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Chapter 1

Introduction

The origin of graph theory can be traced back to Euler’s work

on the Königsberg bridges problem. The Swiss mathematician

Leonhard Euler presented a paper ‘On the solution of a problem

relating to the geometry of position’ to his colleagues at the

Academy of Sciences in St Petersburg on 26 August 1735. This

was the Konigsberg bridges problem - find a closed walk that

crosses each of the seven bridges of Königsberg exactly once,

which led to the discovery of Eulerian graphs [6]. Since then

the subject has grown into one of the most inter disciplinary

branches in mathematics with a great variety of applications

1



2 Chapter 1. Introduction

[5], [56].

The development of graph theory with its applications to

electrical networks, flows and connectivity are included in [10]

and [26]. Interest in graphs and their applications has grown

exponentially in the past two decades, due to the usefulness of

graphs as models for computation and optimization [35].

The idea of networks has received much attraction in the

past years as it affects many aspects of our lives, such as how

we store and retrieve information, communication etc. The Web

graph [5], [24] is a real world network which became an active

field of study in the last decade. A web graph, W has vertices

representing the web pages and the edges correspond to links

between the pages. This exciting notion of web graph has appli-

cations in different areas. The most famous ranking algorithm,

‘Page Rank’ was introduced in 1998, for Google’s web search

algorithm [11].

‘Scale free network’ is a network characterized by a ‘power

law degree distribution’. The construction of scale free graph

is based on its adjacency matrix. Many critical infrastructure

systems such as internet, railroads, gas pipeline systems etc have
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been shown to be scale free [64]. Spectral properties of complex

networks are also studied [54]. A large number of biological

networks such as metabolic reaction networks, gene regulatory

network, food networks between species in an ecosystem have

been studied in [27].

In any branch of mathematics we try to get new structures

from the given structures. In graph theory also many interesting

classes of graphs are obtained by combining graphs in several

ways such as join, union, product etc.

‘Graph products’ are viewed as a convenient method to de-

scribe the structure of a graph in terms of its factors. There

are three products - Cartesian, strong and lexicographic prod-

uct which have many applications and theoretical interpreta-

tions. These products have the property that projection into at

least one factor is a weak homomorphism. For this reason the

three standard products are most extensively studied and have

the widest range of applications. When dealing with product

graphs, one of the main source of reference is the book by R.

Hammack et al. [36].

An interconnection network may be modeled by a simple
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graph whose vertices represent components of the network and

the edges represent physical communication links. A basic fea-

ture of a network is that its components are connected by phys-

ical communication links to transmit information according to

some pattern. Many graph theoretic techniques can be used to

study the efficiency and reliability of a network, as discussed in

[41], [50] and [66]. For designing large-scale interconnection net-

works, the product graph operation is an important method to

obtain large graphs from smaller ones, with a number of param-

eters that can be calculated from the corresponding parameters

of the factor graph.

The distance and diameter of a graph play significant roles

in analyzing the efficiency of an interconnection network. The

diameter is often taken as a measure of efficiency, when studying

the potential effects of link failures on the performance of a

communication network, especially for networks with maximum

time-delay or signal degradation. In fact, most of the graph

products are interconnection networks and a good network must

be hard to disrupt and the transmissions must remain connected

even if some vertices or edges fail. In order to improve or increase

the efficiency of message transmission we need to minimize the
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diameter of a graph. However, there are nice interconnection

networks, such as butterfly networks, honeycomb networks [41],

which are not product graphs.

In the design of an interconnection network, another funda-

mental consideration is the reliability of the network, which is

characterized by the vertex connectivity and the edge connec-

tivity of the network. If some processors or links are faulty, the

information cannot be transmitted by these links and the effi-

ciency of network will be affected. These problems deal with

how the remaining processors can still communicate with a rea-

sonable efficiency. In terms of graphs, this problem is modeled

in the literature as the vulnerability of the diameter. These no-

tions have received much research attention in the past years

due to its applications in networks [66].

For routing problems in interconnection networks it is im-

portant to find the shortest containers between any two vertices,

since the w-wide diameter gives the maximum communication

delay when there are up to w−1 faulty nodes in a network mod-

eled by a graph. The concept of ‘wide diameter’ was introduced

by Hsu [41] to unify the concepts of diameter and connectivity.
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The concept of ‘domination’ has attracted interest due to

its wide applications in many real world situations [38]. A con-

nected dominating set serves as a virtual backbone of a network

and it is a set of vertices that helps in routing [17].

In this thesis, we make an earnest attempt to study some

of these notions in graph products. This include, the diameter

variability, the diameter vulnerability, the component factors

and the domination criticality.
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1.1 Basic definitions

The basic notations, terminology and definitions are from [4],

[13], [37], [38], [43], [65] and the basic results are from [42], [43],

and [36].

Definition 1.1.1. A graph G = (V,E) consists of a non-

empty collection of points, V called its vertices and a set of

unordered pairs of distinct vertices, E called its edges. The un-

ordered pair of vertices {u, v} ∈ E are called the end vertices

of the edge e = {u, v}. In that case, the vertex u is said to be

adjacent to the vertex v. Two edges e and e′ are said to be in-

cident if they have a common end vertex. The neighborhood

of a vertex u is the set N(u) consisting of all vertices v which

are adjacent to u. The closed neighborhood of a vertex u is

N [u] = N(u) ∪ {u}. |V | is called the order of G, denoted by n

or n(G) and |E| is called the size of G, denoted by m or m(G).

A graph G is totally disconnected if it has no edges.

Definition 1.1.2. The number of vertices adjacent to a

vertex v is called the degree of the vertex, denoted by deg(v).
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A vertex of degree zero is an isolated vertex and of degree one

is called a pendant vertex. A vertex of degree (n−1) is called

a universal vertex. The maximum and the minimum degree

of vertices are denoted by ∆(G) and δ(G) respectiively. G is

regular if ∆(G) = δ(G). It is k-regular, if deg(v) = k for every

vertex v ∈ V (G).

Definition 1.1.3. A graph G is isomorphic to a graph H

if there exists a bijection φ : V (G) → V (H) such that u and v

are adjacent in G if and only if φ(u) and φ(v) are adjacent in

H. If G is isomorphic to H, we write G ∼= H.

Definition 1.1.4. A graph H is called a subgraph of G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H is a spanning

subgraph of G if V (H) = V (G). A subgraph H is called an

induced subgraph of G if each edge of G having its ends in

V (H) is also an edge of H. The subgraph of G induced by H is

denoted by < H >.

Definition 1.1.5. A v0 − vk walk in a graph G is a finite

list v0, e1, v1, e2, v2, ..., ek, vk of vertices and edges such that for

1 6 i 6 k, the edge ei has end vertices vi−1 and vi. If the

vertices v0, v1, ..., vk of the above walk are distinct, then it is
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called a path. A path from the vertex u to the vertex v is

called a u − v path. A path on n vertices is denoted by Pn.

If in addition vk = v0 and k = n then it is called a cycle of

length n, Cn. If the edges e1, e2, ..., ek of the walk are distinct, it

is called a trail. A graph G is connected if for every u, v ∈ V ,

there exists a u − v path. If G is not connected, then it is

disconnected. A connected acyclic graph is called a tree.

Definition 1.1.6. The distance between two vertices u

and v of a connected graph G, denoted by d(u, v), is the length

of a shortest u − v path in G. The eccentricity of a vertex

u, e(u) = max {d(u, v)/v ∈ V (G)}. The radius, r(G) and

the diameter, diam(G) are respectively the minimum and the

maximum of the vertex eccentricities. For a vertex u ∈ V (G), if

there exists a vertex v ∈ V (G) such that d(u, v) = diam(G), v

is then called a diametral vertex of u.

Definition 1.1.7. The complete graph Kn is a graph of

order n in which each pair of distinct vertices is joined by an

edge. A clique is a maximal complete subgraph.

Definition 1.1.8. A graph G is bipartite if the vertex set

can be partitioned into two non-empty sets U and U ′ such that
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every edge of G has one end vertex in U and the other in U ′. A

bipartite graph in which each vertex of U is adjacent to every

vertex of U ′ is called a complete bipartite graph.

Definition 1.1.9. Let G be a graph. The complement of

G, denoted by Gc, is the graph with the same vertex set as G

and any two vertices are adjacent in Gc if they are not adjacent

in G. Kc
n is called a totally disconnected graph.

Definition 1.1.10. For a graph G, a subset V ′ of V (G) is

a k-vertex cut of G if the number of components in G − V ′ is

greater than that of G and |V ′| = k. The vertex connectivity

of a graph G, κ(G), is the least number of vertices whose deletion

from G increases the number of components of G. A graph G

is k-connected, if κ(G) > k. A vertex v of G is a cut vertex

of G if {v} is a vertex cut of G. The edge connectivity of

a graph G, κ′(G), is the least number of edges whose deletion

from G increases the number of components of G.

Definition 1.1.11. A set S ⊆ V (G) of vertices in a graph

G is called a dominating set, if every v ∈ V (G) is either an

element of S or is adjacent to an element of S. The domina-

tion number of a graph G, γ(G), is the minimum cardinality
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of a dominating set in G. A dominating set S is a connected

dominating set if < S > is a connected subgraph of G and the

corresponding domination number is the connected domina-

tion number, γc(G).

Illustration:

Fig 1.1: γ(P4) = γc(P4) = 2 and γ(P5) = 2, γc(P5) = 3.

Definition 1.1.12. [25],[38] Edge critical graphs are

graphs in which domination number decreases upon the addition

of any missing edge while vertex critical graphs are graphs

in which domination number decreases when any vertex is re-

moved. A graph G is k - γ - edge critical if γ(G) = k and

γ(G+ e) < k for each e /∈ E(G) and G is k - γ - vertex critical if

γ(G) = k but for each vertex v ∈ V (G), γ(G − v) < k. Also, G

is k - γc - edge critical if γc(G) = k and γc(G + e) < k for each

e /∈ E(G) and G is k - γc - vertex critical if γc(G) = k but for

each vertex v ∈ V (G), γc(G − v) < k.
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Illustration:

Fig 1.2: γ(G) = 3, γ(G + e) = 2 and γ(G − v) = 2.

Fig 1.3: γc(G) = 3, γc(G + e) = 2 and γc(G − v) = 2.

Definition 1.1.13. [13] A graph G is diameter minimal

if diam(G− e) > diam(G) for any e ∈ E(G) and G is diameter

maximal if diam(G + e) < diam(G) for any e /∈ E(G).

Illustration:

Fig 1.4: C5 is a diameter minimal graph and P5 is a diameter
maximal graph.



1.1. Basic definitions 13

Definition 1.1.14. [36] The Cartesian product of two

graphs G and H, denoted by G�H, is the graph with vertex

set V (G)× V (H) and two vertices (u1, v1), (u2, v2) are adjacent

if either u1 = u2 and v1 − v2 ∈ E(H) or u1 − u2 ∈ E(G) and

v1 = v2. The graph Pn�Pm is called the n × m grid graph.

The graph Pn�Cm is called a cylinder and the graph Cn�Cm

is called a torus.

Illustration:

Fig 1.5: (i) P4�P3 - grid (ii) P4�C4 - cylinder (iii) C4�C4 -
torus.

Definition 1.1.15. [36] The strong product of two graphs

G and H, denoted by G ⊠ H, is the graph with vertex set

V (G)×V (H) and two vertices (u1, v1) and (u2, v2) are adjacent

if either u1 = u2 and v1 − v2 ∈ E(H) or u1 − u2 ∈ E(G) and

v1 = v2 or u1 − u2 ∈ E(G) and v1 − v2 ∈ E(H).
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Definition 1.1.16. [36] The lexicographic product of

two graphs G and H, denoted by G ◦ H, is the graph with

vertex set V (G) × V (H) and the two vertices (u1, v1), (u2, v2)

are adjacent if either u1 − u2 ∈ E(G) or u1 = u2 and v1 − v2

∈ E(H).

Illustration:

Fig 1.6: (i) P4�P3 (ii) P4 ⊠ P3 (iii) P4 ◦ P3.

Definition 1.1.17. [43] Let G ∗ H be any of the graph

products. For any vertex g ∈ G, the subgraph of G ∗H induced

by {g} × V (H) is called the H − layer at g and denoted by

gH. For any vertex h ∈ H, the subgraph of G ∗ H induced by

V (G) × {h} is called the G − layer at h and denoted by Gh.

Definition 1.1.18. [43] A hypercube of dimension n,
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denoted by Qn, is the graph whose vertex set consists of all 0-

1 vectors (v1, v2, ..., vn), where two vertices are adjacent if they

differ in precisely one coordinate.

Equivalently, Q1 = K2 and Qn = Qn−1�K2 for n > 2.

Definition 1.1.19. [43] A graph G is a Hamming graph

if there exist integers k, n1, n2, n3, ...., nk−1, nk such that

G ∼= Kn1
�Kn2

�...�Knk
, the vertex set of G is the set of k-

tuples (i1, i2, ..., ik), where ij ∈ {1, 2, ..., nj} and two k-tuples

are adjacent if they differ in exactly one coordinate.

Definition 1.1.20. [46] Let A be a family of connected

graphs. If a graph G has a spanning subgraph H such that each

component of H is in A then H is called an A-factor or com-

ponent factor of G.

Illustration:

Fig 1.7: A graph G with a C4-factor.
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Note: G has a {K2, P4, K1,3} - factor also.

Definition 1.1.21. [41] For every integer w: 1 6 w 6 δ(G),

a w-container between any two distinct vertices u and v of G

is a set of w internally vertex disjoint paths between them. Let

Cw(u, v) denote a w-container between u and v. In Cw(u, v),

the parameter w is the width of the container. The length

of the container is the longest path in Cw(u, v). The w-wide

diameter of G, Dw(G) is the minimum number l such that there

is a Cw(u, v) of length l between any pair of distinct vertices u

and v.

Illustration:

Fig 1.8: For the graph G, C2(u, v) are
{u−c−v, u−a−b−v}, {u−c−v, u−a−v}, {u−v, u−a−b−v},
{u − v, u − a − v}, {u − v, u − c − v} and D2(G) = 3.
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1.2 Notations

The diameter of a graph can be affected by the addition or the

deletion of some edges. The following notations are used to

describe the diameter variability [63].

D−k(G) : The minimum number of edges to be added to G

to decrease the diameter of G by (at least) k, where k > 1.

Dk(G) : The minimum number of edges to be deleted from G

to increase the diameter of G by (at least) k, where k > 1.

D0(G) : The maximum number of edges to be deleted from G

without an increase in the diameter of G.

Illustration:

Fig 1.9: D−1(G) = 1 (by adding the edge d − f).
D1(G) = 1 (by deleting the edge a − b).
D0(G) = 3, (by deleting the edges a − i, c − e, and d − e).
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Vulnerability is a measure of the ability of the system to

withstand vertex or edge faults and maximum routing delay.

Diameter can be used to evaluate the maximum delay in rout-

ing. In this context, the following concepts are studied. The

notations used are,

f(G) = max{diam(G − S)/S ⊆ V (G), |S| = κ(G) − 1} (called

fault diameter [48]) and

f ′(G) = max{diam(G − F )/F ⊆ E(G), |F | = κ′(G) − 1}.

Illustration:

Fig 1.10: diam(G)=2, κ(G) = 3 and f(G) = 4 (S = {a, c}).
Also, κ′(G) = 3 and f ′(G) = 3 (F = {u − w, a − w}).
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1.3 Basic properties and theorems

Product graphs have many interesting algebraic and other prop-

erties. The Cartesian product and strong product are commu-

tative and associative. The lexicographic product is associative

but not commutative. It is interesting to see that even if the

factors G and H of a product graph have a property ′P ′ then it

is not necessary that the product G ∗ H also has that property,

where ∗ denotes any of the graph products mentioned above. As

a case, Cm�Cn is non planar and G�H need not be Hamiltonian

even if both G and H are Hamiltonian.

The Cartesian product is the most prominent graph prod-

uct. The Cartesian product G�H can be obtained from G by

substituting a copy Hg of H for any vertex g of G and by join-

ing the corresponding vertices of Hg with H ′
g if g − g′ ∈ E(G).

The Cartesian product of two connected graphs is a subgraph of

both strong and lexicographic product of graphs. Hypercubes

and Hamming graphs are important classes of the Cartesian

product.

The lexicographic product G ◦ H can be obtained from G
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by substituting a copy Hg of H for any vertex g of G and

then joining all the vertices of Hg with all the vertices of H ′
g

if g − g′ ∈ E(G).

The following results are of interest to us.

Theorem 1.3.1. [43] A Cartesian product G�H is connected

if and only if both factors are connected.

Theorem 1.3.2. [43] For any two connected graphs G and H,

diam(G�H) = diam(G) + diam(H).

Theorem 1.3.3. [60] Let G and H be graphs on at least two ver-

tices. Then κ(G�H) = min{κ(G) |V (H)| , κ(H) |V (G)| , δ(G)+

δ(H)}.

Theorem 1.3.4. [67] Let G and H be graphs on at least two ver-

tices. Then κ′(G�H) = min{κ′(G) |V (H)| , κ′(H) |V (G)| , δ(G)+

δ(H)}.

Theorem 1.3.5. [36] If G and H are connected nontrivial, then

κ′(G�H) = κ′(G) + κ′(H) if and only if either κ′(G) = δ(G)

and κ′(H) = δ(H), or one factor is complete and κ′ = 1 for the

other factor.

Theorem 1.3.6. [62] For all graphs G and H,

γ(G�H) 6 min{γ(G) |V (H)| , γ(H) |V (G)|}.
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Theorem 1.3.7. [29] For all graphs G and H,

γ(G�H) > min{|V (G)| , |V (H)|}.

Theorem 1.3.8. [36] A strong product G ⊠ H is connected if

and only if both factors are connected.

Theorem 1.3.9. [36] For any two connected graphs G and H,

diam(G ⊠ H) = max{diam(G), diam(H)}.

Theorem 1.3.10. [36] Let G and H be connected graphs, at lest

one is not complete. Then κ(G⊠H) = min{κ(G) |V (H)| , κ(H)

|V (G)| , ℓ(G ⊠ H)}, where ℓ(G ⊠ H) is the minimum size of a

7- set of G⊠H (if a separating set S has an empty intersection

with at least one G - layer and with at least one H - layer, then

S is a 7- set of G ⊠ H).

Theorem 1.3.11. [36] Let G be not complete. Then

κ(G ⊠ Kn) = nκ(G).

Theorem 1.3.12. [7] Let G and H be connected graphs. Then

κ′(G ⊠ H) = min{κ′(G)(|V (H)| + 2 |E(H)|), κ′(H)(|V (G)| +

2 |E(G)|), δ(G ⊠ H)}.

Theorem 1.3.13. [36] A lexicographic product G ◦ H is con-

nected if and only if G is connected.
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Theorem 1.3.14. [36] If G is not complete, then

diam(G ◦ H) = diam(G) and diam(Kn ◦ G) = 2

Theorem 1.3.15. [36] If G is not complete and H is any graph,

then κ(G ◦ H) = κ(G) |V (H)|.

Theorem 1.3.16. [36] For any graph H, κ(Kn ◦H) = κ(H) +

(n − 1) |V (H)|.

Theorem 1.3.17. [68] Let G and H be two non-trivial graphs,

and G is connected. Then κ′(G) = min{κ′(H1)n
2
2, δ(H2) +

δ(H1)n2}.

1.4 A survey of results

This section is a survey of results related to ours.

In [34], Graham and Harary showed that D−1(Qn) = 2,

D1(Qn) = n−1 and D0(Qn) > (n−3)2n−1+2. In [12], Bouabdal-

lah et al. obtained the following bound, (n−2)2n−1−(n
⌊n/2⌋)+ 2 6

D0(Qn) 6 (n − 2)2n−1 − ⌈2n − 1/(2n − 1)⌉ + 1. In [63], J.

J. Wang et al. showed that D−1(Cm�Cn) = 2, for m > 12,

D1(Cm�Cn) = 2 or 3 and D0(Cm�Cn) >
{

mn−2n+1
mn−2n when m is
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even and odd respectively. This notion is also discussed in [53].

One of the interesting results of diameter minimal graphs of

diameter two in [31], is that every graph G can be embedded as

an induced subgraph in a diameter minimal graph of diameter

two. In [57], Ore O. proved that a graph G is diameter maximal

if and only if

(1) G has a unique pair of eccentric peripheral vertices u and v.

(2) the set of vertices at each distance k from u induces a com-

plete graph.

(3) every vertex at distance k is adjacent to every vertex at dis-

tance k + 1.

Also, a disconnected graph is diameter maximal if and only if

G = Km ∪ Kn.

The problem of determining diameter vulnerability of a graph

was proposed by Chung and Garey [23]. The problem is proved

to be NP-complete by Schoone et al. [59]. In [58] Peyrat show

that 3
√

2t − 3 < f ′(G) 6 3
√

2t + 4 where G is a (t + 1) - con-

nected graph of diameter 3. In [69] H.X. Ye et al. improves

the result of Peyrat and gave a bound as 4
√

2t − 6 < f ′(G) 6

max{59, 5
√

2t + 7} for t > 4. This notion is also discussed in
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[55], [9] and [14]. The concept of fault diameter was introduced

by M.S. Krishnamoorthy and B. Krishnamurthy [48]. This no-

tion is also discussed in [32] and [49]. The wide diameter of some

networks is studied in [52].

In [2], Ando et al. proved that a connected claw-free graph

G with δ(G) > d has a path factor having each path of length

at least d. Also, they conjectured that a 2-connected claw-free

graph G with δ(G) > d has a path factor of length at least 3d+2.

In [15], Cada proved the conjecture for line graphs. In [3], Armen

et al. showed that a simple (3, 4)-biregular bigraph always has

a path factor such that the endpoints of each path have degree

three. In [44], Kaneko showed that every cubic graph has a path

factor such that each component is a path of length 2,3 or 4. It

was shown in [47], that a 2-connected cubic graph has a path

factor whose components are paths of length 2 or 3. In [46],

Kano et al. proved that if a graph G satisfies iso(G-S) 6 |S| /2

for all S ⊆ V (G), then G has a {K1,2, K1,3, K5}-factor where

iso(G - S) denotes the number of isolated vertices in G − S.

Some results on different types of path factors can be found in

[28], [45], [51]. Hell and Kirkpatrick [39], [40] proved that if A

is a graph on at least 3 vertices, then deciding whether G has a
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A-factor is NP-complete.

The connected dominating set has attracted interest due to

its applications in network routing. In [17], Y.C. Chen and Y.L

Syu showed that for an n-dimensional Star graph Qn and n-

dimensional Star graph Sn, the order of minimum connected

dominating set (MCDS), |MCDS(Qn)| 6 2n−2 + 2 where n > 3

and |MCDS(Sn)| 6 2(n − 1)! where n > 3. In [61], Sumner et

al. characterized 2 - γ - edge critical graphs and proved that the

disconnected 3 - γ - edge critical graphs are the disjoint union

of 2 - γ - edge critical graphs and a complete graph. For k > 4,

the characterization of connected k - γ - edge critical graphs is

not known. In [16], Chen et al. gave a characterization of

2 - γc - edge critical graphs. Also, if G is 3 - γc - edge critical

then either G is isomorphic to C5 or contains a triangle and

that if G is 3 - γc - edge critical of even order then G contains

a one factor. In [8], Brigham et al. gave a characterization

of 2 - γ - vertex critical graphs. But for k > 3, only some

properties of k - γ - vertex critical graphs are known and there

is no characterization of such graphs. In [30], Flandrin et al.

studied some properties of 3 - γ - edge critical graphs and proves

that if G is a 3 - γ - edge critical connected graph of order n
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with δ > 2, then G is 1-tough and circumference of G is at least

n − 1. Some properties of 3 - γc - vertex critical graphs are

discussed in [1]. For k > 4, no characterization of k - γc - vertex

critical graphs are known. In [33], Goncalves et al. studied the

domination number of grids.

We shall discuss these notions in product graphs in this

thesis. In this thesis, we consider the graphs H1, H2 and de-

note the V (H1) = {u1, u2, ..., un1
}, V (H2) = {v1, v2, ..., vn2

} and

V (H1 ∗H2) = {u1v1, u1v2, ..., un1
vn2

} where ∗ ∈ {�,⊠, ◦}. Also,

|E(H1)| = m1 and |E(H2)| = m2. Since, H1 ∗ K1
∼= H1 we

assume that H1, H2 6= K1.

1.5 Summary of the thesis

This thesis entitled ‘Studies on some topics in product

graphs’ is divided into five chapters including an introductory

chapter giving a brief history of graph theory, basic definitions

and results which we have used in our work.

In the second chapter the diameter variability of product
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graphs is studied in detail. The main results in this chapter are:

⋆ Let G ∼= H1�H2. Then D0(G) > 2.

⋆ Let G ∼= H1�H2. Then D1(G) = 1 if and only if H1 is

a complete graph and either H2 has at least one pair of

vertices with exactly one diametral path P and no path of

length diam(H2)+1 which is edge disjoint with P or there

exist an edge in H2 that is on all paths of length diam(H2),

diam(H2) + 1 between any two diametral vertices in H2.

⋆ Let G ∼= H1�H2.

(a) If both H1 and H2 are complete graphs with n1, n2 > 2,

then D1(G) = 2.

(b) If H1 is a complete graph and H2 is a not complete

graph, then D1(G) 6 δ(H2).

(c) If both H1 and H2 are not complete graphs, then

D1(G) 6 ∆(G) − 1.

⋆ Let G ∼= H1�H2. Then D−1(G) = 1 if and only if G is

any one of the following graphs where,

(a) H1 is a complete graph and H2 is a not complete graph

with D−2(H2) = 1.
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(b) H1 is a not complete graph with a universal vertex or

there exist a vertex in H1 that is on at least one path be-

tween any two diametral vertices and H2 is a not complete

graph with D−1(H2) = 1.

⋆ Let G ∼= H1 ⊠ H2. Then D0(G) > 6.

⋆ Let G ∼= H1 ⊠H2. Then D1(G) = 1 if and only if G is any

one of the following graphs where,

(a) both H1 and H2 are complete graphs.

(b) H1 and H2 are not complete graphs with diam(H1) =

diam(H2) and either H1 or H2 have at least one pair of

vertices with exactly one diametral path or there exist an

edge in H1 or H2 that is on all diametral paths between

any two vertices.

⋆ Let G ∼= H1 ⊠ H2. Then D1(G) 6 α(1 + δ(H2)) where α

is the minimum number of edge disjoint paths of length

diam(H1) between any two vertices in H1.

⋆ Let G ∼= H1⊠H2 be connected graph. Then D−1(G) = 1 if

and only if H2 has a universal vertex and H1 is a connected

graph with diam(H1) > 4 and D−2(H1) = 1 when an edge

is added between a diametral vertex and any other vertex
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of H1 and D−1(H1) = 1 when an edge is added between

any two other vertices of H1.

⋆ Let G ∼= H1 ◦ H2. Then D0(G) > 3.

⋆ Let G ∼= H1 ◦H2. Then D1(G) = 1 if and only if G is any

one of the following graphs where,

(a) both H1 and H2 are complete graphs.

(b) H1 = K2 or a connected graph with diameter two in

which there exist at least one pair of adjacent vertices with

no path of length two between them and H2 is a discon-

nected graph in which there exist at least one component

with an isolated vertex.

⋆ Let G ∼= H1 ◦H2. Then D1(G) 6 α n2 where α is the min-

imum number of edge disjoint paths of length diam(H1)

between any two vertices in H1.

⋆ Let G ∼= H1 ◦ H2. Then D−1(G) = 1 if and only if G is

any one of the following graphs where,

(a) H2 has a universal vertex and H1 is a connected graph

with diam(H1) > 4 and D−2(H1) = 1 when an edge is

added between a diametral vertex and any other vertex of

H1.
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(b) H2 is any graph and H1 is a connected graph with

diam(H1) > 4 and D−1(H1) = 1 when an edge is added

between the diametral vertices or between any two other

vertices of H1.

In the third chapter we study the diameter vulnerability of

three graph products. Following are some of the results ob-

tained.

• Let G ∼= H1�H2, where H1 is a complete graph and H2 is

a connected graph with κ′(H2) = δ(H2). Then

f ′(G) = diam(G) + 1.

• Let G ∼= H1�H2 be a connected graph. Then

f ′(G) 6 max{f ′(H1) + 2diam(H2), f
′(H2) + 2diam(H1)}.

• Let G ∼= H1 ⊠ H2 be a connected graph. Then

f ′(G) 6 max{f ′(H1) + diam(H2), f
′(H2) + diam(H1)}.

• Let G ∼= H1 ◦ H2 be a connected graph where n1, n2 > 3.

Then f ′(G) 6 f ′(H1) + diam(H2).

• Let G ∼= H1�H2 be a connected graph. Then

f(G) 6 max{f(H1) + 2diam(H2), f(H2) + 2diam(H1)}.
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• Let G ∼= H1 ◦ H2 be a connected graph. Then

f(G) 6 max{f(H1), f(H2)}.

• Let G ∼= H1 ⊠ H2 be a connected graph. Then

f(G) 6 max{f(H1) + diam(H2), f(H2) + diam(H1)}.

• For any two connected graphs H1 and H2,

Wide diameter (H1 ◦ H2) = Wide diameter (H1).

The fourth chapter is the study of the component factors of

the product graphs. Some of the results obtained are:

⊲⊳ Let G ∼= H1�H2 be a connected graph where |H1| = n1

and |H2| = n2. Then G has a C4-factor if and only if G is

any one of the following graphs where,

((I) H1 or H2 has a C4-factor.

(II) both H1 and H2 have no C4-factor and,

(a) both H1 and H2 are complete graphs with n1, n2 even

and n1, n2 6≡ 0 mod 4.

(b) H1 is a complete graph with n1 even and H2 is a

not complete graph with n2 even, has at least one ver-

tex with at most one pendant vertex attached to it and

has a {K1,1}-factor.
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(c) H1 and H2 are not complete graphs with n1, n2 even,

both have at least one vertex with at most one pendant

vertex attached to it and have a {K1,1}-factor.

⊲⊳ Let G ∼= Kn1
�Kn2

where n1, n2 > 2. Then G has a

{K1,2, C4}-factor.

⊲⊳ Let G ∼= Kn1
�H2 be a connected graph where H2 is a not

complete graph. Then G has a {K1,1, K1,2, C4}-factor.

⊲⊳ Let G ∼= H1 ∗ H2 where ∗ ∈ {�,⊠, ◦} and H1, H2 are

connected graphs. Then G has a {K1,n, C4}-factor where

n 6 t and t is the maximum degree of an induced subgraph

K1,t in H1 or H2.

⊲⊳ The hypercube Qn has a {P4}-factor.

⊲⊳ A Hamming graph has a {P3, P4}-factor.

The domination criticality is discussed in the last chapter.

The main results are listed below.

⊕ Let G ∼= H1�H2 be a connected graph. Then γ(G) = 2

if and only if H1 = K2 and H2 is either a C4 or has a

universal vertex.



1.5. Summary of the thesis 33

⊕ Let G ∼= H1�H2 be a connected graph. Then

γc(G) = γ(G) = 2 if and only if H1 = K2 and H2 has a

universal vertex.

⊕ Let G ∼= H1�H2 be a connected graph. Then G is

2 - γ - vertex (edge) critical if and only if G = C4.

⊕ Let G ∼= H1�H2 be a connected graph. Then G is

2 - γc - vertex (edge) critical if and only if G = C4.

⊕ Let G ∼= H1�H2 be a connected graph. Then γ(G) = 3 if

and only if G is any one of the following graphs where,

(a) H1 = K3 or P3 and H2 has a universal vertex.

(b) H1 = K2 and H2 has a vertex of degree n2 − 2.

(c) H1 = K2 and H2 has a vertex vr of degree n2−3 and is

not adjacent to the vertices vp and vq with N [vp]∪N [vq]∪

{vr} = V (H2).

(d) H1 = K3 or P3 and H2 = C4.

⊕ Let G ∼= H1�H2 be a connected graph. Then

γc(G) = γ(G) = 3 if and only if H1 = K3 or P3 and H2

has a universal vertex.

⊕ Let G ∼= H1�H2 be a connected graph. Then G is
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3 - γ - vertex (edge) critical if and only if H1 = H2 = K3.

⊕ Let G ∼= H1�H2 be a connected graph. Then G is

3 - γc - vertex (edge) critical if and only if H1 = H2 = K3.

Some results of this thesis are included in [18] - [22]. The the-

sis is concluded with some suggestions for further study and a

bibliography.
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Chapter 2

Diameter variability of

the product graphs

The diameter of a graph can be affected by the addition or

the deletion of edges. In this chapter we examine the prod-

uct graphs whose diameter increases (decreases) by the deletion

(addition) of a single edge. The problems of minimality and

maximality of the product graphs with respect to its diameter

are also solved. These problems are motivated by the fact that

most of the graph products are good interconnection networks

and a good network must be hard to disrupt and the transmis-

Some results of this chapter are included in the following paper.
1. Chithra M.R., A. Vijayakumar, The Diameter Variability of the Carte-
sian product of graphs, (to appear in Discrete Mathematics, Algorithms
and Applications).

37
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sions must remain connected even if some vertices or edges fail.

2.1 Diameter variability of the Carte-

sian product of graphs

If both H1 and H2 are K2’s, then G is C4 and the deletion of

any edge increases the diam(G).

Theorem 2.1.1. Let G ∼= H1�H2. Then D0(G) > 2.

Proof. We shall prove the theorem by showing that there

exist at least two edges in G that can be deleted without an

increase in the diam(G) by considering the following three cases.

Case 1: H1 and H2 are complete graphs where n1 or n2 > 2.

Suppose that both n1, n2 > 2.

Let the two edges uivp − uivq and ujvr − uxvr where

i 6= j 6= x ∈ {1, 2, ..., n1} and p 6= q 6= r ∈ {1, 2, ..., n2}, be

deleted. There are paths of length two between uivp, uivq and

ujvr, uxvr in G. Now, consider the vertices whose diametral path

contain the deleted edges. The distance between these vertices

remains the same, since δ(G) > 4 there is an alternate path
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of length diam(G) through the neighbours of the deleted edge.

Also, the distance between any two other vertices is not affected

by the removal of these two edges.

Suppose that n1 = 2 and n2 > 2.

Let the two edges u1vp − u1vq and u2vq − u2vr where

p 6= q 6= r ∈ {1, 2, ..., n2}, be deleted. There are paths of length

two between these pairs of vertices. Also, the distance between

any two other vertices is not affected by the removal of these

two edges. Thus, the diam(G) remains the same.

Case 2: H1 and H2 are not complete graphs.

Let the two edges uivp − uivq and ujvr − uxvr where

i 6= j 6= x ∈ {1, 2, ..., n1} and p 6= q 6= r ∈ {1, 2, ..., n2}, be

deleted. There is a path uivp − uyvp − uyvq − uivq of length

three between uivp and uivq. Similarly, d(ujvr, uxvr) 6 3. Now,

consider the vertices whose diametral path contain the deleted

edges. The distance between these vertices remains the same,

since δ(G) > 2 there is an alternate path of length diam(G)

through the neighbours of the deleted edge. Thus, the diam(G)

remains the same.
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Case 3: H1 is a complete graph and H2 is a not complete

graph.

Let the two edges uivp − ujvp and uivq − ujvq where

i 6= j ∈ {1, 2, ..., n1} and vp is not adjacent to vq in H2, p, q ∈

{1, 2, ..., n2}, be deleted. There is a path of length at most three

between these pairs of vertices. Therefore, d(uivp, uivq) 6 3 and

d(uivq, ujvq) 6 3. Also, the distance between any two other

vertices is not affected by the removal of these two edges. Thus,

the diam(G) remains the same.

Hence, there exist at least two edges in G that can be deleted

without an increase in the diam(G).

Theorem 2.1.2. Let G ∼= H1�H2. Then D0(G) = 2 if and

only if G is any one of the graphs shown in Fig 2.1.

Fig 2.1: The graphs G : D0(G) = 2.

Proof. Suppose that G is any one of the graphs shown in

Fig 2.1, then by deleting the bold edges, it is clear that D0(G) = 2.
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Conversely suppose that D0(G) = 2. We shall show that G

is precisely any one of the graphs in Fig 2.1.

Let ux, uy be a pair of diametral vertices in H1, by a path

ux−ux+1−ux+2− ...−uy−1−uy and vw, vz be a pair of diametral

vertices in H2, by a path vw − vw+1 − vw+2 − ... − vz−1 − vz.

Let G ∼= Kn1
�Kn2

where n1, n2 > 2.

Let the three edges uivp − uivq, ujvq − ujvr and uxvp − uxvr

where i 6= j 6= x ∈ {1, 2, ..., n1} and p 6= q 6= r ∈ {1, 2, ..., n2},

be deleted. There is a path uivp − uivr − uivq of length two

between uivp and uivq in G and so d(uivp, uivq) = 2. Similarly,

d(ujvq, ujvr) = d(uxvp, uxvr) = 2. Also, the distance between

any two other vertices is not affected by the removal of these

three edges. Thus, the diam(G) remains the same.

Let G ∼= H1�H2, where H1 and H2 are not complete graphs.

Let the three edges uivp − ujvp, uivq − ujvq and uavp − uavr

where i 6= j 6= a ∈ {1, 2, ..., n1} and vp is not adjacent to vq

in H2, p, q 6= r ∈ {1, 2, ..., n2}, be deleted. There is a path

of length at most three between these pairs of vertices. Now,

d(uxvp, uyvp) 6 diam(H1) + 2 by a path uxvp − uxvr − ux+1vr −
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... − uyvr − uyvp where d(uxvp, uxvr) = d(uyvp, uyvr) = 1 and

d(uxvr, uyvr) 6 diam(H1). Also, d(uxvq, uyvq) 6 diam(H1) + 2

and d(uavw, uavz) 6 diam(H2) + 2. Thus, the diam(G) remains

the same.

Hence, it is clear that at least one graph (say) H1 should be

a complete graph and H2 is a not complete graph.

Let G ∼= Kn1
�H2 where n1 > 2.

Let the three edges uivp − ujvp, ujvq − uxvq and uivr − uxvr

where i 6= j 6= x ∈ {1, 2, ..., n1} and p 6= q 6= r ∈ {1, 2, ..., n2}, be

deleted. There is a path uivp−uxvp−ujvp of length two between

uivp and ujvp in G. Similarly, d(ujvq, uxvq) = d(uivr, uxvr) = 2.

Also, the distance between any two other vertices is not affected

by the removal of these three edges. Thus, the diam(G) remains

the same.

Hence, it follows that n1 6 2. Now, we will consider the

different cases depending on the value of n2.

Case 1: G ∼= K2�H2 where H2 is a not complete graph with

n2 > 5.
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Suppose that diam(H2) > 4.

Consider a pair of diametral vertices vw to vz in H2 where vl is a

vertex in a diametral path between them and is not adjacent to

both vw and vz. Let the three edges u1vw−u2vw, u1vl−u2vl and

u1vz −u2vz, be deleted. There is a path of length three between

these pairs of vertices. Consider the vertex u1vw in G. Then

u2vz, a diametral vertex of u1vw is at a distance diam(G) by a

path u1vw − u1vw+1 − ... − u1vl−1 − u2vl−1 − u2vl − ... − u2vz.

Thus, the diam(G) remains the same.

Suppose that diam(H2) = 3.

Consider a pair of diametral vertices vw to vz in H2 where vb is

a vertex not in any of the diametral path between them in H2.

Let the three edges u1vw −u2vw, u1vz −u2vz and u1vb −u2vb, be

deleted. There is a path of length at most four between these

pairs of vertices. Thus, the diam(G) remains the same.

Suppose that diam(H2) = 2.

Suppose that H2 has a universal vertex vp.

Let the three edges u1vq − u2vq, u1vr − u2vr and u1vl − u2vl

where q, r, l 6= p, be deleted. There is a path of length at most

three between these pairs of vertices. Thus, the diam(G) remains
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the same.

Suppose that H2 does not have a universal vertex and

d(vw, vz) = 2 in H2.

Let the three edges u1vw−u2vw, u1vz −u2vz and u1vp−u1vq,

be deleted. There is a path of length three between these pairs of

vertices in G. Thus, the distance between any two other vertices

is at most three.

Case 2: G ∼= K2�Kn2
where n2 > 5.

Let the three edges u1v2 −u1v3, u1v2 −u1v4 and u1v2 −u1v5,

be deleted. There are paths of length two between these pairs

of vertices. Thus, the diam(G) remains the same.

Thus, there exist at least three edges in G that can be

deleted without an increase in the diam(G). Hence, it follows

that n2 6 4. Now, by an exhaustive verification of all graphs

H2 with n2 6 4, it follows that G ∼= K2�K3, K2�P3 and

K2�P4.

Theorem 2.1.3. Let G ∼= H1�H2. Then D1(G) = 1 if and only

if H1 is a complete graph and either H2 has at least one pair of
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vertices with exactly one diametral path P and no path of length

diam(H2) + 1 which is edge disjoint with P or there exist an

edge in H2 that is on all paths of length diam(H2), diam(H2)+1

between any two diametral vertices in H2.

Proof. Let ux, uy be a pair of diametral vertices in H1, by

a path ux − ux+1 − ux+2 − ... − uy−1 − uy and vw, vz be a pair

of diametral vertices in H2, by a path vw − vw+1 − vw+2 − ... −

vz−1 − vz.

Suppose that H1 is a complete graph. If H2 has a pair of ver-

tices vw, vz, with one diametral path P and no path of length

diam(H2) + 1 edge disjoint with P , then vp − vq be an edge

whose deletion increases the diam(H2). If H2 has a pair of

vertices vw, vz, with paths of length diam(H2), diam(H2) + 1

which are not edge disjoint with each other, then vp − vq is a

common edge in all these paths. Consider a pair of vertices

uivw, uivz in G. Let an edge uivp − uivq, be deleted from the

path uivw − uivw+1 ... uivz in G, then the diam(G) increases

by a path uivw − ujvw − ujvw+1 − ujvw+2 ... ujvz − uivz where

d(ujvw, ujvz) = diam(H2), d(uivw, ujvw) = d(uivz, ujvz) = 1.

Also, d(uivr, uivs) 6 diam(G) where r, s ∈ {1, 2, ..., n2}. The
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distance between any two other vertices is not affected by the

removal of this edge.

Conversely suppose that D1(G) = 1.

If both H1 and H2 are not complete graphs, then at least two

edges should be deleted to increase the diam(G).

If H1 and H2 are complete graphs with n1, n2 > 2, there

exist two internally vertex disjoint paths of length two between

two non adjacent vertices uivp and ujvq in G. Thus, at least two

edges should be deleted to increase the diam(G).

Hence, it is clear that at least one graph (say) H1 should be

a complete graph and H2 is a not complete graph.

Suppose that d(uivw, uivz) = diam(H2). Let an edge

uivp − uivq, be deleted.

If H2 contains two internally edge disjoint paths, one of

length diam(H2) and the other of length diam(H2) + 1 or two

internally edge disjoint paths of length diam(H2) between vw

and vz in H2, then the diam(G) remains the same, since in both

the cases there exist an alternate path of length diam(H2) + 1

or diam(H2) between uivw and uivz in G.
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If H2 has paths of length diam(H2) and diam(H2)+1 between

vw and vz in H2, such that all these paths have some edges in

common then, the diam(G) remains the same. Since, all these

paths does not have a common edge (say) vp−vq, even if a delete

an edge there exist an alternative path of length diam(H2)+1 or

diam(H2) between uivw and uivz, without affecting the diam(G).

Hence, either H2 has at least one pair of vertices with only

one diametral path P and no path of length diam(H2)+1 which

is edge disjoint with P or there exist an edge in H2 that is on

all paths of length diam(H2), diam(H2) + 1 between any two

diametral vertices in H2.

Corollary 2.1.4. G ∼= H1�H2 is diameter minimal if and only

if H1 = H2 = K2.

Proof. If G = C4, then G is diameter minimal.

Conversely suppose that G is diameter minimal. In Theo-

rem 2.1.3 we have characterized the Cartesian product of graphs

whose diameter increases by the deletion of a single edge. Hence,

we need to prove the theorem only for such Gs.

Let n1 > 2 and n2 > 2.



48 Chapter 2. Diameter variability of the product graphs

Let an edge uivp − ujvp where i, j ∈ {1, 2, ..., n1} and

p ∈ {1, 2, ..., n2}, be deleted. There is a path of length two

between uivp and ujvp in G and the distance between any two

other vertices is not affected by the removal of this edge. Thus,

the diam(G) remains the same. Therefore, n1 = 2.

Let n1 = 2 and n2 > 2.

Suppose that d(vw, vz) = diam(H2). Let an edge u1vz−u2vz,

be deleted. Then d(u1vz, u2vz) = 3 6diam(G) and the distance

between u1vw, u2vz is diam(G). Also, the distance between any

two other vertices is not affected by the removal of this edge.

Thus, the diam(G) remains the same. Hence, for a connected

graph H2 with n2 > 2 vertices there exist some e ∈ E(G) such

that diam(G − e) < diam(G). Therefore, n2 = 2.

Hence, H1 = H2 = K2.

Theorem 2.1.5. Let G ∼= H1�H2.

(a) If both H1 and H2 are complete graphs with n1, n2 > 2, then

D1(G) = 2.

(b) If H1 is a complete graph and H2 is a not complete graph,

then D1(G) 6 δ(H2).
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(c) If both H1 and H2 are not complete graphs, then

D1(G) 6 ∆(G) − 1.

Proof. Let ux, uy be a pair of diametral vertices in H1, by

a path ux − ux+1 − ux+2 − ... − uy−1 − uy and vw, vz be a pair

of diametral vertices in H2, by a path vw − vw+1 − vw+2 − ... −

vz−1 − vz.

(a) H1 and H2 are complete graphs with n1, n2 > 2.

Let the two edges uivp − ujvp and uivq − ujvq where

i 6= j ∈ {1, 2, ..., n1} and p 6= q ∈ {1, 2, ..., n2}, be deleted. Then

d(uivp, ujvq) = 3 by a path uivp − uivq − uxvq − ujvq. Hence,

D1(G) = 2.

(b) H1 is a complete graph and H2 is a not complete graph.

Let d(vw, vz) = diam(H2). Consider a pair of vertices uivw,

uivz in G. Let the δ(H2) edges uivq − uivr, where vrs are the

neighbours of vq and r ∈ {1, 2, ..., n2}, be deleted. Then, the

diam(G) increases by a path uivw−ujvw−ujvw+1−ujvw+2 ... ujvz−

uivz where d(uivw, ujvw) = 1, d(uivz, ujvz) = 1 and d(ujvw, ujvz)

= diam(H2). Also, the distance between any two other vertices
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is not affected by the removal of these edges.

Hence, D1(G) 6 δ(H2), since deg(vq) = δ(H2).

(c)H1 and H2 are not complete graphs.

Consider a pair of diametral vertices uxvw, uyvz in G. Let the

edges uyvz−1 − uivq where i ∈ {1, 2, ..., n1}, vz−1 is a neighbour

of vz in H2 and q 6= z ∈ {1, 2, ..., n2}, be deleted. Then the

diam(G) increases by a path uxvw − ux+1vw − ... − uyvw −

uyvw+1 − ... − uyvz − uyvz−1 where d(uxvw, uxvz) = diam(H2)

and d(uxvz, uyvz−1) = diam(H1) − 1.

Hence, D1(G) 6 ∆(G) − 1, since deg(uyvz−1) 6 ∆(G).

Theorem 2.1.6. Let G ∼= H1�H2. Then D−1(G) = 1 if and

only if G is any one of the following graphs where,

(a) H1 is a complete graph and H2 is a not complete graph with

D−2(H2) = 1.

(b) H1 is a not complete graph with a universal vertex or there

exist a vertex in H1 that is on at least one path between any

two diametral vertices and H2 is a not complete graph with

D−1(H2) = 1.

Proof. Let ux, uy be a pair of diametral vertices in H1, by



2.1. Diameter variability of the Cartesian product of graphs51

a path ux − ux+1 − ux+2 − ... − uy−1 − uy and vw, vz be a pair

of diametral vertices in H2, by a path vw − vw+1 − vw+2 − ... −

vz−1 − vz.

(a) Let H1 be a complete graph and H2 be a not complete

graph with D−2(H2) = 1 and the addition of an edge vp − vq

in H2 decreases the diam(H2) by two. Now, the addition of an

edge u1vp − u1vq in G decreases the diam(G).

(b) Let H2 be a not complete graph with D−1(H2) = 1 and

H1 has a universal vertex ui or there exist a vertex uj in H1

that is on at least one path between any two diametral vertices.

Now, the addition of an edge uivp − uivq or ujvp − ujvq in G

decreases the diam(G).

Conversely suppose that D−1(G) = 1.

If both H1 and H2 are complete graphs, then diam(G)= 2 and

the addition of an edge in G will not decrease the diam(G).

Suppose that H1 is a complete graph.

Consider a pair of diametral vertices uxvw, uyvz in G and uxvw−

uivw−uivw+1 − ...− uivz −uyvz is a path between them. Let an

edge uivp − uivq, be added in G. Then, d(uxvw, uivw) = 1 and
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d(uivz, uyvz) = 1, since H1 is a complete graph. Now, consider

the distance between the remaining vertices in the diametral

path, then the diam(G) decreases by one, only if d(uivw, uivz)

= diam(H2) − 2. Hence, to decrease the diam(G) by one, the

distance between uivw and uivz should be decreased by two, by

the addition of a single edge. Thus, H2 is a not complete graph

with D−2(H2) = 1.

Suppose that D−1(H2) = 1.

Consider a pair of diametral vertices uxvw, uyvz in G. Let an

edge uivp−uivq, be added in G. If ui is not a universal vertex of

H1, then a diametral path between them does not contain the

edge uivp − uivq. Thus, the diam(G) remains the same. Hence,

H1 is a not complete graph with a universal vertex.

Let ux, uy and us, ut be the pairs of diametral vertices of

H1 where ui is a vertex in a diametral path between ux, uy

and ui is a vertex not in any of the diametral path between

us, ut in H1. Consider the pairs of diametral vertices uxvw,

uyvz and usvw, utvz in G. Let an edge uivp − uivq, be added

in G. Then, d(uxvw, uyvz) = diam(G) - 1, by a path uxvw −

ux+1vw − ... − uivw − uivw+1 − ... − uivz − ... − uyvz. Also,



2.1. Diameter variability of the Cartesian product of graphs53

d(usvw, utvz) = diam(G), since ui is not in any of the diametral

path between us and ut in H1. Thus, the diam(G) remains the

same. Hence, H1 is a not complete graph with a universal vertex

or there exist a vertex in H1 that is on at least one path between

any two diametral vertices.

Corollary 2.1.7. There does not exist a graph G ∼= H1�H2

such that G is diameter maximal.

Proof. In Theorem 2.1.6 we have characterized the Cartesian

product of graphs whose diameter decreases by the addition of a

single edge. Hence, we need to prove the theorem only for such

Gs.

Let d(ux, uy) = diam(H1) and d(vw, vz) = diam(H2). Con-

sider a pair of diametral vertices uxvw, uyvz in G. Let an edge

uxvw+1−ux+1vw where ux+1 is a neighbour of ux in H1 and vw+1

is a neighbour of vw in H2, be added in G. Then the added

edge does not decrease the distance between them in G. Thus,

d(uxvp, uyvq) = diam(G). Hence, there exist e /∈ E(G) such that

diam(G + e) = diam(G).
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2.2 Diameter variability of the strong

product of graphs

If both H1 and H2 are complete graphs, then G ∼= H1 ⊠ H2

is a complete graph and the deletion of any edge increases the

diam(G).

Theorem 2.2.1. Let G ∼= H1 ⊠ H2. Then D0(G) > 6.

Proof. Let G ∼= H1 ⊠ H2.

Then diam(G)= max{diam(H1), diam(H2)}.

We shall prove the theorem by showing that there exist at

least six edges in G that can be deleted without altering the

diam(G) by considering the following cases.

Let ux, uy be a pair of diametral vertices in H1, by a path

ux − ux+1 − ux+2 − ... − uy−1 − uy.

Case 1: H1 is a not complete graph and H2 is any connected

graph with n2 > 4 and diam(H2) < diam(H1).

We shall prove that D0(G) > n1m2.

Let d(vw, vz) = L in H2 by a path vw − vw+1 − vw+2 − ... −
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vz−1 − vz. Consider a pair of diametral vertices uxvw, uyvz

in G. Let the edges uivp − uivq where i ∈ {1, 2, ... , n1} and

p, q ∈ {1, 2, ... , n2}, be deleted. There are paths uivp−ui+1vp+1−

uivp+2 − ...− uivq−1−ui+1vq−uivq or uivp−ui+1vp+1−uivp+2 −

...− ui+1vq−1−uivq of length diam(H2)+1 or diam(H2) between

uivp and ujvp when diam(H2) is odd or even respectively, where

ui+1 is a neighbour of ui in H1. Also, d(uxvw, uyvz) = diam(G)

by a path uxvw − ux+1vw − ux+2vw − ... − uivw − ... −

uy−2vz−2−uy−1vz−1−uyvz where d(uxvw, uivw) = diam(H1)−L,

and d(uivw, uyvz) = L. Thus, the diam(G) remains the same.

Now, we consider n2 = 2, 3.

(a) G ∼= P3 ⊠ K2.

Let the bold edges in Fig 2.2 be deleted. Then it is clear that

D0(G) = 6.

Fig 2.2: P3 ⊠ K2.

(b) H1 is a not complete graph with n1 > 4 and H2 = K2.
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Consider the three vertices up,uq and ur in H1 which form

a path P3. Now, P3 ⊠ K2 is a subgraph of G. Let the six bold

edges as in Fig 2.2 and an edge u1vs − u2vs, be deleted. There

is a path of length two between these pairs of vertices and the

distance between any two other vertices is not affected by the

removal of these edges. Thus, D0(G) > 6.

(c) G ∼= P3 ⊠ K3, P4 ⊠ P3 and P4 ⊠ K3.

Fig 2.3: (i)P3 ⊠ K3 (ii) P4 ⊠ P3 (iii) P4 ⊠ K3.

From Fig 2.3 it is clear that D0(G) > 6.

(d) H1 is a not complete graph with n1 > 4 and n2 = 3.

Let the edges uiv1−ujv1 and uiv3−ujv3 where i, j ∈ {1, ... , n1},

be deleted. There is a path of length three between these pairs

of vertices. Also, d(uxv1, uyv1) 6 diam(H1) by a path uxv1 −

ux+1v2 − ... − uy−1v2 − uyv1. Also, d(uiv3, ujv3) 6 diam(H1).
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Thus, D0(G) > 6.

Case 2: H1 and H2 are connected not complete graphs with

n1, n2 > 4 and diam(H1) = diam(H2).

Let G ∼= P4 ⊠ P4. Then clearly D0(G) > 6.

Consider G ∼= H1 ⊠ H2. We shall prove that D0(G) > m1 + m2.

Suppose that ux, uy and vw, vz are the pairs of diametral vertices

in H1 and H2 respectively. Let the edges u1vp−u1vq, uiv1−ujv1

where p, q ∈ {1, 2, ... , n2} and i, j ∈ {1, 2, ... , n1}, be deleted.

Then, d(u1vw, u1vz) = diam(H2) by a path u1vw − u2vw+1 −

u2vw+2 − ... − u2vz−1 − u1vz and d(uxv1, uyv1) = diam(H1) by

a path uxv1 − ux+1v2 − ux+2v2 − ...uy−1v2 − uyv1. Also, the

distance between any two other vertices is not affected by the

removal of these edges. Thus, the diam(G) remains the same

and hence D0(G) > 6.

Next, we consider n1 > 3 and n2 = 3.

(a) G ∼= P3 ⊠ P3.

Let the bold edges in Fig 2.4 be deleted. Then it is clear that

D0(G) > 6.

(b) G ∼= H1 ⊠ P3 where n1 = 4.
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Fig 2.4: P3 ⊠ P3.

By an exhaustive verification of all such graphs, it follows that

D0(G) > 6.

(c) G ∼= H1 ⊠ P3 where n1 > 5.

We shall prove that D0(G) > 2m1.

Let the edges upv1−uqv1 and upv3−uqv3 where p, q ∈ {1, 2, ... , n1},

be deleted. Then, d(uxv1, uyv1) 6 diam(H1) by a path uxv1 −

ux+1v2 − ... − uy−1v2 − uyv1 and d(uxv3, uyv3) 6 diam(H1).

Also, the distance between any two other vertices is not affected

by the removal of these edges. Thus, the diam(G) remains the

same and hence D0(G) > 6.

Corollary 2.2.2. D0(G) = 6 if and only if H1 = P3 and

H2 = K2.

Corollary 2.2.3. Let G ∼= H1 ⊠ H2 where H1 and H2 are con-

nected graphs with diam(H2) < diam(H1). Then D0(G) > n1m2.
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Theorem 2.2.4. Let G ∼= H1 ⊠ H2. Then D1(G) = 1 if and

only if G is any one of the following graphs where,

(a) both H1 and H2 are complete graphs.

(b) H1 and H2 are not complete graphs with diam(H1) = diam(H2)

and either H1 or H2 have at least one pair of vertices with ex-

actly one diametral path or there exist an edge in H1 or H2 that

is on all diametral paths between any two vertices.

Proof. Let G ∼= Kn1
⊠ Kn2

where n1, n2 > 2. Then G is

a complete graph and the deletion of any edge increases the

diam(G).

Let H1 and H2 are not complete graphs with diam(H1) =

diam(H2) and either H1 or H2 have at least one pair of vertices

with exactly one diametral path or there exist an edge in H1

or H2 that is on all diametral paths between any two vertices.

Let ux, uy be a pair of diametral vertices in H1, by a path

ux−ux+1−ux+2− ...−uy−1−uy and vw, vz be a pair of diametral

vertices in H2, by a path vw − vw+1 − vw+2 − ... − vz−1 − vz.

Consider a pair of diametral vertices uxvw, uyvz in G, by a path

uxvw − ux+1vw+1 − ux+2vw+2 ... uy−1vz−1 − uyvz. Let an edge

uxvw−ux+1vw+1, be deleted. Then, d(uxvw, uyvz) = diam(G)+1
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by a path uxvw − uxvw+1 − ux+1vw+1 ... uy−1vz−1 − uyvz where

d(uxvw, ux+1vw+1) = 2, d(ux+1vw+1, uyvz) = diam(G) − 1.

Conversely suppose that D1(G) = 1.

Suppose that H1 is a not complete graph and H2 is a com-

plete graph.

Let an edge uivp − uivq or uivp − ujvp or uivp − ujvp+1, be

deleted. Then d(uivp, uivq) = d(uivp, ujvp) = d(uivp, ujvp+1) = 2

by the paths uivp − ui+1vq − uivq, uivp − ujvp+1 − ujvp and

uivp − uivp+1 − ujvp+1 respectively. Also, the distance between

any two other vertices is not affected by the removal of this edge.

Thus, when one factor is a complete graph and the other fac-

tor is a not complete graph, a minimum of two edges should be

deleted to increase the diam(G). Hence, both the factors should

be complete. This proves (a).

Suppose that H1 and H2 are not complete graphs with

diam(H1) > diam(H2).

Consider a pair of diametral vertices uxvw, uyvz in G by a path

uxvw − ux+1vw+1 − ux+2vw+2 ... uy−1vz−1 − uyvz. Let an edge

uxvw−ux+1vw+1, be deleted. Then, d(uxvw, uyvz) = diam(H2)+ 1
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by a path uxvw − uxvw+1 − ux+1vw+1 ... uy−1vz−1 − uyvz where

d(uxvw, ux+1vw+1) = 2, d(ux+1vw+1, uyvz) = diam(H2) − 1.

Hence, diam(G) remains the same. Thus, when H1 and H2 are

not complete graphs with different diameter, at least two edges

should be deleted to increase the diam(G).

Suppose that H1 and H2 are not complete graphs with

diam(H1) = diam(H2).

Consider a pair of diametral vertices uxvw, uyvz in G. Since,

diam(H1) = diam(H2), uxvw−ux+1vw+1−ux+2vw+2 ... uy−1vz−1−

uyvz is a shortest path between them in G. Then, the deletion

of an edge uivj − ui+1vj+1 from this path increases the diam(G)

only if either there exist only one diametral path between ux,

uy in H1 and vw, vz in H2 or ui − ui+1 is an edge in H1 that

is on all diametral paths between any two vertices in H1 and

vj −vj+1 is an edge in H2 that is on all diametral paths between

any two vertices in H2. Otherwise, there exist an alternative

path of length diam(H1) between uxvw, uyvz in G. Hence, H1

and H2 are not complete graphs with diam(H1) = diam(H2) and

either H1 or H2 have at least one pair of vertices with exactly

one diametral path or there exist an edge in H1 or H2 that is on

all diametral paths between any two vertices. This proves (b).
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Corollary 2.2.5. G ∼= H1 ⊠H2 is diameter minimal if and only

if both H1 and H2 are complete graphs.

Theorem 2.2.6. Let G ∼= H1 ⊠ H2.

Then D1(G) 6 α(1+δ(H2)) where α is the minimum number of

edge disjoint paths of length diam(H1) between any two vertices

in H1.

Proof. Let ux and uy be a pair of diametral vertices in H1, by

a path ux−ux+1−ux+2−...−uy−1−uy. Consider a pair of diame-

tral vertices uxvz and uyvz in G. Let the edges uxvz−uqvz, uxvz−

uqvr where uqs are the vertices adjacent to ux in H1 and vrs are

the vertices adjacent to vz in H2, be deleted. Then, d(uxvz, uyvz)

= diam(G)+ 1 by a path uxvz−uxvz+1−ux+1vz− ... −uy−1vz−

uyvz where d(ux+1vz, uyvz) = diam(G) − 1, d(uxvz, ux+1vz) = 2.

Also, d(uxvz, uqvz) = 2 and d(uxvz, uqvr) = 2, since there are

paths of length two between them.

Thus, D1(G) 6 α(1 + δ(H2)).

Theorem 2.2.7. Let G ∼= H1 ⊠ H2 be connected graph. Then

D−1(G) = 1 if and only if H2 has a universal vertex and H1 is a
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connected graph with diam(H1) > 4 and D−2(H1) = 1 when an

edge is added between a diametral vertex and any other vertex

of H1 and D−1(H1) = 1 when an edge is added between any two

other vertices of H1.

Proof. Let G ∼= H1 ⊠ H2 and diam(G) = diam(H1).

Let ux, uy be a pair of diametral vertices in H1, by a path

ux−ux+1−ux+2− ...−uy−1−uy and vw, vz be a pair of diametral

vertices in H2, by a path vw−vw+1−vw+2−...−vz−1−vz. Suppose

that v1 is a universal vertex of H2.

Let D−1(H1) = 1 where diam(H1) > 4.

Consider a pair of diametral vertices uxvw, uyvz in G. Let

an edge upv1 − uqv1 where up 6= ux, uq 6= uy, be added in

G. Then, d(uxvw, uyvz) = diam(G) − 1 by a path uxvw −

ux+1v1 − ux+2v1 ... uy−1v1 − uyvz where d(uxvw, ux+1v1) = 1,

d(ux+1v1, uy−1v1) = diam(G) − 3 and d(uy−1v1, uyvz) = 1.

Consider a pair of diametral vertices uxvw, uyvz in G. Let

an edge uxv1 −uyv1, be added in G. Then, d(uxvw, uyvz) = 3 by

a path uxvw − uxv1 − uyv1 − uyvz.
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Suppose that D−2(H1) = 1 where diam(H1) > 4.

Consider a pair of diametral vertices uxvw, uyvz in G. Let an

edge uxv1−uiv1 where ui is a vertex in a diamertal path between

ux and uy in H1, be added in G. Then, d(uxvw, uyvz) = diam(G) − 1

by a path uxvw − uxv1 − uiv1 − ... − uy−1v1 − uyvz where

d(uxvw, uxv1) = 1, d(uxv1, uy−1v1) = diam(G) − 3 and

d(uy−1v1, uyvz) = 1. Thus, the distance between any two ver-

tices in G is at most diam(G)-1.

Conversely suppose that D−1(G) = 1. If both H1 and H2 are

complete graphs, then G is a complete graph. If diam(H1) = 2,

then the addition of a single edge in G will not make G a com-

plete graph. Also, if diam(H1) = 3, then the addition of a single

edge in G will not decrease the diam(G), since there exist a

path of length at least three between any pair of diametral ver-

tices in G. Thus, it is clear that H1 is a connected graph with

diam(H1) > 4.

Suppose that H1 is any connected graph and H2 is any con-

nected graph without a universal vertex.

Let vp and vq be a pair of non adjacent vertices in H2. Con-



2.2. Diameter variability of the strong product of graphs 65

sider a pair of diametral vertices uxvq, uyvq in G. Let an edge

uivp − ujvp, be added in G. Since vp is not adjacent to vq, the

diametral path between uxvq and uyvq does not contain the edge

uivp − ujvp in G. Hence, to decrease the diam(G), H2 should

contain a universal vertex.

Suppose that H2 has a universal vertex v1. Consider a pair

of diametral vertices uxvw, uyvw in G. Let an edge uiv1 − ujv1,

be added in G.

Let i 6= x, j 6= y.

Consider a diametral path uxvw−ux+1v1−ux+2v1− ... −uy−1v1−

uyvw between uxvw, uyvw in G. Then d(uxvw, ux+1v1) = 1 and

d(uy−1v1, uyvw) = 1, since H2 has a universal vertex. Now, con-

sider the distance between the remaining vertices in the diame-

tral path. Then, the diam(G) decreases by one only if

d(ux+2v1, uy−1v1) =[diam(H1)-2]-1 = diam(H1)-3. Hence, to de-

crease the diam(G) by one, the distance between uxv1 and uyv1

should be decreased by one, by the addition of a single edge.

Let i = x, j = y.

Then, d(uxvw, uyvw) = 3 by a path uxvw − uxv1 − uyv1 − uyvw,

since H2 has a universal vertex. From the previous case it follows
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that diam(G) decreases, only if d(upv1, uqv1) 6 diam(H1) − 1.

Hence, to decrease the diam(G) by one, the distance between

uxv1 and uyv1 should be decreased by one, by the addition of a

single edge.

Now, let i = x, j 6= y.

Consider a diametral path uxvw−uxv1−ux+1v1− ... −uy−1v1−

uyvw between uxvw, uyvw in G. Then d(uxvw, uxv1) = 1 and

d(uy−1v1, uyvw) = 1, since H2 has a universal vertex. Now,

consider the distance between the remaining vertices in the di-

ametral path. Then, the diam(G) decreases by one, only if

d(uxv1, uy−1v1) =[diam(H1)-1]-2 = diam(H1)-3. Hence, to de-

crease the diam(G) by one, the distance between uxv1 and uy−1v1

should be decreased by two, by the addition of a single edge.

Corollary 2.2.8. There does not exist a graph G ∼= H1 ⊠ H2

such that G is diameter maximal.

Proof. In Theorem 2.2.7 we have characterized the strong

product of graphs whose diameter decreases by the addition of

a single edge. Hence, we need to prove the theorem only for

such Gs.
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Suppose that H2 is a not complete graph with a univer-

sal vertex and H1 is a connected graph with D−1(H1) = 1 or

D−2(H1) = 1 with diam(H1) > 4. Let an edge uxvp − uxvq be

added in G, then the diam(G) remains the same, since

diam(G) = diam(H1).

Suppose that H2 is a complete graph and H1 is a connected

graph with D−1(H1) = 1 or D−2(H1) = 1 with diam(H1) > 4.

Let the three vertices ux, us and ur form a P3 in H1. Consider a

pair of diametral vertices uxvp, uyvp in G. Let an edge uxvq−urvp

where vq is a neighbour of vp in H2, be added. Then the addition

of an edge uxvq − urvp does not decrease the distance between

them in G. Thus, d(uxvp, uyvp) = diam(G). Hence, there exist

some e /∈ E(G) such that diam(G + e) = diam(G).

2.3 Diameter variability of the lexi-

cographic product of graphs

If both H1 and H2 are complete graphs, then G ∼= H1 ◦ H2

is a complete graph and the deletion of any edge increases the
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diam(G).

Theorem 2.3.1. Let G ∼= H1 ◦ H2. Then D0(G) > 3.

Proof. Let G ∼= H1 ◦ H2. Then diam(G) = diam(H1).

We prove the theorem by showing that there exist at least three

edges in G that can be deleted without altering the diam(G) by

considering the following cases.

Let ux, uy be a pair of diametral vertices in H1, by a path

ux−ux+1−ux+2− ...−uy−1−uy and vw, vz be a pair of diametral

vertices in H2, by a path vw − vw+1 − vw+2 − ... − vz−1 − vz.

Case 1 : H1 is a complete graph and H2 is a not complete

graph or a disconnected graph with m2 > 1.

(a) Let m2 > 2.

We shall prove that D0(G) > n1m2.

Suppose that G ∼= Kn1
◦ H2, then diam(G)= 2. Let the edges

uivp − uivq where i ∈ {1, 2, ... , n1} and p, q ∈ {1, 2, ... , n2},

be deleted. There are paths uivp − ui+1vp − uivq of length two

between each pair of vertices in G. Also, the distance between

any two other vertices is not affected by the removal of these

edges. Thus, D0(G) > n1m2 > 4.
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(b) Let m2 = 1.

Suppose that n1 = 2 and n2 = 3.

Let the bold edges in Fig 2.6 be deleted. Then it is clear that

D0(G) = 3.

Suppose that n1 = 2 and n2 > 4.

Let the edges uivp−ujvq, uivq −ujvq, uivq −ujvr and uivr−ujvq

where vq is adjacent to vp in H2, be deleted. There are paths

uivp − ujvp − ujvq, uivq − ujvp − ujvq, uivq − uivp − ujvr and

uivr − ujvp − ujvq of length two between each pair of vertices.

Also, the distance between any two other vertices is not affected

by the removal of these edges. Thus, D0(G) > 4.

Suppose that n1 = 3 and n2 = 3.

Let the bold edges in Fig 2.5 be deleted, then it is clear that

D0(G) > 3.

Fig 2.5: G : D0(G) > 3.
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Suppose that n1 > 3 and n2 > 3.

Let the edges uiv1 − ujv1 where i, j ∈ {1, 2, ... , n1}, be deleted.

There are paths uiv1 − uiv2 − ujv1 of length two between these

pairs of vertices in G. Also, the distance between any two other

vertices is not affected by the removal of these edges.

Thus, D0(G) > 4.

Case 2 : H1 is a complete graph and H2 is a totally discon-

nected graph.

(a) Let n1 = 2.

Then G has diameter two and the deletion of any edge increases

the diam(G).

(b) Let n1 > 3.

Let the edges uiv1−ujv1, uiv1−ujv2, uiv2−ujv2 and uiv2−ujv1,

be deleted. There are paths uiv1−uxv1−ujv1, uiv1−uxv2−ujv2,

uiv2 − uxv2 − ujv2 and uiv2 − uxv1 − ujv1 of length two between

each pair of vertices. Also, the distance between any two other

vertices is not affected by the removal of these edges.

Thus, D0(G) > 4.

Case 3 : H1 is a not complete graph and H2 is a not
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complete graph or a disconnected graph with m2 > 1.

(a) Let n1 > 4.

We shall prove that D0(G) > n1m2.

Let the edges uivp − uivq where i ∈ {1, 2, ... , n1} and

p, q ∈ {1, 2, ... , n2}, be deleted. There are paths of length two

between these pairs of vertices. Also, the distance between any

two other vertices is not affected by the removal of these edges.

Thus, D0(G) > n1m2 > 4.

(b) Let n1 = 3.

Let the edges u1vi−u1vj, u1vj−u2vj, u2vj−u3vj and u3vi−u3vj

where u2 is adjacent to u1 and u3 in H1, be deleted. There are

paths of length two between these pairs of vertices. Also, the

distance between any two other vertices is not affected by the

removal of these edges. Thus, D0(G) > 4.

Case 4 : H1 is a not complete graph and H2 is a totally

disconnected graph.

(a) H1 is a not complete graph with diameter two in which

no two adjacent vertices of H1 have a path of length two between

them.
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Then, diam(G) = 2 and the deletion of an edge increases the

diam(G).

(b) H1 is a not complete graph with diameter two in which

there exist at least one pair of adjacent vertices with a path of

length two between them.

Let the edges uiv1−ujv1, uiv1−ujv2, uiv2−ujv2 and uiv2−ujv1

where there is a path of length two between u1 and u2 in H1, be

deleted. There are paths uiv1 − uxv1 − ujv1, uiv1 − uxv2 − ujv2,

uiv2 − uxv2 − ujv2 and uiv2 − uxv1 − ujv1 of length two between

each pair of vertices. Also, the distance between any two other

vertices is not affected by the removal of these edges.

Thus, D0(G) > 4.

(c) H1 = P4 and n2 = 2.

Let the bold edges in Fig 2.6 be deleted. Then it is clear that

D0(G) = 3.

(d) H1 = P4 and n2 > 2.

Let the edges uiv1−ujv1 and uiv2−ujv2 where i, j ∈ {1, 2, 3, 4},

be deleted. There are paths of length at most three between

these pair of vertices. Also, the distance between any two other

vertices is not affected by the removal of these edges.
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Thus, D0(G) > 4.

(e) Let diam(H1) > 3.

We shall prove that D0(G) > m1.

Let the edges uiv1 − ujv1 where i, j ∈ {1, 2, ... , n1}, be deleted.

There are paths of length at most diam(G) between these pairs

of vertices. Also, d(uxv1, uyv1) = diam(G) by a path uxv1 −

ux+1v2 −ux+2v2 ... uy−1v2 −uyv1z and the distance between any

two other vertices is not affected by the removal of these edges.

Thus, D0(G) > m1 > 4.

Hence, D0(G) > 3.

Corollary 2.3.2. D0(G) = 3 if and only if G is any one of the

graphs shown in Fig 2.6.

Fig 2.6: The graphs G : D0(G) = 3.

Corollary 2.3.3. Let G ∼= H1 ◦ H2 where H1 and H2 are con-

nected graphs. Then D0(G) > n1m2.
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Theorem 2.3.4. Let G ∼= Kn1
◦ H2 where n1 > 3.

Then D0(G) = n2
2m1 + n1m2 − (2n1n2 − 3).

Proof. Consider a spanning tree T of diameter three, of G as

shown in Fig 2.7. From T , let us construct a spanning subgraph

H of G having diameter two as follows.

Consider the vertices u1vp, uxvq where x ∈ {2, 3, ..., n1} and

p, q ∈ {2, 3, ..., n2}. Then, d(u1vp, uxvq) = 3. Let the edges

u2v1 − uxvp where x ∈ {3, 4, ..., n1} and p ∈ {1, 2, ..., n2}, be

added in T . Now, consider the vertices u1vp, u2vq where

p ∈ {2, 3, ..., n2}, then d(u1vp, u2vq) = 3 > 2. Let the edges

u3v1 −u1vp and u3v1 −u2vp where p ∈ {2, 3, ..., n2}, be added in

T .

Let the resulting spanning subgraph of G be denoted by H.

Then H has diameter two.

Hence, D0(G) > n2
2m1 + n1m2 − (2n1n2 − 3).

Now, to prove the reverse inequality, we proceed as follows.

From Corollary 2.3.3 it follows that if the n1m2 edges uivp−uivq

where i ∈ {1, 2, ...n1} and p, q ∈ {1, 2, ...n2} are deleted, then

the diam(G) remains the same. Let the edges uivp −ujvp where
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Fig 2.7: A spanning tree T and the spanning subgraph H of G.

i, j ∈ {1, 2, ...n1} and p ∈ {1, 2, 3, ...n2} except u1v1 − urv1,

u2v1 − urv1 where r ∈ {2, 3, ...n2}, be deleted. There is a path

uivp − uxv1 − ujvq of length two between each pair of verices.

Now, let the edges uivp − ujvq where i, j ∈ {1, 2, ..., n1}, p, q ∈

{1, 2, ..., n2} except u1v1−uivp, u2v1−ujvp, u3v1−u1vr and u3v1−

u2vr where i ∈ {2, 3, ...n2}, j ∈ {1, 3, ...n2}, p ∈ {2, 3, ...n2} and

r ∈ {2, 3, ..., n2}, be deleted. There are paths uivp −u1v1−ujvq,

u1vp −u3v1 −u2vq of length two between each pair of verices. In

both the cases the diam(G) remains the same.

Thus we have a spanning subgraph H with diameter two as

shown in Fig 2.7 and the deletion of any edge from H increases

the diam(H). So, D0(G) 6 n2
2m1 + n1m2 − (2n1n2 − 3).
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Hence, D0(G) = n2
2m1 + n1m2 − (2n1n2 − 3).

Theorem 2.3.5. Let G ∼= H1 ◦ H2 where H1 and H2 are con-

nected graphs with diam(H2) < diam(H1). Then

D0(G) > n2
2m1 − (m1n2 + 2m1m2).

Proof. Let ux, uy be a pair of diametral vertices in H1, by a

path ux − ux+1 − ux+2 − ... − uy−1 − uy.

Suppose that d(vp, vq) = L in H2 by a path vp−vp+1−vp+2−

... − vq−1 − vq. Consider a pair of diametral vertices uxvp, uyvq

in G. Let the n1m2 edges uivp − uivq where i ∈ {1, 2, ...n1}

and p, q ∈ {1, 2, ...n2}, be deleted. Then from Corollary 2.3.3

it follows that the diam(G) remains the same. Now, let the

n2
2m1−(m1n2+2m1m2) edges uivp−ujvq where i, j ∈ {1, 2, ...n1},

p, q ∈ {1, 2, ...n2}, vps and vqs are not adjacent vertices in H2,

be deleted. Then, d(uxvp, uyvq) = diam(G) by a path uxvp −

ux+1vp−ux+2vp −...− uivp−ui+1vp+1 −...− uy−2vq−2−uy−1vq−1−

uyvq where d(uxvp, uivq) = diam(H1)−L, and d(uivp, uyvq) = L.

Also, d(uivw, uivz) = diam(H2) or d(uivw, uivz) = diam(H2) + 1

when the distance between vw,vz is even or odd respectively.

Thus the diam(G) remains the same.

Hence, D0(G) > n1m2 + n2
2m1 − (n1m2 + m1n2 + 2m1m2) =
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n2
2m1 − (m1n2 + 2m1m2).

Theorem 2.3.6. Let G ∼= H1 ◦ H2. Then D1(G) = 1 if and

only if G is any one of the following graphs where,

(a) both H1 and H2 are complete graphs.

(b) H1 = K2 or a connected graph with diameter two in which

there exist at least one pair of adjacent vertices with no path of

length two between them and H2 is a disconnected graph in which

there exist at least one component with an isolated vertex.

Proof. (a) Let G ∼= Kn1
◦ Kn2

where n1, n2 > 2. Then the

deletion of any edge increases the diam(G).

(b) Suppose that H1 = K2 and H2 is a disconnected graph

with an isolated vertex vp, then diam(G)=2. Let an edge uivp −

ujvp, be deleted. There is a path uivp − ujvq − uivq − ujvp of

length three between them.

Let H1 be a connected graph with diameter two in which

the adjacent vertices ur, us have no path of length two between

them and H2 be a disconnected graph with an isolated vertex vp,

then diam(G) = 2. Let an edge urvp − usvp, be deleted. There

is a path urvp−usvq −urvq −usvp of length three between them.
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Conversely suppose that D1(G) = 1.

Let ux, uy be a pair of diametral vertices in H1, by a path

ux−ux+1−ux+2− ...−uy−1−uy and vw, vz be a pair of diametral

vertices in H2, by a path vw − vw+1 − vw+2 − ... − vz−1 − vz.

Suppose that H1 is a complete graph and H2 is any connected

graph, then diam(G) 6 2.

Let an edge uivp − uivq or uivp − ujvp or uivp − ujvq, be

deleted. There exist at least two paths of length two between

these pairs of vertices. Also, the distance between any two other

vertices is not affected by the removal of these edges. Thus to

increase the diam(G) by one, H2 should be a complete graph.

This proves (a).

Suppose that H1 is a connected graph.

Let an edge uivw − ujvw, be deleted. If H2 is any con-

nected graph, then there exist at least κ(H2) + 1 paths uxvw −

ux+1vz ... uy−1vz − uyvw of length diam(H1) between uxvw and

uyvw in G where z ∈ {1, 2, ... , n2}. Thus, when H2 is a con-

nected graph, at least two edges should be deleted to increase

the diam(G). Hence, it is clear that H2 should be a disconnected
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graph.

Now, if H2 is a disconnected graph without an isolated ver-

tex, then there exist at least two paths of length diam(G) be-

tween a pair of diametral vertices uxvw and uyvw in G. Thus,

at least two edges should be deleted to increase the diam(G).

Hence, H2 is a disconnected graph in which there exist at least

one component with an isolated vertex.

If diam(H1) > 3, then the deletion of an edge will not in-

crease the diam(G). There is a path of length at most three be-

tween each pair of vertices. Hence, H1 is any connected graph

with diam(H1) 6 2.

Let H1 be a complete graph with n1 > 2.

Since n1 > 2 there exist at least two paths of length two

between each pair of vertices in G. Thus, the deletion of an

edge from G does not increase the diam(G). Hence, n1 = 2.

Let diam(H1) = 2.

Let an edge uivp − ujvp, be deleted. Then the diam(G) in-

creases only if ui and uj have no path of length two between
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them in H1. Otherwise, at least two edges should be deleted to

increase the diam(G). Also, the distance between any two other

vertices is not affected by the removal of these edges. Hence, H1

should be a connected graph with diameter two in which there

exist at least one pair of adjacent vertices with no path of length

two between them.

This proves (b).

Corollary 2.3.7. G ∼= H1 ◦H2 is diameter minimal if and only

if G is any one of the following graphs where,

(a) both H1 and H2 are complete graphs.

(b) H1 = K2 or a connected graph with diameter two in which

there is no path of length two between any two adjacent vertices

in H1 and H2 is a totally disconnected graph.

Proof. (a) Let G = Kn1
◦Kn2

. Then G is diameter minimal.

(b) Suppose that H1 is a K2 and H2 is a totally disconnected

graph, then diam(G) = 2. Let an edge uivp−ujvp or uivp−ujvq,

be deleted. Then there is a path uivp − ujvq − uivq − ujvp or

uivp − ujvp − uivq − ujvq of length three between each pair of

vertices. Thus, the deletion of any edge increases the diam(G).
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Suppose that H1 is a connected graph with diameter two

in which there is no path of length two between any two adja-

cent vertices in H1 and H2 is a totally disconnected graph, then

diam(G) = 2. Let an edge uivp−ujvp or uivp−ujvq, be deleted.

There is a path of length three between these pairs of vertices.

Thus, the deletion of any edge increases the diam(G).

Hence, G is diameter minimal.

Conversely suppose that G is diameter minimal. In Theorem

2.3.6 we have characterized the lexicographic product of graphs

whose diameter increases by the deletion of a single edge. Hence,

we need to prove the theorem only for such Gs.

Let G ∼= Kn1
◦ Kn2

. Then, clearly G is diameter minimal.

Suppose that H1 = K2 and H2 is a disconnected graph in

which there exist at least one component with an isolated vertex.

Let an edge uivp − uivq where vp, vq are not isolated vertices

in H2, be deleted. Since vp, vq are not isolated vertices there is

a path of length two between uivp and uivq in G. Hence, if H2

contains any pair of adjacent vertices, the deletion of that edge

will not increase the diam(G). Thus, H2 is a totally disconnected
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graph.

Suppose that H1 is a connected graph with diameter two in

which at least one pair of adjacent vertices have no path of length

two between them and H2 is a disconnected graph in which there

exist at least one component with an isolated vertex.

As in the previous case, if H2 contains any pair of adjacent

vertices, the deletion of that edge will not increase the diam(G).

Hence, H2 is a totally disconnected graph.

Let an edge uivp−ujvp where the adjacent vertices ui and uj

have a path of length two in H1, be deleted. If any two adjacent

vertices in H1 have a path of length two between them, then the

deletion of an edge will not increase the diam(G). Thus, H1 is a

connected graph with diameter two in which there is no path of

length two between any two adjacent vertices in H1.

Theorem 2.3.8. Let G ∼= H1 ◦ H2.

Then D1(G) 6 α n2 where α is the minimum number of edge

disjoint paths of length diam(H1) between any two vertices in

H1.

Proof. Follows from Theorem 2.2.6.
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Theorem 2.3.9. Let G ∼= H1 ◦ H2. Then D−1(G) = 1 if and

only if G is any one of the following graphs where,

(a) H2 has a universal vertex and H1 is a connected graph with

diam(H1) > 4 and D−2(H1) = 1 when an edge is added between

a diametral vertex and any other vertex of H1.

(b) H2 is any graph and H1 is a connected graph with diam(H1) > 4

and D−1(H1) = 1 when an edge is added between the diametral

vertices or between any two other vertices of H1.

Proof. Follows from Theorem 2.2.7.

Corollary 2.3.10. There does not exist a graph G ∼= H1 ◦ H2

such that G is diameter maximal.
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Chapter 3

Diameter vulnerability of

the product graphs

In the design of an interconnection network, another fundamen-

tal consideration is the reliability of the network, which is char-

acterized by the connectivity of the network. If some processors

or links are faulty the efficiency of the network may be affected.

Vulnerability is a measure of the ability of the system to with-

stand vertex or edge faults and maximum routing delay. Di-

ameter can be used to evaluate the maximum delay in routing.

Some results of this chapter are included in the following papers.
1.Chithra M.R., A. Vijayakumar, Diameter vulnerability of the Cartesian
product of graphs (communicated).
2.Chithra M.R., Manju K. Menon, A. Vijayakumar, Some distance notions
in lexicographic product of graphs (communicated).
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These problems deal with how the remaining processors can still

communicate with a reasonable efficiency [66].

3.1 Diameter vulnerability of the prod-

uct graphs

Theorem 3.1.1. Let G ∼= H1�H2, where H1 is a complete

graph and H2 is a connected graph with κ′(H2) = δ(H2). Then

f ′(G) = diam(G) + 1.

Proof. Case 1 : G ∼= Kn1
�Kn2

.

Then κ′(G) = n1 + n2 − 2 and diam(G) = 2. We shall prove

the theorem by considering the following sub cases where the

fault occurs on F ⊆ E(G).

(a) Let F be the set of edges of the form uivp − uxvp where

i, x ∈ {1, 2, ... , n1}.

Let the κ′(G) − 1 edges be deleted from F . There is a path

uivp − uivq − ujvq − ujvp of length three between these pairs of

vertices. Also, the distance between any two other vertices is
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not affected by the removal of these edges. Hence, diam(G)= 3.

(b) Let F be the set of edges of the form uivp − uivq where

p, q ∈ {1, 2, ... , n2}.

Let the κ′(G)−1 edges be deleted from F . There is a path of

length three between these pairs of vertices. Also, the distance

between any two other vertices is not affected by the removal of

these edges.

(c) Let F be any arbitrary collection of edges.

Consider a pair of non adjacent vertices uivp and ujvq in G.

Let the n1 + n2 − 3 edges adjacent to the vertex uivp except

uxvp, be deleted. Then, d(uivp, ujvq) = 3 by a path uivp −

uxvp − uxvq − ujvq and d(uivp, uivr) = d(uivp, uyvp) = 2. Also,

the distance between any two other vertices is not affected by

the removal of these edges.

Hence, f ′(G) = 3.

Case 2: G ∼= Kn1
�H2, where H2 is a not complete graph.

Then κ′(G) = n1 − 1 + κ′(H2) and diam(G)=1+ diam(H2).

Let vw, vz be a pair of diametral vertices in H2, by a path
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vw − vw+1 − vw+2 − ... − vz−1 − vz. We shall prove the theorem

by considering the following sub cases.

(a) Let F be the set of edges of the form uivp − uxvp where

i, x ∈ {1, 2, ... , n1}.

Let the κ′(G) − 1 edges be deleted from F . There is a path

of length three between these pairs of vertices. Also, the dis-

tance between any two other vertices in G is not affected by the

removal of these edges.

(b) Let F be the set of edges of the form uivp − uivq where

p, q ∈ {1, 2, ... , n2}.

Consider a pair of vertices uivw and uivz in G. Let the

κ′(G)−1 edges be deleted from F . Then, d(uivw, uivz) = diam(G)+1

by a path uivw−ujvw−ujvw+1− ... −ujvz−1−ujvz−uivz where

d(uivw, ujvw) = d(uivz, ujvz) = 1, d(ujvw, ujvz) = diam(H2).

Also, d(uivw, uivp) = 3 by a path uivw −ujvw −ujvp −uivp. The

distance between any two other vertices is not affected by the

removal of these edges.

(c) Let F be any arbitrary collection of edges.
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Consider a pair of vertices uivw and uivz in G. Let the

κ′(G) − 1 edges adjacent to the vertex uivz except ujvz, be

deleted. Then, d(uivw, uivz) = diam(G)+1 by a path uivw −

ujvw−ujvw+1− ... −ujvz−1−ujvz−uivz where d(uivw, ujvw) = 1,

d(ujvw, ujvz) = diam(H2) and d(uivz, ujvz) = 1. Also,

d(uivz, uivp) = 3 and d(uivw, uxvw) = 3.

Hence, f ′(G) = diam(G) + 1.

Theorem 3.1.2. Let G ∼= H1�H2 be a connected graph. Then

f ′(G) 6 max{f ′(H1) + 2diam(H2), f
′(H2) + 2diam(H1)}.

Proof. Let ux, uy be a pair of diametral vertices in H1, by a

path ux − ux+1 − ux+2 − ... − uy−1 − uy and vw, vz be a pair of

diametral vertices in H2, by a path vw−vw+1−vw+2− ...−vz−1−

vz. We shall prove the theorem by considering the following

cases.

(a) Let F be the set of edges of the form uivp − uivq where

p, q ∈ {1, 2, ... , n2}.

Consider a pair of vertices uivw, uivz in G. Let the κ′(G)−1

edges be deleted from F . Then, d(uivw, uivz) = diam(H2) + 2
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by a path uivw − ujvw − ujvw+1 − ... − ujvz − uivz where

d(uivw, ujvw) = 1, d(ujvw, ujvz) = diam(H2), d(ujvz, uivz) = 1.

Also, the distance between any two other vertices is not affected

by the removal of these edges.

(b) Let F be the set of edges of the form uivp − ujvp where

i, j ∈ {1, 2, ... , n1}.

Consider a pair of vertices uxvp, uyvp in G. Let the κ′(G)−1

edges be deleted from F . Then, d(uxvp, uyvp) = diam(H1) + 2.

Also, the distance between any two other vertices is not affected

by the removal of these edges.

(c) Let F be any arbitrary collection of edges.

Consider a pair of diametral vertices uxvw and uyvz in G.

Let the κ′(G) − 1 edges adjacent to the vertex uy−1vz except

uy−1vy, be deleted. Then, d(uxvw, uyvz) = diam(G)+1 by a

path uxvw − ux+1vw − ... − uyvw − ... − uyvz − uy−1vz where

d(uxvw, uyvw) = diam(H1), d(uyvw, uyvz) = diam(H2) and

d(uyvz, uy−1vz) = 1. Also, d(uy−1vz, upvz) = d(uy−1vz, uy−1vq) = 3.

Thus, the deletion of κ′(G) − 1 edges increases the diam(G) by

one.
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Now, consider a pair of vertices uavw and ubvw in G. Let

the edges uivp − ujvp where {ui − uj} is a collection of κ′(H1)

edges which form an edge cut of H1 and p ∈ {1, 2, ... , n2 − 1},

be deleted. From the H1 - layer at vn2
in G, we delete only

the κ′(H1)− 1 edges, otherwise G becomes disconnected. Then,

d(uavn2
, ubvn2

) 6 f ′(H1) by a path uavn2
− ua+1vn2

− ... −

ub−1vn2
− ubvn2

, since the deletion of κ(H1) − 1 edges from H1

increases the diam(H1) to at most f ′(H1). Now,

d(uavw, ubvw) 6 f ′(H1) + 2 diam(H2) by a path uavw−uavw+1−

... − uavn2
− ua+1vn2

− ... − ubvn2
− ubvr − ... − ubvw where

d(uavw, uavn2
) 6 diam(H2), d(uavn2

, ubvn2
) 6 f ′(H1) and

d(ubvn2
, ubvw) 6 diam(H2). Thus, the deletion of κ′(G)−1 edges

increases the diam(G) by f ′(H1) + 2 diam(H2).

Similarly, if the κ′(G)− 1 edges upva − upvb where {va − vb}

is a collection of κ′(H2) edges which form an edge cut of H2 and

p ∈ {1, 2, ... , n1}, are deleted then, the diam(G) increases by

f ′(H2) + 2 diam(H1).

Hence, f ′(G) 6 max{f ′(H1)+2diam(H2), f
′(H2)+2diam(H1)}.
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Illustration of Theorem 3.1.2

Fig 3.1: A graph G with f ′(G) = f ′(H1) + 2 diam(H2) = 7.

Theorem 3.1.3. Let G ∼= H1 ⊠ H2 be a connected graph. Then

f ′(G) 6 max{f ′(H1) + diam(H2), f
′(H2) + diam(H1)}.

Proof. Let G ∼= H1 ⊠ H2 be a connected graph. Then

κ′(G) = min{κ′(H1)(|V (H2)|+2E(H2)), κ
′(H2)(|V (H1)|+2E(H1)),

δ(H1 ⊠H2)}. Let ux, uy be a pair of diametral vertices in H1, by

a path ux−ux+1−ux+2− ...−uy−1−uy and vw, vz be a pair of di-

ametral vertices in H2, by a path vw−vw+1−vw+2−...−vz−1−vz.

We shall prove the theorem by considering the following cases.

(a) Let F be the set of edges of the form uivk − ujvk where

i, j ∈ {1, 2, ... , n1}.
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Consider a pair of vertices uxvk and uyvk in G. Let the

κ′(G)−1 edges be deleted from F . Then, d(uxvk, uyvk) = diam(H1)

by a path uxvk − ux+1vk+1 − ux+2vk+1 − ... − uy−1vk+1 − uyvk.

(b) Let F be the set of edges of the form uivj − uivk where

j, k ∈ {1, 2, ... , n2}.

Consider a pair of vertices uivw and uivz in G. Let the

κ′(G)−1 edges be deleted from F . Then, d(uivw, uivz) = diam(H2)

by a path uivw − ui+1vw+1 − ui+1vw+2 − ...ui+1vz−1 − uivz.

(c) Let F be any arbitrary collection of edges.

Consider a pair of diametral vertices uxvw and uyvw in G.

Let the κ′(G) − 1 edges adjacent to the vertex uxvw except

uxvw+1, be deleted. The distance between uxvw and uyvw in-

creases by a path uxvw − uxvw+1 − ux+1vw − ... − uyvw where

d(uxvw, ux+1vw) = 2 and d(ux+1vw, uyvw) = diam(H1)−1. Also,

the distance between any two other vertices is not affected by

the removal of these edges.

Now, consider a pair of vertices uavw and ubvw in G. Let the

edges uivr − ujvr, uivp − ujvq where {ui − uj} is a collection of

κ′(H1) edges which form an edge cut of H1 and r ∈ {1, 2, ... , n2 − 1},
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q 6= p ∈ {1, 2, ... , n2} and vqs are the vertices adjacent to

vp in H2, be deleted. From the H1 - layer at vn2
in G, we

delete only the κ′(H1) − 1 edges, otherwise G becomes dis-

connected. Then, d(uavn2
, ubvn2

) 6 f ′(H1) by a path uavn2
−

ua+1vn2
− ... − ub−1vn2

− ubvn2
, since the deletion of κ′(H1)− 1

edges from H1 increases the diam(H1) to at most f ′(H1). Now,

d(uavw, ubvw) 6 f ′(H1) + diam(H2) by a path uavw − uavw+1 −

... − uavn2
− ua+1vn2

− ... − ub−1vw+1 − ubvw where

d(uavw, uavn2
) 6 diam(H2) and d(uavn2

, ubvw) 6 f ′(H1). Thus,

the distance between any two other vertices is at most

f ′(H1) + diam(H2).

Similarly, if the κ′(G) − 1 edges uxvp − uxvq, uxvp − uivr

where x ∈ {1, 2, ... , n1}, uis are the vertices adjacent to ux

in H1 and {vp − vq} is a collection of κ′(H2) edges which form

an edge cut of H2, are deleted then, the diam(G) increases by

f ′(H2) + diam(H1).

Hence, f ′(G) 6 max{f ′(H1)+diam(H2), f
′(H2)+diam(H1)}.
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Illustration of Theorem 3.1.3

Fig 3.2: A graph G with f ′(G) = max{f ′(H1) + diam(H2),
f ′(H2) + diam(H1)} = 5.

Theorem 3.1.4. Let G ∼= H1 ◦ H2 be a connected graph with

n1, n2 > 3. Then f ′(G) 6 f ′(H1) + diam(H2).

Proof. Let G ∼= H1 ◦ H2 be a connected graph. Then the

κ′(G) = min{κ′(H1)n
2
2, δ(H2)+δ(H1)n2} and diam(G) = diam(H1).

Let ux, uy be a pair of diametral vertices in H1, by a path

ux − ux+1 − ux+2 − ...− uy−1 − uy and vw, vz be a pair of diame-

tral vertices in H2, by a path vw − vw+1 − vw+2 − ...− vz−1 − vz.

We shall prove the theorem by considering the following cases.

(a) Let F be the set of edges of the form uivk − ujvk where

i, j ∈ {1, 2, ... , n1}.

Consider a pair of vertices uxvk and uyvk in G. Let the
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κ′(G)−1 edges be deleted from F . Then, d(uxvk, uyvk) = diam(G)

by a path uxvk − ux+1vk+1 − ux+2vk+1 − ... − uy−1vk+1 − uyvk.

(b) Let F be the set of edges of the form uivj − uivk where

j, k ∈ {1, 2, ... , n2}.

Let the κ′(G) − 1 edges be deleted from F . There is a path

uivj − ui+1vj − uivk of length two between uivj and uivk in G.

Thus, the diam(G) remains the same.

(c) Let F be any arbitrary collection of edges.

Consider a pair of diametral vertices uxvw and uyvw in G. Let

the κ′(G)−1 edges adjacent to the vertex uxvw except uxvw+1, be

deleted. Then, d(uxvw, uyvw) = diam(G) + 1 by a path uxvw −

uxvw+1 − ux+1vw − ... − uyvw where d(uxvw, ux+1vw) = 2 and

d(ux+1vw, uyvw) = diam(G) − 1.

Consider a pair of diametral vertices uxvw and uyvz in G.

Since we have already considered the case of the deletion of edges

from F of the form uivk − ujvk where i, j ∈ {1, 2, ... , n1} and

uivj−uivk where j, k ∈ {1, 2, ... , n2} in (a) and (b) respectively,

there will exist at least one edge (say) upvr − uqvr for each

r ∈ {1, 2, ... , n2}. Thus, there exist a path uxvw − ux+1vp −
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ux+2vq − ... − uyvz of length diam(G) between uxvw, uyvz in G.

Consider a pair of vertices uavw, ubvw in G. Let the edges

uivr − ujvr, uivp − ujvq where {ui − uj} is a collection of κ′(H1)

edges which form an edge cut of H1 and r ∈ {1, 2, ... , n2 − 1},

q 6= p ∈ {1, 2, ... , n2}, be deleted. From the H1 - layer at

vn2
in G, we delete only the κ′(H1) − 1 edges, otherwise G be-

comes disconnected. Then, d(uavn2
, ubvn2

) 6 f ′(H1) by a path

uavn2
− ua+1vn2

− ... − ub−1vn2
− ubvn2

, since the deletion of

κ(H1) − 1 edges from H1 increases the diam(H1) to at most

f ′(H1). Now, d(uavw, ubvw) 6 f ′(H1) + diam(H2) by a path

uavw − uavw+1 − ... − uavn2
− ua+1vn2

− ... − ub−1vn2
− ubvw

where d(uavw, uavn2
) 6 diam(H2) and d(uavn2

, ubvw) 6 f ′(H1).

Hence the result.

Illustration of Theorem 3.1.4

Fig 3.3: A graph G with f ′(G) = f ′(H1) + diam(H2) = 4.
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We shall now discuss some results on the notion of fault

diameter in the product graphs.

Theorem 3.1.5. Let G ∼= H1�H2 be a connected graph. Then

f(G) 6 max{f(H1) + 2diam(H2), f(H2) + 2diam(H1)}.

Proof. Let ux, uy be a pair of diametral vertices in H1, by a

path ux − ux+1 − ux+2 − ... − uy−1 − uy and vw, vz be a pair of

diametral vertices in H2, by a path vw−vw+1−vw+2− ...−vz−1−

vz. We shall prove the theorem by considering the following

cases where the fault occurs on S ⊆ V (G).

(a) Let S be the set of vertices of the form uivp where

p ∈ {1, 2, ... , n2}.

Consider a pair of vertices uivw, uivz in G. Let the κ(G)− 1

vertices from S be deleted. Then, d(uivw, uivz) = diam(H2)+ 2

by a path uivw − ujvw − ujvw+1 − ... − ujvz − uivz where

d(uivw, ujvw) = 1, d(ujvw, ujvz) = diam(H2), d(ujvz, uivz) = 1.

Now, d(uyvw, uzvw) 6 f(H1), since the deletion of the vertex

ui from H1 increases the diam(H1) to at most f(H1). Hence,

f(G) 6 max{diam(H2) + 2, f(H1)}.

(b) Let S be the set of vertices of the form ujvp where
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j ∈ {1, 2, ... , n1}.

Consider a pair of vertices uxvp, uyvp in G. Let the κ(G)− 1

vertices from S be deleted. Then, d(uxvp, uyvp) 6 diam(H1)+2.

Now, d(uyvw, uyvz) 6 f(H2), since the deletion of the vertex

vp from H2 increases the diam(H2) to at most f(H2). Hence,

f(G) 6 max{diam(H1) + 2, f(H2)}.

(c) Let S be any arbitrary collection of vertices.

Consider a pair of diametral vertices uxvw and uyvz in G.

Let the κ(G) − 1 vertices adjacent to the vertex uy−1vz except

uyvz in G, be deleted. Then, d(uxvw, uyvz) = diam(G) + 1 by

a path uxvw − ux+1vw − ... − uyvw − ... − uyvz − uy−1vz

where d(uxvw, uyvw) = diam(H1), d(uyvw, uyvz) = diam(H2) and

d(uyvz, uy−1vz) = 1. Also d(uy−1vz, upvz) = d(uy−1vz, uy−1vq) = 3.

Thus, the deletion of κ(G)−1 vertices increases the diam(G) by

one.

Now, consider a pair of vertices upvw and uqvw in G. Let

the vertices uivp where {ui} is a collection of κ(H1) vertices

which form a vertex cut of H1 and p ∈ {1, 2, 3, ..., n2 − 1},

be deleted. From the H1 - layer at vn2
in G, we delete only
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κ(H1) − 1 vertices, otherwise G becomes disconnected. Then,

d(upvn2
, uqvn2

) 6 f(H1) by a path upvn2
− up+1vn2

− ... −

uq−1vn2
− uqvn2

, since the deletion of κ(H1) − 1 vertices from

H1 increases the diam(H1) to at most f(H1). Now

d(upvw, uqvw) 6 f(H1) + 2 diam(H2) by a path upvw−upvw+1−

... − upvn2
− up+1vn2

− ... − uqvn2
− uqvr − ... − uyvw where

d(upvw, upvn2
) 6 diam(H2), d(upvn2

, uqvn2
) 6 f(H1) and

d(uqvn2
, uqvw) 6 diam(H2).

Similarly, if the κ(G)−1 vertices uivp where i ∈ {1, 2, ..., n1}

and {vp} is a collection of κ(H2) vertices which form a vertex

cut of H2, are deleted from G, then the diam(G) increases by

f(H2) + 2 diam(H1). Hence the result.

Illustration of Theorem 3.1.5

Fig 3.4: A graph G with f(G) = max{f(H1) + 2diam(H2),
f(H2) + 2diam(H1)} = 6
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Theorem 3.1.6. Let G ∼= H1 ◦ H2 be a connected graph. Then

f(G) 6 max{f(H1), f(H2)}.

Proof. Let ux, uy be a pair of diametral vertices in H1, by a

path ux−ux+1−ux+2− ...−uy−1−uy and vw, vz be a pair of di-

ametral vertices in H2, by a path vw−vw+1−vw+2−...−vz−1−vz.

We shall prove the theorem by considering the following cases.

Case 1: G ∼= Kn1
◦ H2.

Then diam(G) = 2 and κ(G) = (n1 − 1)n2 + κ(H2).

Consider a vertex u1v1 in G. Let the κ(G)− 1 vertices adja-

cent to the vertex u1v1 except uivr, be deleted. Now, let G′ be

the subgraph of G obtained after deleting the κ(G)− 1 vertices,

as shown in Fig 3.5 and if vp is not adjacent to vq in H2, then

d(u1vp, u1vq) = 2 by the path u1vp −uivr −u1vq, since ui ∈ Kn1
.

Thus, the diam(G) remains the same.

Now, let the κ(G) − 1 vertices adjacent to u1v1 except u1vs,

be deleted. Let G′ be the subgraph of G obtained after deleting

κ(G) − 1 vertices. Then, d(u1vp, u1vq) 6 f(H2), since the dele-
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Fig 3.5: A subgraph G′ of G.

tion of κ(H2)− 1 vertices from H2 increases the diam(H2) to at

most f(H2). Thus f(G) 6 f(H2).

Case 2: G ∼= H1 ◦ H2 where κ(H1) = 1 and H1 6= K2.

Then diam(G)=diam(H1) and κ(G) = κ(H1) |V (H2)| = n2.

We shall prove the theorem by considering the following sub

cases.

(a) Let S be the set of vertices of the form uivp where

p ∈ {1, 2, ..., n2}.

Consider a pair of diametral vertices uxva, uyva in G. Let

the n2 − 1 vertices except uivn2
from S, be deleted. Then,

d(uxva, uyva) = diam(G) by a path uxva−ux+1va− ...−ui−1va−
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uivn2
− ui+1va − ...− uy−1va − uyva. Thus, the diam(G) remains

the same.

(b) Let S be the set of vertices of the form uivp where

i ∈ {1, 2, ..., n1}.

Let the n2 − 1 vertices from S, be deleted. Clearly, the

distance between any two vertices in G is not affected by the

removal of these vertices. Thus, the diam(G) remains the same.

(c) Let S be any arbitrary collection of vertices.

Consider a pair of diametral vertices uxvp and uyvq in G.

Then, d(uxvp, uyvq) = diam(H1) by a path uxvp − ux+1va −

ux+2vb − ... − uyvq, since we have already considered the case

of the deletion of vertices from S of the form uivp where

i ∈ {1, 2, ..., n1}, there exist at least one vertex (say) uivj for

each j ∈ {1, 2, ... , n2} and are adjacent to the vertices urvp

where p ∈ {1, 2, ..., n2}. Thus, the diam(G) remains the same.

Case 3: G ∼= H1 ◦ H2 where κ(H1) > 1.

We have κ(G) > 2n2. We shall prove the theorem by con-

sidering the following sub cases.
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(a) Let S be the set of vertices of the form uivp where

i ∈ {1, 2, ..., n1}.

Let κ(G)−1 vertices from S be deleted. Clearly the distance

between any two vertices in G is not affected by the removal of

these vertices.

(b) Let S be any arbitrary collection of vertices.

Consider a pair of diametral vertices uxvq and uyvr in G, then

d(uxvq, uyvr) = diam(H1) by a path uxvq−ux+1va−ux+2vb−...−

uyvr, since we have already considered the case of the deletion

of the vertices from S of the form uxvp where x ∈ {1, 2, ..., n1},

there exist at least one vertex (say) uivj for each j ∈ {1, 2, ... , n2}

and are adjacent to the vertices urvp where p ∈ {1, 2, 3, ..., n2}.

Thus, the diam(G) remains the same.

Now, consider a pair of vertices upvw and uqvw in G. Let

the vertices uivp where {ui} is a collection of κ(H1) vertices

which form a vertex cut of H1 and p ∈ {1, 2, ..., n2 − 1}, be

deleted. From the H1 - layer at vn2
in G, we delete only the

κ(H1) − 1 vertices, otherwise G becomes disconnected. Then,

d(upvn2
, uqvn2

) 6 f(H1) by a path upvn2
− up+1vn2

− ... −



3.1. Diameter vulnerability of the product graphs 105

uq−1vn2
−uqvn2

, since the deletion of κ(H1)−1 vertices from H1

increases the diam(H1) to at most f(H1). Now,

d(upvw, uqvw) 6 f(H1) by a path upvw−up+1vn2
− ...−uq−1vn2

−

uqvw. Thus, f(G) 6 f(H1).

From the above cases, the result follows.

Illustration of Theorem 3.1.6

Fig 3.6: Graphs with f(G) = f(H1) and f(G) = f(H2).

Theorem 3.1.7. Let G ∼= H1 ⊠ H2 be a connected graph. Then

f(G) 6 max{f(H1) + diam(H2), f(H2) + diam(H1)}.

Proof. Case 1: H1 ⊠ Kn2
.

Then diam(G) = diam(H1) and κ(H1 ⊠ Kn2
) = n2κ(H1).

From the Case 2 and Case 3 of Theorem 3.1.6, it follows that

f(G) 6 f(H1).
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Case 2: H1 ⊠H2 where H1 and H2 are not complete graphs.

Suppose that diam(G) = diam(H1). We shall prove the the-

orem by considering the following sub cases.

(a) Let S be the set of vertices of the form uivp where

i ∈ {1, 2, 3, ..., n1}.

Consider a pair of vertices uavq and ubvq in G. Let the

κ(G)− 1 vertices from S be deleted. Then, d(uavq, ubvq) 6 diam(H1).

Now, d(uyva, uyvb) 6 f(H2), since the deletion of the vertex

vp from H2 increases the diam(H2) to at most f(H2). Hence,

f(G) 6 max{diam(H1), f(H2)}.

(b) Let S be the set of vertices of the form ujvp where

p ∈ {1, 2, 3, ..., n2}.

Consider a pair of vertices uwvq and uwvr in G. Let the

κ(G)−1 vertices from S be deleted. Then, d(uwvq, uwvr) 6 diam(H2).

Now, d(uavw, ubvw) 6 f(H1), since the deletion of the vertex ux

from H1 increases the diam( H1) to at most f(H1). Hence,

f(G) 6 f(H1).

(c) Let S be any arbitrary collection of vertices.
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Now, consider a pair of vertices upvw and uqvw in G. Let

the vertices uivp where {ui} is a collection of κ(H1) vertices

which form a vertex cut of H1 and p ∈ {1, 2, ..., n2 − 1}, be

deleted. From the H1 - layer at vn2
in G, we delete only the

κ(H1) − 1 vertices, otherwise G becomes disconnected. Then,

d(upvn2
, uqvn2

) 6 f(H1) by a path upvn2
− up+1vn2

− ... −

uq−1vn2
−uqvn2

, since the deletion of κ(H1)−1 vertices from H1

increases the diam(H1) to at most f(H1). Now,

d(upvw, uqvw) 6 f(H1) + diam(H2), by a path upvw − upvw+1 −

... −upvn2
− ... −uq−1vr−uqvw where d(upvw, upvn2

) 6 diam(H2)

and d(upvn2
, uqvw) 6 f(H1). Hence, the deletion of κ(G) − 1

vertices increases the diam(G) to at most f(H1) + diam(H2).

Similarly, if diam(G)= diam(H2), then the deletion of κ(G)− 1

vertices increases the diam(G) by f(H2) + diam(H1).

3.2 Diameter vulnerability of some graph

classes

We shall first discuss the diameter vulnerability in grids.
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Theorem 3.2.1. Let G ∼= P2�Pn2
be a grid, where n2 > 2.

Then f ′(G) = diam(G) + 1.

Proof. Let G ∼= P2�Pn2
. Then diam(G) = n2 and κ′(G) = 2.

Let n2 > 2.

Let an edge u1vp−u2vp where p ∈ {1, 2, ...n2}, be deleted. Then

d(u1vp, u2vp) = 3 6 n2 by a path u1vp−u1vq−u2vq−u2vp. Also,

the distance between any two other vertices is not affected by

the removal of this edge. Thus, the deletion of an edge does not

increase the diam(G).

Consider a pair of vertices u1v1, u1vn2
in G. Let an edge

u1vp − u1vq, be deleted. There exist a unique path of length

n2 − 1 between them in G. Thus, d(u1v1, u1vn2
) = n2 + 1

by a path u1v1 − u2v1 − u2v2 − ... − u2vn2
− u1vn2

where

d(u1v1, u2v1) = 1, d(u2v1, u2vn2
) = n2 − 1, d(u2vn2

, u1vn2
) = 1.

Also, d(u1vp, u1vq) = 3 and the distance between any two other

vertices is not affected by the removal of this edge. Thus, the

deletion of an edge increases the diam(G) by one.

Let n2 = 2. Then, G is C4 and f ′(G) = 3.

Hence, f ′(G) = diam(G) + 1.
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Note: For n2 > 2, the deletion of a single edge will not

change the diameter of G. In this context we consider g′(G)

[69]. Consider a connected graph G from which if κ′(G) edges

are deleted, then the resulting graph G (also denoted by G) is

still connected. Then, g′(G) denotes the maximum diameter of a

connected graph G obtained when κ′(G) edges are deleted from

G.

Theorem 3.2.2. Let G ∼= P3�Pn2
be a grid, where n2 > 2.

Then g′(G) = diam(G) + 2.

Proof. Let G ∼= P3�Pn2
. Then diam(G) = n2 + 1 and

κ′(G) = 2.

If any two edges are deleted arbitrarily, then the diam(G)

remains the same, since there is a path of length three between

them in G.

Consider a pair of diametral vertices u1v1, u3vn2
in G. Let the

edges u3vn2−1−u3vn2−2 and u3vn2−1−u2vn2−1, be deleted. Then,

d(u1v1, u3vn2−1) = diam(G)+1 by a path u1v1 −u1v2 ... u1vn2
−

u2vn2
− u3vn2

− u3vn2−1 where d(u1v1, u1vn2
) = n2 − 1 and

d(u1vn2
, u3vn2−1) = 3. Also, d(u3vn2−1, u2vn2−1) = 3 and
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d(u3vn2−1, u2vn2−2) = 5. Thus, the deletion of two edges in-

creases the diam(G) by one.

Consider a pair of vertices ujv1, ujvn2
in G. Let the two

edges uivp − uivq and ujvp − ujvq where ui is adjacent to uj in

P3, j = 1 or 3, be deleted. Then, d(ujv1, ujvn2
) = n2 + 3 by a

path ujv1 − uiv1 − uxv1 − uxv2 ... uxvn2
− uivn2

− ujvn2
where

d(ujv1, uxv1) = 2, d(uxv1, uxvn2
) = n2 − 1, d(uxvn2

, ujvn2
) = 2.

Also, d(uivp, uivq) = 3 and d(ujvp, ujvq) = 5 by a path ujvp −

uivp−uxvp−uxvq−uivq−ujvq. Similarly, d(uiv1, uivn2
) 6 n2+1.

Thus, the diam(G) increases by two.

Hence, g′(G) = diam(G) + 2.

Theorem 3.2.3. Let G ∼= Pn1
�Pn2

be a grid, where n1, n2 > 4.

Then g′(G) = diam(G) + 1.

Proof. Let G ∼= Pn1
�Pn2

. Then diam(G) = n1 + n2 − 2 and

κ′(G) = 2.

If any two edges are deleted arbitrarily, then the diam(G)

remains the same, since there is a path of length three between

them in G.
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Let n1 > 4.

Consider the vertices ujv1, ujvn in G. Let the two edges uivp −

uivq and ujvp −ujvq where uj is adjacent to ui in Pn1
and i 6= 1,

j 6= n1, be deleted. Then, d(uivp, uivq) = 3 and d(ujvp, ujvq) = 3.

If uj is adjacent to ui in Pn1
and j = 1 or n1, then d(uivp, uivq) = 3

and d(ujvp, ujvq) = 5 by a path ujvp − uivp − uxvp − uxvq −

uivq − ujvq. Also, d(ujv1, ujvn2
) = (n2 − 1) + 4 by a path

ujv1 − uiv1 − uxv1 − uxv2 − ... − uxvn2
− uivn2

− ujvn2
where

d(ujvn2
, uxvn2

) = d(uxv1, ujv1) = 2, d(uxv1, uxvn2
) = n2− 1 and

d(uiv1, uivn2
) 6 (n2 − 1) + 2.

Similarly, if the two edges uivp−ujvp and uivq−ujvq, are deleted

then the diam(G) remains the same.

Let n1 = 4.

Consider the vertices ujv1, ujvn2
in G. Let the two edges uivp −

uivq and ujvp −ujvq where uj is adjacent to ui in Pn1
and i 6= 1,

j 6= n1, be deleted. Then, d(uivp, uivq) = 3 and d(ujvp, ujvq) = 3.

If uj is adjacent to ui in Pn1
and j = 1 or n1, then the diam(G)

increases by one. Also, d(ujv1, ujvn2
) = n2 + 3 by a path

ujv1 − uiv1 − uxv1 − uxv2 − ... − uxvn2
− uivn2

− ujvn2
where

d(ujvn2
, uxvn2

) = d(uxv1, ujv1) = 2 and d(uxv1, uxvn2
) = n2− 1.
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Consider a pair of diametral vertices u1v1, un1
vn2

in G. Let

the edges un1
vn2−1−un1

vn2−2, un1
vn2−1−un1−1vn2−1, be deleted.

Then, d(u1v1, un1
vn2−1) = diam(G)+1 by a path u1v1 − u1v2 −

... u1vn2−1 − u1vn2
− u2vn2

− ... − un1−1vn2
− un1

vn2
− un1

vn2−1

where d(u1v1, u1vn2
) = n2 − 1 and d(u1vn2

, un1
vn2−1) = n1.

Also, d(un1
vn2−1, un1−1vn2−1) = 3, d(un1

vn2−1, un1
vn2−2) = 5. Thus,

the deletion of two edges increases the diam(G) by one.

Hence, g′(G) = diam(G) + 1.

We shall now consider the case of cylinders.

Theorem 3.2.4. Let G ∼= Pn1
�Cn2

be a cylinder where n1, n2 > 4.

Then f ′(G) = diam(G) + 1 and g′(G) = diam(G) + 2.

Proof. Let G ∼= Pn1
�Cn2

. Then κ′(G) = 3 and

diam(G) = n1 − 1 + ⌊n2/2⌋. Let d(vw, vz) = diam(Cn2
).

If any two edges are deleted arbitrarily, then the diam(G)

remains the same, since there is a path of length three between

them in G.

Consider the vertices ujvw, ujvz in G. Let the edges uivp −

uivq, ujvp−ujvq where uj is adjacent to ui in Pn1
and i, j 6= 1, n1,
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be deleted. Then, d(uivp, uivq) = 3 and d(ujvp, ujvq) = 3. If uj is

adjacent to ui in Pn1
and j = 1 or n1, then the diam(G) remains

the same, since d(uivp, uivq) = 3, d(uivp, ujvq) = d(uivq, ujvp) = 4

and d(ujvp, ujvq) = 5 by a path ujvp−uivp−uxvp−uxvq−uivq−

ujvq. Also, d(ujvw, ujvz) 6 ⌊n2/2⌋ + 4 by a path ujvw − uivw −

uxvw − uxvw+1 ... uxvz − uivz − ujvz where d(ujvw, uxvw) = 2,

d(uxvw, ujvz) = ⌊n2/2⌋ + 2. Thus, the diam(G) remains the

same.

Consider a pair of vertices u1v1, un1
v⌊n2/2⌋+1 in G. Let the

edges un1
v⌊n2/2⌋−un1

v⌊n2/2⌋−1, un1
v⌊n2/2⌋−un1−1v⌊n2/2⌋, be deleted.

Then, d(u1v1, un1
v⌊n2/2⌋) = diam(G)+1 by a path u1v1−u1v2−

... −u1v⌊n2/2⌋+1−u2v⌊n2/2⌋+1− ... −un1
v⌊n2/2⌋+1−un1

v⌊n2/2⌋ where

d(u1v1, u1v⌊n2/2⌋+1) = ⌊n2/2⌋ and d(u1v⌊n2/2⌋+1, un1
v⌊n2/2⌋) = n1.

Also, d(un1
v⌊n2/2⌋, un1−1v⌊n2/2⌋) = 3, d(un1

v⌊n2/2⌋, un1
v⌊n2/2⌋+1) = 5.

Thus, the deletion of two edges increases the diam(G) by one

[see Fig 3.7].

Hence, f ′(G) = diam(G) + 1.

Now, we shall prove that g′(G) = diam(G) + 2. Consider

a pair of vertices u1v1, un1
v⌊n2/2⌋+1 in G. Let the three edges

un1
v⌊n2/2⌋−1 − un1

v⌊n2/2⌋−2, un1
v⌊n2/2⌋−1 − un1−1v⌊n2/2⌋−1,
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Fig 3.7: A graph G ∼= Pn1
�Cn2

with f ′(G) = diam(G) + 1.

and un1
v⌊n2/2⌋−un1−1v⌊n2/2⌋, be deleted. Then, d(u1v1, un1

v⌊n2/2⌋−1)

= daim(G) + 2 by a path u1v1 − u1v2 − ... − u1v⌊n2/2⌋+1 −

u2v⌊n2/2⌋+1− ... −un1
v⌊n2/2⌋+1−un1

v⌊(n2/2)⌋−un1
v⌊(n2/2)⌋−1. Also,

d(un1
v⌊n2/2⌋, un1−1v⌊n2/2⌋) = 3, d(un1

v⌊n2/2⌋−1, un1
v⌊n2/2⌋−2) = 7,

d(un1
v⌊n2/2⌋−1, un1−1v⌊n2/2⌋−1) = 5. Thus, the deletion of three

edges increases the diam(G) by two [see Fig 3.8].

Hence, g′(G) = diam(G) + 2.

Fig 3.8: A graph G ∼= Pn1
�Cn2

with g′(G) = diam(G) + 2.
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Finally, we consider the case of tori.

Let G ∼= Cn1
�Cn2

. For n1, n2 6 5, we observe that f ′(G) and

g′(G) are either diam(G)+ 1 or diam(G)+2. Hence, we consider

n1, n2 > 6 and show that f ′(G) = diam(G)+1 and

g′(G) = diam(G)+2.

Fig 3.9: Graphs G1 with f ′(G1) = diam(G1) + 1 and G2 with
f ′(G2) = diam(G2) + 2.

Fig 3.10: Graphs G1 with g′(G1) = diam(G1) + 1 and G2 with
g′(G2) = diam(G2) + 2.

Theorem 3.2.5. Let G ∼= Cn1
�Cn2

be a tori, where n1, n2 > 6,

then f ′(G) = diam(G)+1. Further, g′(G) = diam(G)+2 where

n1 and n2 are odd with n1, n2 > 6.
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Proof. Let G ∼= Cn1
�Cn2

. Then κ′(G) = 4 and

diam(G)=⌊n1/2⌋ + ⌊n2/2⌋.

If any two edges are deleted arbitrarily, then the diam(G)

remains the same, since there is a path of length three between

them in G.

Let the three edges uivp − uivq, ujvp − ujvq and uxvp − uxvq

where uj is adjacent to ui and ux in Cn1
, be deleted. Then

d(uivp, uivq) = 3 = d(uxvp, uxvq), d(ujvp, ujvq) = 5. Also,

d(ujvw, ujvz) = ⌊n2/2⌋ + 4, d(uivw, uivz) = ⌊n2/2⌋ + 2 and

d(uxvw, uxvz) = ⌊n2/2⌋ + 2. Thus, the diam(G) remains the

same.

Consider a pair of diametral vertices u1v1, u⌊n1/2⌋+1v⌊n2/2⌋+1

in G. Let the three edges u⌊n1/2⌋+1v⌊n2/2⌋ − u⌊n1/2⌋+1v⌊n2/2⌋−1,

u⌊n1/2⌋+1v⌊n2/2⌋−u⌊n1/2⌋v⌊n2/2⌋ and u⌊n1/2⌋+1v⌊n2/2⌋−u⌊n1/2⌋+2v⌊n2/2⌋,

be deleted. Then, the distance between these pairs of ver-

tices is three. Now, d(u1v1, u⌊n1/2⌋+1v⌊n2/2⌋) = diam(G) + 1 by

a path u1v1 − u1v2 − ... − u1v⌊n2/2⌋+1 − u2v⌊n2/2⌋+1 − ... −

u⌊n1/2⌋+1v⌊n2/2⌋+1 − u⌊n1/2⌋+1v⌊n2/2⌋. Thus, the deletion of three

edges increases the diam(G) by one.

Hence, f ′(G) = daim(G) + 1.
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Now we shall prove that g′(G) = daim(G) + 2.

Consider a pair of vertices u1v1, u⌊n1/2⌋+1v⌊n2/2⌋+1 in G. Let the

edges u1v1 − u1v2, u⌊n1/2⌋+1v⌊n2/2⌋ − u⌊n1/2⌋v⌊n2/2⌋,

u⌊n1/2⌋+1v⌊n2/2⌋−u⌊n1/2⌋+2v⌊n2/2⌋, u⌊n1/2⌋+1v⌊n2/2⌋−u⌊n1/2⌋+1v⌊n2/2⌋−1,

be deleted. Then, d(u1v1, u⌊n1/2⌋+1v⌊n2/2⌋) = diam(G) + 2 by

a path u1v1 − un1
v1 − ... − un1

v⌊n2/2⌋+1 − un1−1v⌊n2/2⌋+1 −

... −u⌊n1/2⌋+1v⌊n2/2⌋+1−u⌊n1/2⌋+1v⌊n2/2⌋+1−u⌊n1/2⌋+1v⌊n2/2⌋ where

d(u1v1, un1
v⌊n2/2⌋+1) = ⌊n2/2⌋+1 and d(un1

v⌊n2/2⌋+1, u⌊n1/2⌋+1v⌊n2/2⌋) =

⌊n1/2⌋ + 1. Also, d(u⌊n1/2⌋+1v⌊n2/2⌋, u⌊n1/2⌋+1v⌊n2/2⌋−1) = 5,

d(u⌊n1/2⌋+1v⌊n2/2⌋, u⌊n1/2⌋v⌊n2/2⌋) = 3, d(u1v1, u1v2) = 3 and

d(u⌊n1/2⌋+1v⌊n2/2⌋, u⌊n1/2⌋+2v⌊n2/2⌋) = 3. Thus, the deletion of

four edges increases the diam(G) by two.

Hence, g′(G) = daim(G) + 2.

3.3 Wide Diameter of the lexicographic

product of graphs

Lemma 3.3.1. Let G ∼= H1 ◦ H2. If there exists a container of

width w in H1 which is of length l then there exists a container

of width κ(H1) × |V (H2)| which will be of the same length l in
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G.

Proof. Case 1: Consider the vertices of the form uivj and

ukvj where i 6= k and i, k ∈ {1, 2, ..., n1}.

Since there exists a container of length l in H1, there exists

a container of length at most l between ui and uk. If P1 = ui −

ui+1−ui+2− ... −uk−1−uk is a path in the container Cw(ui, uk)

of H1, then uivj − ui+1vj − ui+2vj − ... − uk−1vj − ukvj is the

corresponding path connecting uivj and ukvj in G. Also, by the

structure of the lexicographic product, uivj − ui+1va − ui+2va −

... − uk−1va − ukvj are also paths connecting uivj and ukvj

where a 6= j and a ∈ {1, 2, ..., n2} in G. Thus, corresponding

to the w internally vertex disjoint paths in Cw(ui, uk) of H1, we

have shown the existence of w |V (H2)| internally disjoint paths

between uivj and ukvj in G which are of length at most l. Since

the length of the container in H1 is l, there exists a pair of

vertices ux and uy in H1 such that the path joining ux and uy

is of length l. As proved above we can show that Cw(uxvj, uyvj)

in G is of length l.

Case 2: Consider the vertices of the form uivj and uivk
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where j 6= k and j, k ∈ {1, 2, ..., n2}.

By the structure of the lexicographic product, if ui is adja-

cent to ua in H1, then both uivj and uivk will be adjacent to

uav1, uav2, ... , uavm in G. Thus there exists at least dG(ui) |V (H2)|

internally vertex disjoint paths between uivj and uivk which are

of length two. So we can say that for any vertex ui in H1, there

exists Cδ(G)|V (H2)|(uivj, uivk) of length two in G.

Case 3: Consider the vertices of the form uivj and uavb

where i 6= a and j 6= b.

Consider the vertices ui and ua in H1. By the assumption

there exists a container of length at most l in between ui and

ua in H1. If P1 = ui − ui+1 − ui+2 − ... − ua−1 − ua is a path

in the container Cw(ui, uk), then uivj − ui+1vj − ui+2vj − ... −

ua−1vj − uavb is a path connecting uivj and uavb in G which is

of length same as that of P1. Again, by the structure of the

lexicographic product, we can find w |V (H2)| internally vertex

disjoint paths between uivj and uavb and is of length at most l.

Since the length of the container in H1 is l, there exists a pair

of vertices ux and uy in H1 such that the path joining ux and uy

is of length l. So Cw(uxvj, uyvb) in G is of length exactly l.
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Finally, since 1 6 w 6 κ(G) and κ(G) 6 δ(G), the result follows.

Theorem 3.3.2. For any two connected graphs H1 and H2,

Wide diameter (H1 ◦ H2) = Wide diameter (H1).

Proof. Suppose that G ∼= H1 ◦ H2.

Let Dκ(H1)(H1) = k. Then there exists a container of width

κ(H1) in between any two vertices of H1 which is of length at

most k. Then, by Lemma 3.3.1, there exists a container of width

κ(H1) × |V (H2)| in between any two vertices of G which is of

length at most k.

Hence, Dκ(H1)×|V (H2)|(H1 ◦ H2) 6 Dκ(H1)(H1).

Let Dκ(H1)×|V (H2)|(H1 ◦ H2) = k.

Consider any two vertices ui and uj in H1. Clearly there exists

κ(H1) internally disjoint paths joining ui and uj in H1. Since

Dκ(H1)×|V (H2)|(H1 ◦H2) = k, there exist a container of length at

most k joining uiv1 and ujv1. Thus there exist a container of

width κ(H1) which is of length at most k joining ui and uj in G.

Hence, Dκ(H1)(H1) 6 Dκ(H1)×|V (H2)|(H1 ◦ H2).



Chapter 4

Component factors of the

product graphs

In this chapter we study the component factors of the prod-

uct graphs. We show that if G ∼= H1 ∗ H2 where ∗ ∈ {�,⊠, ◦}

and H1, H2 are connected graphs then G has a {K1,n, C4}-factor

where n 6 t and t is the maximum degree of an induced sub-

graph K1,t in H1 or H2. In this chapter, we denote K2 by K1,1

and P3 by K1,2 for uniformity in notations.

Some results of this chapter are included in the following paper.
1. Chithra M.R., A. Vijayakumar, Component factors of the Cartesian
product of graphs (Communicated).
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4.1 Component factors of the Carte-

sian product of graphs

Theorem 4.1.1. Let G ∼= H1�H2 be a connected graph where

|H1| = n1 and |H2| = n2. Then G has a C4-factor if and only if

G is any one of the following graphs where,

(I) H1 or H2 has a C4-factor.

(II) both H1 and H2 have no C4-factor and,

(a) both H1 and H2 are complete graphs with n1, n2 even and

n1, n2 6≡ 0 mod 4.

(b) H1 is a complete graph with n1 even and H2 is a not complete

graph with n2 even, has at least one vertex with at most one

pendant vertex attached to it and has a {K1,1}-factor.

(c) H1 and H2 are not complete graphs with n1, n2 even, both

have at least one vertex with at most one pendant vertex attached

to it and have a {K1,1}-factor.

Proof. Let G ∼= H1�H2 where |H1| = n1 and |H2| = n2.

(I) H1 or H2 has a C4-factor.

Suppose that H1 has a C4-factor.
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Consider the H1 - layer at v1 in G. Now, the vertices uiv1

where i ∈ {1, 2, 3, ..., n1} form a subgraph whose components are

C4, since H1 has a C4-factor. Similarly, the vertices uivp where

i ∈ {1, 2, 3, ..., n1} and p ∈ {2, 3, ..., n2} form a subgraph whose

components are C4. Hence, G has a C4-factor.

(II) Both H1 and H2 have no C4-factor.

(a) Suppose that both H1 and H2 are complete graphs with

n1, n2 even and n1, n2 6≡ 0 mod 4.

Since both H1 and H2 are complete graphs with n1,n2 even,

we can find a spanning subgraph of H1 and H2 whose compo-

nents are K1,1. Now, a K1,1 from H1 and a K1,1 from H2 form a

C4 in G. Thus, G has a spanning subgraph H whose components

are C4.

(b) Suppose that H1 is a complete graph with n1 even and

H2 is a not complete graph with n2 even, has vertices with at

most one pendant vertex attached to it and has a {K1,1}-factor

There is a spanning subgraph of H2 whose components are

K1,1. Also, H1 has a K1,1-factor. Hence, G has a C4-factor.
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(c) From II(b), it follows that G has a C4-factor.

Conversely suppose that G has a C4-factor. Let G ∼= H1�H2.

Suppose that both n1, n2 are odd. Then H1 and H2 cannot have

a spanning subgraph whose components are K1,1. Hence, G has

no C4-factor. Thus, at least one graph should be of even order.

(i) n1 even and n2 odd.

If H1 has no C4-factor, then G has no C4-factor, since n2 is

odd. Hence, H1 has a C4-factor. This proves (I).

Similar is the case when n1 is odd and n2 is even.

(iii) Both n1, n2 are even.

(a) G ∼= Kn1
�Kn2

.

Clearly G has a C4-factor. This proves II(a).

(b) G ∼= Kn1
�H2 where H2 is a not complete graph.

If H2 has a vertex vx with at least two pendant vertices vi, vj

attached to it, then in G 〈upvx, upvi, uqvi, uqvx〉 form a C4 and

〈upvj, uqvj〉 form an edge. Thus, G has no C4-factor. Hence, H2

is a not complete graph with n2 even and has vertices with at

most one pendant vertex attached to it.
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Now, we know that H1 has a spanning subgraph whose com-

ponents are K1,1. Hence, G has a C4-factor only if H2 has a

{K1,1}-factor This proves II(b).

(c) G ∼= H1�H2 where both H1 and H2 are not complete

graphs.

If H1 has a vertex up with at least two pendant vertices ua, ub

attached to it and H2 has a vertex vx with at least two pendant

vertices vi, vj attached to it, then in G 〈upvr, upvs, uavs, uavr〉

and 〈upvx, upvi, uqvi, uqvx〉 form C4s and 〈upvr, ubvr〉, 〈upvj, uqvj〉

form K1,1s. Thus, G has no C4-factor. Hence, both have at least

one vertex with at most one pendant vertex attached to it.

Now, G has a C4-factor only if both H1 and H2 has a {K1,1}-

factor.

This proves II(c).

Theorem 4.1.2. Let G ∼= Kn1
�Kn2

where n1, n2 > 2. Then G

has a {K1,2, C4}-factor.

Proof. We shall prove the theorem by considering the fol-
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lowing three cases.

(I) Both n1, n2 are even.

From Theorem 4.1.1, it follows that G has a C4-factor.

(II) Both n1, n2 are odd.

(a) Suppose that n1 ≡ 0 mod 3.

Since n1 ≡ 0 mod 3, we can find a spanning subgraph of Kn1

whose components are K1,2. Now, G has a spanning subgraph

H whose components are K1,2, since Kn1
has a K1,2-factor.

(b) Suppose that n1, n2 ≡ 1 mod 3.

Since n1 ≡ 1 mod 3, we can find a spanning subgraph of Kn1

whose components are K1,2 and K1,1 where u1, u2, ..., un1−4 are

the vertices in the components of K1,2 and un1−3, un1−2, un1−1, un1

are the vertices in the components of K1,1. Now, consider the

vertices u1vp, u2vp, ..., un1−4vp where p ∈ {1, 2, 3, ..., n2} in G,

they form a subgraph whose components are K1,2. The remain-

ing vertices of G, un1−3vp, un1−2vp, un1−1vp, un1
vp where

p ∈ {1, 2, 3, ..., n2 − 4} form a subgraph whose components are

K1,2 and 〈un1−3vn2−3, un1−3vn2−2, un1−2vn2−2, un1−2vn2−3〉,

〈un1−3vn2−1, un1−3vn2
, un1−2vn2

, un1−2vn2−1〉,
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〈un1−1vn2−3, un1−1vn2−2, un1
vn2−2, un1

vn2−3〉 and

〈un1−1vn2−1, un1−1vn2
, un1

vn2
, un1

vn2−1〉 form C4s.

(c) Suppose that n1, n2 ≡ 2 mod 3.

Since n1 ≡ 2 mod 3, we can find a spanning subgraph of Kn1

whose components are K1,2 and K1,1 where u1, u2, ..., un1−2 are

the vertices in the components of K1,2 and un1−1, un1
are the

vertices in the components of K1,1. Now, consider the vertices

u1vp, u2vp, ..., un1−2vp where p ∈ {1, 2, 3, ..., n2} in G, they form

a subgraph whose components are K1,2. The remaining vertices

of G, un1−1vp where p ∈ {1, 2, 3, ..., n2 − 2} and un1
vp where

p ∈ {1, 2, 3, ..., n2 − 2} form a subgraph whose components are

K1,2 and 〈un1−1vn2−1, un1−1vn2
, un1

vn2
, un1

vn2−1〉 form a C4.

(d) Suppose that n1 ≡ 2 mod 3 and n2 ≡ 1 mod 3.

Clearly Kn1
and Kn2

has a {K1,1, K1,2}-factor. Consider the

vertices u1vp, u2vp, ..., un1−2vp where p ∈ {1, 2, 3, ..., n2} in G,

they form a subgraph whose components are K1,2. The remain-

ing vertices of G, un1−1vp where p ∈ {1, 2, 3, ..., n2 − 4} and un1
vp

where p ∈ {1, 2, 3, ..., n2 − 4} form a subgraph whose compo-

nents are K1,2 and 〈un1−1vn2−3, un1−1vn2−2, un1
vn2−2, un1

vn2−3〉,
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〈un1−1vn2−1, un1−1vn2
, un1

vn2
, un1

vn2−1〉 form C4s.

(III) n1 odd and n2 even.

(a) Suppose that n1 ≡ 0 mod 3.

From II(a), it follows that G has a K1,2-factor.

(b) Suppose that n1 ≡ 1 mod 3.

Clearly Kn1
has a {K1,1, K1,2}-factor and Kn2

has a K1,1-

factor. Consider the vertices u1vp, u2vp, ..., un1−4vp where

p ∈ {1, 2, 3, ..., n2} in G, they form a subgraph whose compo-

nents are K1,2. Now, 〈un1−3vp, un1−2vp, un1−2vp+1, un1−3vp+1〉,

〈un1−1vp, un1
vp, un1

vp+1, un1−1vp+1〉 where p ∈ {1, 2, 3, ..., n2− 1}

form C4s.

(c) Suppose that n1 ≡ 2 mod 3.

Clearly Kn1
has a {K1,1, K1,2}-factor and Kn2

has a K1,1-

factor. Consider the vertices u1vp, u2vp, ..., un1−2vp where

p ∈ {1, 2, 3, ..., n2} in G, they form a subgraph whose compo-

nents are K1,2. Now, 〈un1−1vp, un1
vp, un1

vp+1, un1−1vp+1〉 where

p ∈ {1, 2, 3, ..., n2 − 1} form C4s.

Hence, G has a {K1,2, C4}-factor.
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Lemma 4.1.3. Let G ∼= Kn1
�H2 be a connected graph where

n1 > 2 and H2 is any not complete graph. Then G has a

{K1,2, C4}-factor if G is any one of the following graphs where,

(a) either Kn1
or H2 has a K1,2-factor or a C4- factor.

(b) both n1, n2 are even and H2 has at least one vertex with at

most one pendant vertex attached to it and has a {K1,1}-factor.

(c) n1 even, n2 odd and H2 has at least one vertex with at most

one pendant vertex attached to it and has a {K1,2, K1,1}-factor.

(d) n1 odd, n2 even and H2 has at least one vertex with at most

one pendant vertex attached to it and has a {K1,1}-factor.

Proof. (a) Suppose that Kn1
or H2 has a C4-factor, then

from Theorem 4.1.1 G has a C4-factor.

Suppose that Kn1
or H2 has a K1,2-factor, then clearly G has a

C4-factor.

Suppose that (b) holds, then from Theorem 4.1.1 G has a

C4-factor.

Suppose that (c) holds.

Clearly, H1 has a K1,1-factor. We can find a spanning sub-

graph of H2 whose components are K1,2 and K1,1 where v1, v2, ..., vp

are the vertices in the components of K1,2 and vp+1, vp+2, ..., vn2



130 Chapter 4. Component factors of the product graphs

are the vertices in the components of K1,1. Consider the vertices

uxv1, uxv2, ..., uxvp where x ∈ {1, 2, 3, ..., n1} in G, they form a

subgraph whose components are K1,2. Now,

〈uxvp+1, uxvp+2, ux+1vp+1, ux+1vp+2〉,...

〈uxvn2−1, uxvn2
, ux+1vn2−1, ux+1vn2

〉 where x ∈ {1, 2, ..., n1 − 1}

form C4s.

Suppose that (d) holds.

If n1 ≡ 0 mod 3, then Kn1
has a K1,2-factor and hence the

proof follows from Lemma 4.1.3(b).

If n1 ≡ 1 mod 3, then we can find a spanning subgraph of Kn1

whose components are K1,2 and K1,1 where u1, u2, ..., un1−4 are

the vertices in the components of K1,2 and un1−3, un1−2, un1−1, un1

are the vertices in the components of K1,1. Consider the vertices

u1vp, u2vp, ..., un1−4vp where p ∈ {1, 2, 3, ..., n2}, they form a sub-

graph whose components are K1,2. Now,

〈un1−3vy, un1−2vy, un1−2vy+1, un1−3vy+1〉,

〈un1−1vy, un1
vy, un1

vy+1, un1−1vy+1〉 where y ∈ {1, 2, ..., n2 − 1}

form C4s.

If n1 ≡ 2 mod 3, then we can find a spanning subgraph of
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Kn1
whose components are K1,2 and K1,1 where u1, u2, ..., un1−2

are the vertices in the components of K1,2 and un1−1, un1
are

the vertices in the components of K1,1. Consider the vertices

u1vp, u2vp, ..., un1−2vp where p ∈ {1, 2, 3, ..., n2}, they form a sub-

graph whose components are K1,2. Now,

〈un1−1vy, un1
vy, unvy+1, un1−1vy+1〉 where y ∈ {1, 2, ..., n2 − 1}

form C4s.

Hence, G has a {K1,2, C4}-factor.

Lemma 4.1.4. Let G ∼= Kn1
�H2 be a connected graph where

n1 > 2 and H2 is a not complete graph. Then G has a {K1,1, K1,2}-

factor if G is any one of the following graphs where,

(I) both n1, n2 are even and H2 has either no pendant vertex or

at least one vertex with at least one pendant vertex attached to

it.

(II) n1 even, n2 odd and H2 has either no pendant vertex or at

least one vertex with at least one pendant vertex attached to it.

(III) n1 odd, n2 even and H2 has either no pendant vertex or at

least one vertex with at least one pendant vertex attached to it.

(IV) both n1, n2 are odd.

Proof. If n1 ≡ 0 mod 3, then Kn1
has a K1,2-factor. If



132 Chapter 4. Component factors of the product graphs

n1 ≡ 1 mod 3 or n1 ≡ 2 mod 3, then Kn1
has a {K1,1, K1,2}-

factor. Hence, in all these cases G has a {K1,1, K1,2}-factor.

Theorem 4.1.5. Let G ∼= Kn1
�H2 be a connected graph where

H2 is a not complete graph. Then G has a {K1,1, K1,2, C4}-

factor.

Proof. Follows from Lemma 4.1.3 and Lemma 4.1.4.

Lemma 4.1.6. Let G ∼= H1�H2 be a connected graph where H1

and H2 are not complete graphs. Then G has a {K1,1, K1,2, C4}-

factor if G is any one of the following graphs where,

(I) either H1 or H2 has a a K1,1-factor or a K1,2-factor or a

C4-factor.

(II) H1 and H2 have no K1,2-factor and C4-factor and

(a) both n1, n2 are even and H1, H2 have at least one vertex

with at most one pendant vertex attached to it and have a K1,1-

factor.

(b) H1 has at least one vertex with at least two pendant vertices

attached to it and H2 has at least one vertex with at most one

pendant vertex attached to it with n2 even and has a K1,1-factor.

Proof. Suppose that (I) holds, then clearly G has a K1,2-
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factor or a C4-factor.

Suppose that II(a) holds, then from Theorem 4.1.1 G has a C4-

factor.

Suppose that II(b) holds.

Consider the vertices uis, ujs in H1 where i, j ∈ {1, 2, ..., n1}

and ujs are the pendant vertices in H1. We can find a spanning

subgraph of H1 whose components are K1,2, K1,1 and K1 where

uis are the vertices in the components of K1,2, K1,1 and ujs

are the vertices in the K1. Then in G, the vertices uivp where

p ∈ {1, 2, ..., n2} form a subgraph whose components are K1,2

and K1,1. Now, 〈ujvp, ujvp+1〉 where p ∈ {1, 2, ..., n2 − 1} form

K1,1s. Hence, G has a {K1,1, K1,2}-factor.

Lemma 4.1.7. Let G ∼= H1�H2 be a connected graph where

H1 and H2 are not complete graphs and have at least one vertex

with at least one pendant vertex attached to it. Then G has a

{K1,n}-factor where n 6 t and t is the maximum degree of an

induced subgraph K1,t in H1 or H2.

Proof. If H1 and H2 have at least one vertex with at least

one pendant vertices attached to it, then H1 has a {K1,p}-factor

and H2 has a {K1,q}-factor where p, q 6 t and t is the maximum
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degree of an induced sub graph K1,t in H1 or H2. Hence, G has

a {K1,n}-factor where n 6 t and t is the maximum degree of an

induced subgraph K1,t in H1 or H2.

Theorem 4.1.8. Let G ∼= H1�H2 be a connected graph where

H1 and H2 are not complete graphs. Then G has a {K1,n, C4}-

factor where n 6 t and t is the maximum degree of an induced

subgraph K1,t in H1 or H2.

Proof. Follows from Lemma 4.1.6 and Lemma 4.1.7.

Theorem 4.1.9. Let G ∼= H1 ∗H2 where ∗ ∈ {�,⊠, ◦} and H1,

H2 are connected graphs. Then G has a {K1,n, C4}-factor where

n 6 t and t is the maximum degree of an induced subgraph K1,t

in H1 or H2.

Proof. Follows from Theorem 4.1.2, 4.1.5, 4.1.8 and the fact

that the Cartesian product of two connected graphs is a span-

ning subgraph of the strong product and the lexicographic prod-

uct of graphs.
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4.2 Path factors of Hypercubes and

Hamming graphs

Theorem 4.2.1. The hypercube Qn has a {P4}-factor.

Proof. We prove the theorem by induction.

Let n = 2.

Then Q2 is C4 and it has a path of length four.

Let n = 3.

Then Q3 has a {P4}-factor as shown in Fig 4.1.

Fig 4.1: The graphs Q2, Q3 with a P4-factor.

Assume that for n = k, Qk has a {P4}-factor.

Next, we have to prove that Qk+1 has a {P4}-factor. We have

Qk+1
∼= Qk�K2. Now, in G the vertices u1v1, u1v2, ..., u1v2k form

P4s, since Qk has a {P4}-factor. Similarly, u2v1, u2v2, ..., u2v2k

form P4s. Hence, Qk+1 has a P4-factor.
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Theorem 4.2.2. A Hamming graph G ∼= Kn1
�Kn2

�Kn3
� ... �Knk

has a {P3, P4}-factor.

Proof. Let G ∼= Kn1
�Kn2

�Kn3
� ... �Knk

.

Suppose that there exist one ni such that ni 6 nj and i > 3.

We know that the Cartesian product is associative. Hence, we

consider G as G ∼= (Kn1
�Kn2

�Kn3
... �Knk

)�Kni
. Let

H ∼= (Kn1
�Kn2

�Kn3
� ... �Knk

). Thus G ∼= H�Kni
. Let uj

and vp where j ∈ {1, 2, 3, ..., |H|} and p ∈ {1, 2, 3, ..., ni} be the

vertices of H and Kni
respectively.

If ni ≡ 0 mod 3, then Kn1
has a P3-factor. Consider ujvp-

ujvq where j ∈ {1, 2, 3, ..., |H|} and p, q ∈ {1, 2, 3, ..., ni} in G.

Since ni ≡ 0 mod 3, Kn1
has a P3-factor and hence G has a

P3-factor.

If ni ≡ 1 mod 3, then we can find a spanning subgraph of

Kni
whose components are P3 and P4 where v1, v2, ..., vni−4 are

the vertices in the components of P3 and vni−3, vni−2, vni−1, vni

are the vertices in the components of P4. Now, in G the vertices

u1vp, u2vp, ..., uni−4vp where p ∈ {1, 2, 3, ..., |H|} form a subgraph

whose components are P3. The 〈ujvni−3, ujvni−2, ujvni−1, ujvni
〉
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where j ∈ {1, 2, ... , |H|} form P4s. Thus, G has a {P3, P4}-

factor.

If ni ≡ 2 mod 3, then we can find a spanning subgraph of Kni

whose components are P3 and P4 where v1, v2, ..., vni−8 are the

vertices in the components of P3 and vni−7, vni−6, ..., vni−1, vni

are the vertices in the components of P4. Now, in G the vertices

ujv1, ujv2, ..., ujvni−8 where j ∈ {1, 2, 3, ..., |H|} form a subgraph

whose components are P3. The 〈ujvni−7, ujvni−6, ujvni−5, ujvni−4〉

and 〈ujvni−3, ujvni−2, ujvni−1, ujvni
〉 where j ∈ {1, 2, 3, ..., |H|}

form P4s. Thus, G has a {P3, P4}-factor.
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Chapter 5

Domination criticality in

the Cartesian product of

graphs

A connected dominating set is an important notion and has

many applications in routing and management of networks. In

this chapter we study the Cartesian product of graphs G with

connected domination number, γc(G) = 2, 3 and characterize

such graphs. Also, we characterize the k - γ - vertex (edge)

critical graphs and k - γc - vertex (edge) critical graphs for

k = 2, 3 where γ denotes the domination number of G. We also

Some results of this chapter are included in the following paper.
1. Chithra M.R., A. Vijayakumar, Domination criticality in product graphs
(communicated).
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graphs

discuss the vertex criticality in grids.

5.1 Domination critical graphs

Theorem 5.1.1. Let G ∼= H1�H2 be a connected graph. Then

γ(G) = 2 if and only if H1 = K2 and H2 is either a C4 or has

a universal vertex.

Consider G ∼= K2�C4, then a minimum dominating set of G

is

D = {u1v1, u2v3}. If G ∼= K2�H2, where H2 has a universal ver-

tex vi, then a minimum dominating set of G is D = {u1vi, u2vi}.

Hence, γ(G) = 2 in both the cases.

Conversely suppose that γ(G) = 2.

Suppose that both H1 and H2 are not complete graphs.

Then, γ(G) > min{|H1| , |H2|} > 3.

Hence, at least one graph (say) H1 should be complete.

Let G ∼= Kn1
�H2.

Suppose that H1 is a complete graph of order at least three. If H2

has a universal vertex, then a minimum dominating set of G con-
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tains vertices from each layer of G and 3 6 γ(G) 6 min{n1, n2}.

If H2 does not has a universal vertex, then γ(H2) > 2 and a min-

imum dominating set of G contains vertices from each layer of G

and 3 6 γ(G) 6 n1. Thus, in both the cases γ(G) > 3. Hence,

n1 = 2. Thus, G ∼= K2�H2.

Let n2 > 2.

Then γ(G) 6 min{2γ(H2), n2γ(K2)} = min{2γ(H2), n2} (1).

From (1) we have γ(G) = 2 only when H2 has a universal vertex,

since n2 > 2.

Next, we consider the case when γ(H2) > 2.

Let n2 > 5.

Suppose that H2 contains a vertex vi of degree (n2 − 2) and

vi is not adjacent to vj, then γ(H2) = 2. Now, a minimum

dominating set of G is D = {u1vi, u2vi, u1vj} and γ(G) = 3.

Suppose that H2 contains a vertex of degree at most (n2 − 3),

then γ(H2) = 2. Let vp be a vertex of degree (n2 − 3) and is not

adjacent to vq and vr in H2. Then, in G the vertices u1vi and

u2vi dominate 2n2 − 4 vertices and the remaining four vertices

u1vq, u1vr, u2vq and u2vr cannot be dominated by a single vertex.

Hence, in these cases γ(G) > 3. Thus, n2 6 4.
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Now, by an exhaustive verification of all graphs with n2 6 4

it follows that G ∼= K2�C4.

Illustration of Theorem 5.1.1

Fig 5.1: (i) G = K2�C4, γ(G) = 2 (ii) G = K2�K1,4, γ(G) = 2.

Corollary 5.1.2. Let G ∼= H1�H2 be a connected graph. Then

G is 2 - γ - vertex critical if and only if G = C4.

Proof. In Theorem 5.1.1 we have characterized the Cartesian

product of graphs with γ(G) = 2. Hence, we need to prove the

theorem only for such Gs.

First, note that G ∼= K2�C4 is not 2 - γ - vertex critical.

Now, consider G ∼= K2�Kn2
, where n2 > 3. Then, a min-

imum dominating set D = {u1vx, u2vx} of G contains a ver-

tex from each layer of Kn2
. Now, let a vertex uivp where p ∈

{1, 2, ..., n2}, be deleted. If p = x, then we can find another
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minimum dominating set D = {u1vy, u2vy}. If p 6= x, then the

minimum dominating set D = {u1vx, u2vx} of G remains the

same. Thus, in both the cases γ(G− v) = γ(G) =2 ∀v ∈ V (G).

Hence, H2 = K2.

Consider G ∼= K2�H2 where H2 is a not complete graph

with a universal vertex vp. Then, a minimum dominating set

D = {u1vp, u2vp} of G contains a vertex from each layer of H2.

Now, let a vertex u1vq where q ∈ {1, 2, ..., n2}, be deleted. If

p 6= q, then the minimum dominating set D = {u1vx, u2vx} of G

remains the same. If p = q, then in G the vertex u2vq dominate

the n2 vertices u2vi and the remaining n2 vertices cannot be

dominated by a single vertex, since we have deleted the universal

vertex from the layer of H2. Hence, γ(G) > 3. Thus, G ∼=

K2�H2 is not 2 - γ - vertex critical.

Corollary 5.1.3. Let G ∼= H1�H2 be a connected graph. Then

G is 2 - γ - edge critical if and only if G = C4.

Proof. In Theorem 5.1.1 we have characterized the Cartesian

product of graphs with γ(G) = 2. Hence, we need to prove the

theorem only for such Gs.
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First, note that G ∼= K2�C4 is not 2 - γ - edge critical.

Consider G ∼= K2�H2, where H2 is a not complete graph

with a universal vertex or a complete graph with n2 > 3. Let an

edge u1vp−u2vi where i ∈ {1, 2, 3, ... , n2}, be added. Then, the

addition of an edge does not make either G a complete graph or

a graph with a universal vertex. Thus, γ(G) remains the same.

Hence, H2 = K2.

Corollary 5.1.4. Let G ∼= H1�H2 be a connected graph. Then

γc(G) = γ(G) = 2 if and only if H1 = K2 and H2 has a universal

vertex.

Proof. It suffices to show that the dominating set of G in

Theorem 5.1.1 is connected.

Consider G ∼= K2�C4. Then a minimum dominating set of

G is D = {u1v1, u2v3} and γ(G) = 2. From Fig 5.1, it is clear

that, < D > is disconnected.

Consider G ∼= K2�H2 where H2 is a complete graph or a not

complete graph with a universal vertex vp.

Then a minimum dominating set of G is D = {u1vp, u2vp} and

< D > is connected. Hence, γc(G) = γ(G) = 2.
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Corollary 5.1.5. Let G ∼= H1�H2 be a connected graph. Then

G is 2 - γc - vertex critical if and only if G = C4.

Corollary 5.1.6. Let G ∼= H1�H2 be a connected graph. Then

G is 2 - γc - edge critical if and only if G = C4.

Theorem 5.1.7. Let G ∼= H1�H2 be a connected graph. Then

γ(G) = 3 if and only if G is the Cartesian product of any one

of the following graphs where,

(a) H1 = K3 or P3 and H2 has a universal vertex.

(b) H1 = K2 and H2 has a vertex of degree n2 − 2.

(c) H1 = K2 and H2 has a vertex vr of degree n2−3 and is not ad-

jacent to the vertices vp and vq with N [vp]∪N [vq]∪{vr} = V (H2).

(d) H1 = K3 or P3 and H2 = C4.

Proof. Let G ∼= H1�H2 where H1 is a K3 or P3 and H2 has

a universal vertex vi. Then, a minimum dominating set of G is

D = {u1vi, u2vi, u3vi} and γ(G) = 3.

If G ∼= K2�H2 where H2 has a vertex vj of degree n2 − 2 and vj

is not adjacent to vp in H2, then a minimum dominating set of

G is D = {u1vj, u2vj, u1vp} and γ(G) = 3.

Further if G ∼= K2�H2 where H2 has a vertex vr of degree
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n2 − 3 and is not adjacent to the vertices vp and vq with N [vp]∪

N [vq] ∪ {vr} = V (H2), then a minimum dominating set of G is

D = {u1vr, u2vp, u2vq} and γ(G) = 3.

Now, G ∼= H1�C4 where H1 is a K3 or P3, then a minimum

dominating set of G is D = {u1v1, u2v3, u3v1} and γ(G) = 3.

Conversely suppose that γ(G) = 3.

(I) Suppose that both H1 and H2 are complete graphs, where

n1, n2 > 4.

Then γ(G) > min{4, 4} = 4. Thus, at least one graph (say)

H1 has order n1 6 3. But γ(G) = 3 only when H1 is a K3.

Hence, G ∼= K3�Kn2
where n2 > 3.

(II) Suppose that H1 is a complete graph and H2 is not a

complete graph.

If n1, n2 > 4, then γ(G) > 4. Thus, to prove the theorem

we have to consider the following cases.

(1) Let n1 = 2 and n2 = 3, then γ(G) = 2.

(2) Let n1 = 2 and n2 > 4.
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Consider G ∼= K2�H2. From (1) we have γ(G) 6 min{2γ(H2), n2}.

Thus it is clear that we do not have to consider the case when

γ(H2) = 1, since γ(G) = 3. Hence, γ(H2) > 2.

If γ(H2) > 3, then γ(G) > 4. Hence, we need consider only

the case when γ(H2) = 2.

Now, suppose that H2 is not a complete graph with γ(H2) = 2.

Suppose that a minimum dominating set of H2 is D = {vp, vq}.

Let a minimum dominating set of G be D = {u1vp, u1vq, u2vp}.

The vertices u1vp and u1vq dominate n2 + 2 vertices in G. Now,

the remaining 2n2− (n2 +2) = n2−2 vertices will be dominated

by a single vertex u2vp, only if deg(vp) = n2 − 2. Hence, H2 has

a vertex of degree n2 − 2. This, proves (b).

Let a minimum dominating set of G contain a vertex u1vr

where vr is not a neighbour of vp and vq in H2. The vertex

u1vr dominate the n2 − 1 vertices u1vx and u2vr, where x 6= r ∈

{1, 2, ..., n2} in G. If the dominating set contain the vertex u2vr,

then the vertices u1vr and u2vr dominate 2n2 − 4 vertices in G.

The remaining four vertices u1vq, u1vq, u2vp and u2vq cannot

be dominated by a single vertex and hence γ(G) > 3. Thus,



148
Chapter 5. Domination criticality in the Cartesian product of

graphs

the dominating set does not contain the vertex u2vr. Since, a

minimum dominating set of G contain the vertex u1vr and vr

is not a neighbour of vp and vq in H2, the dominating set of G

should contain the vertices u2vp and u2vq. Now, the remaining

2n2−(n2−1) = n2+1 vertices will be dominated by the vertices

u2vp and u2vq, only if N [vp]∪N [vq] = V (H2)−vr. Hence, H2 has

a vertex vr of degree n2 − 3 and is not adjacent to the vertices

vp and vq with N [vp] ∪ N [vq] ∪ {vr} = V (H2). This, proves (c).

(3) By an exhaustive verification of all graphs with n2 = 4 it

follows that G ∼= K3�C4.

(4) Let n1 = 3 and n2 > 4.

Consider G ∼= K3�H2. Let γ(H2) > 2, then γ(G) > 4.

Thus, H2 has a universal vertex.

(5) Let n2 = 3 and n1 > 3.

Consider G ∼= Kn1
�P3, then a minimum dominating set of

G is

D = {u1v1, u1v2, u1v3}. The vertex u1v1 dominate the vertices

uiv1 where i ∈ {1, 2, ... , n1}, since H1 is a complete graph.

Similarly, the vertices u1v2 and u1v3 dominate the remaining
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vertices in G. Thus, γ(G) = 3.

(III) Suppose that both H1 and H2 are not complete graphs.

If n1, n2 > 4, then γ(G) > 4. Hence, n1 = 3 and n2 > 4.

If γ(H2) > 3, clearly γ(G) > 4. Hence, the domination number

of H2 is at most 2.

We know that γ(G) 6 min{3γ(H2), n2}.

If γ(H2) = 1 where vi is a universal vertex in H2, then γ(G) = 3.

Hence, G ∼= P3�H2 where H2 has a universal vertex.

Now, suppose that γ(H2) = 2 and n2 > 6, then by a similar

argument of II(2) it follows that γ(G) > 4. Hence, n2 6 5.

By an exhaustive verification of all graphs with n2 = 3, 4, 5 it

follows that G ∼= P3�C4.

Illustration of Theorem 5.1.7.

Fig 5.2: (a) G = P3�K1,3, γ(G) = 3.
(b) G = K2�C4, γ(G) = 3.
(c) G = K2�K3,3, γ(G) = 3.
(d) G = P3�C4, γ(G) = 3.



150
Chapter 5. Domination criticality in the Cartesian product of

graphs

Corollary 5.1.8. Let G ∼= H1�H2 be a connected graph. Then

G is a 3 - γ - vertex critical graph if and only if H1 = H2 = K3.

Proof. It suffices to prove that γ(G − v) < γ(G) ∀v ∈ G of

Theorem 5.1.7.

Consider G ∼= K3�Kn2
where n2 > 4. Then, a minimum

dominating set D = {u1vx, u2vx, u3vx} of G contains a vertex

from each layer of Kn2
. Now, let a vertex uivp where p ∈

{1, 2, ..., n2}, be deleted. If p = x, then we can find another

minimum dominating set D = {u1vy, u2vy, u3vy}. If p 6= x,

then the minimum dominating set D = {u1vx, u2vx, u3vx} of G

remains the same. Thus, in both cases γ(G − v) = γ(G) =3

∀v ∈ V (G). Hence, H2 = K3.

Consider G ∼= K3�H2 or G ∼= P3�H2 where H2 has a uni-

versal vertex vi. Then, a minimum dominating set

D = {u1vi, u2vi, u3vi} of G contains a vertex from each layer of

H2. Now, let a vertex u1vq where q ∈ {1, 2, ..., n2}, be deleted. If

i 6= q then, the minimum dominating set D = {u1vi, u2vi, u3vi}

of G remains the same. If p = i, then in G, the vertices u2vi and

u3vi dominate the 2n2 vertices and the remaining n2 vertices
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u1vx, where q ∈ {1, 2, ..., n2} cannot be dominated by a single

vertex, since we have deleted the universal vertex from the layer

of H2. Hence, γ(G) > 3. Thus γ(G − v) > γ(G) ∀v ∈ V (G).

Hence, G ∼= K3�H2 or G ∼= P3�H2 is not 3 - γ - vertex critical.

Consider G ∼= K2�H2 where H2 has a vertex vi of degree

(n2 − 2) and is not adjacent to the vertex vj. Then, a minimum

dominating set of G is D = {u1vi, u2vi, u1vj} and γ(G) = 3.

Now, let a vertex u1vq where q ∈ {1, 2, ..., n2}, be deleted. If i 6=

q, then the minimum dominating set D = {u1vi, u2vi, u1vj} of G

remains the same. If q = i, then in G, the vertices u2vi and u1vj

dominate the n2 + 1 vertices and the remaining n2 − 1 vertices

u1vx cannot be dominated by a single vertex, since we have

deleted the vertex u1vi from the layer of H2. Hence, γ(G) > 3

and G ∼= K2�H2, where H2 has a vertex vi of degree (n2 − 2),

is not 3 - γ - vertex critical.

Consider G ∼= K2�H2, where H2 has a vertex vp of degree at

most (n2−3) and vp is not adjacent to vq and vr. Then then by a

similar argument, as in the above case, it follows that γ(G) > 3.

Hence, G ∼= K2�H2, where H2 has a vertex of degree at most

(n2 − 3), is not 3 - γ - vertex critical.
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Consider G ∼= K3�C4, G ∼= P3�C4 and G ∼= K2�C5. In all

these cases G is not 3 - γ - vertex critical.

Corollary 5.1.9. Let G ∼= H1�H2 be a connected graph. Then

G is a 3 - γ - edge critical graph if and only if H1 = H2 = K3.

Proof. It suffices to prove that γ(G + e) = 2 ∀e /∈ G of

Theorem 5.1.7.

Consider G ∼= K3�H2 or G ∼= P3�H2, where H2 has a uni-

versal vertex v1 and n2 > 4. Then, a minimum dominating set

of G is D = {u1v1, u2v1, u3v1}. In G, the vertex u1v1 dominate

the n2 vertices u1vi, where i ∈ {1, 2, 3, ... , n2} and u2v1 dom-

inate the n2 vertices u2vi, where i ∈ {1, 2, 3, ... , n2}. Let an

edge u1v1 − u2vp, be added. Then, in G the vertex u1v1 dom-

inate the n2 + 1 vertices u1vi, u2vp, where i ∈ {1, 2, 3, ... , n2}

and u2v1 dominate the n2 − 1 vertices u2vi, where i 6= p ∈

{1, 2, 3, ... , n2} and u3v1 dominate the n2 vertices u3vi, where

i ∈ {1, 2, 3, ... , n2}. Hence,the minimum dominating set D =

{u1v1, u2v1, u3v1} of G remains the same. Thus, n2 = 3. By an

exhaustive verification of all such graphs, it follows G is a 3 - γ

- edge critical graph if and only if H1 = H2 = K3.
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Consider G ∼= K2�H2, where H2 has a vertex vi of degree

n2−2 and vi is not adjacent to vj. Then, a minimum dominating

set of G is D = {u1vi, u2vi, u1vj}. In G, the vertex u1vi dom-

inate the n2 − 1 vertices u1vp, where p 6= j ∈ {1, 2, 3, ... , n2}

and u2vi dominate the n2 − 1 vertices u2vp, where p 6= j ∈

{1, 2, 3, ... , n2}. Let an edge u1vi − u2vj, be added. Then, in

G the vertex u1vi dominate the n2 vertices u1vp, u2vj, where

p 6= j ∈ {1, 2, 3, ... , n2} and u2v1 dominate the n2 − 1 ver-

tices u2vp, where p 6= j ∈ {1, 2, 3, ... , n2} and the remaining

one vertex u1vj is not dominated by the vertices u1vi and u2vi.

Hence, the minimum dominating set D = {u1vi, u2vi, u1vj} of G

remains the same. Thus, G ∼= K2�H2, where H2 has a vertex

vi of degree n2 − 2, is not 3 - γ - edge critical.

Consider G ∼= K2�H2, where H2 has a vertex vp of degree

at most (n2 − 3) and vp is not adjacent to vq and vr. Then, by a

similar argument, as in the above case, it follows that γ(G) = 3.

Hence, G ∼= K2�H2 where H2 has a vertex of degree at most

(n2 − 3), is not 3 - γ - edge critical.

In all other cases, G is not 3 - γ - edge critical.

Corollary 5.1.10. Let G ∼= H1�H2 be a connected graph. Then
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γc(G) = γ(G) = 3 if and only if H1 = K3 or P3 and H2 has a

universal vertex.

Proof. It suffices to prove that the dominating set of G in

Theorem 5.1.7 is connected.

Consider G ∼= K3�H2 or G ∼= P3�H2, where H2 has a uni-

versal vertex vi.

Then, a minimum dominating set of G is D = {u1vi, u2vi, u3vi}

and γ(G) = 3. Also, < D > is connected. Hence, γc(G) = 3.

Consider G ∼= K2�H2, where H2 has a vertex vj of degree

(n2 − 2) and vj is not adjacent to vx.

Then, a minimum dominating set of G is D = {u1vj, u2vj, u1vx}

and γ(G) = 3. Also, < D > is disconnected, since vj is not

adjacent to vx in H2. Hence, γc(G) > 4.

Consider G ∼= K2�H2, where H2 has a vertex vp of degree

(n2 − 3) and vp is not adjacent to vq and vr with N [vp]∪N [vq]∪

{vr} = V (H2).

Then, a minimum dominating set of G is D = {u1vp, u2vq, u2vr}

and γ(G) = 3. Also, < D > is disconnected, since vp is not

adjacent to vq and vr in H2. Hence, γc(G) > 4.
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In all other cases, γ(G) = 3 and < D > is disconnected.

Hence, γc(G) > 4.

Corollary 5.1.11. Let G ∼= H1�H2 be a connected graph. Then

G is a 3 - γc - vertex critical graph if and only if H1 = H2 =

K3.

Corollary 5.1.12. Let G ∼= H1�H2 be a connected graph. Then

G is a 3 - γc - edge critical graph if and only if H1 = H2 = K3.

5.2 Vertex criticality in grids

Theorem 5.2.1. Let G ∼= Pn1
�Pn2

. Then G is vertex critical

if and only if G ∼= P2�P2.

Proof. It suffices to prove the converse.

Let G ∼= Pn1
�Pn2

, where n1, n2 > 3.

Let uivj ∈ D, where i 6= 1, n1. Since, each vertex in D will

dominate at most five vertices, it will dominate two vertices

from the Pn2
- layer at ui and two vertices each from the

Pn2
- layer at ui−1 and Pn2

- layer at ui+1, where ui−1, ui+1 are

the neighbours of ui in Pn1
. Let a vertex uivj−1, be deleted.
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Then, the minimum dominating set D of G remains the same.

Hence, G is not a vertex critical graph. Thus, n1 = n2 = 2.

Theorem 5.2.2. Let G ∼= Pn1
�Pn2

. If n1, n2 > 4, then a min-

imal dominating set of G is disconnected.

Proof. Let uivj ∈ D. Since, the maximum degree of a vertex

in G is four, each vertex in D will dominate at most five vertices,

it will dominate two vertices from the Pn2
- layer at ui and two

vertices each from the Pn2
- layer at ui−1 and Pn2

- layer at ui+1,

where ui−1, ui+1 are the neighbours of ui in Pn1
.

Now, suppose that the vertex upvj+1 ∈ D. If p 6= i, then

< D > is disconnected. If p = i, then D should contain a

vertex either from ui−1vx −ui−1vy or from ui+1vx −ui+1vy, since

n1, n2 > 4. Then, < D > is disconnected.

Corollary 5.2.3. Let G ∼= Pn1
�Pn2

. Then γc(G) = γ(G) if and

only if G is any one of the following graphs where,

(a) G ∼= P2�P2.

(b) G ∼= P2�P3.

(c) G ∼= P3�P3.

(d) G ∼= P3�P4.



Concluding Remarks

In this thesis we have discussed mainly two metric related no-

tions - the diameter variability and the diameter vulnerability,

in graph products. Also studied are the notions of the compo-

nent factors and the domination criticality. This study is quite

far from being complete. We list below some problem which we

found are interesting, but could not be attempted for various

reasons.

1. Obtain an upper bound for Dk(G ∗ H) and D−k(G ∗ H)

where ∗ ∈ {�,⊠, ◦}.

2. Characterize the graphs with f ′(G ∗ H) = diam(G) + 1,

where ∗ ∈ {⊠, ◦}.

3. Characterize the graphs with f ′(G) = f(G).
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4. Study some other component factors of the graph products

5. Characterize the graphs with γ(G ∗ H) = 2, 3 where

∗ ∈ {⊠, ◦}.

6. Characterize the graphs with γc(G ∗ H) = 2, 3 where

∗ ∈ {⊠, ◦}.



List of symbols

Cn - Cycle of length n

Pn - Path of length n − 1

Kn - Complete graph on n vertices

K1,n - Star graph of size n

deg(v) - Degree of v

∆(G) - Maximum degree of vertices in G

δ(G) - Minimum degree of vertices in G

diam(G) - Diameter of G

d(u, v) - Distance between u and v in G

Gc - Complement of G

V (G) - Vertex set of G

|V (G)| - Number of vertices of G

E(G) - Edge set of G

|E(G)| - Number of edges of G

< V > - Graph induced by V

⌈x⌉ - Smallest integer > x

⌊x⌋ - Greatest integer 6 x
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160 List of symbols

κ(G) - Vertex connectivity of G

κ′(G) - Edge connectivity of G

G ∼= H - G is isomorphic to H

G�H - Cartesian product of G and H

G ⊠ H - Strong product of G and H

G ◦ H - Lexicographic product of G and H

D−k(G), Dk(G), D0(G) - Diameter variability of G

Qn - Hypercube on n vertices

Kn1
�Kn2

� ... �Knk
- Hamming graph

f(G) - Fault diameter of G

f ′(G) - Diameter vulnerability of G

Cw(u, v) - w-container between u and v

Dw(G) - w- wide diameter of G

γ(G) - Domination number

γc(G) - Connected domination number
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