvering target tracking methods are model based. They assume that 

the target motion and its observations can be represented by some known 

mathematical models sufficiently accurate. The most commonly used 

models are state-space models as given by the equations, (6.1) and (6.2).   

One of the major challenges for target tracking arises from the 

target motion uncertainty. This uncertainty refers to the fact that an 

accurate dynamic model of the target being tracked is not available to the 

tracker. Specifically, although the general  form of the state space  model is 

usually adequate, a tracker lacks knowledge about the actual control input 

and the other parameters of the target or the statistical properties of the 

noise for the particular target being tracked. Target motion modeling is thus 

one of the first tasks for the tracking of maneuvering target. It aims at 

developing a tractable model that accounts well for the effect of target 

motion.  

 Target motions are normally classified into two classes viz., 

maneuver and nonmaneuver. A  nonmaneuvering motion is the straight and 

level motion in a constant velocity system, sometimes also referred to as 

the uniform motion. Loosely speaking, all other motions belong to the 

maneuvering mode and tracking a maneuvering target assuming it is not 

maneuvering may have a serious consequences like the track loss, while 
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tracking a nonmaneuvering target assuming it is maneuvering usually only 

suffer minor performance degradation. 

 The standard Kalman filter cannot be applied while considering a 

maneuvering target that executes a turn or an evasive action to elude the 

detection, since the target movement appears as an extensive process noise 

on the target model, which cannot be circumvented by the process noise 

variance.  

6.5.1 Maneuver Detection 

 Whether the target is maneuvering or not, is a decision problem and 

can be formulated as a hypothesis testing procedure, as under. 

H0: The target is maneuvering  

H1: The target is not maneuvering. 

 It is also important to infer the onset time and termination time of a 

maneuver. The determination of maneuver onset and termination times can 

be cast either as an estimation or decision problem. They both aim at 

inferring an unknown quantity using available information. Their basic 

difference is that, decision is the selection from a discrete finite set of 

candidates, while all possible outcomes of estimation form a continuum. In 

the continuous-time case, it would be more natural to formulate the 

determination of onset and termination times as an estimation problem, but 

a decision framework appears to be more appropriate for the discrete-time 

case [63, 66]. 

 In maneuver detection, the focus is the detection of maneuver onset, 

rather than the maneuver termination. The two main reasons for this are, 

the level of difficulty and the consequences of an incorrect decision. In 
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general, it is more difficult to detect maneuver termination than maneuver 

onset because nonmaneuver is a well defined motion pattern, straight and 

level motion at a constant velocity, while maneuver essentially includes all 

other motion patterns. For instance, a maneuver model has a larger 

covariance of measurement residuals than a nonmaneuver model due to the 

fact that the latter has a larger state vector and assumes more motion 

uncertainty than the former. Fortunately, timely detection of  maneuver 

termination is usually not as important as that of maneuver onset because 

tracking a nonmaneuvering target considering it is maneuvering usually 

may not have serious consequences. 

 In order to detect a maneuver, the difference between each 

measurement and its corresponding predicted value is computed, which is 

called residual or innovation. When the number of components in each 

measurement is more than one, a normalized distance function or total 

distance, d
2
 is computed. This is done by squaring the differences in each of 

the component measurements, dividing by the respective error variances 

and then summed to form a total normalized distance [57].  

 A generalized form of normalized distance function can be formed 

with the application of Kalman filter by using the residual vector and the 

residual covariance matrix S, 

k

T

kk Sd zz ~~ 12         (6.15) 

 where
 kkk x̂~ Hzz  

  RHHPSS T

kk  

        
(6.16) 



Underwater Target Localization, Tracking and Classification 

 153 

 The maximum allowable value for the residual is set using the 

accuracy statistics of the prediction and measurement values and is 

normally set to at least thrice the residual standard deviation assuming zero 

mean Gaussian statistics, for one dimensional movement of the target. The 

computed differences are compared with the above derived maximum 

allowable error value and if the difference exceeds the same, a target 

maneuver is considered as detected.  When two dimensional systems are 

under consideration, simply comparing the distance between the predicted 

point and the measured point is insufficient due to state uncertainty. 

 In the subject case, the target has two dimensions of physical 

freedom. The normalized distance function, under the Gaussian 

assumptions, featuring a chi-square probability distribution with degrees of 

freedom equal to the number of the measurement dimensions, which in this 

case is 2. Based on this chi-square table for d
2
, a threshold can be set to 

detect the target maneuver [57, 58]. 

 Thus in order to detect the maneuvering of the target, the value of 

the distance function can be monitored in comparison to a threshold 

determined by the chi square probability distribution function. The validity 

of chi-square test relies on the assumption that the process is Gaussian and 

independent. Nevertheless, the chi-square tests are used in these situations, 

because of its simplicity even though it is not necessarily optimal.  

6.5.2 Chi-Square Based Decision Test 

 Assume that 𝜖 is chi-square distributed with n degrees of freedom, 

then a chi-square test based maneuver detector will declare detection of a 

maneuver, if  𝜖 > 𝜆 =  𝜒𝑛 
2 (𝛼), where 1-α is the level of confidence, which 

should be set quite high, say 0.95  or 0.99. It is well known that the d
2 
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function is chi square distributed for any n dimensional Gaussian random 

vector. In this sense, chi-square test provides a check for the acceptability 

of fit to judge if the vector has the assumed distribution. The validity of a 

chi-square test relies on the assumption that individual terms are Gaussian 

and independent. 

 In maneuver detection, the two choices can be used in which one is 

based on the measurement residual and the other is based on input estimate. 

In the residual based case, normalized residual squared is used as the 

detection tool. On the other hand, in the input estimation method, the 

control input u, which is acceleration in this case, can be used to detect the 

maneuver. When the target is not maneuvering, the control input is zero, 

which means acceleration is zero, assuming constant velocity. But while 

maneuvering, u changes and thus any estimate of this input, under the 

linear-Gaussian assumption, has a similar chi-square distribution, which 

can be used for maneuver detection. 

6.5.3 Confidence Ellipsoid and Chi-square Distribution 

Let X be a n-dimensional Gaussian random vector, with mean 

vector, mx and covariance matrix, X. Consider a constant, K1 R. The 

locus for which the pdf f(x) is greater or equal a specified constant K1, i.e., 
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which is equivalent to     Kmxmxx XX

T

X  1:   (6.18) 

with K= -2In((2)
n/2

K1||1/2) is an n-dimensional ellipsoid centered 

at the mean mX and whose axis are only aligned with the Cartesian frame if 

the covariance matrix   is diagonal. The ellipsoid is the region of 



Underwater Target Localization, Tracking and Classification 

 155 

minimum volume that contains a given probability mass under the 

Gaussian assumption. In the equation there exits an equality,  i.e., 

 

    Kmxmxx XX

T

X  1: ,     (6.19) 

this locus may be interpreted as the contours of equal probability 

[72]. 

6.5.3.1 Mahalanobis distance  

    Kmxmx XX

T

X  1

 is known as the Mahalanobis distance of 

the vector x to the mean mX. The Mahalanobis distance, is a normalized 

distance where normalization is achieved through the covariance matrix. 

The surfaces on which K is constant are ellipsoids that are centered about 

the mean mX. In the special case, where the random variables of X are 

uncorrelated and with the same variance, i.e., the covariance matrix X is a 

diagonal matrix with all its diagonal elements equal, these surfaces are 

spheres, and the Mahalanobis distance becomes equivalent to the Euclidean 

distance. 

The contours of equal Mahalanobis and Euclidean distance around 

(mX,mY) for a second order Gaussian random vector is represented in 

Fig. 6.1. Any point (x,y) in the ellipse is at the same Mahalanobis distance 

to the center of the ellipses and any point (x,y) in the circumference is at the 

same Euclidean distance to the center. This plot enhances the fact that the 

Mahalanobis distance is weighted by the covariance matrix. 
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Fig.  6.1  Contours of equal Mahalanobis and Euclidean distance around 

(mX,mY ) for a second order Gaussian Random Vector 

 

For decision making purposes, it is necessary to determine the 

probability that a given vector will lie within, say, the 90% confidence 

ellipse or ellipsoid. For a given K, the relationship between K and the 

probability of lying within the ellipsoid specified by K is,  

n = 1; Pr{x inside the ellipsoid} =  Kerf2
2

1



  (6.20) 

n = 2; Pr{x inside the ellipsoid} = 2/1 Ke     (6.21) 

n =3; Pr{x inside the ellipsoid}  

  =   2/2
2

2

1 KeKKerf 


   (6.22) 

where n is the dimension of the random vector. The numeric values 

of probability for n = 2 for various values of K are depicted in Table 6.1. 
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Table 6.1 Numerical values of Probability for n  = 2 

K Probability 

1 39.3% 

1.5 52.76% 

2.0 63.21% 

2.5 71.35% 

3.0 77.69% 

3.5 82.62% 

4 86.47% 

 

For a given K, the ellipsoid axes are fixed. The probability that a 

given value of the random vector X lies within the ellipsoid centered in the 

mean value, increases with the increase of K. In the case where a fixed 

probability value is specified, the value of K that yields an ellipsoid 

satisfying that probability can be found from analyzing the statistics of K, 

which has a known random distribution called Chi-Square distribution. 

6.5.3.2 Chi-Square distribution 

Given the n-dimensional Gaussian random vector X, the 

Mahalanobis distance K which is a random variable, has a Chi-Square 

probability distribution with n degrees of freedom.  

 

The probability density function of K, i.e., the Chi-Square density 

with n degrees of freedom is, 

22

2
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2
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
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


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(6.23) 

and the  Cumulative distribution function is 
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𝐹𝐾 𝑘 =
𝛾(

𝑛

2
,
𝑘

2
)

 (
𝑛

2
)
       (6.24) 

where the gamma function,  
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The probability that the scalar random variable, K is less than or 

equal to a given constant, 𝜒𝑝
2

 ,
  

       pmxmxK pX

T

Xp   212 PrPr 
,  

(6.25) 

is given in the following chi-square distribution table, Table 6.2,  

where n is the number of degrees of freedom and the subscript p in 𝜒𝑝
2

  

represents the corresponding probability under evaluation. 

From this table, it can be seen that for a second third order Gaussian 

random vector, n = 2, 

         9.061.461.4 1  

X

T

X mxmxPrKPr  

Table 6.2 Chi-Square distribution table 

N 
2

995.0

 

2

99.0

 

2

975.0

 

2

95.0

 

2

90.0

 

2

75.0  

2

50.0  
2

25.0  

2

10.0  

2

05.0  

1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039 

2 10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103 

3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352 

4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 0.711 
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6.5.4 Threshold Setting and Correction Measures  

 A threshold for normalized distance function is set using the chi-

square distribution table, beyond which the target is detected to be under 

maneuvering. From the table, it can be seen that for a second order 

Gaussian random vector, n = 2,   99.021.9 KPr . If the distance 

function exceeds the tolerance level during a set number of concurrent time 

steps, the maneuver detection is confirmed. Once the maneuver is detected, 

the Kalman filter parameters are reset and the filter is reinitialized using the 

last two measurements.      

6.6 Simulation  

 The simulation of tracking underwater targets using Kalman filter 

has been implemented in MATLAB. It is assumed that the target is moving 

in a straight line. The measured values for tracking scenarios are  simulated 

from the localizer output by adding appropriate random functions. The 

erroneous values are fed to the Kalman filter for refinement of the 

estimates. By iterating these values and minimizing the covariance, the 

Kalman filter eventually converges and generates the corrected values.  

 The flowchart for the tracking of a maneuvering target is illustrated 

in Fig. 6.2, which detects the maneuvering of the target and upon detection 

reinitializes the Kalman filter. The output figures vivify the effectiveness of 

the algorithm. 

Using the chi-square distribution table, the value of the threshold is 

taken as 9.21 which is equal to the value of the chi-square corresponding to 

a probability of 0.99, beyond which the target is detected to be under 

maneuvering. The threshold crossing is checked for two more concurrent 

time steps in order to ensure the maneuver detection. 
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Fig.  6.2  Flowchart for tracking abruptly maneuvering target 

6.7 Results and Discussions 

6.7.1 Tracking of a Moving Target 

In this scenario, it is assumed that the target is moving in one 

dimension and in a straight line with a constant velocity. The true position 
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of the target, the measured position and the estimated position are depicted 

in Fig. 6.3. The two curves are the true position and the estimated position 

and they are almost too close to be distinguished from one another while 

the „+‟ marks are the measured positions. 

In order to compare the accuracy of the estimates generated by the 

Kalman filter, Fig. 6.4 depicts the error values between the true position 

and the measured position as well as between the true position and the 

estimated position as provided by the filter. It is clear from this plot that the 

positions that are estimated or predicted by the Kalman filter are much 

closer to the true positions almost at every data points. This plot also shows 

how the Kalman estimates improve over time.  

The relative accuracy of the Kalman output is demonstrated in 

Fig. 6.5, which shows the target velocity estimate which is a part of the 

state variable x, along with the position estimates. Here the estimated 

velocity is plotted along with the velocity derived from the position 

measurements, as the system does not provide any velocity data 

measurements. As seen from the plot, the velocity estimates are remarkably 

more stable than the observed values. 

The fact that Kalman filter reduces the residual errors with elapsed 

time is clearly proven in the plot shown in Fig. 6.6 which depicts the error 

between the true velocity and the estimated velocity. Though the initial 

predictions are not accurate, the filter adapts and gets tuned to the 

variations and limits the error range after a few iterations.  
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Fig.  6.3  True, measured and estimated positions plotted over time for one 

dimensional movement 

Fig.  6.4  The residual plot of measurement and estimation with respect to 

the true values 
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 Fig.  6.5  Variation of estimated and true velocities with time

 

Fig.  6.6  Error variation between the true velocity and the Kalman filters 

estimated velocity 



Chapter 6  Target Tracking 

 164 

6.7.2 Tracking of a Target Moving in Two Dimensions 

The analysis discussed clearly demonstrates that the Kalman filter is 

capable of making the predictions when the target moves in two 

dimensions, while other assumptions remain the same as that in the one 

dimensional scenario. The true, measured as well as the estimated positions 

of the target in x and y directions, together with the corresponding velocity 

variations are plotted in Fig. 6.7, Fig. 6.8, Fig. 6.9 and Fig. 6.10 

respectively, typically depicting the features of Kalman filtering. The 

resultant readings reinforce the fact that the Kalman filter is a powerful 

approach and reduces the error considerably in both dimensions and also 

that the accuracy of the filter improves over time, as vivified in the 2D plot 

shown in Fig.  6.11. 

 

Fig.  6.7  True, measured and estimated positions of the target in x direction 
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Fig.  6.8  True, measured and estimated positions of  

the target in y direction 

 

 Fig.  6.9  Velocity variations in x direction 
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Fig.  6.10  Velocity variations in y direction 

 

    Fig.  6.11  Two dimensional tracking over time 
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6.7.3 Tracking of a Maneuvering Target 

In this system model, the target is moving with nearly constant 

velocity in two dimensions and presumed to be abruptly changing its 

velocity or maneuvering twice.  Maneuver of the target is detected by 

comparing the distance function with the threshold determined by the 

chi square probability distribution. Once the maneuver is detected, the 

Kalman filter parameters are reset and the filter is reinitialized using the 

previous measurements. 

Algorithm for Tracking of a Maneuvering Target 

START 

LABEL :         Obtain position measurements  

Form state vector containing position and velocity 

Implement KF tracking algorithm on the state vector 

Compute the distance function 

Select a threshold from the chi-distribution table 

If threshold > distance, go to LABEL 

Or else, Reset Kalman filter parameters 

Reinitialize the filter from previous iterations 

If surveillance active, go to LABEL 

Or else, STOP 

 

 Fig. 6.12 shows the path of a Kalman tracker without using the 

corrective measures when it follows abrupt maneuvers. It can be seen that 

the Kalman filter is not able to track the target properly after the maneuver. 
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Fig.  6.12  Standard Kalman output without considering high maneuvering 

effects 

 As depicted in Fig. 6.13, the filter resets upon detecting a maneuver 

and thus it provides more accurate predictions over time. The position 

residual plot of the target maneuvering scenario depicted in Fig. 6.14 shows 

detection of the target maneuvers as graphical peaks at positions 62 and 

123, which closely correlates with the simulated maneuvers at the positions 

60 and 120 respectively.   

 The graphical user interface (GUI) developed for this target tracking 

scenario is shown in Fig. 6.15. While selecting one dimension or two 

dimension models, the corresponding measured values are loaded and the 

Kalman filter generates the corrected values. 

 



Underwater Target Localization, Tracking and Classification 

 169 

 

Fig.  6.13  True, measured and estimated positions of a maneuvering target 
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Fig.  6.14  Position residual graph showing the maneuvering points 
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Fig.  6.15  Screen shot of the  Graphic User Interface for Target Tracking 

6.8 Summary 

Kalman filter has been applied to the position estimates to improve 

the tracking results from the surveillance system. Various techniques that 

were implemented in the filter to circumvent the errors induced due to 

generic noises and the maneuvering of the target have been studied.  

Implementing Kalman filters to target tracking systems yield reliable 

results, given that the nature of the system can be modeled suitably. 

Applying such an adaptive filtering to a simulated one dimensional and two 
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dimensional system has yielded encouraging results, even when stochastic 

maneuvers were introduced on the target.  Abrupt maneuver causes 

degradation in the performance of the results. The decision making 

approach based on measurement residuals using chi-square significance test 

is implemented and studied. This cure measure improves the tracking 

performance under highly maneuvering conditions [111, 112]. The system 

can be extended to three dimensions by appending desirable modifications 

in the system model. 

 



Chapter 7  Target Classification 

 172 

CHAPTER 7  

TARGET CLASSIFICATION 

The proposed system, apart from performing the task of localization and 

tracking, also performs the task of target classification. The acoustic signals 

picked up by the buoy system may be of natural origin such as ice cracking, 

biological sources, thermal agitations, hydrodynamic sources, etc. or of 

manmade sources such as the ones from the ships, submarines, military 

operations, sonar, etc. The target specific  features of the unknown target 

are compared with  a set of archetypal features of a known pre-recorded 

data which have been previously generated and stored in a knowledge base, 

leading to the identification of the target. The various digital signal 

processing techniques used to extract the  signature features, leading to the 

classification of the  noise source are discussed in this Chapter. A Digital 

Signal processing module for the identification of noise sources in the 

ocean has also been implemented, with acceptable success rates. The 

system has been realized using a proprietary version of C language evolved 

for the digital signal processor TMS320C6713 development board.  The 

feature vectors extracted for different sources were  computed in MATLAB 

as well as in the DSP development board and the results were compared. 

7.1 Introduction 

 Noise in the ocean is of utmost importance for ocean explorations, 

oceanographic as well as fisheries studies, sonar operations, etc.  The wide 

range of systems for ocean research demands the need for characterizing 

the noise sources in the ocean.  The ambient noise in the ocean is 
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composite in nature, comprising of components emanating from a variety 

of noise sources.  The studies carried out on noise in the ocean reveal that 

its spectrum extends over the frequency range from a few Hz to about 100 

kHz.    

 Ships, other surface crafts, submarines, torpedoes, etc. are excellent 

sources of underwater noise.  They may have machineries of greater 

complexities, as they require numerous rotational and reciprocating 

machinery components for their propulsion, control and habitability.  These 

machineries also generate vibrations, thus contributing their effect on to the 

underwater noise.  Thus, the noise heard by a hydrophone operator contains 

a wide range of frequencies.  These noises are very difficult to interpret 

into a pattern that will indicate the type of the vessel or its class, with the 

usual signal extraction methods.  Moreover, some noises generated by a 

ship are intermittent in nature, typically the noise from the steering engine.  

Hence, in such situations, the tonal components present in the noise signals 

collected over a short period of time will be different from those taken for a 

long period. Scientists have been labouring hard for over five decades to 

develop electronic systems to understand and identify the noise sources in 

the ocean. 

 Spectral estimation techniques have been used as one of the vital 

signal processing tools for extracting valuable information about the 

signals as well as the noises, for many years.  As the power spectrum is 

related to autocorrelation, it does not contain any information about the 

components higher than the second orders, whereas the higher order 

spectra contain certain information, not present in the power spectrum.  

Hence, power spectral estimation has limited applications in situations 

where the non-Gaussian noise has to be detected.  Power spectral 

estimation techniques can be used for estimating the magnitude response of 
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the system. Estimates of bispectrum, which is the third order spectrum and 

bicoherence have been found useful in detecting nongaussianity and 

nonlinearity in system identification as well as detecting transient signals. 

 In order to interpret most effectively and efficiently the vast amount 

of data furnished by the signal processor, especially in situations where the 

detectable range of the system is very large, it is essential to have a fully 

automated and intelligent classifier, as most of the target information, in all 

probability, may not be of much interest to the user.  Operator controlled 

classifier turns out to be inappropriate and highly inefficient in such 

situations. Automatic detection and classification algorithm attempts to 

alleviate this operability problem by taking over the operator‟s role of 

picking out targets from a background of noise and interferences. 

 

Fig.  7.1  Block Schematic of the Target Classifier 

 The generalized structure of the prototype target classifier is shown 

in Fig. 7.1. The output of the power spectral estimator is compared with the 

earlier detection/estimation decisions, which are stored in the target feature 

record and the relevant target feature are updated.  In case, if a target 

feature is not updated over a significant period, the concerned feature will 

be dropped from the target feature record.  In many situations, the system 

may have to backtrack or  re-track through the stored features record to 

establish the links with the most recent features.  As and when the required 

classification clues are available in the target feature record, the most 
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matching signature pattern is identified from the known target signatures in 

the knowledge base, depending on the allowable percentage of mismatch, 

chosen by the user. 

 In the signal processing module of the developed buoy system, the 

acoustic signals generated by target are captured by using a 20-element 

hydrophone array.  The unique signature features  of the target can be 

extracted from the captured acoustic signals using a 32-bit floating point 

DSP processor, TMS320C6713 [113, 114].  The features thus extracted can 

be used for comparing with those available in the knowledge base.  

7.2 Knowledge Base 

 For the realisation of the target classifier, it is essential to have a 

powerful knowledge base comprising of the relevant parameters of 

different class and types of targets. The raw data collected has to be 

processed for gathering the relevant parameters for creating the knowledge 

base. 

7.2.1 Noise Data  

 The noise data used for creating the knowledge base mainly 

comprises of the man made noises and noise that are of biological in 

nature. Some of the data sets used in developing the knowledge base were 

collected during scheduled cruises off Cochin and Mangalore. 

7.2.1.1 Man Made Noises 

 Surfaced and submerged vessels create noise from their propellers, 

motors and gears. The noise generated by the motor is continuous and 

caused by the mini-explosions that occur, as the fuel burns rapidly inside 

the engine cylinders and by the rotating gears and shafts.  Sound is also 
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generated due to the formation of bubbles during the rotation of propellers 

and, to a lesser extent, by the wake of waves produced due to the 

movement of the vessels. As the vessel moves and the propellers rotate, 

bubbles are formed in the water and the formation of these bubbles is 

known as cavitations.  The breaking of these bubbles create a loud acoustic 

noise and is termed as cavitation noise which is directly related to the speed 

of the vessel. The faster the propeller rotates, the more will be the 

cavitation noise.  The breaking bubbles produce noise over a range of 

frequencies, and at high speeds, these frequencies can be as high as 20,000 

Hz.  On the other extreme, a large ship with slowly turning propellers can 

generate very low frequencies to the extent of 10 Hz or even less. The 

rotation of the propellers creates bands of noise at more or less constant 

frequencies that are proportional to the rate of rotation of the propeller.  

The noise created by these rotations, called blade-rate lines, can help to 

distinguish between different sizes of ships and even a particular ship in 

certain cases.  Low frequency noise generated by ships contributes 

significantly to the amount of low frequency ambient noise in the ocean, 

particularly in regions with heavy ship traffic.  In fact, because of the 

increase in propeller-driven vessels, low frequency ambient noise has 

increased 10-15 dB during the past 50 years.  

7.2.1.2 Biological Noise Data  

 A variety of biological noise data has been used for the purpose of 

creating the knowledge base.  The beluga, a medium sized toothed whale, 

is  amongst the loudest animals in the sea. They exhibit a wide range of 

vocalizations including clicks, squeaks, whistles and a bell-like clang. The 

sounds recorded are mostly in the range of  0.1 to 12 kHz.   The humpback 

whale is best known for their vocalizations that are arranged in complex, 

repeating sequences with the characteristics of song and contain both tonal 
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and pulsed sounds. Some of the different types of the harbour seal calls are  

trill, chirp, multiple whistle, single whistle, growl, whoop, chug, and grunt.  

Sea robins are very noisy fishes and make sounds like grunting, growling 

and grumbling. 

7.2.2 Data Analysis 

 For creating the knowledge base, the noise data waveforms of 

various targets are analysed following the procedures for extracting the 

spectral and bispectral features. The performance of the classifier depends 

on how extend and vast the knowledge base is.  In the prototype system, all 

the available noise date waveforms were analyzed and a representative 

knowledge base has been developed. The knowledge base for the prototype 

classifier comprise of the spectral and bispectral features of  different 

classes like ships, boats, marine mammals, environmental conditions, etc. 

7.2.3 Updating of Knowledge Base 

 The knowledge base that has been developed for realizing the 

prototype target classifier is only representative and not complete in all 

respects.  For making the system efficient, the knowledge base has to be 

updated with the signature patterns and the target dynamics for all the 

classes and types of targets. 

7.3 Extraction of Features 

 The pre-processed noise data waveforms are analyzed in different 

ways in the Estimation Statistics Processor. The different techniques, like 

spectral analysis and bispectral estimation techniques, are used for 

extracting the various signatures of the targets are illustrated in Fig. 7.2.  
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 The various features generated from this analysis are stored in a 

Target Feature Record (TFR), which is used for mapping the target 

signatures with the signatures available in the knowledge base. The 

generation of the target feature record as depicted in Fig. 7.3. plays an 

important role in the efficiency and success rate of the classifier. 

                       

Fig.  7.2  Methods for extracting the target features 

  As such, when the noise data waveforms are made available to the 

classifier, it generates the target feature record by performing spectral 

estimation and bispectral estimation.  The target feature records for various 

data records are generated. In case, if a TFR is not updated over a 

considerable period of time, the concerned feature record will be dropped 

and the system takes the average of all the TFRs which have close 

resemblances and thus generates the TFR. 
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Fig.  7.3  Flowchart for generation of TFR 
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7.4 Spectral Analysis 

 Signal being analysed in frequency domain is known as spectral 

analysis.  Spectral analysis methods can be classified as parametric and 

non-parametric methods based on the analysis of the signal in time domain.  

Non–parametric analysis require multiple periods for the particular spectral 

peak to appear whereas parametric analysis require the data segment to 

contain only single period to produce a pronounced peak.  Non-parametric 

statistics have the advantage of being distribution independent as well as 

insensitive to extreme values or outliers.  The disadvantages of non-

parametric statistics are complexity, low power and time required for 

computation. Some of the non-parametric methods are Daniell 

Periodogram, Barlett Periodogram and Welch Periodogram.  In contrast, 

parametric statistics are simple and easy to compute but rely upon the 

assumption of a “Gaussian” distribution.  Parametric statistics are known to 

be generally robust even when the assumption of Gaussian distribution is 

violated.  Widely used parametric approaches are Auto Regressive (AR) 

process, Moving Average process (MA) and ARMA process. 

 The major noise sources emanated from the targets are from 

propellers and propulsion or from other machinery of the targets, which 

can produce significant noise at low frequencies but little noise at high 

frequencies greater than 5 kHz, where wind and wave-generated noise 

dominates the spectrum of oceanic noise.  In addition, higher frequency 

noise is strongly attenuated in seawater. Moreover, as the noise signals 

from the target are non-linear, intermittent and of short duration, 

parametric methods of spectral analysis are more appropriate and precise.   

 Though frequency analysis using Fourier methods, DFT or the 

computationally efficient FFT with periodogram methods are commonly 
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used, there are numerous disadvantages with these non – parametric 

methods as compared to parametric methods.  Parametric methods give 

smoother spectrums than non-parametric methods although the latter using 

digital windowing techniques can smoothen the spectrum to some extent; 

they distort the true spectrum due to side lobe leakages.  Parametric 

methods give better frequency resolution while avoiding picket fencing and 

scalloping loss faced by non – parametric methods.  The latter consist of 

harmonic amplitude and phase components regularly spaced in frequency 

intervals.  The spacing of the spectral lines depends on the number of data 

samples decreasing with number of data.  Therefore, it is unable to estimate 

accurately the frequency component of the signal in between two adjacent 

harmonic frequency components.  This problem is better known as picket 

fencing effects.  This results in scalloping loss which attenuates the signal 

mid-way between the harmonically related frequency components. 

 Thus, more accurate power spectral density of the noise signal 

emanated from the target can be estimated using parametric spectral 

methods.  Though several spectral estimation techniques have been 

evolved using parametric spectral methods, in an attempt to improve the 

spectral fidelity and resolutions, the power spectral density estimation 

using the autoregressive (AR) approach has been adopted here, for 

analyzing the spectral components in the noise waveforms, leading to the 

extraction of certain classification clues.  

7.4.1 Spectral Features 

 Spectral features of an acoustic signal are unique in their 

characteristics and so they can be called as spectral signatures as they 

explicitly prove the identity of the signal.  Therefore, the nature or class of 

the noise emanating from the target can be identified by extracting its 
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spectral features.  The features are calculated after estimating the power 

spectral density of the signal using parametric spectral methods.  Spectral 

features are extracted using power spectral statistics and higher order 

statistics [ 115-122].  

7.4.2 Power Spectral Statistics 

 The power spectrum is the primary tool of signal processing and 

algorithms for estimating the power spectrum have found applications in 

areas such as radar, sonar, seismic, biomedical, communications and 

speech signal processing.  The usefulness of the power spectrum arises 

from an important theorem known as Wold‟s decomposition theorem, 

which states that any discrete-time stationary random process can be 

expressed in the form, 

x(n) =  y(n) + z(n) 

such that : 

 Processes y(n) and z(n) are uncorrelated with one another 

 Process y(n) has causal linear process representation, 

𝑦 𝑛 =  𝑕 𝑘 𝑢(𝑛 − 𝑘)

∞

𝑘=0

 

 where, h(0)=1,  𝑕2(𝑘)∞
𝑘=0   < and u(n) is a white–noise process; and 

 z(n) is singular, that is, it can be predicted perfectly (with zero 

variance) from its past. 

 According to Wiener – Khintchine theorem, power spectrum, Pxx(f) 

of a stationary process, x(n) is defined as the Fourier transform of the 

autocorrelation sequence of the process.     

 

𝑃𝑋𝑋 𝑓 =  𝑅𝑋𝑋 𝑚 exp(−𝑗2𝜋𝑓𝑚)

∞

𝑚=−∞
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where, Rxx(m) = E [x*(m) x(n+m)] is the autocorrelation sequence of x(n). 

 A sufficient, but not necessary, condition for the existence of the 

power spectrum is that the autocorrelation be absolutely summable.  The 

power spectrum is real valued and non-negative, ie., Pxx(f)>=0; if x(n) is 

real valued, then the power spectrum is also symmetric, ie., Pxx (f)= Pxx (-f). 

7.4.3 Features using Power Spectral Statistics 

Spectral features extracted using power spectral statistics are as follows: 

 Spectral Centroid (Brightness) 

 Spectral Range (Bandwidth) 

 Spectral Roll off 

 Spectral Slope 

 Characteristic Frequencies 

 Audio spectrum centroid  

 Audio spectrum spread  

 Spectral Flatness 

7.4.3.1 Brightness 

 Brightness or spectral centroid is the amplitude-weighted average, 

or centroid, of the frequency spectrum, which can be related to a human 

perception of brightness.  It is calculated by multiplying the value of each 

frequency by its magnitude in the spectrum and thereby summing them.  

The resultant is then normalised by dividing it by the sum of all the 

magnitudes [ 89, 115]. 

 

𝑏𝑟𝑖𝑔𝑕𝑡𝑛𝑒𝑠𝑠 =  
  𝑚𝑎𝑔  𝑖 ×𝑓𝑟𝑒𝑞 [𝑖] 

 𝑚𝑎𝑔 [𝑖]
      (7.1)  
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i=0… frame size/2, where, mag = the magnitude spectrum. 

freq = the frequency corresponding to each magnitude element. 

e.g.: Brightness of engine.wav = 2824.5 Hz 

7.4.3.2 Bandwidth 

 Bandwidth or spectral range is an amplitude weighted average of 

the differences between each frequency magnitude and the brightness, i.e. a 

representation of the range of frequencies that are present in a certain 

frame.  It is computed by subtracting the mean value (in this case the 

brightness) from each data value:  

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡𝑕 =  
  𝑚𝑎𝑔  𝑖 ×𝑓𝑟𝑒𝑞 [𝑖]−𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

 𝑚𝑎𝑔 [𝑖]
    (7.2) 

i = 0…..frame size/2.  

where,  mag = the magnitude spectrum. 

freq = the frequency corresponding to each magnitude element. 

e.g. Bandwidth of engine.wav = 1334 Hz  

7.4.3.3 Spectral Roll off 

 Spectral Roll off is a measure of spectral shape, which could be 

used instead of bandwidth. It is defined as the frequency below which 85% 

of the magnitude distribution is concentrated. i.e. 

 

MIN(R) such that, 

 

 𝑚𝑎𝑔[𝑖] ≥ 0.85 ×  𝑚𝑎𝑔[𝑖]𝑁
𝑖=1

𝑅
𝑖=1     (7.3) 

 

where, N is the length of the signal. 

 

e.g. Spectral Roll off of  engine.wav = 4694 Hz 

 



Underwater Target Localization, Tracking and Classification 

 185 

7.4.3.4 Audio Spectrum Centroid (ASC) 

 Audio spectrum centroid features a logarithmic frequency scaling 

centered at 1 kHz,   

𝐴𝑆𝐶𝑟 =
 𝑙𝑜𝑔2 𝑓[𝑘]/1000 𝑃 𝑟 [𝑘]

𝑁/2

𝐾=1

 𝑃𝑟 [𝑘]
𝑁/2

𝐾=1

         (7.4) 

  

where, Pr is the power spectrum of the frame r. 

 

e.g. Audio spectrum centroid of engine.wav = -5.02 

7.4.3.5 Audio Spectrum Spread (ASS) 

 It describes concentration of the spectrum around the centroid and 

is defined as    

  

𝐴𝑆𝑆𝑟 =  
 [𝑙𝑜𝑔2 𝑓[𝑘]/1000 −𝐴𝑆𝐶𝑟 ]2𝑃 𝑟 [𝑘]

𝑁/2

𝐾=1

 𝑃𝑟 [𝑘]
𝑁/2

𝐾=1

   (7.5) 

 

 Lower spread values would mean that the spectrum is highly 

concentrated near the centroid and higher values mean that it is distributed 

across a wider range at both sides of the centroid.   

e.g. Audio spectrum spread of engine.wav = 0.737 

7.4.3.6 Audio Spectrum Flatness (ASF) 

 It can be defined as the deviation of the spectral form from that of a 

flat spectrum.  Flat spectra correspond to noise or impulse-like signals 

hence high flatness values indicate noisiness.  Low flatness values 

generally indicate the presence of harmonic components.  The flatness of a 

band is defined as the ratio of the geometric and the arithmetic means of 

the power spectrum coefficients within that band. 
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𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =
  𝑥 𝑛 𝑁−1

𝑛=0
𝑁

 
 𝑥 𝑛 𝑁−1

𝑛=0
𝑁

 

     (7.6) 

 

e.g. Audio spectrum flatness of engine.wav = 0.21 

7.4.3.7  Spectral Slope 

It refers to the average slope of the power spectral density variation. 

e.g. Spectral slope of engine.wav = -41.39. 

7.4.3.8  Peaking Frequencies 

Peaking frequencies will help in identifying the tonal as well as 

continuous frequency components.   

e.g. One of the prominent peaking frequencies of engine.wav = 5117.3 Hz. 

7.5 Bispectral Statistics 

There is much more information in a stochastic non-Gaussian or 

deterministic signal than is conveyed by its autocorrelation or power 

spectrum.  Higher order spectra which are defined in terms of higher order 

moments or cumulants of a signal contain this additional information [123-

126].  

 In power spectrum estimation, the process under consideration is 

treated as a superposition of statistically uncorrelated harmonic 

components and the distribution of power among these frequency 

components is then estimated.  As such, only linear mechanisms governing 

the process are investigated since phase relations between frequency 

components are suppressed.  The information contained in the power 

spectrum is essentially that which is present in the autocorrelation 

sequence; this would suffice for the complete statistical description of a 

Gaussian process of known mean.  However, there are practical situations 
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where we would have to look beyond the power spectrum (autocorrelation) 

to obtain information regarding deviations from Gaussianness and presence 

of nonlinearities.  Higher order spectra (also known as polyspectra), 

defined in terms of higher order cumulants of the process, do contain such 

information.  Particular cases of higher order spectra are the third order 

spectrum also called the bispectrum which is, by definition, the Fourier 

transform of the third order cumulant sequence and the trispectrum (fourth 

order spectrum) which is the Fourier transform of the fourth order 

cumulant sequence of a stationary random process.  The power spectrum is, 

in fact, a member of the class of higher order spectra, i.e., it is a second 

order spectrum. 

The general motivation behind the use of higher order spectra in 

signal processing is threefold:  

(i) To extract information due to deviations from Gaussianness 

(normality) 

(ii) To estimate the phase of non-Gaussian parametric signals, and 

(iii)To detect and characterize the nonlinear properties of 

mechanisms which generate time series via phase relations of 

their harmonic components. 

 The first motivation is based on the property that for Gaussian 

processes, all polyspectra of order greater than two are identically zero.  

Thus, a non-zero higher order spectrum indicates deviation from normality.  

For a given zero-mean stationary real random process  𝑋𝑛 ; non-zero 

skewness, E 𝑋𝑛
3    0 indicates the existence of its bispectrum where, E   .   

is the expectation operation.  Hence, in those signal processing settings 

where the signal is a non-Gaussian stationary process and the additive 
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noise process is stationary Gaussian, there might be certain advantages 

estimating signal parameters in higher order spectrum domains.  The non-

Gaussianess condition is satisfied in many practical applications, since any 

periodic or quasi-periodic signal can be regarded as a non-Gaussian signal 

and self emitting signals from complicated mechanical systems can also be 

considered as non-Gaussian signals.  

 The second motivation is based on the fact that higher order spectra 

preserve the phase information of non-Gaussian parametric signals.  For 

modelling time series data in signal processing, least squares estimation is 

almost exclusively used because it yields maximum-likelihood estimates of 

the parameters of Gaussian processes and also because the equations 

obtained are usually in a linear form involving autocorrelation samples or 

their estimates.  However, the autocorrelation domain suppresses phase 

information and therefore least squares techniques (or modelling 

autocorrelation methods) are incapable of representing non-minimum 

phase parametric processes.  An accurate phase reconstruction in the 

autocorrelation (or power spectrum) domain can only be achieved if the 

parametric process is indeed minimum phase.  Non-minimum phase 

estimation is of primary importance in deconvolution problems that arise in 

geophysics, telecommunications, etc., in which the wavelet shape must 

have the correct phase character.   

 One approach to the deconvolution problem that has emerged 

recently explores the use of higher order spectra to estimate the phase of 

the wavelet due to the ability of polyspectra to preserve non-minimum 

phase information. Assuming that the reflectivity series (input sequence) is 

non-Gaussian white with zero-mean, a mixed-phase wavelet can be 

reconstructed in the bispectrum domain if the input sequence has non-zero 

skewness, or in the trispectrum domain if the fourth-order cumulant 



Underwater Target Localization, Tracking and Classification 

 189 

sequence is different from zero. Moreover, if the reflectivity series is 

Gaussian, no procedure can recover the actual shape of a non-minimum 

phase wavelet.   

 Finally, introduction of higher order spectra (HOS) is quite natural 

when we try to analyze the nonlinearity of a system operating under 

random input.  General relations for arbitrary stationary random data 

passing through arbitrary linear systems have been studied quite 

extensively for many years.  In principle, most of these relations are based 

on power spectrum (or autocorrelation) matching criteria.  On the other 

hand, general relations are not available for arbitrary stationary random 

data passing through arbitrary nonlinear systems.  Instead, each type of 

nonlinearity has to be investigated as a special case.  HOS could play a key 

role in detecting and characterizing the type of nonlinearity in a system 

from its output data.  Consider a linear time invariant (LTI) system as 

shown in Fig. 7.4  with input, 

 𝑋𝑘 =  𝐴𝑚𝑚 exp 𝑗(𝜔𝑚𝑘 + 𝜙𝑚 ),  

where  𝜙(𝑚 )  are independent, identically distributed random variables. 

 

𝑋𝑘 =  𝐴𝑚𝑒𝑗(𝜔𝑚𝑘+𝜙𝑚 )𝑚      𝑌𝑘
(1) =  𝐵𝑒𝑗(𝜔𝑚𝑘+𝜃𝑚 )

𝑚                                  

 

𝑋𝑘 =  𝐴𝑚𝑒𝑗(𝜔𝑚𝑘+𝜑𝑚 )𝑚                                            𝑍𝑘 =  𝑌𝑘
(𝜆)𝑁

𝜆=1  

 

Fig.  7.4  Output of a Linear Time Invariant system and a nonlinear system 

to a sinusoidal input 

 

LTI 

SYSTEM 

NONLINEAR 

SYSTEM 
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Then the output of the LTI system, 𝑌𝑘
(1)   is given by  

 

𝑌𝑘
(1) =  𝐵𝑚𝑚 𝑒𝑥𝑝 𝑗 𝜔𝑚𝑘 + 𝜃𝑚      (7.7) 

 

 It can easily be verified that all higher order cumulants of {𝑌𝑘
(1)

}of 

order greater than two are identically zero. Therefore, zero HOS of {𝑌𝑘
(1)

} 

will indicate that only linear mechanisms generate the output time series.  

The output of the Nonlinear system is given by 

𝑍𝑘 =  𝑌𝑘
(𝜆)𝑁

𝜆=1        (7.8) 

where {𝑌𝑘
(1)

} is given by (7.7) and  

𝑌𝑘
(2) =   𝑚  𝐶𝑚𝑛 𝐶𝑛𝑒𝑥𝑝 𝑗[ 𝜔𝑚 + 𝜔𝑛)𝑘 + (𝜃𝑚 + 𝜃𝑛 ]  (7.9) 

 A  nonzero bispectrum, given by (7.9), will indicate the existence of 

the term,  𝑌𝑘
(2)

  , and therefore, the presence of a quadratic nonlinearity in 

the system.  

7.5.1 Cumulants and Higher Order Spectra 

 Higher order spectra are defined in terms of cumulants and 

therefore are called cumulant spectra. Given a set of n real random 

variables {xl, x2,…, xn}, their joint cumulants of order,  r = k1 + k2 +… + kn 

are defined as 

𝑐𝑘1…..𝑘𝑛   
≜ (−𝑗)𝑟   

𝜕𝑟 𝑙𝑛Φ(𝜔1,𝜔2,…….,𝜔𝑛 )

𝜕𝜔 𝑘1𝜕𝜔 𝑘2………𝜕𝜔 𝑘𝑛
 
𝜔1=𝜔2=⋯=𝜔𝑛=0

 (7.10) 
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where, (1, 2,…, n) = E[exp j(1x1+…+ nxn)] is their joint 

characteristic function. The joint moments of order r of the same set of 

random variables are given by  

𝑚𝑘1…..𝑘𝑛  
≜ 𝐸  𝑥1

𝑘1𝑥2
𝑘2 …… . 𝑥𝑛

𝑘𝑛 
 
  

                             = (−𝑗)𝑟   
𝜕𝑟Φ(𝜔1,𝜔2,…….,𝜔𝑛 )

𝜕𝜔 𝑘1  ………𝜕𝜔 𝑘𝑛
 
𝜔1=….=𝜔𝑛=0

 (7.11) 

Hence, the joint cumulants can be expressed in terms of the joint moments 

of the random variables. For example, if m1…0 = E[X1] = 0, then  

c1…0  =  0 

c2…0  =  m2…0  =  E[X1
2 
] 

c3…0  =  m3…0  =  E[X1
3 
] 

c4…0  =  m4…0 – 3c2
2
…0 

          =  E[X1
4
 ] – 3m2

2
…0    (7.12) 

By taking {X(k)}, k = 0, ±1, ±2, … to be a real stationary random process 

with zero mean, E[X(k)] = 0, then the moment sequences of the process are 

related to its cumulants as follows: 

E[X(k) X(k+τ1)] = m2(τ1) 

  = c2(τ1)  (autocorrelation sequence)  

E[X(k) X(k+τ1) X(k+τ2)] = m3(τ1, τ2) 

 = c3(τ1, τ2)  (third order moment or cumulant sequence) 

E[X(k) X(k+τ1) X(k+τ2) X(k+τ3)] = m4(τ1, τ2 ,τ3)  (7.13) 

 = c4(τ1,τ2 ,τ3) + c2(τ1) . c2(τ3 -τ2) + c2(τ2) . c2(τ3 –τ1) +c2(τ3)  

  . c2(τ2 –τ1) (fourth order moment sequence) 
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 While the third order moments and third order cumulants are 

identical, this is not true for the fourth order statistics. In order to generate 

the fourth order cumulant sequence, we need knowledge of the fourth order 

moment and autocorrelation sequences. 

7.5.2 Properties of Bispectrum 

 Let {X(k)} be a real, discrete, zero-mean stationary process with 

power spectrum P(), defined as   

𝑃 𝜔 =  𝑟 𝜏 𝑒𝑥𝑝 − 𝑗(𝜔𝜏)+∞
𝜏=−∞ ,     𝜔 < 𝜋             (7.14) 

where,                 

𝑟 𝜏 = 𝐸 𝑋(𝑘)𝑋(𝑘 + 𝜏)                                                (7.15) 

is its autocorrelation sequence. If R(m, n) denotes the third moment 

sequence of {X(k)}, i.e.;              

𝑅 𝑚, 𝑛 = 𝐸[𝑋 𝑘 𝑋 𝑘 + 𝑚 𝑋 𝑘 + 𝑛 ]                 (7.16) 

then its bispectrum is defined as  

𝐵 𝜔1,𝜔2 =    +∞
𝑚=−∞  𝑅 𝑚, 𝑛 exp −𝑗(𝜔1

+∞
𝑛=−∞ 𝑚 + 𝜔2𝑛)      (7.17) 

Since the third order moments and cumulants are identical, the bispectrum 

is a third order cumulant spectrum. From (7.16), it follows that the third 

order moments obey the symmetry properties such as, 

R(m,n) = R(n,m) = R(-n,m-n) = R(n-m,-m) = R(m-n,-n) = R(-m,n-m) 

 As a consequence, knowing the third moments in any one of the six 

sectors,  shown in Fig. 7.5 and Fig. 7.6, would enable us to find the entire 

third moment sequence. 
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 Gaussian Processes: If {X(k)} is a stationary zero-mean Gaussian 

process, its third-moment sequence R(m, n) = 0 for all (m, n) and therefore 

its bispectrum B(l, 2 ) is identically zero.  

 Linear Phase Shifts: Given {X(k)}with power spectrum Px() and 

bispectrum Bx(l, 2 ), the process, Y(k) = X(k - N), where N is a constant 

integer, has power spectrum Py() = Px() and  bispectrum By(l, 2) = 

Bx(l, 2) i.e., the second and third order moments suppress linear phase 

information. However, while the power spectrum (autocorrelation) 

suppresses all phase information, the bispectrum (third-moment sequence) 

does not.                                     

 Non-Gaussian White Noise:   If {W(k)} is a stationary non-

Gaussian process with E[W(k)] = 0, E[W(k) W(k + τ)] = Q.(τ) and 

E[W(k) W(k + τ) W(k +)] = β. (τ, ), its  power spectrum and bispectrum 

are both flat, i.e., P() = Q and B(l, 2) = β.   

 Quadratic Phase Coupling: There are situations in practice where 

because of interaction between two harmonic components of a process, 

there is contribution to the power at their sum and/or difference 

frequencies. Such a phenomenon, which could be due to quadratic 

nonlinearities, gives rise to certain phase relations called quadratic phase 

coupling. In certain applications, it is necessary to find out, if peaks at 

harmonically related positions in the power spectrum are, in fact, coupled. 

The power spectrum suppresses all phase relations. The bispectrum, 

however, is capable of detecting and quantifying phase coupling.  
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Fig.  7.5  Symmetry regions of third order moments 

 

Fig.  7.6  Symmetry regions of the Bispectrum   

 With bispectral analysis, it has been evidenced that ship generated 

noise contain strong nonlinear components in its noise generating 

mechanisms, whereas the ambient noise does not. The bispectral analysis 

has the advantage that it is capable of distinguishing these nonlinear 

components in the noise generating mechanism.  This leads us to some 

procedures for differentiating between shipping noise and ambient noise.  

Moreover, this procedure can also be used for differentiating various 

classes or types of ships. 
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 Hence, the bispectral analysis can be used to extract the information 

for analyzing the ship radiated noise, on the existence of such noise sources 

that would normally be hidden in the ambient noise, when the spectral 

estimation approaches are carried out. 

7.6 DSP based Feature Extraction 

 The omni-directional hydrophone element keeps monitoring for any 

acoustic disturbances near the deployed buoy system until the power of the 

captured acoustic signal reaches above a predefined threshold level. Once 

the threshold level is reached, the signal processing unit of the buoy 

electronics get triggered for extraction of features which can be used for 

identification of targets. 

 The signature features are extracted from the acoustic signals 

captured by the hydrophone array. The signal conditioning and feature 

extraction is performed using a 32 bit, DSP development board. The analog 

acoustic signals from the hydrophone array are fed into an AIC23 stereo 

CODEC for sampling and A/D conversion. The sampled digital output of 

the audio signals is stored as wave file for further signal analysis and 

processing. The acoustic signals from hydrophone array after preprocessing 

are analyzed in the Feature Extraction Unit which is implemented using a 

DSP development board manufactured by Texas Instruments. It consists of 

a higher end DSP Processor TMS320C6713 which is adequate for 

precision audio applications, Audio Codec, SDRAM, and FLASH memory.  

The board is compact, inexpensive, fast in operations, and works on 3.3 V 

supply. 

 The acoustic signal captured by the hydrophone array, after 

preliminary processing is sampled and digitized by the audio codec.  The 
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digital signal is then read by the processor using one of the Multichannel 

Buffered Serial Ports (McBSPs).  The data is then transferred to the 

internal L2 memory through the Enhanced Direct Memory Access 

(EDMA) channel.  Double-Buffering is used to buffer the incoming data.  

When one of the buffers is full an interrupt is generated to process the data 

received.  At the same time, the CODEC keeps sampling and saves data 

into the other buffer. So data sampling and processing can be done 

simultaneously and no incoming signals are missed even if the DSP is 

processing previously received data. Feature extraction and signal 

conditioning is done on the received signal.  The digital signal is then send 

to RF Link for transmission through the serial port. The  Flowchart 

depicting the algorithm for feature extraction is shown in Fig. 7.7. 

7.6.1 Architecture of TMS320C6713 

 The TMS320C6713 DSP processor is a 32-bit floating point 

processor developed by Texas Instruments. Its key features are:  

 Operating frequency is 225 MHz 

 An AIC23 stereo codec for coding and decoding the audio signals   

 16 Mbytes of synchronous DRAM 

 512 Kbytes of non-volatile Flash memory  

 (256 Kbytes usable in default configuration) 

 4 user accessible LEDs and DIP switches 

 Software board configuration through registers implemented in 

 CPLD 

 Configurable boot options 

 Standard expansion connectors for daughter card use 

 JTAG emulation through onboard JTAG emulator with USB host 

interface or external emulator 
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 Single voltage power supply (+5V) 

              

   Fig.  7.7  Flowchart depicting the algorithm for feature extraction 

 The platform used for programming and communicating with the 

processor is Code Composer Studio (CCS) through an embedded JTAG 

emulator via USB interface or through an external emulator via JTAG 

connector. The block diagram of the DSK is shown in Fig. 7.8. 
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Fig.  7.8  Block Diagram of TI TMS320C6713 DSK 

7.6.1.1 Memory Map 

 The C67xx family of DSPs has a large byte addressable address 

space. Program code and data can be placed anywhere in the unified 

address space.  Addresses are always 32-bits wide.  The memory map 

shows the address space of a generic 6713 processor on the left with 

specific details of how each region is used on the right.  By default, the 

internal memory locates at the beginning of the address space.  Portions of 

the internal memory can be reconfigured in software as L2 cache rather 

than fixed RAM.  The EMIF has 4 separate addressable regions called chip 

enable spaces (CE0-CE3). The SDRAM occupies CE0 while the Flash and 

CPLD share CE1, CE2 and CE3 are generally reserved for daughter cards.  

The memory mapping is shown in Fig. 7.9.  

7.6.1.2 CPLD (Programmable Logic) 

 The C6713 DSK uses an Altera EPM3128TC100-10 Complex 

Programmable Logic Device (CPLD) device to implement: 
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 4 Memory-mapped control/status registers that allow software 

control of various board features. 

 Control of the daughter card interface and signals. 

 Assorted "glue" logic that ties the board components together. 

 

 

  Fig.  7.9  Memory Mapping in TMS320C6713 DSK 

7.6.1.3 AIC23 Codec 

 The DSK uses a Texas Instruments AIC23 (part #TLV320AIC23) 

stereo codec for input and output of audio signals.  The codec samples 

analog signals on the microphone or line inputs and converts them into 

digital data so that it can be processed by the DSP.  When the DSP is 

finished with the data it uses,  the codec  convert the samples back into 

analog signals on the line and the headphone outputs the signals so that the 

user can hear the output.  The codec communicates using two serial 

channels, one to control the codec‟s internal configuration registers and one 
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to send and receive digital audio samples. The schematic of AIC23 codec is 

shown in Fig. 7.10.  

 

Fig.  7.10  Schematic of AIC23 CODEC 

 McBSP0 is used as the unidirectional control channel.  It should be 

programmed to send a 16-bit control word to the AIC23 in SPI format.  

The top 7 bits of the control word should specify the register to be 

modified and the lower 9 should contain the register value.  The control 

channel is only used when configuring the codec, it is generally idle when 

audio data is being transmitted, McBSP1 is used as the bi-directional data 

channel.  All audio data flows through the data channel.  Many data 

formats are supported based on the three variables,  sample width, clock 

signal source and serial data format.  The DSK examples generally use a 

16-bit sample width with the codec in master mode, so it generates the 

frame sync and bit clocks at the correct sample rate without effort on the 

DSP side.  The preferred serial format is DSP mode which is designed 

specifically to operate with the McBSP ports on TI DSPs.  The codec has a 

12MHz system clock.  The 12MHz system clock corresponds to USB 

sample rate mode and can use the same clock for both the codec and USB 

controller.   
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7.6.1.4 Synchronous DRAM 

 The DSK uses a 128 megabit synchronous DRAM (SDRAM) on 

the 32-bit EMIF. The SDRAM is mapped at the beginning of CE0 (address 

0x80000000) with a total available memory of 16 megabytes.  The 

integrated SDRAM controller is a part of the EMIF and must be configured 

in software for proper operation.  The EMIF clock is derived from the PLL 

settings and should be configured in software at 90MHz.  This number is 

based on an internal PLL clock of 450MHz required to achieve 225 MHz 

operation with a divisor of 2 and a 90MHz EMIF clock with a divisor of 5.  

When using SDRAM, the controller must be set up to refresh one row of 

the memory array every 15.6 microseconds to maintain data integrity.  

With a 90MHz EMIF clock, the period is 1400 bus cycles.   

7.6.1.5 Flash Memory 

 Flash is a type of memory which does not lose its contents when the 

power is turned off.  When read, it looks like a simple asynchronous read 

only memory (ROM). Flash can be erased in large blocks commonly 

referred to as sectors or pages.  Once a block has been erased each word 

can be programmed once through a special command sequence.  After that, 

the entire block must be erased again to change the contents.  The DSK 

uses a 512Kbyte external Flash as a boot option.  It is visible at the 

beginning of CE1 (address 0x90000000).  The Flash is wired as a 256K by 

16 bit device to support the DSK's 16-bit boot option.  However, the 

software that ships with the DSK treats the Flash as an 8-bit device 

(ignoring the top 8 bits) to match the 6713's default 8-bit boot mode.  In 

this configuration, only 256Kbytes are readily usable without software 

changes. 
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7.6.1.6 LEDs and DIP Switches 

 The DSK includes 4 software accessible LEDs (D7-D10) and DIP 

switches (SW1) that provide the user a simple form of input/output.  Both 

are accessed through the CPLD USER_REG register.  

7.7 Prototype Target Classifier 

 The omni-directional hydrophone element keeps monitoring the 

acoustic disturbances near the deployed buoy system until the power of the 

captured noise signal reaches above a predefined threshold level.  Once the 

threshold level is reached, the signal processing unit of the Buoy 

electronics gets triggered and generates the ALERT signal.  The analog 

signals captured by the hydrophone array are coded to the required file 

format using the AIC23 CODEC of the TMS320C6713 DSK.  This file can 

be used for further signal analysis and processing. 

 The classification function operates in a multidimensional space 

formed by the various components of the feature vector. For the purpose of 

target classification, one has to identify the characteristic features from the 

representation of an object. Upon generating the various features, those 

features that can indeed aid in the process of classification are selected. 

Though, such a selection will generally lead to loss of information, this will 

reduce the noise generated by the irrelevant features as well as the risk of 

over fitting the training data, thus making the classifier computationally 

efficient.  

 The signature features are used to generate the required 

classification clues towards the identification of the noise sources in the 

ocean.  The function of classification is carried out by performing the 

template matching process, in which the various components of the feature 
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vector generated are mapped with the corresponding components of the 

feature vector available in the knowledge base.    

7.7.1 Feature Vector based classifier 

7.7.1.1  Euclidean Distance Model 

 Euclidean distance model is one of the simple yet efficient classifier 

algorithms and a properly weighted model, making use of the feature 

vector, could be used to find out the nearest match [127]. The weights for 

the various components of the feature vector have been selected based on 

heuristics, the knowledge gained from the training examples as well as trial 

and error procedures. For the purpose of feature vector based classification, 

the Euclidean distance between the feature vectors of the unknown target 

and that of the various targets in the knowledge base is computed. The 

vector components are normalized by standard deviation or the range of the 

features, across the whole knowledge base. Further to normalization, each 

feature is weighted in proportion to its significance in the similarity 

estimation. 

 The Euclidean distance DE is computed as  
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where xi and yi refers to the i
th

 feature component of the unknown target 

and that of the various targets in the knowledge base respectively, wi is the 

weight assigned to the i
th

 feature component such that,  
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vi represents the normalization vector and l is the total number of features. 
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7.8 Results and Discussions 

 A feature extraction unit has been developed on the TMS320C6713 

DSP development board, for extracting the characteristic features of the 

target. This hardware has been designed in such a way that it can handover 

the extracted features to the communications controller through the DSP 

interface provided in the Hydrophone Array Controller. The flowchart for 

the code for spectral feature extraction is  shown in Fig. 7.11. 

 The signature features of the captured signals by the hydrophone 

arrays are extracted using MATLAB and TMS320C6713 DSK.  Codes 

were written in „C‟ language and were compiled and run on 

TMS320C6713 DSP processor using Code Composer Studio.  The 

algorithms used in both the platforms were similar and the performance of 

the module for extracting the features and identifying the targets has been 

validated to a satisfactory level of repeatability and reproducibility. 

 The spectral features that are generated by the DSP module and 

MATLAB are compared with those available in the knowledge base.  

Features extracted for 3 targets using MATLAB and DSP processor are 

given in Table 7.1, Table 7.2 and Table 7.3.  
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Fig.  7.11  Flowchart for extracting spectral features 
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Table 7.1 Spectral Features extracted using MATLAB and TMS320C6713 DSP 

Board for Engine noise 

Spectral Features extracted using MATLAB and TMS320C6713 DSP processor 

Input (Wave File) Feature 

Output 

MATLAB TMS320C6713 

Engine.wav 

Sampling Frequency 11008 11008 

Spectral centroid -5.02 -5.9 

Spectral Spread 0.737 1.9 

Bandwidth 1334 1355 

Brightness 2824.5 2830 

Spectral slope -41.39 -45 

Spectral Roll off 4694 4700 

Spectral Flatness 0.21 0.5 

Prominent Peaking 

Frequencies 

2913.1 2920.7 

3197.6 3200.3 

3448.1 3452.5 

3735.7 3738.4 

4035.1 4040.2 

4269.7 4270 

4549.2 4552 

4813.8 4815.7 

5117.3 5119 

5385.8 5385.8 

 Data Length = 110080 
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Table 7.2  Spectral Features extracted using MATLAB and TMS320C6713 DSP 

Board for Ship noise  

Input                                    

(Wave File) 
Feature 

Output 

MATLAB TMS320C6713 

Ship.wav 

Sampling Frequency  22050 22050 

Spectral centroid  -4.19 -5.6 

Spectral Spread  0.39 0.6 

Bandwidth  2343 2343 

Brightness  7273 7252 

Spectral slope  -56.6 -59 

Spectral Roll off  10196 10200 

Spectral Flatness  0.13709 0.34 

Prominent Peaking 

Frequencies  

2537.6 2542.5 

3339.5 3344.4 

4719.2 4722 

5401.1 5409 

6728.9 6732.8 

7502.7 7510 

8224.6 8234.6 

8784.5 8790 

9466.4 9472 

10234 10244 

Data Length = 151806 
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Table 7.3 Spectral Features extracted using MATLAB and TMS320C6713 DSP 

Board for Boat noise 

Input                                    

( Wave File) 
Feature 

Output 

MATLAB TMS320C6713 

 

Boat.wav 

Sampling Frequency  11025 11025 

Spectral centroid  -4.5 -5.1 

Spectral Spread  0.26 0.5 

Bandwidth  1103 1113 

Brightness  3693 3670 

Spectral slope  -160.5 -165 

Spectral Roll off  5027.2 5035 

Spectral Flatness  0.00016 0.00021 

Prominent Peaking 

Frequencies  

224 230 

605 610.5 

1121 1127 

1709 1715.2 

3602 3610 

3963 3957 

4285 4277 

4269 4265 

4946 4950 

5237 5242 

  

Data Length = 89856 
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7.9 Summary 

 A prototype underwater target classifier system based on the digital 

signal processor hardware has been developed  for classifying the noise 

sources in the ocean using signature features extracted from the noise 

emanations. The various steps involved in the generation of feature vectors 

have been described in this chapter.   The TMS320C6713 has been used for 

extracting the features and to handing over it to the communications 

controller through the DSP interface provided in the Hydrophone Array 

Controller.  The  performance  of  the  module  for extracting  the  features  

and  identifying  the targets has been validated to a satisfactory level of 

repeatability and reproducibility. The signal capturing, processing, feature 

extraction and target identification are subject to a real time constraint and 

these can be easily done using the DSP module. The knowledge base 

requires frequent updating for  improving the success rates of the classifier. 
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CHAPTER 8         

CONCLUSIONS 

This chapter brings out the salient highlights of the activities undertaken for 

realizing the autonomous three buoy system for underwater target 

localization, tracking and classification along with an enlisting of the 

further scope and directions for future research in this area.  The acoustic 

emanations from the noisy targets sampled by the hydrophone arrays at 

three spatially and non-collinearly distributed locations in the ocean are 

analyzed for position fixing and classification of the target. Kalman filter 

approach has been used for refining the estimates, leading to the precise   

localization and tracking. Corrective measures have been implemented in 

the algorithm for tackling the maneuvering target situations. The prototype 

buoy system for establishing the technique has been validated during the 

field trials in a Reservoir in Kulamavu, Idukki and the validation results 

were quite encouraging. 

8.1 Salient Highlights of the Work 

This thesis envisages the realization of an automated system, with 

the help of which underwater targets can be localized, tracked and 

classified using passive listening buoy systems and target classification 

techniques.  The acoustic emanations from the noisy targets sampled by the 

hydrophone arrays at three spatially and non-collinearly distributed 

locations in the ocean are analyzed for decision making.   

 The following are the salient highlights of the activities carried out 

during the design, development and deployment of the prototype 
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underwater target localization, tracking and classification system.  

8.1.1 Design and Fabrication of the Buoy 

  A new design making use of the concept of Small Water plane 

Area Buoy (SWAB) has been formulated. To facilitate the localization, 

tracking and classification of underwater targets, submerged hydrophone 

arrays should be deployed with suitable buoy systems. As the buoy needs 

specialized requirements for this application involving the steering of the 

submerged hydrophones supporting from the gear assembly, a specialized 

structural buoy design formulated, conforming to the concept of 

minimizing the water plane area, so that the disturbances of  the buoy 

experience, is brought to the minimum. 

8.1.2 Hydrophone Array Controller 

 For the purpose of establishing the technique proposed to be 

adopted in the thesis, the acoustic emanations from the noisy targets are to 

be sampled by the hydrophone arrays at three spatially and non-collinearly 

distributed locations in the ocean.  The directions of arrival  as sensed by 

the three hydrophone arrays are to be estimated by mechanically steering 

the arrays.  An array steering mechanism centred on a hydrophone array 

controller has been designed and developed for estimating the direction of 

arrivals.   

8.1.3 Preprocessing Module 

 A preprocessing module capable of sampling and converting the 

signals from the analog domain to the digital for further filtering and 

processing using a higher order IIR filter has been realized.  The 

preprocessing module is capable of handling the noise waveforms captured 

from the real ocean scenario. 
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8.1.4 Communication Controller   

 The Communication controller of the buoy system, which is vital 

for establishing the communication between the shore station and the 

buoys as well as between the buoys have been developed.   The 

communications controller transfers data using data packets in a predefined 

format under the control of the main system control.  Since the whole 

system is powered by solar energy, power consumption of the 

communications controller should be minimal and power management is 

critical.  The RF link has been realized using the XBee-Pro RF modules.  

These modules host various characteristics adaptable and compatible to the 

existing buoy design.   

8.1.5 Simulation of  Target Localization 

 Geometrical reconstruction procedures have been used for 

positioning and localizing the target with the known values of the position 

of the buoys furnished by the GPS modules integrated with the buoy 

electronics and the bearing of the target as sensed by the hydrophone 

arrays.  Three different approaches, considering the mathematical 

technique and software used, have been adopted for simulating the 

localization of the targets.  The first method adopted is an implementation 

of the Haversine formula for triangulation, carried out in AutoLISP.  

Localization using the Haversine formula for great circle distance and 

different triangulation techniques were also carried out in MATLAB.  The 

equation considers the curvature of the earth and corrects the resulting 

positions accordingly.  The Vincenty formula for ellipsoids is efficient for 

computation of values based on latitude and longitude, and hence for the 

proposed system, as GPS readings of the buoys can be directly applied to 

the equations.  The equations can be solved for localization in direct and 
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inverse forms, which are implemented in the simulation after basic 

conversion of angles. 

8.1.6 Power Management Controller 

 As the buoy system works entirely on solar power and for carefully 

planning the consumption of power through efficient power management 

techniques, a power management controller has been developed.  The 

controlling part of the power management controller is a low power 

microcontroller, which drives two separate power supply sections and 

manages the charging of the batteries from the solar power.  The low 

battery conditions are divided into two, depending on the criticality of the 

battery levels.   The power manager cuts off the power for surveillance 

operations at the first critical battery level, while providing the power to 

continue communications, and cuts off the rest of the system from draining 

power, if the battery level is too low.   

8.1.7  Field Trials for DOA Estimation 

 The buoy electronics was assembled on the shore and was tugged to 

the point of deployment by fastening it to a floating platform.  The basic 

functionality of the buoy, like array rotation, RF communication link and 

mechanical setup were tested prior to its deployment.  Pre-recorded 

waveforms and real noises of the barge and boat were used to verify the 

functioning of the direction of maximum signal arrival estimator. The array 

exhibited certain bearable back lobes. 

8.1.8  Field Trials for Localization   

 The field trials leading to the localization were conducted by 

mooring three buoys in the reservoir at predetermined locations and by 

fixing the position of the noisy target.  Trials were carried out by using pre-
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recorded noise waveforms and also using the idling barge engine noise.  

The performance of the system was evaluated for localizing the target.   

8.1.9  Improving Localization Estimates 

 A method for improving the accuracy of the localization and 

tracking estimates of an unknown target using Kalman filter approach has 

been attempted. As the hydrophone arrays are mechanically steerable, the 

recoiling effect, caused due to the movement of the array from one position 

to another, the instabilities of the buoy system caused by the surface waves, 

etc. will lead to unpredictable errors in the estimates of the direction of 

arrival of the noise waveforms in each of the hydrophone arrays. These  

inaccuracies  are resolved, to a certain extent, by applying the concepts of 

Kalman filter, making use of which the refinement  of the localization 

estimates are carried  out  by  reducing  the mean  square error. 

8.1.10 Target Tracking  

 Implementing Kalman filters to target tracking systems yield 

reliable results, given that the nature of the system can be modeled 

suitably. Applying such an adaptive filtering to a simulated one 

dimensional and two dimensional system has yielded encouraging results.  

Abrupt maneuver causes degradation in the performance of the tracking 

estimates. The decision based approach based on measurement residuals 

using chi-square significance test is implemented and studied. This 

rectification improves the tracking performance under highly maneuvering 

conditions.  

8.1.11 Target Classifier 

 A prototype system for classifying the underwater targets using  the 

signature features extracted from the noise emissions has been developed. 
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The process of feature extraction involves obtaining target specific 

characteristics through various signal processing techniques, so that they 

can be used for the purpose of classification. Though signal analysis can be 

carried out even in the time domain, most of the target specific signatures 

are extracted from the frequency domain representation
 
and its variants. 

The system has been realized using a  proprietary version of C language 

evolved for the digital signal processor TMS320C6713 development board.  

The feature vectors for different noise sources were computed in 

MATLAB as well as in the development board and the results were 

compared and summarised.  

8.2 Scope for Future Work 

 The work presented in this thesis has a significant role to play in 

ocean surveillance applications. This work also has subsequent scope for 

further research for improving the overall performance of the system. Some 

of the possible areas of future work are enlisted below.   

8.2.1 Refinement of the Buoy Electronics 

 The buoy electronics designed for the preliminary trials were 

developed mostly as individual modules for ease in testing and debugging.  

Integration of these subsystem modules is also proposed to be carried out 

in the future work. The layout of the design needs to be refined for 

consolidating the functions of the buoy electronics units. 

8.2.2 The CDMA Link 

 The buoy system currently works on a Zigbee RF link, which is a 

single channel addressable link with a line of sight range of 1.5 km.  This 

link is a good choice for an experimental setup, but impedimental in many 
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ways for the real scenario.  Even during the trials, the RF link required a 

perfect line of sight positioning.  The module also cannot communicate 

well when more than one device is used, unless the communication is well 

timed.  Hence, a better RF link preferably, a CDMA link is proposed to be 

used in the future.  The CDMA system can provide multiple independent 

channels to buoys for communication and is highly secure.   

8.2.3 Improving Target Tracking  

Target tracking schemes, considering one dimensional and two 

dimensional movements including maneuvering situations have been 

implemented which can be further extended to three dimensional 

movements by appending desirable modifications in the system model. The 

abrupt maneuvering of a target, which is supposed to be moving with a 

constant velocity is considered in this thesis. An effort for widening this 

work can be made in the future for getting more reliable results.   

8.2.4 Collection of Noise Data 

 The shore station system is the nerve centre of this surveillance 

system.  It should have a vast knowledge base containing the features of a 

variety of targets.  This knowledge base needs to be augmented with more 

features as and when new noise data waveforms are encountered.  For 

augmenting the knowledge base of the shore station, noise data needs to be 

collected and analyzed quite frequently.   

8.2.5 Bispectral Features 

For many signals, which are generated from nonlinear processes, 

second order statistical methods are not sufficient for analysis. Many of the 

naturally occurring signals deviate from Gaussianity and linearity. Hitherto, 

such signals were considered Gaussian or near Gaussian signals and the 
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analysis were carried out, which has resulted in loss of valuable 

information. For these reasons, higher order statistical methods have to be 

developed, which can handle non-Gaussian as well as non-linear signals. 

Phase information is not available in the second order measures such as the 

power spectrum and autocorrelation. Different types of nonlinearities 

results in different types of phase couplings. If a signal composed of two 

sinusoids is passed through a non linear system, then the output will contain 

components at the sum and difference frequencies as well. The procedures 

for generating the bispectrally extractable features have to be developed 

and integrated with the existing feature extracting techniques. 

8.2.6 Interfacing of Classifier to HAC 

 The Buoy system and the technique of localization has been 

established successfully for identifying the noise sources in the ocean, 

making use of the features extracted from the target emanations. The 

feature extractor was implemented in a Texas Instruments‟ DSP board. 

This board needs to be interfaced with the Hydrophone Array Controller.  

8.3 Summary 

An attempt has been made in this chapter to bring out the salient 

highlights of the work carried out for developing an autonomous three buoy 

system for underwater target localization, tracking and classification. An 

effort has also been made to enlist the scope and directions for future work 

in this area.   
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Appendix I 

 

A.1  Design and Fabrication of the Buoy 

Detailed description on the design and fabrication of the Buoys 

are given here. The photograph of the Buoy is shown in Fig. A.1. 

 

Fig. A.1  Photograph of the Buoy  

A.1.1  Sizing of the Floats and Struts 

The diameters of the floats and struts are initially estimated so 

as to provide the required buoyancy, which should equal the total 

weight of the buoy for equilibrium. The diameters and thicknesses of 

floats and struts are optimized to achieve the design objectives, subject 
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to the constraints of buoyancy and stability.  A simple optimization 

process was adopted by programming an Excel spreadsheet, wherein 

for a given buoy configuration, different dimensions and scantlings can 

be checked out by trial and error and an optimum solution subject to 

the stability constraint can be arrived at.  The final configuration and 

structural assembly are furnished in the sectional elevation bottom plan 

and top plan shown in Fig. A.2, Fig. A.3 and Fig. A.4.  The top plan 

view of the electronics and payload chamber made of GRP with the 

reinforcements for housing the batteries, solar panels, shaft, motor and 

gearbox assembly is shown in Fig. A.5. 

 

Fig. A.2   The Sectional Elevation of Buoy, B1 
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Fig. A.3  The Bottom Plan View of the Buoy, B1 

 

Fig. A.4  The Top Plan View of the Buoy, B1 
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Fig. A.5  The Top Plan of the Electronics and Payload Chamber 

A.2  Small Water Plane Area Buoy (SWAB) 

 As the Buoy needs specialized requirements for the proposed 

application involving the steering of the submerged hydrophones 

supporting from the gear assembly, the experts formulated a specialized 

structural design conforming to the concept of minimizing the water plane 

area, so that the disturbances the buoy experience, is brought to the 

minimum. The dimensions of the various structural segments of the two 

types of buoys and B2/B3 are given in Table A.1. The actual/estimated 

weights of various components of the buoy and accessories are listed in 

Table A.2. 
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Table A.1  Dimensions of the Structural Buoys B1 and B2/B3 

DIMENSIONS(in mm) 
 

SWAB I (B1) 
 

SWAB II & III 
(B2 and B3) 

 

MATERIAL 

Length Overall 3500  3500  Mild Steel 
 Breadth Overall 3500  3500  IS2062 

Height Overall from Base 
Line 

2918  2918  IS2062 
Float dia. 406.4  406.4  IS2062 
Float thickness 4  5.2  IS2062 
Strut dia 406.4  406.4  IS2062 
Strut thickness 4  5.2  IS2062 
Cross structure dia. 152.4  152.4  IS2062 
Cross Structure thickness 4  4  IS2062 

 

Table A.2  Actual Estimated Weights of the Constituent Components of 

Buoys B1 and B2/B3 

SL. NO. 
 

ITEM 
 

WEIGHT (kg) 

SWAB I SWAB II & III 

1 Float 589.49 686.37 

2 Strut 285.24 332.11 

3 Cross tie 247.89 247.89 

4 Platform 150.00 150.00 

5 Box 60.00 60.00 

6 Float brackets 10.00 10.00 

7 Strut bottom brackets 10.00 10.00 

8 Strut top closing plate 16.29 16.29 

9 Lugs for anchor cable 16.00 16.00 

10 Batteries 60.00 60.00 

11 Solar panels 60.00 60.00 

12 Motor & gear 25.00 25.00 

13 Electronics 10.00 10.00 

14 Shaft 12.60 12.60 

15 Hydrophone array 30.00 30.00 

17 Resin coating 40.00 40.00 

18 Concrete Ballast 350.00 400.00 

19 Steel Ballast 360.00 200.00 
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A.2.1  Design of the Cabin 

The payload and the electronics chamber was designed with a view 

to minimizing its size, weight and surface area leading to minimization of 

wind loads, lowering of the overall centre of gravity of the buoy and a 

consequent improvement in stability.  The floor area of the cabin should be 

sufficient to accommodate the electronic equipment, motor and battery. The 

height of the cabin should be sufficient to accommodate the solar panels 

mounted on its sidewalls.  Adequate access to install and maintain the Buoy 

Electronics in the chamber has been provided at the top. 

It was decided to adopt the shape of a frustum of a pyramid, as this 

was the best shape to achieve the functions stated above. The material 

selected was GRP, due to its light weight and good corrosion resistance. 

Steel framing of 50x50x4 M.S. angles supports the chamber. 

A.3  Stability of the Buoy in Free-Floating Condition 

The motions of a floating body in waves, described above are 

proportional to the water plane area of the body. The lesser the water plane 

area, the smaller will be the motions of the body in heave, roll and pitch.  In 

this design, the water plane area is made as minimum as possible while 

maintaining the required buoyancy and stability by means of the immersed 

buoyancy chambers. 

A.3.1  Initial Stability 

The indicator for initial stability is the metacentric height GM, 

defined as the height of the metacentre above the centre of gravity of the 

floating body. 

 GM = KB + BM – KG 
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where KB is the height of Centre of Buoyancy above Base Line, KG 

is the height of Centre of Gravity above Base Line and BM is the 

metacentric Radius given by 

 BM  = I/V  

where the Moment of Inertia of the waterplane area and V is the 

Volume of Displacement of the floating Body. 

A.3.2  Waterplane Area 

For the semi-submersible buoy, the waterplane area is provided by 

the 4 cylindrical struts and is given by 

 AW = 4πDS
2
/4 = πDS

2
 

where DS is the diameter of the strut 

The moment of inertia of waterplane area is computed by finding 

the own moment of inertia of waterplane area of a strut about its own axis 

and transferring it to the centre line axis of the buoy using parallel axis 

theorem. The total moment of inertia is then 4 times the value obtained 

above, due to the four struts. The moment of inertia can be increased by 

increasing the diameter of struts or by increasing the distance between 

struts or both. The above parameters are iterated during the optimization 

process to satisfy the stability constraints. 

A.3.3 Volume of Displacement 

The buoyancy force is directly proportional to the volume of 

displacement provided by 

 Horizontal floats 

 Vertical Struts 
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 Cross-tie 

 Immersed part of shaft 

 Immersed hydrophone array 

For drafts below crosstie, the volume of displacement is given by  

V = πDF
2
/4LF + 4(πDS

2
/4) (T-DF) 

For drafts above the crosstie, the volume of displacement is given by 

V = πDF
2
/4LF + πDC

2
/4LC + 4 (πDS

2
/4) (T-DF) 

Where DF is the diameter of float, LF is the total length of floats, 

DC is the diameter of the crosstie, LC is the total length of crosstie members 

and T is the draft from Base Line. 

A.3.4  Vertical Centre of Gravity above Base Line 

The Vertical Centre of Gravity (VCG) above base line is given by 

KG = Total moment of mass about base line/total mass 

  = (mi zi)/ mi 

where mi is the mass of the i
th

 item and zi is the vertical lever centre 

of gravity from base line of the i
th

 item. 

A.3.5  Vertical Centre of Buoyancy above Base Line 

The Vertical Centre of Buoyancy (VCB) above base line is given by 

KB = Total moment of mass about base line/total mass 

 = (vi zi)/ vi 

where vi is the volume of the i
th

 item and zi is the vertical lever of 

centre of buoyancy from base line of the i
th

 item. Clearly only items that are 

submerged and contributed to the buoyancy of the buoy will be included. 

Initial stability of the buoy was calculated for different buoy 

configurations by changing the dimensions of the floats, struts and crosstie, 
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the thicknesses of these members and the solid ballast inside the floats and 

outside. The design aimed at an initial metacentric height of at least 20 cm 

against the IMO criteria of 15 cm for sea-going vessels. The final stability 

calculations for Buoys B1, B2 and B3 are furnished in Tables A.3 through 

A.10. 

Table A.3  Parameters of the Structural Components of the Buoys 

 

Table A.4  Weights and Centre of Gravity of Buoy B1 
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Table A.5  Buoyancy and Center of Buoyancy of Buoy B1 

 

Table A.6  Water plane Moment of Inertia of Buoy B1 

 

 

 

 

Table A.7  Parameters of the Structural Components of Buoys B2 and B3 

 

 

 

I own 0.005027 m^4 

d 1.550 m 

Ad^2 1.208 m^4 

I centroid 1.21266 m^4 

BMT 0.54562 m 

GMT 0.16 M 

WEIGHT/UNIT LENGTH AND BUOYANCY/UNIT LENGTH OF PIPES 

Sl.No. 
  

Item 
  

OD ID Wt/m Buo/m Total  Length 

(m) (m) (kg/m) (kg/m) (m) 

1 Float  
0.4064 0.3952 

55.3523
8 

129.71742 12.400 

2 Strut  
0.4064 0.3952 

55.3523
8 

129.71742 6.000 

3 Cross tie  
0.1524 0.1444 

14.6391
0 

18.24151 16.934 
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Table A.8  Water plane Moment of Inertia of Buoys B2 and B3 

I own 0.005027 m^4 

D 1.550 m 

Ad^2 1.208 m^4 

I centroid 1.21266 m^4 

BMT 0.53148 m 

GMT 0.16 m 

Table A.9  Weights and Centre of Gravity of Buoys B2 and B3 

 

Table A.4  Buoyancy and Center of Buoyancy of Buoys B2 and B3
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A.4  Mooring / Anchoring  

The buoy will be anchored to the sea floor by four anchor chains or 

SS wire ropes with suitable anchors at the bottom.  The anchoring will 

ensure that the buoy is held in position and will also restrict the roll, sway, 

pitch, yaw and heave motions of the buoy.  The buoys are shacked from the 

four corners of the buoyancy structure and anchored to the sea bed with 

concrete cubical blocks (45
3
cm). Small floats made of GRP/FRP can be 

attached along the wire rope or chain for making it neutrally buoyant as 

shown in Fig. A.6. The buoy proposed to be used for the prototype system 

is a miniaturized version of the field deployable system described above.  

 

                  

Fig. A.6  Mooring Scenario of the Buoy 
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