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Chapter 1 

INTRODUCTION 

The governing equations of fluid mechanics are based on 

a set of conservation laws. These are conservation laws of mass, 

momentum, angular momentum. energy etc. A general approach iR 

developed for the derivation of conservation laws in continnum 

physics by the pioneers like d'Alembert, Euler, Daniel Bernoulli. 

and Lagrange. The kinematics of inviscid fluids bring out further 

conservation laws like Kelvin's circulation theorem. Helmholtz 

vorticity theorems, conservations of potential vorticity and 

helicity. These conservation laws are derived based on the 

dynamical equations. 

A fluid flow can be considered as an infinite 

dimensional dynamical system with infinite degrees of freedom. In 

this sense the conservation laws are of great significance as 

integrals of equations of motion. 

As is well-known there are two approaches to the study 

of fluid mechanics - Eulerian and Lagrangian. though both are 

really due to Euler. The classical study of hydrodynamics and 

later of real fluids and boundary layer theory are mainly 1n the 
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Eulerian frame work because of its simplicity. Especially in 

steady flows the Eulerian method greatly reduces the complexity 

of the governing equations, while such simplifications are not 

possible by Lagrangian method. Thus the faster developments in 

fluid mechanics were using Eulerian method, which is a field 

theoretic approach. On the other hand the Lagrangian method which 

is in the way of particle dynamics has found place in recent 

studies. Especially using a variational approach the Lagrangian 

method is almost straightforward. This simplicity consists in the 

adaptation of Hamilton's principle of least action to a 

mechanical system with infinite degrees of freedom. A variational 

formulation in the Eulerian system is not that simple. For example 

in the early literature, the only flow with vorticity amenable to 

Eulerian treatment was found to be isentropic. 

One of the assumptions made in the early studies of 

hydrodynamics, especially in water waves, is that the flow 1S 

irrotational. This has its root in the well-known theorem that all 

motions started from rest by natural forces are irrotational. It 

is to be noted that the only exact solution for a rotational wave 

is trochoidal waves of Gerstner which has not gained much 

attention in the past more than a century. In fact the simplifying 

assumption of irrotational flow drastically alters the problem. 

For example, 1n an incompressible fluid if the flow is 
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irrotational everywhere the fluid really ceases to be a fluid in 

the sense that it looses its infinite number of degrees of freedom 

which make possible the infinite variety of fluid motions and 

becomes a flexible extension of the bodies whose movements 

generate the flow. The irrelevance of classical hydrodynamics to 

the real world is summarised by the d'Alembert's paradox of zero 

drag in steady flow. At least for the motion of homogeneous 

incompressible fluids vorticity is the property of the flow field 

of crucial importance and it is not an exaggeration to say that 

all the problems of such flowa can be posed as questions about the 

strength and location of the vorticity. 

The conservation laws studied in this thesis are of 

voticity, potential vorticity and helicity. It is an attempt to 

give a formal presentation of derivation of conservation laws. 

There are two approaches: one is the classical method based on 

governing differential equations, the second method is based on 

variational principles on a formal footing using Lie group theory. 

1.1 vorticity: 

The credit for the creation and unification of the 

discipline of vorticity transport goes to Truesdell (1953). The 

great significance of vorticity is aptly and beautifully recorded 



by Truesdell (1953) in the following words: "Before our eyes opens 

forth now the splendid prospect of three dimensional kinematics, 

the mother tongue for man's perception of the changing world about 

him. Its peculiar and characteristic glory is the vorticity vector 

w, for whose existence it is both requisite and sufficient that 

the number of dimensions be three". 

The earliest concept of vorticity can be traced back at 

least to Leonardo da Vinci and Descartes, though the first 

treatment of vorticity occurs in the work of d'Alembert and Euler; 

Lagrange and Cauchy were the first to introduce single letters to 

stand for the vorticity components. The kinematical significance 

of vorticity was recognised only when Mac Cullagh and Cauchy 

proved that the components of the curl (of the velocity vector) 

satisfy the vectorial law of transformation (see Truesdell (1953), 

pp 59 -.). 

The mathematical understanding of vortex motions begins 

with the renowned work of Helmholtz (1858). The name "vorticity" 

was introduced by I.amb (1916). The original physical problem that 

motivated Helmholtz's great study, was nonlinear - the study of 

motions of an ideal incompressible fluid governed by Euler's 

equations. He found interesting invariance properties of a 

analytic and topological nature for the vorticity vector. 
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purely mathematical aspects of Helmholtz's ideas have been 

developed into the modern Hodge-Kodaira decomposition theorem for 

differential forms on Riemannian manifolds (Berger (1982». 

The name nirrotational", for flows with vanishing 

vorticity was introduced by Kelvin (1869). noth Euler and Lagrange 

repeatedly emphasized that irrotalional motions constituted only 

a special case, while d'Alembert contented 1n effect that all 

motions of inviscid incompressible fluids are irrotational. Again 

in the words of Truesdell (1953), vorticity "generates those 

beautiful, intricat.e and perplexing phenomena which makes the 

challenge of the theory of the motion of fluids, whether perfect, 

viscous, of more complicated in their dynamical response a 

challenge for the most part declined by classical hydro~ynamicB 

and that analysis of the basic kinematical properties of vorticity 

initiates a frontal attack upon the citadel of the nonlinear 

convective accelrral ~onn. Truesdell's work, though published 

fourty years back points out to many hitherto unresolved problems 

of the kinematics of voticity. 

Vorticity has provided a powerful qualitative 

description for many of the important phenomena of fluid 

mechanics. The formation and separation of boundary layers have 

been described In Lerms of Lhe production, convection and , 
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diffw:'4i.on of vorLicjLy. In Lurhu)C'uL rlow!~ the dissipation of 

energy at a rate independent of viscosity 1S explained by the 

amplification of vorticity by the stretching of vortex lines. The 

lift on an air wing is explained by the bound vorticity and 

trailing vortex structure. The concept of coherent structures in 

turbulent shear flows has led to the picture of such flows as a 

superposition of organised deterministic vortices whose evolution 

and interaction is the turbulence. The strong nonlinearity of the 

equations of vortex motion has made quantitative use of th(~ 

concept difficult for the great scientist who founded and 

developed the subject. But the advent of high speed computers has 

made it possible to attack many of the difficult problems, leading 

to the realization that difficult problems like almost 

irrotational motions such as surface waves on uniform irrotational 

fluid and air hubbIes in water may be successfully treated as 

problems of vortex motion, the free surface of water waves or the 

boundary of air bubble being a vortex sheet whose position 

sati.sfies an integro-differential equation. 

1.2 Potential Vorticity: 

It is well-known that Kelvin's circulation theorem, 

Helmholtz vorticity theorems and Euler's equations of motion are 

equivalent (Von Mises and Friedrichs (1971». But Kelvin's theorem 
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is an integral t.heorem and requires a knowledge of detailed 

evolution of material surfaces in the fluid. The vorticity 

equation, though deals directly with the vector character of 

vorticiLy, is more a description of how vorlieiLy is chanycd than 

d useful eonstrai nt Oil that eh,ulge. Com:Ji dpration of pot~ential 

vorticity due to Ertel (1942) provides the way of translating the 

informations in the Kelvin's circulation theorem into local 

conservation laws. Thus it was shown that th~ quantity 

w 
IT = 9S, 

p 

where S 1.S the specific entropy and p density, is conserved 

under the following conditions. 

a) S is conserved for each fluid element, .l.e., the flow is 

isentropic 

b) The flui.d is inviscid. 

c) The flow is barotropic. 

In fact S need not be entropy, but any conserved property of 

fluid element (Mobbs (1981), Pedlosky (979), Gaffet (1985), 

Abarbanel (1987), Katz (1984),Katz and Lynden-Bell (1982». It can 

be shown that potential vorticity is really Kelvin's circulation 

theorem for a very special but useful contour - a contour lying on 

a S-surface. The term potential vorticity may seem to be a 

misnomer since this entity does not have even the dimensions of 
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vorticity. But if the density does not vary very much, as the 

distance between two adjacent S-surfaces :increases, 'VS must. 

decrease and the component of the vector w parallel to 'VS must 

increase proportionally if the potential voticity must remain a 

constant. This will be manifested as an increase in wand we may 

consider that there is a reservoir of vort.icity associated with 

the packing together of S-surfaces which can be released as the 

Burfaces are stretched apart by the mechanism of vortex tube 

stretching (Pedlosky (1979». 

Ertel's Lheorem associates a conserved quantity with any 

scalar field quantity that is conserved along fluid particles. 

Since potential vorticity itself is such a conserved quantity, we 

can use it again and again to obtain an infinite number of 

conserved quantities, a fact which sheds light on the 

integrability of the EuJer equations. But not all of them are of 

physical significance (Abarbanel (1987»). 

1.3 Helicity: 

In particle dynamics the term helicity is used for the 

scalar product of momentum and spin of a I~lrticle. This concept 

has been adapted to fluid dYll<lInicH and in particular to 

magnetohydrodynamicB by Moffatt (1978). 
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Let V denote Lhe whole Lhre~-d i ITIpnsional space. (-'or 
00 

any vector field A(x) the quantity A.('VxA) 

helicity density of the field A. Its integral 

100 = J A.('VxA)dV, 

V 
CD 

is called th~ 

is called the helicily or h. Let v c V be any volume with 
m (J) 

surface S on which n.(~xA) = 0, n being the unit normal to 

the surface. Then 

I 
rn 

= J A. ('V xA ) dV , 

V 
m 

if! (~iI]led a partial tit·licit-y. 

The helicity density is a pseudo-Rcalar quantity, its 

sign changing from a right-handed to a left-handed frame of 

reference. Thus a reflectionally symmetric vector field must have 

zero helicity density, though the converse is not true. 

Setting B = 'VxA the helicity density becomes A.B. 

When B IS magnetic field intensity, h can be the vector 

potential for B. Since vorticity w = Q'xu, u the velocity 

9 



field of a flow, u.w is the helicity densiLy of the velocity 

field. 

Suppose A.B ~ O. This is the necessary and sufficient 

condition for the existence of scalar functions ¢(x) and 'fI(x) 

such that 

" = lfv¢ and n 

It is clear from these that B-lines are the intersections of the 

surfaces ¢ = constant and V' = constant, and the A-lines are 

every where orthogonal to the surfaces ¢ = constant. Thus 

B-fields having linked or knotted B-linea cannot admit such a 

reprf~sentation. The same arguments ean l)(~ adapted ,to fluid 

mechanics when the velocity field has a Clebsch's 

representationa, 

u = V'~¢ + ~~ 

The term "helicity" for helicity of velocity field was 

first introduced by Moffatt in 1969. A detailed discussion on the 

invariance and topological interpretation of helicity and ita 

significance in the dynamo theory of celestial magnetic fields and 

in turbulent flows with and without magnetic fields is given in 

Moffatt (1976, 1978). 
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Helicily is a measure of the degree of knottedness of a 

vector field (Moffatt (1969), Bretherton (1970), Holm et ale 

(1991». This can be given a kinematical interpretation as 

follows: the fluid particles in any small volume element dV 

undergo a superposition of three motions - a uniform translation, 

an irrotational uniform strain 9¢ and a rigid body rotation. The 

streamlines of flow u - "'4> (u - velocity) passing near a point P 

in dV are he 1 ices about t.he streamline through 

contri.bution IJ.W dV "V = u W dV 
o 0 

(u and 
o 

P. Thus the 

velocity and 

vorticity respectively at P to the helicity from the volume 

element dv is positive or negative according as the sense of 

rotation of these helices is right-handed or left-handed. Arnold 

(1965a, .1965b) has discussed the importance of helicity (measure 

of knottedness) as a topological property invariant under volume 

preserving diffeomorphism. 

Moffatt (1969) has derived helicity conservation under 

the following conditions: 

a) The flow is invisci.d and barotropic. 

b) The body forces are conservative. 

c) Th~ volume V is a material volume. 

d) w.n = 0 on BV, the boundary of V. 
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To make the best use of vortex dynamics, it is important 

to use as effectively as possible the basic results connecting the 

vorticity wand the velocity u of fluid element which are 

provided by helicity conservation. In a number of recent papers 

the distribution of helicity in turbulent flows has been discussed 

and computed (I,evich and Tsinober (1983), Rogers and Moin (1987) , 

Vallis et al (1909), Holm and Kimura (1991». Numerical 

computations such as for viscous flows at high Reynold's numbers 

are usually interpreted in terms of concepts from vortex dynamics 

developed for inviscid flows. The helicity density is not a 

conserved property and in general varies in space and time 1n 

turbulent flows. There have been many works reported on 

computations and measurements of helicity density in various flows 

(Kida and Murakami (1989». Since there can be no pro~uction of 

vorticity if ux~ = 0; it follows that the production of vorticity 

and tJw eaRcadp of (~nergy to sma Iler BealeR in turbulence must be 

very weak if u is parallel to wand helicity density 
t /2 

comparable with (U
2 w2

) (Andre and Lesieur (1977». 

becomes 

In two dimensional flow, the vortex lines are normal to 

the plane of flow and therefore the question of knottedness of 

vortex lines does not arise. Thus helicity is a property possessed 

by three dimensional flows only indicating the complexity of the 

flows and may also indicate something about its mixing property. 
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Non-zero heli.city is a necessary condition for non-integrable 

parLicle motion, which includes chaotic particle path. Holm and 

Kimura (1991) have inve9tigated .integcahlp and non-integrable 

particle motion for three dimensional incompressible flows with 

~ero helicity. Computational techniques that preserve volume and 

helicity are developed and used to visualise the Lagrangian 

particle trajectories of three dimensional motion in a periodic 

domain. A new class ()( steady solution of the Euler equation for 

the axisymmetri.c flow with non-zero helicity of an incompressible 

inviscid fluid has been obtained by Turkington (1989). Hunt and 

Hussain (1991) have shown that a net contribution to the partial 

helicity integral is generated outside fluid volumes as they move 

Lhrough regions of fluid with background vorticity. A calculation 

is given for the helicity generated outside a spherical volume aA 

it moves through a region of weakly rotating flow. 

The concept of helicity and its conservation has been 

extended to non-barotropic flows by Mobbs (1981), Gaffet (1985), 

and Joseph and Mathew (1990). 

1.4 Conservation Laws: 

Conservation laws are of great significance in continuum 

mechanics. They have been applied to study stability of fluid 

flows. In elasticity, conservation laws are of key importance :tn 
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the study of cracks and dislocations. They constitute a basic tool 

in the analysis of systems of partial diff~rential equations also. 

Lax (1968) has used conservation laws to l'rove global existence 

UIPorpms and deLermi ned n~al istic cond.; Lions for shock wave 

sol ut_ions to hyperbol ic systems. 

It is well-known that the mathematical structure for 

ideal hydrodynamics was developed a long tjrne ago by Clebsch and a 

complete treatment of the then existing liL0rature can be found in 

the works of Lamb (1932). Since then these results have found 

applications in all branches of engineering. In fact the field of 

applications is expanding with the result Lhal even branches of 

science like medicine is being benefited from the developments in 

fJuid dynamicR. Even then the basic results need further 

investigations and much work in this direction is remaining. For 

example the Clebsch's potential finds only a touching reference in 

the works of Lamb (1932) and much of its applications can be found 

in the literature of the last two decades. Studying the connection 

between Eulerian and Lagrangian treatments, Bretherton (1970) has 

found that Kelvin's circulation theorem is a consequence of 

particle identity during a flow. This has been extended to 

non-barotropic flows by Mathew and Vedan (1988). 

potential vorticii~y has found applications in 

vorticity 

geophysical 

and 

and 

meteorological studies. Helicity has great significance in the 
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studies of turbulence. The conservation laws of vorticity, 

potellLial vorticity and helicity have found applications in 

developing algorithms for numerical studies in almost all branches 

o[ fluid mechanics. 

The sLudy of conservation laws is closely related to a 

variational formulation for fluid mechanics. Attempts for 

variational formulations of hydrodynamics can be traced back to 

Rateman (1929), Lichtenstein (1929) and Lamb (1932). Eckart (1930) 

and Taub (1949) tried to extend the variational principle to 

adiabatic compressible flows. Using the field variables velociLy, 

density and entropy expressed in space time co-ordinates, Herivel 

(1955) presented both 

formulation for ideal 

Lagrangian and Eulerian variational 

f1 uid flows. However h.i s Eulerian 

variational principle was incomplete in the sense that for 

isentropic flows this prnciple led 1:0 irrotational motion of 

fluid only. Numerical procedure for irrotatlon~l flow 

circular cylinder using variational method can be found in 

and Chery (1956). 

the 

paHt 

Lush 

Later Lin (1963) showed that variational principle for 

rotalional flows 1n Eulerian treatment could be obtained by 

introducing the requirement that the end points of 

trajectories should be preassigned and not 

15 
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variations. The modified version (Herivel-Lin variational 

formulations) appeared first in an article by Serrin (1959). A 

gerll~ralizati.()n or Ih~rivcd-l,in variational principle can be found 

In I,undgn'n «1963). 111 this formulill ion the constraints are taken 

by means of Lagrangian multipliers (Monge potentials) which lead 

to a Clebsch's representation of the velocity field involving 

eight potentials. It is difficult to assign physical meanings to 

theRe potentials. 

ClebRch's potentials have been used by Ito (1953) for a 

Jlami I Lonian formulation of hydrodynamics. He has shown that, for 

an isentropic flow, vortex motion is closely connected with the 

entropy. Eulerian hydrodynamieal equations emerged factorized into 

four fundamental equations which were discussed from the 

thermodynamical poinL of view. A discussion on the Landau's theory 

of quantum hydrodynamicH also can he found in this paper. 

There have been attempts during t.he last three decades 

to find new variational techniques In the Eulerian descriptions 

avoiding the difficulties due to the redundancies and 

indeterminacies of the Clebsch's potentials. 

There is reference to Lin's constraints in Drobot and 

Rybarski (959). But this work has not received due attention. In 
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fact their hydromechanical 

consLraints in a variational 

approach. 

variation r(~places the Lin's 

formulation for a truly Eulerian 

~ckart (1960) used the energy-momentum tensor to derive 

equations of motion and some conservation laws in Lagrangian 

description. In this paper he introduced the concept of thermasy 

and pxtended Kelvin's circulaLion theorem to non-barotropic flows. 

Eckart (1963) studied transformation of Lagrangian equations of 

hydrodynamics to general coordinates which are useful in stability 

studies. 

Hamilton's principle does not exist for the flows of 

ViR(~OUR fluids p.xeept in Home vp.ry rf~fltrieted caseu. 1\ variational 

principle for steady laminar motion of simple non-newtonian fluids 

for which the visem'Jity is a fune!: ion of the second invariant of 

the rate of deformation tensor was given by Bird (1960). This 

principle simpli.fies to Helmholtz principle for newtonian fluids. 

In this case the equation of continuity and motion are equivalent 

to the statement that the rate of entropy production is a minimum. 

But for more general fluids the variational principle does not 

admit this simple interpretation. Variational formulation for 

viscous fluids has been given by Johnson (1960) and Becker (1987). 

Discussions regarding the non-existence of variational principle 
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III viBeOllf1 rlllid rIOW!1 Ciln lip round in Filll.lynoll (1,)72i1, 1972h) 

and Mobbs (1982). 

A discuHsion on the drawbacks of many variational 

principles usuing Elllerian coordinates can be found in Zaslavskii 

and Perfilev (1969). A four dimensional treatment as in the case 

of Orobot and Ryharski (1959) can 11<, round ill P~nfi.~Jd (1966). 

~eliger dnd Whitham (1960) have HLudied Eulerjan and 

Lagrangian variational priciples in continuum mechanics and show,\ 

that the number of Clebsch's potentials in Eulerian variational 

formulation of ideal fluid flows CcHl be rf!duced to four from 

eight. But Brelherton (1970) has pointed out that though 

Seliger-Whitham repr~sentation is locally valid, in ~sentropic 

case the flows determined by such a representation do not include 

those with non-Zf~ro hel icity. lie has given a detailed discussion 

on Lin constraints and shown that the relation between the 

Eulerian and Lagrangian variations of the field variables can be 

used to derive the equation of motion in Eulerian form from 

fundamental Lagrangian without using them. 

Eulerian and Lagrangian variational 

investigated by Bampi and Morro (1982, 

The relation between 

principle has been 

1984). The use of 

Lagrangian multipliers can he seen in Kaliketein (1.981) also. 

Gudt~rly and nhutani (973) have suggested a method to derive the 
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varjalional principJe for thn~e dimensi.ollal Hteady fJows of 

compressible flllids from the Herivel-Lin variational formulation 

for unsteady flows. Wilhelm (1979) has ohtained conservation 

equations for particle density, momelltum density and energy 

density for compre!'lsible fluids from a variational principle. 

According to Mobbs (t902) the most general variational 

formulation for invscid fluids is that due to Serrin (1959) in 

which the Clebsch's potentials are identified with initial 

coordinates and initial velocity. He has attempted to extend the 

variational principle to thermally conducting viscous fluids using 

local potentials. Capriz (1984) has shown that Lin's constraints 

can be replaced by Eulerian expansion formulas in an Eulerian 

formulaUon of idf'al fluid flows. Moreau (1901, 1902, 1985) has 

introduced a new variational technique method of horizontal 

variatjons - Lo d(~rive Eulerian equations of motion of inviscid 

non-barotropic flows. Some other variational principles are due to 

Gouin (1981), Benjamin (1984), Schutz and Sorkin (1977), Loffredo 

(1989) and Loffredo and Morato (1989). 

One of the mm~t important applications 

formulations is in the study of stability of 

(Lynden-Bell and Katz (1981». Arnold (1965a, 

of variational 

stationary 

1965b) has 

flows 

shown 

that the exiRtence of a variaLional priciple and an invariant of 
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th~ flow can b~ uH~d to study stability. ThiH method has been used 

for st.udying Rtahility of barotropic and non-barotropic flows 

(Grinfeld (1981, 1902, 1984) and Abarbanel and Holm (1987». 

VariaLi.onal methods have bpen used in the study of waLer 

waves (I~ke (1967), whitham (1967, 1974), Miles (1977) and Milder 

(1977» • 

It 1S to be noted thaI.. the classical studies of 

kinematics of fluid flows are not based on a variational 

formulation. The conservation laws are derived from the governing 

equations. This method has been used by Mobbs (1961) 1n hiB 

generalization of conservation laws to non-barotropic flows. 

1\nolher method, using lfelmholLz fieldl::l has been e~ployed by 

Thyagaraja (1975), Joseph and Mathew (1990) and Mathew (1991). A 

Jacobian interpretation of hpiicity using differential forms has 

be~n given by Nigam (1988). 

1.5 Variational symmetries and conservation laws: 

Influenced by. the works of Lie (1912) and Klein (1918) 

on the transformation properties of differential equations under 

continuous groups of transformations, Noether (1918) proved two 

fundamenta 1 re!;Hl 1 Ls now known as Noether theorems. This marked the 
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beginn i.ng of the Htudy of invar iilnce properlieR of the action 

int.('gl-.:dR in tilt·, calcuiuR of variations. Noether theorems relaLed 

syrnmet.ry groups of a variational integral to properties of itA 

aRIH>ciaL(·d F.ul,..t·-r.a~Jrang(" equationR. BuL Uw pol:.p.nlialR of Noether 

theorem were unnoticed for thjrty years until Hill (1951) 

popularised a limited version of these results among the physics 

community. Since then a number of papers have appeared 1.n the 

I iterature either modifying these t.heorems or applying these 

theorems to particular dynamical systems by relating familiar 

conservation laws to transformation groups. In the case of 

hydrodynamics only a few attempts have been made in these 

directions. It IS to be noted that even in the works of Eckart 

(1963) and Brf~thr~rt()n (1970), though refecpnc(' has been made to 

the relat:ions bet.ween transformation groups and conserva~ion laws, 

nothing is mentioned about Noether theorems. The first referenc(~ 

Lo Noether's theorem can he found in Drobot and Rybarski (1.959). 

Gouin (1976) has shown that Kelvin's circulation theorem is 

related to the invariance of the action integrals under certain 

transformation groups. Moreau (1977) has pointed out that helicity 

can be obtained cHI it conReqUp.nce of Noethpr'H thp.orem. MaUlf.~w and 

Vedan (1989, 1991) have uRed Noether's theorems in the study of 

non-barotropic flows. 
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1.6 Scope of th~ thesis: 

The present thesis is a study of conservation laws of 

fllJid mechanicR in the barotropic and non-barotropic flows. 

Chapter 2 deals with non-barotropic generalization of 

conRervation JawH of Kelvin's circulation theorem, nelmholt7. 

vorticity theorems, conRcrvations of potent.ial vorticity and 

helicity. The earlier generalization due to Eckart (1960), 

Bretherton (1970) and Mobbs (1981) are valid for isentropic flows 

only, which is a stringent condition in many cases. We relax this 

condition. The results for isetropic [lows are obtained as 

special cases. In this case it is to be noted that a tru~ 

generalization of potential vorticjty is the one presented here. 

Two di fIerent met. hods are used: one ] n the I ine of Mobbs and 

second using the concept of Helmholtz fields. 

Chapter 3 and 4 prCHf~nt a v;,riationa I approach to 

inviscid flows. In chapter 3 the method of OroboL and Rybarski 

(1959) is devf~loped using Lie group theory. Rasie results of T,ie 

group theory necessary for the variational formulation of capter 3 

and 4 are presented. Much of the complexities in application of 

the theory and actual computations are absent due to the 

functional simplicity of the Lagrangian. As an example we derive 
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thp conservation of helicity using Noether's theorems. This 

ehapLer eOflcern with barotropic flows. 

In chapter 4 the theory is developed for non-barotropic 

flows. ~incr Ll.p system is underdetermined the investigation of 

is used to 

conse."va I. i on Jaw of potenti.al vorticity. 

Chaph·r 5 pn~Aents i1 gf~neri1J di~H~llsRion or the resuT Ls 

in I.hi s thes is and pointed out lhe ()j reet ion for furt.her research. 

• • • • • 
• • • 

it 
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chapter 2 

GENERALIZED NON-BAROTROPIC FLOWS 

2.1 Introduction: 

The generalizaLjortR of kinematics of fluid flowR to 

non-barotropic flows is brought: jn by the dependence of thr 

ill tr rna 1 ene rgy on sp{~c"i ric f~n t ropy in addition to specif1c 

volump. Eckart (1960) liaR found if gl"nerali7.ed form of Relvin'H 

(~ircu'aLioll Lhron'm whi(~h holrht for a lion-barotropic perff~cL 

fluid. J,;ltf'r Mobln" (1981) has shown Ihal Lhis is a particular Gas(~ 

of it gerl(~ril.l ization whjeh can he applied to several vorticity 

theor('ms •• JofH'ph and Malhe\" (1990) and Mathew (1991) have obtained 

Bimil;,r ('oU!w,-v;llioll L1WH hy i(1c'nLifying the gpnp,-ali7.('d vorticity 

field wilh il Helmholtz field. AU these results hold for 

isentropic flows only. 

Now Wp ,-p 1 iI X I:he' ispnLroy condition. Following Mobhs 

hr an (!qui 1 ihril1m thermodynamic function 

(2.1) 

sueh that. 
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IlA 

Ot 
0, 

where v/ot stands for material differentiation. 

( 2.2) 

'" Now we introduce an enthalpy function I Ruch that 

* dI Td~ ~ vdp. ( 2.3) 

ThiR <lmOllnts \.0 replacing the state variable entropy S in terms of 

)" and T iind ;IRmlming that 

( 2 .4) 

where T the absolute temperature, V the specifi.c volume and p the 

prcs mJ re. F n)m r:qUil Lion (2.3) we get 

'Vp 

P 
* = 'VI 

Also we have the relation 

oS oT 
'ilT. 
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Thp law of con!H'rvation of momentum now lakes the form, 

Uu ,. 
'V(J + ¢) o. ( 2.1) 

Dt 

The mass conservation g1V~S the continuity equation 

Dp 
+ p'V.u = o. ( 2.8) 

Dt 

In the above pquations u lS the velocity field, P the preSBure, p 

the density, S the !'lpecific entropy and ¢ the potential energy 

due h> any conservative body forces. 

We can now define a barotropic flow as the one in which 

V'/XV~' = 0, when~ n is thermasy, the time integral of temperature 

(~(~hul..z and Scnk i n 1 c}17) df~ fi n(~d by 

T, o at t = o. ( 2.9) 
DL 

Aecausp. of equation (2.6) this wi II i.nelude the two different 

usual requ i r(-~mP.nLs 'Vn xvS o and vSx'VT '" O. 

Definition 2.1 

A flow in which 'i11}XVA ;o! 0 is called a generalized 

non-barotropic flow. 

26 



2.2 Generalized vorticity equation: 

Theorem 2.1 

~)r a generalized non-barotropic flow, the vorticity w 

satisfies th~ ~quation 

(2.10) 

Proof: 

From equation of continuity (2.8) and equations of 

motion (2.7) we hilve the Vazsonyi's vorticity equation 

D 
+ (2.11) 

HL 

ror il g(~nerill i zed non-barotropic flow. Also from equation of 

continuity (2.0), ~ql1ati.on (2.9) ilnd the vector identity 

'V~~ x (''In • "J ) Il - 'Vn)( ('VA • 'V ) u + 'V)-~)( ('Vn xw) - \In x (\Ix. xw ) 

(vA x'<:ln ''V. u - ('VA x'Vn ) .'7) ~, (2.12) 
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o 
+ 

Dt 

subtracting (2.t3) from (2.11) we get (2.10). 

This completes the proof. 

Integrating (2.10), we get 

<-,l - vl) XVA. 

p 

(.) 

o Grad x, 

(2.13) 

(2.14) 

where (.) and p are the initial vorticity and density of a fluid 
CI 0 

particle rc~~ppcLively, x if! lhl~ current positi.on and 

Grad i 
,a (i. 1,2,3) being Lagrangian co-ordinates. 

aa'-

2.3 GeneralizaLion of Kelvin's circulation theorem: 

Theorem 2.2 

In Lhe case of an inviscid generaJized non-barotropic 

fluid flow 

20 



D 
(u - n'1A).dl = 0, 

Dt 

where C 19 a closed curve mov1ng with the fluid. 

Proof: 

From equation (2.2) we have the identity 

D 
('1A) := ('1A • 'l)u - '1A xw. 

ot 

Since C iA a material curve 

D 

ot 
:j) (l1-n\7;,) .cIT 

C [ 

Du 

== fc ot 
on 

- - '1A - n 
Dt 

o 

Dt 

.. T (u-n'lA) .(d1 • 'l)u. 
C 

From equation (2.17). and on using the identity 

t 2 

u.(dl.'1)U = '1( zlul ) .dl 

we get 
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(2.16) 
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D " f (11 
Dt C 

n?:>-..) .dl ::0 11 C ['V(l + ¢) n(?:>-".'V)u - n \7:>-"xw 

Then uSIng the vector identity 

- \}A..(dl.?)u + {v"A.?)u.dI - (?A.xw) .dT, 

and applying Stoke's theorem we get, 

n 
f (u - n?:>-..).dl = 

Dt C 

= o. 

'J'h i,R compl etcR tlu~ proof. 

We ea 11 the quantity !f (u - ))\7:>-"). dl 
C 

(!jrculation around C. 

Corollary 2.1 

D 
f.i u.dI = 

Dt c 
f Td,\., 

C 

the 

which IS the gpneralized form of Ojerknes' theorem. 
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Proof: 

From theorem (2.2) we have, 

o 
f u.dl 

Dl c 

o 
= T CnllA) .dl, 

Dt C 

- f T ?A .• dT, 
c 

(By eqllati.()n~ (2.2), (2.9), (2.16), (2.20») 

= T TdA. 
C 

This completes the proof. 

Note: 

The pilrLicu]ar ca~p. A. .. S 9iv(~R, 

o 
f u.dI 

Dt c 
= f TdS, 

c 

Whi.ch 1S the Bjerkne~' theorem 1n the usual case. 
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2.4 Generalization of potential vorticity:. 

Theorem 2.3 

In generalized non-barotropic flow of an invincid fluid 

the quantity 

w - 'Vnx'V"A 
'V/-l , 

p 

IH constant in time for each fluid element where J..J 19 any fluid 

property satisfying equation (2.2). 

Proof: 

p 

o [ (.i) - "In X'V"A] 
Dt --p--- .'VJ..J 

+ (2.22) 
p 

'hdn~J pqllitl Ion (2.10) <:t.nd Ulf' idr!nLity 
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("11-1."1)11 

hy ~Lr~19ht . ror-ward Rimpl1 ricitLion w~ can show t.hOlL the right hand 

Rid~ of equation (2.22) vanishes identically if ()J/ot = o. 

We can generalize Ertel's potential vorticity theorem Lo 

the CilRP of non-barotropic iRcnt.ropic inviscid fluid flows. 

Theorem 2.4 

In the class of non-barotropic inviscid fluid flows 1n 

which Lhp entropy S is conserved during motion, 

U [ W 

Dt p 
o. (2.2.1) 

Proof: 

The proof follows trivially from theorem (2.3), by 

identifying ~ with the specific entropy S. 

We remark that this generalization is not possible in Mobbs(1981). 
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2.5 Generalization of helicity conservation: 

Mobbs helicity conRervation law for non-barotropic flows 

is now generalized as follows: 

Theorem 2.5 

In the class of generalized non-barotropic flows of an 

invisci.d fluid, 

J) 

V17 xv"-) .eu - nv;\.,)dv = 0, 
Dt v 

whe re V i H ;-t rna Lp.r- ia I va I urne , i.f w 1.8 everywhere 

parallpl to thp boundaries of thf~ volume. 

Proof: 

o 
--JC~· 
Dt V 

J 
P

VY1 XV"-] . (-u - Y1V"-)pdV 
v 

• 

H :: -:t(n9A)] pdV. 

(By Reynold's transport theorem) 
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(Ry equations (2.7), (2.9) and (2.10») 

J J [((w - '71)X'7~).'7)U] .il 

].~ + 
J [~ [;:;- - ''In x'VA. 

V Dt p p 

w - 'Vnx'VA. 

D - J 
V Dt 

[ w __ -_p_'V_n_x_'V_A._ 
(2.25) 

The first integral on the right hand side of equation (2.25) 

vanish~B by appJying Gauss's divergence theorem and since 

(C,j - 'Vnx?A).n = 0 on the boundaries of the volume V. Since A 
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satisfies equation (2.2), the second integral on the right hand 

side of equation (2.25) also vanishes. 

This completes the proof of the theorem. 

2.6 lIelmhol tz the~)rem for general ized non-barotropic flows: 

In the case of non-barotropic flows the Helmholtz 

theorems are proved using Kelvin's circulation theorem. The vector 

lines of LV - VT)XVA of a generalized non-barotropic flow have all 

the properties of vortex lines of a barotropic flow. 

Definition 2.2 

w is called the vorticity vector of a 

genera 1 iz(~d non-ha rotropic flow. 

Vortex lines and vortex tubes are defined using this 

(Jpfinition of vorti.city. we have following 

g(~neralizations of Helmholtz theorems. 

Theorem 2.6 

In the case of a generalized non-barotropic flow: 

(j) If C, and C
2 

are any two circuits encircling a vortex tube in 
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the same direction, then the circulation of u - nQk 

equal to the circulation around C
2

• 

(ii) The vortex lines are material lines. 

around C is 
t. 

(iii) The strength of a vortex Lube defined as the circulation 

around any cir~lli.L encircling the tube remainA conAtant, as th(:> 

tube moves with the fluid. 

2.7 On HelmholL~ fields: 

We have seen that, provided IJ\./Dt ::: 0, 

satisfies the equation (2.10). We also have 

o. (2.26) 

Thyagaraja (1975) has defined a Helmholtz field ~(x,t) as follows: 

Definition 2.3 

A Helmholtz field g(x,t) is a solenoidal vector field 

whi~h Aatisfics the equation 

(2.27) 
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where u is the velocity of the fluid flow. 

The vorticity vector of a barotropic flow 18 an example. 

The equation also implies that g(x,t) may be calculated if 

g(x,O), the velocity and the density fields are given. 

In fact this definition of Helmholtz field is based on 

an exlensive discussion in Truesdell (1953) where g is the 

vorticity. This discussion is concerning the circulation 

pres~rving motions and lhe deductions of Kelvin's circulalion 

theorem in Thyagaraja (1975), Joseph and Mathew (1990) and Mathpw 

(1991) are 1 TI fa(~L rr~dundant. nul. the faet n~mi1ins that t~hese 

studies help Lo shed light on fundamental ideas about lhe 

vortjci.ty. Tl milY be recalled t~hat vorticity, though not a 

J1)f'iHtlJI-;,hlr qUiHd ily, han g,tiTH'd Itlf' ~Jrt~al . .pH'- imporLulCP in almOHL 

all studies in fluid mechanics. 

In spite of what is mentioned above, the deductions of 

he 1 ic i ty corHH~rva L ion law in the aforementioned works have 

something novel. Helicity conservation as derived by Moffatt 

(]!}69) IS not directly following from Kelvin's circulation theorem 

and is not equivalent to it also. Tt is related to the knottedness 

of vortpx Ii nCfl. 'fhp. above mentionr~d works show thal conBf~rvat ion 

of hpli('ity i!l ;t1Ho;1 propf'rly of cir-culat-.ion l'n's~rvinq !lIoLionR. 
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The author together with Mathew (1990) has shown that in 

the case of non-barotropic ftows helicity conservation follows as 

a properly of Helmholtz field. Here we show that the result is 

true for a generalized non-barotropic flow also. 

Definition 2.4 

A g-tube 1n a fluid is a material structure formed by 

the closed field ]ine~ of a Helmholtz field g. 

Definition 2.5 

A g-tube of infinitesimal craBs-section is called a 

g-filament. 

Theorem 2.7 

In a generalized non-barotropic flow of an inviacid 

fluid, 

D [ g 

Dt P 

= 0, (2.28) 

where 11 is any fluid property satisfying DI1/Dt = O. 
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Proof: 

Proof follows from Mathew (1991). 

Corollary 2.2 

Tn the-class of non-barotropic inviBcid fluid flowB 1n 

which the specific entropy S is conserved during motion: 

D [ 9 

Dt P 

= o. (2.29) 

This is in fact Rrtel'B potential vorticity theorem. 

2.7.1. 1\ genpralization of helicity whi.ch is conserved: 

Theorem 2.8 

For any g-tube 1n a generalized non-barotropic inviscid 

fl uid flow, 

D 

J 9 (u - nl7;\')dV = 0, ( 2 • 30 ) 

Dt V 

where V is a material volume bounded by g-surfaces. 
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Proof: 

(By Reynolds transport theorem) 

J [( ~ ~ )u] 
V 

· J [~H ~ ~(T :¢) + 1'>~ ~1'>~ ~ n :t[n )]PdV. 
V 

(By equations (2.7), (2.9) and (2.27») 

~ J [( (9'~)U]'U 
V 

J [:t[ ~ ) 9 

p 
V 
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.•.•....•.••... (2.31) 

The first integral on the right hand side of equation (2.31) 

vanishes by applying Guass' divergence theorem and since g.n 0 

on the boundaries of the volume V. Since ~ satisfies equation 

(2.2), the second integral on the right hand side of equation 

(2.31) ahw vanishes by equation (2.20). 

This completes the proof of the theorem. 

Theorem 2.9 

In the class of generalized non-barotropic inviBcid 

fluid flows jn which g.~A vanishes identically, 

~J 
Dt V 

g.udV = 0, (2.32) 

where V is any material volume bounded by ~-Burface. 
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Proof: 

From theorem (2.8) we have, 

~J g.udV 

01:. V 

~J = 9·(n~)dV 
ot V 

= o. 

Note that this conservation law is analogous to that 

gJven by Garret (1985), and Mathew (1991). It is to be noted that 

eontrary to th~ claims of theRe aut.hora isentropy condition DSiDt 

::: 0 is not: relaxed in thei.r proof, as conservation of potentia) 

vorticity iR applied in the proof. 

Lemma 2.1 

L~t C be a closed curve defined by a closed i-filament 

(-mel let the volllme of f i lilment be V C Then 

J g.(11 - n7,1....)dV 

Vc 

Igloo f (u - n'7""A) 

c 
dl, (2.33) 

where 00 is the infinitesjmal cross-sectional area of the 

filament. 
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Proof: 

The proof follows from the solenoidal nature of 9 which 

makes the strength of the g-filament ftlgl6aft constant along th~ 

g-tube. 

The above lemma is a particular case of the generalized 

circulation theorem and is analogous to that given by Joseph and 

Mathew (1990). 

Theorem 2.10 

Let C be a closed curve moving with the fluid, formed by 

the closed g-filaments of a ~-tuhe, 

n 

Dt 

Proof: 

f (u - n'l"J...) 
c 

dI = o. (2.34) 

Th~ proof follows from lemma (2.1) and theorem (2.8). 
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2.8 Discussion: 

As pointed out earlier the conservation of circulation, 

polenlial vorlicity and helicily follows from the property that 

(,) - vr,x'V), is a Helmholtz field. This depends on the condition that 

0/,/01: = O. Thus U1P- possiblp- relaxation of isentropy conditions 

is obtained not by replacing u by u 

u - 17VA, A having the above property. 

but by a term 

It is interesting to note that in a paper dedicated to 

Truesdell, Serrln (979) has questioned the entropy form of second 

law of Ul(·,-moctynamics. lie hilR pointed out that classical 

tJl(~rmodynam i(~s i H not il c 1 OHf'd subject as most of 

and chemistH think. He has also shown that 

the 

the 

physi.cists 

different 

statemenLs of second law of thermodynamics are not equivalent. To 

quote Serrin "Ule general be]jef in en.tropy is based largely on 

arguments by analogy. This argument however may be inappropriate 

not only because entropy, even at the simplest level is a subtle 

id(.>a far from di reet experiencf', bilL also because in complicated 

calculate, it". cases, we can scarcely underHtand, let alone 

simp1y add here that the genera1ization of kiOf~maties 

We 

of 

barotropic fioWH to non-barotropic one by the addition of 

which is conserved does noL g1ve much deeper insight 

subject. The basic property of entropy relevant to all 

45 

entropy 

into the 

previous 



studies 18 Ds/Dt = 0 which can be relaxed only by considering 

another quantity which has the same property. 

The condition DS/ot = 0 is satisfied 1n general for 

flows with very large Reynolds numbers, ie. large scale 

atmospheric and oceanic flows. Such high Reynolds numbers are 

difficult to occur in laboratory scale simulations. 

* * * * * 
* * * 

* 
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Chapter 3 

VARIATIONAL SYMMETRIES AND CONSERVATION LAWS 

FOR BAROTROPIC FLOWS 

3.1 Introduction! 

In this chapter and the following one we develop a 

variational formulation for fluid mechanics. The variational 

principle is not a new one but the approach here is to develop it 

using Lie group theory. The identification of transformation 

groups leading to different conservation laws M."'e significant 1n 

their application to studies of stability and turbulence. 

At the outset we give the basic mathematical lools 

necessary for the studies of these two chapters. Here we follow 

Olver (1986a, 1986b). 

We consider a system Y 

involving p independent variables 

and q dependent variables 
... 

u = (u, 

of differential equations 
p 

x == (x~ x~ •••••• I x P) EO X ~ H 

2 q 
ll ••••••• ,u) 

q 

e U ~ R defined 

OVf'r" an op(~n !-1Ub~H" .. M "" XxU. 7\1 t our (~oHi(h~ra' ionH are local, 

justifying rp.strlctions to F:uclidean space but extensions to 

V('(~'or hllll(Jtps and smool h rnani folds follow eanily. CIC'arly M IS 

a manifold. 
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3.1.1 Lie group: 

Definition 3.1 

An r-parameter T,ie group is a group G which also 

carries the structure of an r dimensional smooth manifold in 

Rueh a way that 1~he group operations of Inul tipl ieation and 

inversion are smooth maps between manifolds. 

The lie group IS connected if G is a connected 

man; rold. We r~O'H::lid(~r only connpcLr~d r.le 9roups. 

w~~ a n~ 0 r Len not inLpresled 1n Uw full I,ie group, 

but only in group elemen1:s close to the identity element. In this 

C'HH~ we r~an d(~f;ne it loca1 r.ip gn)\]p !,lOlely in terms o[ local 

eo-ordi.nate eXprp.SH ions for the 9ronp operations avoiding UI(-~ 

abstract manirold theory. 

3.1.2 I,oca 1 Lie group 

Definition 3.2 

An r - parameter local Lie group consists of connected 

open subsets V eVe 
o 

maps 

y. 

R containing the origin 0 
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m V x V --) R
r 

defining the group operation, and 

i Va --) V 

defining the group inversion 

a) AAsocialivity 

with the following properties: 

rf x, y, Z E V, and alAo m(x,y) and m(y,z) are H' V, then 

m(x,m(y,z» = m(m(x,y),z). 

h) ]df~ntity plpmf'nt 

Vx e V, m(O,x) 

c) InverR"R: 

For each x in V a 

x = m(x,O) ~ 

m(x,i(x» = 0 = m(i(x),x). 

The identity element of the group is the origin 0 and 

the inverse is defined only for x Rufficiently near O. It can 

be shown that (~very local Lie group 18 locally isomorphic to a 

neighhourhood of the i.dentity element of some global Lie group G. 

Tn OUI- HLudieH .1ocal Toip. groups ariAe aA groups of 

transformCltion on some manifold M. 

49 



3.1.3 Local transformation groups: 

Definition 3.3 

Let M be a smooth manifold. A local group of 

tramOJformiltions a~'-ing on M is given by a (local) T.ie group G, 

an open subset 'l.l, with 

felxM c ~ c GxM, 

which is the domain of definition of the group action, and a 

smooth map II' ?.1 --> M with the following properties: 

a) If (h,x) .;: 11, (g,l/dh,x» E?i., and also (g.h, x) E'1.L,then 

¥/< 9 , V' ( II , x ») cc. V' ( 9 • h , x). 

b) For all x E M, 

¥I(e,x) x. 

c) If (g,x) 
-i. 

I::?i, then (9 ,lp(g,x») e?1. and 

-1 
vI{ g , V' ( 9 , x ») = x. 



3.1.4 Connected group of transformations: 

Definition 3.4 

l\ group of transformations G acting on M is called 

connected if the following requirements hold: 

d) G is a connected Lie group and M is a connected manifold; 

b) ?.L c: GxM I.f; a connected o(J,'n f;eL; and 

e) for Pilch x E M, the toeal f.ip group G 
" 

{ 9 CIS G: (g,x) 0;; ?J. }, 

is connected. 

3.1.5 Vector field: 

A vector field v on M assigns a tangent vector ~I x 

1.0 each point x E M varying smoothly from point to point. In 

local coordinates 
12m 

(x ,X , •••••• ,X), ~Ix has components 

2 ... "') " e (x), ••••••• , e (x • We w r] b~ 

~I x 
f 1 ( ) . x + •••••••• + em (x) 
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An integral curve of a vector field v is a smooth 

parametrized curve x: ¢(c), whose tangent vector at any point 

coincides wjth Lhe value of v at the flame point. Thus 

1 YI'l 
X :: (¢ (.c), ••••• ,¢ (c»), 

must be a solution of the autonomous system of the ordinary 

differenlial equations 

i. :: 1, 2, m. 

de 

where the ~i(x) are the coefficients of v at x. 

lUI i nL('g,"a I clJrvl' wh i eh i H not conti) i ned in dny larger 

integral curve is called a maximill integral eurvc. 

3.1.6 Flow generated hY a vector field: 

Definition 3.5 

If v is a vector field, the parametrized maximal 

inLpgral eu.rve (JaRsi.ng through a point x E M is cal.led the flow 



3.1.7 One-parameter group o( transformations: 

Definition 3.6 

The flow generated by a vector field v is called a 

()ne-p<lr .. )mph~r group of transformations, and v i~ called its 

infinitesimal generator. 

3.1. 8 Action of a v(!ctor r ie ld on functions: 

Definition 3.7 

v 
1 

iJx 

'" + •••••••• + e be a vector field 

on a mani.fold M and f M ---) R a smooth fuction, then the 

act i.on of v on f is df~f ined as 

.... , 
d 

v (f(x» ei. (f(x». 
axi 

v(f) gives the infinitesimal change in the function "f" under 

the flow generated by v. 
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3.1.9 Lie brackets: 

Definition 3.8 

L~t v and w be vector fields on a manifold M, 

Lhei r Li e brrtcket or commuta tor [ v 

rield saliHfying 

[ v w ] (f) v (w(f») w (v(f)), 

w] is the unique 

for all smooth funetions f M ---> R. 

II (~;HI lit' ~"()Wll th;d ... i (' ht'<"l('k(~1 t ~ hi 1 i JlPiI r, 

ll.tI in f i I'll I I .... J.lI"oh i i !Ipnl i I y, 

[u, (v,wl] + [v, [w,n)] ... [w, (u,v]] = O. 

3.1.10 Lie algebra: 

Definition 3.9 

then 

vector 

A Lie rtlgebra is a vector space 

bilinertr operation 

9 together with a 

[ .,.] gxg --> g, 
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called the Lie bracket for g, satisfying the axioms of 

bilinearity, skew-symmetry and Jacobi identity for all u,v,w E g. 

It can be shown that associated with a Lie group G. 

there is a Lie algebra 9 which is the tangent space to G at 

the Moreover there 

correRpondcnce he tween one dimensional 

one-I-'ari)m(~tpr conne(~ted subgroups or G. 

a one 

subspaces of 

to one 

9 and 

As is mentioned at the beginnig we are concerned w.it.h 

system!'! of di fferentlill equations. These equations turn out to b(~ 

Ell 1 (. r-l.itq .oa n~Jc (~qua I. ions 0 f a va ria t j nna.1 problem. The symmetry 

qroup of a syslf'm of differential equations js the largest. local 

~p·01Jp of t:r;HI~f()rmilLions acl in~J on the incJr-ppndent and dCP('(HI('nL 

variables of thr sys L(-~m wi th the 

soluLiom:; of thr system 1:0 other 

npCf~ssa ry (JrfiniUons and re~HJ]Ls. 

Definition 3.10 

with UI(~ pn)p(~rl.y thaL whenever 11 

property 

solutions. 

thaL 

Now 

of 

il 

we 

transforms 

give the 

d iff c t·en I:. i i) 1 

acl.inq Oil 

f ( x ) JS a solution of 

M 

oY 

and wh(~neve.- g. [ lR df'finf'd for g.::: G thp.n u '" g.f(x) iR alRo 

il Aolution or 1 hp sy~:II:p.m. 
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In order to use infiniteRimal method for finding 

!';ymmptri(~R of diffen~nt.ial equations; it iR neee!'l!'lary to develop a 

determined by the vanishing of certain functions. To do this we 

"prolong" the haRic Rpace XxlJ of independent and dependent 

variilhlps to a Hpace which also n~present.!'I the variouR (lilrti a 1 

derivative!'; occurring in the RYRtem. 

T.pt f: X --) {J be a smooth function, then it JS 

possibI(~ to takf·~ partial dprivativPR of u = [(x) 

l. 
)( which amounLR to taking pdrLial 

with rCRpect to 

uprivaLivcs of 

bp II\(, EIJ(~ I i dPiHI 

('ndow('d wi!.h (·o-ordinateR whic'h arc partial dt!rivativ(!s of 

components or 1J of order k with all possible comoinationH or 

Definition 3.11 

( 11 ) 

{J u x •••••• x U 
:I. r. 

JS a cates ian product space whose 

"o-onJinill(,R n'pn~!';ent~R a.11 the df>rlvativPR of u of all ordet"s 

f ."om 0, I, n. 1\ typical element of lJ will be denoted 

hy 



3.1.11 Jet space: 

Definition 3.12 

Th(' !'Ipace XxlJ 
0-,) 

i~ ~alled the n-th order jet space of 

the undprlying HpaCf' XxU. 

3.1.12 ProlongaLion: 

Definition 3.t1 

Th,. function 
(')1 

II ('''')f ( ) pr . x , ] S cil.lled the n-th 

prolongation or u f ( x ) • 

be the ~YHLem of n-th order differential 

""'111.1' I nlln 

0, 1, 2, ••••. ,], ( 1. 1 ) 

involving x 
i:Z I' ·1 

( X, x, ••••• , x . ) , 11 _. (u , ::t 
U, •.••• ,uq

) and the 

drot·jvativf'~ or IJ with r(,Hpp(~t Lo x upLo order n. If we write 

A( C'-'l) 
Ll x, u r 0-.) Cn) ) 

.f>. t ( X , U ), •••••••• ,.t..
l 

( x , u ) , ().2 ) 

A can be vjewed as a smooth map from the jet space 
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Then the differential equations determines a subvariety 

( 3.3 ) 

Suppo~p. G .i R a ] oeil J group of tranRforma tion aeting on 

M. There is an induced local acLion of G acting on its n-jet 

BpaCf'. This l~ ('aJJ(~d th,. n-th ()nJt~r pn)lonyaLion or G iJ nd .i!'l 

(r,) 

pr (C)_ 

Givpn a Rmooth rea] valued function f ( x ) ·1 
= f(x, 

p ••• , x ) 

elf p indef'(~nd('nt variab.1es, Lhere are 
[

P1kk-l] different 

k-th ord('r pdrt.ial df'rivativeR of r . Th(~R(~ derivatives can be 

defloted using Lhe mult1-indp.x notation 

a.
J 

f ( )( ) 
j 1 j2 j k 

(lx ax •••• ox 

where .1 .c: J" ~ p and J 
k 

50 
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3.1.14 Prolongation of v(~cLor fields: 

Definition 3.14 

Let 

p 
i1 "t i1 

v = t=~ 
{i. + 2: ¢o-o i. ax 0=1 OU 

( 3 .4) 

b(' a vp.ctor fjeldin an open subset M c XxU, the n-th 

prolongation of v 1R a vector fi~ld on the n - jet spacr. 

( r.) 

M MxU x ••••••• xU defined by 
1 r. 

(,;) 

pr v 

where 

¢'l 
1:( 

( CI~I) x,u 

O! 
u. 

~ 
= 

derjvatives. 

p 

l 
L=:1 

iJ 
~ i. 

a; 

D,} ( ¢ CA 

CA 
u

J 
. 

,\. 
= 

-

q 

~=1 2: 
J 

p 

2: rl L"'t . u. 
~ 

L=l 

IJ 
¢,r 

ct ct oU
J 

p 

) 2: 
i. ct (3.5) .. { u

J 
. 

,~ 

L""'t 

and stands for total 



3.1.15 Maximal rank: 

Definition 3.15 

The system of equations 

11 ( In») 
1.) x,u o 1, 2 r ......, 1 , 

is of maximal rank if the Jacobian matrix of A with respect to 

all the variables in the n-jet space is of rank 1 whenever 

3.1.16 CharaclerisLic of veclor field: 

Given the vector fields (3.4); its characteristic in the 

q-tuple 

''''1 VOl, U ) < \.1 .V , •••••• 1,.1). . 0' '7 "I 

wh(~re 

( 
11"») Q x,u 

Ct 
Ct ~ 1, 2, •••• ,q. 
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3.1.17 Non-degenerate system: 

Definition 3.16 

A !'lystem of differential equations is non-degenerate, if 

at pvery po.int (xo,uo ) E Yt::. 

maxima] rank. 

it is both locally solvable and of 

Giv(~n a sY!'lLem of f~quation9 we can find iLs k-th 

p."olonqalion by differentiating the equations in al] pORsible ways 

uplo order k. 

Definition 3.17 

1\ Rystem of differentia I equations I.S called totally 

non-degenerate i r it and cdl its prolongations are non-degenerate. 

3 .1.l. 9 Char<H~ter i!'lt i c d i n~c1~ ion: 
-.-.---.~- .- .. -'~~-" .. ' ... ~---.--- _.- ----_._---._-

Definition 3.18 

be an n-th order systems of differential 

f'qllatiorls having the same number of equations as unknowns. l\ 
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non-7,ero p-t.uple w .lS said to define a characteristic direction 

to A ill E if Lh,. qxq matrix of polynomials 

a,v 1, 2. • •••• q 

" 

IS 1IC111--Hinqlllar. OLhprwis(' i L iA cal1ed a non-(~haraeb~riAtie 

direetion. 

Definition 3.19 

A system of equations 

1 t - t ( cr,}) norma a _ a pOJ n - xo ' lla y 
A 

if 

::: 

there 

o IS said to be 

1.S at least one 

non-characteristic direction for the syst:em at that point. The 

system is normal if it is normal at every point of Y
A

• 

3.1.21 9.y~!"-=~~Lermined and Under-determined sysLems: 

Definition 3.20 

be an n-th order system of differential 

equaLions. r.et 

system. 

ex , a 
be initial values satisfying the 
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a) is over-determined at (x , 
o 

if there exist 

homogeneous k-th order differential operators o , 0 , •••• , 0 for 
t 2 q 

Home k? 0, not all 7.f'ro, such that the linear combination 

Q of equalionH in aL Uae point (x , 
o 

deppndH only on derivatives or u of order at most n+k-l, and 

the linear combination Q does not vanish as an algebraic 

f 
.. (k-t) 

consequence o· L\ 

h) if 

(i) lhere exist at least one set of homogeneous k-th order 

opf'ratorR n, J), •••••• ,0, not aJl zero, with \' 0 t. 
1 2 q L. v v Q 

(ntk-l)-st order derivativps at the point 

and 

( i i) whenever D, 0, ••.. , n 
I 2 q 

satisfy the conditions In part 

( i ), I he r('~m 11 j nq Q ViUl i shps il s ,HI a' gehra i c conHeqtlenee 0 f the 

A (k-ll 
prf'vious prolongation il 

Over-determined syHtems are characterized by their 

Ihpj," 1;II'k of IltIiql1eTH'm.; of sollltionR for Ciluehy pr"ob.1em. 
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3.1.22 Calculus of variations: 

[,et X = It) with co-ordinates x 1 2 P (x ,x , ...... ,X) 

representing thp- independent variableH and u wiLh 

co-ordinates 1 2 q 
U -- ( u , u ,....., II ) representing the dependent 

varlabJeH. Let n c X be an open connected subset with smooth 
o 

houndary an . l\ 
o 

varjat.ional problem consists of 

extrema of a functional 

:eru1 I r "1»)d o II\.X' U X 

o 

ln Home cla.Hs of functions u:= f(x). The integrand 

(~alled the Lagrangian of th(~ variational problem :e , 

function of x, \l and varinUH ()(>rivatives of u. 

Definition 3.21 

find.ing thf~ 

L(X. 

is il 

( 3.6 ) 

(n») 
U , 

Hmooth 

For 1 ~ a ~ q, the a-th Euler operator is defined by 

= ( 3.7 ) 

.1 
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the Rum ~xtending over all multi-indices over J Cj ,j ,· •• ,jk) 
1 2 

"th 1 < " < W 1. . -' J
k 

... P, k ~ o. 

Theorem 3.1 

If u:= ((x) is a smooth extremal of the variational 

problem (3.6), Lhrn it must be a solution of the Euler-Lagran9(~ 

equations 

E (L) = 0, 
01 

01 = 1, 2, ,q. 

Definition 3.22 

The total divergence of a function 

P( (Y'») x, u U
(r,»)) ...•.... , P (x, 

p 

Div P == D P + ••••••••• + n p ( 3.8 ) 
1 1 P P 

where each D 
J 

1S the total d"rivative with respect to ~. 

T I:. can be PilR i I y shown that: if T. = Oi v P, for some 

rllnf~I i on~~ II , 
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i.d(~nticaJ ly. Tn thiH ease r. lB (~a] led a null-l.ag.-angian. 

condi.tion ean be shown to be rH~ceRBary also. 

3.1.24 y'~"!.!:.!~lional symmeLry: 

Definition 3.23 

A local group of LranHformaLi.onH G acting on M c 0 xli 
I> 

is a variatjonal symmetry group of l.hp. functional 

1H a Rubdomain wit.h el0HIH-P nco, 
o 

Hm()oLh function d<'fincd over n whose graph lies 

It 

J.n 

( 3 .6) , j f 

f ( x ) 1R il 

M, and 

g .;; G 1 H sllch Lha t u f ( x ) g.f(x) is a single-valued 

fUTlction d(,riIH~d over n, then 

J- r,( x, 
( r,) f ( ) pr x I. x, pr f ( x) dx. 

(

In) ) 

o 

I ,· .. ,Htform.ll ion ~JI-()IIP 

to be it vill-iaLional HymIllPL,-y iH g.iv(~n by the fol1owi.ng Lheon~m. 

Theorem 1.2 

1\ connected group of transformationH G acting on 

Men xU 
CI 

IH a variaLional HymmcLry group or the functional ( J .6) 

if and only jf 
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+ TJ Di vF, = 0 ( 3 .9) 

for al} ( 
(nl) M(T.) 

x, u e and every infinitesimal generator 

q 
iJ 

v (3.10) 

of G. 

3.1.25 Conservation laws: 

Definition 3.24 

G . t f d· f ft· 1 . II. (x, u(n» 1ven a sys_em o· 1 eren la equations u 
V 

o 

A conservation law is a divergence expression Div P which 

vanishes for all Rolutions u = f(x). 

Tn a dynamical problem, one of the independent variables 

is diRtinguished as "t" and the remaining as spatial variables. 

Tn this case it conservation law LakeR the form 

+ div X = 0, (:l.]l) 

8L 

where div X is the divergence of X with respect to the spatial 

(~o-ordinaLf'.H. Here T i.R called the conserved density and X the 

associ.ated flux. 
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3.1.26 Generali~cd veclor fields: ----- -----

Con9ider a vector field (3.4), defined on some open 

subset of XxU. Provided the coefficient function ei 
and 

d(~l'end on 1 y on x and u, v is thp. in[inilf!~jmal g(~neraLor of it 

Lriln~rol-miJ'-ion group acting (lointwisp on the underlying HpaC(~. 

Definition 3.25 

v and 

The theorem (3.2) appJi~s in the case of generalized 

vector fields also. 

N()(~ I. tl(~ r I A LIH!orpm 9ymmetries o[ it 

variational probJpm Lo conservation 1awA. This Jllf~Lhod is used [or 

[iluJing consprvaLion lawH for dynamical 

formulated as variational problems. 

3.2 statemenL of problem: 

The variational symmetry of an action integral for 

barotropic inviscid fJuid flows is considered. By impossing two 

(~onditionH on the- infiniLpsimal gf~nf'I-;d . ors of th(~ transformation 

60 



baRf!d on physical argum(~ntR appropiate to fluid flows, we! get the 

hydromeehanical variations of Drobot and Rybarski (1959) • The 

Invilriane~ of the acLion i nl:.{~yra 1 leads to eonserva t.i on laws of 

fluid mechanic~ as an appl iea lion of Noether's theorem. 

COnfH!rvaLion of hclicity is obtained as an example. 

3.3 nydromechanical lransformaLions: 

Following Drohol: and Hyh<lrRki (]959), we consider lhe 

F.lwlidean four-dimensional space X. A point x in X has coordinates 

cc 
x I 

o 
x 

p ( x. ) 

th(~ Lime t and 
L 

X , 

IB a CoutO-dimensional V(~(:t()r 

are 

f.i (~ I tl 

~ 0 
with (~ompon(,lltH p (X),a:o,t,:l,3. [1('1'(, p is t.he dpnHiLy P, and 

\ 
p, 

ilTe the impulses 
I:) i. 

P u (i. =1,2,'1 ) where 
L 

U denotes the 

eomponen b:; () f Lhe VP. I oei Ly u. Tensor notation is used through out. 

T,el n denote lhe three dimemsiona 1 hypersurface in X 

and dH denote the ori.ented clement on H, 
a 

(1 r 0 
where C n 6 is the "Levi-Civita tensor" and dl ,dl ,dl 

al~Y 

(3.12) 

arc three 

linearly ind(~pendent vpc1:.ors lying on II so that dTla 1.S normal Lo 

(EinBtf'in'H summaLion convpnLion IH IlHecl 
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through out). The maRS contained on II will be represented by the 

i nLeg ,-a I J HdHapCt, ca lled the comp lete matter .f low. In particular, 

when ttl(' hyper~Hlrfac (' H 

volume v, we have, 

dn 
(I 

. . dV; 

o 
dn p 

o 

dH = dn = 
1 2 

I (I 

V P dV, 

is the Rpace-like three dimensional 

dH = 0 and 
3 

reduces 1:0 lhe Ilsual mass. If ViR any four dimensional reglon 

conLa i ned in X and {IV is j ts houndary, hy GaU!~s theorem appl ied to 

(IH pO, we ohta .1 n 
a 

+ 
0-

div(p U), (3.13) 

representing the density of the source of matter existing 1n V. 

T.eL F' be a function space of vector va lued functionA 

n 
p (x), c'( ." 0 . J , 7. , 3, Sl1pp()~-H'd to h(~ sufficipntly n"9u1ar in X. We 

( ~ onsider the one-parameter group of transformations of XxF' into 

il.Hf·lf ~J(,IH·I · "I( · (' hy thc' infinil.(,Himal ~j(~rwrat..or 

(3.14) 
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The flow genera led by v i8 Rubject to the conservation lawn of 

momentum and mass. Accordingly we restrict the funclions as 

follows: 

o 

and 

Then for arbitrary {a, 

a iJ 
v 

iJ C i1,o. _ CJ.,(1) 
/J P . P . 

• .-
• 
* 

(3.15) 

is the generator of a flow subject to the above constraints. While 

(a) corresponds to r.onservation of mass (b) makes it possible to 

cnnsider points with variable masses, and in hyciromechanic8 flows 

with sources. 

The one-parameter family of transformations generated by 

v is called a hydromechanical 

t ram'lforma Lion. The conditions (a) and (b) replace the Lin 

cOIlRl:rainl:s llfu-"d in oth(~r variational formulations. 
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3.4 Hydromechanical variational principle: 

Given a physical problem; it can be formulated as a 

variational problem in more than one way. In the case of classical 

prob] f~m of dynami r.~ in wh ich there is no dj ssipation, the 

formulations corresponding to Hamilton's pri.nciple have a very 

spec:ial Ht.'Jtus Hinef~ they lead to the equations of motions. The 

IHHlal T..'Jgrangi an for bar-ot ropic [low which corresponds to 

Hamilton's principlp.i~ given by, 

I 222 

{

- 1 2 3 

} 

0 0 
I, -- (p ) -4- (p ) -4- (p ) 

where E is the internal energy 

- E(p ) - p U (x) , 

o 
whir.h depends only on p =p 

is the potenti.al of the external (orces. 

(3.16) 

and {) 

Coming back to (3.15) let us consider a standard 

variational problem. Let 0 denoLe an open subset of Rn. For any 

1 
Y .;; ~ (cl (0), R) satisfying some prescribed boundary 

we consider I-he funcLiona I, 

I(y) -- J L(x,y(x),grad y(x))dx, 
J) 
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where x=(x ,x , •••• ,x), dx denotes the n-dimensional 
1 2 n 

Lebesgue 

2 " measure and I. denotes the given element of 'e (cl (D)xRxR ,10. The 

conventic)nal calculus of v~riation derives necessary condition for 

y to make 1 an extremum by studying the real function €--)!(y+€n); 

u}(~ va r i ab I (~ r. ranges over a ne i ghbourhood of 0 in Rand T) den()L(~R 

an arbiLrary cont.inuously differentiable real function whm~e 

support related La D is compact. This amounts to make the surface 

,-,.1. _ 
S (0) c R wh I eta com'ltj lutes the graph of y to compete with a 

family of sllrfac(~ S(€); every point (x, y+€"7) of S(c) results from 

the corresponding point (x, y(x») of S(O) by the displacement en. 

1\ more general way of inserting S(O) into a chain of 

neal-by su r L"lces wou ld be 1:.0 de f j fie, on som(~ ne ighbourhood of oS ( 0) 

. ,-,11. -
].n R a vector field v, and to call SeE) the image of S(O) 

under the geomE'I .. I-ic transform exp(cv) generated by this vector 

Lield. The classical calculus of variation amounts to choose the 

vector rich) v to havp. the special form, 

v(x,y) -= (O,ay(x)) ( 3 . 18 ) 

1 n the case of (3.15) since ¢':t is def ined 1 n terms of 

(1.Pi) 

corn'Hpods t.o the ra!:'le 

v ('-'x, 6y). (3.19) 
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Wh i Ie ( 3 • 18 ) IS called vertical variation (3.19) is called 

horizontal v~riation, since independent variations are In the 

direction or L 
X only (Moreau (1901». 

Consider lhe action integral 

w -- Iv dv J.(x,p(x»), (3.20) 

where L is defined by equation (3.16) and the transformation 

( x, p) ---_._) (x, p) 

9(~nerated by pqIJatton ().14). 

Then the action W lA transformed to 

W W t ~W = Iv dV L(x,p), 

where V 18 the transformed region V and 

+ 

IS called the tolal variation of the action (3.20). 
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t.w = t. w. 
o 

Now we state the variational principle: 

For all hydromechanical transformations generated by 

we have, 

fl W 
o 

'd d ~.L"'t prOV1 e o on avo 

J} = 0, (3.21) 

The integral on the right hand side of equation (3.21) 

eorn~Bponds to that given by Courant and Hilbert (1953). Note that 

()I 

iHJ/~lp i R the u!';uaJ Eu 1 er-J.agrange expression correspondi ng Lo 

our action intpgral. 



Now 

where 

and 

.6. W 
o 

,fl 
a 

lfIOI 

= p(1 
tlL 

o~[ L -+ 
°1 

iJp 

{' [ a{1[ 
ell. ] iJpOl 

J dV If' ~OI, 
V 01 

(3.22) 

iJL ] . pY (3.23) 
apY 

8 a [ 

ifT. ]] . iJI/~ 
(3.24) 

The expres!'Iions are called Lhe hydromechanical Euler 

expreHsions. 

since on av, the first integral on the right-

hand side in (J.22) vanishes. Thus we obtain from (3.21) & (3.22), 

• r.· (:( b't ., h . t . Sl.nce are ar 1 "rary In : e In erlor of av, we get the 

equations of motion, 
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:::;. o. (3.25) 

S i nct' o I tH~ four (~qll;l'ionR or motion ar~ linea r 1 y 

dependent and we get only three linearly independent solutions. In 

t_he P;:ll'H' Ulf-' Lagrangian tak(~s t.hp. usual form (3.16), we gpt the 

following equations: 

C1 = 0: 

+ 

at 

01 J, 2, 3: 

tlu 
+ (u. 'J') u = 

where 

o 
p p 

o ap 

is t.he pressure. 

o 
'ilp 

P 

E, 

+ 

'ilU, 

u. ( 
t 

o 'ilp + 'J'U) 
P 

These are the conservation laws of energy, 

momentum. 
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(3.27) 

(3.20) 

and angular 



Definition 3.26 

The vector field v is called an infinitesimal 

divergence symmetry of W if there exists a vector Ot =O,l,2,g 

fllleh that 

AW J IV iJ Cl...~ 
V ( 01 ' 

(3.29) 

identically in V. If d""'t= 0 90 that AW = 0, W is said to be 

ab~'IOlulely jnvarianl. 

Theorem 3.3 

If the action (3.20) is absolutely invariant under the 

infinitesimal transfonnat.ions (3.15) for arbitrary volume V, then 

i'I linear comhin<lt.ion of the hyclromechanic<ll F.ulf'r exprcssions 

t;OI¥,o. lS a divergence. 

Proof: 

The proof follows from equation (3.22). 

3.5 Variational symmetries and Noether's theorem: 

Now we consider the symmetry group of the action defined 

by (:1.20). The group com~idered here wi) 1 be local group of 
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transformations G, acting on an open subset M c VxF c XxF. Unlike 

Orobot and Rybarski (1959) and Mathew and Vedan (1989) we can 

find varialional symmetries using theorem (3.3). 

TIH~ infinilesimal ct-iLprion for invariance is given by 

the following theorem (analogous to theorem (3.2». Here we note 

thaL i.n our case we do not have to consider prolongation. 

Theorem 3.4 

A connected group of transformations G acting on 

M c VxF is a variational symmetry group of the (aclion) functional 

(3.20) if and only if 

v(L)1 L Di vt 0, (3.30) 

o 
for all ex, p ) E M and every infinitesimal generator 

of G. 

Proof: 

This is a particular case of theorem (3.2). 
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Example 3.1 

I.e1~ v, I. be as defined in equations (3.15) and (3.16), 

and {OI be any arbitrary vector of the Galilean group of 

tranHformaLioflS G. When L 1. 9 not an explicit function of a 
X , 

chOOHin~J i) T.i(~ ;llgl'lH'" 9 of G d(~rined by Lhe vi)niAhin~J of Uw 

1. i.e bracket 

0, (3.31) 

we have 

v(L) o and Div{ = 0 so that 

v(T,) + J. 1)i v{ = o. 

Thus V is a variational symmetry of the action defined by (3.20). 

Here we note that th~ above equation (3.31) is nothing 

hut tl\(~ condition for the absoluLe invariance of the action aA 

stated by Drohot and Rybarski (1959). The corresponding 

conservation laws itre t:h()s~ of miHH~, energy, impulse, itnd angular 

mOflu'utum. 
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Remark: 

Tf G i~ a variational Rymm~t.ry group of the action 

defined by (3.20), then from the above theorem (3.4) 

v(L) + L Div{, = 0 

( 
lJ lJ 

)CL) 1.. e. {Ct + ,pCt + L a Fa. = 
iJx 

Ct iJpa. 01' 

+ I. a F
et 

ct' 
= 0 

aL 
1. e. Div(U,) ... = 

This can be written as a conservation law, 

Div(P) 
et ap 

0 

o 

where P == - u.. This lead!:> to the following theorem, since the 
aI. 

Eul~r expressions in this case are 
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Theorem 3.5 

SuppORe G is a (local) one-parameter group of symmetries 

of the variational problem (J.20). Let 

v = 

be the infinitesimal generator of G, and 

(3.32) 

the corresponding characteristic of v. Then there is a P such 

that 

Div P E Q E (L) = Q • E( I,) , (l( (l( (3.33) 

is a conservation law 1n characteristic form for the usual Euler-

Lagrange equations E(l(CL) = O. This is a particular case of 

Noelher theorem. 

Thf'on~m ( .1. J) i R n~ lated to our hydromechanical 

variat.ional princip]~ and Theorem (J.5) lR rf~lated to the \lRllal 

(vertical) variational principle. Choosing a variational symmetry 

for th~ llfmal variati.ona .l princ.iple amollntR to Linding functionR 

and satisfying equation (3.30). This leads to the 
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corresponding conservation laws in the usual variational 

formulaLion. But from Theorem (3.3) we find thal the problem 1S 

reduced to finding functions eO only. As shown by Drobot and 

Rybarski, when ~a defines a Galilean transformation these 

conservaLion laws are of energy, impulse, and angular momentum. 

Now tel. llH conBider the connection belween Theorem~1 

(3.3) & (].S). The infinitesimal criterion for invariance leads to 

o. (3.34) 

'l'huB it tinea r combina lion of Lh(~ usual Eul er-Lagrange express ions 

and the hydromechanical Euler expressions is a divergence. 

Further disclJssion of this will be given in the next chapter. l\s a 

simple example we consider the case when the flow determined by 

v iH iHO(!horic 0) • 

Example 3.2 (Conservation of helicity) 

Suppose 

+ L Div{ = 0 
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Now 

= 

:= 

= 

8L 
- ~a {J rf --

01 art 

+ 

+ 
[

elL 
L - r1 

arl 

(if L is not an explicit function of 

= 

For 1;0 0, the corresponding density 
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8T, 
o,l 

P. -t' 
81' 

o i. 
-= pF.ll. 

I. 

l -= :1, 2, • 

d 'f' .... i. i. I ent1 y1ng ( = w 
i. 

(w , the vorticity vector) and taking a 

volume such that 
i. 

(un. = 0 (n. the unit 
I. I. 

normal to the surface) , 

this gives the conservation of helicity. 

3.6 Discussion: 

In the usual variational problem we consider the 

"vertical variations" of the dependent variables. Instead, Moreau 

(1982) condider variations of the independent variables which he 

ea 11 s Ltw "hor; ;l,onta I variatioJls" or "L.ransporL method". In both 

L~}(~ C<HH~S the variations are infinitesimal transformations acLing 

(~i I:her on Uw space of dependent variables or on the space of 

independent variables. 

Here we have conHidered the transformation groups acting 

on the spacp of both independent and dependent variab1es in an 

Eulerian frame-work. Res Lr j eLi ng the transformations to 

hydromechanical ones reduces the problem to the invariance of 

action under LrilBsformationR of independent variables, i.e. the 
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transport method. This method avoids the use of Lagrange 

multipljers to account for the physical constraints of fluid 

flowR. 

In the exampleH thal. w~ hav(~ e()nl:dden~d in LhiR chapLet-, 

the explicit forms of the functions eOl. 1S immeterial, the only 

condition being that the flow generated by v .is isoehoric. Thus 

the symmetry we are considering is the ordinary variational 

sym"u~t ry. 'rhp d i r rerence betw(~(~n the e lassical Noether Lheorem and 

the Noet:her theorem for hydromechanical variations is brought out 

by consjdering the conditions for variational symmetry. The more 

general cases of generalized symmetries, div-invariants eta. will 

be discussed in the next chapter. 

. . . '" . . '" '" ,.. 
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Chapter 4 

VARIATIONAL SYMMETRIES AND CONSERVATION LAWS 

FOR NON-BAROTROPIC FLOWS 

4.1 Introduction: 

Tht~ variational prineiplp. of Orohot and RyharRki (1959) 

has been extended to the case of non-barotropic flows by Mathew 

and Vedan (1989, 1991). They have llsed Noether's theorems in the 

derivation of conservation laws. These theorems describe d 

relationship between the invariants with respect to the given 

infinitesimal transformation of the action integral and some 

idmltities HilLisfj('d by the cOITeHponding Euler expressions. 

There an' I.wo kin(h'l of N()f~Lhpr theorems. In one, th(~ 

transformaLion is supposed to depend on scalar parameters and 1n 

the other, on functions. Mathew and Vedan were snf;cessful J.n 

extending the appJication of Noether's first theorem to the 

hydromechanical variational principle for non-barotropic flows. In 

the application of Noelher's second theorem only a special type of 

transformaLions were considered and the method involved 

introduction of Lagrangian multipliers to 

conditions. 
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In this chapter we conBider applicationB of Noether'R 

second theorem to derive conservation of potential vorticity for 

non-barotropic flows. The special form of the Lagrangian helps us 

to avoide the use of Lagrangian multipliers. The relation between 

var.1iltional prineiple ilnd the variational 

principle due to Katz and Lynden-Bell (private communication) 

leads to the conservation of potential vorticity. 

4.2 Generalized hydromechanical transformationB: 

Following Mathew and Vedan, we extend the set of 

dependenL variables to include the entropy flux. 

rour-dimensional Euclidean space with coordinates 
C( 

x , 

x is the 

c(=I:1,l,2,:a , 

Cind 
ex 

p also have the same meaning as in chapter 3. s(x) l.S a 

four-d i rn(~ns i.ona .1 ve(!Lor field wiLh components 

where 

1:1 i. 2:i1 0 01 02 O:il 
( S , S , S , S ) = (p S, PuS, PuS, PuS), 

S being the specific entropy. 

ex 
S , Ct=0,l,2,3. 

Let F be the function space of vector valued functions 

C1 
P (x), 

0\ 
S (x). We consider the one-parameter group of 

transformations of XxF into itself generated by the 

infinitesimal generator 
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v = + + 
O! 

n 
IJ 

(4.1) 

The flow generated by v is subject to the conservation laws of 

entropy in addition to mass and momentum. For this we choose thn 

(u(l(~tions 
(.."1. Ct 

¢ and n satisfying the following conditions: 

(a) r: Ct = 0 ~ V(pOo) + pCta r(? = 0, (?' 

- IX o."t rl1 0, V(R ) + R ( " =-
(3' 

and 

(b) if rpl:1.. 0, i.J 
IX o. = aT] = 

O! 

Then for arbi.trary {ClI, 

i.J a a 
eO! q/" 0. 

V = + + n 
(lx 

IX iJpo. as 0. 

where q/l. and 

is the infinitesimal generator of a flow subject to the above 

constraints. 
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Definition 4.1 

The one-parameter family of transformations generated by 

is called a generalized hydromechanical transformation. 

L 

The J~agrangian for non-barotropic flow is given hy 

1 

o 
2p 

2 
2 

+ (p) 
o 0 0 

- E(p , s ) - p U (x) , 

( 4 • 2 ) 

(4.3) 

where E is the internal energy and U is the potential of the 

ext.ernal forces. 

I.et V be any four-di mensional rcgj on contained 1..n X 

with boundary avo 

4.3 Generalized hydromechanical variational principle: 

For all generalized hydromechanical transformations 

( 4.2) , we havp. 
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~ w 
o 

provided ~a = 0 on av. 

The variation ~ W can be written as 
o 

h. W 
o 

where 

.(1 
a 

and 

VIa 

:::: 

= 

:::: 

If 
aL 

a 
op 

J'[a(1[ 

The expressions 

+ l' 

{lL 

apa 

VJa 

Euler expressions. 

al, • 6~( L - pY 
01 

OB 

] .. " [ iJL 

]] + 
art 

are called the 

09(1 (.re" -."tl1) .09 c< (U")) " 0 

(4.4) 

(4.5) 

8L aL ) - sY ( 4.6) 
opY oaY 

.(1 [09(1 [ 
aL ] .. " [ dL ]]. a SOl asf1 

(4.7) 

generalized hydromechanical 

Since ~~ is zero on av, the first integral on the 

right hand sidp of equation (4.5) vanishes. As to! are arbitrary 
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in the i.nterior of iJV we get 

'If'a. 
~ O. (4.8) 

Since 
1;0( 

0 (and a. 
0) , p VJa. B VJa. = (4.9) 

only three of the above four equations are linearly independent. 

4.4 Nopthur th~orem9 and conservation laws: 

As mentioned in chapter 3 Noether's theorems relate 

variational symmetries of an action integral to conservation law!J 

associated with the corresponding usual Euler-Lagrange equations. 

In the case of hydromechanical variations the transformations of 

t~he dependent variilbles ilre n~lated to the transformations of the 

independent variables as is clear [rom equations (3.15) and (4.2). 

Thus a generilli7.p.d hydromeehilnical triu\sformatiou 1H derir\t~d in 

Lerms of the functions eO. alone. It also follows that the 

infinitpBim;l1 gPTH'rators of Uw hydrome(~hanical trrH)S forma Lions 

are gener-aliz(!d veeLor fields (Definition (3.25). 

In this sense the two theorems of Drobot and Rybarski 

and Mathew and Vedan are classical Noether's second theorem 

adapted to hydromechanical variational principle. Noether's first 

theorem of Orobot. and Rybarski corresponds to transformations 

depending on scalar parameters and second theorem, transformations 

depending on scalar functions. The system corresponding to OUI" 
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variational prineiple is under-determined as is clear frolll 

equations (4.9) (see also page 77). Classical Noether's second 

UI(~on~m is eoncernf'd wi ttl slwh systl~ms for whi ch there may be 

lrivial conservation laws determined by non-trivial variational 

symmetry groups. MaUIPw and Vedan (1991, t,heorem (3.7» 

proved the following theorem. 

haV(~ 

Theorem 4.1 

If there exists a divergence symmetry for the action 

integral 

w Iv dv L(x, p(x), s(x»), (4.10) 

depending on r - arbitrary functions and th(~ir derivati~es uplo a 

given order q, there exists exactly r linearly 

identities between the Euler-Lagrange expressions 

independent 

and their 

derivatives, provided the symmetry corresponds to generalized 

hydromechanical transformations. 

The applications of this theorem to derive conservation 

laws were considered only in the special cases in which ¢o = 0 

and nO = 0 Even in this case the method involved use of 

Lagrange mul tipl iers Lo incol-pora te side conll i_ Lions. 
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4.5 Conservation of potential vorticity: 

Although we have defined a new four-vector 
01 

S 

(ot:0,1,2,9) only o 
S is entering into our variational 

This allows us to consider conditions which lead to 

principle. 

o 

(01=0,1,2,9) and o 
n o. We use generalized hydromechanical 

transformation with O. For simplicity we shall use 

three-dimensional vector notation with = 

.. 2 9 
(u ,u ,u) and ~ - the spatial divergence operator 

~ = [ IJ 
1 ' ax 

-2' 
ax ] . 

Then following Mathew and Vedan we find that ¢ot = 0 (ot 

and nO = 0 provided 

pt; • "lS = 0 and + "lx(p{ xu) 
at 

A solution of equation (4.11) for { 1S then given by 

1 
F. = "lfx?S, 

p 

where L satisfies the equation 
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u = 

= 0,·1,2,3 ) 

= o 

( 4 .11) 

(4.12) 



(4.13) 

Equations (4.11) and (4.13) and its solutions (4.12) have appeared 

in Katz and Lynden-Bell and Friedman and Schutz (1978). 

Katz and Lynden-Bell have considered variations which 

satisfy the conservation laws of mass and entropy. It is 

comparable to the generalized hydromechanical transformations 

aRHlJm~d above. It haM been shown by thes(~ authors that the 

invariance of the action under the transformations defined by 

equations (4.1.2) and (4.13) is that of potential vorticity. 

4.6 Discussion: 

In this chapter we have considered the hydromechanical 

variational principle for non-barotropic flows. This involves the 

set of dependent variables to include the entropy flux also. The 

system described by the hydromechanical variational principle is 

under-determined and the two theorems of Drobot and Rybarski 

(1959) are particular cases of classical Noether's second theorem. 

The variations considered in chapters 3 and 4 are generalized 

variations (Olver 1986b). The special form of the Lagrangian is 

made use of to avoide Lagrange multipliers. Then a symmetry 
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group is identified which involves the transformations of the 

independent variables ~ 2 9 
X , X , X only. Conservation of potential 

vorticity is obtained by comparing hydromechanical variational 

principle to the variational principle of Katz and Lynden-Bell. 

* * * * * 
* * * 

* 
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Chapter 5 

CONCLUSION 

This thesis contains a study of conservation laws of 

fluid mechanics. These conservation laws though classical, have 

been put to extensive studies in t:he past many decades. 

In chapter 2 we have considered the generali~ation of 

the well-known conservation laws of barotropic flows to the case 

of non-harotropic fJows. The eartier generalizations are based on 

the dependence of internal energy on specific entropy in addition 

to the specific volume. Isentropy conditions are assumed 1n these 

studies. It is shown that it is the property which forms the 

hasis of all these gencrali~ations. Further the conservation of 

helicity which is shown to be independent of this property by 

Gaffet (1985) and Mathew (1991) is wrong as the result depends on 

conservation of potential vorticity. This leads to the possibility 

of considering a more general function A = A(S,T) of specific 

entropy S and absolute temperature T, which is advected to form 

the basis of conservation laws for what we call a generalized 

non-barotropic flow. Compare the left hand side of equation (2.4) 
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with the Joule-Thomson coefficient well-known in geophysical 

flows. The earlier studies are further restricted by their 

derivation based on Clebsch's potentials which do not exists when 

vor~ex lines are kno~ted. The general conclusion is ~ha~ all the 

conservation laws are based on the fact that the vorticity vector 

for a generalized non-barotropic flow as well as for any other 

flows is a Helmholtz field. Our investigations also make it clear 

that the generalizations of all conservation laws to the 

non-barotropic case are based on the equation DS/Dt = o. 

The identification ~ = S leads to the isentropic cases 

discussed by earlier workers for non-barotropic flows, except in 

the case of potential vorticity. The identification ~ = T is not 

possible in general becam::;e of equation (2.4) but may be possible 

when there is no appreciable change in density with temperature. A 

physical meaning to the funcLion k is to be sought in the light 

of Serrin's remarks (page 4S) of this thesis. 

There are extensive discussions on conservation laws 

based on Clebsch's potentials (Seliger and whitham (1968), Serrin 

(1959), Mobbs (1981) etc. for example). As pointed out by 

Bretherton (970) these studies have limited validity because 

Clebsch's representation is not possible for flows with non-Zero 
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helicity. Thus the characterization of circulation preserving 

motions is truly based on functions like ~ which are advected. 

In chapter 3 we have considered variaLional formulations 

for bilrotropic flows using Lie group t:heory. This nu:~thod helped us 

to sysLemaLicalJy develop the hydromechanical variational 

formulations of Orobot and Rybarski (1959), and Mathew and Vedan 

(1989, 1991). The connection between variational symmetries and 

hydromechani ea I ElII cr-t,agrange equaL ions has been brought out. 

FUrther this has he1ped UR to compare the Noether theorem in the 

Ilsnal variational formulaLion and hydromechanical variational 

formulat.ion. rn this ehapLc-r and chapter 4 genpl·aJi7.(~d !'Symmetries 

have been considered by including the dependence of 

generators of transformations on derivatives 

variables also. 

infinitesimal 

of dependent. 

In chapter 4 we have considered the variational 

formulation of non-barotropic flows. Here the only case of 

isentropi.c process is consjdered. The two theorems of Orobot and 

Rybarski and Mathew and Vedan are i.n fae t specia leases 

l:lassical Noether's second theorem, since the system described 

the variational principle is under-determined. The application 

Noether's second theorem to derive the ~onservation laws 

of 

by 

of 

lS 

diffi~ult and Drobot and Rybarski (1959) and Mathew and Vedan 
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(1991) have considered only the transformations in which a 
p and 

<.."'C 
S are invariant. Even in this case Lagrange multipliers were 

used to incorporate the constraints which define such 

transformations, and the corresponding conserved quanLiLy is 

vorticity. 

1 2 
H , S 

:3 
S 

Though we have introduced four additional variables 

for non-barotropic flows, only one of them, 

o 
S , 

«> 
s , 

appears tn the Lagrangian. This fact has helped us to avoide the 

use of Lagrange mulL.ipliers. Thcn the variational principle 1S 

r.()mparc~d to that due to Katz and r.ynden-Bell, who hilve shn~'11 thaL 

Lh(~ corrf'sponding c()nser-vrll~i()n law is that of potential vorLicity. 

Hul. this m(~Lhod has rc~d\lced the sr.OpP of applications of N()(~th('r'H 

th(,orf~m. 1\ din~ct applicaL.ion or Lhp theorem is sLill ilJl unsolved 

prob I (~m. 

The conservation laws are of interest to us because of 

the i r appl i(~iltions in di Cferent hranches of studies of fluid 

mechanics. In pilrticular st_udies of stability of flows is being 

underLaken 1n the department. The identification o[ variational 

symmetrics ]s being found helpful In stability studies using 

!\rnold's method. Hamiltonian formulation [or. fluid flows is also 

under stlldy. 'T'h(·~ sLudies containpd in this t.hf'siRis lJl this RenRe 
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only a beginning and can be carried forward by the use of many 

more COrH~(~pI.H of T, i e group theory 

variational complex, Lie derivatives etc. 

It 11: .. It 11: 

11: It .. 

* 

like De-Rahm complex, 
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