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Chapter 1

INTRODUCTION

The governing equations of fluid mechanica are based on
a set of coneervation laws. These are conservation laws of maass,
momentum, angular momentum, energy etc. A general approach is
developed for the derivation of conservation laws in continnum
physics by the pioneers like d'Alembert, Buler, Daniel Bernoulli,
and Lagrange. The kinematica of inviscid fluide bring out further
congervation laws like Kelvin's circulation theorem, Helmholtz
vorticity theorems, coneservations of potential vorticity and
helicity. These conservation laws are derived based on the

dynamical equations.

A fluid flow can be congeidered an an infinite
dimenaional dynamical system with infinite degrees of freedom. In
thie sense the conservation laws are of great significance as

integrals of equations of motion.

AB iB well-known there are two approaches to the study
of fluid mechanics - Eulerian and Lagrangian, though both are
really due to Euler. The classical study of hydrodynamics and

later of real fluids and boundary layer theory are mainly 1in the



Eulerian frame work because of its simplicity. Especially in
steady flowa the Eulerian method greatly reduces the complexity

of the governing equations, while such simplifications are not
poaesible by Lagrangian method. Thus the faster developmenta in
fluid mechanics were using Eulerian method, which is a field
theoretic approach. On the other hand the Lagrangian method which
ig in the way of particle dynamice has found place in recent
studies. Esgpecially using a variational approach the Lagrangian
method is almogst straightforward. This simplicity consists in the
adaptation of Hamilton's principle of least action to a
mechanical system with infinite degrees of freedom. A variational
formulation in the Eulerian system is not that simple. For example
in the early literature, the only flow with vorticity amenable to

Eulerian treatment was found to be isentropic.

One of the amsumptions made in the early studies of
hydrodynamics, especially in water waves, is that the flow 1is
irrotational. This has ites root in the well-known theorem that all
motions started from rest by natural forces are irrotational. It
is to be noted that the only exact solution for a rotational wave
18 trochoidal waves of Gerstner which has not gained much
attention in the past more than a century. In fact the simplifying
assumption of irrotational flow drastically alters the problem.

For example, in an incompressible fluid if the flow is



irrotational everywhere the fluid really ceaaes to be a fluid in
the sense that it looses its infinite number of degrees of freedom
which make possible the infinite variety of fluid motions and
becomes a Fflexible extension of the bodies whose movements
generate the flow. The irrelevance of classical hydrodynamics to
the real world is summarised by the d'Alembert's paradox of zero
drag in steady flow. At least for the motion of homogeneous
incompressible fluids vorticity ie the property of the flow (field
of crucial importance and it is not an exaggeration to say that
all the problems of such flows can be posed as guestions about the

strength and location of the vorticity.

The conservation laws studied in thias thesie are of
voticity, potential vorticity and helicity. It is an attempt to
give a formal presentation of derivation of conservation lawsa.
There are two approaches: one is the classical method based on
governing differential eguations, the second method is based on

variational principles on a formal footing using Lie group theory.

1.1 Vorticity:

The credit for the creation and unification of the
discipline of vorticity tranesport goes to Truesdell (1953). The

great significance of vorticity is aptly and beautifully recorded



by Truesdell (1953) in the following words: "Before our eyes opens
forth now the splendid prospect of three dimensional kinematics,
the mother tongue for man's perception of the changing world about
him. Its peculiar and characteristic glory is the vorticity vector
w, for whose existence it is both requisite and sufficient that

the number of dimensions be three”.

The earlieat concept of vorticity can be traced back at
least to Leonardo da Vinci and Descartes, though the first
treatment of vorticity occurs in the work of d'Alembert and Euler;
Lagrange and Cauchy were the first to introduce single letters to
stand for the vorticity components. The kinematical significance
of vorticity was recognised only when Mac Cullagh and Cauchy
proved that the components of the curl (of the velocity vector)
satisfy the vectorial law of transformation (see Truesdell (1953),

pp Sg _o)o

The mathematical understanding of vortex motions begins
with the renowned work of Helmholtz (1858). The name "vorticity”
was introduced by Lamb (1916). The origimnal physical problem that
motivated Helmholtz's great study, was nonlinear - the study of
motions of an ideal incompressible fluid governed by Euler's
equations. He found interesting invariance properties of a dual

analytic and topological nature for the wvorticity vector. The



purely mathematical aspects of Helmholtz's ideas have been
developed into the modern Hodge~Kodaira decomposition theorem for

differential forms on Riemannian manifolds (Berger (1982)).

The name "irrotational®, for flows with vanishing
vorlLicity was introduced by Kelvin (1869). Both Euler and Lagrange
repeatedly emphasized that irrotational motions constituted only
a special case, while d'Alembert contented in effect that all
motions of inviscid incompressible fluids are irrotational. Again
in the wordse of Truesdell (1953), vorticity "generatea those
beautiful, intricate and perplexing phenomena which makes the
challenge of the theory of the motion of fluids, whether perfect,
viscous, of more complicated 1in their dynamical reeponge - a
challenge for the most part declined by classical hydrodynamics -
and that analysis of the basic kinematical properties of vorticity
initiates a frontal attack wupon the citadel of the nonlinear
convective accelcralion™. Truesadell's work, though publisghed
fourty years back points out to many hitherto unresolved problems

of the kinematics of voticity.

Vorticity has provided a powerful qualitative
description for many of Lhe important phenomena of fluid
mechanics. The formation and separation of boundary layers have

been described in Lerms of the production, conveclLion and



diffugion of vorlicily. In Lurbulenl. flows Uthe dissjipation of
energy at a rate independent of viscosity 1is explained by the
amplification of vorticity by the streltchiny of vortex lines. The
1ift on an air wing 13 explained by ULhe bound vorticity and
trailing vortex structure. The concept of coherent structures in
Lurbulent shear flows has led to Lthe picture of such flows as a
superposition of organised deterministic vortices whose evolution
and interaction is the turbulence. The strong nonlinearity of the
equations of vortex motion has made quantitative use of the
concept difficult for the great scientist who founded and
developed the subject. But the advent of high speed computers has
made it possible to attack many of the difficult problems, leading
to the realization that difficult problems like almost
irrotational motions such as surface waves on uniform irrotational
fluid and air bubbles in walter may be guccessfully treated as
problems of vortex motion, the free surface of water waves or the
bhoundary of air bubble being a vortex sheet whose posiltion

satisfies an integro-differential equation.

1.2 Potential Vorticity:

It is well-known that Kelvin'a circulation theorem,
Helmholtz vorticity theorems and Fuler's equatione of motion arc

equivalent (Von Mises and Friedrichs (1971)). But Kelvin's theorem



is an integral theorem and requires a knowledge of detailed
evolution of material surfaces in the [luid. The vorticity
equation, though deals directly with the vector characlter of
vorticily, is more a description of how vorticity ia changed than
a useful) constraint on thaltt change. Consideration of potential
vortLicily due to Ertel (1942) provides the way of translating the
informations in the Kelvin's circulation theorem into local
congervation lawa. Thus it was shown that the gquantity
©
n = - vs,
o
where § 1ia the specific entropy and p density, is conserved
under the following conditions.
a) S8 1is conserved for each fluid element, i.e., the flow 1is
isentropic
b} The fluid its inviscid.
c) The flow is barotropic.
In fact S need not be entropy, but any conserved property of
fluid element (Mobbs (1981), Pedlosky (1979), Gaffet (1985},
Abarbanel (1987), Katz (1984) ,Katz and Lynden-Bell (1982)). It can
be shown that potential vorticity is really Kelvin's circulation
theorem for a very special but useful contour - a contour lying on
a S-surface. The term potential vorticity may seem to be a

misnomer since this entity does not have even the dinensions of



vorticity. But if the density does not vary very much, as the
distance between two adjacent S-surfaces increases, vs nust
decrease and the component of the vector « parallel to ¥S mast
increase proportionally if the potential voticity mnust remain a
constant. This will be manifested as an increase in » and we may
congider that there is a reservoir of wvorticity associated with
the packing together of S-surfaces which can be released as the
surfaces are strelched apart by the mechanism of vortex tube

stretching (Pedlosky (1979)).

Ertel's theorem associales a conserved quantity with any
gcalar field quanlibty that ia conserved along fluid particles.
Since potential vorticity itself is such a conserved quantity, we
can use it again and again to obtain an infinite number of
conserved quantities, a fact which sheds light on the
int.egrability of the Euler equations. Bul not all of them are of

physical significance (Abarbanel (1987)).

1.3 Helicity:

In particle dynamics the term helicity is used for the
scalar product of momentum and spin of a particle. Thia concrpt
has been adapted to fluid dynamics and in particutar to

magnetohydrodynamics by Moffatt (1978).



Let V_ denote Lhe whole Lhree-dimensional gpace. For
any vector field A(x) the quantity A.(9xA) 18 called the

helicity density of the field A. Its integral

1 = J A.(9xA)AV,
e o]
v
[s o]

ig called the helicily of A. Let vV e Vv be any volume with

o o]
e A
surface S on which n.(9YxA) = 0, n being the unit normal to
the surface. Then
I = J A.(9xA)dV,
™m

v

m

ig called a parLia! helicily.

The helicity density is a pseudo-scalar quantity, its
sign changing from a right-handed to a left-handed frame of
reference. Thus a reflectionally symmetric vector field must have

zero helicity density, though the converse is not true.

Setting B = YxA the helicity density becomes a.B.
When B is magnetic [ield intensily, A can be the vector
potential for B. Since vorticity o« = 9xu, u the velocity



field of a flow, u.s is the helicity densily of Lhe velocity

field.

Suppose A.B = 0. This is the necessary and sufficient
condition for the existence of scalar funcltions #{(x) and y(x)

such that

A = wie and B Ty xVe

It is clear from these that B-lines are the intersections of the
surfaces ¢ = constant and vy = constant, and the A-lines are
every where orthogonal to the surfaces ¢ = constant. Thus
B-fields having linked or knotted B-lines cannot admit such a
representation. The same arguments can be adapted to fluid
mechanics when the velocity field has a Clebuch's

representations,

U = y¢ o+ Iy

The term "helicity” for helicity of velocity field was
first introduced by Moffatt in 1969. A detailed discussion on the
invariance and topological interpretation of helicity and 1its
significance in the dynamo theory of celeatial magnetic fields and
in turbulent flows with and without magnetic fields 1ia given in

Moffatt (1976, 1978).
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Helicilty is a measure of the degree of knottedness of a
vector field (Moffatt (1969), Bretherton (1970), Holm et al.
(1991)). This can be given a kinematical interpretation as
followa: the fluid particles in any small volume element dav
undergo a superpogition of three motions -~ a uniform translation,

an irrotational uniform strain V¢ and a rigid body rotation. The

streamlines of flow u - 9Y¢ (u - velocity) passing near a point P
in dV are helices about the sltreamline through P. Thus the
contribution u.s dV = G;Z; dv ( G; and ;;, velocity and

vorticity respectively at P ) to the helicity from the volume
element 4V is positive or negative according as the senase of
rotation of these helices is right~handed or left-handed. Arnold
(1963a, 1965b) has discussed the importance of helicity (measure
of knottedness) as a topological property invariant under volume

pregserving dif{feomorphism,

Moffatt (1969) haa derived helicity conservation under
the following conditiong:
a) The flow is inviscid and barotropiec.
b) The body forces are conservative.
c) The volume V 18 a material volume.

d) 5.; = 0 on 8V, the boundary of V.

11



To make the best use of vortex dynamics, it is important
to use as effectively as possible the basic results connecting the
vorticity « and the velocity u of fluid element which are
provided by helicity conservation. In a number of recent papers
the distribution of helicity in turbulent flows has been discussed
and computed (Levich and Tsinober (1983), Rogers and Moin (1987),
Vallis et al (1989), Holm and Kimura (1991)). Numerical
computations such as for viscous flows at high Reynold's numbers
are usually interpreted in terms of concepts from vortex dynamics
developed for inviscid flowa. The helicity density is not a
congserved property and in general varies in space and time in
turbulent flows. There have been many works reported on
computations and measurements of helicity density in various flows
(Kida and Murakami (1989)). Since there can be no production of
vorticity if uxe = 0; it follows that the production of vorticity
and the cascade of energy to Bmaller Bcales in turbulence must be
very weak if u is parallel] to « and helicity density becomes

t/2
comparable with ( u’w’) (André and Lesieur (1977)).

In two dimensional flow, the vortex lines are normal to
the plane of flow and therefore the question of knottednees of
vortex lines does not arise. Thus helicity is a property possessed
by three dimensional flows only indicating the complexity of the

flows and may aleo indicale something about its mixing property.

12



Non-zero helicity is a necessary condition for non-integrable
particle motion, which inctudes chaotic particle path. Holm and
Kimura (1991) have investigated integrable and non-integrable
particle motion for three dimensional incompressible f(lows with
zero helicity. Computational techniques thal preserve volume and
helicity are developed and used to wvisualise the Lagrangian
particle trajectories of three dimensional motion 1in a periodic
domain. A new class of steady solution of the Euler egquation for
the axisymmetric [low with non-zero helicity of an incompressible
inviscid fluid has been obtained by Turkington (1989). Hunt and
Hussain (1991) have shown that a net contribaution to the partial
helicity integral is generated outside fluid volumes as they move
Lthrough regions of fluid with background vorticity. A calculation
is given for the helicity generated outaide a spherical volume an

it moves through a region of weakly rotating flow.
The concept of helicity and its conservation has been
extended to non-barotropic flows by Mobbs (1981), Gaffet (1985),

and Joseph and Mathew (1990).

1.4 Conservation Laws:

Conservation laws are of great significance in continuum
mechanics. They have been applied to slLudy stability of fluid

flows. In elasticity, conservation laws are of key importance in

13



the study of cracks and dislocations. They constiltute a basic tool
in the analysis of systems of partial differential equations also.
Lax {(1968) has used conservalion laws to prove global existence
Lheorems and delermined realisktic condilions for shock wave

solutions to hyperbolic sysiems.

It is well-known that the wathematical structure for
ideal hydrodynamics was developed a long time ago by Clebsch and a
complete treatment of the then existing litcrature can be found in
the works of Lamb (1932). Since then thesae results have found
applications in all branches of engineering. In fact the field of
applications is expanding with the result that even branches of
science like medicine is being benefited from the developments in
fluid dyramics. Even then the basgic results need further
investigations and much work in this direction i remaining. For
example the Clebach's potential finds only a touching reference in
Lthe works of Lamb (1932) and much of its applications can be found
in the literature of the last two decades. Studying the connection
between Eulerian and Lagrangian treatments, Bretherton (1970) has
found that Kelvin‘'s circulation theorem is a consequence of
particle identity during a flow. This has been extended to
non-barotropic [(lows by Mathew and Vedan (1988). Vorticity and
potential vorticity has f[ound applications in geophysical and

meteorological studiea. Helicity hams great significance in the

14



gstudies of turbulence. The conservation laws of vorticity,
potential vorlticity and helicity have (ound applications in
developing algorithms for numerical studies in almost all branches

of fluid mechanias.

The sludy of conservation laws is clorely related to a
variational formulation for fluid mechanics. Attempts for
variational formulations of hydrodynamics can be traced back to
Bateman (1929), Lichtenstein (1929) and Lamb (1932). Eckart (1938)
and Taub (1949) tried to extend the wvariational principle to
adiabatic compressible flows. Using the field variables velocilLy,
density and entropy expressed in space time co-ordinates, Herivel
(1955) presented both Lagrangian and Fulerian variational
formulation for ideal Ffluid flows. However his Eulerian
variational principle was incomplete 1in the sense that for
isentropic flows this prnciple led Lo irrotat.ional motion of the
fluid only. Numerical procedure for irrotational flow past
circular cylinder using variational method can be found in Lush

and Chery (1956).

Later Lin (1963) Bhowed that variational principle for
rotational flows 1in Eulerian treatment could be obtained by
introducing the requirement that the end pointa of the particle

trajectories should be preassigned and not subjected to

15



variations., The modified version (Herivel-Lin variational
formulationsg) appeared first in an article by Serrin (1959). A
gencralizabtion of Nerivel -Lin variat.ional principle can be found
in Lundgren (1963). tn Lhis formulation the constraints are taken
by means of lLagrangian multipliers (Monge potentials) which lead
to a Clebsch'r reprerentation of the velocity field involving
eight potentials. Tt im difficult to assign physical meanings to

these potentials.

Clebrsch's potentials have been used by Ito (1953) for a
Hamillonian formulaltion of hydrodynamics. He has shown that, for
an isentropic flow, vortex motion is closely connected with the
enbropy. Eulerian hydrodynamical egquations emerged factorized into
four fundamental eguationa which were discussed from the
thermodynamical point of view. A discussion on the Landau's theory

of quantum hydrodynamics also can be found in this paper.

There have been attempts during the last three decades
to find new variational techniques in the Fulerian descriptions
avoiding the difficulties due to the redundancies and

indeterminacies of the Clebsch's potentials.

There is reference to Lin's constraintg 1in Drobot and

Rybarski (1959). But this work has not received due attention. In

16



fact. their hydromechanical varialion rcplaces Lhe Lin's
congltraints in a variational formulation for a truly Eulerian

approach.

Eckart (1960) used the energy-momenlum tensor to derive
equations of motion and some conservation laws 1in Lagrangian
description. In this paper he introduced the concept of thermasy
and extended Kelvin's circulation theorem to non-barotropic f[lows.
Eckart (1963) studied transformation of Lagrangian equations of
hydrodynamicg to general)l coordinates which are useful in stability

studiea.

Hamilton's principle does not exist for the flows of
viacous fluidas except in some very realricted caBes. A variational
principle for steady laminar motion of simple non-newtonian fluids
for which the viscosity is a function of the second 1invariant of
the rate of deformaltion tensor was given by Bird (1960). This
principle simplifies to Helmholtz principle for newtonian fluids.
In this case the equation of continuity and motion are egquivalent
to the statemenl. that Lhe rate of entropy production is a minimuam.
But for more general fluids the variational principle does not
admit thims simple interpretation. Variational [ormulation Cfor
viscous fluids has been given by Johneon (1960) and Becker (1987).

Discussions regarding the non-existence of wvariational principle

17



in vigcous (lnid flowa can be found in Finlaywon (19724, 1972b)

and Mobba (1982).

A discussion on the drawbacks of many variational
principles usuing Eulerian coordinates can be found in Zaslavskii
and Perfilev (1969). A four dimensional trealment as in the case

of Drobot and Rybarski (1959) can be found in Penfield (1966).

Seliger and Whitham (1968) have &sludied Eulerian and
Lagrangianh variational priciples in conlinuum mechanics and shown
that the number of Clebsch's potentials in Eulerian variational
formulation of ideal fluid flows can be reduced to four from
eight. But Bretherton (1970) has pointed out that though
Seliger-Whitham representation is  locally wvalid, in 1isentropic
case the flows determined by such a representation do not include
thore with non-zero helicity. He has given a delailed discussion
on Lin constraints and shown that the relation between the
Fulerian and Lagrangian variations of the field variables can be
used to derive the equation of motion in Eulerian form from
fundamental Lagrangian without using them. The relation between
Eulerian and Lagrangian variational principle has been
investigated by Bampi and Morro (1982, 1984), The |use of
Lagrangian multipliers can be 8een in Kalikstein (1981) also.

Guderly and Bhutani (1973) have suggested a method to derive the

18



varjational principle for Lhree dimensional gateady flows of
compressible flnids from the Herivel-Lin varialkional formulation
for unsteady flows. Wilhelm (1979) bhas obtained conservation
equationa for particle density, momentum density and enexrgy

dengity for compresaible fluidas from a varialional principle.

According to Mobba (1982) Lhe most general variational
formulation for invscid fluids is that due to Serrin (1959) 1in
which the Clebsch's potentials are identified with initial
coordinates and initial velocity. He has attempted to extend the
variational principle to thermally conducting viscous fluids using
loca) potentials. Capriz (1984) has shown that Lin's constraints
can be replaced by Eulerian expansion formulas in an Eulerian
formalation of i1deal fluid Tlows. Morean (1981, 1982, 1985) has
introduced a new variational technique - method of horizontal
variations - Lo derive Eulerian equations of motion of inviscid
non-barotropic flows. Some other variational principles are due to
Gouin (1981), Benjamin (1984), Schutz and Sorkin (1977), Loffredo

(1989) and Loffredo and Morato (1989).

One of the most important applications of variational
formulations is in the Btudy of stability of atationary flows

(Lynden~Bell and Kalz (1981)). Arnold (1965a, 1965b) has shown

that the exirltence of a variational priciple and an invariant of

19



the flow can be used to study stability. Thia method has been used
for atudying sLabililLy of baroLropic and non-barotropic f{lows

(Grinfeld (1981, 1962, 1984) and Abarbanel and Holm (1987)).

Variational melhods have been uaed in the study of waler
waves (Luke (1967), Whitham (1967, 1974), Miles (1977) and Milder

(1977)).

It is to be noted Lhat Lhe lagsical sludies of
kinematics of fluid flows are not based on a varial:ional
formulation. The conservation lawe are derived from the govermning
equations. This mcthod has been used by Mobba (1981) in hbhis
generalization of conservalion laws to non-barotropic flows.
Another method, using Uelmholilz fields has been employed by
Thyagaraja (1975), Jomreph and Mathew (1990) and Mathew (1991). A
Jacobian interpretation of helicity using differential forms has

been given by Nigam (1988).

1.5 Variational symmetries and conservation laws:

1nfluenced by, the works of Lie (1912) and Klein (1918)
on the transformation properties of differential equations under
continuous groups of transformations, Noether (1918) proved two

fundamental results now known as Noether theorems. This marked the

20



beginning of Lhe study of invariance properLlier of the action
integrals in Lhe caleculus of varialionsa. Noelther theorems related
symnnelry groups of a variational integral to properties of 1its
arngociated Buler-lLagrange equakiona. Bul. Lhe polentials of Noether
Lheorem were unnoticed for Lhirty years until Hill (1951)
popularised a linited version of these results among the physics
community. Since then a number of papers have appeared in the
literature either mnodifying these theorems or applying these
Ltheorems to particular dynamical systems by relating famil:iar
conservation laws to tramnsformation groups. In the case of
hydrodynamics only a few altempls have been made 1in these
directions. It is to be noted thalL even in Lhe works of Eckart
(1963) and Bretherton (1970), though reference has been made to
the relations between krangformation groups and conservation laws,
nothing is mentioned about Noether theorems. The firast referenco
Lo Noether's theorem can be found in Drobot and Rybarski (1959).
Gouin (1976) has shown Lhabt Kelvin's c¢irculation Ltheorem is
related to the invariance of the action integrals wunder certain
tranaformation groups. Moreau (1977) has pointed out that helicity
can be obtained ar a consequence of Noether's theorem. Mathew and
Vedan (1989, 1991) have used Noether's theorems in the satudy of

non-barotropic flows.

21



1.6 Scope of the Lhesiy:

The present thesis is a gtudy of conservation laws of

fluid mechanics in the barotropic and non-barotropic flows.

Chapter 2 deals with non-barobtropic generalization of
conservation Jawy ol Kelvin's c¢irculation theorem, Helmholtz
vorticity theorems, conservations of potential vorticity and
helicity. The earlier generalization due Lo Eckart (1960),
Bretherton (1970) and Mobbs (1981) are valid for isentropic flows
only, which is a stringent condition in many cases. We relax this
condition. The results for isetropic flows are obtained as
apecial cases. In this case it is to be noted that a true
generalirzation of potential vorticity is the one presented here.
Two different methods are used: one in the 1line of Mobbs and

second using the concept of Helmholtz fields.

Chaplt:er 3 and 4 present a variational approach (o
invigcid flows. In chapter 3 the method of Drobot and Rybarski
(1959) is developed using Lie group theory. Bagic results of Lie
group theory necessary for the variational formulation of capier 3
and 4 are presented. Much of the complexities in application of
the theory and actual computations are absent due to the

functional simplicity of the Lagrangian. As an example we derive

22



the conservation of helicity using Noether's theorems. This

chapter concera with barotropic flows.

In chapter 4 the theory is developed for non-barotropic
flowa. Since Lhe system is underdetermined the investigation of
goeneralized symmclrics ig required. NoelLher theorem 18 used Gto

derive congerval.ion law of potential vorticity.

Chapter 5 presenls a general discugssion of Lhe resulls

in Lhis khesis and pointed oul. the direction for lurther research.

» » »
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Chapter 2

GENERALIZED NON-BAROTROPIC FLOWS

2.1 InLroduction:

The generalizaljong of kinematics of fluid flows to
non-barolropic flows is brought 1in by the dependence of the
internal encergy on  speciflic entropy in  addiktion Lo specific
volume. Fckart (1960) has found a generalized form of Kelvin'sa
circulalion Lhrorem which holds for a non-barotropic perfect
fluid. Later Mobbs (198Y1) has shown thal Lhis 1s a particular casc
of a generalization which can be applied to several vocrticity
Lheorems. Josceph and Mathew (1990) and Malhew (1991) have oblained
gimjilar conservation laws by idenlifying the generalized vorticily
ficld wilth a llelmholtz  Field. All these results hold [for

isenlLropic (lows only.

Now we relax Ehe  isentroy condilion. Following Mobbs

(19n1), Iel ba an equilibrinom thermodynamic function

X< x(S,1), (2.1)

quch that
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)N
— = 0, (2.2)
DL
where D/Dt stands for material differentiation.
| 3
Now we introduce an enthalpy function I ruch that

*

dr TdN + VdP. (2.3)

This amounls Lo replacing the state variable entropy S in terms of

> and T and assuming thal

aT 3v
—— = —_— {2.4)
op X o p

where T the absolute temperature, V the specific volume and P the

pressure. From equalion (2.3) we gcl

7p R
'*E; = VT. W)\ (2.5)

Also we have the relation

ax I7)N
IN = 98 4+ —- VT. (2.6)
és aT
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The baw of conuervation of momenlum now takes the f

Du

DL

(1% @) - TN

The mass conservation gives the continuity equation

. -

oV .u

+

0.
DL

in the above cquations u is the velocity field, P t

tLhe density, § the specific entropy and ¢ the po
duc to any conscrvative body forces.
We can now define a barotropic flow as th
IpxVYN = 0, where n 18 thermasy, Lhe time integral
(Schut.>z and Sorkin 1977) delined by
Dn
- T, » 0 at t = 0.
DL
Becanse of cquation (2.6) Lhis will include the
usual regquiremenkls InxVs 0 and VSxVT = 0.
Definition 2.1
A flow in which Inx¥A # 0 1is called

non-barotropic flow.
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2.2 Generalized vorticity equation:

Theorem 2.1

For a generalized non-barotropic flow, the vorticity w

satiafies the equation

D w = Vx9N w ~ InxUX _
_[ ] . [ .v] :. (2.10)

Proof:
From equation of continuity (2.8) and equations of

molion (2.7) we have the Vazsonyi's vorticity equation

.|

for a generalized non-barotropic flow. Also from equation of

_ VT XV
.V]u + (2.11)

D

| S
J

—

D] E

continuily (2.0), equation (2.9) and the vector identity
VLx(Vn.W)ﬁ - an(vx.v)ﬁ + Dx(Upxw) - an(leS)

(N XU )9 .0 - [<vxxvn>.v]3, (2.12)

we gef
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D I xVA Vn xVn _ VT xVA

— = .V] u + (2.13)
o P P

DL

Sublracting (2.13) from (2.11) we get (2.10).

This completes the proof.

Integrating (2.10}), we get

» - Ty xVX

® Grad x, (2.14)
[ ]

'0.’ gl

o

where Z; and P, are the initial vorticity and density of a fluid

parLicle respeclively, x is Lhe currenl posilion and

L . . .
Grad = -—- sa (i 1,2,3) belng Lagrangian co-ordinates.

2.3 Generalizalion of Kelvin's circulation theorem:

Theorem 2.2

In Lhe case of an 1nviscid

generalized non-barotropic
fFluid flow
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D — —
— § (u - VA .d)
Dt C

o, (2.15)

where C is a closed curve moving with the fluid.

Proof:
From equation (2.2) we have the idenlity
D — —
~— () = - (IA.TDu - INxw,. (2.16)
DL

Since C im a material curve

D _ _ Du ™ D _
— § (- .dT = § ——-—vx—n—[v] .al
ot C cl pt bt Dt

¢ § (u-nIN) AT VUL (2.17)
c

From equalion (2.17), and on vsing the 1identity

| § 2

u.(dl.Mu - v[ —la] ].di (2.18)

2

we get
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D _ . * _ _
e ds (ua — nVAN).d} = - 4; [V(I + @) - (I MNu - n IAaxw
Dt C C

4 z,

- v[ <l J].dT’— §(P VA .(d1.Pu.  (2.19)
Then using the vector identity
- A (d1. DU + (I Du.dl = - (Ixw).d], (2.20)

and applying Stoke's theorem we get,

n N _ * « _ 2 —
— §u-aw0.dl = - § v[1 + ¢ - -|u) ].dl
DE " C c

= 0.

Thia complelesa the proof.

We call the guantity ¢ (u - n¥r).dl the generalized
C
civculation around C.
Corollary 2.1

D
— § u.dl = § Tdr , (2.21)
Dt ~C c

which is the generalized form of Bjerknes' theorem.
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Proof:
From theorem (2.2) we have,

D . D _
Dt C Dt C

n

Dn D _ — -
$ l — 9 4+ ——[vx]] AT+ § (V) .(dT. M,
C Dt DL C

§ T on.dl,
Cc
(By equations (2.2), (2.9), (2.16), (2.20))

|}

35 Taxr .
c

This completes the proof.

Note:

The parlicular casc X = § gives,

D

— $ v.dl = § 18s,
bt ¢ C

Which is the Bjerknes' theorem in the usual case.
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2.4 Generalization of polential vorticily:

Theorem 2.3

1o generalized non-barotropic flow of an invigcid [fluid

the guantity

w - InxIn
—_— Vu,

i8 constant in time for each fluid elemeni: where u is any fluid

property salisfying egquation (2.2).

Proof:
D [ w -~ InxIn ] D [ @ - vnxvx]
-— Y] = — u
o)
DL e Dt
v — InxIN D
—_— .—[Vp]. (2.22)
Jo! Dt
Using ecquat ton (2.10) and the identity
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b D _ _
——[Vy] = V[ — ] - (Vg VNu - Yuxw
DE Dt

by slraight. forward simplilicalion we can gshow Lhat. Lthe righl. hand

gide of equation (2.22) vanishes identically if Dp/Dt = O.

We can generalize Ertel's potential vorticity theorem Lo

Lhe case of non-barotropic isentropic inviscid fluid flows.

Theorem 2.4

In the class of non-barotropic inviscid fluid flows in

which the entropy S 18 conserved during motion,

D (@ - 9nxIN
vs 0. (2.21)
Dt “
Proof:

The proof follows trivially from theorem (2.3), by
tdent.ifying p with the specific entropy S.

We remark that this generalization i3 not possible in Mobbs(19B1).
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2.5 Generalization of helicity conservation:

Mobbs helicity conmervation law for non-barotropic flows
is now generalized as follows:

Theorem 2.5

In the class of generalized non-barotropic flows of an

invigcid fluad,

D
— I (@ - InxIA).(u - ¥4V = 0, (2.24)
Dt v

where V iy A mal.erial volume, 1f @ - IpxOx is everywhere

parallel to the boundaries of the volume.,

Proof:

D _ _ D [w - INxVA) ,_
— ¢ - IxON) (u - pIR)AV = _[ —[ﬁ .[u - nvx]pdv
Dt V v Dt

] pav,

) Jv[ o - VyxIn ][ EE i E_[nwﬁ

(By Reynold's transport theorem)
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) jvl[‘:_ :” ™ .v] a] [5-n)eav

+J-V[ © - VnxIh ][ - v[1.+ cs] JTON -TUN - 7 D—[W]]pdv,

f) Dt

(By equations (2.7), (2.9) and (2.10))

D [w - 9nxVA w — InxYA D
_J —.V)\ + —

v_Dt P

o (- e )7 - e Y

D ® - 9nxIn
B o

fal

The first integral on the right bhand aide of eqguation

vanishes by applying Gauss's divergence theorem and

[ *
- [ [[(S - anvx).v]ﬁ] - (@ o~ IxPN) LT+ ¢)] dv

— ;[W]]npdv,

(2.25)

(2.25)

gince

(w - ¥nxY2\).n = 0 on the boundaries of the volume V. Since X\
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satisfies equation (2.2), the second integral on the right hand
side of equation (2.25) also vanishes.

Thia completes the proof of the theorem.

2.6 HelmholbLz theorem for generalized non-barolLropic flows:

In the case of non-barotropic flows the Helmholtz
theorems are proved using Kelvin's circulation Lheorem. The vector
lines of w - Ynx7n of a generalized non-barotropic flow have all
the properties of vortex lines of a barotropic flow.

Definition 2.2
w - Tnx9n is called the vorticity vector of a

generalized non-barolropic flow.

Vorlex lines and vortex Lubes are defined using this
definition of vorticity. Then we have Lhe following
generalizationa of Helmholtz theorema.

Theorem 2.6

In the case of a generalized non-barotropic flow:

(i) T c, and C, are any two circpits encircling a vortex tube in
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the same direction, then the circulation of u - nYx around C‘is

equal to the circulation around C, .

(11) The vortex lines are material lines.

(1ii1) The strenglh of a vortex Lube defined asm the circulation
around any circuit encircling the tube remains constant, as the

tube moves with the fluid.

2,7 On Helmholtz fields:

We have seen thal, provided D./Dt = 0, w - IgxIn
aatiafies the egquation (2.10). We also have
V.o = 9IpxVn) = 0. (2.26)

Thyagaraja (1975) has defined a Helmholtz field g(x,t) as follows:
Definition 2.3

A Nelmholtz field g(x,t) is a solenoidal vector field

which satiafies the equation

.v] u, (2.27)

] ‘ o
4

e
T vl
[ ——

1l

[
D {wl
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where u 1is the velocity of the fluid flow.

The vorticity vector of a barotropic flow i8 an example.
The equation also implies that glx,t) may be calculated if

glx,0), the velocity and the density fields are given.

In fact this definition of Helmholtz field is based on
an extensive discugsion in Truesdell (1953) where g is the
vorticity. This discussion is concerning the circulation
preserving motiona and the deductions of Kelvin's circulalion
theorem in Thyagaraja ()1975), Joseph and Mathew (1990) and Malhew
(1991) are in [acl redundant. Bul. the fact remains thal these
studies help to shed 1light on fundamental ideas about the
vorficity. Tt may be recalled that vorticity, though not a

measnrable quanlity, has gained Lhe greoalesl imporlance in almosl

all studies in Fluid mechanics.

In spite of what is menkioned above, the deductions of
helicity conservalion law in  Lhe aforementioned works have
something novel. Helicily conservation as derived by Moffatt
(19A9) is not directly following from Kelvin's circulation theorem
and is not equivalent to it also. Tt is related to the knottedness
of vortex lines. The above mentioned works show thalt conservation

of helicitly 18 alno o property of cirveulation preserving molions.
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The author together with Mathew (1990) has shown that in
the case of non-barotropic flows helicity conservation follows as
a properly of Helmholtz field. Here we show that the result 1is

true for a generalized non-barotropic flow also.

Definition 2.4

A g-tube in a fluid is a material structure formed by

the closed field linea of a Helmholtz field g.

Definition 2.5

A g-tube of infinitesimal cross-section is called a

g-filament.

Theorem 2.7

In a generalized non-barotropic flow of an inviscid

fluid,

| al

D
— Yy = 0, (2.28)
ptl P

where ¢ is any fluid property satisfying Du/Dt = 0.
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Proof:

Proof follows from Mathew (1991).

Corollary 2.2

Tn thesclass of non-barotropic inviscid fluid flows 1in

which the specific entropy S is conserved during motion:

D
— vs = 0.
ptt P

This is in fact Frtel's potential vorticity theorem.

Il

2.7.1 A generalization of helicity which is conserved:

Theorem 2.8

For any g-tube in a generalized non-barotropic

€luid €low,

D — pe—
— J. g (u -~ »VA)AV = 0,
Dt Vv

where V is a material volume bounded by g-surfaces.
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Proof:

D D [g)
__J g.(u-nvA)4Av = J ~*[;}.(u—nvx)pdv + f
DtV Pt

Du D
| - ——[nvx] pdv,
Dt Dt

<V | @

(By Reynolds transport theorem)

g * D
+ J- — || = 9C1+g) + T9N -TUN - 7p ——-[VK] pdv,
) "

(By equations (2.7), (2.9) and (2.27))
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, j v.[[ EIEIQ— I‘-¢]§]dv - J EZ[ g..vx] nedv.

\ \'4

.....‘.......o-(2-31)

The first integral on the right hand sgide of equation (2.31)

-

vanighes by applying Guass' divergence theorem and since a.n = 0

on the boundaries of the volume V. Since X satisfies equation
(2.2), the second integral on the right hand side of equation

{2.31) also vanishes by equation (2.28).
This completes the proof of the theorem.

Theorem 2.9

In the class of generalized non-barotropic inviscid

fluid flows in which g.Y. vanishes identically,

_,J g.uav - 0, (2.32)

where V is any material volume bounded by g-surface.
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Proof:

From theorem (2.8) we have,

D _ D .
——j g.udv = — g.(nV)dv
. Dt
Dt v
= 0.
Note that this conservation law is analoqous to that:

given by Gaffet (1985), and Mathew (1991). It is to be noted that
contrary Lo the claims of these authora isentropy condilion DS/Dt

= 0 18 not relaxed in Lheir proof, as conservalion of potential

vorticity is applied in Lhe proof.

2.7.2 A generalization of Kelvin's circulation theorem:

Lemma 2.1

Let C be a closed curve defined by a closed g-filament

and let the volume of filament be VC Then
J g.(n - AV = [g|so § (u - n¥A)  dl, (2.33)
VC C
where 6o 18 the infinitesimal crogss-sectional area of the
filament.
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Proof:

The proof €ollows from the solenoidal nature of g which

makes the strength of the a—filament “[5[60“ constant along the

g-tube.

The above lemma is a particular case of the generalized
circulation theorem and is analogous to that given by Joseph and

Mathew (1990).
Theorem 2.10

Let C be a closed curve moving with the fluid, formed by

the closed g-filaments of a g-tube,

D
—55 Cu - n9\) dl = o. (2.34)
Dt " C

Proof:

The proof follows from lemma (2.1) and theorem (2.8).
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2.8 Discussion:

Asg pointed out earlier the conservation of circulation,
polential vorticity and helicity follows from the property that
© - InxY. is a Helmholtz field. This depends on the condition that
Dh/DE = 0. Thus the possible relaxation of isentropy conditions

i obtained not by replacing u by u - 3»nvs but by a term

u - n9n, X having the above property.

1t is interesting to note that in a paper dedicated to
Truesdell, Serrin (1979) has gquestioned the entropy form of mecond
law of LChermodynamice. Ile har pointed out that clamaical
thermodynamica is not a closed subject as mosl. of the physicista
and chemists Lhink. He has also shown that the different
statemenls of sccond law of thermodynamices are not equivalent. To
gquote Serrin "the general heljef in entropy is based largely on
arguments by analogy. This arqgument however may be inappropriate
not only because entropy, even at the simplest level is a subtlle
idea far (rom dircct experience, bubt alao becanse in  complicated
cases, we can scarcely understand, let alone calculate, 1it". We
simply add here that the generalization of kinematics of
barotropic flows t.o non-barotropic one by the addition of entropy
which is conserved does nol give much deeper insight inlo the

subject. The basic property of entropy relevant to all previous
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studieg 18 DS/Dt = 0 which can be

another quantity which has the same

The condition DS/Dt = 0

flows with very large Reynolds

relaxed only by considering

property.

is gatisfied in general for

numbers, ie. large gcale

atmoapheric and oceanic flowa. Such high Reynolds nuwmbers are

difficult to occur in laboratory scale simulations.

" R & Rk W
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Chapter 3

VARIATIONAL SYMMETRIES AND CONSERVATION LAWS

FOR BAROTROPIC FLOWS

3.1 Introduclkion:

In this chapter and the following one we develop a
variational formulation for fluid mechanica. The wvariational
principle is not a new one but the approach here is to develop it
using Lie group theory. The identification of transformation
groups leading to different conservation laws are significant in

their application to studies of stability and turbulence.

At the outset we give the basic mwmathematical tools
necesasary for the studies of these two chapters. Here we follow

Olver (1986a, 1986b).

We consider a system N of differential equations

P

involving p 1independent variables x = (xt Xreeine,xP) @ X & R
q

and q dependent variables wu = (ut uf......,uq) e Ux R defined
over an open aubsell M = XxU. ALl onr cosideral ionn  are  local,
justifying restrictions to Fuclidean space but extensions Lo
veelor bundlega and amooth manifolds follow ecasily. Clearly M (]

a manifold.
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3.1.1 Lie group:

Definition 3.1

An r-parameter Lie group is a group G which also
carries the structure of an r - dimensional smooth manifold in
such a way that the group operations of multiplication and

inversion are smooth maps between manifolds.

The lie group 1is connected if G is a connected

manifold. We consider only connccled Tie groups.

Wee are often nol inLereasted in Lhe full Lie group,
but only in group elements close to the identity element. Tn this
case we can dnfine a local Tie group solely in terms of local
co-ordinate expreasions for the group operations avoiding the

abstract manifold theory.

3.1.2 Local Lie group

Definition 3.2
An r - parameter local Lie group consists of connected

open subsets v, = V < R" conlaining Lhe origin O and smooth

maps
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m VxV

> R

defining the group operation, and

defining the group inversion with the following properties:

a) Asgsociativity

If x, y, z =V, and alro m({x,y) and m({y,z) are in V, then

mix,m(y,z)) = mim(x,y),z).

b) ¥Tdentity element

Vx e V, m{0,x) = x = m(x,0).

c) Inverses:

For each x in VCI m(x,1(x)) = 0 = m{i(x),x).

The identity element of the group is the originm O and
the invergae im defined only for x sufficiently near O. It can
be shown Lhat. every local Lie group is locally isomorphic to a

neighbourhood of Lhe identity element of some global Lie group G.

In our sludies Jocal Lie groups arise as groups of

transformation on some manifold M.
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J.1.3 Local transformation groups:

Definition 3.3

Lel M be a samooth manifold. A local group of
tranalformakions act.ing on M 1is given by a (local) Lie group G,
an open aubset U, with

ftelxM = U <« GxM,

which i5 the domain of definition of the group action, and a

amoolLh map y U ——> M with the following properties:

a) If (h,x) = ¥, (g,9(h,x)) € 4, and also (g.h, x) = %, then

yw(g,¢(h,x)) = wlg.h, x).

b) For all x M,

wle,x) = x.

c) If (g,x) = U, then (g—t, wlg,x)) « %4 and

wg ., wig,x)) = x.
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3.1.4 Connected group of Lransformations:

Definition 3.4

A group of transformations G acting on M 1a called

connected if the following requirements hold:
4) G is a connected Tie group and M is a connected manifold;
b) ¥ « GxM is a connected open sel; and

¢) for each x & M, the local Lie group G = { g e G: (g,x) ¢ U },

ig connected.

3.1.5 Vector field:

A vector field v on M assigns a tangent vector ;Ix

Lo cach poinl: x & M varying smoothly from point to point. In
- —_ 1

local coordinates (xl,xz,......,xm), v|x has components £ (x),

EX(X), envenen BT (x). We writce

v = F (x) Tt ereeesat Em {x) DR
X ax ax
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An integral curve of a vector field v is a smooth
parametrized curve x = @(r), whose tangent vector at any point

coincides wilh the value of v at the same point. Thus

X = (@' le), e (e)),

must be a solution of the autonomous system of the ordinary

differential egnations

dxAL

(x), L = 4, 2, m.

de

L

where the ¥ (x) are the coefficients of v at x.

An integral curve which is not contained in any larger

integral curve is called a maximal integral curve,

3.1.6 Flow generated by a vector field:

Definition 3.5

Tf v is a vector field, the parametrized maximal
inLegral curve passing Lhrough a poinl: x € M 18 called the f{low

generated by v,



3.1.7 One-parameter gqroup of transformalions:

Definition 3.6

The flow generated by a vector field v is called a

one-parameler group of transformations, and v is called its

infinitesimal generator.

3.1.8 Action of a vector [ield on funclions:

Definition 3.7

a s}
Let v F' — + ,,......+f" —  be a vector field
4 m
3x ax
on a manifold M and F M ——> R a smooth fuction, then the

action of v on [ 1is defined as

+

v (flx) = g5 — (x)).
. ax
\=4
;tf) gives the infinitesimal change in the function "f" under

the [low generated by v.
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3.1.9 Lie brackets:

Definition 3.8

et v and w be vector fields on a manifold M, then

Lheir Lie bracket or commutator [ v w )} is the unique vector

field salis(ying

[ v wl(PH = v wlif)) - w(v(f),

for all smooth functions f M > R.

1 can be shown Lhal, Lie brackel ia bitinear, skew-gymmebric  apd
salt ialien the dgacobi tdenl gty

(u,fv,wl] 4+ [v,{w,al} ¢ {w,lu,v]l} = 0.

3.1.10 Lie algebra:

Definition 3.9

A Lie algebra is a vector space g together with a

bilinecar operation

{.,..1 g9xg —> g,



called the Lie bracket for g, gatisfying the axioms of

bilinearily, skew-gymmetry and Jacobi identity for all u,v,w € g.

IL can be shown Lhat agrociated with a Tie group G.
Lhere is a lLiie algebra g which i1s the tangent space to G at
Lhe  identily colement Morecover Lhere is a one to one
correapondence hetween one dimensional subapaces  of g and

onc-paramet.er connected subgroups ol G.

As is mentioned at the beginnig we are concerned with
systems of differenltial equations. These equations turn out to be
Filer-lagrange agqual.ions of a variational problem. The symmetry
group of a system of differential equationg is Lhe largest local
group of btransformationa acling on the independent and dependent:
variables of the gystem wilth the property thal 1L transforms
solulions of the system Lo other solutions. Now we give the

necesgsary definit.ions and results.

Definition 3.10

A symmel ry group ol Lhe system b of differential
cqual tong isa a local group of Lranaformaliona G acting on ™
will Lhe property Lhal whenever u f[(x) ix a solulion of I
and whenever g.f  is defined for g« G then u = g.f(x) is also

a sgolution of the system.
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In order to use infinitesimal melthod for finding
symmekbries of differentjal egnations; it is necessmary to develop a
concrele geonet rie sbruclore for Lhe ayslem. Thig sbLruclure 8
determined by the vanishing of certain functions. To do this we
"prolong” the basic space Xx U of independent: and dependent
variables to a gpace which also representa the various parbtial

derivatives occurring in the system.

Teel: f: X > U be a smooth function, then it i=n
possible to take partial derivativer of u = [(x) with respect to
different.  x  which amounta Lo  Laki ng parlial derivativea of
difforenl componenl s of  u. Lel u, be  Lhe  Foclidean aspace
endowed  wilh  co-ordinates which are partial derivatives of

component.g off u  of order k with all possible combinationa of

independent. varitables.

Definition 3.11

[SRA]

U - U x c..0oux D ia a catesian product space whose
n

cro—ordinal eés represents all FLhe derivakives of u of all orders
Ony

From 0, 1, n. A typical element of U will be denoled

(33}

by u



3.1.11 Jel space:

Definition 3.12

The space XxU" is called the n-th order jet space of

the underlying apace  XxU.

3.1.12 Prolongalion:

Definition 3.13

The function n™ = pr““f(x), is called the n-th

prolongation of u fFix).

Lel be the =system of n-th order differential

cqual yana

any

Av (x,n ) -~ 0, v 1, 2, ceeen , 1, (3.1)

. . £ 2 A3 4 2

involving x (x, %, «oeus %), u = u, W, vesse,uM) and the

derivatives of n with reapect Lo x  upto order n. JF we wrile
nd

A(x,u ) [A‘(X,l{hb, ........ ,Al(x,u“”)], (31.2)

A can be viewed as a smooth map from the jet space
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{n)

L
A: XxU > R .

Then the differential equations determines a subvariety

Ta < {(x.u"”): ACx,u™) = 0} e xxu™. (3.3)

3.1.13 Prolongalion of group acliong:

Suppase G is a local group of traonsformaktion acling on
M. There ig an induced local action of G acking on 1its n-jet

space. This ia called the n-th order prolongalion of G and in

{ry)y

denoled by pr (G).

Given a smooth real valued function f(x) = f(xi. ...,xp)

p + k -1
of p independent variables, bthere are [ dilferend.

k

k-th order part.ial derivatives of f. These derivatives can be

denoted using the multi-index notation

Ok f{x)

al fix) "*j‘———y ———--—-j._._-_’
ax ‘ax *....ax k

-«

where 1 = j = p and J = G, i, <3.)
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3.1.14 Prolongalion of veclor fields:

Definition 3.14

Lekt

_ P & 1 a3

v = f.L i + ¢ - (3-4)
nz axL ¢$§ “au“

be a vector field 1n an

open rubsetl M « XxU, the n-Lh
prolongation of v 1is a vector field on the n - jet space
(n)
M = MxU1x ..... ..er defined by
) i { 9 ! J 2
R TR I D I
=1 dx =3 J auJ
where
P P
J [ [l [ |
&) (x,u™) DJ[ B, - 3 ] YA (3.5)
L=41 L=1
du o au¢
o= — u, . = — and D stands for total
i i J,i L J
aAx 8x

derivatives.



3.1.15 Maximal rank:

Definition 3.15

The system of equations

A (x'u(rﬁ) - 0 v =

tg of maximal rank if the Jacobian matrix of A with respect tao

of rank 1 whenever

all the variables in the n-jet space 1is

(N)

Alx,un ) = 0.

3.1.16 Characlerislbic of vector field:

Given the vector fields (3.4); its charactertstic 18 the

g-tuple
trey
oHx,u ) QU A U I
q
where
P
in) L o
Q. (xu ) @ (x,0) - 2_15 O, wu, a =1, 2, «...,q9.
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3.1.17 Non-degenerale system:

Definition 3.16

A system of differential equations is non-degenerate, 1if
at every point (xo.uo) s fA it is both locally solvable and of

maximal rank.

Given a sysLem of  equaliona we c¢an find iLls k-Lh
prolongation by differentialting Lhe equations in all possible ways

upto order k.

3.1.18 Totally non-degenerale syskem:

Definition 3.17

A system of differential equations 1is called totally

non-degenerale if it and all its prolongations are non-degenerate.

3-1.19 Characteristic direction:

Definition 3.18

Lel A b an  n-th order aystems of differenlial

cquations having Lhe same number of equations as unknowns. A
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non-zero p-tuple « 1is said to define a characteristic direction
Lo A ol (xn,ug‘)) c 1, if Lhe qgxq mat.rix of polynomtals

M) wilh elements

is nan-sinqular. Otherwiae il. isa called a non-characteristic

dircction.

3.1.20 Normal systems:

Definition 3.19

A system of equations A (x, u™ = 0 is said to be

. () . .
normal at a point Cx, ) e ¥ Lf there 18 at least one

Q A
non-characlerislic direction for the system at thakt point. The

system is normal 1f it is normal at every point of P

3.1.21 Over-deLermined and Under-determined syslems:

Definition 3.20

Tet A be an n-th order aystem of differential
cquat.ions. lLetb (xo, u?ﬁ be initial wvalues satisfying the

aystem.
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a) a 19 over-determined At (xo, u;m) if there ex1st

homogenecus k-Lh order differential operalors D‘, Dz,...., Dq for

some k 2 0, not all zero, such Gthat the linear combination

. . ey . )
2 D A Q of equalions itn A, Al  Lhe point (x_, u ),
P oW (a] Q
depends only on derivalbives of u  of order al most n+k-1, and
the linear combination Q does not vanish as an algebraic

th-1)
conacquence of A

b) A is under-delermined at (xu, R ) af

(i) there exist abk leagt one set of homogeneous k-th order
operators D, D, ......,0D, not all zero, with z D A Q
1 2 q L v
depending on st most  (ntk-1)-sbt order derivatives al bthe point

Xx , and

o

(11) whenever I)l, Dz, ....,Dq satisfy the conditions in part
(1), lhe reanlting @ vanishes as an algebraic conseguence of Lhe

. . tle-1)
previous prolongation A

Over-delermined systems are characterized by their lack

of esinlence and under- detevrmined  syatemn are characterized by

Pheir Tacl of injquenerss of solationa for Caachy problem.
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3.1.22 Calculus of varialions:

et X = R with co-ordinates x = (x‘,xz,......,xp)

repregaent.ing the independenlt variables and v = R? wilh

co-ordinates u = (ul,uz,.....,uq) repregsenting the dependent

variables. TLet @, < X be an open connected subset with smooth

houndary a0 . A variational problem consists of finding the

extrema of a functional

f£lu) = J I{x, u(n))dx (3.6)
0
o
n = f(x). The inkegrand 1I(x, uyy,

in some class of functions

called Lhe Lagrangian of the variational problem £, 1is a smooth

funclLion of x, u and varinus derivatives of u.

3.1.23 Euler operator:

Definition 3.2}

For 1| = a £ q, the a-th Euler operator is defined by

(3.7)
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the sum extending over all multi-indices over J (j‘,jz,...,jk)

with 1 = jv < p, kz 0.
Theorem 3.1

If u <= f(x) 1is a smooth extremal of the variational

problem (3.6), Lhen it must be a solution of the FEuler-Lagrange

cquatiions
BG(L) = 0, aa =1, 2, e
Definition 3.22

The total divergence of a function

(§ 2

Xx, u’) = [P‘CX. u™, cevenee P X, u‘m)]
ia defined as

DivP = DP %+ ....ic00.DP (3.8)
1 ¢ PP

where each D, is the total derivative with respect to x .

T can be easily shown bthat if 1. = Div P, for some

funclions P,  then Lhe Fuler-hagrange cquationa are satiafCied
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identically. Tn this cane L i1 called a nall-lLagrangian. This

condition can be shown to be necessary also.

Definition 3.23

A local group of Lransformalions G aclting on M < O xU

is a varialional symmetry group of Lhe functional (3.6), if

whenever 00 18 a subdomain with closure Q < Oo, u = f{x) 1 a
amooth (uncl.ion defined over v whose graph lies in M, and
g =G 18 sach Lhat u = fix) = g.f(x) is a single-valued

function defined over €2, Lhen

J I.[ X, pr(m;(;) ]dx = J L[ X, prm)f(x) ]dx.

O 0

Thee infinilesimal criterion for a {teannformal ion  group

Lo be a varialional symmelyy is given by Lhe following Lheorvem.
Theorem 3.2
A connecled group of transformalions G acking on

M < O xU is a varialtional symmelry group of Lhe functional (3.6)

if and only il
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(439 A

Pr v(L) + L Divf = 0 (3.9)

for all (x, WD) e M and every infinitesimal generator

SO a 4 3
v o= Z Elx, W — ¢ az B (X, W —, (3.10)
i= ax =1 du

of G.

3.1.25 Conservation laws:

Definition 3.24

Given a system of differential equations & (x, ™y = 0
A conservation Jlaw Ls a divergence expression Div P which

vanishes for all solutiong u = f(x).

Tn a dynamical problem, one of Lhe independent variables
igs distinguished as "t"™ and the remaining as spaltial variables.
Tn Lhia case a conserval:ion law takes the form

aT
— + diwv Xx = 0, (3.11)
aL
where div X is the divergence of X with respect to the spatial
co-ordinabes. Here T ig called the conserved density and X the

asgsociated flux.
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3.1.26 Generalized vecLor fields:

Conajider a veclor field (3.4), defined on some open
subset of XxU. Provided the coefficient function Ei and 7]

a
depend only on  x

and u, v 18 the inlinitesimal generalor of a

Lransformat ion group acling pointwiae on bthe underlying space.

Definition 3.2k

- . . . R i
v ig called a generalized veclor lield if ¢ and @b

are fanclions of derivaliveas of  u o also.

The theorem (3.2) applies in the case of generalized
vector fields also.

Noelher'as  theorem relaten t he aymmelries of a

variational) problem Lo congervabion Jaws. Thiga metlthod iy uaed [lor
fMinding conservat.ion lawr for dynamical

systema which  c¢an  be

formulalted as variational! problems.

3.2 StatemeniL of problem:

The variational symmetry of an action 1integral for

baroLropic inviscid fluid flows is considered. By 1mpossing two
condilions on Lhe infinitesimal

generators of the UtLraagformalion
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baged on phyrical arguments appropiate to (Juid [lowa, we get the
hydromechanical variations of Drobot and Rybarski (1959). The
invariance of Lhe aclion intiegral leads Lo conservallon laws of
€luid mechanics as an application of Noelther's theorem.

Conscrvalion of helicily i8 obtained as an example.

3.3 Hydromechanical Lransformalions:

Following Drobot: and Rybarski (1959), we consider Lhe
Fuclidean four-dimensional space X. A point x in X has coordinates
[} [V . , L .

X, avoa,22 where o x i the Lime t and x, i=1,2,3 are
ypace- like voordinales.  p(x)  ia a four—dimensional vector field
. ol o . . l
with componenta p (x),ac0,4,22. Here p is the densily p, and p,

. I )
i7,23 are the impulsea p u (i=1,2,3) where u denoles the

componenl:s of Lhe velocity u. Tensor notation is used through out.

It 1 denote the three dimemsional hypersurface in X

and dHa denole the oriented element on H,

LN a1’ar ar’ (3.12)

, .. - S
where = ig the "Levi~Civita tensor”™ and d]ﬁ,dly,dl are three

a3y b
linearly independent. vecltors lying on H so khat d"a 18 normal Lo

1 hee hypersorlface R (Fingtein's aummalion convenlbion is  nged
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through oul). The mass contained on 1l will be represented by the
inlLegral j”dﬂapa, called the complete matter flow. 1In particular,

when the hypersarface H is  the s8pace-like three dimensional

volume V, we have,

dHd = dv; dH = di.= dH = 0 and
o t 2 a

o O
IH dqu Jv p dv,

reducey to Lhe usual mass. If V is any four dimensional region

contatned in X and 4V is jts boundary, by Gausa theorem applied to

ﬁ dH pd, we obtain
: a
\Y
ap = — + divp'w, (3.13)

representing the density of the source of matter existing in V.

T.at. F be a function space of vector valued functions
p“(x), a = 0.4,23, supposcd to be sufliciently regular in X. We
consider the one-parameter group of transformations of XxF 1into

ibaell genevialed by the inTiniteaimal generalor

v o= FY — v % — (3.14)
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The flow gencrated by v is subject to the conservalion laws of

momentum and mass. Accordingly we restrict the funclions ¢ as
follows:
a - o o 3
(a) f =0 Y v(p) + p anf =0,
and
(=

(b) BA¢ = 0.
Then for arbitrary Ea,

— o ? ad

v T v

ax dp H
2 (3.15)

where % = 6ﬁ(pﬁfOl - pyfﬁ)

is the generator of a flow subject to the above constraints. While
(a) correasponda to conservation of massa (b) makes it possible Gto
congider points with variable masses, and in hydromechanics flows

with sources.

The one-parameter family of transformations generated by

— al 9 o o3 9
v F — Bn(ppf - p El) " 18 called a hydromechanical

ax” ap

tranaformation. The conditions (a) and (b) replace the Lin

constraintyg used in other varial.ional formulations.
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3.4 Bydromechanical variational principle:

Given a physical problem; it can be formulated aa a
variational problem in more than one way. In the case of classical
problem of dynamies in which there is no dissipal.ion, Lhe
formulal.ions corresponding to Hamilton's principle have a very
special stalua since they lead to the equations of motions. The
usuaal T.aagrangian for barotropic (flow which corresponds to

Hamilbon's principle is given by,

2
+ (pH) } - BKp°) — poU(x), (3.16)

where E is the internal energy which depends only on pP=p and 0

ig Lhe potential of the external forces.

Coming back to (3.15) Jet us consider a sLandard
variational problem. Let D denote an open subset of R". For any
y = fA(cl(D), R) satisfying some prescribed boundary conditions,

we consider I'he funclional,

Ily) = J T(x,y(x),grad y(x))dx, (3.17)
)]
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where x=(x‘,x ,....,xn), dx denoLes the n-dimensional l.ebesgue

2
measure and T. denotes the given element of Kz(cl(D)xRth,R). The
conventional calculus of variation derives necessary condition for
y Lo make 1 an extremum by studying the real function g£-->I(y+en);
the variable £ ranges over a neighbourhood of 0 in R and n denotes
an arbilrary continuously differentiable real function whose
supporl related Lo D is compact. Thia amounts Lo make the surface
S(0) = R"'" which constitutes the graph of y to compele with a

family of surface Slg); every poinl (x, y+ey) of S(e) results from

Lhe corresponding point (x, y(x)) of S(0) by the displacemenl £7.

A more general way of inserting S{(0) into a chain of
nearby surfaces would be to define, on some neighbourhood of S(0)
in R""™ 4 vector field v, and to call S(£) the image of S(0)
under Lhe geomelric transform explsv) generated by this vecLor

field. The classical calculus of variation amounts to choose ULhe

vector [ield v to have bLhe gpecial form,

vix,y) = €0,5y(x)) (3.18)

Tn the case of (3.15) since ¢d isa defined in Lterms of

E“ the independent variad ion ia given by fa only. Thus (3.15)

correspods to Lhe case

v = (Sx, Sy). (3.19)
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While (3.18) 1is called vertical variation (3.19) 4is called
horizontal variation, since independent variations are 1in the

direclion of x° only (Moreau (1901)).

Congider the action inlegral
W = JV av 1Lx,p(x)), (3.20)
where L i3 defined by equation (3.16) and the transformation
(x, p) ——> (x, p)

generalted by equalion (3.14).

Then the action W is trangformed to

W =W+ AW = J_ dv L(x,p),
v

where V is the transformed region V and

art,
AW = J dv[— "+ 6u(l-fc5}
v

is called the total wvariation of the action (3.20).
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When ¢a = an(pﬁzd — pafﬁ) ,we write

Now we state the variational principle:

For all hydromechanical transformations generated by

d 3]
vouoe — v ol -t —,
ax ap
we have,
aL
_ L Aoo _ ap « _
sw - Jv dv{ S o[ - %] 4o [ 2 ]} - 0, (3.21)

provided " = 0 on av.

The inlLegral on the right hand side of equation (3.21)
corresponds Lo Lhat given by Courant and Hilbert (1953). Note that

OL/apd is the usval Fuler-lTagrange expresgsion corresponding Lo

our action integral.
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Now

3
W = J av o[ e*] - J av w £, (3.22)
\Y \"
where
ayL ayL
S £ 3 R
v o= — - 6a[L p a’]' (3.23)
ép P
and
ﬁ a[) aTl
v = p a3 — - 8 — . (3.24)
a 3 apg o aEp
The expressions ¥ are called Lhe hydromechanical Euler

expressions.

Since (q: 0 on 8V, the first inkegral on the right-

hand side in (3.22) vanishes. Thus we obtain from (3.21) & (3.22),
’ _
jv dv waf =0

Since {a are arbitrary in the interior of av, we gect the

equaltions of motaion,
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v, = 0. (3.25)

Since l’dwa'=- 0 rhe Four ecquationg ol motion are linearly
dependent and we get only three linearly independent solutions. In
the case Lhe Tagrangian takes the usuval form (3.16), we gel the

following equations:

a =0
o 1 _ 2 _ 1 2 . 1
— [ = |uj ] + u.V[ = |u] ] + u.[ — 9p ¢+ VU] = 0, (3.26)
2 2 o
at P
o = 4, 2, a
OG _ _ Y
— + (u.D'u = - ~a vYp - 9U, (3.27)
aL <]
where
3k
p = po _ - B, (3.28)
6[)0

ia Lhe pressure.

These are the conservation laws of energy, and angular

momenium.
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Definition 3.26

The vector field v is called an infinitesimal
divergence symmetry of W if there exists a vector c®, a=o.1,23
such Lthal

AW = J av aac“, (3.29)
v

identically in V. TF c“= 0 so that AW = 0, W is said to be

absolulely invariant.
Theorem 3.3

Tf the action (3.20) is absolutely invariant under the
infinitresima) transformationa (3.15) for arbitrary volume V, Lhen
a linear combinatiion of the hydromechanical Fuler expresasions
ana 18 a divergence.
Proof:

The proof follows from equation (3.22).

3.5 Variational symmetriea and Noether's theorem:

Now we consider {-he symmetry group of the action defined

by (3.20). The group considered here will be Jocal grounp of
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transformationg G, acting on an open subset M < VxF < XxF. Unlike
Drobot and Rybarski (1959) and Mathew and Vedan (1989) we can
find varialional symmetries using theorem (3.3).

The infinitesimal cribterion for invariance is given by
the following theorem (analogous to theorem (3.2)). Here we note

Lhal in our case we do not have to consider prolongation.

Theorem 3.4

A connected group of tranasformations G acting on
M <« UxIF is a varial.ional rymmelry group of the (aclion) functional

(3.20) 1f and only i€

WID) ' L Dive = 0, (3.30)

for all (x, pu) = M and every infinitesimal generator

This ix a particular case of theorem (3.2).
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Example 3.1

Let. v, I. be as defined in equations (3.15) and (3.16),

and ¢° be any arbitrary vector of the Galilean group of

[al

trangformations G. When I, is not an explicit function of x ,

chooging a Tiie algebra g of ¢ defined by Lhe vanishing of  Lhe
Lie bracket.

[vL,v‘s] = vaj - vjv = 0, (3.31)
we have

vwL) = 0 and DivF = 0 so that

wW1) + L Dive = 0.
Thus v is a varjiational aymmetry of the action defined by (3.20).

Here we note that the above equation (3.31) 1ia nothing

but the condition Ffor Lhe absolute invariance of the action as
stated by Drobot and Rybarski (1959). The corresponding

consarvation laws are those of mass, energy, impulse, and angular

momentom.
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Remark:

Tf G is a wvarijational asymmetry group of the action
defined by (3.20), then from the above theorem (3.4)
wWL) + L Dive = 0
ie. [f;’ —, " — ](L) v LasY = 0
ax ap
o aTt, o aL a
1.e€. E _a + ¢ - + L adr = 0
ax dp
o o 6pr; aL
1.e.Div(L€)+[¢ —z—]—- = 0
[a ] e
ax 3p
This can be wrilten as a conservation law,
a o apﬂ oL
Div(P) = [ - - & . ] a
9x ap
where P = - IF. Thisg leads to the following theorem, since the
av,
Fuler cxpressiona in this case are — .
ap
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Theorem 3.5

Suppvae G is a (local) one-parameter group of gsymmetries

of the variational problem (3.20). Let

be the infinitesimal generator of G, and

- 3 o
the corresponding characteristic of v. Then there is a P such
that
Div P = ¥ QEL(L) = Q.KI), (3.33)

ig a conmervation law in characterigstic form for the usual Euler-
Lagrange equations EG(L) = 0. This 1is a particular case of

Noether theorem.

Theorem  (3.3)  is  related to our hydromechanical
variational principle and Theorem (3.5) 18 related to Lhe usual
{vertical) variational principle. Choosing a variational symmetry
for the usnal variational principle amounts to finding functions

o

P and £° satisfying equation (3.30). This leads to the
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corregponding conservation lawna in the usual variational
formulalion. But from Theorem (3.3) we find that the problem 1isr
reduced to finding Functions % only. As shown by Drobot and
Rybarski, when Ea defines a Galilean transformation these

congervation laws are of energy, impulse, and angular momentum.

Now lel us  coneider (he conneclion between Theorems

(3.3) & (3.5). The infinitesimal criterion for invariance leads to

_ aL
aﬁ['rg zf“] - w7 - faaapﬁ — = 0. (3.34)
ap

Thus a linear combination of Lhe usual Euler-Lagrange expressions
and the hydromechanical Euler expressions 1is a divergence.
Further discussion of this will be given in the next chapter. As a
gimple example we consider the case when the flow determined by

- . . o
v 8 isochoric (Bm{'

0)‘

Example 3.2 {(Conservation of helicity)

Suppose

1}
o

v(L) + L Divf
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Now

v £
(if L
For Eo

is

8L aL oL
aﬁ[d’— +5ﬂ[l.-p’— ”f‘“ - % a g —

2L

not an explicit function of x°  and 6afa = 0)
oL
‘3,3[[ pﬁfd - Pafﬁ ] —. ]
op

the corresponding density
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t = 4, 2, 8

Identifying ti = w le, the vorticity vector) and taking a

volume asuch that m”ﬁ = 0 (nL the unit normal to the surface),

this gives the conservation of helicity.

3.6 Discussion:

In the usual wvariational problem we consgider the
"vertical variations" of the dependent variables. Ingtead, Moreau
(1982) condider variationa of the independenlL variables which he
calla the "horjzontal variaLiong™ or "LransporlL method”. 1n bol:h
Lhe caseg Lthe varialions are infinilkesimal itransformaLiong acling
cither on the space of dependent variables or on the space of

independent: variables.

Here we have considered the transformation groups acting
on Lhe space of bolh independent. and dependent variables 1in  an
Fulerian frame-work. Reslrictling the Lransformations Lo
hydromechanical ones reduces the problem to the invariance of

action under Lransformal.ions of independent variables, i.e. the
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transport method. This method avoids the use of Lagrange
multipliers to account for the physical caongtraints of fluid

flowa.

In Lhe examples that we have considered in this chapler,
the explicit. forms of the functions Ed is immeterial, the only
condition being that the flow generated by v is isochoric. Thus
Lhe symmelry we are considering 1is the ordinary variational
symmelry. The difference belween Lhe clagrical Noether theorem and
Lhe Noether theorem for hydromechanical variations is brought out
by considering Lhe conditions for variational symmetry. The more
general cases of generalized symmetries, div-invariants etc. will

be discussed in the next chapter.

»
»
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Chapter 4

VARIATIONAL SYMMETRIES AND CONSERVATION LAWS

FOR NON-BAROTROPIC FLOWS

4.1 Introduction:

The variakional principle of Drobol: and Rybarski (1959)
has been extended to the case of non-barotropic flows by Mathew
and Vedan (1989, 1991). They have used Noether's theorems in the
derivation of congservation laws. These theorema describe a
relationship between the invariants with respect to the given
infinitesimal transformation of the action integral and some

identities galisfied by Lhe corresponding Fuler expregsions.

There are bwo kinda of Noelher Lheorcms. In one, the
Lransformation is supposed to depend on scalar parameters and in
Lhe olLher, on funclLions. Mathew and Vedan were B8uvccessful in
exlt.ending the application of Noether's first theorem to the
hydromechanical variational principle for non-barotropic flows. In
Lhe application of Noether's second theorem only a special type of
t.ransformalions were congidered and the method involved
introduction of Lagrangian wmultipliers to incorporate side

conditions.
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In this chapter we consider applications of Noether's
second theorem to derive conservation of potential vorticity for
non-barotropic flows. The special)l form of the Lagrangian helps ug
to avoide the use of Lagrangian multipliers. The relation between
the hydromechanical  variational principle and the variational
principle due to Katz and Lynden-Bell (private communication)

leads to the conservation of potential vorticity.

4.2 Generalized hydromechanical transformations:

Following Mathew and Vedan, we extend the set of

dependent variables to include the entvropy flux. X is the
- - . . - (=}

four-dimenaional Fuclidean space with coordinates x , o=v,1,2,a,
al . . - .

and p a4lso have the game meaning as in chapter 3. a{x) is a

four—-dimensional  veclor (ield wilth components s, N=0,1,2,3,

where

(3'),3‘,52,53) - (pDS, PoulS, PDUZS, POUQS),

S being the specific entropy.

Lett F be the function space of vector valued functions
pd(x), s%(x). We congider the one-parameter group of
transformations of XxF into itself generated by the

infinitesimal generator
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o o N (4.1)

The flow generated by v is snbject to the conservation laws of

entropy in addition to mass and momentum. For this we choose the

functions wa and na gatisfying the following conditions:

@) % =0 » Wwp™ + oyl o,
wey ¢ 2’ - o,
A
and
4 B a
(b) oa¢ = 01 6077 - 0‘
Then for arbitrary Ea.
— a? a 9 a J
v = £ ~ + @ T + n —
Ix” ap as

where @& = ancd’t“ - 8™ ana 0% = o7 - )

i8 the infinitesimal generator of a flow subject to the above

conatraints.
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Definition 4.1

The one-parameter family of transformations generated by

— « aﬁo a af3
v o= —m+aﬁ(pﬁz —pl;')—'—-“*aﬁ(aﬂf - 8%y — (4.2
ap

is called a generalized hydromechanical transformation.

The Lagrangian for non-barotropic flow is giveu by

1 L2 .2 3 2
Le—p (Y + D e

2p

] - &p°,8°%) - gPU(x), (4.3)

where E is the internal energy and U 1is the potential of the

external forces.

el vV be any foue-dimensional region contained in X

with boundary odV.

4.3 Generalized hydromechanical variational principle:

For all generalized hydromechanical transformations

(4.2), we have
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AW = Jv [20( aﬂ[pﬁg"-p"gﬁ] + iEa aﬂ[sﬁfuaa“zﬂ] +aa[u°‘]] =0

ap as
(4.4)
. o
provided ¥ = 0 on dvV.
The variation AOW can be written asm
Aw=—[dva[-1f"f“] —J.dv v S, (4.5)
o I£] o a
v \Y
where
(4.6)

Y
Y
S
| &
+
"2
| &
.
O
22
| Summ—
e
1
L
[ &
I
o
.
| &
| —

and

(4.7)
The expressions v, are called the generalized hydromechanical

Fuler expressions.

Since Ed ig zero on 8V, the first integral on the

right hand side of equation (4.5) vanighea. As Cd are arbitrary
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in the interior of 68V we get

v, = 0. (4.8)

Since p"wa = 0 (and s"wa = 0), (4.9)

only Lthree of the above four equations are linearly independent.

4.4 Norther theorems and conservation laws:

Aga mentioned in chapter 3 Noether's theorems relate
variational symmetries of an action integral to conservation laws
associated with the corresponding usual Euler-Lagrange equations.
Tn Lhe case of hydromechanical variations the transformations of
the dependent variables are related to the transformations of the
independent variables as is clear [rom equations (3.15) and (4.2).
Thus a generalized hydromechanical transformation 1ig defined in
Lerms of the functions Eu alone. It also Tfollows thal the
infinitesimal genecrators of  Lthe hydromechanical  transformalions

arce gencralized vector ficlds (Definition (3.25)).

In this sense the two theorems of Drobot and Rybarski
and Mathew and Vedan are classical Noether's second theorem
adapted to hydromechanical variational principle. Noether's first
theorem of Drobot. and Rybarski corresponds to transformations
depending on scalar parameters and second theorem, transformations

depending on scalar functions. The asystem corresponding bto our
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varialional principle 13 under-detcrmined as 18 clear Lrom
equations (4.9) (see also page 77). Classical Noether's Bsecond
theorem ig concerned with anch systema fotr which there may be
Lrivial conservation laws determined by non-trivial wvariational
gymmetry groups. Mathew and Vedan (1991, theorem (3.7)) bhave

proved the following theorem.

Theorem 4.1
If there exists a divergence symmelry for the action

integral

W = J dv I{x, p(x), s(x)), (4.10)
\"J

depending on r — arbilrary functions and their derivatives uplo a
given order ¢, there exists exactly r linearly 1independent
identities between the Euler-Lagrange expressions ¥ and Lheilir
derivatives, provided the sgsymmetry corresponds to generalized

hydromechanical transformations.

The applicationg of this theorem to derive conservation
laws were considered only in the special cases in which &% = 0
and nd = 0 Even in this case the method involved use of

Lagrange multipliers Lo incorporate side condilions.
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4.5 Conservation of potential vorticity:

Although we have defined a new four-vector a”™

o - . - - 2 . .
(0za,4,2,8) only 8 is entering into our variational principle.

This allows us to consider conditions which lead to &7 = 0
(a=0,4,2,3) and no = 0. We use generalized hydromechanical
transformation with ¥® = 0. For simplicity we shall nuse
three-dimensional vector notation with E = (t‘,fa,fa), u =
(u‘,uz,ua) and V - the spatial divergence operator
o 8 I¢]
v = T T e _! .
axt ox a3x
Then following Mathew and Vedan we find that 2% = 0 («¢ = o©.423)
and no = 0 provided
-— —_— o — — —
9.(pf) = 0, pE.9S = 0 and — [pz] v UxEEX®) = 0
at
(4.11)
A solution of equation (4.11) for f is then given by
. 1
F = — Vx9S, (4.12)

p

where f satisfies the equation
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Df
vl — x Y8 = 0. (4.13)
Dt

Equationa (4.11) and (4.13) and itas solutione (4.12) have appeared

in Katz and Lynden-Bell and Friedman and Schutz (1978).

Katz and Lynden-Bell have considered variations which
satisfy the conservation laws of mass and entropy. It ig
comparable to the generalized hydromechanical transformations
aggumcd above. TL  hay been shown by these authors thal the
invariance of the action under the transformations defined by

equations (4.12) and (4.13) is that of potential vorticity.

4.6 Disgcusgion:

In this chapter we have considered the hydromechanical
variational principle for non-barotropic flows. This involves the
set of dependent variables to include the entropy flux also. The
syatem described by the hydromechanical varialional principle is
under-determined and the two theorems of Drobot and Rybarski
(1959) are particular cases of classical Noether's second theorem.
The variations considered in chapters 3 and 4 are generalized
variations (Olver 1986b). The special Form of the Lagrangian 1is

made use of to avoide Lagrange multipliers. Then a symmetry
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group is identified which involves the transformations of the
independent variables . X, 1 only. Conservation of potential
vorticity is obtained by comparing hydromechanical variational

principle to the variational principle of Katz and Lynden-Bell.
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Chapter S

CONCLUSION

This thesis contains a study of conservation laws of
fluid mechanics. These conservation laws though classical, have

been put to extensive studies in the past many decades.

In chapter 2 we have considered the generalization of
the well-known conservation laws of barotropic flows to the case
of non-barotropic flows. The earlier generalizations are based on
the dependence of internal energy on specific entropy in addition
to the specific volume. Isentropy conditions are assumed in these
studies. It is shown that it is the property which forms the
basis of all these gencralizalions. Further the conservation of
helicity which is shown to be independent. of this properly by
Gaffet (1985) and Mathew (199)) is wrong as the result depends on
conservation of potential vorticity. This leads to the possibility
of considering a more general function X = X(S,T) of apecific
entropy S8 and absolute temperature T, which is advected to form
the basis of conservation laws for what we call a generalized

non-barotropic flow. Compare the left hand side of equation (2.4)
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with the Joule-Thomson coefficient well-known in geophysical
flows. The earlier studies are further restricted by their
derivation based on Clebsach's potentials which do not exists when
vortex lines are knotted. The general conclusion is that all the
conservation laws are based on the fact that the vorticity vector
for a generalized non-barotropic flow as well as for any other

flows is a Belmholtz field. Our investigations also make it clear

that the generalizations of all conservation laws to the
non-barotropic case are based on the equation DS/Dt = 0.
The identification X = § leads to the isentropic cases

discussed by earlier workers for non-barotropic flows, except in
the case of potential vorticity. The identification X = T 1is not
posgible in gencral because of equation (2.4) but may be possible
when there is no appreciable change in density with temperature. A
physical meaning to the function X is to be sought in the light

of Serrin's remarks (page 48) of this thesis.

There are extensive discussions on conservation laws
based on Clebsch's potentials (Seliger and Whitham (1968), Serrin
(1959), Mobbs (1981) etc. for example). As pointed out by
Bretherton (1970) these studies have limited validity because

Clebech's representation is not possible for flows with non-zero
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helicity. Thus the characterization of circulation preserving

motions is truly based on functions like X which are advected.

I'n chapter 3 we have considered variational formulalkions
for barolLropic flows using lLie group theory. This method helped us
tto syatemalically develop the hydromechanical variational
formulations of Drobot and Rybarski (1959), and Mathew and Vedan
(1989, 1991). The connection belLween variational symmetries and
hydromechanical Euler-lLagrange equations has been brought out.
Further this has helped us to compare the Noether Cheorem in tLhe
usual variational formulation and hydromechanical variational
formulat.ion. In Lhis chaplLer and chaplter 4 generalized aymmetries
have been considered by including the dependence of infinitesimal
generators of transformations on derivatives of dependent.

variables also.

In chapter 4 we have considered the variational
formulation of non-barotropic flows. Here Lhe only case of
isentropic proceess is considered. The two theorems of Drobot and
Rybarski and Mathew and Vedan are in fact sgpecial casges of
:lassical Noether's second theorem, since Lhe sysltem described by
the variational principle is under-determined. The application of
Noether's second theorem to derive the consgervation Jlaws is

difficult and Drobot and Rybarski (1959) and Mathew and Vedan
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(1991) have considered only the transformations in which pa and
8" are invariant. Even in this case Lagrange multipliers were
uged to incorporate the constraints which define such
Lransformalions, and Uhe corresponding conserved gquantity is

vorticity.

Though we have introduced four additional variables s°,
4 2 2 - o
8 , 8 s for non-barotropic flows, only one of them, s ,
appears in the Tagrangian. This fact has helped us to avoide the
use of lagrange mallipliers. Then Lhe variational principle is
comparcd to that. due to Kat.z and Lynden-Bell, who have sh~w.n (hat
Lhe corregponding conservabion law is that of potential vorlLicily.
Bul. thig method has reduced bthe scope of applicationyg of Noether's

theorem. A direcl application of Lhe Lheorenm is atill an  unsolved

problem.

The conacrvalion laws are of inlLerest to us because of
Lheir applicaltions in different branches of satudies of [luid
mnechanies. In particular studies of stability of flows 1s being
undertaken in the department. The identification of variational
symmetries is being f(ound helpfol  in stability sBtudies nwusing
Arnol)d's method. Hamiltonian formulation for fluid flows is also

under stndy. The stadies conbained in this thesis is in this sense
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only a beginning and can be carried forward by the wuse of many
more concepls of Lie group Lheory ]ike De—Rahm complex,

variational complex, Lie derivatives etc.
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