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PREFACE

Interfacings of various subjects generate new field ofstudy and research that

help in advancing human knowledge. One of the latest of such fields is

Neurotechnology, which is an effective amalgamation of neuroscience, physics,

biomedical engineering and computational methods. Neurotechnology provides a

platform to interact physicist; neurologist and engineers to break methodology and

terminology related barriers. Advancements in Computational capability, wider

scope of applications in nonlinear dynamics and chaos in complex systems enhanced

study of neurodynamics. However there is a need for an effective dialogue among

physicists, neurologists and engineers.

Application of computer based technology in the field of medicine through

signal and image processing, creation of clinical databases for helping clinicians etc

are widely acknowledged. Such synergic effects between widely separated

disciplines may help in enhancing the effectiveness of existing diagnostic methods.

One of the recent methods in this direction is analysis of electroencephalogram with

the help of methods in nonlinear dynamics. This thesis is an effort to understand the

functional aspects of human brain by studying electroencephalogram. The algorithms

and other related methods developed in the present work can be interfaced with a

digital EEG machine to unfold the information hidden in the signal. Ultimately this

can be used as a diagnostic tool.

In the human anatomy, while most parts of human body are fairly understood,

both functionally and constitutionally, it is increasingly getting realized that the

human brain, which has a volume of approximately 10 cm3, plays the most
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significant role and is least understood. The earliest effort in understanding the

human brain started with the working of the nervous system and the cells that exist in

brain viz. neurons. Researchers later tried to chart the emotion centers in the human

brain and gave a broad classification of these centers, thereby tried to establish that

the emotion centers and the capacity to think and analyze problems are all localized

in skull space. However this conclusion is questioned and there exists a school who

supported the idea of collective effect in any thought process as well as higher

functions of‘ brain such as recognition, association, recollection etc. Probably the

truth lies somewhere in between and is still in an inconclusive state.

It is known that the human brain consists of about 101° neurons, of which

about 4 to 5% are operative while the rest are in a dormant state. Even this itselfis an

enormously large number. Recent studies however have shown that new neurons are

being created when the old ones get destroyed. When the death rate is larger than the

birth rate, brain experiences a slow degeneration. Probably one can constantly

activate these newly generated neurons and thereby bridge this gap and stem down

the degeneration. Previous investigations were invasive in nature. However recent

development in nonlinear mathematics and deterministic chaos has opened new

vistas in many fields of science - brain in particular. The nonlinear dynamical studies

of human brain using electroencephalograms and magnetoencephalograms

considered as a time series started recently have opened the possibilities of better

understanding of brain. However these efforts are yet to make roads in realm of

clinical applications and this is the motivation ofthis work
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Chapter 1

INTRODUCTION

The study of dynamics is essentially a study of motion or the evaluation of

the system as a function of time. This helps one to predict the future of the system

when the state of the system is known at present. The present study is an effort

towards this direction where the dynamical system is human brain and the state

evolution is specified by the changes in the process going on in the brain. In the

parlance of modern brain research, the evolution is the changes in cognitive process

in human brain. The most significant aspect is brain as a dynamical system is

nonlinear,-complex in which all processes are collective and is thermodynamically

open. In brain the feedback-feedforward features play a significant and at times the

most dominant role. This results in the system being in a nonequilibrium and non

Marcoffian state and hence the present known techniques of dynamics as applied to

the study of brain become inadequate. In this work therefore some new concepts

have been developed and these are indicated in the chapters as follows.

In classical point of view linearity is always assumed in a system. The time

evolution of a system is studied by considering the system as linear and the solution

obtained has to satisfy the condition of superposition. Thus superposability of

solutions, Fourier-Laplace or Orthogonal functional expansion of solution of

dynamical system are all usual techniques one uses in the study of dynamics.

However most of these become either inadequate or irrelevant when one considers

nonlinear system far removed from equilibrium. Poincare was probably the first to



realize this difficulty and therefore attempted to device new analytical and

computational techniques to represent the state of a nonlinear dynamical system.

Human brain as has already been mentioned, is a nonlinear, complex and

"living" system. Recent observations (Gould et al, 1999) indicated that the number of

neurons, which constitute the elementary units of an active brain, is ever being

generated in millions or billions in adult primates. This is quite against the belieftill

now that the brain development is completed during the first five years. Again a

further observation is that neurons generated at basal ganglia do migrate both

laterally and upwards in the brain. Though this is a slow process, the observations are

significant from dynamical point of view, in that, the total number of neurons are not

conserved at any space-time point and that if one tries to activate these constantly

one can control the degeneration of brain.

Neurons form the elementary constituents of human brain. The individual

neurons are studied by observing the signal propagation characteristics. Hodgkin and

Huxley (1952) were the pioneers who carried out a systematic study of signal

propagation in neuron. In this however, they considered the problem as one of signal

propagation in a coaxial cable. However the signal transduction along a nerve has

very different features as compared to the passage of electric current in a cable. In a

coaxial cable there are transmission losses whereas there is no signal attenuation in a

nerve. Furthermore when a signal is given at a point in a neuron, it excites the

neighboring ones, which in turn would again excite more neurons, thereby generate a

cascade process without any attenuation in its strength. For this energy is derived



from the physico-chemical process. This signal would generate a "pattem" in the

brain, and is retained and recalled in the higher function of brain such as recollection,

association etc. Also there are excitator and inhibitor neurons and their dynamics

depend on thresholds in activation. Hence in developing a general theory of the

cognitive process in the brain one has to take all the above factors and more

significantly the nonequilibrium dynamical nature ofthe system.

Statistical mechanics is a branch of dynamics which, enables one to

understand the macroscopic dynamics having known the microscopic dynamics of a

large number of constituents. This is exactly the procedure developed by Brusell

School. In other words how does one obtain a fluid description given by Navier

Stoke's equation staring from the Hamiltonian representation of atoms and

molecules. In the usual statistical mechanics one starts from Boltzmann equation and

averaging them over the ensemble one obtains equations such as Eulers or Navier

Stokes. There still exists a gap between the Hamiltonian representation and

Boltzmann description. This is brought out very clearly in the Brusell description of

Nonequilibrium statistical mechanics. The first step in this scheme is to break up

dynamics in terms of time scale and Hamiltonian description of a dynamical system

contains all time scales. If one develops the dynamics in terms of interaction time

scales, one gets a self-consistent field approximation or a mean field theory. The

averaging of any dynamical quantity using the distribution function obtained from

the above equation results in an Euler description. On the other hand a description

based on a relaxation time scale, would give rise to a Boltzmann description or

Focker-Planck equation. Averaging a physical variable with this distribution function



would result in Navier-Stokes equation or an evolutionary equation with

macroscopic time scales. All these are very adequately described in the classic

treatise by Balescu (1975).

This thesis has been arranged in the following manner. The chapters 2-8 deal

with the theoretical basis for the analysis of Electroencephalogram data. Data has

been collected from persons under various conditions such as eyes closed, eyes open,

epilepsy and those from 'Vipassana' meditation state. The results are presented from

each sample of the above categories. It should however be stressed that one cannot

get identical results from a group of identical subjects in any category, since each

member of the group do have different psychological history which affects the brain

function. Hence even a group of five or ten subjects who are clinically normal will

show different behaviour since their psychological make up is distinctly different

from one another.

In this work the various aspects that go into the dynamics have been

developed ab-initio. The salient features of nonlinearity that are relevant to the

present problem have been discussed in chapter 2. In particular the linear stability

and the inadequacy when one considers nonlinear system and some of the current

research in limit cycles, bifurcation of solutions and the aspects of chaos and how

one should deal when there exists noise especially when the interactions are

nonlinear in nature. It should be stressed here that this chapter is only a bird's eye

view. Chapter 3 gives an account ofthe present methods adopted in the study oftime

series. In most of the time series analysis one adopts a linear analysis and it has been



shown how this approach becomes inadequate in a nonlinear time series. The

discussions are based on signal processing point of view both linear and nonlinear. A

detailed account is given of the various algorithms developed in the study of

nonlinear time series. The case of nonstationary of the time series, which is very

peculiar to real world data series and which do not appear in data generated from

nonlinear equations or set of equations are also discussed. The invariant parameters

such as dimensions, entropy etc. are discussed in this chapter. In the light of these, in

chapter 4 the Electroencephalogram (EEG) has been considered as a time series.

Different waves such as alpha, beta, theta and delta are the macroscopic

characteristics as one can infer from the signal. A Fourier decomposition would also

give this information. However whether these waves are real intrinsic waves or

whether these are the end product of a nonlinear process resulting in a synergic effect

is to be understood. Besides these there is a very significant component in the form

of chaos.

Chapter 5 gives an account of the various existing neural models such as

those of Anderson- Cooper, Parikh- Pratap, neural network models and the current

work that is going on in generating a model based on Nonequilibrium statistical

mechanics. Chapter 6 gives a discussion on the phenomenon of synchronisation. The

various subsystems can exhibit phase and amplitude synchronisation and a new

characterizing parameter namely coherence index is defined in this chapter. The

Coherence index is the harmonic ratio between the phase and amplitude

synchronization indices and this gives the degree of coherence. In a dynamical

system, ifthe phase and amplitude are synchronized (i.e. each is equal to unity), then



the coherence index is unity. This index would be positive and has a value between 0

and 1. This fonns another parameter to characterize an attractor along with

parameters such as attractor basin, embedding dimension, generalized dimension,

generalized entropy and Lyapunov exponent/function. Incidentally, a new

characterizing parameter would give a more accurate specification of the attractor.

The chapter 7 gives a method of evaluating plausible time scales that could

exist in a biological system and the significance of this is that there could exist a

wide variety of time scales which are physically relevant for the various processes.

These time scales can overlap. Hence it is significant to understand the genesis of

nonlinearity in a dynamical system due to interaction of time scales. Very often in

systems such as plasma, the time scales are widely separated and hence one can

isolate dynamics corresponding to a particular time scale from the various other time

scales. This obviously becomes impossible if the time scales are close by or even

overlap. A power spectrum analysis cannot separate these time scales as is well

known Fourier decomposition becomes impossible in a nonlinear system.

Chapter 8 gives an indication of the general formulation of Nonequilibrium

statistical mechanics. This is a self contained chapter and for the sake of

completeness an account of the various attempts previously carried out in

formulating Nonequilibrium statistical mechanics in neural systems is also presented.

A general framework of Nonequilibrium statistical mechanics adopted by Pratap

(2000) is presented and in this formulation instead oftaking the actual neurons as the

constituting elements, an equivalent system of attractors which is a map onto a space



spanned by the invariant parameters is considered. To get a measure of potential a

singular value decomposition (SVD) of the EEG data obtained from a particular

channel is evaluated and the calculation gives a set of eigen values/eigen functions,

which are functions of the invariant parameters. The eigen functions are a set of

orthogonal functions and using these functions along with eigen values one can

obtain an effective potential at the point from which the data was collected. An

account ofthe verification of different methods employed in this work is presented in

Chapter 9. These include Average mutual information criteria, Global false nearest

neighbor, Fixed mass approach etc. A critical approach of the different methods of

phase evaluation is also discussed. The algorithms developed have been tested on

various standard nonlinear equations such as logistic equation, Henon map, Rossler

equation, coupled Rossler equation and the standard sets such as, mixed sine waves

and random numbers. An account of the EEG electrode location sites (International

l0-20 system) and a description of EEG data used for analysis are also included in

this chapter.

The results obtained are presented in chapter 10 and this chapter is probably

the most crucial one. The results are described in three different sections. Part I gives

the physical aspects of brain dynamics and in this section the significance of time

scales in nonlinear dynamical analysis of EEG has been discussed. It has been shown

that the nonstationary nature of EEG is due to the interaction of various time scales.

An investigation is also carried out to understand the dynamics of brain during

meditation. The degree of coordination of different brain regions during meditation is

evaluated and the results are presented in Part II. This is measured by finding an



index based on Shannon entropy. Part III deals with the dynamical aspect of the

neocortex. A method to evaluate phase and amplitude from Poincare map is also

presented. A new index, Coherence index, is evaluated for eyes closed and

meditation data. This section contains a summary of the effective potential as seen by

a specified attractor at a given instant and at a particular location in the scalp. Results

and discussion is included in Chapter 1 1 In general, the work focuses on deriving the

wealth of infonnation contained in the EEG to get a deeper understanding of the

brain functioning.

Further, an effort has been made to develop an interface between the

highly sophisticated mathematical analysis and the clinical operations to alleviate

human sufferings.



Chapter 2

NONLINEAR OSCILLATIONS

The general mathematical theory of nonlinear oscillations has been discussed

in this chapter. The limitation of stability analysis and the need for new methods of

understanding the nonlinear system has been presented.

2.1 Stability Analysis

Consider a nonlinear autonomous two dimensional system

x2 = £2(x1, x2) (21)
where, f1 and f2 are C‘ defined on R2. The system defines a vector field

F=(f.(x1,x2),f2(x1,x2)) from R2 to R2. Eq. (2.1) takes the form

X = F( X) (2.2)
where, X=(x., x2)

The Jacobian ofthe system at a point X is the matrix



flfliffl
|ax1ax2l

DF(X) = Lafz af2J (2.3)ax_1 ax—2

In the case of linear homogeneous system where F(X) = AX, DF (X) is just A, the

Jacobian with constant elements. In the case of linear systems the equilibrium point

for this system in a plane is the origin for nonzero A whereas nonlinear systems can

have multiple equilibrium. This is one of the major differences between a linear and

a nonlinear system. If 7 is an equilibrium solution of the nonlinear set of equations

one can determine the linear stability about X by linearising the equation in the

neighborhood of X and write the linearised equation as

X = DF(Y)X (2.4)
where, X is the perturbation part and DF(Y) is the Jacobian evaluated at E. It may

be realized that the linearisation implies IXI <<  The dynamical behaviour of the

system in the neighborhood of Y is determined by assuming a solution

X(t) = C1°M't‘l11 + Czelztwz (2-5)

for the two dimensional system where C1, C2 are constants, K1, K2 are two eigen

values and W] , w; are the eigen functions of the matrix DF(7). The stability is

inferred if the two eigen values are
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><|Real, negative is a stable node-a point attractor

is an unstable node><lReal, positive

is an unstable node><|Any one is real, positive

If 11, X; are complex conjugates, then ifthe real parts are

Both negative )7: is a stable node asymptotically. The
trajectories spiral inwards and converge
to a node.

Both positive E is an unstable node asymptotically.
The trajectories spiral outwards and
diverge.

If 11 < 0 < 7&2 X is unstable asymptotically. One
component spirals inside while the other
diverges outwards.

Zero The system goes over to a limit cycle.

Zero and |).,| < | X2 [ It results in a limit cycle

In fact all these inferences are true only if the nonlinear system of equation can

belinearised in the neighborhood of the equilibrium state. In other words the linear

system of equation represents the nonlinear system of equation in the vicinity of the

equilibrium points. It should however be realized that linearization of a nonlinear

differential equation is valid only in the small neighborhood around the point over

which the linearization has been effective both in space and time. Evolution of a

nonlinear system beyond this neighborhood would introduce nonlinear effects giving

erroneous results. The global stability of linear homogeneous system represents the

local stability of nonlinear autonomous system. Thus by evaluating the eigen values

one can infer the stability ofthe system. However this method of analysis is valid for

those system of equations for which the Taylor series expansion is possible. A linear

ll



or nonlinear system it = F(x) is called hyperbolic if and only ifall eigen values of

the Jacobian evaluated at the equilibrium point K have nonzero real parts. This

conclusion is a result of Hartman-Grobman Theorem.

According to Hartman-Grobman theorem if X is a hyperbolic equilibrium of

X = F(X), then there is a neighborhood of X in which F is topologically equivalent

to the linear vectorfieldx = DF(X)X. where X = X + x

The two dynamical systems are topologically equivalent if there is a

homeomorphism h: U —> V mapping the orbits of one system on to the other,

preserving direction in time. This method of linearised stability analysis of nonlinear

system is found useful in several applications. Essentially this gives a local stability

criterion for hyperbolic equilibrium of nonlinear systems and by evaluating the eigen

values of the Jacobian for each equilibrium and classifying them as equivalent to

linear systems at the origin.

There are cases however when the linearisation fails. Consider the set of

equafions

X1 = x2 + ax1(x:1Z+ x%)2 2 (2.6)
X2 = —x1_+ ax2(xl + x2)

By inspection X=(x._ x2) is an equilibrium solution say i and the Jacobian at this

point results in

12



DF _ { 0 1]

The characteristic polynomial is

23 + 1 = 0 (2.8)
and the eigen values of the Jacobian are ii. Since the eigen values have zero real

parts they are nonhyperbolic and as per Linear stability analysis the equilibrium is a

center as the eigen values are imaginary. However converting the system of equation

into polar co-ordinates, the equation becomes

(2-9)

with equilibrium F = 0. Whereas F is globally asymptotically stable if a<0, neutrally

stable if a =0 and unstable if a>0. Thus there exists different solutions depending on

the value of a. This inference is not obtained in the previous case in which it has been

concluded a neutral stability. Thus linearization is not reliable for nonhyperbolic

case. However the Poincare theorem gives an indication for the stability of a

nonhyperbolic system

According to Poincare a center equilibrium of the linearised system is either a center

or a focus of the original nonlinear system.

13



In Eq. (2.9) 6 increases in a counter clockwise manner. However 9 = -1 implies

that the trajectory is directed in a clockwise manner. In the equation r = ar3, if a< 0

then the trajectory winds in a clockwise manner to the equilibrium point i=0. If a=O

the trajectory are circles with the origin as the center, while for a>O, the trajectory

spirals out starting from the origin. Thus for the case a<0, F is globally

asymptotically stable and this is called a focus, while for the a>O, it is asymptotically

unstable. For a=O is the case of neutral stability and R is called the center. This is

however not always possible.

Another method of finding the equilibrium is by applying Lyapunov’s Direct

Method. According to Lyapunov theorem, let X be a fixed point of

X = f(x), x e R2 and let V, the Lyapunov function be differentiable on some

neighborhood W of E and satisfy:

(i) ‘/(Y) = 0;

(ii) V(x) > 0 ifx at X;

(iii) V(x) s 0 on w — {X};

Then X is stable. If V < O as in (iii), then X is asymptotically stable and hence can

be a focus. While for (1), it would correspond to neutral stability.

To justify the above mentioned statement, let V be taken as

v = X12 + X; (2.10)
14



Then

6V _ 6V _= : X2 (2.11)
Substituting for X, andxz from Eq.(2.6) and using Eq. (2.10) Eq. (2.11) takes the

form

V = 2ar4 (2.12)
_in polar co-ordinates. This clearly indicates that F is a globally asymptotic attractor

for a<0, a center for a=0 and a repeller for a>O. The method of Lyapunov is very

powerful. However defining a proper Lyapunov function is a difficult task and there

does not exist a prescription to write this function. It is rather an art than a science.

However the advantage of Lyapunov direct method is that one can determine the

stability of equilibrium directly without solving the system of equations.

Another significance of Lyapunov direct method is that it establishes a

general property of the systems. Let U(x) be a real valued differentiable function on

R" and let the equation of motion be written as X = —VU( x) where U(x) can be

interpreted as a potential and hence the system is conserved. It can be proved that a

gradient system is asymptotically stable at X‘ if U(x) has an isolated local minimum

there (Epstein, 1997).

15



Next consider a potential V = U(x) — U(i) such that V(R) E 0. For all

points in the neighborhood W around X, V>O. It can be proved that V is a Lyapunov

function and that V(x) in W is greater than zero. It can also be proved that V < 0 on

W — K.

From the equations of motion

2

= —.l =-|lVU<x>|l2 (2.13)
on W — X.

The Eq.(2. 1) takes the form

X = F :12 x VH (2.14)
in the phase space spanned by (x1, x2) and that lg is a unit vector in the z direction in

which x1, X2 are the x, y co-ordinates respectively and H is the Hamiltonian.

This further shows that the motion is confined to equi Hamiltonian surfaces

in the phase space. Since the scalar product of the equations of motion with VH is

identically zero, this further shows that

H = VH.F = VH.l2 x VH 2 0 (2.15)
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and this implies that H is a conserved quantity and H is a constant of motion. This

further shows that a gradient field dissipative as against a conserved Hamiltonian

field. Again

v-F=v-[12xvH]=v.[vx12H]Eo (2.16)

since divergence of Curl is identically zero. Hence there are no sources or sinks in a

conservative system.

Thus Hamiltonian flows are volume preserving. This is known as Liouville Theorem.

Hamiltonian flows therefore cannot have sinks or sources, for the existence of

sources or sinks would violate the constancy along trajectories.

If a system has a Hamiltonian representation and has equilibrium, where the

eigen values are purely imaginary, the equilibrium is nonhyperbolic. Hence the

linearisation fails. However it can be concluded from Poincare theorem that the

center or focus is the equilibrium point. Since the system being Hamiltonian, the

equilibrium point is the center or saddle. Thus inferring from above two conditions,

the equilibrium point is a center. This indicates that Nonlinear systems exhibit quite

different behaviour.
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2.2 Limit Cycles

The behaviour of nonlinear system is quite different from the linearised form

of the same nonlinear equation. From nonlinear dynamical point of view the

principal endeavor in the study of nonlinear systems had been the existence of limit

cycles. Poincare showed that a set of differential equation

X. II f(x, 5/)g<x, y) 9“)l<.
II

occasionally admit a solution represented by a closed curve in the phase plane, which

is called the limit cycles. A limit cycle is defined, as a closed trajectory such that no

trajectory sufficiently near to it is also closed i.e. a limit cycle is an isolated

trajectory. Every trajectory starting from nearby points will wind itself on to this

curve as t —> 00 or unwinds itself as t —> -00. If all nearby trajectories approach a

limit cycle as t —-> oo one can consider this as a stable limit cycle. Ifthey approach

the limit cycle as t —> —oo, it is called unstable. However with the advent of theory

of chaotic dynamics this perception has changed. Nevertheless the theory of limit

cycle plays a crucial role in the study ofthe dynamics of nonlinear system. Consider

the following system of equation

X1: X2 + x,(7L — xf — xi)
(2.18)

X2 = —x, + x2(7\. — xlz — xi)
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In polar co ordinates this has the form

e=—1r(K — R) (219)..,. ll

Here again the first part ofEq.(2.l9) indicates that the trajectory moves in the

clockwise direction.

For X S O, r < 0, the solutions spiral to the origin as t —> oo. For X > 0, there are

three cases:

1. r2 > ?t,i' < O

2.r2<7L,r>O

This indicates that the trajectories beginning outside the circle, r2 = X, wind inward

while the trajectories beginning inside the circle wind outward and that as t —> oo

these entire trajectories spiral towards the circle r2 = X. It is an attractor which as

t —> co the orbits converge on to a circle of r =  This is called a stable limit

cycle. For the time reversed system the same object is an unstable limit cycle. The

stable limit cycle is a basic model for all self-sustained oscillators, i.e.; those that

retum or recover to some fundamental periodic orbit when perturbed from it.

The main theoretical tool in search for limit cycles is the Poincare-Bendixson

Theorem, whose contemporary statement requires the definition of co limit and O.
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limit points. The basic idea of co and (1 limit points are: any point to which a

trajectory converges in forward time is an co limit point, and any point to which the

time-reversed trajectory converges is an on limit point. A limit cycle is then defined

as a periodic orbit that is (1) or on limits set of other orbits.

The Poincare Bendixson theorem states that if

F = (X(t), )’(t)) be a trajectory of motion specified by

X = f(x, y) (2 20)
y g<x,y);f,g e C‘

such that, for t 2 to, remains in a closed and bounded region ofthe plane containing

no equilibrium points. Then T‘ is a limit cycle or 0) ( t) is a periodic point.

The main difficulty in applying this theorem lies in establishing equilibrium

free closed and bounded “trapping” regions. The other limitation is that the Poincare

Bendixson theorem cannot be applied to autonomous systems of dimension greater

than two. For higher dimension, the phenomenon of bifurcation leading to chaos sets

in - an important concept in nonlinear dynamics.

2.3 Bifurcation

Consider the equation

it = f(x,u),x e R”,p E Rk (2.21)
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u is a single real valued parameter. The values of p at which the dynamics of the

system changes qualitatively are called bifurcation points. This is often referred as

change in the topological structures of the phase portrait (Epstein, 1997). The field

f(x, ii) is structurally unstable if nearby fields f(x, it + 5) have different topological

structures. In other words phase portrait at p. is not topologically equivalent to the

phase portrait at pt + 8.

The field f is said to be structurally stable if and only if there is a

neighborhood of f such that all fields in the neighborhood are topologically

equivalent to f i.e. a mapping from one function to another in this neighborhood

must be one to one, continuos and has an inverse. Such trajectory mapping is called

homeomorphism and if this exists in the neighborhood, then these functions are

called topologically equivalent. In short, there should not be any qualitative change

in the dynamics of the system. The critical value p.* for which the flow of

X = f(x, u),x e R",p. e Rk changes from structurally stable to structurally

unstable is called a bifurcation value.

Hopf Bifurcation Theorem in R2 states that suppose the parameterized

system it = f(x, it), x e R", p e Rk has afixed point at the origin for all values

of the real parameter [.1 and if the eigen values ?tl(p) and ?t2(p) (/1, and /12 are

complex conjugates since the dynamics is in R2) of the Jacobian of f, at 0, are purely

imaginary, then for it = },l‘. the real parts of the eigen values, Re7t,(p) and Re

7k2(p.)are equal, since 7t, = X2, it now satisfies the condition
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and hence the dynamics undergo noticeable changes.

Then

(a) p. = u* is a bifurcation point ofthe system.

>|<

(b) For l1 E (H1: ll ), for some pl < ;,1*, the origin is a stable focus

>l<

(c) For l-1 6 (H2 3 ll ), for some p2 > u*, the origin is an unstable focus

surrounded by a stable limit cycle whose size increases with },l.

First the theorem deals with complex conjugate eigen values that are purely

imaginary at the bifurcation point it = p* which is named in part (a). Then in p the

real part of the eigen value is zero, but its rate of change, the slope, is positive a little

to the right, of u‘. The equilibrium is hyperbolic and so by linearized stability

analysis there are stable and unstable foci predicted in (b) and (c). The Hopf

bifurcation theorem demonstrates the existence of a stable limit cycle. The orbits of

the attractors can be represented as a fixed point of the discrete maps in a lower

dimensional space. This method of representation is the contribution of Poincare,

which is often called Poincare maps. Poincare map connects the world of continuous

flow in some dimension to the world of discrete maps in a space one-dimension

lower. The lower dimensional entity gives the information regarding the higher

dimensional one. Some more important theorems are discussed below
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Bendixsons ' Negative test

Let f and g define a vector field Q = (f, g) in a simply connected region

D C R2. If divQ has fixed sign in a region D, then Q have no cycles in D.

Bendixs0n- Dulac Theorem

Given the system

it = f(x, y)g<x. y) ‘M’‘<
II

where f and g are smooth in a simply connected region D, let B(x, y) be a smooth

function in D such that

6(Bf) + a(Bg)ax ay (2.23)
has fixed sign in D. Then the Eq. (2.19 ) has no closed trajectories in D.

These are some of the general theorems that help to reduce the possibilities in

one's search of trajectory characteristics. However all these theorems are useful if

the equation of motion is known. If on the other hand one starts the search from the

real world data set generated by an experiment, the above theorems are to be viewed

as restrictions to be taken into account in writing the equations of motion as inferred

from the data set generated by an experiment.
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2.4 Stochastic Resonance

Stochastic resonance is a phenomenon in nonlinear noisy systems whereby

weak signals get amplified using noise. The amplification of feeble information

requires three basic requirements, a threshold, a periodic signal and a source of noise

that is inherent in the system. The response of the system undergoes resonance like

behaviour as a function of noise level and hence this phenomenon is called stochastic

resonance. Stochastic resonance is quantified by measuring changes in the intensity

of a peak in the power spectrum. These quantities are readily measurable and are

very useful in the study of signal amplification due to stochastic resonance. In a

system with inherent noise the amplitude of the periodic signal used for the

extraction of weak signals can be manipulated by changing the noise levels. In

stochastic resonance effect the amplitude of the periodic signal first increases with

the increasing noise levels, reaches a maximum value and then decreases. Thus

frequency of the driving period has a very important role in the extraction of

information. At resonance condition in the power spectrum one can observe peaks at

frequencies other than the driving periodic frequency. This spectral amplification is

an indication of the presence of information in the system.

Another parameter that is used for characterization is the signal to noise ratio

(SNR). Instead of looking for peaks in the power spectrum, the amount of signal

present in the background noise is estimated. Thus in this case stochastic resonance

becomes a problem ofextracting the signal from the background noise. However in

real systems it is difficult to observe stochastic phenomenon using power spectrum
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or SNR methods. The more reliable method that has been used for natural processes

is Resident time distribution. In this the output of the process is considered as a

stochastic point process by setting two crossing levels. The time interval elapsed to

switch from one crossing level to another is noted. This time represents the residence

times between two subsequent switching events. The statistical properties of this

distribution are found out using the probability theory. In the absence of periodic

forcing function, the residence time distribution has an exponential form. In the

presence of periodic forcing one can observe a series of peaks. However the

existence of peaks in the residence time distribution need not necessarily indicate the

presence of a fundamental frequency and its subharmonics. Before the phenomenon

the occurrences are randomly spaced that do not correspond to any definite spectral

component.

Deterministic chaos resembles the feature of noise on a coarse-grained time

scale. Hence with a periodic forcing function it is possible to extract weak signals

embedded in a chaotic signal in which the noisy perturbation are due to chaotic

signal. Stochastic resonance is an inforrnation- transmitting phenomenon that

exploits the noise in a self-optimizing manner. In human brain dynamics as the

system has inherent noise this phenomenon may have wider implications in

understanding the dynamics of brain.
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Chapter 3

METHODS IN NONLINEAR TIME SERIES ANALYSIS

The main aim of nonlinear time series analysis is to understand the dynamics

ofa system where all that is available is a single variable time series. Unlike in linear

time series analysis, the data is represented in a state space rather than in time or

frequency domain. The representation of data in state space is the hallmark of

nonlinear time series analysis. The ultimate purpose of such analysis is to identify all

dynamical variables and possibly derive the equation that is governing the system

with predictive capability. In nonlinear method a time series is embedded in a state

space by a trajectory and as time evolves this trajectory may be attracted to a

subspace called an “attractor”. The characterization of this attractor by different

measures is the landmark of nonlinear dynamical analysis of a time series. The

different methods of nonlinear time series analysis is discussed in this chapter. A

brief overview of linear time series analysis and the limitations of linear methods are

also presented.

3.1 Linear Time Series Analysis

The basic assumption in linear time series analysis is that the source emits

spectrally sharp monochromatic signals, which might be contaminated by broad band

interference. To identify the signal of interest from the unwanted background and

study the characteristics of the data using statistical or spectral tools is the aim of

linear timeseries analysis. The commonly employed methods are linear statistical

inference, autocorrelations, Fourier analysis and power spectrum representation.
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A linear system is one that permits superposiability and hence can be

represented by a differential equation. These equations with constant coefficients can

have only exponential or periodic solution. Any irregular output is considered as due

to linear system driven by irregular input. In linear stochastic process, a measurement

of the state at a specified instant can be regarded as derived from an underlying

probability distribution for observing different values or sequences of values. For an

unknown probability distribution, mean, variance and other related quantities form

estimates of the signal characteristics. However, these estimates cannot give any

information regarding the time evolution ofa system. The time evolution ofa system

dynamics. can be obtained from the autocorrelations of a signal 5 (t). The

autocorrelations ofa signal with lag T is given by

CT = L2(<s(n)s(n — 1)) — (3)2) (3.1)0'

where 02 is the variance, 3 observed signal and the bracket < > denotes the average.

If the signal is observed over continuous time, one can define autocorrelation

function C (1) where ‘E =T 6 t, 6t being sampling time and T the lag.

If the measurements are drawn from a Gaussian distribution or joint

distribution of multiple measurements are also Gaussian, then this fonns a random

process and would be fully ‘described statistically by mean, variance and

autocorrelation function. If a signal is periodic in time, then its autocorrelation

function is also periodic. A stochastic process has decaying autocorrelation and the
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rate of decay depends on the nature of the process. Another method of representing

the signal is in Fourier space. The Fourier transform establishes a correspondence

between the time and frequency domain. The Fourier transform of a signal s (t) is

defined as

1 nils(t)ei2"f'dt (3.2)
F —ao

§(f) = W

The inverse Fourier transform is

S(t) = l§(f)e‘2"“df (3.3)
—%

Both the transforms are invertible. These linear transformations give information

regarding all regular structures in a data set.

The power spectrum of a process is defined as the squared modulus of the

continuous Fourier transforms. It is the square of the amplitude of the frequency

contributes to the signal. According to Wiener-Khinchin theorem, the Fourier

transform of the autocorrelation function is equal to the power spectrum. Power

spectrum is useful in studying the oscillations in a system. Spectrum consists of

sharper or broader peaks at the dominant frequencies and their integer multiples.

Noise in a system adds a continuous floor in the spectrum. Thus, noise and signals

are clearly distinguishable and that they are additive. To track the temporal changes,

spectral analysis is perfonned on consecutive segments of a long time series.
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In developing models in linear time series analysis, the observations at a

particular instant oftime say 5 (n) is related to observations at the earlier instant and

the driving forces at the earlier instant. This becomes

s(n) = Xaks(n — k) + bkg(n — k) (3.4)
k

The coefficients ak and bk are determined by least square fit and g (n) is some

deterministic or stochastic forcing function. From the dynamical point of view the

above mentioned model consists of simple linear dynamics. The first part of the

model is called Autoregressive and the second part Moving Average (Papoulis,

1984). The choice of coefficients should be consistent with any knowledge one has

of spectral peaks in the system. Once the coefficients are established then the model

is used for prediction.

3.2 Limitations oflinear time series analysis

The irregular output from a system is considered as due to irregular forcing

function in linear domain. However, it is now clear that there are nonlinear

dynamical systems, with a certain underlying dynamical equations that can produce

irregular output even with well-defined regular input. Such systems, which are

sensitive to initial conditions, are called chaotic systems. The power spectrum in

such cases is broad band and Autocorrelation function shows an exponential

decaying behaviour with a lag like stochastic process. Thus from autocorrelation

function it is not possible to distinguish chaotic system from a stochastic system.
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The frequency / power spectrum represents the number of oscillations and its

harmonics present in a system. In the spectrum, sharper or broader peaks are

observed at the dominant frequencies and their harmonics. The noise adds a

continuous floor. For a chaotic system, however there will be a broad continuous part

in the spectrum even in the absence of noise. Thus, it is very difficult to distinguish

noise from chaotic system.

In linear modeling, the dynamics is represented as a sum of simple linear

dynamics. Hence linear models fail to represent the chaotic behaviour observed in

nonlinear systems, as nonlinearity is an essential condition for chaos (Abarbanel et

al., 1993). However to choose models from data alone is still a difficult task in linear

as well as in nonlinear domain. In nonlinear modeling the main departure from linear

model is to realize that the dynamics evolve in a multivariate space whose size and

structure is dictated by the data itself.

3.3 Nonlinear Time Series Analysis

Classical physics focuses on linear systems where small measurement errors

of the current state of the system result in small errors in the future state. In other

words the error does not grow with time. Although several nonlinear equations are

dealt in classical domain they however have closed form of solutions or are

represented as linear approximations. In linear domain, given the dynamical

equations and the initial conditions the future as well as past can be predicted. Those

systems that are not predictable are being treated as stochastic. The stochastic
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systems has a large number of variables governing the dynamics and such systems

are studied using molar description in terms of average behaviors and / or

probabilities as provided by statistical mechanics.

Apart from linear theory and stochastic theory, deterministic chaos theory

offers a third alternative. According to chaos theory, nonlinear systems with a few

variables can result in random like time series. If the parameters of such nonlinear

systems are slightly changed, small difference in initial condition can produce an

"exponential" divergence in the behaviour of the system. The chaotic systems are

generally referred as systems sensitive to initial conditions. The exponential

divergence results in loss of information of the initial state and loses the predictive

capability. However, ifthe system is dissipative then its asymptotic behaviour will be

attracted towards a finite region of the phase space. Study of attractors, form the

basis of nonlinear dynamical theory ofdissipative systems.

The nonlinear time series ‘analysis is based on the theory of dynamical

systems. In dynamical system theory, a time evolution of a state of a system is

represented as a trajectory in state space. The dynamics of a system is then

understood by studying the dynamics of the corresponding points in state space.

Mathematically, a dynamical system is represented by either first order ordinary

differential equations with order depending on degrees of freedom or of discrete time

variable; The state equation is then written as

%X(t) = f[t,X(t)] I e ‘.11 (3.5)
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in the case of continuos evolution and

X(n + 1) = F[X(n)] n E L (3.6)

in the discrete case. A sequence of points X (n) or x (t) solving the above equations

is called a trajectory of the dynamical system. Depending upon the initial conditions

and the functions that represent the system, the trajectory will diverge and move

away to infinity or stay in a bounded domain as time proceeds. This “ object” or

collection of points so formed in the phase space is called an attractor. For chaotic

system, the corresponding attractors are complicated geometrical objects. They are

called strange attractors. The characterization of attractor using the parameters like

dimension, entropy, Lyapunov exponents, spectrum of singularities, unstable

periodic orbit etc leads to the knowledge of dynamics of the system. In nonlinear

time series analysis, one tries to understand the geometry and dynamics of the system

by studying one of the variables as time series. The time series is a scalar

measurement of some physical quantity that depends on the current state of a system.

The overall approach requires one to adopt a different frame of reference that moves

away from previous methods of data analysis.

3.4 Methods in Nonlinear Time series Analysis

Different methods of nonlinear time series analysis is discussed in this

section. A delay reconstruction method is usually employed in nonlinear analysis for
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the investigation of the dynamics of a complex system from time series. ln this

method, the time series .9 (t) is reconstructed as

y(n)= [s(n), s(rz+7), s(n+2T),    .....,s(n+(m—/)T)] (3.7)

where T is the time lag and m the embedding dimension with y(n) as elements ofthe

correlation matrix. This reconstruction does not represent the original state space;

rather it is.an equivalent representation since for data analysis, the original phase

space is not required. From the correlation matrix, the number of variables requires

to specify the dynamics as well as the time evolution of the dynamics is obtained.

This mode of embedding a system dynamics as an attractor in phase space is the

analytic feature of nonlinear time series. The important tasks however is to know the

appropriate embedding dimension, to unfold the attractor completely. As per

Whitney’s embedding theorem an attractor with D dimension can be embedded in

R20” and according to Taken’s delay embedding theorem the delay reconstruction

represents the entire dynamics of the system. Thus X,,+1= F (X,,) is equivalent to

(s(X.,), s (F (X,,)), s (F*F (Xn)), .............. ..) which is equivalent to a set of co

ordinates. The function F that couples different degrees of freedom is reflected in the

single variable time series. The components of delay vectors are mutually

independent. Thus, it requires only one variable to understand the dynamics of entire

system as this one variable contain all infomiation regarding other variables due to

coupling.
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3.4.1 Grassberger- Procaccia Method

The most popular method to characterize an attractor based on geometry and

dynamics proposed by Grassberger and Procaccia (1983a; l983b), known as GPA.

The two commonly evaluated parameters using this algorithm are Correlation

dimension, D2 and Kolmogorov entropy, K2. The Correlation Dimension is a

geometric parameter of the attractor that corresponds to number of independent

variable require to specify the state of the system at any given instant, whereas

Kolmogorov entropy is a dynamic parameter which characterizes the dynamical

evolution of a system. The Grassberger — Procaccia method considers one of the

variables of a system equation as a single variable time series, reconstructs its state

space attractor using Time delay embedding theorem (Abarbanel et al., 1993) and

evaluate the dimension and entropy of the attractor. This is done without the

governing dynamical equations necessarily being known. The ability of Time delay

embedding to reconstruct the system attractor in state space lies in the coupling

among the variables controlling the system and as a result one variable will carry all

information regarding other variables. This embedding method produces a smooth

mapping of system’s evolution in state space.

Consider a single variable time series obtained from a nonlinear system that

consists ofN data points sampled evenly with a sampling time T5. Each data point

represents the projection of full state vector that consists of current values of all

variables required for characterizing a system. The obtained time series is embedded

in a large enough m dimensional state space as
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X, = [v (i), v (i+T), v (i+2T), ....... .., v (i+{m-1} T)] (3.8)

where X represents the state vector, v represents the single variable time series, m

being the embedding dimension and T, the time lag which need not be equal to

sampling time Ts. The Correlation Dimension is then evaluated by considering

correlations between points of a long time series on the attractor in state space and

defining correlation integral as

N

:=,H<r«lx,-x,lll (3,,Q
z-x

‘E \.I
ll

1

lim *2N—-> N ,_j

d’"r' c(r') (3.10)H

0 ._,~.

where H (x) is the Heavyside function, e (r') is the standard correlation function, m

the embedding dimension and |X; — X, | is the Euclidean distance between the vectors

Xi and X,-. In short Cm (r) estimates the total number of neighbors within a sphere of

radius r in an m dimensional phase space. The main assumption of this algorithm is

that the Cm (r) behaves as a power ofr for small values of r.

Thus

c,..(r>~r“' (3.11)
where d is closely related to D2.
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The Correlation dimension D2 is defined as

. 1nC..<r>D2 = lim-j as m—)oo (3.12)r—>0 lnr

In practice, however D2 is evaluated by finding the slope oflogarithms 0fCm (r) and

r for successive higher values of r. This measure is a lower bound of Fractal

Dimension.

Several other algorithms have been proposed to evaluate the dimension of an

attractor (Pritchard & Duke, 1992). In many of these methods the dimension is

defined as an exponent that scales the “ bulk ” of an object with linear distance and

this is determined by taking log “ bulk ” over the log distance. In GPA, this bulk is

the Correlation integral. The GPA is widely used compared to other methods because

computation of correlation integral is straightforward and is efficient. Further

distance (r) can be started from a low value, smallest inter point distance, and can be

varied until the C (r) reaches its maximum value, i.e. 1. However other criteria

required for the successive implementation of this method is the identification of

proper time lag T, appropriate embedding dimension m and the determination of

linear scaling region in the plot of log Cm(r) and log (r).

The embedding dimension must be larger than the Correlation dimension. If

the embedding dimension is very large then the endpoints ofthe reconstructed vector

will be dccorrelated resulting in inflation ofestimatcd dimension. On the other hand,

if the embedding dimension is not large enough there will be under estimation of
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dimension. In GPA, the value of m is varied from 1 to higher values until the

estimated dimension saturates. This estimated dimension at saturation is taken as

Correlation Dimension. No recipe is given in GPA for the selection of time lag

required for reconstruction. In the case of unlimited noise free data, any arbitrary lag

T can be chosen. Nevertheless, the real data set is noisy as well as limited. This

requires a proper choice of time lag. If the lag is small then the endpoints will be

approximately equal and the reconstructed attractor will be essentially diagonal in

state space. This phenomenon is called redurzdance (Pritchard & Duke, 1992). Iftime

lag is too large the structure of the reconstructed attractor will be lost and this is

called irrelevance. The methods commonly employed for the determination of

embedding dimension is False Nearest Neighbors or Singular Value Decomposition

and for the selection of time lag, Autocorrelation function or Average Mutual

infonnation criteria. These methods are discussed in subsequent sections.

Computation of Correlation Dimension from time series has achieved

widespread popularity and several papers have been published reporting dimension

of several systems. (Kantz & Schreiber, 1999). However, it is difficult to know the

reliability and accuracy of these measures. Further problems due to temporal

correlations and intrinsic oscillations are present in many of these results. To avoid

pitfalls Theiler (1988) modified GPA by rejecting those pairs of points that are close

in space as well as in time. Thus Correlation integral is defined as

2 i i Hir—|X,.—Xj.i) (3.13)C :
'"(r) (N - nmin )(N — nmin - 1) i=lj=i+IImm



where nmin = 91'" , TX being the sampling time.S

The tmgn can be detennined by the method suggested by Provenzale et.al.

(1992). In fact the modification proposed by Theiler and others do not guarantee that

the estimated dimension of EEG is the true dimension of the system attractor. Again

GPA is suitable only for stationary data set while EEG is nonstationary in nature.

However, the estimated Correlation dimension of EEG can be viewed in a relative

sense for making comparisons between different states of human brain.

Another measure, which was proposed by GPA that characterizes an

attractor, is Kolmogorov entropy. This measure which is specific to dynamical

system gives the degree of “chaoticity” of the system or the long time average rate at

which the information is generated by the system or equivalently the rate at which

current information about the system is lost. K2 is computed from the time series as

Cm(r) 2 rD2 exp(—mT1<§) (3.14)

then

Cm+1(r) 5 rD2 exp(—(m + 1)TK§) (3.15)

From the above

38



s 1 C
K2(r) = ~1n{——”‘(r—)} (3.16)T Cm+1(T)

then

K2 5 lim Kim (3.17)
m—)oo
r—+0
T—>O

Many researchers concentrate more on accurate determination of D2, only a

few have given importance to the dynamical aspects of the attractor. The

determination of entropy is significant as they give information regarding the Time

Scales involved in the dynamics of a system. Apart from the proper choice of

embedding dimension and time lag the results obtained from GPA depends on data

length, precision of Digitizer, effect of filter and many others (Rapp, 1993). If

parameters are seen in a relative sense the effect of many ofthe above mentioned can

be minimized by carefully applying the algorithms. However, the problem due to

nonstationarity is still unresolved. Therefore, in the next section we discuss a

Nonstationary process from the nonlinear dynamical point of view.

3.4.2 Nonstationary Process

“ A stochastic process is called strict sense stationary if all its statistical

properties are translationally invariant under time. A stochastic process is called wide

sense stationary if its mean is constant and its autocorrelation depends only on the

difference 1: = t1-t2 ” (Papoulis, 1984).
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A process, which violates the above definition, is usually considered as a

nonstationary process. A time series is said to be stationary if its statistical quantity

up to second order to be constant or all transition probabilities from one state ofthe

system to another is independent of time within the observation period. This requires

the condition that the parameter of the system remains constant and the dynamics are

contained in the time series sufficiently frequently. There are tests to determine the

stationarity of a time series (Isliker & Kurths, 1993). However, for a nonlinear

dynamical system, especially human brain, the approach requires a different frame of

reference that may move from the previous view of nonstationary process. If a

process involve several time scales a stationary data set can be obtained only if the

length of the data set is sufficiently larger than the longest characteristic time scale

involved in the dynamics of a system. Thus, identification of different time scales

becomes crucial to understand the nonstationary nature of a data set. From the

nonlinear dynamical point of view the understanding of nonstationary process

essentially is to identify the different time scales in the process and it is not merely a

statistical property.

Some of the algorithms have been developed which claim to be useful for

analyzing nonstationary data set. These are Pointwise Scaling Dimension (Farmer et

al., 1983), Point D2 (Skinner et al., 1991) and the method proposed by Havstad and

Ehler (1988).
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3.4.3 Pointwise Scaling Dimension (PWSD)

This method was proposed by Farmer et al (1983) in which the correlation

integral is evaluated by considering a reference vector X. and finding all pairs of

points within a radius r by spanning and probing the vector Xj over the entire epoch.

Since reference vector is chosen sequentially for each point in the time series, the

dimension is estimated as a function oftime as well as its position on the attractor.

This continuously estimating dimension assumes that the reference vector,

which spans only a short interval, would remain stationary and would dominate the

calculations, making the overall estimate less sensitive to nonstationarity. This is

considered as a modification of GPA. In this algorithm, also the nonstationarity is not

well defined. Further, this also assumes stationarity within a short interval of the

epoch.

3.4.4 PD2 Algorithm

The PD2 or Point D2 estimate of Correlation dimension was originally

developed by Skinner and his group (Skinner et. al., 1991). In this algorithm, also the

correlation integral is evaluated fixing the X; and spanning the Xj vector over the

whole data series in an m dimensional state space. Unlike in Pointwise scaling

dimension algorithm this method does not consider all the vectors but considers only

those Xj vectors that must arise from subepoch that produces scaling characteristics

similar to those surrounding the X. vector. It rejects unsuitable estimates that do not

result in linear sealing or clear convergence. This eliminates the effect of artifacts or
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noise or insufficient sample of stationary subcpoch. The PD2 does not take into

account all possible pairs of distance as in GPA nor all vector difference with respect

to a particular reference vector as in Pointwise Scaling Dimension. This considers its

own subspecies of stationary data epoch.

It has been pointed out that both PWSD and PD2 are better than GPA in

estimating dimension from a nonstationary data. However PD2 seems to be effective

compared to PWSD even for a small epoch of 1 sec or less (Elbert et al., 1994).

Skinner and his associates used a 500ms data record from olfactory bulb ofthe rabbit

during behavioral quiescence and reported that this small epoch is necessary to

achieve statistical stationarity (Mitra & Skinner, 1993). After the presentation of a

novel order, again 500ms data appear to be stationary within this condition.

However, they found that D2 estimate increased compared with the control. Another

group, (Rapp et al., 1990) found that EEG data of lsec remain stationary statistically,

but the estimated Dimension D2 of a target stimulus is quite different from non

target stimulus. In both the above-mentioned experiments Skinner found that the

Dimension estimate does not shift to a unitary value rather changes continuously.

This change may be due to a variety of rapid nonstationary changes. This observation

clearly indicates that there exists a large class of time scales involved in the

dynamics of human brain.

Even though both the above mentioned algorithms indicate the significance

of nonstationarity they do not take into account the significance or relevance of time

scales.
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3.4.5 Havstad — Ehler Method

Much of the uncertainty in estimating dimension due to nonstationarity

requires the use of small data sets, covering only small intervals. In this method, the

obtained time series is divided into different overlapping or nonoverlapping

windows. The dimension is evaluated for each window with a slightly different

procedure than GPA. This allows the dimension estimate as a function oftime.

The scalar time series is reconstructed in state space using the method oftime

delay as X; = {vim v;aT.;bT, ....... .., viaT+(m.1)bT} where v is the time series, aT, the

time interval between the first elements of successive vectors and bT, the time lag

between vector elements and m embedding dimension. The data set for dimension

estimation consists of N vectors and M reference vectors (M<N). In this method

instead of calculating the number of pairs of vectors within a radius r, the radius is

predetennined and the distance from a reference vector to each of N vectors within r

are noted. From this number of veetorsj within a predetermined r, the Correlation

Dimension is calculated as

111(1)

(in r)Dc(m) = (3.18)
where < > denote the average. Euclidean norm is used to calculate the distance

between the vectors. To avoid prominent distortion of slope in In (j) and (In r) a

certain minimum number of vectors are skipped on either side of the reference

vector. Thus a reliable estimation of dimension is obtained by careful choice of

43



intervals between vectors and between reference vectors and neighbor vectors so that

the vectors are adequately independent, by proper choice of time lag and by

averaging ln (r).

The algorithms discussed so far tries to minimize the errors in dimension

estimation due to nonstationarity but does not incorporate the notion of nonstationary

process as such. The proponents of PD2 claim that their algorithm is superior to

others, however does not define nonstationary process. They reject some of the

vectors in the correlation integral estimation, which does not give similar scaling as

the surrounding vectors of reference vector. Whether this rejection is valid when the

process involves a large class of overlapping time scales is not mentioned. The

method proposed by Havstad and Ehler has been employed in this work as it

considers the dynamics within a window and considers at least in some sense the

time scales involved in the dynamics within that window. Further, it has been found

that it gives more reliable estimation of D2 especially for high dimension signals like

those of EEG.

3.4.6 Selection of Time Lag

According to embedding theorem, any time lag can be used to reconstruct the

attractor in state space. However, for practical cases the time lag for reconstruction of

attractor is to be selected appropriately to avoid the problem of redundance, due to

small value of lag or irrelevance, due to a large value of lag. The two commonly

employed methods for the determination oftime lag are Autocorrelation function and

Average Mutual Information.
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In autocorrclation function. the time lag is selected accordingly for the two

measurement v(n) and v(n+T) for linear independence average over the observations.

For this a linear autocorrelation function is calculated as

[V12 (v(k + T) - \7)(v(k) - V)k lCL(T) = (3.19)1W 1 N _
; k§l<v(k) — v)2

ii k
Nk=lv<>where N is the number of data points and V =

and selecting the time lag that passes through first zero. In certain cases when

multiple peaks are present in the Power spectrum, the time lag is selected as the

number of digitized values in a quarter cycle of one of the higher dominant

frequencies. In this prescription only linear dependence are considered.

Average Mutual Information (AMI) is a probabilistic measure, which is a

generalization of auto-correlation function to nonlinear domain. It is defined by the

expression

plv<k>, v<k + D] lN

I(T) = El p[v(k), v(k + T)] log2[p[v(k)]p[v(k + TM (3.20)

where p(v(k)) is probability of measuring v(k) and p(v(k),v(k+T)) is the joint

probability of measuring v(k) and v(k+T ). The time delay required for reconstruction
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is selected to be the value at which the first minimum in the average mutual

Infomiation (AMI) plot ofI(T) versus T appears. If there is no minimum in the plot,

then the time delay T is that value at which I(T)=lmax / 5. Here a probability

distribution associated with each system governing the possible outcomes of

observations on them. This method considers all kinds of nonlinear correlations

unlike ACF where it takes into account only the linear ones (Fraser & Swinney,

1986).

The proponents of AMI claims that this method is superior as it considers all

types of nonlinear as well as linear correlations whereas opponents argue that this

method is suitable only for 2 dimensional case not for fully reconstructed state space.

Further, the choice of first minimum and not subsequent minima needs a

justification. A consensus is that time lag be selected so that the state space plot show

maximum scatter. Again, this type of selection oftime lag from any one ofthe above

criteria is suitable for dimension determination, for the estimation of dynamical

parameter like entropy this choice could introduce discrepancy since a finite lag

would imply an averaging process and any time scale within the time lag will not be

taken into account. Till now there is no good prescription available for the accurate

estimation oftime lag.

3.4.7 Embedding Dimension

It is very tedious, especially for a high dimension system to compute the

correlation dimension by changing the state space dimension from a small value to

46



higher values until the estimated correlation dimension saturates. If an acceptable

minimum embedding dimension can be estimated, then the correlation dimension

need to be evaluated by embedding the attractor higher than the minimum

embedding dimension obtained, thus reducing excessive computation. The method of

False Neighbors (Kennel et al., 1992) observes the behaviour of near neighbors of

the attractor as it unfolds into higher dimension. A reliable estimation of minimum

embedding dimension is obtained by identifying false neighbors.

Consider rm nearest neighbor y,(i) of the vector y(i) in an m dimensional

space. The Euclidean distance between the points y(i) and y,(i) is

m—1

Rm2(i, r) = 2 [yo + kT) — yr(i + kT)]2 (3.21)k: 0

As the attractor unfolds into the next dimension, i.e. m+l, the Euclidean distance at

this dimension is

Rm+12(i, r) = Rm?-(i, r) + [y(i + mT) — yr(i + mT)]2 (3.22)

Any point in state space is designated as false neighbor if

1

lRm+12(i, r) — Rm2'(i, r) /3 _ lr/(i + mT) — Yr(i + mT)|
Rm2(i, r) — Rm(i, r) > Rtol (3.23)
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where, Rm; is some threshold. It is sufficient to consider only the nearest neighbor

(i=1) and scan the entire orbit points and find out the number of false nearest

neighbors. For a limited data set, a second criterion is required that considers the

extremity of the attractor. The second criterion as

RI)l+RT; > ,0. (3.24)
where

2 1 N . _ 2 _ 1 N .
RA — gglym — y ,y = fig yo) (3.25)

A nearest neighbor that fails either test is declared false neighbor.

Apart from determining the embedding dimension from geometric

consideration of attractors another method which is commonly used in noise

reduction can be used for finding the dimension of phase space. Singular value

decomposition, which is related to Principal Component Analysis, is used to

decompose the trajectory matrix into singular value matrix and unitary matrices.

Only the significant singular values are retained. In this transformation, the

reconstructed state vectors are transformed into the orthonormal basis vectors. The

number of significant singular values gives the embedding dimension oflhe space.
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3.4.8 Unfolding Dimension

The parameters correlation dimension and Kolmogorov entropy give

infonnation regarding the degree of freedom, dynamical state as well as rate of

dissipation of a dynamical system. In spite of several limitations of obtaining these

parameters from real data it has been found that these measures can be used in a

relative sense to study various conditions of brain by analyzing EEG. This triggered

the enthusiasm of researchers to apply it to clinical diagnostic purposes. Even though

these measures specify different states of human brain, any of these measures do not

indicate as yet any individual specificity and functional stability.

The information regarding the geometry and dynamics are considered only

for the state space dimension larger than the minimum embedding dimension. Any

information for lower than the minimum embedding dimension is discarded. Schmid

& Dunkii (1998) proposed a concept called unfolding dimension that measures the

rate at which an attractor unfolds as state space dimension increases. In this method a

plot of D2 versus dimension (m) is obtained for value of m as low as 1 to higher

values and to this plot a fit using a biparametrization is obtained as

= — ex 2 .D2 b [1 "mil <3 26)(m) o m J

where be indicates the attractor dimension and m* the unfolding dimension which

gives the rate at which an attractor unfolds. By applying this method to EEG, these
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researchers could note the intra individual stability and functional specificity in the

case of schizophrenia and remission as well as for normal.

3.4.9 Testing for Nonlinearity

A discussion in this chapter will remain incomplete without a mention about

the detection of nonlinearity in time series. The general notion in nonlinear

dynamical analysis is that if a saturated value of noninteger dimension value is

obtained in GPA then the system is considered as chaotic. However, it has been

found that the so-called 1/f— like stochastic systems also result in saturation. This

refers to those series whose power spectrum varies as (1/f)“. When a>0, the

saturation occurs at 2/(a-1). To detect nonlinearity present in the series Theiler et al.

(1992) introduced a discriminative test. In this method some linear process is

specified as null hypothesis, then surrogated data sets are generated which are

consistent with this null hypothesis. Finally, a discriminative statistics is computed

for the original and each surrogated data. If the computed value for the original data

is significantly different from the ensemble of values for surrogated data, then the

null hypothesis is rejected and nonlinearity is detected. The surrogate data sets are

randomized sequences whose statistical and / or spectral properties are similar to the

original time series. Three types of generating surrogated data set are Phase

randomized, Fourier shuffled and Gaussian scaled surrogate sets.

Phase randomized surrogate data set is generated by obtaining the Fourier

transform of the original data and the phases are then randomized. One then
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evaluates the inverse Fourier transform. The process gives linearly correlated noise

with the same mean, variance and power spectrum as the original data but the phase

information is destroyed.

In Fourier shuffled surrogate, first phase random surrogate of the series is

obtained for the original data. The amplitude of the original and phase randomized

are rank ordered and each value of the surrogated set is replaced by its corresponding

amplitude from the original data to get a new series. This series has the same

amplitude as the original data but in a shuffled manner. This is used for measuring

sensitiveness in amplitude change as well as autocorrelation.

The Gaussian scaled surrogates are designed to test the null hypothesis that,

all though the dynamics of the observed signal is linear it may be subjected to

nonlinear distortions. The original signal is transformed into another signal by a

static nonlinear filter. The filter is static in the sense that the output of the filter

depends only on the current value of the original signal. First a time series having

independent identical Gaussian distribution is formed, and then this series is

reordered so that its ranking agrees with the series obtained from the nonlinear filter.

The reordered series has the same Gaussian distribution as the filter output series and

it is then Fourier transformed, phase angle shuffled and inverse is taken to get the

surrogate data set. The final surrogate is obtained by rendering the filter output series

so that it follows Surrogate data set.
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Serious criticism has been raised regarding the chaotic nature of EEG by

conducting surrogated data analysis (Rapp et al., 1991). These researchers claimed

that EEG might have a simpler stochastic description and chaotic dynamical nature

of EEG may be spurious. However, it has been shown that surrogated data analysis

may not be sufficient to prove the stochastic nature of EEG (Pradhan & Sadasivan,

1997) by performing analysis on numerical data of classical chaotic systems, mixed

sine waves, white Gaussian, colored Gaussian noises and various traditional EEG

activity bands. White Gaussian noise and classical chaotic systems are discerned by

surrogate data set, colored Gaussian noise and mixed sine waves with less number of

sinusoids show behaviour similar to low dimensional system. But EEG show

saturation and limiting correlation dimension in all bands.

Rapp.(l990) has pointed out that the misapplication of nonlinear dynamical

methods can produce fallacious results especially when applied to biological data.

Nevertheless Rapp presented a general procedure, which is found to be very useful

for the analysis of complex signals. The analysis of data requires a thorough

understanding of the phenomenon. A brief account of the procedure with the same

rule as presented by Rapp is presented below

0 Never skimp on House keeping

The crucial aspect in these experiments is data acquisition. Usually the data is

acquired using Data acquisition card coupled to a computer. In this case data is to be

checked before and after transfer to the computer. Further packaging protocol,

amplifier gain and digitizer resolution should be checked. The entire experimental set
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up especially data acquisition unit should be checked with simulated signals. A

random signal can then be used to test the accuracy of the set up and dynamical

analysis algorithms. In short a good documentation of data is very essential for this

kind of analysis.

0 Test for Digitizer Saturation

The digitizer should not be in saturation region. The maximum and minimum

value of the analog signal should be within the working range ofthe digitizer. A 12

bit resolution is desirable.

0 Visually inspect the data

A visual inspection and comparison with the analog version of the data is

useful for identifying artefactual spikes and silent intervals introduced by the

digitizer.

0 Determine the natural time scale of the signal

A proper selection of the sampling time is very important. If the sampling

rate is high then the memory requirement is large. On the other hand less sampling

time reduces the information content. Evaluating the autocorrelation function of the

signal and finding the first minimum time lag can make a proper choice of natural

time scale of the system. However for a noisy data set this first minimum may be a

local minimum and a global minimum may provide a better estimate. Many

investigators_ take 1/e of its original value, as a measure of the signal’s time scale.

The autocorrelation function is robust to noise and can give a good measure of time

scale.
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0 Find the spectral properties of the signal

Even though there are several limitations for applying the spectral analysis

for nonlinear systems, this method is suitable for qualitative analysis of EEG signals.

Hence prior to the application of nonlinear dynamical method, looking for known

rhythms can make a check of the algorithms.

0 Testing for stationarity in time domain

Most ofthe algorithms developed in nonlinear dynamics require the condition

of stationarity. However the condition of stationarity may have different notion in

nonlinear domain. It is not clear whether the spectral stationarity and classical

statistical measures provide accurate information regarding the nonstationarity nature

of EEG data. Even then it still seems helpful in estimating the stationarity using these

measures.

0 Testing for stationarity in the Embedding space

Instead of looking for stationarity in time domain Eckmann, Kamphorfst and

Ruelle (1987) introduced a novel method for checking the stationarity in phase space.

In this method nearest neighbors are discovered and plotted for each point and the

pattern obtained is observed.

0 Construct phase portraits with different time lags

Two dimensional phase portrait is plotted with different time lag to obtain the

visual indication of two-dimensional geometry of the time series. This method

however does not provide definite indication of the dynamics of the system.
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0 Finding an appropriate embedding of the phase space.

Several methods are proposed to find the appropriate embedding dimension.

These are viz. 1) The autocorrelation function 2) Mutual information 3) Higher order

autocorrelation functions 4) False nearest neighbors and its variants 5) Legendre

polynomials 6) Continuity Statistics 7) Diagonal expansion 8) Singular value spectra

are some of the proposals.

0 Apply geometrical filter

The application of filter in time domain has several drawbacks. Hence

geometrical filters seems to be better in noise reduction as they operate in phase

space and not in time domain. These filters can also give misleading results if not

applied properly.

Besides above-mentioned procedures it has been suggested that all dynamical

measures should be validated with Surrogate data. Since the aim of the present

investigation is not to establish chaos or otherwise, the study of surrogated data has

been neglected and considered only the obtained parameters for a comparative study,

which may lead to clinical applications.

3.5 Analysis of Signals

In linear as well as in nonlinear methods the primary tasks are to find the

signal, the space in which the system can be represented, classification of signal and

developing a model based on the characteristic parameters. While the objectives are
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the same, the methods of analysis are entirely different. In linear domain, one

assumes a dynamics that satisfies superposition theorem. In nonlinear dynamics this

assumption is not tenable.

The main task is the signal separation and one must establish the differences

between the information bearing signal and interference. The problem of

identification of signal from noise is common for linear and nonlinear observer. The

observer assumes that in a linear system the source emits sharp spectral signals and it

is very easy to distinguish these spectral lines contaminated by broad band

interference. Since the difference between the signal and unwanted background is

clear, Fourier techniques can be used for separation. Further Fourier decomposition

can also be‘ used if the signal and contamination are located in quite different bands.

As it has been already mentioned in a nonlinear system, it is difficult to assess the

information content in broad band environment using Fourier representation. In a

nonlinear system, the pure signal and the noise do not remain separate for all times as

in the case of linear dynamics, but they may combine in a nonlinear fashion to

generate stochastic resonance modes. Hence in the nonlinear domain, reconstruction

of the signal in phase space by applying the various nonlinear noise reduction

methods (Kostelich & Schreiber, 1993) separates the signal from noise. The

geometric structure in phase space is characteristic of each chaotic system as the

behaviour is fundamentally multivariate. In the current studies of nonlinear signal

processing, there is three distinct direction of signal separation. First, the evolution

equation of the system is known and one has to extract the signal from the

knowledge of the dynamics. Second, with a signal measured at an earlier time as a
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reference signal one can establish the statistics of the evolution of the attractor and

use this statistics to separate from the subsequent transmission the chaotic signal

from the contamination. The third case is the most difficult one in which a one time

measured signal is only available and one make models based on this signal. There is

no knowledge of either the reference signal or the evolutionary equation

After the identification of signal, the next step is to represent the signal in

correct space. In the case of linear system, the natural choice is to represent the signal

in Fourier / Canonical vector space. If the source is invariant under translations in

time, the sines and cosines fonn the natural basis functions in which the original

signal is expanded with coefficients. Thus, the classifying parameters are the

coefficients of harmonic functions, represented by sharp spectral peaks in the Fourier

spectrum. If the source has transients or significantly high frequency content with

many localized events in time domain, the linear transform such as wavelets are

suitable for such localized events. In the case of chaotic signals, the Fourier

representation again fails, as the process is multivariate. With a suitable phase space

the parameters derived are the invariants of the orbit like Lyapunov exponents,

various fractal measures, linking numbers of unstable periodic orbits etc. For

developing models the parameters of the model are derived, to be consistent with the

spectral peaks in linear case whereas in the case of nonlinear model the parameters

are found consistent with the invariant classifiers like Lyapunov exponents,

dimensions etc. Some of these invariants are quantities that are unchanged under

various operations on the dynamics or the orbit as well as small variations in initial

conditions. This indicates that they are insensitive to initial conditions. Some of the
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invariants are further unchanged under the smooth change of coordinates and some,

topological invariants, are purely geometrical properties of the vector field describing

the dynamics. Some of these are used to establish the predictability of the nonlinear

system. Many of the chaotic systems are unpredictable due to instabilities in phase

space and the sensitivity to initial conditions. System identification in nonlinear

chaotic systems means establishing a set of invariants for each system of interest and

then comparing observations to that of library of invariants. Another area that has

wide applications in engineering is the signal synthesis. The main task is to study the

synchronisation of chaotic sources and thereby use these sources for communication.

Research in this direction has already been initiated which will be discussed in the

subsequent chapters.

There are both promises and problems with the approaches of nonlinear

analysis of signals. The promise is that the nonlinear data analysis in combination

with powerful nonlinear dynamical theory will give information regarding the

dynamical variables of the system. The problem is that whether the algorithms

developed in nonlinear domain actually detects chaos or another mathematical

transformation adding little new information in the understanding of the system.
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Chapter 4

ELECTROENCEPHALOGRAM AS A TIME VARYING SIGNAL

A brief account of characteristic of Electroencephalogram as a time varying

signal is discussed in this chapter. An account of clinical implication of the

characteristics as well as chaotic phenomenon observed in neural system is also

presented.

4.1 Electroeneephalogram

The electroencephalogram (EEG) is the recording of electric potentials

generated in the cerebral cortex due to involved mechanism of large number of

neurons. Generation mechanism of action potential in axon of a single neuron is

essentially due to the sodium-potassium pump while the generation mechanism in

synapses are essentially a physico-chemical process. in the case of axon, it has

potassium ion fluid inside and sodium ion enriched fluid outside. Hence there is a

negative electrochemical potential field across the axon membrane of the order of 80

mV. In the case of myelinated axon, there are unmyelinated regions situated at

regular intervals and these are called nodes of Ranvier. The potential firing takes

place at these nodes. However in certain cases the whole nerve is unmyelinated and

action potential can occur at any point along the length of the nerve. At the arrival of

a signal, at the nodes of Ranvier, a sodium gate open and there is avalanche of

sodium ions entering the nerve, thereby raising the potential to 40mV. This is a sharp

increase and is called the first phase ofpotential firing. However, there is a threshold
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and if the signal does not excite the process this firing does not take place. The

second phase is a slow recovery to the equilibrium negative state of - 80mV during

which the nerve discharges the sodium ions and get it enriched by the potassium ion

inside the nerve. Often the second phase offshoots the equilibrium level coming to a

level of about lO0mV and then come back to the equilibrium level of 80mV. The

time duration between the initial phase and the final phase is called the Refractory

time. A peculiarity in this process is that the amplitude ofthese firings is independent

ofthe stimulus strength, while the firing frequency has a linear dependence with the

stimulus strength. This shows that the process is indeed nonlinear and the fact that

there exists a threshold in the process introduces certain randomness. Hence the

whole process of nerve response to a stimulus is a random nonlinear process.

In the case of a synapse, the process is entirely different. The presynapse has

vesicles that deposit its content of neurotransmitters into the synaptic cleft. This in

turn reduces the electric resistance in the postsynaptic membrane and it activates

either calcium ions if it is an excitatory process or chloride ions if it is an inhibitory

process resulting in an action potential firing or its inhibition. This is a physico

chemical process, but the physical characteristics of the action potential firing are

independent of whether it is a sodium-potassium pump action or a synaptic

transduction. The fact that there is no attenuation of the amplitude is very significant

and this indicates that the whole signal transduction is not akin to a flow of current in

a conductor. The amplitude of the action potential remains constant along the axon.

This is because it derives energy for its propagation from the nerve itself. The

generated potential travels from the axon hillock to the terminals where the
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depolarisation releases neurotransmitter causes an excitatory or inhibitory potential

in other neurons. The action potential itself causes only a very brief current, which

does not penetrate far into the extracellular space.

The potentials generated by large number of neurons are integrated at various

stages of its propagation from input to the central nervous system and back to the

action muscle stage. Integration of electric potential in the cortex occurs mainly at

the vertically oriented pyramidal cells of the cortex. These pyramidal cells can

achieve these functions because of the following reasons. (1) The dendrites of the

pyramidal cells extend to nearly all layers of the cortex, guiding the flow of

potentials generated by postsynaptic potentials at either the cell body in deep layers

of the cortex or at dendrites in the more superficial layers through the entire

thickness ofthe cortex. (2) These neurons are closely packed and oriented parallel to

each other, facilitating spatial summation of the currents generated by each neuron.

(3) Groups of these neurons receive similar input and respond to it with potential

changes of similar direction and timing. The currents generated by these neurons

summate in the extracellular space and are limited to the cortex. However, a small

fraction penetrates through the meningeal coverings, spinal fluid and skull to the

scalp where it causes different parts of the scalp to be at different potential levels.

This constitutes EEG. Though EEG is produced by involved mechanism of large

number of neurons it is difficult to provide a valid explanation in terms of the

underlying single neuronal processes.
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4.1.1 Nature of EEG patterns and their characterization

A variety of patterns appear in “normal” EEG and it is difficult to

characterize a normal EEG. However, it is believed that there are a few abnormal

patterns in EEG. Hence, usually EEG is defined based on the presence of abnormal

patterns. Although abnormal brain functions are reflected in EEG, it is not essential

that normal EEG reflect only normal brain functions. However, most abnormal EEG

pattern indicates abnomial brain function. Also, there may be abnormal patterns in

EEG of persons without any brain disease. Therefore, a visual inspection fails to

provide accurate diagnosis of brain function. Some of the abnormal patterns

identified in clinical diagnosis are spikes and sharp waves, certain slow waves and

amplitude changes, which are known to be abnormal in different age group. Further

EEG characteristics depend on age group also. The normal EEG undergoes

enormous changes from premature period upto the age of 19 years, whereas normal

EEG in general show very little changes in the age group of 20 to 60 years. Above 60

years of age, some of the abnormal patterns are considered as normal.

For.visual inspection of EEG, the understanding of different waveforms is

important. The different waveforms identified are as follows. These waves with

uniform appearance due to symmetrical rising and falling are called regular waves.

Some of them similar to sine waves are called sinusoidal. Other regular waves are

arch-shaped or saw-toothed. A transient is an activity that can be clearly

distinguishable from its background activity. It may be a single wave or a sequence

of two or more waves. Spike has duration of 20 to 70 msec whereas sharp wave has
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duration of 70 to 200 msec. A spike may be followed by a slow wave and form a

spike - and - wave complex which may have a frequency of less than 3 1-12. In some

cases there may be two or more spikes called multiple spike complexes. Spikes and

sharp waves are generally considered as abnormal patterns. Single spikes and sharp

waves and complexes which contain spikes and sharp waves and last for less than a

few seconds are called interictal epileptic form activity. The longer lasting activity of

spike and sharp waves and of some other types are called ietal pattern.

Based on frequency EEG waves are classified:

0 Delta waves — under 4Hz

0 Theta waves — from 4 Hz to under 8 Hz

0 Alpha waves — from 8 Hz to under 13 Hz

0 Beta waves — over 13 Hz.

There are waves in EEG that extends across the boundaries of the above mentioned

frequency bands. Waves under 8 Hz are generally called slow waves whereas waves

above 13 Hz are called fast waves.

The amplitudes of EEG are in microvolts and they are classified as low

(under 20 mierovolts), medium (20-50microvolts) and high (over 50 mierovolts).

The differences in amplitudes observed from the corresponding two sides of the

brain has great clinical significance, provided it has to ensure that it is not due to

external factors like unequal spacing and impedance of the recording electrodes,

difference in amplifier gain and several such other factors. The distribution of the
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activity is also important from clinical point of view. This can be observed by

placing electrodes at different locations on the scalp. Eight channel recordings are the

ones normally used. However, sixteen or more channels can provide a better spatial

resolution. Generalized distribution refers to that activity which occurs at the same

time over most or the entire headspace. Lateralized distribution refers to activity that

appears only or mostly on one side of the head. This type of activity suggests

abnormality. Some normal patterns may also appear on one side of the head at one

time and later occurs on the other side after a few seconds or minutes without being

abnormal. Focal activities are also observed and are restricted to one or a few

adjacent regions.

Another measure that is often used is the phase relation. In this context phase

refers to polarity and timing of components of waves in one or more channels. If the

trough and crest of waves in one of the channels coincide with any of the waves in

other channels, then these waves are said to be in phase. If peaks are pointing in

opposite direction then they are said to be out of phase or phase reversal. Similarly, if

two activities occur at the same time they are said to be synchronous. Waves that

occur at the same time on both sides are called bisynchronous. This term corresponds

to the activities between two sides of the brain. The waves that occur in different

channels without any relation in time to each other are called asynchronous. If waves

occur in one region at one time and in another region at a different time are said to be

independent.
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4.1.2 Normal and Abnormal EEG patterns

The normal EEG of an adult shows various types of activity. Alpha rhythm is

the most common one with regular waveform and often sinusoidal in nature. The

frequency ranges from 8H2 to 13 Hz in different subjects and is almost constant in

any one subject. The frequency of alpha rhythm in the two hemispheres is same. A

slight decrease in frequency is the indication of abnormality in that hemisphere. The

phase relation over different parts of the brain may vary. Individual alpha waves are

not synchronous in different areas in normal EEGS. The amplitude of this rhythm is

greatest and persistent in occipital and parietal regions. Alpha rhythm may appear in

recordings from a frontal electrode referred to an electrode on the ear. The

physiological significance of alpha rhythm is still unknown. Beta rhythms are less

common compared to alpha waves. They appear either in a wide distribution or

limited to the frontal or posterior head regions. Beta rhythms over 30 Hz usually

have very low amplitude. These rhythms disappear during drowsiness and sleep. The

amplitude ofthe beta waves is usually lower than the alpha waves and amplitude and

distribution is symmetrical. The ratio of beta to alpha activity increases with age but

this ratio does not have any known clinical significance. The presence of beta

activity in an older person reflects better cerebral function than its absence. Like

alpha, the physiological significance of beta rhythms is also not clear. Another

rhythm seen in less than 10% of‘ EEGS are Mu rhythm that consists of arch shaped

waves at 7-1! Hz. This type of wave seen in central or centro-parietal regions

appears in trains‘ upto a few seconds. Mu waves intermix or alternate with beta

activity and has a frequency similar to alpha waves. Nevertheless this rhythm is seen
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when alpha rhythms are blocked. Mu rhythm is normally intermittent and

asynchronous.

An EEG is consz'derea' abnormal, if it contains any of the abnormal patterns

like epileptic form activity, slow waves, amplitude abnormalities or any of the

pattern resembling nonnal activity but difference in frequency, reactivity or other

features. The epileptic form activity can be ofthree types, Localized, generalized or

special patterns. Similarly for slow waves, the patterns are localized, generalized or

bilaterally synchronous and for amplitude abnomialitics, localized and general

amplitude changes. Each pattern is identified either with general cerebral pathology

or specific neurological diseases. Local epileptic form activity is due to a focal

irritative lesion of the cerebral cortex whereas generalized epileptic form activity is

associated with a variety of conditions that increase the excitability of subcortical

centres, or wide parts of cortex or both. Special epileptic form activity has a great

variety of pathological correlates. Local slow wave is due to damage of white matter

of the hemisphere whereas generalized asynchronous slow waves are due to

involvement of subcortical white matter than of the cerebral cortex. Bisynchronous

slow waves are due to involvement of subcortical and cortical grey matter.

Amplitude changes are often due to superficial lesions or decrease of production of

electrocortical potentials.

Different types of neurological diseases can cause cerebral lesions. Many

diseases causes more than one types of cerebral lesions however not all types of

neurological diseases can cause EEG abnormality. In some cases, EEG may show
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abnormality without any evidence of diseases. This is because visually the pattern

appears to be normal the hidden infonnation is not completely revealed. This has

been demonstrated in a previous work in which they showed that even after the

epileptic seizure the EEG appears to be normal. However many of the dynamical

features are quite different from those prior to seizure (Lalaja et.al.,l987). As such,

there is no method to quantify the information content present in EEG. Fourier

analysis may appear to be the natural choice. However being a linear method is

totally inadequate, since it fails to characterize much of the nonlinear infonnation

present in the signal.

4.1.3 Dynamical aspects of EEG

The usual brain mapping scheme such as X my computer aided tomography

(X-ray, CT scan), Positron Emission Tomography (PET) or Magnetic resonance

imaging (MRI) maps the blood flow in the brain and not directly the neuronal

activity. However; they give information regarding the large time scales. EEG is the

only signal that has information regarding large class oftime scales. Hence, the EEG

study could give greater information regarding the activity in the complex system.

Eventhough the present clinicaldiagnostic value of EEG is low, recent developments

in nonlinear dynamics enable one to determine various measures from EEG and can

hope to obtain a deeper understanding of hidden information from EEG. In nonlinear

dynamics, EEG is considered as a time series. This however represents the entire

dynamics of brain. However, a proper functional marker has yet to be developed

from EEG. Otherwise the characteristic parameters obtained from nonlinear
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dynamical method or any other method would not give a deeper understanding of the

brain functioning as compared to that obtained from EEG reading by visual

inspection. The problem of fixing a base line (normal) in nonlinear domain is still not

solved. This is because the parameters are found to be highly sensitive to

psychological state of the subject (Lalaja, 1990) and thus many results obtained are

psychologically integrated rather than psychologically invariant.

In linear systems as the frequency content are important spectral measure by

Fourier analysis are widely used to study the different rhythms in EEG. In this

however, it is also assumed that EEG signals have a random component due to

random firing of large number of neurons. An EEG series is usually considered as a

linear stochastic process. Based on this assumption standard digital signal processing

tools like FFT, autoregressive, and autoregressive moving models are utilized for the

analysis of these signals. The brain activity in waking state is desynehronised

whereas there occurs partial synchronisation during eyes closed condition. However,

during sleep there appear various transitional states. Low amplitude and highly

periodic slow wave activity is seen in deep anaesthesia. Spikes and waves are usually

associated with epileptic seizure while high alpha activity and increased coherence

appear during meditation. The psychotic or mental disorder has not yielded any

specific spectral characteristics. The cognitive activities or intensive mental tasks

have not produced any disceming patterns in EEG different from background activity

with the application of spectral measures (Pradhan, l999). The broad band nature of

EEG found in various states of brain activity does not provide any additional

information thus makes it difficult to understand the dynamics of brain in linear
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analysis (Jansen & Brandt, 1993). Nevertheless nonlinear dynamical analysis provide

information during these activities. A brief review of efforts from the nonlinear point

of view in the analysis of brain dynamics is presented in the next section.

4.2 Chaos — Neurons to Brain

Although, a great deal of study has been conducted by observing the spectral

properties of the EEG, the dynamical aspects are still not known clearly. The

nonlinear dynamical analysis is currently tried in finding these characteristics. A

brief review of work on nonlinear dynamical analysis of EEG and brain function is

presented here. To understand the brain from EEG from nonlinear dynamical point of

view, the methods developed in nonlinear dynamics and deterministic chaos is

employed. Several “invariant” parameters have been developed to understand

complex system. The parameters like metric dimension, entropy and Lyapunov

exponents are commonly suggested parameters of which dimension, especially

correlation dimension is widely used. The algorithms for evaluating these parameters

are developed for complex systems in general. However, due to limitation in

applying these algorithms many of them have been modified. The algorithms and

their modifications are presented in the next chapter. Here a brief review on

applications of chaos theory from Neurons to Brain is presented.

With the development of nonlinear dynamical methods and theory of

deterministic chaos, a great deal of interest has been shown by several investigators

to observe chaos from neurons to brain. In neuron dynamics the behaviour of normal
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silent neurons can be viewed as a fixed point of a dynamical system (West, 1990).

Similarly, the train of periodic pulses can be represented as a limit cycle and irregular

behaviour as a chaotic attractor. The first evidence of chaotic behaviour in isolated

neuron was observed by Hayashi et al. (1982). This group showed aperiodic

behaviour when excited by sinusoidal stimulation. Initially the neuron-produced

entrainment with an applied stimulus gradually became aperiodic. Chaotic behaviour

is also observed in two types of giant neurons: in the isolated oesophageal ganglion

of Onchidium verruculatum and marine pulmonate mollusk (Hayashi et al., 1983,

1987). Chaotic activity is also observed in the interspike interval as well as in the

membrane potential under various types of sinusoidal stimulation. The attractor was

reconstructed using Poincare map. Many nonlinear features were observed in the

giant axon of squid Doryteuthis bleekeri (Aihara et al., 1985).

Many of the above—mentioned experiments require a highly concentrated

ionic medium and high forcing sinusoidal stimulus to produce self sustained activity.

Further, the neurons are isolated from the body, which is far from the real situation.

Matusumoto and co workers (1987) showed for the first time chaotic activity under

regular trains of current pulses instead of sinusoidal current. Pulse train also produces

chaotic behaviour in the giant axon of squid, immersed in normal seawater (Aihara

et. al., 1984). On evaluating the correlation dimension at two different points of axon

it has been found the values are 3.2 and 3.4 indicating a stable propagation of this

behaviour, along the axon. Chaos thus is seen in any information processing. Based

on chemical induction (cocaine) L. Stagnalis Holden et. al. (1981) showed the

existence of chaotic oscillations in pond snail. They used a high concentration of
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aminopyridine on mollusk and found that on prolonged exposition neuron passes

through a range of periodic and irregular behaviour in which each state persisted for

several minutes. Due to strong nonlinearity, the single cells can exhibit chaotic

behaviour. The significance of chaotic behaviour in the functioning of a given cell

and its interaction with other cells remains an unsolved problem. Pratap (2000) has

made an effort in this direction.

Moving towards practical situation, study of cell assemblies in animals

provides an insight into the behaviour of neuron in association with other cells. Rapp

and colleagues conducted a correlation dimension analysis (Rapp et al., 1985) of

interspike interval of 10 single neurons of which three showed a relatively low fractal

dimension (2.2 — 3.5), two gave value between 5 and 7 and the rest behaved

randomly. The limitations pointed out are absence of information regarding fast

firing neurons and sufficient data length to detect high dimensional chaos. To

understand the chaotic activity of brain due to motor activity, Mpitsos and co

workers (1988) deafferented the cerebral ganglion in the mollusk Pleurobranchaea

califomica, a sea slug and observed patterns corresponding to rhythmic motor related

activity. They found decrease in autocorrelation function, correlation dimension

between 1.75 and 2.5 and positive Lyapunov exponents (0.15 — 0.55 bits /sec). They

also did a study to understand the chaotic nature of motor pattern generation

considered as an artificial neural network model with one input unit, one output unit

and four hidden units. They found this network is capable to distinguish various

chaotic signals. Thus, they concluded that the information exchange between various

parts of the brain is coded in as various degrees of chaos. Freeman and associates
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investigated the perceptive events in the olfactory system of rabbit (Freeman, 1979,

1987) and developed a model of the bulb with nonlinear-coupled ordinary

differential equations. The rabbits were trained to respond to two different odors in

different ways. After conducting study based on Freeman’s model it was concluded

that during this process the bulb operates as a global dynamical system. This

interpretation is due to the observation of evoked pattern in the whole bulbular

surface (Yao & Freeman, 1990).

Another type of activity seen in biological data is the reaction of the system

to a learnt odor. In this case, the surface EEG has an almost coherent state that

vanishes during expiration (Skarda & Freeman, 1987). The next type of modelled

biological activity is that of an epileptic seizure. Based on the model of Freeman it

was concluded that during seizure the transmission between the bulb and other parts

of the system collapses. The correlation dimension is found to be around 2.76. The

recovery from seizure is not yet understood. Roschke and Basar showed in cats that

during sleep the auditory cortex, the hippocampus and the reticular formation can be

characterized as in a state of hypersynchrony over the whole cortex. Signals in

auditory cortex showed the highest correlation dimension followed by those in

reticular formation and then in hippocampus. They also suggested the detection of

chaotic activity in high frequency window.

Several papers have been presented regarding the dimensional analysis of

EEG (Jansen & Brandt, 1993). Many of these investigators used the dimension

estimate algorithm of Grassberger and Proccaecia (1983). Babloyantz and their group
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(1985) presented the first report of estimation of dimension. Later several

investigators reported the dimension of EEG, the values ranging from 1 to 8. Though

the reliability of these estimates are still on trial, a great promise is seen to apply

these concepts for various conditions of brain (Rapp, 2000). The general finding in

spite of discrepancy in values are the eyes closed EEG found to be of lower

dimension compared to eyes open. During mental task, the dimension value

increases. A brief summary of the dependence of dimension of human EEG on

various conditions of brain is given Table 4.1. The list is incomplete. However, this

gives a clear indication of importance of nonlinear dynamical methods of analysis to

various emotional, cognitive, perception, personality, aging and different states of

consciousness as also under different pathological states ofthe subject.
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Table 4.1: Dimension value under various conditions ofbrain

State of the brain Dimension.
Coma (appalic syndrome) Decreased compared to wakefulness.
Anaesthesia (with sedatives) Reduced compared to wakefulness and

dreaming.
Sleep Markedly reduced during deep sleep

compared to wakefulness and dreaming.
Menstrual cycle No difference during different phases of the

cycle.
Ageing — 7 years‘ upto 50 years. Monotonous increase with age intelligence,

increased in intelligent persons when no
stimulus presented.

Musically sophisticated versus untalented
subjects.

Markedly reduced during regular
rhythmical music in subjects preferring
simple music.

Focused attention. Reduced compared to imagery and rest
attentiveness.

Creativity Slightly increased compared to convergent
thinking

Positive feelings Increased compared to negative feelings
during rest condition.

Love Pronouncedly reduced in persons in love
compared to persons not in love.

Pain Reduced during thennic pain compared to
control condition.

Smoking Reduced in smokers after smoking
Clonazepam (antiepileptic) Increased compared to plecebo
Carbamazepin (antiepileptic) No change compared to placebo
Parkinson disease Increased during performance and

imagination of complex tasks.
Schizophrenia Markedly increased in frontal lobe, reduced

parietal lobe.
Chronic pain Increased during imagined pain in pain

patients and pain sensitive persons
compared to rest condition and healthy
persons.
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Chapter 5

NEURAL MODELS

Brain is the most complex system in the universe and there is no theory as

such that explains the functions ofbrain. The present scientific theories are based on

the few fundamental principles and the phenomenon observed in a few experiments.

Some neural models have been proposed to understand the functioning of brain.

Physiologists and psychologists apply these models for clinical purposes. Physical

scientists on the other hand use these models for solving complex problems with the

help of computational network that mimics some of the functions of brain. Work in

this direction has led to the development of an interesting computational method

called “Artificial Neural Network”. This chapter presents a general overview of

different neural models that have been applied in Neural network theory.

Nerve cells are the cellular constituents of the brain specialized for rapid

intercommunication. On the application of strong stimulus, these nerve cells generate

potential pulses with amplitude constant and firing frequency depending upon the

stimulus strength. There is immense complexity in neural interconnectivity and the

overall system is very complex. There are about 50 neurotransmitters and depending

upon the type of receptor proteins embedded in the neural membrane,

neurotransmitters and currents either depolarize the membrane so that the neuron is

excited or else they hyperpolarise it so that the neuron is inhibited. The common

neurotransmitters are acetylcholine and 7- amino-butyric acid. There is a high degree

of randomness in neural firing.
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I-lodgkin & Huxley (1952) formulated a mathematical equation based on the

observation of generation and propagation of action potential in squid axon. These

equations evcnthough are very complicated, provide fairly accurate representation of

generation and propagation of action potential. The first neural network model was

proposed by McCulloch and Pitts (1943). They proposed a network that can perform

problems like simple arithmetic, classifying, storing and retrieving finite data set,

recursive application of logic rules etc. The neural model consists ofa set of binary

elements, which are neurons that are either on or off and the output of each neuron

depends upon the input in which weights are fixed. Influenced by this model von

Neumann developed the first digital computer using the model and logical notation

developed by McCulloch & Pitts. Although binary logic was adequate to prove the

model proposed by McCulloch & Pitts it was not satisfactory as a brain model. One

of the most striking aspects of the nervous system is its ability to perform in the

presence of noise with unreliable elements. The nervous system also has the ability

to respond to related but differing stimuli and show a degree of tolerance to

perturbations of its inputs. All these features are difficult to realize with the binary

model. Despite these limitations, McCulloch-Pitts model is important in the sense

that it can embody whatever operations and processes those that can be described in

logical terms. Winograd & Cowan (1963) constructed a redundant neural network in

which they utilized a distributed representation of information. This provides an

insight into the functioninguof neural networks in the brain even if some ofthe units

are damaged. Eventhough the different brain regions are specialized for different

functions, the scale of such a localization of function need not extend down to a

single neuron. In short, there is the collective dynamics of neurons that give rise to a
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specific task. Hebb proposed that the connectivity of the brain is continually

changing as an organism learns differing functional tasks, and the cell assemblies are

created by such changes. Hebb postulated that repeated activation of one neuron by

another, across a particular synapse, increased its conductance to that group of

weakly connected cells, ifsynchronously activated. This would tend to organize into

more strongly connected assemblies. The representation ofinformation is distributed.

The study of various changes in neuronal activity is called Neurodynamies.

Rashevsky and coworkers started the field of Neurodynamies in which they used

calculus rather than logic to study neural nets. They represented the activation and

propagation in terms of differential equations and tried to make contact with the

related applications in the physical problems (Cowan & Sharp; 1988).

Hebb’s model triggered the development of adaptive neural networks that can

learn to perform specified tasks. Thus, pattern classification and pattern recognition

became the central theme for building neural networks. The major approach in

pattern recognition problem was the result of Perceptron model. Perceptron model is

a modification of McCulloch-Pitts model with modifiable interconnections that can

be used to classify certain sets of patterns that are distinct. It consists of a set of

‘sensory’ units connected to a set of ‘motor’ units. Initially the weights are set

arbitrarily so that stimulation will result in arbitrary output. However, depending

upon the process and the error in the output the weights are adjusted to get the

desired response. Adaline is a closely related variant of perceptron model. The

difference between Adaline and Perceptron lies in the training procedure.
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There are several limitations of Pereeptron and Adaline models. These

models fail to recognize several ofthe simple patterns like T and C and this is due to

the nature of McCulloch-Pitt’s neurons. Further, implementing the function ‘ x or

ELSE y’ and its negation requires several units. The limitation is overcome with the

introduction of modified architecture with ‘hidden units’. Though Pereeptron or

Adaline model with only single layer units is not computationally universal, the

problem of assigning credits to the hidden units in multilayer perceptron models is

unsolvable. The limitation of single Perceptrons and Adaline models can be

overcome with a more complex architecture incorporating hidden units with

modifiable connections. The notable feature of the Pereeptron is that its memory is

distributed and therefore less likely to be disrupted by damage‘. I-Iowever, the

Pereeptron model does not address the associative feature of human brain.

Taylor(1964) introduced the neural net with associative memory that is similar to

Pereeptron model with no hidden units, except that the units are not McCu1loch-Pitts

units. The net learns to associate different sensory patterns through repeated

presentation of pairs of patterns. In Taylor’s net associated memory is stored in a

distributed fashion. Later Taylor introduced a more elaborate net that is capable of

forming associations with paired stimuli in a more reliable and controllable way. A

similar net was introduced by Steinbuch that consists of a planar net of switches

interposed between arrays of ‘sensory’ receptors and ‘motor’ effectors. This scheme

is called Learning Matrix. Learning matrices have a simple mathematical structure

and their performances can be readily analyzed. Several network models with

associative property have been proposed following the work of Steinbuch. Marr

(1969) proposed a theory that explains the function of cerebellum in animals to make
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delicate and precise voluntary movements and the mechanism of temporary storage

of memory in hippocampus. Man"s theory is interesting as it assigns specific

Function to each neuron in a part ofthe brain.

Most noteworthy among all these models are that proposed by Anderson and

Cooper (1978). Eventhough the functions of individual neurons in many parts ofthe

brain have been well understood the manner in which large interconnecting network

of neurons produce mental activity by collective process that is not well understood.

This is true especially when one tries to understand the activity of single cells its role

in higher cortical function or to localize any region of the nervous system in which

the memory is stored. A basic problem in understanding the organization of memory

in biological system is to understand the vast information storage and retrieval

mechanism of a system composed of vulnerable and relatively unreliable elements.

The problem of distribution of memory over a large number of cells has been

addressed in Anderson & Cooper’s model.

Anderson and Cooper introduced a class of neural models for the acquisition

and storage of distributed memories that display features such as recognition,

association, generalization and some of the features of mental behaviour associated

with animal memory. It has been suggested that much of the learning and resulting

organization of the central nervous system occurs through some kind of modification

ofthe efficacy or strength of at least some of the synapses, thus altering the relation

between presynaptic and post synaptic potentials. A small but coherent modification

of large number of synaptic junctions can result in distributed memories. The
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neurons of the primary sensory areas display various forms of stimulus selectivity,

i.e.: they may respond preferentially to a tone of a given frequency, a light spot ofa

given color, a light bar of certain orientations etc. Thus, stimulus selectivity is

considered ‘as the general property of sensory neurons and conjecture that

development of such selectivity obeys some general rule.

In a distributed memory the simultaneous or near simultaneous activities of

many different neurons are considered. A large spatially distributed pattern ofneuron

discharges, each of which might not be very far from spontaneous activity, could

remain important even ifthis is hard to detect.

In developing the model Anderson and Cooper considered N neurons

1,2,. . ...,N each of which has some spontaneous firing rate rjo. Then a vector has been

defined whose component are the difference between the actual firing rate rj ofthe j"‘

neuron and the spontaneous firing rate rj-0. Thus

f- = rj — r-° (5.1)
Two such banks of neurons are connected to one another by replacing the

multiplicity of synapses between axons and dendrites by a single ideal junction. This

summarizes logically the effect of all the synaptic contacts between the incoming

axon branches from neuron j in the F bank and the dendrites of the outgoing neuron i

in the G bank neurons. F is concerned with incoming signals and G with responses.
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Although the firing rate of a neuron depends in a complex and nonlinear fashion on

the prcsynaptic potentials, there is usually a reasonably well defined linear region.

The firing rate gi of neuron i in G is mapped from the firing rates of all the neurons

lI'lFby

Nga = §lAijfj (5-2)
The neural activity fin the F space is mapped into the neural activity g in the

G space and this can be written in a compact form as

g = Af (5.3)
where A is a matrix with elements A;,-_

Thus it is in modifiable mapping ofthe type A that the experience and memory ofthe

system are stored. In contrast to machine memory, which is local, the animal

memory is likely to be distributed and addressable by content or by association. It is

convenient to write the mapping A as

A = ZCWg“ x fv (5.4)
llV

Parikh and Pratap (1984) developed an evolutionary model in"the framework

of nonequilibrium statistical mechanics as developed by Brussel ‘-%School. In
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developing the model, they followed the Anderson and Cooper's method to simulate

the memory effects. Consider a network of N neurons that are all linked to each

other. In the absence of input, the neurons have a certain amount of spontaneous

activity, which is described by the firing frequencies rj-0. The firing frequency is

random in time and rj-0 is considered as random variable having a distribution around

the time-averaged mean. The difference between the actual firing rate rj and the

spontaneous firing rates rl-0 is represented as

h9 = r- — r-° (5.5)
The same stimulus can lead to firing patterns that vary from trial to trial, but the

average of the firing rates is roughly constant. Therefore, the frequencies h? are also

random variables distributed about appropriate mean values. In order to simulate the

memory effects consider the time interval — co to 0 (at instants B.‘ [32, .... .. ,[31() there

have been K experiences and associated correlations, defined by certain input and

output firing rates. Denoting input and output firing rates as fjy and gin respectively,

where v and p take values from 1 to K and i, j=l,....,N neurons for all the past K

events. Here fjv are the afferent frequencies of the v"‘ species at the instant j and gig

is the efferent one. By defining the state ofthe neural network at t=0 by a distribution

function  {ff}, {h?},t = 0). The problem is to obtain the distribution

{gin}, {fly}, ihfl, t — r) is defined as a transitionfunction p({gi}, t). If G({ga}
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probability, which takes the state at t-I to t, then one can obtain p({gi }, t) by

writing an evolution equation as

o([g..},t) = 3Idlgt‘lId{frlldlh?lG({ga}

wllgtls {fr}, lhtlwldr

lga“},{fi-“}» {hilt - T)
(5.6)

It may be noted that the time appears in the transition probability as t-I and Eq. (5.6)

is non Markovian in nature.

In this equation, G is the kernel in the integral equation. This kernel G maps the input

stimulus at t=0 into an output at t>0. Different hypothesis about the synaptic

changes would lead to different fonns for G.

The evolutionary model proposed by Parikh and Pratap became the starting

point of developing a nonlinear nonequilibrium model of Neurodynamics. As the

equation is non Marckovian in nature, it takes into account all the past experiences in

predicting the future. This would also mean that all the time scales play a very

significant role in the dynamics. The time scales that could exist in a neural system

are discussed in chapter 7. Again a new parameter called "concept" has been

introduced. Thus the "concept" is "leamt" if the set of output firing rates approaches

a characteristic set of numbers on repeated input of the same type. This model is a

general evolutionary model of a distributed memory with the "Kernel" in the

equation simulates the changes in the synaptic behaviour produced by external

stimuli.

83



Chapter 6

SYNCHRONIZATION PHENOMENON IN INTREACTING SYSTEMS

The characterization of systems from time series using the nonlinear

dynamical methods employs a notion of phase space and different parameters

derived from this space. Eventhough this method is powerful in understanding the

temporal evolution of a system, an effort has also been made to understand the

spatio-temporal dynamics. In this however, the time series is reconstructed using not

only the temporal variables but also spatial co-ordinates. This is found not suitable

for understanding the dynamics of complex systems. To understand such systems it

is essential to know the dynamics of subsystems or interactions among subsystems.

Recently developed methods of understanding the interactions between subsystems

include phase synchronization method proposed by Kurth’s group (Rosenblum et 211.,

1996), methods of False neighbors and other related methods to study the

synchronization of chaotic oscillators. It has been found these parameters and

methods have applications in various branches of science and engineering. The

notion of synchronization and phase is quite different from classical definitions.

Mathematical modeling and simulation as an appropriate tool to uncover the

mechanisms of coordination in physiological systems is difficult, since one cannot

have control on the various parameters. However, a qualitative knowledge of

collective dynamics of the system can be made from the study of time series that is

being generated. Hence, it would be worthwhile to discuss this newly developed

concept in detail.
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6.1 Phase Synchronization Using Hilbert Transform

Synchronization, which is a basic phenomenon in physics, has been defined

in classical sense, as adjustment of frequencies or phases of periodic oscillators due

to weak interactions. This notion of phase synchronization has been applied to

chaotic systems also. Nevertheless, one needs a clear definition of phase in such

systems. Due to interaction of two or large number of chaotic sub systems, states of

systems can coincide while the dynamics in time can remain chaotic. In phase

synchronization method, the importance is given to phase locking without giving

much importance to amplitude. An ideal case would have been to study the

coherence i.e., phase as well as amplitude synchronization. Since this method is

developed for chaotic systems where the amplitude is chaotic, phase synchronization

is defined as appearance of certain relation between the phases of interacting sub

systems.

It has already been mentioned that in this domain the phase has to be defined

clearly. In the case of periodic oscillators, the dynamics of stable periodic

oscillations are represented by a stable limit cycle in phase space. Thus the phase can

be defined as

_ = mo (6.1)
where 0)0=2TlZ/To, To being the period of oscillations. When a small periodic force

with frequency Q is acting on periodic oscillations the phase is obtained as

85



E = we + G(¢, W) (6.2)

where

d—‘t” = Q (6.3)
G(.) is 211 periodic in both arguments.

Here the phase corresponds to zero Lyapunov exponents while amplitude

corresponds to negative exponents. When two periodic oscillators interact the

synchronization can be defined as

|n¢(z) — m gy(t)| < Constant (6.4)

or weaker condition of frequency is

_ :12 -2cu-<dt>—nQ (6.5)
where n and m are integers and < > denote the average. In the presence of small noise

there occurs phase slips whereas in the presence of large noise the above mentioned

properties are destroyed.
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In the case of chaotic system, it is not possible to give a general definition of

phase. Pikovosky et al. (1997) considered three definition of phase.

(a) The phase is defined by considering a projection of attractors in the (x,y)

plane and finding the smeared limit cycle around the origin or some point which can

be considered as the origin and attributing to each rotation. It is defined as

t— t4),. = 2n——l“ + 21tn tn 3 : < rm (6.6)
t‘n+1 ‘ tn

where t,, is the time of the nm crossing of the secant surface. This definition coincides

with the definition of phase in the case of periodic oscillators. From nonlinear

dynamical point of view, this definition of phase corresponds to the direction in

phase space with zero Lyapunov exponents. The problem of this method is to find a

proper Poincare surface and hence this method is difficult for experimental signals.

(b) The second definition however uses the same concept as previous one but

the phase is defined as the angle between the projection of phase point on the plane

and a given direction on the plane. Thus phase

gfip = arctan(§) (6.7)
where x and y are the coordinates corresponding to x-axis and y-axis respectively.

This also has same drawback as the previous one. Further, the above (1),, and (hp do not

coincide on a time scale less than the average period of oscillations.
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(c) The above mentioned definitions require a reconstruction of attractors in

phase space and finding an appropriate projection. This in fact is difficult for

experimental signals with a small amount of noise. The third definition of phase uses

a different concept such as analytical signal processing. In this approach the

instantaneous value of phase and amplitude for an arbitrary signal s(t) is calculated

by defining a complex analytic signal ¥’(t) as

;//(t) = s(t) + z'§(t) (6.8)
where §‘(t) is the Hilbert transform of s(t).

f9”(t) = P.V E SW dz" (6.9)1

7r t—T

where P.V stands for principal value in the Cauchy sense.

Thus, amplitude and phase of an arbitrary signal is uniquely defined. The Hilbert

transform §(t)of s(t) can be considered as a Fourier convolution of s(t) and 1/nt.

Hence Fourier transform §(a))of '§(t) is the product of Fourier transform of s(t) and

1/rrt. The instantaneous frequency a) (t) may have negative values as it is the rate of

change of ¢ (t) and these values are neglected to have only positive frequencies that

are meaningful. Hence for a physically relevant frequency

§(iw) = —iS(ia)) (6.10)
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This can be obtained by passing the signal s(t) through a filter whose amplitude

response is unity and phase response is constant/with 7r/2 lag at all frequencies.

Although the method using Hilbert transform defines phase of a signal, its validity on

the definition of phase of a dynamical system is questionable. However, an important

advantage of analytical signal concept is that the phase can be easily obtained from

the measured scalar time series.

The above three definitions of _phase have been applied to some of the

standard chaotic oscillators. As there is no unique definition of phase, the phase is

defined here is in a reasonable and consistent way.

The experimental evidence for phase synchronization is given by Parlitz et.

al. (1996). They showed the experimental evidence of phase synchronization in two

unidirectionally coupled Rossler systems implemented on an analog computer. For

irregular, nonstationary and noisy bivariate data a new method in the framework of

phase synchronization has been developed by Tass et.al.(l998). This method is used

to detect alternating epochs of phase locking from nonstationary data thereby

extracting information regarding the interdependence of weakly interacting systems.

This method is used to understand the part of the nervous system involved in the

tremor muscle activity of Parkinson's disease. The synchronization between the

activity of remote brain areas in humans and the muscle activity is understood by

means of noninvasive measurement. Based on the work of Stratonovich (1963), the

synchronization of noisy system is viewed as appearance of peaks in the distribution

of the cyclic relative phase. Strong noise can cause phase slips; hence phase
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synchronization is considered only in a statistical sense. Phase synchronization is not

equivalent to correlation. However it reveals the different characteristics of the

system interdependence.

The information regarding the phase synchronization is extracted from

bivariate data by computing phase of each data set ¢1(t) and d>2(t) by Hilbert

transform. Because of phase fluctuations and slips due to noise, the histogram of

relative phase distribution, u/,,,m , is plotted. The tum is obtained as

Wn.m(t)= 11 ¢1(t) -m ¢2(t) (6-1 1)

The deviation of this relative phase rpm from a uniform one is quantified by defining

two measures called n: m synchronization indices. In the first measure, the

synchronization index is found based on the Shannon entropy.

N

S = —k2 pk 1n pk (6.12)=l

where Nb is the number of bins and pk is the probability of finding points in the km

bin.

Synchronization index is then defined as

pm = Ari (6.13)
ITIBX
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where nm is the phase locking ratio and S,,m= ln Nb. p,,m=O corresponds to uniform

distribution which represents zero synchronization and p,,m=l correspond to Dirac

like distribution representing perfect synchronization.

In the second measure, an index based on conditional probability has been

defined. In this each interval is divided into N, bins, Then for each bin k,

lsk I/\ Nb

Mk-lz e"¢2(’,-)71:01)

for all j, such that ¢1(t,-) belongs to k"‘ bin is evaluated. If there is complete

dependence between the two phases, then lrk (t J. )i = 1 while it is 0, when there is no

dependence.

These two measures quantify the degree of co ordination of different signals.

This has been applied effectively to study the heart beat and respiratory dynamics

(Rosenblum et.al.,l998) as well as to study co ordination of brain regions with

muscle activity (Tass et.al., 1998).

6.2 Method of False Nearest Neighbors

Earlier to the method proposed by Rosenblum, Abarbanel and his group

proposed another method of chaotic synchronization (Rulkov et al, 1995) in which

they considered a unidireetionally coupled system. The system consists of an
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autonomous driving system and a response system in which the driving system does

not depends on the parameters of the response system. In this interacting system,

there exists a relation between the variables of the driving system d(t) and the

variables of the response system r(t). During synchronization the transformation can

be represented as

r(t)=W(d(t)) (6- 15)
In simple cases, the transformation will be a straight line in x-y plane. If the

transformation is complex, the projection will be a complicated geometrical object.

In this case the method that gives the information regarding this transformation is the

projection of attractors of driving and response system that identifies mutual false

nearest neighbors. This type of synchronization is called Generalized

Synchronization (GS). If a synchronization relation mentioned above exists the

chaotic attractor of the response r(t) has a relation to chaotic attractor of the driving

system attractor d(t). This relation can be found out by looking for a geometric

connection between the driving and response system that preserves the identity of

neighborhoods in the state space.

Consider a set of points X(i) and Y(i) in state space of the driving and

response system respectively. Select an arbitrary point in the driving system Xn in

the phase space of the driving system. Let there exist generalized synchronization

condition (6.14). Suppose the nearest phase space of this point has a time index nm,-,9,

then the point Yn in the space of the response system will have point Ynw, a close
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neighbor as long as there exists relation between the driving and response systems.

Next step is to find a parameter that relates the driving and response system that

preserves the identity of neighborhoods in the space. This is a kind of correlation

between observed dynamic variables, one from the driving system and one from the

response system. If the distance between two nearest neighbors are small then

Y" " Y”MvD = ¢(X") - ¢(X-o) = D¢(X'1)(X" - X",v~o) (6-16)

where D¢(Xn) is the Jacobian matrix of transformation evaluated at location Xn.

Similarly find the time index corresponding to response vector Yn and locate its

nearest neighbor Yn,v,vR which comes at time index nNNR. Since there exists a relation

as given in Eq.(6.15)

Yn — YnNNR = ¢(Xn) — ¢(XNNR) z D¢(Xn)(Xn — XnNNR) (6.17)

Thus the parameter, Mutual False Nearest Neighbors (MFNN) is evaluated as

|Yn — YnNND| |Xn — XIlNNRl

|Xn — XnNND| lYn — YnN,\;R|,
MFNN = (6.18)
In experiments, this parameter is evaluated from time series by reconstructing the

attractor using time delay embedding with time lag from average mutual information.

When the driving and response systems are synchronized, MFNN should be unity at

all points. Usually modified MFNN parameter is found as it is very much suitable for
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experimental signals. In this, the response time series is embedded in the space R5 of

dimension d,, which is then fixed. This dimension d, must not be less than the

minimum dimension necessary to unfold the attractor corresponding to the response

time series. All distancewill be computed in this space. dd is a variable greater than

the embedding dimension of the driver attractor. For each dd select an index n and

find its nearest neighbor of point d(n), which comes at time index nNND. Find the

nearest neighbor r(nNNR) of point r(n) in the response embedding space. Then a ratio

is formed as

[r(n) — r(nNND)l22 (6.19)
l"(") ‘ r(nNNR )|

To compensate for the increase of MFNN parameter in high dimensions due to the

sparseness of the phase space population, the above expression is divided by the

same parameter computed for the driving system. Thus, the modified MFNN is

obtained as

l"'(")‘d'("NNR')l l’(”)"(”NND)lP(n,dr ad )= (6.20)
ld'(")‘-d'("NND)l l’(")"("NNR)l

where d’ are vectors of the driving time series embedded in the space dimension d,

and d‘ (nNND-) is the nearest neighbor of point d'(n) in this d, dimensional space. This

parameter should on the average be of order unity for synchronized trajectories and

this parameter is greater than unity for unsynchronized trajectory. During onset of
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synchronization, the ideal method is to examine the statistical distribution of MFNN.

By constructing a histogram of a set of MFNN parameters one can obtain the reliable

information about the system. However, to reduce the computation an average of

MFNN parameter can also be employed for studying the synchronization

phenomenon in systems.

6.3 Phase Definition using Poincare map

The definition of phase from Hilbert Transform takes into account only the

observation that the phase changes linearly with the time. However for a system with

high degree of nonlinearity and stochasticity there can be intrinsic oscillations of

phase and this is not taken into account.

Hence, a new method has been introduced in which the information regarding

the phase is obtained from Poincare map. In this the signal is reconstructed in a two

dimensional map with x(n) on the X-axis and x(n+T) on the Y-axis. A vector is

defined connecting the coordinates [x(n),x(n+Td)] and [x(m), x(m+Td)]. The time lag

Td required for reconstruction is obtained from Average mutual information criteria.

The amplitude and phase is defined as

A = [Xm‘Xn]2 + [Xm+T ' xn+T]2  1)

¢ = arctan fl'1_fl_1'1i (622)
xm ' xn



Here the amplitude refers to the length of the vector in the Poincare map. In this

method m determines the 'length scale‘ at which the phenomenon is to be observed.

The choice ofm depends upon the degree of noise as well as the time scales involved

in the process. For a noise free system m can be selected as n+TJ- with TJ-=1 whereas

for a noisy system m should be selected as n+Td. Further as the signal is

reconstructed in Poincare space, all nonlinearity and intrinsic dynamics are included.

The results of phase from Poinacare map and its relevance on real data set is

presented in results and discussion of chapter 10.

6.4 Coherence Index

Coherence is another phenomenon that can characterize the dynamics of a

system. In this, the distribution of amplitude and phase from a single variable time

series is considered and the coherence index is defined from the histogram of

amplitude and phase. The motivation behind this methodology is based on the work

of Lanczos and Gellai (1975). In this, these authors studied the amplitude — phase

plot (similar to polar plot) of a set of data obtained from the Fourier transform of the

random numbers. They erected a set of random numbers as ordinates in a Cartesian

coordinate system, at equidistant points on the abscissa in the interval (-11, +1t). The

numbers yo,y1,y2, ........ ..,y2,,_1 can then be written as a finite Fourier series as

=  +  we) + bk s~lt"Jl
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j=O,l, .... ..,2n-land k=l,2, ....... ..n (6.23)

where ak , bk as well as Ck, (Bk are all random variables. at, , bk as well as Ck, G)k are

all determined in the usual manner and the relations of Ck, Gk with ak, bk are the

usual ones viz.,

2 2 % bkC, = [a, + b, ] and (9, = arctan — (6.24)

It has been observed that a plot of these vectors show bunching in the unit circle. If

the original data set were strictly random then the vector distribution in the unit circle

would have been unifonn. On the other hand bunching of vectors would indicate the

presence of an attractor. This implies that one can write a given series as a sum of

two or more distinctly different Fourier series. This can also be interpreted as that the

given series can be decomposed into two or more series having different fundamental

frequencies or different time scales. Hence, for a system with multiple time scales

information regarding this can be obtained from plotting the circular plot as

suggested by Lancos and Gellai. The presence of chaos is an adequate evidence for

incompatible frequencies. Based on the above theoretical formulation one can define

an index incorporating both amplitude and phase coherence. For this phase and

amplitude is evaluated from Poincare map from the Eq. (6.21) and Eq. (6.22). In

evaluating the phases one has to take into account the sign of the numerator and the
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denominator to determine the quadrant in which the vector is situated. From the

phase and amplitude values histograms are drawn for amplitude and phase

distribution respectively. Based on the Shannon entropy (Tass et.al.,l998) the

distribution is quantified as

NS = 12 pk ln pk (6.25)=l

where pk is the distribution in the k"‘ bin and N, is the total number of bins. For

normalizing this term Sm, is defined as

S = In N b (6.26)max

Then the amplitude coherence is defined as

pa = ___'“"""""“’a_‘fl"_ (627)

”" (6.28)
These definitions are however different from those of Tass et.al.(1998). In that the

histogram is plotted for a relative phase distribution of a bivariate data where as in
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this method a single time series is considered. The Coherence index is defined as the

harmonic mean of phase and amplitude coherence as

:’l:w‘2  . *9 "itpap   WC, = ——" '~;‘,_  E (6.29)p” + pl’  <1-‘P\’,_./>‘
.-_»‘V,'i-I-—V'—,—‘1’1‘/_.

Since this is defined for a single time series characterizing the attractor this can be

used for the characterization of the attractor along with other measures like attractor

basin, embedding dimension, generalized attractor dimension, generalized

dimension, entropy, Lyapunov exponents etc. Instead of considering the distribution

of phase from a single time series a similar measure can be derived from the

histogram of relative phase / amplitude distribution from bivariate data and they are

called Phase synchronization index, Amplitude synchronization index and

Synchronization Coherence index respectively. The Phase synchronization index has

been derived by Tass et al. (1998), however two more new parameters are introduced

considering the relative amplitude of the vectors in the Poincare map.
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Chapter 7

TIME SCALES IN NEURAL SYSTEM

In understanding the collective dynamics of a nonlinear, nonequilibrium

system it is essential to know the various time scales involved in the process. Many

investigators in the study of complex systems have ignored the role of time scales.

Prigogine (1962) has introduced the concept of time scales in the dynamics of a

system in developing a theory of nonequilibrium statistical mechanics. Later Balescu

(1975) has stressed its significance in the dynamics of a nonequilibrium system.

Eventhough several physical and chemical systems have been studied in this

framework, it was Pratap who formulated for the first time the time scales in neural

system. In this chapter the significance of time scales in nonlinear time series

analysis of EEG has been studied in the theoretical framework of collective

dynamics. The derivation of different time scales and its role in neural dynamics

have also been discussed in this chapter.

The understanding of dynamics of brain from the EEG recorded from the

scalp is an active area of research in nonlinear time series analysis. EEG is

recordings of electric potentials generated in the cerebral cortex by a large number of

neurons and are generally classified, based on frequencies as alpha (8 to l3Hz), beta

(more than 13 Hz), theta (4 to 8H2) and delta (less than 4H2). The action potentials

generated by neurons are integrated at various stages of its propagation from the

input point to the central nervous system and back to the action muscle. These
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generate collective modes, which in the cortex are recorded as EEG on the scalp. It

has been pointed out that the amplitude of the action potential generated by the

individual neuron is constant while the firing frequency is a linear function, as far as

measurements go, of the applied stimulus strength. A simple addition of these

amplitudes however cannot reproduce the observed characteristics of EEG. Hence

the integration process should be an involved mechanism. Further it has been found

that the electrical characteristics ofthe action potential are quite different from those

of EEG. The characteristic time scales of different waves of EEG is of the order of

0.1 second where as that of the action potential is ~ 1 milliseconds. A factor of

hundred between two time scales implies that the human brain has a wide range of

time scalesresulting in being highly nonlinear and that it is thermodynamically open

with feedback and feed forward processes. Hence the construction of general time

scale starts with identifying different characteristic parameters in neuron dynamics.

The human brain consists of about 101° neurons of which about 1 to 2% is

active and they are connected in a certain pattern. These connections change with the

input signals. Hence to study the collective effects in the cortex one has to take into

account the dynamics of the individual neuron, which contribute towards the

collective effects. The most significant feature in the neuron dynamics is the firing

potential, <1) which is the basic unit of information transmitted along the nerve fiber.

In the neural firings a potential change is generated due to changes in Sodium and

Potassium ion conductance across the membrane of an axon. This is highly

nonlinear, which is however a single neuron process. It is known that there exists a

resting potential -80 mV and a threshold potential —50 mV. If the potential
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differences across a membrane are less than 50 mV there is no firing. But if it is

greater than the threshold value, a firing takes place, and the peak potential of this is

about 40 mV. Thus each firing has amplitude of about 100 mV and one of the most

significant features of this is that the amplitude of this firing is independent of the

strength of the stimulus. Furthermore the firing as it proceeds along the length of the

axon does not get attenuated. The fact that the signal intensity is not attenuated as it

travels from one point to another both spatial and temporal indicate that the

generation process is essentially nonlinear and nonequilibrium in nature. Further the

system is thermodynamically open; hence feedback and feedforward mechanisms are

operative. Thus the process is distinctly different from the usual electrical conduction

in a cable. Here the firing takes place at the various nodes of Ranvier in a sequential

manner. The velocity of propagation forms another important parameter in the

neuron dynamics. The electrical signals propagated along the length of the axon has

a finite measurable speed and is about 100 m/sec. Besides the velocity of propagation

which is the rate of travel of the nerve impulses is also constant. It is worth

mentioning that this is much less than the speed of light, which is taken as the

interaction speed in electrodynamics. Next is the firing frequency, which is the

inverse of the refractory time. It is usually about 1000 Hz and is inversely dependent

on the stimulus strength. If two successive stimuli separated by a certain time

interval are applied to the nerve fiber, the behaviour of the fiber will depend on the

refractory time. Immediately after a nerve impulse has been initiated, the given part

of the fiber is in the absolute refractory state, i.e. it cannot be excited again. This is

followed by a relative refractory state in which the threshold potential is somewhat

increased. Hence at a given instant, one can classify neurons on the basis of the
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refractory time. The same neuron can have different refractory times at different

instants, but they all have a greatest lower bound. Hence the number of neurons

firing with a specified refractory time is time dependent. The duration of the entire

refractory time varies from one to a few milliseconds. Since the firing potential is

electrical in nature, they are generated by the various ions such as sodium,

potassium, calcium etc., and these are characterized by the electrical charge (e) and

ion mass (m). The movement of charge that flows between two consecutive nodes of

ranvier is represented as axon current. This consists of two parts, a displacement

current component through the membrane capacity and an ion current through the

membrane. A signal received by one nerve or a group of nerves will be

communicated to a large number of nerves by a cascading process, through axonal

tree, the branches of which end in synapses connecting them with other cell bodies

and dendrites. This cascade process however will not connect all neurons in the

system but will end up with the distribution of regular tubes and stripes. Hence one

can define a number density (n) that represents the number of neurons per unit

volume. This can also be defined as the fraction of affected neurons to total neurons

in a unit volume. The chemical processes also play a significant role in the signal

transmission by changing the conductivity of the medium. This is included by a

nondimensional parameter, so representing the conductivity. These parameters along

with the numerical values are given in Table 7.1.
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Table 7.1: Different parameters used in the construction of general time scale

Name Symbol Dimension Order of magnitude

Action potential (1) ( MLT -2 )1/2 10" volts
Propagation speed V LT 4 100 rn/seconds
Firing frequency v T '1 1000 Hz
Ionic charge q (ML3 T '2) "2 1.6 x 10'” Coulomb
Ionic mass m M 10 ‘:7 Kg
Ionic density n L '3 2mM
Medium effect so - 
Ion plasma frequency square cop 2 T '2 10 3 2 u ‘ "2 n "2 rad /sec

Using these parameters, a dimensional analysis following Balescu (1975) has been

performed to obtain the general time scale as.

¢:'Vjekvpm“n'

(MLT?) "2 <L"r">" <ML’ T2) “ (T 7) (M ‘*) < H“).

Equating powers of M, L and T on both sides we have

i/2 + k/2 + q =0

i/2 + j + (3/2)k —3r=0

—i-j —k —p=1

(power of M)

(Power of L)

(power of T)

(7.1)

(7.2)

(7.3)

(7.4)

There are only three equations with six unknowns, so expressing p, q and r in terms

ofi,j andkas
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p =-i—j—k-1 (7.5)q = -i/2- k/2 (7.6)
r = (-3/2)i +(1/3))‘ +(1/2)k (7.7)

Substituting (7.5), (7.6) and (7.7) in (7.1) a general time scale is obtained as

T = r v“ (7.8)
where F is a dimensionless quantity defined as

r = (¢2.n"3 /mvz )‘”(v n"3 / v )3 (so ezn /mvz ) “2 (7.9)

Expressing i/2 = x, j = y and k/2 = z as these parameters are real numbers the

dimensionless constant F becomes

r = ((9 n"3 /mvz )* (v n"3 / v )’ (50 e2 n /mvz ) Z (7.10)

Thus a general time scale T is obtained as

T=1“v“=a"bYc= (say) (7.11)

The dimensionless quantity consists of three parts, the first one depends on the

electrodynamic variable 4) besides the dynamic variable firing frequency. This is the

resistance per unit length per unit time. The second term consists of only mechanical
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variables and is the ratio of the distance traveled by the signal during a refractory

period to a characteristic length defined by n”. In the third term however one can

write (30 e2. 11 /mv2 ) as (so (DPZ /V2 ) with 03,, as the ion plasma frequency. The third

term is the ratio of the square of the plasma frequency to the firing frequency and this

characterizes the collective behaviour.

In summary (7.11) consists:

a: ratio of electric frequency to firing frequency.

b: ratio of mechanical frequency to firing frequency.

c: ratio of plasma frequency to firing frequency.

The x, y and z are natural numbers. It could be real or complex, rational or irrational

or integers. If they are complex, the process could have an amplitude and phase. If

they are rational, the frequencies are compatible while if the frequencies are

irrational, they are incommensurate. From (7.11) it is very clear that there exists

three fold infinite time scales in the system. This point is very important in the

analysis of EEG signals. Further, this clearly shows that the electrical, mechanical

and plasma frequencies can be independent. However they can also get coupled by

the choice of x, y and z. By proper choice of variables x, y and 2 some of the known

relevant time scales can be obtained and they are derived below.

1). Sodium Potassium pump: The sodium potassium pump depends on the threshold

potential and hence on 4). Since it is a chemical process depending on the number of

sodium ions going in and potassium ions coming out during depolarization phases,

the time scale should depend on mass and number density, but not on the firing

frequency. To get relevant time scale corresponding to this process, one must choose
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y = z = O and x = -1/2. Thus relevant time scale for this process is with 4) ~ millivolts

and n~ 100

Tp = (n1/¢2nl/3)~ 10” (7.12)

2.) Synaptic transduction: In the synaptic transduction, the process depend on the

dielectric characteristics of the synaptic cleft as also on the speed at which the signal

arrive at the pre synapse as well as the threshold potential. However, there is no

explicit dependence on the number density, since there is randomness in the injection

of neurotransmitters in the cleft due to the discharge of vesicles. A time scale is

constructed by a proper choice of x, y, z viz. x= -y = z = -1/2. Thus the time scale is

obtained as

Ts = (mV v / eo¢2 mp2)” (7.13)

3.) Collective modes: At various stages in a neural system, there are integration

processes operative. The threshold potential is a consequence of the integration

process. In a single neuron or in the case of synaptic transduction the process is

always collective in nature. Also in the case of EEG signals, the process is indeed a

collective one which do not exhibit all the apparent regularities seen in a single

neuron firing sequences or the signal transmission from a pre synapse to a post

synapse. If we consider this as a self-consistent process, which is in general

responsible for the collective modes, then the relevant time scale is the interaction

time scale,

Ti =(50 mp2)‘”2 (7.14)
.and, this is obtained by setting x = y = 0 and z = -l/2.
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Thus different time scales suitable for different mechanism could be derived from the

general time scale. There may be other relevant parameters, however in this

formulation only some of the known ones is considered. In the absence of an

understanding of neuronal activities one cannot stipulate the domain of x, y and 2.

Hence, by substituting values of x, y and z arbitrarily a few more time scales are

derived and are presented in Table 7.2. It is evident from the table that there exists a

large class of time scales with a wide range of magnitude. The different values of

ionic density would give different values of x, y and 2. However, in this construction

the ionic density is taken as 106 m3.

Table 7.2: Time scales

Name X y Z Time scale Order of
magnitude

Mechanical 0 -1 0 ( V n "3 )1’ 3 104
Refractory 0 O 0 v" 104
Electromechanical 1/4 -1/2 -1/4 (¢Nevnm)"2 107

Electromagnetic 1/2 0 -1/2 (1)/e Vn‘/3 10 19

Various algorithms developed till now in the evaluation of ergodic

parameters are suitable only for stationary data set (Grassberger & Procaccia, 1983a).

However for nonstationary data set, these parameters are slowly varying functions of

time (Pradhan & Dutt, 1993). Hence in choosing the data length, the number of data
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points must be sufficiently large in comparison with natural time scale in the system.

This requires the identification of different time scales involved in the dynamical

pI'OCCSS.

Many authors in studying the dynamics of human brain have ignored the role

of time scales. Parikh and Pratap (1983) developed an evolutionary equation in the

framework of nonequilibrium statistical mechanics developed by Prigogine and his

Brussels School in which the significance of time scales has been stressed. Further

Pratap(2000) formulated a theory of sensory transduction considering the interaction

time scale. Considering the time scales one can develop nonequilibrium statistical

mechanics of brain.
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Chapter 8

ATTRACTOR POTENTIAL FROM TIME SERIES

Recent studies of brain using the methods of nonlinear dynamics have

revealed that the human brain dynamics involve a variety of highly nonlinear

nonequilibrium dynamics. In these studies, the dynamics is understood by evaluating

invariant parameters from the Electroencephalogram recorded on the scalp and

treating it as a time series. The invariant parameters have been developed in the

framework of deterministic chaos theory and are used for characterizing the brain

under various pathological conditions (Elbert et al, 1994). This suggests that this

kind of analysis could be useful for the development of a non-invasive diagnostic

tool. The effort has already been started in this direction. However, a consistent

theory has yet to be developed that incorporates all kinds of nonlinearity and

stochasticity. Pratap (2000) has formulated a nonequilibrium statistical mechanics of

brain function by considering the cortical activity as due to a gas of attractors. The

evolution of this attractor gas is represented in a phase space spanned by the attractor

invariants. The local properties are evaluated by defining a single attractor time —

dependent mapping function. This theoretical framework fonns the foundation of

attractor potential that has been discussed in detail in this section.

There are about 10”) neurons in the cortex domain of which only a few

percent are active at any given time. Even this small percentage which is a large

number of neurons in the brain give rise to complex dynamics. In a single neuron

ll0



dynamics, the input to a neuron generates an action potential, which acts as a

stimulus for the adjacent cell, giving rise to excitation. At each cell, there is an

integration process of large number of stimuli and the process is an involved

mechanism. At the Central Nervous System, various signals arriving from the

different paths are again integrated in a highly nonlinear manner generating new

signals and these signals are propagated to various muscles. The dynamics of the

afferent and efferent propagating signals in the presence of random background

firing was worked out by’ Anderson and Cooper (1978) to explain the higher

functions ofthe brain such as association, recollection and generalization. Parikh and

Pratap (1984) proposed a general formalism in the framework of nonequilibrium

statistical mechanics and the results of Anderson and Cooper are obtained as a

special case. Besides, these authors defined a new parameter called the concept to

explain the learning process. The neural system is highly complex with feedback and

feedforward mechanisms making the system thermodynamically open and in

nonequilibrium state. Hence, the dynamics should necessarily be dominated by

positive and negative feedback mechanisms rendering this to be statistical and

nonlinear in character. Some of these features were incorporated by Cowan (1991) in

formulating the stochastic neurodynamics based on a Master equation approach. In

this approach, the basic fonnulation was based on linear dynamics and nonlinearity

was introduced in a nonlinear stochastic equation. In another approach quantum

mechanics (Pribram, 1991) and Greens function (Bressloff, 1995) has been used.

However, in both these approaches nonlinearity was not taken fully into account.

Apart from these analytic approaches a different view point was adopted by

McCulloch and Pitts (1943) in which each stimulus excite a certain group ofncurons
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which in turn excite a larger population establishing thereby a pattern of excitation

for each stimulus. This realistic approach became the starting point of Neural

Network Theory. In Neural Network theory, the two functions evaluated are the Cost

function and transfer function. Cost function is obtained by minimizing a function of

the difference between the input training signal and the output signal. The transfer

function on the other hand plays the role of interaction between the neurons.

However in the method proposed by Pratap, a F space spanned by the invariant

parameters are defined and an ensemble is constructed in this space. Then a Liouville

density satisfying the Liouville equation is postulated. A formal solution is then

projected onto a subspace using a diagrammatic technique as in classical field theory.

The formulation is given in detail in the next section, but it has yet to make in roads

into the realm of practical application.

In formulating the nonequilibrium statistical mechanics of brain function the

invariant parameters selected for the construction of F space are Embedding

dimension Ei, its Basin measure Bi, Generalised dimension Diq, generalised

information entropy Kiq_ the new parameter Coherence index Ci and the

corresponding Lyapunov exponents liq. The trajectories of a dynamical system

reconstructed in phase space will cluster in a subspace if there is a deterministic

component. This subspace is called the Embedding space and Bi denotes its

dimension. The dimension ofthis subspace is an integer. The ‘object’ that formed in

the subspace by the clustering of trajectories is called an Attractor. The set of initial

conditions that produce the trajectories that end up on the attractor are called the

attractor basin and this is denoted by Bi. To determine the attractor dimension, an
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attractor is divided into a large number of cubes of volume 5. IfV is the total volume

of the attractor, then the number of cubes is We. If N(e) is the minimum number of

cubes required to cover the entire attractor, then one can define a dimension called

Capacity dimension D; as

8_)0  (8.1)
If P; is defined as the probability of finding a point on the attractor taken at random

in the i"‘ cell, then

N,-(£)1? = N (8-2)
where N is the total number of cubes which cover the entire attractor and N2’ is the

number of cubes covering the trajectory in the neighborhood of the ilh cell. From this

probability a generalized dimension Dq that is related to qth power of Pi is defined as

(N 5) q\
1nL§j(P,) J1 i=0Dq = Lt (8.3)e—>O C1 — 1 ln(8)

where q is a real number and can have values from zero to infinity. Dqs are arranged

_ 1 N .
in a descending sequence such that Dj > D41. For q=O, D0 = %(c) is known as
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Hausdorff dimension and Dq for q=l is called the information dimension. The value

of D1 is evaluated from Eq (8.3) by taking the limit of q —> 1 carefully. Again for

q=2, the dimension obtained, called the Correlation dimension is most widely used

for characterizing experimental signals. The generalised dimension is defined by

considering the probability of having a point of the trajectory at random in a

specified cell.

In defining the generalised entropy a sequence of cells i0 i1 lg . . . . . . . . . .. in are

considered and ajoint probability Pio..___i,, is defined. Using this joint probability, the

generalised entropy is defined as

1 1 q
Kq = -832, —q _1;1nii0_§_“in [Pic ....... ..i,.(.;>] J <8-4>

The Dimension_and the entropy are respectively the geometric and dynamic

parameters of the attractor.

The Lyapunov exponents indicate the sensitivity of the initial conditions and

thereby the stability of the system. If a system is represented by a discrete functional

relationship

Xn+1 = F(xn) (85)
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theory is given below and the salient points are brought out by considering an

electron gas, which has thoroughly been worked out.

8.2 Phase Space Representation

Consider a classical electron gas having N number of particles with a passive

ion background to provide overall charge neutrality. Each particle has a canonical

momentum p and a conjugate position variable  One now constructs a phase

space of 6N dimensions spanned by 3N momenta and 3N coordinates and this space

is called F space. In this space a single point represents the state ofthe entire system

and the evolution of the system is represented by a trajectory. Here time is

considered as a parameter as in classical dynamics. However the system is

completely specified only if we know all the 6N variables at any instant of time

(initial state), which is indeed impossible. Gibbs overcame this impasse by

constructing identical systems (energy or Hamiltonian being the same) with all

plausible initial states and constructed identical trajectories in the F space. These

trajectories do not intersect at any given instant of time and hence can be compared

to an incompressible flow in this space. Gibbs then asked the question: What is the

probability that the system is at or in the close neighbourhood of a specified state

point at time t. This probability in the F space is defined as

p:p(q1,q2,....,qN,p1,.....pN,t) (8.7)
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This is called Liouville density and since there are no sources or sinks in the F space,

this function satisfies a continuity equation

dpdt _ 0 (8.8)
The expanded version ofthe above equation would read as

-—+%r—-' — '.|-Oat i=J_  +api 'piJ‘ (8-9)
The collection of the trajectories is called the Gibbsian ensemble. If the system is

conserved, one can define a Hamiltonian that defines a parametric surface in the I‘

space. However in general one can define a Hamiltonian that is a motion generating

function and the time derivatives in Eq. (8.9) can be replaced with space derivative

using Hamilton's equations.

8.3 Hamiltonian

A Lagrangian or Hamiltonian describes the dynamics of a system completely.

If the system is conservative then the Hamiltonian is the energy of the system and

one can define a Hamiltonian density, which can be used to write the equations of

motion as
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6H , 6HQ = 5 andp = -55 (8.10)
and on substituting these total time derivatives in Eq. (8.10) it results in

6 N l 6p 6H Op 6Hl 6p— - — - = — H = O .at +i§:1|—aqi an api aqil at ““ lp’ 1 (8 ‘”

where the square bracket is called the Poisson's bracket. This representation is

restricted to conservative systems. However for most conservative systems where

dissipative forces exist; one can go over to a time dependent Hamiltonian

characteristic function formalism.

One can in general write the Hamiltonian as consisting of two parts, the

kinetic and potential parts and write it as

H = Ho + 7H, (8.12)
In this separation, a constant 7t has been introduced which is used as a book keeping

parameter. H0 is independent of E1 and H, of  Hence Eq. (8.11) takes the

form

% + Lop = k(5L)p (8.13)
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where, LO and ESL are operators given by

(3 5H
- j. and (5L) = 4&2; 6L°=Z5Pi 591 aqi (8.14)

Eq. (8.13) can be formally integrated giving rise to a solution in the form of an

integral equation of the Volterra type of the second kind viz.

p(t) = e"L°'p(o) + 7t:ldt,e'L("")p(t,) (8.15)

where p(0) is the initial state (state at t=0).

Eq (8.15) can be iterated to all orders giving thereby

00 t t tn—l
p(t) = Z 7t"idt1idt2.... Jdt,,e‘L(“‘ll(5L)e‘L(‘1“Z1n=0 0 0 0 (8.16)

x(aL)....e‘L1‘n—I*‘n)(aL)e-Unp(o)

Eq (8. 16) can also be written in the language of Green's function as

t

p(t) = e-Lotp(o) + 7LidrG(t — T)p(‘C) (2.17)
0

where the definition of G is obvious from Eq.(8.16). Here an exact solution of the

Liouville equation has been obtained which is of little consequence, since this does
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not help one to evaluate local properties in the system. Since all observations are

made at different points in the system, one has to obtain a weight function, which is a

local function. This amount to obtaining a one-particle distribution function defined

in a six dimensional p space (molecular space) i.e. it is equivalent to mapping the

dynamics in the F space to a subspace of dimension six. This is achieved by defining

a relevant time scale.

8.4 Choice of time scale

There are essentially two methods in vogue viz. the one started by Yvon that

is currently known as BBGKY (Bogoliubov, Born, Green, Kirkwood and Yvon) and

the other developed by Prigogine and his co-workers known as the Brussels school.

In the former case one integrates the Liouville equation Eq.(8.l 1) over all variable

except one, and since the interaction potential connects this particle with another (in

the case of two body interaction, the ensuing equation will have a source which is a

functional involving f; or two particle distribution function. If one integrates all

variable excepting two to obtain f2 the resulting equation has again a source term

which is a functional of f3, again due to interactions. Thus the equation reduces to an

open ended hierarchy and this is known as BBGKY hierarchy. One has to apply a

closure by assuming the higher order distribution function is a function of lower

order distribution function. Various people have effected different closures. This

seems to be quite arbitrary.
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Prigogine's method (Baleseu, 1975) on the other hand chooses a specific time

scale and from the infinite series, one picks up a subset of infinite terms

corresponding to a specified time scale. This however is meaningful only if the

various time scales existing in the system are widely separated as one has in plasmas.

There it can be shown that relaxation time scale is about two orders of magnitude

higher than the interaction time scale. Hence the distribution functions in the two

different time scale have different characteristics. Therefore the one particle

distribution function (OPDF) that one gets pertaining to a chosen time scale gives

rise to averages which give correct estimates of local property. A detailed discussion

of the electron gas problem together with a diagrammatic treatment is given in

Prigogine. (1962).

This method however has to be modified when the time scales are close by or

even overlap. This is precisely the case for the brain dynamics. Furthermore one

does not know the exact interaction between neurons to write a realistic Hamiltonian.

Hence a method has to be devised to get an idea of interaction in the brain system.

8.5 Model of Neurodynamics

Dynamics of a system is defined by interaction in the system. In the present

case, the inferred data indicates the end result of all interactions in the system at the

space time point from which the data is collected. Hence the effort must be to infer

the plausible interactions in the system, which result in the final state indicated by the

data set. This is a particular case of doing an inverse analysis ofthe data set to get an



insight into the interactions in the system. Hence one necessarily has to assume a

model in which an interaction is postulated and examine whether the assumed model

reproduces the output data. In the present analyses the model of human brain

proposed by Parikh and Pratap (1991) is followed which has successfully predicted

the EEG output from a normal person in the eyes closed state. In this the starting

point is the integral equation proposed by Prigogine as given in Eq.(8.17).

Interaction in the human brain generates a large number of attractors

specified by various characteristic parameter such as embedding dimension Si,

attractor basin Bi, generalized metric dimension Diq, generalized entropy Kiq and

Lyapunov constant liq/Lyapunov function. In this i is the attractor index and q are

integers 0 S q S 00 for any specified i. The value q=O for the i"‘ attractor is

known as Hausdorff dimension. q=1 is called the information dimension and q=2 is

the two body correlation dimension. Diq for q>2 are the higher order correlation

dimensions and all these are geometric parameters specifying the shape of the

attractor in a suitably chosen phase space. Similarly Kiq are the Shannon entropy

and Ki; is known as Kolmogorov entropy of the im attractor which is the measure

of the information capacity of the system. Similarly 7\.iq= O for any q implies that

Lyapunov exponents do not indicate the stability/ instability of the system. In such a

case one has to resort to Lyapunov functions.

The dynamics of brain can be simulated to the dynamic state of an attractor

gas specified by the above parameters. At a given point 'A' in the skull space, if an
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attractor of a specified set of parameters disappears at a certain instant and an

identical (in all respects) one appears at a certain other point 'B' in the skull space at a

later instant of time. One can treat this as an instance of scattering of the attractor

from A to B. In the parlance of field theory, the attractor is annihilated at A and

created at B.. One can define a velocity oftransport ofthis attractor by evaluating the

—). AB . . . . .
ratio 3 One can also define a potential responsible for this scattering process in the

space spanned by R, V, 8i , Bi , Diq , Kiq , liq wherein V is the speed with which

the attractor disappears and appears from A to B. It should be emphasized here that

the above parameters are only a certain set of known "invariant" parameters and that

this set is not closed by any means.

The dynamics in the attractor gas can be specified in terms of its parameters

such as Embedding dimension Ei, its Basin measure Bi, Generalised dimension Diq,

generalised information entropy Kiq, Coherence index Ci and the corresponding

Lyapunov exponents liq. A F space is then constructed with coordinates Xi, Vi, Ei,

Bi, Diq, Kiq, Ci and liq and in this space, the state of a given system which is

completely specified by the above variables is represented by a point. The evolution

of a system is represented by a trajectory in this F space. Following the usual

methods of statistical mechanics, since initial condition is not known, one can

construct replicas of the given system of all possible initial state and these give a

Gibbsian cnscmble. In this space then a probability distribution function p is defined

BS
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p = p(Q, t) (8.18)
where

Q = {Qi} = {Yi»Vi,EiaBi,DiqaKiq»7kiq,Ci} (3-19)

p gives the probability of a system to be located at a point Q in this F space at the

instant t.

In the above i is the attractor label and q is a set of natural numbers from 1 to

infinity. The probability function is normalized as

J" pdQ = 1 (3.20)
where d!) is an infinitesimal volume in the F space as

dQ = [1 (dxi)(dvi)(dEi)(dBi)(dDiq)(dKiq)(d7tiq)(dCi) (3.21)
1

Each pattern generated by a collection of neurons due to an external stimulus would

generate a pattern of attractors in phase space. Hence, to study the dynamics of brain

an approach is adopted in which the probability of generating a particular attractor

distribution in the skull space is studied. To obtain this a reduced distribution

function is defined as
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fl....k = J PdQk+1....N (8-22)
where i....k are the attractor labels. This equation would reduce to a single attractor

distribution function as

f(Qi,t) = I pdQ' (3.23)
where the prime indicates the variables of the i"‘ attractor are not integrated. One can

then write p as

N

PN = 111 fi + ¢1....N (8.24)

where the first term gives the uncorrelated distribution and the second term the

dynamical correlations. Thus

f(Qi,QJ-,t) = f(Qi,t)xf(QJ-, t) + U(Qi,QJ-, t) (8.25)

where the integration is carried out over all the variable indices except i and j.

The Liouville density satisfies the continuity equation

d_" = 0 (8.26)
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and the Liouville equation is rewritten in full as

g + L0(p) = }»(8L)p (8.27)

where L0 is the Liouville operator without interactions and BL is the part of the

operator which include interactions. X is the interaction strength. By formally

integrating the above equation the solution is obtained as a Volterra equation ofthe

second kind as

‘ (p(t) = e-Lotpto) + 7t_ldte—L° t_T)(5L)p(1:) (8.28)
0

where p(0) is an initial state. On iterating, to all orders one obtains an infinite series

giving the complete correlation dynamics. From the infinite series so obtained after

integration a subset of infinite terms, corresponding to a chosen time scale is selected

and this subset is summed exactly. The Eq. (8.28) has the following physical

significance. The exponential term in the operator transports the state from an earlier

time to a later one. Here it is called a propagator. The first term on the right hand side

transports the initial state to the instant t without any interaction and this is the

known as the free flow term. The second term represents the response of the entire

system at ‘E to the final state at t. The above equation can be written as

p(t) = ldzG(t — r)p(t) (8.29)
0
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where G is the transition probability which takes the system from an initial state to

final state. This equation is called the evolutionary equation of Parikh and Pratap.

This is the staring point of the dynamical study of neural system from

nonequilibrium statistical mechanical point of view. On integrating Eq. (8.29) over

all the variables except one pertaining to a specified state, one can write the single

particle distribution function in terms ofG as

t

f(Qi, t) = idrldflj-G(Qi log, t — :)p(oJ-,1) (8.30)
0

where Qjj is

i —i-,V- —V-,E- —E-,B- —B-,D- —D- ,

Qij={1 J I J I J I J Iq N} (8.31)Kiq ‘ Kjq’7‘iq " 9*’Jq

The appearance of (t-I) as well as Qjj indicates that the equation depends on the

entire previous history and hence the solution is non Marcojfian which reflects

memory. There are different methods of solving the Liouville equation. (a) From an

interacting system obtain an interaction potential and then the one particle

distribution function. (b) Integrate the Liouville equation for a system of one particle

interacting through a two-particle interaction potential to obtain a differential

equation for fl for a source function depending on two-particle distribution function

f2_ On integrating all variables except two, the source function would depend on f3

and so on. This hierarchy is called BBGKY and imposing some constraints, this
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hierarchy is broken. Bogoliubov ‘s ansatz is that in all the many particle distribution,

the time is taken from fl, particular the four particle distribution function f4 = f2 (8 f;

where f; = f; (x.,x2, f1(t)). Prigogine’s method is more meaningful as it incorporates

the dynamics in different time scales. In the absence of any knowledge of G a

functional form is generally assumed and the system is modeled to obtain a solution

with the predictive capability.

Here a different approach is considered. As a first step to model the dynamics

of brain from nonlinear dynamical point of view an effort has been made to find out

the interaction potential, which appears in the Hamiltonian written as

H=Ho +V[.

where H0 is the kinetic energy part and V; is the interaction "potential". To get

information about the interaction potential from a time series, the method adopted is

as follows: The data obtained as a time series consisting of N points taken at equally

spaced time intervals is arranged in a delayed matrix as

lfrl £2 . . . . .. rm 1'
|f2 f3 . . . . .. fm+1‘c=|.  | (3.32)
lLr,, rm . . . . .. {N Jl

where n = N-(m-1). I-Iere m is the embedding dimension and C is a rectangular

matrix. This is then subjected to a singular value decomposition (Broomhead &
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King, 1986). Then CTC where CT is the transpose of the C is constructed. Here C is a

nxm rectangular matrix and therefore CTC would be a mxm symmetric square

matrix, N being the total number of data points and m the embedding dimension. The

eigen values and eigen functions of CTC are detennined. For an embedding

dimension of m=15, there will be 15 the eigen functions CD1, CD2,. ..., CD15 each a 15x 1

matrix with eigen values 7t1,...,7t15.

In this since the attractors are dynamic in nature (I) as well as 7t both functions

of time including all the nonlinearities. The potential is evaluated from the

Schrodinger like equation as

[H0 + V1(d>)]cD = M: (8.33)

where Eq.(8.33) becomes

[—c1>~ + v1]q> = M: (8.34)

where V; is_a scalar function of the wave function thereby making (8.34) nonlinear.

An inverse scattering calculation would give the effective potential at the specified

point and with a specific velocity. The advantage in the above is that the set of CD5

are all orthogonal. In dimensionless variables one can write (8.34) in matrix form as

v, = <1>Tci>" + )\. (8-35)
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where the prime denotes differentiation with respect to its arguments. In (8.35) CD is a

column vector and hence CDT is a row vector and cI>T<1>=l, since CDs are orthogonal. V.

is a scalar function of CD. Eventhough the attractor potential has been derived in view

of modelling the dynamics of human brain there is no restriction to use these

methods for other complex systems as well.

Thus in this chapter human brain dynamics has been presented as a collection

of large class of attractors distributed in the skull space whose interactions produces

a pattern of attractors. These attractor distributions is characterised by invariant

parameters along with newly defined index, Coherence index. The various attractors

consisting of both regular and strange, are treated as multispecies attractor gas and its

state as a function of time is mapped on space spanned by these parameters. The

known relations between these parameters and the invariant measures are exploited

to develop a nonequilibrium statistical mechanics of the system. In this phase space,

the state point describes the trajectories and for different initial states, from a set of

non-intersecting trajectories a Gibbsian ensemble is constructed for the attractor

distribution. Writing a Liouville equation, an evolutionary equation ofthe probability

density is obtained. The attractor potential is derived to obtain the functional form of

G and this functional form would then be a more realistic representation of the

dynamics as it is derived from the real data. The results are presented in chapter 10.
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Chapter 9

EXPERIMENTAL DESIGN AND VERIFICATION OF METHODS

The methods of nonlinear time series analysis along with new methods

developed in this work have been validated with several standard maps and

equations. The basic idea is to understand the dynamics of the system from time

series and infer the dynamics of the system. To understand the dynamical aspects

from the nonlinear dynamical point of view the procedure generally adopted is to

reconstruct the time series in an appropriate dimension with a proper choice of Time

lag. The characterizing parameters are evaluated from this reconstructed signal. Thus

for the evaluation of characterizing parameters, the time lag and appropriate

embedding dimension have to be fixed. The methods used in this work for the

evaluation of time lag, embedding dimension, correlation dimension and

Kolmogorov entropy are given below

«E
1. Average mutual information criteria (Fraser & Swinney, 1986.) is used for the

selection oftime lag Td required for the reconstruction ofphase space.

2. Global False nearest neighbors is employed (Abarbanel et.al., 1993) for the

selection of appropriate embedding dimension

3. Singular value decomposition (Broomhead & King, 1986) is used for evaluation

of the eigen values and eigen functions of attractor reconstructed from the signal.

This is also a noise reduction method.

4. Fixed Mass approach (Havstad & Ehlers, 1989) is used for the evaluation of

Correlation dimension and Kolmogorov entropy.
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The above mentioned methods give the information from a single time series.

However to understand the interactions thereby to study the synchronization of

different regions of brain the methods adopted in this work are from Modern

synchronization theory of dynamical systems. The methods are given below

«J
Phase synchronization method using analytical signal concept (Rosenblum

et. al., 1996) for understanding the coordination of subsystems.

Generalized synchronization method using false nearest neighbors (Rulkov

et al., 1995) for understanding the global synchronisation.

New methods developed in this work to evaluate phase, coherence properties and the

attractor potential are:

10.

SET 3

Evaluation of phase from Poincare map.

Determination of Phase synchronisation index, amplitude synchronisation

index and Synchronisation Coherence index from Poincare map

Phase coherence, amplitude coherence and coherence index.

Evaluation of interaction potential- an inverse scattering method.

Many of these methods are verified with standard maps and equations. SET 3 is

developed as a part ofthis work and the results are presented in the next chapter. The

standard maps and equations used for verification are:
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a) Logistic equation

b) Henon map

c) Rossler equation

d) Mixed sine waves

e) Random numbers

0 Coupled Rossler equation

9.1 Verification of Methods

2) Logistic Map

This is a one - dimensional map, which may be thought of as a simple

idealized ecological model for the yearly variation in the population of an insect

species. The population at n"‘ year uniquely determines the population at (n+l)‘h year

and the equation is given as

X(n+1)= I'Xn(l — X”)
where r is the control parameter. At 1=4.0 the data set obtained from this equation is

chaotic for a set of initial conditions. The data obtained is plotted as time series and

is given in Fig 9.l(a). The plot of In C(r) Vs ln (r) is given in Fig 9.1(b). The

correlation dimension D2 obtained is 0.9863 and the plot of singular values is given

in Fig 9.l(c). The singular value plot shows that the embedding dimension is 2 for

this system.

133



X(n)

In C (r)

0.9 

0.3

0.7

0.6

0.5 

0.4 

0.3 

0.2 

0.1 

['1

Fig 9.1(a): Time series of Logistic equation at r=4.0
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Fig.9.1(b): In C(r) Vs 1n r plot of Logistic equation
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singular value
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1

dimension

Fig 9.1(c): Plot of singular values of Logistic equation

b) Henon Map

This is a two dimensional map given by Henon

X(t + 1) = 1- aX2(t) + Y(t)Y(t + 1) = bX(t) (92)
which, yields irregular solutions for many choices of a and b. For a=1.4 and b=O.3

the sequence of output will be chaotic.
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In evaluating the average mutual information it has been found that there is no

minimum in the mutual information curve. In such cases the time lag is selected at

value Imax/5 of AMI curve. In this case it is selected as n=5 as shown in Fig. 9.2(a).

0,8 I 1 1 TV0.7 ~ —0.6 ' 0.5 ' 0.4 “ “
AMI 0.3 * 

0.2 1 I0.1 L 
Fig 9.2(a): Average Mutual Information curve of Time series of Henon map. (n = 5)

However the percentage false nearest neighbor plot reaches a minimum value at a

dimension of 2 and this is the embedding dimension of the system. Fig. 9.2(b) shows

the plot of percentage false nearest neighbor against dimension. On evaluating D2

and K2 using Grassberger-Procaccia method, D2 is obtained as 1.23 and K2 as 0.46
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Fig. 9.2 (b): Percentage False Nearest Neighbor of time series of Henon map

c) Rossler Equation

The equation is

dx
3 = -(Y + Z)
dd—)t/ = x + ay (9.3)
dz
E=b+ZiX—L1)
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The parameters are a=0.2; b=0.2; u=5.7. The equation has been

numerically evaluated using a time step Ts = 0.0005 In all the three above mentioned

equations 20,000 data points are generated and last 5,000 data points are selected to

avoid the transients. The correlation dimension D2 is obtained as 1.76 and

Kolmogorov entropy K2 is obtained as 0.101. The time lag Td from AMI is obtained

as 35Ts.

c) Mixed Sine waves

The mixed sine wave is generated using the equation

y(t) = ZAi sin(21tfit) (9.4)

with i=l and f1=7 Hz a time series with a single frequency is obtained. Then with i=2

and f1=7 Hz and f2=22 Hz a signal with incommensurate frequencies is generated.

Further retaining fl=7 Hz and.making f2=21Hz a signal with a fundamental and

harmonics is generated. The" amplitudes Ai are taken as unity. The sampling

frequency used for numerically simulating the sine waves is selected as ten times the

highest frequency component. The different waveforms are given in Fig. 9.3 and its

representation in phase space is given in Fig. 9.4.

In the case of sine wave with a single frequency the phase space

representation is a circle and in the case of commensurate frequencies it is

represented as a distinct circles depending upon the frequencies present in the signal
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as in Fig 9.4(c). In the case of incommensurate frequencies there are no distinct

circles as there is no rational relation between the frequencies as in Fig 9.4(b). This

mode of representation is useful when one is trying to evaluate the phase from

200 250 300

Poincare map.

0.3

0.6
0.4*

0.2

-0.2
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0 510 100 15:30
tim e

Fig. 9.3(a): Sine wave of frequency f=7Hz.

2 . . .

0 so 160 150 260 2350
time

Fig. 9.3 (b): Mixed sine waves with frequencies f.=7Hz and f2=2lHz
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Fig. 9.3(c) = Mixed sine waves with frequencies f1= 7Hz and f2 = 22 Hz.
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Fig. 9.4(a): Poincare map of Sine wave of frequency f=7Hz

Sn+1

Fig. 9.4(b): Poincare map of Mixed sine waves of frequencies f;=7Hz and f3=22Hz
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Fig. 9.4(c): Poincare map of Mixed sine waves of frequencies f.=7Hz and f2=21 Hz

D2 for sine wave of single frequency is 51.00, for mixed sine wave with two

frequencies that are incommensurate is 2 2.00 and that of commensurate frequencies

is obtained as 5 1.00. K2 on the other hand for all the three cases is obtained as E 0.

The plot of In C(r) Vs In r of mixed sine wave with incommensurate frequencies is

given in Fig 9.5.

In C(r)

0 I l J I-3 -2 -1 O 1 2
ln r

Fig.9.5: ln C(r) Vs ln r plot ofMixcd Sine wave (f1=7Hz and f2=22Hz). D2=2.003
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The value obtained by finding the slope using linear fit of In C(r) Vs ln(r) in

the case of mixed sine wave with frequencies 7Hz and 22Hz is 2.003. Since there are

two distinct independent frequencies the number of independent variables involved

in generating the sine wave is 2 and this is reflected in the D2 value.

d) Random Numbers

Many of the computer generated random numbers are of low dimensional

in nature. Hence a procedure is adopted by which data from different random number

generators are randomly shuffled to get a data set of sufficiently high dimension.

Poincare map is given in Fig 9.6

_L U"!
I? I

Xn+1 l’)(/(/\

I
__K in I I

Fig. 9.6: Poincare map of random number.
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In the case of Random numbers it is very clear from the Fig 9.7 that the percentage

of False nearest neighbor never achieves zero or remains in a low value, indicating

that the embedding dimension is very high.
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Fig. 9.7: Percentage False Nearest Neighbour of Random number

e) Coupled Rossler equation

The Rossler equations are coupled as given below. This set of equation is

dxl
ff: ‘(Y1 +21)
d

d

% = b+Z1(X1 —H)
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dX2

T = ‘(Y2 + Z2) + C1lX1— Xzl' = X2 + 3.)/2
d

%=b+Z2lX2 "Pl

proposed by Rosenblum et al (1996) to study the phase synchronization of

subsystems. The parameter values are a=0.l5, b=0.2, u=l0 and c1 is the coupling

strength. In this x — variables fonn the drive system whereas the y— variables form the

response system.

The set of equations proposed by Abarbanel (Rulkov et. al, 1995) and his

group again is a coupled Rossler equation as in Eq. 9.5 with the parameter values,

a=O.2, b=0.2, p=5.7 and C1 is the coupling strength. In this however as the coupling

parameters are varied one could achieve the amplitude synchronisation. Using

analytic signal phase of an arbitrary signal can be determined. However, to verify the

method of phase synchronization the coupled Rossler equation with the parameters

proposed by Rosenblum has been used. At a coupling value of c1=1.5 the phase of

the two systems are locked, while the amplitude remains chaotic. This locking is

observed by calculating the phase difference of respective variables. Fig.9.8(a & b)

gives the time series of y] and y; before phase synchronisation. The corresponding

relative phase is given in Fig 9.9 (a). Fig. 9.8(c) gives the time series yg during phase

synchronisation. There is no change in the time series of y; as the system is coupled

unidirectionally. Fig 9.9(b) represents the relative phase of the drive and response

during synchronisation.
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Fig 9.8(a): Time series of drive system of Coupled Rossler equation before phase

synchronisation. (c;=O.3)

' 0 1000 2000 3000 4000 5000
time

Fig 9.8(b): Time series of response system of Coupled Rossler equation before phase

synchronisation. (c1=O.3)
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Fig 9.8(c): Time series of response system of Coupled Rossler equation during phase

synchronisation. (c1=l .5)
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Fig.9.9(a): Relative phase variation of coupled Rossler equation before phase

synchronisation
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Fig.9.9(b): Relative phase variation of coupled Rossler equation during phase

synchronisation

The Rossler equation with the parameter values proposed by Abarbanel is

used for verification of Generalized synchronisation algorithm also called Global

synchronisation. At a coupling value of c1=0.3, the amplitudes are uncorrelated as

shown in Fig 9.10(a) whereas for a coupling value of cl =1.2, the amplitudes are

synchronised as shown in Fig 9.lO(b). By finding, the MFNN index one can

determine the generalized synchronisation. However the occurrence of phase

synchronisation indicates the occurrence of generalized synchronisation not vice versa

and hence the detection of phase synchronisation is important to understand the subtle

aspects of the dynamics.
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Fig 9. 10(3) Y1-Y2 plot of coupled Rossler equation before amplitude synchronisation
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Fig 9.10(b) Y1-Y2 plot ofcoupled Rossler equation during amplitude synchronisation
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The methods in SET 3 are developed as a part of this work. Hence,

verification mainly depends upon the comparison with the existing methods. Thus,

phase from.Poincare map has been compared with the phase from analytical signal

concept. To get a more reliable picture relative phase has been evaluated for the

coupled system using Poincare map as well as Hilbert space. Phase synchronisation

index, amplitude synchronisation index and Synchronisation Coherence index have

been evaluated from a bivariate time series using relative phase / amplitude both

from Poincare. The results are presented in the next chapter.

9.2 International 10-20 System

The International 10-20 system of electrode placement provides for uniform

coverage of the entire scalp. It uses the distances between the bony landmarks of the

head to generate a system of lines that run along and across the head and intersect at

intervals of 10 or 20% of their total length. The electrodes are placed at intersections.

The use of the 10-20 system assures symmetrical reproducible electrode placements

and allows comparisons of EEG from the same persons and from different persons

recorded in the same or different laboratories. The system is flexible: additional

electrodes, which may be needed to accurately localize an abnormality can be

incorporated by further subdividing the distances between the intersections.

The standard sets of electrode for adults are arranged as shown in Fig. 9.11.

This arrangement consists of 21 recording electrodes and one ground electrodes. The

recording electrodes are names with a letter and a subscript. The letter is an
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abbreviation of the underlying region: Prefrontal or Frontopolar (Fp), Frontal (F),

Central (C), Parietal (P), Oceipital (O) and Auricular (A). The subscript is either the

letter '2' indicating zero or midline placement, or a number, indicating lateral

placement. Odd numbers refer to the electrodes on the left, even numbers refer to

electrodes on the right side of the head. The numbers increase with increasing

distance from the midline except for the numbers of temporal and frontopolar

electrodes that increase from front to back. The inferior frontal electrodes F7 and F8

are often called ‘Anterior Temporal‘ electrodes because they fairly faithfully records

activities from the anterior temporal area. In some pathological cases like scalp

lesions it may be impossible to place electrodes in the positions of the 10-20 system.

In these cases the electrodes should be placed as closely as possible to these positions

and as symmetrically as possible on the two sides.

Fig. 9.11: Electrode placement in International 10-20 system
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9.3 EEG Data

(data 1)

Five subjects who were known epileptics with uncontrolled seizures in the

age group of 20 — 25 years were recruited for this study. Despite anticonvulsant

medication the subjects showed seizure discharges in EEGS. The eight channels EEG

data is collected using International 10-20 system with an EEG machine coupled to a

PC using Analog to Digital Converter (DT- 2841) and an array processor (DT-7020).

The eight scalp loci are Fpl, Fp2, F7, F8, T3, T4, 01 and 02. The sampling is done

at the rate of 256 samples / sec / channel. The data is filtered using a bandpass (0.25 

32Hz) fourth order butterworth filter twice cascaded. The data were visually

screened to remove artifacts as well as to identify epochs containing epileptic

discharges. Two experts who differed in their scoring by less than 5% performed the

identification of epochs. The differences were resolved by discussion and a

consensus rating was assigned to the discrepantly rated epochs.

The data from five normal volunteers without any history of neuropsychiatric

illness or intake participated for acquiring data. Subjects were seated on a chair in a

sound proof, electrically shielded room. Silver cup electrodes were attached as

mentioned above at eight- scalp locii-I They were instructed to be in a relaxed state.

Online digital recording continued ‘for 30-45 minutes for each subject and the

procedure was repeated four times on the same subject. The signal were digitised at a

sampling ra'te of 256 samples per channel per second.

151



(data 2)

The meditation EEG data set comprised of 16 channels of EEG data, which

were acquired using an EEG machine (SynAmps, Neuro Scan, Inc. USA) coupled to

a PC. The electrodes were placed as per the international 10-20 system of electrode

placement. The corresponding electrode positions with that of the channel numbers

are: Fpl (1), Fp2 (2), F3 (3), F4 (4), F7 (5), F8 (6), C3 (7), C4 (8), T3 (9), T4 (10),

P3 (1 1), P4 (12), T5 (13), T6 (14), Ol (15) and O1 (16). The data were acquired at a

rate of 512 samples/channel/seconds and filtered using a bi-directional 150 order FIR

digital filter with a bandwidth of O.l—32 Hz. Three experts then visually screened the

data and all suspected artifacts containing segments were deleted from analysis.

In order to understand the collective dynamics EEG from seven persons

during meditation as well as before meditation is recorded. The meditation

performed by the person is a form of meditation in Buddhist tradition called

Vipassana. Vipassana is a Pali word — ‘Vi’ means in a special way and ‘sana’ means

to see which translates into ‘‘look into yourself in a special way". This method of

meditation is becoming popular in India and abroad”. Vipassana is a mindfulness of

meditation whereas other forms of meditation fall under the category of

concentration methods. “ Seeing things as they are” is the feature of this method in

which attention is turned into constant scrutinizing of each successive unit in thought

continuum. Attention is focussed on one object but as thoughts, objects or feelings

occur, they too are noticed and then attention is returned to the original focal object

(Novak, 1996).
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Chapter 10

BRAIN DYNAMICS AS INFERRED FROM EEG

This chapter is the most important one in this thesis. All the results derived in

the light of the discussion in the earlier chapters are presented in this chapter. The

main aim of the present work is to study the collective dynamics from

electroencephalogram and thereby investigate the possibility of applying the methods

of nonlinear dynamics for clinical purposes. Further, this work also aims at

developing a general framework to study the interactions in human brain. The

starting point is the derivation of time scales in the framework of nonequilibrium

statistical mechanics applied to biological system. Based on this framework the

relevance of time scales on the dynamical parameters has been studied. This led to

the study of collective dynamics of brain during cognitive process. However, the

methods developed for study of collective dynamics using modern synchronization

concepts have been modified to include non-linearity and stochasticity in dynamics.

The new parameters developed such as phase coherence, amplitude coherence and

coherence indices are applied to real data set. A method to find the effective potential

from EEG time series has also been developed. This chapter is divided into three

parts. In the first part the physical aspects of human brain dynamics has been

discussed from nonlinear dynamical point of view. Second part deals with the

cortical coordination and in the last part a general framework for evaluating the

interaction in neocortex has been presented.
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PART 1: PHYSICAL ASPECTS OF HUMAN BRAIN DYNAMICS

In this section an investigation is conducted by viewing brain as a dynamical

system. A study on nature of characterizing parameters during epilepsy and

meditation is presented. Role of time scales in the nonlinear analysis of EEG during

epilepsy is also discussed.

10.1 Significance of time scales in the analysis of EEG

The characterization of physical and biological systems in nonlinear domain

is done using methods in nonlinear dynamics and detenninistic chaos (Ott, 1993).

The method of characterization depends mainly on the evaluation of ergodic

measures such as dimensions, entropies, Lyapunov exponents’ etc. These parameters

are evaluated from a single time series. Eventhough, several physical systems have

been characterized the evaluation of invariant parameter poses difficulty mainly due

to presence of noise, nonstationarity, finite data length etc. (Rapp, 1993). The

existence of chaos in human brain has been reported by many authors (Jansen et al,

1993) by evaluating some ofthe invariant parameters. The existence of chaos as well

as the reliability of the methods has been questioned by introducing the method of

Surrogated data analysis. However, the reliability of surrogated data analysis has

been reexamined and it has been found that even this method is not quite infallible

and is not suitable to distinguish colored noise from low dimensional chaotic signal.

To resolve this pandemoniu_m the present approach is to set aside the problem of

existence or nonexistence of chaos and view the ergodic measures in a relative sense.

Hence, an investigation has been conducted to understand the human brain from a
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dynamical point of view. In this context the significance of time scales on

nonstationarity and the information capacity has been discussed. The basic

motivation is that if the time series were nonstationary then the different measures

would also be time dependent unlike the case of stationary time series where these

measures are independent of time.

Human brain dynamics involve three fold infinite time scales as has been

discussed in the chapter 7. Many authors in studying the dynamics of human brain

have ignored the role of time scales. Parikh and Pratap (1983) developed an

evolutionary equation in the framework of noncquilibrium statistical mechanics

developed by Prigogine and his Brussel School in which for the first time the

significance of time scales in the collective dynamics of human brain has been

stressed. Further, Pratap (ZOQO) formulated a theory of sensory transduction

considering the interaction of time scales. In this investigation the relevance of time

scales in the nonlinear dynamical analysis of EEG has been performed.

EEG recordings of five subjects who were known epileptics with

uncontrolled seizures in the age group of 20-25 years were used in this study (datal).

The data from five normal volunteers without any history of neuropsychiatric illness

or intake of any psychotropic drugs who were in the age group of 20-25 years were

also collected. The data is reconstructed as a multivariate vector X(i) = {x(i),

x(i+Td), ....... ..,x(i+(m-1)Td} with time lag Td = n Ts. T5 is the sampling time and

n an integer, and Td is detennined from average mutual information (AMI) criteria

(Fig.lO.l).
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Fig. 10.1: AMI curve of Fpl for a normal eyes closed data (n=14)
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Fig. l0.2(a): Percentage of False Nearest Neighbor of normal eyes closed data at Fpl
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The parameters Correlation dimension and Kolmogorov entropy evaluated with a

few dimension values greater than the embedding dimension determined from the

Global False Nearest neighbors with the threshold R1 fixed at 10 and A. at 2.

(Abarbanel et al, 1993). Percentage nearest neighbors against dimension for a

particular window for the case of eyes closed and epileptic data are given in Fig

10.2(a) and Fig. lO.2(b) respectively. The data set selected from each channel

simultaneously consists of 12000 data points and they are grouped into different

nonoverlapping window of length 1000 points. The Kolmogorov entropy are

calculated for each window.
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Fig. lO.2(b): Percentage of False Nearest Neighbor of Epileptic data at Fpl
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Any nonlinear dynamical system can be characterized accurately only if all

its invariant parameters are determined. This requires the identification of different

time scales involved in the dynamical process. It should further be emphasized that

ergodic parameters are indeed important the ultimate goal should be an

understanding of the dynamics of the system. It is therefore important to propose a

model that would generate these parameters and which has predictive capability. As

a starting point an investigation oftime scales in human brain dynamics is conducted

in chapter 7. The significance of time scales especially on dynamical parameters has

been discussed.

It has been previously noted that the values of invariant parameters are

different at different locations of the brain. From a nonlinear dynamical point of view

if the system were a simply connected one, extending over the entire brain, then the

time series generated from different locations should give the same value of the

invariant parameters. However in the case of human brain, the values of the invariant

parameters are different at different locations. It can therefore be inferred that the

system has several sub systems with different sets of dynamical equations. Since it

has been theoretically established that human brain dynamics consist of a large

number of time scales, a proper characterization of the dynamics is possible only if

all its relevant time scales are identified. This indicates that there exist a large

number of attractors of different characteristics distributed in the brain. These

attractors interact to fonn different patterns depending upon the dynamics. A plot of

In C(r) Vs lnr of EEG at Fpl of nonnal eyes closed data is given in Fig 10.3. The
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graph indicates a scaling region and the value ofthe slope obtained is 4.63643, which

is the correlation dimension D2.

ln C( r)

lnr

Fig. 10.3: In C (r) Vs ln r plot of EEG at Fpl ofNonnal eyes closed data.

[dg =8, Td=l4 Ts]

By calculating Td from AMI, it has been found that the values are distinctly

different for different windows as well as different for different channels (Fig 10.4).

This indicates nonstationarity. Since the time lag is a measure of time scale in the

system, the variation of this proves the existence of different time scales in the

dynamics. The average values of time lag Tav for five adjacent windows as well as
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time lag, Tgr, grouping the same five windows together are evaluated for epileptic as

well as for normal eyes closed case.

30 r I20 — 
: 10 — 0 4 I0 5 10 15

window no.30 f .2o - 
s:

10 0 . 1 I0 5 10 15
window no.

Fig. 10.4: Variation of Td / Ts against window number for an epileptic data

(a) at Fpl (b) at 02

For the epileptic condition, these windows are selected as one with predominant

epileptic seizure condition and two on either side. In the case of normal subjects with

eyes closed, Tav and Tgr are very close and very often coincides for most of the

channels whereas for epileptic data the values are quite apart in many of the channels

as given in Table 10.1.
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Table 10.1: Tav and Tgr during normal eyes closed and epileptic conditions.

(Normal eyes closed J (epileptic discharge 1Channel No. Tav Tgr Tav Tgrl 7.0 7.0 13.4 202 7.1 8.0 20 283 7.0 7.0 15 154 7.7 8.0 13 135 8.0 8.0 1 1.6 236 8.0 8.0 1 1.6 207 6.8 7.0 15.4 228 7.0 8.0 17.2 20

Eventhough the variation of time lag is an indication of time scale in the

system, the difference in Tgr and Tav, especially when Tgr greater than Tav indicates

that during epileptic condition the time scales involved in the dynamics are more in

number as compared to normal eyes closed condition. Further, it has been found that

for those windows with predominant epileptic discharge the value of Td is

comparatively larger than the other windows. This is because during epileptic

condition many more time scales are introduced into the dynamics which are

reflected in Td. Thus, nonstationarity is due to time scales of the system. In spite of

these limitations, several attempts are made to study the dynamics of human brain

from the nonlinear standpoint. One should realize that all the invariant parameters D2

and K2 are evaluated at the same value of time lag (Popivanov et al., 1998). The

evaluation of the invariant parameters especially the dynamical parameters, for

pathological conditions needs caution as they involve interaction of different time

scales.
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Window No.

Fig 10.5: K2 with respect to window number for normal eyes closed data at Fpl

(a) corresponding to T5 and (b) corresponding toTd

It has been found that for nonnal eyes closed condition, K2 with Td as well

as with Ts show a certain degree of parallelism in variation with respect to windows

as shown in Fig 10.5. However K2 with Td and T5 bears no resemblance whatsoever

for epileptic condition as in Fig 10.6.
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Fig 10.6: K2 with respect to window number at Fpl for epileptic data

(a) corresponds to Ts and (b) corresponds to Td

Further, K2 with Ts has larger value and variation compared to K2 with Td.

This is because during epileptic condition the time scales involved in the process are

more, which in turn show a larger value of Td in AMI criteria. As time lag increases

in the phase space reconstruction, many interactions are lost which in turn masks the

dynamics corresponding to time scales within the time lag Td. This affects the

evaluation of entropy. Hence, K2 with T5 shows more variation compared to K2 with

Td in the case of epileptic data. However the variation of K2 with respect to different

values of time lag for the case of epileptic as well as for normal eyes closed

condition are identical as shown in Fig 10.7
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Fig 10.7: Variation of K2 for different values of n (Td/Ts)

(a) Normal eyes closed data (b) epileptic data

This indicates that the selection of time lag from AMI or any other similar

criteria should be used only for D2. K2 being the dynamical parameter should be

evaluated with a lag time as small as possible to incorporate as many time scales as

possible. This conclusively proves that the selection of time scales for different

pathological conditions are very crucial as the criterion differs for different

conditions.
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10.2 Inferring Dynamics of brain from EEG during meditation

The neural dynamics in meditative states are not well understood to date and

an objective validation of such states is indeed necessary. Studies have shown that

autonomic control, increased coherence and alpha pre-ponderance are dominant in

experienced meditators. However, many of the findings need to be established and a

search for realistic neurophysiological model that may explain such finding is

essential for a scientific understanding of yoga and meditation. Further, the

meditative practices are currently being viewed as an alternative mode for health

promotion and better living. The recent developments in the physics of complex

systems and nonlinear sciences provide a new opportunity for neuroscience to pursue

the analysis of brain as a dynamic physical system. The problem of conscious

autonomic control is associated with issues of chaotic feedback control of heart and

brain. Here meditation as a tool to explore the brain mechanisms of higher cognitive

states has been used. Nonlinear dynamics is fundamentally a different approach in

the analysis of brain states, where one visualizes deterministic mathematical models

of neural systems which give rise to complex dynamics in the presence of stochastic

fluctuations.

There are reports giving different dynamical parameter of brain during

various pathological and mental conditions of brain. Several studies have shown

remarkable change in EEG, GSR, metabolic activity and heart rate during meditation

(Mc Evoy et al, 1980). There are reports of changes in brain stem activities in

processing evoked responses (Stigsby et al, 1981). Also, there are reports of EEG

changes during meditation using spectral analysis (Benson et al 1990). It is quite

165



natural to assume that under mediation there may be a shift in brain dynamics

because of focussed attention and other meditation related breathing control or

psychomotor effects. The EEG record of volunteer during Vipassana meditation

(data2) has been employed in some of the investigation. The data has been divided

into different nonoverlapping windows. Data in each window is reconstructed in a

phase space with time lag from AMI and the selection of embedding dimension from

Global False nearest neighbors as described in the previous case.

It has been found that the average values of D2 and K2 are higher as

compared to “premeditating state” in all the channels as shown in Table 10.2. This

indicates that during meditation the degrees of freedom as well as information

capacity increase. Further the complexity of the system also increases. To further

clarify these points the Least upper bound (maximum), LUB and the Greatest lower

Bound (minimum),GLB are determined for all the channels in both the conditions as

shown in Fig. 10.8 and 10.9. Except for the Greatest lower bound of K2 all the

values are distinctly different for all the channels. It may be realised that during

meditation as there is no “external input”, the only possibility for this behaviour is

that during meditation the deterministic component shrinks and the background

random firing becomes dominant. This manifests itself in a larger attractor and

greater entropy. An alternate view could be that during meditation the lower

dimensional attractors coalesce to make larger ones. Also noise introduces coherence

by taking advantage of stochastic perturbation, which result in a high dimensional

state.
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Table 10.2: Average value of D2 and K2

No. ofwindows 2 15, d5 > 12, No.of data points in each window = 1000

Channels Before Meditation During meditation

D2 K2 D2 K2
Fpl 6.36 4.87 7.80 6.87
Fp2 6.17 4.86 8.14 7.00
F3 6.15 4.52 8.13 7.57
F4 6.30 5.30 8.37 6.81
F7 6.11 4.62 7.97 7.19
F8 6.45 3.98 8.77 7.53
C3 6.01 5.09 7.87 7.50
C4 6.23 4.89 7.88 8.46
T3 6.44 5.71 6.98 7.42
T4 6.51 6.46 6.92 6.60
P3 5.48 4.71 7.74 10.47
P4 5.47 5.11 8.14 8.52
T5 5.40 5.12 7.84 8.12
T6 5.55 5.87 8.12 6.92
01 5.22 4.90 7.62 7.10
02 5.67 5.19 8.18 9.40
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Fig l0.8(ii): LUB value of D2 against channels (a) meditation (b) eyes closed
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Fig 10.9(ii): LUB value ofK2 against channels (a) meditation (b) eyes closed
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PART II: CORTICAL COORDINATION

In the previous section it has been shown that human brain dynamics involve

different time scales which in turn indicates that there are large class of attractors.

This shows that the dynamics of brain during a process can be viewed as a result of

coordination of different regions of brain. In this section the coordination of different

regions of brain has been investigated with a view to study the collective dynamics.

10.3 Understanding coordination of brain regions — Analytical Signal approach

In the first section a method is introduced in which it has been shown that

phase synchronization can be used to obtain an insight into the mutual interaction

between sub systems in the neural system. It has then shown that these can be used to

enhance an understanding of human brain as an action dynamic system. The data

from a subject who practises meditation of the Vipassana scheme is recorded. In this

as the subject starts the meditating state and in the initial state his thoughts go over to

all kinds of uncorrelated domains. He allows this to happen in the beginning stages

and slowly brings it back to a focussed state. This is a Buddhist mode and is different

from either Transcendental or Vedic meditation. The final stage of Transcendental

meditation is sleep while in Vedic schemes, the focussing effort is done right at the

beginning. Data is collected from a subject who is a regular practitioner ofthis mode.

The first part of the data is when the subject is before entering into the meditation

process. It should be realised that this state from a regular practitioner is different

from one who does not do meditation at al. However for the present study this gives

the difference between a non meditating state and meditating state for the same
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subject. It may be mentioned that the data from two different persons, one a

practitioner and the other a novice will have different psychological make up and this

adds to the existence of unknown parameters that would influence the performance.

This disparity can be minimised if one collect the data from the same subject under

different states of meditation.

Chaos is expected in nonlinear feedback systems possessing time delays from

the periodic forcing of neural oscillators and as such, is expected to produce

recurrent inhibition and other effects. Understanding the changes in dynamical

invariants and phase entrainment are the preliminary steps in understanding the basic

brain mechanisms during meditative practices. During meditation subjects have

focused attention. An investigation is conducted to understand the co-ordination of

brain regions before and during meditation.

To study the phase synchronization of different regions of the brain,

instantaneous phase of the signal (data 2) from each channel is calculated by means

of Hillbert transform. To search for (go(,_,)) locking, a histogram of relative phase

distribution is drawn from the phase difference between two channels and a peak in

the histogram ensures phase locking. To characterise the strength‘ of interaction,

deviation of actual distribution of relative phase from a uniform one is determined.

Thus interaction between two cortical locations is determined by finding ,0, the

synchronization index from a bivariate data set. The index ,0 takes values between 0

and 1. ,0 = 0 Corresponds to absence of synchronization while ,0 = 1 corresponds to

perfect synchronization. The present analysis is restricted to (1:1) synchronization.
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The synchronization index during pre-meditation resting eye-closed state

reveals strong interactions among various brains, whereas the synchronization index

decreases during meditative state of the same subject. In resting pre-meditative state

different brain regions have mutual interactions with varying degrees of

synchronization. However during meditation, the synchronization index is reduced

across many channels. This could possibly be explained that prior to meditation, the

Brain State is manifestation of conscious interaction with the external world, the

internal thought processes and perceptual mechanisms. The ongoing associative

neural processes stimulate phase synchronization of oscillators in different locations

of brain. These associative process of the brain result in the awareness of the external

and internal world and brain is involved in the generation of a number of

independent input / output commands in response to such awareness. Fig 10.10

(a&b) gives the histogram of relative phase distribution ,0 between pre-frontal and

frontal region in the left hemisphere ofthe brain.

EDO

Magnitude of relative phase

No. of data points

Fig 10.10 (a): Histogram of relative phase prior to meditation between Fpl and F3

for a particular window (p = 0.308)
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Fig10.1O (b): Histogram of relative phase during meditation between Fpl and F3 for

a particular window (p= 0.1454)

No. of data points

Magnitude of relative phase

Fig 10.10 (C): Histogram of relative phase prior to meditation between Fpl and T5

for a particular window (p = 0.048)



Before meditation, one can observe a peak in the relative phase distribution

whereas during meditation, the distribution is broadened indicating that the co

ordination between the two regions is reduced. Fig lO.10(c) gives the histogram of

relative phase distribution of pre-frontal and temporal region again in the left

hemisphere before meditation. There is no sharp peak and the distribution is very

much broadened indicating a very little interaction. Similar observation is also

obtained during meditation in these regions. Fig 10.11 gives the strength of

interaction calculated for running windows of duration 2 seconds between right

prefrontal region and the left frontal region. The observed interaction between left

and right hemisphere is an indication of information flow between the two lobes of

brain.0_4" \ u I I . .
1

0.4‘

0.35

0.3

0.251

0.2

0.15!”

I0.1

0.05?
Svnch. index between F3 and F132

0 5 10 15 20 25 30
seconds

Fig 10.1 1: Synchronization index between F3 and Fp2. (a) Before meditation eyes

closed (b) During meditation
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The synchronization index during pre-mediation resting eye-closed state

reveals strong interactions among various brains. Whereas the synchronization index

decreases during meditative state ofthe same subject as shown in Fig 10.12.

Eadwdiuisioninv if if if if if 3. .. u
col-rggpond-510  i! Z! Z1 Z1 Z2 2 '1

2 '.'| -I 5 IS '1‘ I '3 III II II II: II I5 It

Fig 10.12: Average value of synchronization index. Dark shade corresponds to

before meditation and white corresponds to during meditation.
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The phase synchronization index is calculated using a single window of 4096 data

points. This shows that the co-ordination is reduced as the distance between locations

gets increased.

The above investigation on meditation strongly tempts one to consider the

brain as a system of collection of different classes of attractors and before

meditation, they interact to form structures with reduced complexity or degrees of

freedom. This is an indication of the setting in of coherent state, which describes the

functioning of brain as a single entity. During meditation many interactions are

reduced, which are reflected in the values of synchronization index, the attractors

have more degree of freedom, which results in a comparatively larger value of D2

and K2.These results presented here give an insight into the collective dynamics of

brain in general.

This study shows that the different parts of the brain interact more strongly

during non-meditating state as compared to meditating state. This can be explained

based on the fundamental aspects of meditation. During eyes closed condition

different regions of the brain interact with each other through thought process to get

a coherent state. Interaction between different regions of brain, as stated earlier,

generates associative memory. During meditation, one is trained to control thought

processes, which will lead to de-coupling of different regions of the brain. This is

clear from the lowering ofvalucs ofsynchronizalion index. This suggests that during

meditation the brain is free from external and internal stimuli and moves to

expansive state with greater degree of freedom. Neocortical synchronization is seen
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as the necessary mechanism to thought process. The phase-synchronization index

across various zones ofthe neocortcx shows weak interactions during meditations. It

may thus causing less stress to neural system and the mechanism may be helpful in

studying the effect of meditation on mental stress and other related psychological

problems. It may prove beneficial in the study of synchronization for different

pathological conditions like seizure or epilepsy. From a statistical viewpoint, one

can realize that brain system achieves greater coherence when it interacts with the

external world. When the subject goes over to meditating state this coherence is lost.

The transition may be viewed as emergence or structure / pattern formation in a

nonlinear evolutionary system with on and off mechanisms. Further, the system is

thermodynamically open which gives scope for unlimited state transitions. Further

these results show the potential application of meditation for the treatment of

neuropsychiatric disorders.
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PART III: DYNAMICAL ASPECTS OF NEOCORTEX

A method to find the attractor potential is presented in this section. A new

method to evaluate phase and amplitude of the time series from Poincare map is

discussed. Using phase and amplitude coherence a new index called Coherence index

is derived and this index along with other characterizing parameters used for

studying the attractor interaction.

10.4 Determination of Phase from Poincare map

The widely used method to evaluate the phase of an arbitrary signal is using

the concept of analytical signal theory proposed by Gabor. In this method phase of an

arbitrary signal is evaluated by defining an analytic signal in which the real part of

the analytic signal is the original signal whereas the imaginary part is the Hilbert

transform of the signal. The basic notion in analytic concept is that the phase of an

arbitrary signal changes linearly with time. Hence, phase can be evaluated by finding

inverse tangent of the ratio of the imaginary part to real part of the analytic signal.

However, this method of evaluation of phase is inaccurate in the case of data from

nonlinear system, as in a nonlinear system the “phase changes linearly with time”

need justification. Further Hilbert transform is a quadrature filter (Papoulis, 1984)

that will nullify most of the nonlinear effects. Therefore, a new method has been

introduced in which phase is defined using Poincare map. This section presents the

inadequacy of phase definition from Hilbert transform that lead to the definition of

phase from Poincare map. A comparative study has been conducted by evaluating the

phase using Hilbert as well as Poincare map for Mixed sine waves, Rossler equation,
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Nonlinear Langevin equation and EEG time series. The phase evaluated using

Hilbert and Poincare for the time series generated for sets of sine waves (standard

data set d), are presented in Fig 10.13 to Fig 10.15. The data simulated using a time

step of inverse of ten times the maximum frequency content in the signal

? I I I IE e3°°l(3)  _
.2O0100- '
5 O I I l L0 10 20 30 40 50

timeT1 4% I I I I
§0 300

-5(b) & 20°’ ‘
Q)

3,100g 0 1 l 1 I0 10 20 30 40 50
time

Fig 10.13: Phase evaluated for sine wave of frequency 7Hz using (a) Hilbert and (b)

Poincare method.
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Fig 10.14: Phase evaluated for mixed sine waves of frequencies 7Hz and 22Hz

(a): Time series, s (b): angle evaluated using Hilbert method and

(c ) angle from Poincare method
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Fig 10.15: Phase evaluated for mixed sine waves of frequencies 7Hz and 2 lHz

(a): Time series, S (b): angle evaluated using Hilbert method and

(c ) angle from Poincare method
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It has been found that the variation of phase for the case of sine wave with a

single frequency is identical both in analytical and Poincare plane. The variation is in

the 0 to 3600 range and is true for a sine wave whose phase is well defined. However,

in the case of mixed sine wave, the variation is different as the Poincare map

represents the close return of the trajectory as the evolution of one cycle. In Hilbert

representation, the variation ofphase is close to largest time scale in the signal in the

case of mixed sine waves. This has great implication when the frequencies are

incommensurate especially when the amplitude ratios are not unity.

The time series of Rossler equation (standard data set c) used for the

evaluation of phase is presented in Fig. lO.16(a) while phase evaluated using Hilbert

transform is presented in fig. 10.16(b) and Fig. 10.l6(c) represents the phase from

Poincare space. The notion that phase changes linearily with time fails in the

Poincare representation, as the nonlinear structure is predominant in phase from

Poincare map. This has to be accounted for as in the case of nonlinear system, since

the nonlinearity inherent in the system can cause phase that is not linear with time.

The Hilbert representation thus becomes only a qualitative variation of phase

whereas Poincare representation takes into account the subtle aspect of the dynamics.

182



(a) 5 ”
0-5 _ 1 I —O 5000 10000 15000400 r I . . I

(b)
200 0 I 1 1 I0 500 1000 1500 2000 2500 3000

( C) 400

200O l 1 l0 500 1000 1500 2000 2500 3000
time

Fig 10.16: Phase evaluated for Rosslcr equation

(a): Time series S (b): angle evaluated using Hilbert method and

(c ) angle from Poincare method
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This method ofinvestigation is extended to nonlinear Langevin equation

(114E + fit" = R(t) (10.1)
where u is the displacement, ,6’ is the diffusion coefficient and R(t) is a normally

distributed random number set with a mean zero and variance 1. In the present case,

we took n=3. The equation (10.1) is integrated numerically forfl = -51 I I I .
(3)

(b)

(c) “°° ' ' ' '200 'l l 1
00 10) 200 3(I30 460 500

time

Fig 10.17: Phase evaluated for nonlinear Langevin equation

(a): Time series S (b): angle evaluated using Hilbert method and

(c ) angle from Poincare method
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The time series is given in Fig.lO.l7 (a). The variation of phase is

approximately linear in some of the regions as shown in Fig. 10.17 (b). While

Fig.l0.l7(c) shows great deal of structure due to nonlinearity and stochasticity. Since

the equation has, nonlinearity and stochasticity phase should oscillate according to

this stochastic term. This feature is not seen in the phase from Hilbert transfonn. It

should however be noted that the nonlinear interactions in the system might use the

stochastic source function to modify its own frequency resulting in stochastic

resonance (Gammaitoni et al, 1998) or synergism. The same procedure is repeated

for EEG data from the left Occipetal region ofa person in eyes closed condition and

is presented in Fig. 10.18. Here also the nonlinearity is predominant in Poincare

representation. This clearly indicates that the Hilbert space linearises the information

and is not suitable for a highly nonlinear systems.

(3)

(b)

0 50 100 150 200 250 300
time

Fig 10.18: Phase (in degrees) of EEG (a) I-Ii1be1t(b) Poincare
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10.5 Determination of Synchronization Indiccs

The method adopted for quantifying the degree of synchronization has been

proposed by Tass et al. (1998). However, in this method they have defined an index

based on Shanon entropy from the relative phase distribution. In the present work, an

additional quantity has been defined considering relative amplitude distribution.

Using phase and amplitude synchronization indices a third index has been defined.

Thus, in general three indices such as Phase Synchronization index, Ampltude

Synchronization index and Synchronization Coherence index have been defined.

Here Phase and amplitude are derived from Poincare map and corresponding indices

have been calculated from the bivariate data. Phase Synchronization index using the

relative phase distribution is calculated with the phases from the Poinare map for a

bivariate data set. In a similar manner amplitude synchronization index is defined.

I-lere also the amplitude corresponds to the length of the vector in Poincare space.

Synchronization Coherence index is defined as the harmonic mean of Phase

synchronization index and Amplitude synchronization index. Phase Synchronization

index, Amplitude Synchronization index and Synchronization coherence index are

similar to the measures Phase coherence, amplitude Coherence and Coherence index

respectively. However in the former the quantification is evaluated by considering

relative phase / amplitude distribution and they are the measures of a bivariate data

set. Whereas in the latter one considers simply the phase / amplitude distribution and

they are for univariate data set.
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The phase synchronization index has been evaluated using phase from Hilbert

as well as Poincare space for Coupled Rossler equations of Rosenblum with different

values of coupling. The variation is presented in Fig 10.19. This clearly indicates that

the variations of synchronization index values with coupling parameter are consistent

in both the cases.
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Fig 10.19 Phase synchronization index of Coupled Rossler equation

I-I-Hilbert

P-Poincare.

The phase synchronization index has been calculated for normal eyes closed

data using both methods and they are presented in Fig10.20 (a). It has been found
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that the variation of phase synchronization index using phase from Hilbert and

Poincare is identical in eyes closed data.
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Fig lO.20(a) Phase synchronization index between Fpl and Fp2 during eyes closed

condition (a) Hilbert (b) Poincare

In the ease of epileptic data phase synchronisation index calculated using

Hilbert and Poincare method are different. However it has been found that in this

case phase synchronisation index using Hilbert and Poincare method with a large

time lag in reconstruction, are similar. The phase synchronization index has been

calculated for normal eyes open data - using both methods and they are presented in

Figl0.20 (b). Here also the variation of phase synchronisation index is identical.
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Fig l0.20(b) Phase synchronization index between Fpl and Fp2 during eyes open

condition (a) Hilbert (b) Poincare

Another parameter that is very important is the choice oftime lag. Ifthe time

lag is very small the points will cluster around the diagonal of the Poincare plane, a

property called redundancy, and the systems may appear to be synchronized even in

the absence of synchronization. On the other hand if the time lag is very large it may

not show the synchronization phenomenon even if it is present, a property called

irrelevance. It has been found that the variation of phase synchronization index is

less sensitive to large values of time lag. Thus, a proper choice of time lag can be
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made by applying average mutual information criteria or any other similar criteria

and studying the effect oftime lag to a few values of lag near to the lag selected. To

study the effect of time lag used in the reconstruction of Poincare map, Phase

synchronization index is evaluated with different values of Time lag for eyes closed

EEG data between Fpl and F3 and given in Fig 10.18. The results indicate that there

is no significant effect oftime lag for wide range oflag.

.0 01
I I

phase syn. index

.0 134? 2“

time

Fig. 10.2]: Phase synchronization index using Poincare method at different Time lag.

(n =15, 18, 21, 22, 25)

This proves that the phase evaluation using poincare map fonns an alternate

method of finding the phase of a nonlinear system that incorporates to a larger

measure nonlinearity and stochastic nature of the system. Further, the phase

synchronization index obtained from the Poincare map is insensitive to the choice of
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time lag. Thus it is very clear that the phase of a system can be effectively evaluated

from a two dimensional reconstruction of the time series. The advantage of this

method over analytical method is that Poincare method is simple. Further, the signal

is not transferred through any kind of filter as most of the filters wipe out

nonlinearity.

Another measure is the amplitude synchronization index that quantifies the degree

of amplitude synchronization. This is effective over simple visual (x,y)

representation as it gives a numeric value of depth of synchronization. The amplitude

synchronization index has heen evaluated for the coupled Rossler equation of

Abarbanel. As the coupling value is increased the two systems are synchronized and

the corresponding amplitude synchronization index increases. Fig 10.22 gives the

amplitude synchronization index at various values of coupling.
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Fig 10.22: Amplitude synchronization index of Coupled Rossler system

H- I-Iilbert method P-Poincare method
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The amplitude synchronization is also called global synchronization with

reference to attractors in appropriate embedding space. The index however quantifies

the degree of amplitude synchronization Eventhough the presence of phase

synchronization also indicates the existence of global synchronization, the more

realistic approach is to define an index that incorporates both the amplitude and

phase synchronization. The Synchronization Coherence index gives the combine

effects of both amplitude and phase synchronization between two systems. Phase

synchronization index before meditation eyes closed condition and during meditation

between Fpl and Fp2 calculated for running windows of duration 2 seconds using

Poincare map are presented in FiglO.23
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Fig. 10.23: Phase synchronization index between Fpl and Fp2 (a) before meditation

and (b) during meditation using Poincare method [P].
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It clearly indicates that the synchronization index decreases during meditation.

Further, it has been confirmed that the coordination between brain region decreases

during meditation, the observation that has been made in the section 10.3. This is

inferred from observing lowering of values of phase synchronization index between

the channels. Similar observation is observed by evaluating synchronization index

with phase from Poincare map. This suggests that a simple two-dimensional

reconstruction is sufficient to study the subtle aspects of the dynamics. Further for

the implementation of Hilbert transform one has to properly design a filter with

amplitude response unity and phase response 1r/2 lag at all frequencies. On the other

hand Poincare method is very easy to implement.

10.6 Phase Coherence, Amplitude Coherence and Coherence index.

The synchronization indices are found from the histogram of relative phase

distribution from bivariate data. This index essentially gives the degree of

coordination between two time series. However for characterizing a signal the

indices must be derived from a univariate data. This is achieved by projecting the

time series in a two dimensional phase space and deriving the parameters from this

space. Three characterizing parameters, Phase coherence, amplitude Coherence and

Coherence index, have been derived. This definition is similar to Synchronization

indices definition. In this case a bivariate data is considered whereas for the

definition of coherence index a univariate series is considered. Phase Coherence,

Amplitude Coherence and Coherence index calculated for eyes closed and

meditation data of nonoverlapping running windows length 1024 data points are

presented in Fig 10.24
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Fig. 10.24 (ii): Amplitude Coherence (a) meditation (b) eyes closed
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coherence index

time

Fig. 10.24 (iii): Coherence index (a) meditation (b) eyes closed

It is very clear that Phase coherence, Amplitude coherence and Coherence

index shows a clear variation in eyes closed and meditation. This implies that the

parameter derived from the length and the orientation of the vectors in phase space

can be used as another characterizing parameter along with Correlation dimension,

Komogorov entropy, Lyapunov exponents etc. Further these new parameters can be

viewed as temporal indices whereas synchronization indices are spatial indices.
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10.7 Attractor Potential of EEG

In this last section an account of the evaluation of effective potential at

various points (16 locations) distributed in the skull space is given. Evaluation of

effective potential at any point in a dynamic system is a very difficult and involved

process as could be seen from the various branches of physics such as gravitational

and electronic systems. The process that is adopted has already been indicated in

chapter 8. Effective potential is essentially a potential that a particle sees at an around

its position in the system. In the case of electronic system it is a potential that an

electron sees at a point due to interactions with all the particles in the Debye sphere.

In the case of gravitational system there is no screening and hence the potential is

due to its interactions with the rest of the universe. In both the above cases one

knows that the potential between two particles is a function of the inverse of the

distance between them. However to evaluate the effective potential, one has to

invoke a distribution function and that depends upon the chosen time scale. In the

electron problem the Debye's sphere concept is due to the interaction time scales

which is the same as self consistent field approximation. In evaluating this, one has

to evaluate a distribution function compatible with the chosen time scale and then

evaluate the effective potential by averaging the two particle interaction potential

with this distribution function as the weight function. However in the present

approach the potential is evaluated from the Schrodinger equation as is usually done

in dynamical system. (Toda, 1975).
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This method is eminently suited for the present problem, since the exact form

of Hamiltonian is not known. The problem is all the more difficult since the system

is nonlinear, complex and stochastic and contains various organic constituents. The

effective potential is evaluated for sixteen channels. The eigen values come out in a

decreasing sequence and with the fifth eigen value it gets e folded and hence all

further eigen values and corresponding eigen functions are neglected.

Since the wave functions are orthogonal among themselves, each ofthem can

be constructed in a series of known set of orthogonal functions. The effective

potential can now be expressed as

web) = Z/M¢a (10.2)
The obtained eigen functions are then fit in terms of Legendre function as

¢i = Zaij-Pj (10.3)
This further has to satisfy that (bi (bk are orthogonal. This implies

l¢i¢k = -laijbklpjpl = 5m (10-4)

Now
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JP}-i>,dti = afl (10.5)
because of orthogonality of Legendre functions.

Therefore

v(¢) = ZAiaiJ-Pj (10.6)
The numbers bound onj or 1 has to be determined by the number of Legendre

functions needed to fit the functions. However the harmonics upto the larger number

should be retained. The exact values of the constituents a and b in the matrices will

be functions of the parameters of the systems. This completes the evaluation of the

effective potential. The attractor potential calculated for 16 channels for the eyes

closed, eyes open and meditation is given in Fig 10.25.

V-100000

Fig. 10.25 (a): Attractor potential in eyes closed condition. Sl-S6 represents modes

corresponding to first six eigen values. Ch represents channel and V the potential
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Fig. 10.25 (b): Attractor potential in eyes open condition.

Fig. 10.25 (C): Attractor potential during meditation.
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In these plots there are a few stable regions in the potential distribution as

indicated by the potential wells and there are unstable regions also depicted by the

peaks. This is what one would expect in a chaotic system, as there are stable and

unstable modes. However more investigation is needed to study the relevance of

attractor potential in chaotic dynamics. In the absence of any defining equation

depicting the dynamics this is probably the most direct way of inferring the

dynamics.
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Chapter 11

RESULTS AND DISCUSSION

A complex system like brain can be modeled only if its invariant parameters

are accurately determined. The invariant parameters especially the dynamical

parameters are sensitive to the choice of time scale and the values of the parameters

are different for different window as well as different channels. This is generally

referred as due to nonstationary property of the system. It has been shown that in

neurodynamics nonstationarity is due to large class of time scales. In evaluating the

characterizing parameters, the time series is embedded in an appropriate space with a

proper choice of lag from autocorrelation function or average mutual information

criteria or any other similar criteria. It has been found that such choice of time lag is

suitable only for the evaluation of Correlation dimension. Kolmogorov entropy being

a dynamical parameter is found very sensitive to the choice of time lag especially

during epileptic conditions. In determining D2 and K2, the same time lag detennined

from AMI is generally used. While this time lag indeed gives a good measure of D2,

any time scale shorter than this is being averaged out which in turn affects the

evaluation of information capacity. Thus in the study of various dynamical

conditions of brain one must choose time lag as small as possible to incorporate

many time scales involved in the dynamical process. Nevertheless, this prescription

is more useful to get a qualitative insight in the functioning of such a complex,

nonlinear, nonequilibrium system such as human brain.
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The real importance oftime scales in the study of brain functioning has been

presented, as choices oftime scales are very crucial in understanding neurodynamics.

It has also been shown how to obtain a relevant time scale pertaining to a particular

state ofthc brain. In this work a global analysis is performed by taking eight / sixteen

channel output, which indicates that these characteristics time scales vary with the

different locations and during an experience, a large number of attractors are present

in the brain and they obviously must be interacting amongst each other. These time

scales are either a single scale or as a group of scales can be a set of synergic time

scales and are not fundamental ones. Hence, each time scale is a consequence of

combination of various fundamental scales that combine in a nonlinear manner. It is

indeed difficult or rather impossible to break down this synergic time scale into

fundamental components. Thus, human brain dynamics can be viewed as an

“attractor gas” with large class of attractors some or many of them being strange

ones with fractal dimension. It may also be realized that these attractors change their

characteristic parameters, resulting in nonstationary nature in the time series. Hence,

one has a system of grand canonical ensemble of strange attractors with its

characteristics including its number ever changing. It is also true that the system is

thermodynamically open.

Dynamics of human brain during meditation has been compared with that

during non-meditating (eyes closed condition) state using the methods of nonlinear

dynamics. Studies involving phase synchronization technique show that the different

parts ofthe brain interact more strongly during non-meditating state as compared to
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meditating state. This inference also indicates that the neural dynamics involving a

large class of attractors.

Investigating the possibility of inferring the dynamics of human brain during

a process human brain dynamics is considered as consisting of large class of

attractors and their effective potential, attractor potential, is evaluated from EEG

signal. Attractor potential is evaluated by finding the correlation wavefunctions using

a singular value decomposition technique. These wave functions are then used to

evaluate the interaction potential. In the absence of any defining equation depicting

the dynamics, this is probably the most direct way of inferring the dynamics. The

potential function for the various eigen functions at a given point generated for the

different eigen values gives the nonlinearities in the system. The system is found

highly complex with an ever-active neural system without number conservation. The

Coherence property of the system is studied by evaluating an index derived from

Poincare space. As the state changes in the parametric space the characteristic vector

constructed in this space change both in its amplitude and orientation. As the

Coherence index is evaluated from a single time series this index along with another

characteristic parameters can be used for developing a model of Neurodynammics. A

general model also has been proposed. However, more investigation is needed to

study the feasibility of the model for clinical purposes. Further one can explore the

possibility of using the newly developed parameters such as Phase coherence,

amplitude coherence, Coherence index, attractor potential and different

synchronization indices for clinical applications. These parameters along with the

already known ones can be used to develop an on line brain imaging system.
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