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Abstract 

Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging 

technique in which stacks of images are acquired with different tissue 

contrasts. Simultaneous observation and quantitative analysis of normal brain 

tissues and small abnormalities from these large numbers of different 

sequences is a great challenge in clinical applications. Multispectral MRI 

analysis can simplify the job considerably by combining unlimited number of 

available co-registered sequences in a single suite. However, poor 

performance of the multispectral system with conventional image 

classification and segmentation methods makes it inappropriate for clinical 

analysis. Recent works in multispectral brain MRI analysis attempted to 

resolve this issue by improved feature extraction approaches, such as 

transform based methods, fuzzy approaches, algebraic techniques and so 

forth. Transform based feature extraction methods like Independent 

Component Analysis (ICA) and its extensions have been effectively used in 

recent studies to improve the performance of multispectral brain MRI 

analysis. However, these global transforms were found to be inefficient and 

inconsistent in identifying less frequently occurred features like small lesions, 

from large amount of MR data.  

The present thesis focuses on the improvement in ICA based feature 

extraction techniques to enhance the performance of multispectral brain MRI 

analysis. Methods using spectral clustering and wavelet transforms are 

proposed to resolve the inefficiency of ICA in identifying small 

abnormalities, and problems due to ICA over-completeness. Effectiveness of 

the new methods in brain tissue classification and segmentation is confirmed 

by a detailed quantitative and qualitative analysis with synthetic and clinical, 

normal and abnormal, data. In comparison to conventional classification 

techniques, proposed algorithms provide better performance in classification 

of normal brain tissues and significant small abnormalities. 
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Chapter -1 

INTRODUCTION 
 

Magnetic Resonance Imaging (MRI) is an image acquisition technique in 

radiology to visualize the structure and function of the body. Unlike 

Computed Tomography (CT) scanning, MRI uses no ionizing radiation, and 

is generally a very safe procedure. This multi- sequence digital imaging 

technique acquires stack of images with different tissue contrasts, for 

example T1-Weighted (T1W), T2-Weighted (T2W), Proton Density (PD) 

and so forth [1]. Each sequence highlights specific properties of tissues and 

pathologies, which is useful in diagnosis of neurological (brain), 

musculoskeletal, cardiovascular, and oncological (cancer) diseases [2, 3]. 

However, simultaneous observation and quantitative analysis of small details 

and abnormalities from these large numbers of different sequences is a great 

challenge in clinical applications. Multispectral MRI analysis [1, 4] can 

simplify the job considerably by combining unlimited number of available 

co-registered sequences in a single suite. However, conventional algorithms 

used in normal data mining process are not efficient and robust to provide the 

required clinical accuracy in brain tissue classification. Recent multispectral 

brain MRI analysis attempted to resolve this issue by improved feature 

extraction with transform based methods [5], fuzzy approaches [6], algebraic 

techniques and so forth [7, 8]. 

This dissertation describes the effectiveness of transform based feature 

extraction techniques, Independent Component Analysis (ICA) and 

multisignal wavelet analysis, in multispectral classification of Magnetic 

Resonance (MR) brain images. This chapter gives an introduction of the 
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nature and significance of the problem domain, and outlines the motivations 

and contributions. 

1.1 Multispectral analysis of brain MRI 

1.1.1 Magnetic Resonance Imaging (MRI) 

In MRI, the principles of Nuclear Magnetic Resonance (NMR) are used to 

obtain the microscopic, chemical and physical information about molecules 

[2]. Nobel Laureate Professor Sir Peter Mansfield from University of 

Nottingham and Nobel Laureate Professor Paul Christian Lauterbur from the 

University of Illinois made NMR capable of producing images of biological 

body, and in 1973, they demonstrated MRI using the back projection ideas 

introduced in CT [9]. The basic mechanism behind MR scanner is the 

approach of aligning magnetization vectors of hydrogen atoms by application 

of an external magnetic field, as shown in Fig. 1.1 [10]. An MR scanner 

contains strong magnets, arranged in the circular part of the scanner.  The 

patient lies flat in the scanner bed and desired part of their body is examined 

by sliding them into the scanner. Most of the human body is made up of 

water molecules, which consist of hydrogen and oxygen atoms. A smaller 

particle, called proton, exists at the centre of each hydrogen atom. They are 

very sensitive to magnetic fields, and the magnetic moments of the individual 

hydrogen nuclei are oriented in random directions. When these nuclei are 

caught suddenly in a strong magnetic field, they lines up in the direction of 

the applied magnetic field like so many compass needles aligning with the 

earth's magnetic field.  Short bursts of radio waves, RF pulses, are sent to 

certain areas of the body and the protons are pulled out of position. As this 

happens, each proton transmits a radio signal that provides information about 

its exact location in the body. 
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The radio signals from millions of protons can be collected together and 

combined to generate a detailed image of different body parts, with the help 

of a concept, K-Space [11]. K-Space is a matrix of voxels that stores the raw 

imaging data from the MR imaging system [12]. 

 

 
Fig. 1.1 MRI acquisition 

 

 
Fig. 1.2 K-space [13] 

Usually, the horizontal axis (x-axis) of the matrix corresponds to the 

frequency, and the vertical axis (y-axis) corresponds to the phase as given in 
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Fig. 1.2 [13]. Axes of frequency and phase can be easily interchanged also. 

i.e, K-space data contains all imaging information in its amplitude and phase. 

Contrast information (low spatial frequency information) is contained in the 

central part of k-space, whereas details and fine structures (high frequency 

information) are contained in the periphery of k-space. The raw imaging data 

in k-space must be Fourier transformed to obtain the final image [13].  

The basic idea of utilizing the water molecule in imaging makes MRI most 

desirable in disease detection, since majority of the diseases manifest 

themselves by an increase in water content. However, a contrast based 

assessment of pathology is sometimes difficult; for example, infection and 

tumor looks similar in some cases. The correct diagnosis can only be done by 

a careful image analysis results from an experienced radiologist. 

1.1.2 Characteristics of brain MRI data 

In MR image acquisition, the relaxation process in resonance is controlled by 

the tissue dependent parameters T1 and T2. They provide means of 

differentiating among different tissues. T2 is the time constant, characterizing 

the rate at which excited nuclei exchange energy, or lose phase coherence 

with each other. It is referred to as the spin-spin (or transverse) relaxation 

time because it is the loss of transverse magnetization that determines the T2 

relaxation time [14]. T1 is the time constant characterizing the rate at which 

excited nuclei dissipate excess energy to the environment (lattice). It is 

referred to as the spin-lattice relaxation time (or longitudinal relaxation time). 

1.1.2.1 Repetition Time and Echo Time 

Repetition Time (TR) is the time (in milliseconds) between the application of 

an RF excitation pulse and the start of the next RF pulse [15, 16]. TE (also 

measured in milliseconds) is the time between the application of the RF pulse 

and the peak of the echo detected [15, 16]. Both parameters affect contrast on 
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MR images because they provide varying levels of sensitivity to differences 

in relaxation time between various tissues. At short TRs, the difference in 

relaxation time between fat and water can be detected (longitudinal 

magnetization recovers more quickly in fat than in water). However, it is not 

possible for long TRs. At short TEs, differences in the T2 signal decay in fat 

and water cannot be detected; but at long TEs, they can be detected. 

Therefore, TE relates to T2 and affects contrast on T2-weighted images. 

1.1.2.2 Tissue contrast 

Tissue contrast in all MR images are affected by each of the parameters, T1, 

T2, PD etc. to some degree. Also, TR and TE can be adjusted to emphasize a 

particular type of contrast. In T1-weighted MR imaging (Fig. 1.3), while the 

images show all types of contrast, T1 contrast is made more prominent.  

T1W images best describe the anatomy, and, if contrast material is used, they 

also may show pathologic entities; however, T2W images (Fig. 1.3) provide 

the best details of disease, because most tissues that are involved in a 

pathologic process have a higher water content than is normal, and the fluid 

causes the affected areas to appear bright on T2W images [15]. PD images 

(Fig. 1.3) usually show both the anatomy and the disease entity.  

Latest MR scans often consist of another variation, known as Fluid-

Attenuated Inversion Recovery (FLAIR) (Fig. 1.3). It is a heavily T2W 

imaging technique that suppresses the ventricular CerebroSpinal Fluid (CSF) 

signal. The strongest signals are usually collected from certain brain 

abnormalities. Therefore, CSF and abnormalities appear black and bright, 

respectively. Although FLAIR is similar to T2W imaging, it allows better 

abnormality visualization since signal of free water is suppressed [17].  
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Fig. 1.3 MRI modalities [18] 

These MRI modalities are often combined together to facilitate a more 

accurate analysis, referred to as multi-spectral image analysis [3, 7], where 

more than one measurement is made at each location in the image [19]. 

Techniques in multi-spectral MRI offer medical practitioners more 

information to characterize and discriminate various tissues based on 

physical and biochemical properties [4, 7]. 

In this thesis work, we considered both synthetic and clinical data for 

multispectral analysis. Synthetic MR images contains normal and abnormal 
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(multiple sclerosis) data obtained from BrainWeb[20], the Simulated Brain 

Database at the McConnell Brain Imaging Centre of the Montreal 

Neurological Institute (MNI), McGill University. Axial T1-Weighted Images 

(T1WI), T2-Weighted Images (T2WI), and PD Images (PDI) formed the 

input multispectral suite. Slices from each sequence have parameter settings, 

1-mm slice thickness, 0% intensity non-uniformity and noise level, 0%. 

Table 1.1 Clinical input data characteristics 

Modalities TR 
(ms) 

TE 
(ms) 

IR 
(ms) 

Slice 
thickness 

(mm) 

Slice 
Gap 
(mm) 

Size 

T1W 1600 8.9 

5 6.5 

320x320 

T2W 4000 95 
 

344x384 

416x512 

FLAIR 
6000 

9000 
94 

2026.5 

2500 
464x512 

 TR – Repetition time, TE –Echo Time, IR- Inversion Recovery time, 

Total 398 healthy and unhealthy cases sampled by Siemens’ whole body 3T 

MR system (Siemens, AG Medical Solutions, Erlangen, Germany) were 

considered as a part of data collection. From these, we avoided 16 cases due 

to severe artifacts. Selected axial T1WI, T2WI and FLAIR images were of 

characteristics as given in Table 1.1. Axial spin echo T1WI with repetition 

time (TR) = 1600ms, echo time (TE) = 8.9ms, image dimension 320x320 

pixels, and T2WI with TR/TE = 4000ms/95ms. Both 384 mm and 512 mm 

resolutions were considered for T2W, with sizes 344x384 and 416x512 

pixels respectively. FLAIR images with image dimension 464x512 pixels, 

TR/TE/ inversion time = 6000ms/94ms/2026.5ms for abnormal cases and 

with TR/TE/inversion time = 9000ms/94ms/2500ms for normal cases were 

also included in the analysis.  
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1.1.3 Multispectral image analysis 

Multispectral approach was originally developed for applications using 

satellite images, to analyze multispectral data for NASA’s LANDSAT series 

[21]. First attempt in brain MRI analysis was made by Vannier et al. (1985) 

[22], and second work was with breast MRI [23]. Pixel intensity based 

studies using more than three MR channel images in the multispectral 

analysis were introduced in 1994 by Taxt and Arvid Lundervold [24], after 

which it extended its applications to different areas of MRI analysis. 

Pattern recognition techniques are generally considered as the most effective 

methods for multi-spectral image analysis, where the classification methods 

are divided into unsupervised and supervised learning. Unsupervised 

methods like Expectation Maximization (EM),  k-means [4] and its fuzzy 

equivalent, the most widely used Fuzzy C-Means (FCM) [7] generally 

creates satisfactory results in MR image analysis [24,25]. However, 

clustering is not a reliable method for accurate classification in pathological 

analysis [24]. The conventional supervised learning machines like Artificial 

Neural Networks (ANN) [26], Probabilistic Neural Networks (PNN) [27], 

and Support Vector Machines (SVM) [28] have been effectively used in 

multispectral MRI analysis. However, application of these conventional 

classification methods alone in multispectral MRI analysis often failed to 

provide expected clinical accuracy [7, 29].   

A typical multispectral analysis system initializes with a collection of co-

registered images as input data. Corresponding slices from each sequence, 

T1W, T2W, PD etc are considered as each band in the multispectral suite as 

shown in Fig. 1.4.   
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Fig. 1.4 Typical multispectral analysis 

 

Preprocessing steps like intensity inhomogeneity correction and noise 

removal [7] can be used to enhance the contrast and quality of the input 

images. Feature extraction, and optimal selection of features is important in 

multispectral analysis, since accuracy and reliability of the classified results 

are highly affected by the selected feature sets. Recent researches on feature 

extraction using transform based methods such as Principal Component 

Analysis (PCA) [30, 31], ICA [5], and wavelets [32] have contributed a lot in 

high performance brain tissue classification and diagnosis. The present thesis 

focuses on design, implementation, and evaluation of new ICA extensions 

using wavelets and spectral clustering for multispectral MRI analysis. 
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1.2 Motivation of the work  

MRI is a powerful visualization technique in clinical practice and biomedical 

research for investigation of brain anatomy and function. It provides much 

greater contrast between different soft tissues of the body than CT images, 

which makes it particularly useful in clinical diagnosis, especially in 

evaluating brain tumors and lesions. Brain matter segmentation and 

classification from MR sequences is an important image processing step for 

both medical practitioners and scientific researchers in pathological analysis. 

Computer Aided Diagnosis (CAD) systems help them to assess the tumor 

growth and treatment responses. In addition to this, it can assist them in 

computer-aided surgery, radiation therapy and for modeling the tumor 

growth. Large amounts of research efforts have been made in developing 

effective segmentation and classification methods in the past years [7, 24, 

25]. However, such methods failed to reach the accuracy level provided by 

the visual analysis from human experts.  

The fast evolution of MR imaging techniques offers a wide repository of 

pulse sequences that can easily be tuned to offer specific visualizations of the 

brain. These sequences have high spatial resolution and provide much 

information on the anatomical structure, allowing quantitative pathological or 

clinical studies. For example, some lesions are obvious in FLAIR, but its 

presence should be confirmed in other sequences (T2W or PD) also to avoid 

false positives. T1W images also can give very useful information to provide 

an improved segmentation. Slice by slice examination of these sequences is a 

tedious job in clinical analysis. Therefore, neuro-radiologists demand a new 

approach of computer-aided diagnosis due to their heavy workloads in 

extraction of relevant information from large amount of data. 
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Multispectral image analysis was proposed in the literature [1, 4] as a 

solution to this, to improve the accuracy and reduce the analysis overhead. 

However, it was observed that conventional classification methods failed to 

provide high performance with such a large amount of data. Therefore, 

efficient feature extraction methods are necessary to extract the significant 

tissue details simultaneously from a large amount of unique information, 

inherent in different MRI pulse sequences.  

Multivariate analysis method, ICA, was found to be effectively used in 

feature extraction from multispectral brain MRI studies [33]. ICA can 

efficiently unmix the brain substances into different Independent 

Components (ICs). Recent attempts to resolve the limitations of ICA, over-

completeness and random initial projection vectors, in MRI analysis 

improved the brain tissue analysis to a great extent [5, 29]. However, another 

major challenge still exist; the loss of less frequently occurred features such 

as small lesions, while processing a large amount of MRI data. Therefore, in 

addition to methods resolving over-completeness and inconsistency in ICA, 

other object based local feature extraction techniques to retain the relevance 

of small abnormalities are desirable in multispectral brain tissue analysis. 

In an attempt to achieve this, an idea of retaining the local features through a 

pre-processing technique or feature extraction technique is investigated in 

this thesis. In order to implement this idea, spectral clustering approaches and 

wavelet based methods are introduced along with ICA, and evaluated with 

supervised and unsupervised classification methods.  
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1.3  Objectives of the thesis 

The primary objective of this research is to design and develop methods and 

algorithms to improve the efficiency of brain MR image analysis. 

Specifically, this thesis work focus on design of efficient, transform based 

feature extraction methods, to improve the simultaneous brain tissue 

classification and pathological study from multiple MR sequences. To 

achieve this, the current research work has concentrated on the following 

goals, 

• Identify the major challenging issues in brain MRI analysis, and solve 

some of these issues by closing the gap between medical and technical 

disciplines. 

• Design and implement a multispectral analysis system to perform 

simultaneous brain tissue classification and pathological study from 

multiple MR sequences.  

• Improve the performance of brain tissue analysis by providing 

sophisticated feature extraction techniques.   

• Apply the enhanced feature extraction methods to investigate the 

improvement in extraction of small details from dominating background 

and other tissues, and evaluate the overall accuracy and efficiency of the 

multispectral MRI analysis system. 

 

 

 

 

 



Introduction 

13 

1.4 Contributions 

1.4.1 Technical contributions 

• Extended Independent Component analysis (ICA) techniques are 

designed and implemented for improved feature (both global and 

local) extraction from multispectral MR images.  

• Supervised and unsupervised classification techniques based on 

extended ICA algorithms are proposed for brain tissue analysis. 

• A new hybrid feature selection method using ICA and multisignal 

wavelet analysis is proposed for improved classification and 

segmentation using SVM. 

• Limitations of ICA in brain MRI analysis, especially the poor 

performance in retaining local features, are resolved through spectral 

angle mapping and multisignal wavelet analysis. 

• A multispectral analysis system is developed to evaluate the 

effectiveness of proposed methods and existing techniques in 

quantification of normal tissue and lesions. The results obtained from 

the experiments, using both unsupervised and supervised methods 

demonstrate that, with the proposed feature extraction approaches, 

accuracy of brain tissue analysis increases. 

1.4.2 Clinical contributions 

• Efficiency of the proposed methods in simultaneous analysis of small 

abnormalities, and their effect on other tissues and total brain volumes 

can help doctors in disease progress evaluation and treatment. 

• Simultaneous analysis of multiple MR sequences reduces the time 

and effort required for clinical diagnosis. 

• Computer aided diagnosis using new algorithms avoids inter/intra 

operator variability in pathological analysis, and it helps neuro-
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radiologists and analysts to improve the accuracy and reliability of the 

final medical reports. 

1.5 Thesis overview 

In this chapter we outlined the problems associated with the brain MRI 

analysis, and highlighted the techniques that are going to be introduced in 

this thesis. The remaining chapters are organized as follows: 

Chapter 2: Literature Survey presents a survey of the work related to the 

brain MRI analysis. Previously developed systems for segmentation and 

classification are reviewed. Results, merits, and limitations of these systems 

are also discussed. Multispectral MRI analysis techniques are emphasized. 

Works on feature extraction and classification using ICA and its extensions 

are also illustrated in detail. 

Chapter 3: ICA and Brain MRI firstly, introduces the concept, theory and 

algorithms involved in ICA. Secondly, it highlights advantages and 

drawbacks of ICA in multispectral brain MRI analysis. Chapter 3 concludes 

with some case studies based on ICA extensions. 

Chapter 4: Proposed ICA Extensions for brain MRI discusses three new 

ICA extensions to improve the classification performance of brain tissues 

from multispectral MRI; a new Spectral Clustering ICA (SC-ICA), a new 

Multisignal Wavelet ICA (MW-ICA) and modified Multiresolution ICA 

(MICA). A detailed explanation of each, including relevant theory, algorithm 

and examples are provided in this chapter. 

Chapter 5: Brain MRI Analysis with Proposed ICA Extensions evaluates 

proposed ICA extensions and conventional ICA, with supervised and 

unsupervised classification approaches through quantitative and qualitative 

analysis. First, it describes the input datasets, data preparation using image 

registration and feature collection, and bias selection through different 
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validation techniques. After that, a detailed quantitative and qualitative 

analysis of results from supervised classification using SVM, and 

unsupervised classification using FCM is presented. 

Chapter 6: A hybrid approach to brain tissue classification introduces the 

newly proposed hybrid feature selection method for improved brain tissue 

classification using SVM. To ensure the positive impact of the new method 

in identifying abnormalities and their effect on other tissues, quantitative and 

visual results from a detailed performance analysis is also discussed in it. 

Chapter 7: Comparative Analysis and Discussion presents an overall 

summary of the current work, and comparative analysis of the proposed 

methods with conventional classification methods. Chapter 7 ends with an 

elaborate discussion on merits and demerits of spectral based approach and 

wavelet based approaches.  

Chapter 8: Conclusions and Future Works recapitulate the thesis, and 

points out some possible extensions of the current work. 
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Chapter -2 

LITERATURE SURVEY 
 

2.1 Introduction 

Brain tissue classification and abnormality detection has great significance in 

treatment planning and disease progress evaluation.  Computer aided systems 

can help clinical experts to achieve the fast and accurate results in this regard.  

Even though several automated analysis techniques claims its superiority in 

analysis of a particular disease using single or multispectral images, there is 

no clear evidence for the suitability of these methods for various applications. 

A detailed review of MRI analysis methods till 1995 is available from Clarke 

et al. (1995) [7]. Relative merits of single versus multispectral segmentations, 

feature extraction, supervised and unsupervised segmentation methods as 

well as tissue classification methods were illustrated. Image pre-processing 

approaches, multimodality registration methods, validation procedures, 

examples for MRI segmentation and problems associated with inter- and 

intra-observer variations were also presented in detail. 

Another literature survey on CAD systems for brain diseases in MRI by 

Arimura et. al. (2009) [34] covered a critical review on methods used in 

disease based analysis of MR images from 1994 to 2009, giving more 

emphasis on the works in the duration 2004-2009. The review started with 

fundamental techniques used for CAD systems, including image processing 

and pattern recognition. Pre-processing, feature extraction, classification, 

segmentation and evaluation were explained in detail in this paper. Several 



Chapter 2 

18 

application examples of CAD approaches were introduced, including 

detection of abnormalities. They concluded the survey with several future 

directions for improved computer aided diagnosis. 

In this chapter, only the relevant works related to our thesis work such as 

transform based feature extraction, single and multispectral MRI image 

classification and segmentation are included. ICA and its extensions 

proposed in the literature, which are relevant to this work, are also discussed. 

2.2 Common software tools in brain MRI analysis 

Brain MRI analysis has been emerged as a hot research topic in the last two 

decades, with emphasis on several automatic and semi automatic methods 

closing the gap between technical and medical disciplines. But most of the 

implementations were performed for research purpose only. The most widely 

used software packages in the neuroimaging community are,  

• SPM (Statistical Parametric Mapping) [35, 36, 37], written by the 

Wellcome Department of Imaging Neuroscience at University College 

London, UK). It is an approach, based on probabilistic atlases combined 

with fuzzy clustering, for brain segmentation and tissue extraction. Tissue 

classification requires the images to be registered with tissue probability 

maps. 

• FSL (FMRIB Software Library) [38, 39], from Analysis Group, FMRIB, 

Oxford, UK. It is a software library containing image analysis and 

statistical tools for functional, structural and diffusion MRI brain imaging 

data. It combines an approach based on intensity distributions analysis 

and deformable models [40] for segmentation. 

• FreeSurfer, written by collaboration between the Massachusetts Institute 

of Technology and the Harvard University, USA [41, 42]; a combined 

approach based on watershed algorithms, deformable surfaces and brain 
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atlases [43]. The problem of MRI segmentation is focused on segmenting 

normal brains without apparent diseases into three tissues: GM, WM and 

CSF ([44]). It is time consuming compared to SPM and FSL; the 

processing of one scan consumes 12-24 hours in comparison with the 15-

30 minutes required by FSL and SPM. Also, segmentation of brain 

images requires a statistical atlas to give prior information about the 

spatial position of different structures. 

Tsang et al. (2008) [45] conducted a quantitative analysis and comparison of 

the segmentation algorithms in latest versions SPM5 and FSL for the whole 

brain, as well as for the subcortical region. SPM5 segmentation algorithm 

yielded the highest overlap with the ground truth GM tissue maps for both 

the subcortical area and the whole brain. Performance metrics observed by 

Shattuck et al. (2009) [46], in a validation study based on FSL and 

FreeSurfer with on-line segmentation validation engine reported that indexes 

values can still be improved for FSL and Freesurfer.  

More importantly, the results proposed by these packages are based on 

normal CSF, GM and WM structures, and they are found to be not efficient 

in multispectral and pathological analysis. In this regard, problem-specific 

studies were found to be yielding promising results in brain tissue analysis.  

2.3 Feature extraction 

Feature extraction is the process of extracting abnormal and normal tissue 

specific features from the pre-processed images in such a way that inter-class 

variation is maximized and intra-class similarity is maximized. Methods for 

feature extraction can be divided into different categories based on the type 

of features, such as pixel intensity-based features (gray scale values of the 

pixels), calculated pixel intensity-based features (calculated MR parameters 

such as metrics relating to flow of contrast material, cerebral blood volume, 
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blood flow or blood oxygenation), edges and texture-based features, 

Transform based features etc. [7]. 

In this thesis work we focus on transform based feature extraction methods to 

extract a set of discriminative features which provide better classification of 

MRI images. In literature, various feature extraction methods have been 

proposed such as PCA [31], ICA [47], Fourier Transform [48] and Wavelet 

Transform [49-51].  

Fourier transform is useful for extracting frequency contents of a signal, 

however it cannot be used for analyzing accurately both time and frequency 

contents simultaneously. In order to overcome this, wavelet analysis is 

proposed which captures both low-frequency and high-frequency information 

accurately. For the classification of Alzheimer’s disease, Chaplot et al. 

(2006) [49] used Daubechies-4 (db4) wavelet of level 2 to extract the features 

from MRI.  

Dahshan et al. (2010) [51] pointed out that the features extracted using db4 

Wavelet were too large, and may not be suitable for the classification. They 

used Haar wavelet of level 3 for feature extraction and further reduced 

features using PCA before classification. Though PCA reduce the dimension 

of feature vector, it is a computationally expensive global transform. 

Multiresolution analysis using wavelet transforms and its new extension, 

curvelet transform [52], have proved its potential in medical image 

segmentation with accurate clinical results [32]. Curvelets were found to give 

superior performance in local geometric feature analysis, but wavelets still 

keep its position in 1-D signal analysis [32, 52].  

In a recent study, quantitative analysis of brain tissue classification using 

ICA [29] confirmed the efficiency of ICA in clinical MRI applications. 

However, these global transforms often fails to keep the local characteristics 
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in classification results. Han and Li (2011) [53] used a multiresolution 

approach to retain the critical local information in micro array classification, 

while performing a global transform using ICA. A growing interest in the 

application of multidimensional wavelet analysis to MR data [54] motivated 

us to use multisignal wavelet decomposition [53, 55] with ICA to extract the 

best spectral signatures corresponding to each brain tissue, which will be 

discussed in detail in the following chapters. 

2.4 Survey of supervised classification methods in 

brain MRI analysis 

Classification is the step that deals with the labelling of the regions. In 

supervised MRI analysis, pixels are associated with anatomical tissues by an 

expert in the training phase. Classification models obtained after training are 

used to classify the new samples. Many learning methods have been used to 

analyze intensity based information from images, including ANN [56], PCA 

[57], and SVM [58].  

2.4.1 Artificial Neural Networks (ANN) based methods 

The application of Kohonen neural networks for image classification was 

explored by Messen et al. (2006) [59]. Some modifications of the 

conventional Kohonen neural network were also implemented in this work 

which proved to be much superior to the conventional neural networks. The 

different grades of abnormal images were categorized using ANN by 

Yamashita et al. (2008) [60]. This report suggested a practical method for 

selection of database. The training of ANN is dependent on input data and 

hence a wide variety of pattern is desirable for high accuracy. This report 

also highlighted the difficulty in collecting a large dataset of different 

uncommon patterns. Though the report records high classification accuracy, 

the size of the dataset is significantly small.  



Chapter 2 

22 

El-Dahshan et al. (2009) [61] proposed the hybrid technique consisting of 

three stages; feature extraction using Discrete Wavelet Transformation 

(DWT), dimensionality reduction by PCA and classification by Feed 

Forward Back-Propagation Artificial Neural Network (FP-ANN) and k-

Nearest Neighbor (k-NN). Comparison with Self Organizing Map (SOM) 

and SVM revealed that ANN method gained the worst sensitivity and 

specificity rate. The index values were based on single image analysis with 

small number of datasets.  

Jensen and Schmainda (2009) [62] explored different neural networks to 

detect brain tumor invasion from multi-parametric MRI (structural, diffusion 

and perfusion images). An automatic brain tumor detection method using 

Gabor wavelets was proposed by AmirEhsan Lashkari (2010) [63]. The 

neural network had been trained using back propagation algorithm and 

training process was continued until the Mean Square Error (MSE) became 

constant with about accuracy of 98.15%.  

The system designed for brain cancer detection and classification by Joshi et 

al. (2010) [64] used conceptually simple classification method using the 

Neuro Fuzzy logic. Texture features are used in the training of the ANN. This 

system provides precision detection and classification of astrocytoma type of 

cancer. Zhang et al. (2011) [65] presented a neural network (NN) based 

method to classify a given MR brain image as normal or abnormal. DWT, 

PCA and Back Propagation Neural Network (BPNN) were used for 

classification. The classification accuracies on both training and test images 

were 100%, and the computation time per image was only 0.0451 seconds. It 

was a preliminary study with singe image analysis using T1WI. 
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2.4.2  Classification based on Support Vector Machines (SVM) 

Majority of the recent works in Brain MRI classification were found to be 

based on SVM.  Relevant methods using SVM are summarized in Table 2.1. 

Table 2.1 Methods using SVM classification for MR image analysis 

ID Methods and description 

Li et. al. 

(2006) [66] 

Various levels of MR glioma images were classified using SVM. Better 

than fuzzy rule based systems, but the accuracy reported was low. It 

deals only with glioma images. 

Chaplot et. al. 

(2006) [49] 

A hybrid approach using wavelets and SVM for classifying the abnormal 

and normal images. Better than the neural networks in terms of 

performance measures. Small size dataset used for implementation. 

The classification accuracy results may reduce when the size of the 

dataset is increased 

Luts et al. 

(2007) [67] 

Least Square SVM (LS-SVM) used for brain tumor recognition. Both bi-

level classification and multiclass classification were performed. 

Suggested the necessity for multiclass classification techniques than bi-

level classification techniques. 

Selvaraj et  al. 

(2007) [68] 

Least Square SVM (LS-SVM) for brain tumor recognition performed. An 

extensive comparative analysis results with SVM, neural classifier and 

the statistical classifiers suggested the advantages of SVM in terms of 

classification accuracy. Only bi-level classification is performed. 

Chandra et al. 

(2009) [69] 

RBF kernel based SVM for brain tumor detection used. Results 

compared with AdaBoost machine learning algorithm. Superior nature of 

SVM over the other classifiers illustrated. 

Hamilton -

Wright et al. 

(2009) [70] 

Image classification based on fuzzy approach using the pattern 

discovery algorithm. Better results observed when compared with the 

other classifiers 

Zacharaki, et 

al.(2009) [71] 

Pattern classification methods for distinguishing different types of brain 

tumors, such as primary gliomas from metastases, and also for grading 

of gliomas. Feature subset selection was performed using SVM with 

recursive feature elimination. High performance classification provided.  

Failed to incorporate features describing the deformation of the healthy 

structure due to tumor growth. 

Ruan et al. 

(2011) [72] 

Claimed that the feature selection using kernel class separability could 

slightly improve the results. 
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Zhang and 

Wu (2012) 

[73] 

Wavelet transform for feature extraction, followed by PCA to reduce the 

dimensionality. A kernel support vector machine (KSVM) used for 

classification. K-fold stratified cross validation was used to enhance 

generalization of KSVM. The highest classification accuracy, 99.38% 

observed, but with a small size dataset. 

Mubashir 

Ahmad et al. 

(2012 )[74] 

Db4 wavelet transform, PCA and SVM with Linear Kernel and Radial 

Basis Kernel were used in the validation. Experimental results showed 

high classification accuracy of 98.7% with Radial Basis Kernel. 

Compared with other methods such as artificial neural network, decision tree, 

and Bayesian network, SVMs have significant advantages of high accuracy, 

elegant mathematical tractability, and direct geometric interpretation. 

Besides, it does not need a large number of training samples to avoid 

overfitting. The dominant feature which makes SVM very attractive is that 

classes which are nonlinearly separable in the original space can be linearly 

separated in the higher dimensional feature space.  

In addition to these conventional methods, other approaches yielding high 

performance in brain MR classification are PNN and Bagging. The modified 

PNN for tumor image classification is used by Georgiadis et al. (2008) [75]. 

Abnormal images such as metastases, glioma and meningioma were 

differentiated using the least square feature transformation based PNN. A 

comparative analysis is also performed with SVM. This work inferred that 

the transform based PNN is superior to the SVM in terms of classification 

accuracy. Ibrahiem and Ramakrishnan (2008) [76] stated that a time efficient 

neural network such as PNN can be used for pattern classification problems. 

Emphasis was given for convergence time than the classification accuracy. 

The results concluded that the PNN is superior over conventional neural 

networks in terms of training time period.  

Bagging, which stands for bootstrap aggregation[77] is another way of 

manipulating training data for ensemble classification schemes. In each 
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iteration, the training subset is bootstrapped (resampled with replacement), to 

generate a different training subset. The logic behind bagging is that unstable 

classifiers, such as neural networks and decision trees, whose behaviour 

could be significantly changed by small fluctuations in the training subset, 

are more likely to be stabilized after being trained with different input data 

[78]. Although the SVM classifier has been shown to provide a good 

generalization performance, the classification result of the SVM is often far 

from the theoretically expected level, because SVM implementations usually 

employ approximation techniques [79]. 

2.5 Survey of brain MRI image segmentation 
approaches 

MR image segmentation refers to the decomposition of an image into regions 

representing the different tissue types. In the case of supervised MRI 

analysis, classification models are used for automatic tissue segmentation. 

Unsupervised classification generates segmented tissues as the first results, 

upon which the classification is performed. Actually, it is a pixel based 

classification, since the individual pixels are clustered unlike the 

classification techniques which categorize the whole image. Several research 

works are reported in the area of MRI image segmentation.  

Clustering was introduced into the brain tumor segmentation community by 

Schad et al (1993) [80], who analyzed texture patterns of different tissues. 

Phillips et al (1995) [81] employed FCM, and Vaidyanathan (1995) [82] 

compared this to k-NN clustering for the tumor volume determination during 

therapy on multi-spectral 2D image slices. Clark et al (1998) [83] from the 

same group, further developed this approach to incorporate knowledge-based 

techniques. A complete survey of various segmentation algorithms is 

presented by Dzung and Jerry (2000) [84]. The merits and the demerits of 

various techniques were analyzed in detail. Appropriate techniques for 
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different applications were also suggested in their review paper. An extensive 

survey on tissue segmentation algorithms for MR brain images was 

conducted by Liew and Yan (2006) [85]. A technique to minimize the 

intensity nonuniformity artifact was also proposed in that paper. Several 

suggestions on pixel based approaches, region based approaches, model 

based approaches were provided in their work. Some relevant works we 

observed based on pattern recognition techniques are summarized in Table 

2.2. 

    Table 2.2 General pattern recognition methods in Brain MRI segmentation  

ID Methods and description 

Fletcher-Heath 

et al. (2001) 

[86] 

Fuzzy clustering with knowledge based techniques for the brain tumour 

segmentation from multi-sequence MRI. 

Moon et al., 

(2002) [87] 

A model based tumor segmentation technique using a modified 

Expectation Maximization (EM) algorithm. Lack of quantitative analysis 

on the extracted tumor region observed. 

Zhu and Tian 

(2003) [88] 

Level set method, which involves the method of boundary detection with 

the seed point. Watershed algorithm used to capture the weak edges. 

Random selection of seed point leads to inappropriate results and also 

consumes large convergence time period. 

Li and Chi, 

(2005) [89] 

A modified version of SOM with Markov random field model. Extra spatial 

constraints added in this algorithm for weight adjustments. This method 

was highly prone to noise and applicable for only noise-free images. 

Deorah et al., 

(2006) [90] 

A complete analysis of various types of brain tumors and the effect of MR 

image segmentation techniques on the treatment.  

Zaidi et al. 

(2006) [91] 

The merits and demerits of various statistical segmentation techniques 

discussed. Analyzed the performance measures of histogram based 

method, EM technique and the SPM package in detail. 

Martin-

Landrove and 

Villalta (2006), 

[92] 

Back Propagation Neural Network (BPNN) based tumor segmentation. A 

comparative analysis was done with the Inverse Laplace Transform 

based technique. Concluded that BPNN is superior in terms of 

processing time and accuracy over the conventional algorithm. 

Khotanlou et 

al.  (2007) [93] 

An enhanced version of symmetry analysis which also incorporates the 

deformable models. The segmentation efficiencies was very low, and a 
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failure in case of symmetrical tumor across the mid-sagittal plane. 

Unnikrishnan 

et  al. (2007) 

[94] 

Conventional algorithms such as EM algorithm, mean shift filtering 

algorithm, etc. were experimented. Comparative analysis between 

various performance measures was not reported. 

Ray et al.

(2008)[95] 

Symmetry based brain tumor extraction. It can detect only the densely 

packed tumor tissues. 

Lee et al.   

(2008) [96] 

Application of pseudo-conditional random fields for brain tumor 

segmentation demonstrated. Claimed to be highly accurate and much 

faster than other conventional techniques. Patient - specific training was 

used. 

Rasoul Khayati 

et al.   (2008) 

[97] 

Bayesian classifier, utilizes the adaptive mixtures method (AMM) and 

Markov random field (MRF) model to obtain and upgrade the class 

conditional probability density function (CCPDF) and the a priori 

probability of each class. High performance segmentation observed.   

Corso et al.   

(2008) [98] 

Bayesian model based tissue segmentation technique for tumor 

detection. Computationally efficient besides yielding improved results 

over conventional techniques. 

Anbeek et al.   

(2008) [99] 

K-Nearest Neighbor technique used. An extensive comparative analysis 

performed with other techniques. The dependency on threshold values 

for accurate output was the drawback. 

Ma et al.   

(2009) [100] 

A survey on various medical image segmentation algorithms. The 

drawbacks of several techniques were clearly illustrated, and suggested 

suitable techniques for tumor segmentation. 

de Boer et al. 

(2010) [101] 

Evaluated the accuracy and reproducibility of four previously proposed 

automatic brain tissue segmentation methods: FAST, SPM5, an 

automatically trained k-NN classifier, and a conventional k-NN classifier 

based on a prior training set. The conventional k-NN classifier method 

performed best in the accuracy experiment and worst in the 

reproducibility experiment. FAST showed the best reproducibility, but its 

accuracy was relatively low for CSF and GM. Overall, the accuracy and 

reproducibility were good, and there were only small differences between 

the methods.  

Kanaly et al. 

(2011)[102] 
A simpler approach by thresholding the voxels of the difference image of 

pre- and post-contrast T1-weighted MRI after intensity normalization.  
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Data mining algorithms like KNN and FCM are often used in brain tissue 

segmentation. In addition, the iterated conditional modes or some neural 

network methods like SVM can be applied for this problem. However, it is 

difficult to compare the reported accuracies of these segmentation methods. 

Different evaluation measures were used and some of these measures depend 

on the tissue volumes of the subject, and the evaluation was influenced by the 

manual segmentation protocol. 

Recent studies demonstrated FCM as a good technique for unsupervised 

classification. They are robust to ambiguity and efficient in retaining much 

more information than hard segmentation methods. We reviewed a few 

relevant works based on fuzzy approaches as a part of this thesis work, as 

given in Table 2.3  

Llado et al. (2012) [24] have done a critical review of segmentation of 

multiple sclerosis lesions using common approaches such as ANN, kNN, 

AdaBoost, Bayesian classifiers, and FCM. The main features of the 

segmentation algorithms were analysed, and the most recent important 

techniques were classified into different strategies according to their main 

principle, pointing out their strengths and weaknesses. They observed that the 

automated segmentation of different MS lesion types in MRI is a challenging 

task due to heterogeneous intensity values among the different MR images 

(enhancing lesions, black holes and hyper intense lesions). They observed 

that there is not yet a specific automated lesion segmentation approach robust 

enough to emerge as a standard for clinical practice. The main reasons are 

unsatisfactory results they produce, the high computational demand required, 

or their insufficient generalization capability. 
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Table 2.3 Fuzzy approaches in brain MRI segmentation 

ID Methods and description

Cheng et al., 

(1998) [103] 

A modified Fuzzy C-Means (FCM) algorithm for brain image analysis. 

It provided significant time saving when compared with the 

conventional FCM algorithm. Lack of quantitative analysis on 

segmentation efficiency is the drawback. 

Dzung &Jerry 

(1999) [84] 

More accurate FCM algorithm. Applicable for MR images with 

intensity inhomogeneties. Execution time is directly proportional to the 

amount of inhomogeneties present in the images. Slower 

convergence rate observed. 

Boudraa et al., 

(2000) [104] 

FCM preceded by a local image contrast enhancement procedure. 

Reduced false positives and false negatives observed. Reproducibility 

is to be evaluated with large size database. 

Dave & Sen 

(2002) [105] 

A robust fuzzy clustering algorithm. Eliminated the dependency of 

FCM algorithm on similarity measures such as distance measures. 

Highly generalized in terms of the parameters used in the algorithm.  

John & 

Hutcheson, et 

al. (2002) [106] 

Time efficient FCM for real time applications. Solved the high memory 

requirement problem of conventional FCM. 

Khalighi et al., 

(2002) [107] 

A modified FCM algorithm based on spatial model. Qualitative results 

highlighted the improvement in the segmentation efficiency of the 

spatial model based FCM over the conventional FCM. The lack of 

volumetric analysis of the segmented tissues is the major drawback. 

Eschrich et al., 

(2003) [108] 

A fast and accurate FCM algorithm. A data reduction method based 

on quantization is involved in this approach for high speed clustering.  

Zhang & Chen, 

et al., (2004) 

[109] 

Kernelized fuzzy C-means (KFCM) algorithm in which Euclidean 

distance in the FCM is replaced by a kernel-induced distance. Spatial 

penalty is added to objective function in KFCM to compensate for the 

intensity inhomogeneities. Better performance when noise and other 

artifacts are present. 

Kannan (2005) 

[110] 

A FCM algorithm to achieve high accuracy for MR brain images. Only 

qualitative analysis is reported in the paper which is not sufficient for 

judging the effectiveness of the system. 

Murugavalli & 

Rajamani (2006) 

[111] 

An improved FCM algorithm based on block processing where each 

block is processed by a parallel processor. Though this approach is 

faster, the requirement for additional hardware is the major drawback. 

Dou et al. (2007) Several fuzzy models were created and the fuzzy features were 
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[112] extracted from these models. Experimental results suggested that 

usage of fused fuzzy features for improving the accuracy of the 

techniques. An extensive analysis in terms of the measures is 

required.  

Juang et al. 

(2007) [113] 

A combinational approach of SOM, SVM and fuzzy. An extensive 

analysis performed with the other segmentation techniques to show 

the superior nature of the proposed approach.  

Kannan (2008) 

[114] 

Modified FCM algorithm with method of initial selection of membership 

values highlighted. Significant experiments not conducted which is 

evident from the lack of quantitative analysis. 

Zhou et al. 

(2008) [115] 

Two-dimensional FCM clustering algorithm. The simulation results 

showed the segmentation accuracy, 98%. Algorithm has strong anti-

noise capability, high clustering accuracy and good segment effect.  

Ramakrishnan 

et al. (2010) 

[116] 

Fuzzy multi wavelet packet transformation based brain MR image 

classification method.  Experiments showed that the fuzzy-based 

criterion achieves higher recognition rate with relatively smaller sub 

bands than signal energy-based criterions. Higher recognition under 

noisy environment with lesser number of sub bands achieved. 

Yang & Fei 

(2011) [117] 

An automatic, multiscale and multiblock fuzzy C-means (MsbFCM) 

classification method with MR intensity correction. Artifacts like noise 

and intensity inhomogeneities addressed. Accurate and robust for 

various MR images 

Kang et al. 

(2011) [118] 

Intelligent generalized tissue classification system which combines 

both the Fuzzy C-means algorithm and the qualitative medical 

knowledge on geometric properties of different tissues 

Iraky khalifa et 

al. (2012) [119] 

Wavelet Fuzzy C- means (WFCM) algorithm. Feature extraction using 

multilevel 2D wavelet decomposition with db4 was used to do FCM 

clustering. A detailed analysis is not provided to justify the 

improvement in real cases. 

2.6 Survey of methods in multispectral brain MRI 
analysis 

For the last two decades, simultaneous extraction and analysis of relevant and 

complementary information using multispectral analysis of different MRI 

sequences has been a widely discussed research topic [4, 7, 22]. MRI 

sequences like T1WI, T2WI, PDI, FLAIR images etc. provides a huge 



Literature Survey 

31 

repository of unique information on different tissues [4, 7].  For example, 

T1WI shows considerable contrast between GM and WM. T2WI can give 

details of CSF and abnormalities; sometimes it cannot distinguish between 

CSF and abnormalities like edema and lesions. Then FLAIR images, which 

suppress CSF effects to give more details on hyper-intense lesions, can be 

utilized to separate the normal and abnormal tissues. Simultaneous analysis 

of each sequence to collect the prominent pathological information is a 

tedious job for radiology experts. Computer aided diagnosis using 

multispectral approach is helpful in this context to save time, and to improve 

the accuracy and consistency of the clinical results [34]. Conventional 

algorithms in the literature for single image analysis are not efficient and 

robust to yield good results with expected clinical accuracy for multispectral 

data. Feature extraction and optimal feature selection can reduce the 

computational overhead, and improve the overall performance. As an 

application of pattern recognition, multi-spectral MR image segmentation 

methods are subcategorized into unsupervised and supervised approaches.  

2.6.1 Unsupervised approaches 

For multi-spectral medical image segmentation, unsupervised methods have 

the advantage of avoiding the training process, which includes human 

operation variability associated with manual selection of training samples [7]. 

From the literature, it was seen that the most widely used FCM algorithm 

[120, 121] has been consistently improved in the past decades to achieve 

better performance in MRI segmentation results. Its simplest form, k-means 

[121] is also found to be useful in preliminary studies. Expectation 

Maximization (EM) has also been used very frequently in multi-spectral 

image segmentation [122, 123]. It applies the same clustering principles as 

that of FCM and k-means algorithms, with an assumption that the input 

image data follow a Gaussian Mixture Model (GMM).  
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Normal structure segmentation from multi-spectral MR images involves only 

the known tissues like CSF, GM, WM etc., where unsupervised segmentation 

methods were found to be generating satisfactory results [7, 19]. However, 

cluster is not a well defined concept [124] to group unknown classes like 

different abnormalities, which makes it undesirable for abnormal MRI 

analysis. A patient-specific training is necessary in the pathological analysis 

to categorize the different lesions and tumors of varying sizes. 

2.6.2 Supervised multispectral analysis 

Supervised methods can automatically identify the relevant patterns 

representing different abnormalities in the data, based on prior knowledge 

collected from the history of different abnormal cases [7]. The most 

frequently used supervised pattern recognition techniques for medical image 

segmentation included the Maximum Likelihood (ML) [22], k-NN algorithms 

[125] and ANN [7] in the past. Later, studies showed that ANN [26], PNN 

[75], SVM [30], and data conditioning approaches were capable of yielding 

high performance classification in multispectral analysis.  

The ML method [126] is a successful approach when the input data 

distributions for the different classes are well known. But, for multi-spectral 

images, it was found to be impractical [7]. The k-NN algorithm is a 

nonparametric approach, which does not rely on predefined input data 

distributions, but it depends on the actual distribution in the training samples 

[127].  

The pixel based SVM method in multispectral MRI analysis, which has seen 

much popularity in last decade [128], showed high performance with fair 

results. Later, Verma et al (2008) [129] used a high number of MRI 

modalities (diffusion tensor imaging (DTI) channels in addition to the 

conventional ones) to create voxel-wise intensity-based feature vectors, 
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which they classified with Support Vector Machines (SVMs). They were able 

to not only segment the healthy tissues, but also segment sub-compartments 

of healthy and tumor regions.   

2.6.3 Recent developments 

In recent years several studies have demonstrated the efficiency of 

multispectral analysis in brain tissue classification and abnormality analysis.  

Since Clarke et al., (1995) [7] and Y. Kvinnsland et al. (2009) [4] covered a 

comprehensive review on almost all multispectral methods in MRI, following 

discussion includes only some most relevant and recent studies in this field, 

and a summary is given in Table 2.4. 

He et al. (2008) [6] proposed a Generalized fuzzy clustering approach based 

on FCM (GFCM) for segmentation of multispectral MR images. A bias field 

correction and contextual constraints over spatial intensity distribution were 

included in it to account for the non-spherical cluster’s shape in the feature 

space. The bias field was modeled as a linear combination of smooth 

polynomial basis functions for fast computation in the clustering iterations. 

Since the feature space was not isotropic, distance measure adopted in 

Gustafson-Kessel (G-K) algorithm [130] was used instead of the Euclidean 

distance, to account for the nonspherical shape of the clusters in the feature 

space. They observed that conventional FCM-based methods did not correct 

the intensity inhomogeneity and did not exploit the contextual information. 

Qualitative and quantitative evaluation of normal brains indicated that GFCM 

outperforms the conventional FCM method. The performance of GFCM is to 

be explored with additional dimensions (such as FLAIR images) in the 

feature space for a complete study of the separability of more classes such as 

lesions. 
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Kroon et al. (2008) [131] presented a local feature vector based method for 

automated Multiple Sclerosis (MS) lesion segmentation of multi-spectral 

MRI data. Local feature vector method in the study included neighborhood 

voxel intensities, histogram and MS probability atlas information. PCA with 

log-likelihood ratio was used to classify each voxel. Bias field corrections 

based on genetic algorithm, edge preserving filtering and atlas based 

correction were introduced to intensity inhomogenities in MR images. The 

similarity scores between proposed model and expert classifications were 

found to be less. Best classification results were observed with normal raw 

data because all the described bias correction methods caused artifacts at 

region edges.  

Lao et al. (2008) [132]  presented a computer-assisted WML segmentation 

method, based on local features extracted from MRI sequences, T1-weighted, 

T2-weighted, proton density-weighted, and FLAIR MR scans. Although 

FLAIR provides the best contrast between periventricular WMLs and 

ventricles, PD helps to avoid potential overestimation of lesion load that has 

been observed with the FLAIR sequence The proposed approach started with 

a number of pre-processing steps; intrasubject co-registration, skull stripping, 

inhomogeneity correction, and intensity normalization. In the learning 

process of the method, optimal generalization ability of SVM was highly 

exploited. AdaBoost[77] approach helped to learn progressively from 

misclassified examples. Automated removal of false positives was also 

incorporated in the method. Cross-validation on a population of 35 patients 

confirmed the robustness and accuracy of the proposed segmentation method, 

compared to the manually segmented results by two experienced neuro 

radiologists. A rigorous evaluation of relative value of each acquisition 

protocol was not performed in the study.  
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Lecoeur et al. (2009) [133] presented an optimized supervised segmentation 

method for multispectral MR analysis. An optimized spectral gradient based 

on a psycho-visual graph cut paradigm was created using multispectral MR 

analysis. Using Dice similarity coefficient as a cost function for an 

optimization algorithm, an optimized gradient was computed and it was 

utilized to segment MRIs with the same kind of modalities. Results showed 

that the optimized gradient matrices yielded significantly better 

segmentations and that the supervised learning of an optimized matrix is a 

good way to enhance the segmentation method. Working of this scheme on 

different combinations of sequences for improved pathological analysis was 

also demonstrated.  

Ozer et al. (2010) [134] developed automated methods that combine the 

pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) 

MRI with quantitative T2W MRI and diffusion weighted imaging (DWI) in 

contrast. Large margin classifiers were used for prostate cancer segmentation. 

New thresholding schemes were developed to tune SVM and their 

probabilistic counterparts, Relevance Vector Machines (RVMs), for an 

improved performance with respect to a selected criterion. Moreover, a 

thresholding method was applied to make a fully automatic unsupervised 

fuzzy Markov random field method. No significant difference between the 

SVM and RVM segmentation results was observed. The results of the 

automated algorithms indicated that multispectral MRI analysis improved 

prostate cancer segmentation performance compared to single image 

analysis. Multispectral MRI analysis provided better information about 

cancer and normal regions in the prostate, which were found to be very 

useful in the diagnosis and detection of prostate cancer. The analysis results 

confirmed the superiority and robustness of the supervised methods in terms 

of standard deviation when compared to unsupervised methods. 
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Zhang et al. (2011) [135] presented a framework of medical image analysis 

system for the brain tumor segmentation, and the brain tumor following-up 

over time using multispectral MRI images. Multispectral images have the 

advantage of providing complementary information to resolve some 

ambiguities in brain tumor analysis. However, they may also bring along a 

lot of redundant information, increasing the data processing time and 

segmentation errors. The SVM classification integrated with a selection of 

the features in a kernel space was proposed in the work to resolve this issue. 

The selection criteria were defined by the kernel class separability. A brain 

tumor evolution follow up based on the same SVM classification framework 

was also proposed. The system has been tested on real patient images with 

satisfying results. The quantitative evaluations by comparing with manually 

traced results and with other conventional approaches demonstrated the 

effectiveness of the proposed method. An elaborate validation of whole 

process in a much larger database with different patients over long 

therapeutic periods is required to establish the accuracy and robustness in 

disease progress evaluation. 

Valdés Hernández et al. (2012) [8] proposed a novel unsupervised 

classification method for WML analysis, Multispectral Coloring Modulation 

and Variance Identification (MCMxxxVI). Two different structural Magnetic 

Resonance Imaging (MRI) sequences in red/green color space were first 

fused, and Minimum Variance Quantization (MVQ) [136] was applied as the 

clustering technique to segment the different tissue types. Then they 

investigated its performance compared with several commonly used 

supervised image classifiers in segmenting normal-appearing white matter, 

white matter lesions and cerebrospinal fluid in the brains of 20 older subjects. 

In the multispectral analysis, they segmented these three tissue classes from 

T1W, T2W, T2*W and fluid attenuation inversion recovery (FLAIR)-
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weighted structural MRI data using MCMxxxVI and the four supervised 

multispectral classifiers available in the Analyze package [137], namely, 

Back-Propagated Neural Networks, Gaussian classifier, Nearest Neighbour 

and Parzen Windows. Bland–Altman analysis [138] and Jaccard index [46] 

were used in performance improvement evaluation. Results indicated that, in 

general, MCMxxxVI performed better than the supervised multispectral 

classifiers in identifying the three tissue classes. However, final manual 

editing was required to deliver clinically acceptable results. The two 

limitations of this study were lack of an explicit investigation on inter-

observer variations and relatively small size of sample of subjects studied. 

García-Lorenzo et al. (2013) [139] presented a systematic and latest 

comprehensive review of the literature to evaluate the state of the art in 

automated multiple sclerosis lesion segmentation. They stated that many 

methods provide limited solutions, where they deal with only one type of MR 

protocol or identify only one type of MS lesion, and they rarely address the 

complexity of the diseases. Nevertheless, many advances have been made 

over the years, and many methods have demonstrated promising results with 

MRI data from small groups of patients. According to their paper, the 

challenge remains to provide segmentation techniques that can work in all 

cases regardless of the type of MS, duration of the disease, or MRI protocol, 

and within a comprehensive, standardized validation framework. They 

described the complexity of the lesion segmentation problem and identified 

solutions that have been proposed in the literature. In addition to describing 

the techniques, they focused on the strengths and weaknesses of the 

validation methods used to characterize the published methods. They 

concluded with a few suggestions for improvement and good validation. 

Conclusions and suggestions from their review are repeated in the next 

section in a general point of view for MRI analysis. 
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Table 2.4 Summary of recent developments in multispectral MRI analysis 

ID & 

Title 

Input 

data 
Methods Results Remarks 

He et al. (2008) 

[6] Generalized 

Fuzzy Clustering 

for Segmentation 

of Multi-Spectral 

Magnetic 

Resonance 

Images 

T1W, 

T2W, 

,PD 

A 

comprehensive 

GFCM 

technique 

GFCM outperforms 

the conventional FCM 

method and its 

extensions in normal 

brain MRI analysis. 

Study included 

only normal 

brains. More 

detailed study 

using additional 

dimensions (such 

as FLAIR images) 

required. 

Kroon et al. 

(2008) [131] 

Multiple sclerosis 

detection in 

multispectral 

magnetic 

resonance 

images with 

principal 

components 

analysis 

FLAIR, 

T1W, 

T2W, 

and 

raw 

data 

PCA with log-

likelihood ratio, 

Genetic 

algorithm, edge 

preserving 

filtering and 

atlas based 

correction used 

for bias field 

correction 

The similarity scores 

between proposed 

model and expert 

classifications were 

found to be less. Best 

classification results 

observed with normal 

raw data. 

Better local 

features and 

separate PCA 

reductions for MS 

and non-MS data 

required. A larger 

training set also 

required to 

improve the 

results. 

 

Lao et al. (2008) 

[132] 

Computer-

Assisted 

Segmentation of 

WML in 3D MR 

Images Using 

Support Vector 

Machine 

 

T1W, 

T2W, 

PD, 

FLAIR 

 

SVM 

 

Post processing

analysis reduces 

false positives by 

using anatomic 

knowledge and 

measures of distance 

from the training set. 

Did not rigorously 

evaluate the relative 

value of each 

acquisition protocol. 

 

 

 

Divided patients 

by lesion load. 

Quite good result 

and did the 

evaluation of 

binary 

segmentations 
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Lecoeur et al. 

(2009) [133] 

Optimized 

supervised 

segmentation of 

MS lesions from 

multispectral 

MRIs 

T1W, 

T2W, 

PD, 

FLAIR 

 

An optimized 

spectral 

gradient based 

on a psycho-

visual graph 

cut  approach 

 

Improved pathological 

analysis with overall  

lower computational  

load 

Validation using 

larger datasets 

required to 

ensure the 

reliability and 

robustness 

Ozer et al. (2010) 

[134] 

Supervised and 

Unsupervised 

Methods for 

Prostate Cancer 

Segmentation 

with Multispectral 

MRI 

T2, 

DWI, 

and 

DCE-

MRI 

SVM, RVM, 

fully automatic 

unsupervised 

fuzzy Markov 

random field 

method 

No significant 

difference between 

the SVM and RVM 

segmentation results 

Improved prostate 

cancer segmentation 

performance 

compared to 

manually segmented 

results. 

Found to be very 

useful in the 

diagnosis and 

detection of 

prostate cancer. 

Recommends 

supervised 

methods for brain 

MRI analysis. 

Zhang et al. 

(2011) [135] 

Kernel feature 

selection to fuse 

multi-spectral 

MRI images 

for brain tumour 

segmentation 

T1W, 

T2W, 

PD, 

FLAIR 

Support Vector 

Machine (SVM) 

integrated with 

kernel feature 

space, 

adaptive 

training 

process 

Compared with 

experiments without 

feature selection and 

adaptive training, the 

proposed method 

improved the results 

significantly and 

reduced the time 

consumption. 

Self-updated 

system over time 

provides latest 

results. An 

elaborate 

validation 

required for larger 

database 

Valdés 

Hernández et al. 

(2012) [8] 

Automatic 

segmentation of 

brain white 

matter and white 

matter lesions in 

normal aging: 

comparison of 

five multispectral 

T1W, 

T2W, 

T2*W, 

FLAIR 

MCMxxxVI,

Back-

Propagated 

Neural 

Networks, 

Gaussian 

classifier, 

Nearest 

Neighbour, 

Parzen 

Windows. 

MCMxxxVI delivered 

better results than the 

other methods 

investigated 

 

Lack of an explicit 

investigation on 

inter-observer 

variations, 

relatively small 

size sample of 

subject studied. 

Methodological 

improvement 

required for full 

automation 
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techniques. 

García-Lorenzo

et al. (2013) 

[139] 
Review of 

automatic 

segmentation 

methods of 

multiple sclerosis 

white matter 

lesions on 

conventional 

magnetic 

resonance 

imaging 

 

Systematic 

review of the 

literature to 

evaluate the 

state of the art 

in automated 

multiple 

sclerosis lesion 

segmentation 

Described the 

complexity of the 

lesion segmentation 

problem and 

identified solutions 

that have been 

proposed in the 

literature 

Latest and a good 

review in the 

research of brain 

MRI 

segmentation 

2.7 Challenges in MRI analysis 
Challenges in MR image analysis can be divided into two categories [139]; 

First, issues related to the proposed methods and implementations, and 

second, problems related to characteristics of data. 

2.7.1 Methodological challenges 

A robust, accurate, fully-automated lesion segmentation method suitable for 

use in clinical trials is still not available: Available literature on the topic of 

brain MRI analysis and lesion segmentation, and some important advances 

have been described in the previous sections and survey papers. But it is clear 

that the problem is far from solved, and still more work is required in this 

area. 

Importance of Multimodal/Multispectral information: Although some lesions 

are obvious in only one sequence (for example in FLAIR), the lesion should 

be confirmed using other sequences (T2W or PD) to avoid false positives. 
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T1W images also can give very good tissue contrast, which is found to be 

very useful to provide an improved analysis. 

Spatial information is necessary: Both spatial and intensity information is 

important for a good segmentation. In some MR sequences more than one 

tissue have similar intensities; then noise will reduce the performance of the 

algorithm. Spatial information in the local neighborhood level and the 

anatomical level is useful in this regard resolve this issue.  

Unsupervised vs. supervised approaches: Unsupervised methods have the 

advantage of not requiring a ground truth and prior knowledge about the 

brain tissue classes. But studies in the literature concluded that if the 

supervised methods are well trained, more robust results can be obtained.  

The majority of unsupervised methods are based on global clustering 

techniques such as FCM or a Gaussian mixture model. The intensity of the 

tissues and lesions vary across the image. So, supervised and unsupervised 

methods should consider these local variations in order to improve the 

sensibility of the methods in some parts of the brain. 

Availability of methods: The majority of methods are not publicly available, 

which makes a comparative study and improvement very difficult.  

2.7.2 Data specific challenges 

Partial volume effects: Limited resolution of MR images lead to fuzziness in 

the border of the lesions, and it causes the partial volume effects. Methods 

considering these effects can improve the reproducibility of WML 

segmentation.  

Multicenter datasets: Images from different scanners have different contrasts 

or intensities, even though same protocols are employed. Methods should be 

designed specifically to deal with this variation also, without affecting the 

significant information relevant for clinical studies. 
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Diffuse disease: Automatic methods have concentrated on the focal lesions 

caused by the disease, but in some cases it is impossible to find the border 

between lesions and the neighboring diffuse dirty WM. No method has 

attempted to resolve it; still it remains as an open issue. 

2.8 Survey of ICA based approaches in biomedical 
applications 

2.8.1 Conventional ICA 

Blind source separation (BSS) is the approach, in which original source 

signals are estimated using only the information of the mixed signals 

observed in each input channel, where the independence among the source 

signals is mainly used for the separation. The early contributory works on 

BSS were performed by Cardoso (1989) [140] and Jutten and Herault (1991) 

[141], where higher-order statistics of the signals were used for estimation of 

the independence. Common (1994) [142] clearly defined the term 

independent component analysis (ICA), with the help of a new algorithm that 

measures independence among the source signals. Later, Bell and Sejnowski 

(1995) [143] followed this work to design ICA extension to the infomax (or 

the maximum-entropy) algorithm for BSS, which is based on a minimization 

of mutual information of the signals. Some relevant works related to brain 

tissue classification from multispectral data is explained in this section. More 

details on the theory, algorithms, applications and relevance of ICA in this 

thesis work are explained in Chapter 3. 

ICA has shown its great ability in enhancing the image contrasts of major 

brain tissues in structural MRI and in analysis of functional MRI [144]. It is a 

potential and widely accepted method in fMRI analysis, but relatively less 

number of works was found in structural MRI analysis. Nakai et al. (2004) 

[33] proposed ICA as an unmixing method to separate different brain tissue 
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structures like GM, WM, and CSF into a set of statistically independent 

components. ICA based on the learning rule of Bell and Sejnowski after pre-

whitening operations was used for evaluation. The involvement of gray or 

white matter in brain tumor cases and the demyelination in the case of 

multiple sclerosis were enhanced and visualized in independent component 

images. They suggested that with the proper choice of contrast for the 

original images, ICA is useful for preprocessing transformation before 

clustering and segmentation of human brain. This work was later widely 

accepted as the base for ICA based MRI analysis. 

Certain limitations observed in the implementation of their work are given 

below:   

• They assumed that the number of input MR bands, L, is greater than 

or equal to the number of brain tissue sources p. In contrast to fMRI, 

L< p (over-complete) for structural MRI analysis. 

• Another issue is, random initial projection vectors by ICA, which 

results in different final sets of projection vectors and ICs for the 

same users in different runs or different users at the same time. This 

serious inconsistency undermines repeatability of ICA and makes it 

unstable.  

• Additionally, due to the use of random initial projection vectors, the 

order of ICA-generated ICs is completely random and does not 

necessarily indicate the significance or importance of an IC. So, 

image evaluation must wait until all ICs are generated. 

Some relevant works related to application of ICA in biomedical signals is 

well explained in James and Hesse (2005) [145]. Later, Chen and Sugiki 

(2006) [146] proposed a method to extract three independent components 

from MR datasets by ICA. The ICs obtained were used for improved 

segmentation of phantom MR images, T1W, T2W and PD images. Tateyama 
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et al. (2007) [147] proposed a new method for classification of brain matters 

in the MR datasets using Kernel Independent Component Analysis (KICA) 

[148] to address the non-linearity issues in input MR data. The experimental 

results showed that performance of the proposed method significantly 

improved compared to the conventional methods. But they did not perform a 

complete validation and analysis using a large database. Detailed explanation 

of this method with examples is available in Chapter 3.  

Wenlu Yang et al. (2010) [149] proposed a method of automatic 

classification of magnetic resonance images based on ICA, which was 

composed of three steps. First, all MRI scans were aligned and normalized by 

SPM. Then FastICA was applied to the pre-processed images for extracting 

specific neuroimaging components as potential classifying feature. Finally, 

the separated ICs were fed into a classifying machine that discriminates 

among Alzheimer’s patients, and mild cognitive impairment. The 

experimental results showed that this method can successfully differentiate 

subjects with Alzheimer’s disease and mild cognitive impairment from 

normal controls. But vagueness in the meaning and usage of disease related 

features restricted them to generalize the method.  

2.8.2 Solutions to Over-Complete ICA 

Ouyang et al. (2008) [5] proposed an approach to solve Over Complete-ICA 

(OC-ICA) issue, and issue of random initial projection vectors. They 

implemented OC-ICA in conjunction with spatial domain-based 

classifications, to improve the classification performance. Their work was 

considered as the first attempt to investigate the utility of the OC-ICA in MR 

multispectral image analysis. Three ICA-generated independent components 

(ICs) were stacked one atop another to form a new image cube, which is 

spectrally and statistically independent in ICs. Proposed technique was 

observed as the best compromise between using supervised classification 
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alone such as Fisher’s Linear Discriminant Analysis (FLDA) and SVM, and 

unsupervised technique alone such as ICA. Classifications using FLDA and 

SVM solved the inconsistency in ICs, and results indicated significant 

improvement in classification performance also. 

The same team proposed another efficient method in [150], to address the 

same ICA issues. In order to address the over-completeness issue, they 

proposed a Band-Expansion Process (BEP), in which an additional new set of 

images were generated from the original MR images via nonlinear functions. 

These newly generated images were then combined with the original MR 

images to provide sufficient MR images for ICA analysis. In order to resolve 

the second issue, a Prioritized ICA (PICA) was designed to rank the ICA-

generated independent components (ICs) so that MR brain tissue substances 

can be unmixed and separated by different ICs in a prioritized order. Finally, 

BEP and PICA were combined to further develop a new ICA-based 

approach, PICA-BEP, to perform MR image analysis using SVM. Prioritized 

ICA (PICA) was originated from dimensionality reduction concepts, 

eigenvectors of the data matrix and the higher-order statistics referred to as 

skewness and kurtosis were used in it. Even though prioritized ICA-BEP 

improved the traditional ICA, it was observed that generation of more bands 

may result in over separation in the sense that a brain substance is forced to 

be split and separated in more ICs.  For three-band MRI analysis, it was 

recommended that using cross correlation may be good enough. More 

explanations on prioritized ICA-BEP with examples are included in 

Chapter3. 

In another work, Chai et al. (2009) [151] compared two new approaches, 

ICA+SVM and BEP+ICA+SVM, to a standard classification technique, 

SVM. The results from synthetic data analysis for GM and WM classification 

showed improved results for BEP+ICA+SVM over conventional SVM 
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analysis. An elaborate validation and evaluation using clinical data sets were 

necessary to ensure the performance of the method.  As a continuation, Chai 

et al. (2010) [29] performed an effective quantification of brain normal 

tissues and pathologies simultaneously using ICA+SVM. Detailed 

investigation and evaluation of effective volumetric measurements of normal 

and lesion tissues using synthetic and real multispectral MR images was 

performed. Accuracy and reproducibility of CSF, GM, WM, and WML 

volume measurements were also evaluated. The ICA+SVM clearly extracted 

the normal tissues and white matter hyper intensity lesions with low intra- 

and inter-operator coefficient of variations. Inconsistency involved in over-

complete ICA was significantly reduced through ICA based SVM. The 

experiments conducted provided evidence that the ICA+SVM method has 

potential in clinical analysis of MRI. Our thesis work selected this work as 

the method for immediate comparison, to justify the improvement in SVM 

based classification. More details are given in Chapter 3. 

2.8.3 ICA extensions to address the local feature extraction 
issues 

Another critical issue of applying ICA in MRI analysis is the poor 

performance in identifying local features. In biomedical applications, 

relatively few works were observed to address this issue. In the case of MRI 

analysis, application of conventional ICA itself is a new topic; still 

researchers cannot exploit its full potential in clinical analysis. No previous 

works were reported in the literature to address this issue for brain MRI 

analysis. 

Bauer et al. (2003) [152] proposed a neural network model for the 

identification and classification of small malign and benign skin lesions from 

ALA-induced fluorescence images. A self-organizing feature map or 

Generative Topographic Mapping (GTM) was used to cluster images patches 
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according to their inherent local features, which then can be extracted with 

ICA. These components were used to distinguish skin cancer from benign 

lesions, achieving an average classification rate of 70%. Clustering the data 

in a pre-processing step using SOM or GTM improved the overall 

recognition rate considerably. But accuracy was found to be strongly 

dependent on the cluster size.  

Recently, Han and Li (2011) [53], proposed a novel feature selection method: 

Multi-resolution Independent Component Analysis (MICA) for large-scale 

gene expression data. This method resolved the weak points of the widely 

used transform-based feature selection methods such as Principal Component 

Analysis (PCA), Independent Component Analysis (ICA), and Nonnegative 

Matrix Factorization (NMF) by avoiding their global feature-selection 

mechanism. In addition to demonstrating the effectiveness of the MICA in 

meaningful biomarker discovery, they presented a MICA based SVM 

(MICASVM) and LDA (MICA-LDA) to attain high-performance 

classifications in low-dimensional spaces. Comprehensive experimental 

comparisons with nine state-of-the-art algorithms on six high-dimensional 

heterogeneous profiles demonstrated the superiority and stability of the new 

approach. MICA-SVM showed near clinical level sensitivities and 

specificities as well as strong performance stability over its peers in 

classification. In this thesis work, we modified MICA for MRI analysis, and 

evaluated the improvement in classification performance by FCM and SVM. 

More details are available in Chapter 4. 

2.9 Summary 

In this chapter, recent research papers which are relevant to the present thesis 

work are discussed. The chapter started with a brief overview of methods in 

MRI analysis, especially single image analysis. Different classification 
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approaches are explained with more emphasis on the state of the art 

algorithms. Survey on supervised and unsupervised segmentation algorithms 

recommended supervised approach as more efficient and reliable. FCM and 

SVM based methods were found to be more popular in unsupervised and 

supervised category. Effectiveness of supervised and unsupervised 

multispectral analysis in MR image analysis is reviewed with some recently 

reported works. Methodological and data specific challenges and their 

possible solutions were also summarized in this chapter. The advantage of 

spectral unmixing using ICA in brain tissue analysis is focused in the last 

section. Review of challenges in MRI analysis using conventional ICA 

motivated us to explore more studies in over-complete ICA issue and local 

feature analysis. In MRI analysis these issues have great significance, since 

soft tissues or several types of small abnormalities are to be extracted with 

high accuracy from a limited number of bands. 
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Chapter -3 

ICA AND BRAIN MRI  
 

3.1 Introduction 

Independent component analysis (ICA) is a generic model which helps to 

find a linear representation of non-gaussian and mutually independent data 

[144]. The main objective of ICA is to find the underlying, original signals or 

processes, which usually provide important information that cannot be 

directly measured from the observed signals. As a blind statistical signal 

processing technique, ICA can be applied to areas such as blind separation of 

mixed voices or images, analysis of several types of hidden data, speech and 

image recognition, data communication, sensor signal processing, biomedical 

signal processing and so forth. The basic concepts, algorithms and 

implementations are discussed in the first few sections of this chapter. After 

that, application of ICA in multispectral MRI analysis is discussed, and the 

common issues in ICA for MRI are illustrated with some recently proposed 

methods in the literature. 

3.2 Basic concepts of Independent Component 
Analysis (ICA)  

ICA can be considered as a method to solve the Blind Source Separation 

(BSS) problem, where original sources can be estimated from measured or 

observed mixture of signals, without any explicit knowledge of mixing 

system or signal sources. For example, the cocktail party problem [145], in 

which a number of people are talking simultaneously in a room and one is 

trying to extract the voice of a particular person from the rest of the speakers. 

ICA uses statistical independence of the source signals to solve these kinds of 
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blind signal separation problems. Algorithms that could successfully perform 

linear ICA was first introduced by Herault and Jutten in 1986 [153], and it 

has been established as a fundamental way of analyzing multivariate data in 

1990’s [142, 154].  

Conventional ICA provides a linear decomposition of the data, like the more 

classical methods of multivariate analysis techniques, factor analysis and 

Principal Component Analysis (PCA). However, these classical methods 

sometimes failed to unmix or separate the underlying sources, mixed in the 

observed data. ICA uses the non-Gaussian structure of the data to recover the 

independent components that created the data. It is an unsupervised method, 

because it is not necessary to know the expected results of the system and it 

divides the measurements into different components without designing 

different experimental conditions or supervised training.  

The basic idea of ICA is illustrated with the help of original source signals 

(source1, source2, source3, and source4), mixed signals (mixed1, mixed2, 

mixed3, and mixed4) and unmixed signals (extracted1, extracted2, 

extracted3, and extracted4) as shown in Fig. 3.1.  

3.2.1 Definition 

Let  ‘x’ be the random vector whose elements are the mixtures x1, ..., xn, and 

‘s’ be the random vector with elements s1, ... , sn. Let ‘A’ be the matrix with 

elements aij.  All vectors are considered as column vectors. Using the vector-

matrix notation, the above mixing model is written as  

      x =As                                              (3.1) 

Then, after estimating the matrix ‘A’, its inverse can be computed, say ‘W’, 

and we obtain the independent components simply by, 

       s=Wx              (3.2) 
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The statistical model in Eq. (3.2) is called independent component analysis, 

or ICA model, where it is assumed that components si are statistically 

independent, and unknown mixing matrix ‘A’ is square.  

 
Fig. 3.1 The basic concept of ICA. First column represents the original source   

 signals. From the four mixed signals (middle column), ICA extract the original  

  source as shown in the last column. 

3.2.2 Non-Gaussianity and Independent Components (ICs) 

The key foundation of ICA is the assumption of non-Gaussianity of the 

independent components [142], which can be described as follows. 

Two different random variables y1 and y2 are said to be independent, if 

information on the value of y1 does not give any information on the value of 
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y2, and vice versa. If the components of the mixed signals are created by 

physically separate and non-interacting source entities, they can be 

considered as statistically independent. i.e., s1, ... , sn in section 3.2.1 are 

independent, whereas mixtures x1, ..., xn are not.  Theoretically, independence 

is defined in terms of joint and marginal probability density functions as 

described below. 

Let P(y1, y2) be the joint probability density function (pdf) of y1 and  y2, then  

they are said to be independent if  

     P(y1, y2) = P1(y1) . P2 (y2)       (3.3) 

where P1(y1) and P2(y2) are the marginal pdf of y1 and y2 respectively, defined 

as, 

     P1(y1) =  ∫
y2

P(y1, y2) dy2      (3.4)    
 

The random source vector, s, in section 3.2.1, with multivariate density 

function P(s) is said to have statistically independent components if  

     P(s) = ∏
−

n

i 1

Pi(si)       (3.5) 

Independence is a stronger property than uncorrelatedness[144]. According 

to statistical theory, if the variables are independent they are uncorrelated, but 

the converse is not true. PCA or factor analysis gives components  that are 

uncorrelated, but uncorrelatedness is not enough to separate the hidden 

source components.  Gaussian variables make ICA impossible because joint 

pdf of source variables are symmetric, from which we cannot estimate 

mixing matrix A. i.e., symmetric joint pdf does not contain any information 

on the columns of A. Projection of observed data in the direction of 

independence cannot be achieved through estimate of A.  

In probability theory, the Central Limit Theorem (CLT) [144] states that the 

distribution of a sum of independent random variables tends toward a 
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gaussian distribution, under certain conditions. i.e., a sum of two independent 

random variables usually has a distribution that is closer to gaussian than the 

distributions of the original random variables.  

In ICA model described in eq. (3.2), observed data signal xi can be expressed 

in terms of source components sk as 

    xi=∑
=

n

k 1

aiksk ,         (3.6) 

   where aik, k=1, ... ,n are the constant coefficients. 

According to CLT xi’s are more gaussian than sk’s. If w were one of the rows 

of the inverse of A in eq. (3.1), one of the independent components ‘y’ can be 

estimated as a linear combination of x. 

     y = wT x         (3.7) 

   i.e.,  y = wTAs.         (3.8) 

where w is a vector to be determined. In practice, we cannot calculate w 

exactly, because we have no knowledge of matrix A.  

Consider the transformation   z = ATw, then y can be expressed in terms of z 

as, 

     y = zTs          (3.9) 

zTs is more gaussian than any of the si, and least gaussian when it equals to 

one of the si. This happens when only one of the elements, zi of z is nonzero.  

3.2.3 Objective functions 

Estimation of the weights, W in ICA is based on contrast (or objective) 

functions that are calculated using some statistical properties of the data. The 

optimization (minimization or maximization) of these functions, and the 

relative adaptive change of the weights helps to estimate the final matrix W. 

Several objective functions based on different measures such as likelihood, 

entropy, and mutual information or more frequently on the approximation of 
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these statistical properties have been proposed for the estimation of the 

projection matrix W in the literature [142-144]. There are different ICA 

estimation approaches as explained below. 

3.2.3.1 Measures of nongaussianity  

a) Kurtosis: Higher order statistics uses kurtosis, the fourth order moment of 

random data as the classical measure of non-Gaussianity. Kurtosis of a 

random variable x is denoted as kurt(x) and defined by, 

       kurt(x) =E(x4)-3{E(x2)}2     (3.10) 

Assume that x is centered (zero-mean) and has variance equal to one, then eq. 

(3.10) can be simplified to  

     kurt(x) =E(x4)-3        (3.11) 

If x is a gaussian random variable kurt(x) is zero, since E(x4) = 3{E(x2)}2. 

Kurtosis can be positive or negative; if kurt(x) is negative, then x is called 

subGaussian. A random variable with positive kurtosis is called 

superGaussian. Kurtosis, or its absolute value, has been widely used as the 

measure of nongaussianity in ICA, because of both computational and 

theoretical simplicity in it. As the value of kurtosis goes away from zero, 

distribution of the variable also becomes more non-Gaussian. However, it is 

very sensitive to outliers and are largely unaffected by structure in the middle 

of the distribution 

b) Negentropy: It is another important measure of nongaussianity based on 

the information-theoretic quantity of (differential) entropy. The entropy of a 

random variable gives the degree of information provided by the observation 

of the variable. The differential entropy H of a random variable y with a 

probability density function, f(y), is given by 

    H(y) = - ∫ dy f(y) log f(y)        (3.12) 
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Independent components correspond to directions in which the differential 

entropy of WTx is minimized. Since differential entropy is not invariant for 

scale transformations, it is modified to obtain a linearly invariant version, 

negentropy J as follows,  

     J(y) = H(ygauss)−H(y)      (3.13) 

where ygauss is a Gaussian random variable of the same covariance matrix as 

that of  y. Thus, negentropy (or differential entropy) is defined as the 

difference between the entropy of a Gaussian random variable with the same 

variance as the observed random variable, and the entropy of the observed 

variable. Negentropy is zero when the observed random variable is Gaussian 

and positive when the observed variable is non-Gaussian. 

The advantage of using negentropy as a measure of nongaussianity lies in the 

fact that it is well justified by statistical theory. While considering the 

statistical properties, it can be an optimal estimator of nongaussianity. 

However, it is computationally very expensive. Estimation of negentropy 

requires an estimate (possibly nonparametric) of the probability distribution 

function [144]. Simpler approximations of negentropy are found to be more 

useful in nongaussianity measurement. 

c) Approximations to Negentropy : The approximations to negentropy were 

based on the maximum-entropy principle. In general we obtain the following 

approximation [144]:  

    J(y) ≈  ∑
−

p

i 1

ki[ E{Gi(y)} - E{Gi(v)} ]2    (3.14) 

where ki are some positive constants, and v is a Gaussian variable of zero 

mean and unit variance. The variable y is assumed to be of zero mean and 

unit variance, and the functions Gi are some non-quadratic functions. If there 

exists only one non-quadratic function G, the approximation becomes, 

    J(y) ∝ [E {Gi(y)} - E {Gi(v)} ]2      (3.15) 
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We can fine tune this approximation by wisely choosing Gi that does not 

grow too fast, which yields more robust estimators.  Some useful choices of 

G are, 

    G1 (u) = (1/α1) logcoshα1u      (3.16)  

where 1≤ α1≤2 is some suitable constant, and 

    G2 (u) = −exp (−u2/2)       (3.17) 

Approximations of negentropy give a very good compromise between the 

properties of the two classical nongaussianity measures, kurtosis and 

negentropy; they are conceptually very simple, robust and fast to compute. 

3.2.3.2 Minimization of mutual information  

It is another approach for ICA estimation, in which mutual information is 

used to measure the dependency between two random variables. Using the 

concept of differential entropy, define the mutual information ‘I’ between m 

(scalar) random variables, yi, i = 1...m as follows, 

    I (y1, y2... ym) = ∑
=

m

i 1

H(yi) −H(y),      (3.18) 

where H(yi) give the lengths of codes for the yi when they  are coded 

separately, and H(y) gives the code length when y is coded as a random 

vector, i.e. all the components are coded in the same code. In terms of 

negentropy eq. (3.18) can be rewritten as, 

    I (y1, y2 ...ym) =C− ∑
=

m

i 1

J (yi)          (3.19) 

where C is a constant that does not depend on W.  

From eq. 3.19, it is very clear that calculation of an invertible transformation 

W that minimizes the mutual information is roughly equivalent to finding 

directions in which the negentropy is maximized.  
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3.2.3.3 Maximum Likelihood (ML) estimation 

It is a very popular approach to estimating the ICA model which is closely 

connected to the maximum likelihood principle. Pham et al. (1992) [155] 

formulated the likelihood in the noise-free ICA model, and then estimated the 

model by a maximum likelihood method. Let W= (W1, ...,Wn)T denotes the 

matrix A−1, the log-likelihood takes the form [19], 

     L= ∑
=

T

t 1
∑
=

n

i 1

log fi(Wi
Tx(t)) + T log |det W|   (3.20) 

where ‘fi’ are the density functions of the si (here assumed to be known), and 

the x(t), t = 1, ...,T are the realizations of x. The term log |detW| in the 

likelihood comes from the classic rule for (linearly) transforming random 

variables and their densities [156].  

InfoMax principle [144] is based on maximizing the output entropy (or 

information flow) of a neural network with non-linear outputs. Let x be the 

input to the neural network whose outputs are φi(Wi
Tx), where the φi are 

some non-linear scalar functions, and the Wi are the weight vectors of the 

neurons. For well chosen values of φi, the framework, 

       L= H(φ1(W1
Tx), φ2(W2

Tx), ..., φn(Wn
Tx))    (3.21) 

can estimate the ICA model. 

Maximum likelihood and mutual information are equivalent, for all practical 

purposes. The problem with maximum likelihood estimation is that the 

probability density function must be estimated correctly. Otherwise ML 

estimation will give completely wrong results. This problem does not occur 

in ICA estimation with a reasonable measure of nongaussianity. In many 

cases, we have enough prior knowledge on the independent components, and 

we don’t need to estimate their nature from the data.  
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3.2.4 ICA implementation methods 

Some of the ICA algorithms require preprocessing such as centering and 

whitening [144], of observed data and some may not. The most popular and 

widely referenced techniques for implementing ICA are discussed in the 

following sections. 

3.2.4.1 Non-Gaussianity through kurtosis: FastICA 

FastICA is one of the most widely referenced ICA techniques in the literature 

introduced by Hyvarinen and Oja (1997) [154]. FastICA attempts to unmix 

the inherent component characteristics from the given measured dataset 

based on the non-Gaussianity. In FastICA, a fast fixed-point iterative 

algorithm finds the projections that maximize the non-Gaussianity of 

components by their kurtosis as discussed in section 3.2.3.1 

3.2.4.2 Non-Gaussianity through negentropy: InfoMax.  

Bell–Sejnowski algorithm ([143], EEGLAB) attempted to extract non-

Gaussian sources using negentropy, as discussed in section 3.2.3.1(b). It is a 

neural network gradient-based algorithm in which the learning rule is based 

on the principle of Information Maximization (InfoMax). The learning 

criterion is obtained by the maximum likelihood estimation of an ICA model, 

as discussed in section 3.2.3.3.  In general, as a neural network approach, it 

suffers from the problems inherent in gradient training and learning. The 

choice of the nonlinearities used also has a great role in the performance of 

the algorithm. 

3.2.4.3 Joint Approximate Diagonalization of Eigenmatrices (JADE) 

This approach is known as ICA by tensorial methods, since it uses higher-

order cumulant tensors [145]. An Eigen value decomposition of the 

covariance matrix (second-order cumulant tensor) of the data, CX, transforms 
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the data such that the second-order correlations are zero. Similarly, fourth-

order cumulant tensors make the fourth-order cumulants zero or as close to 

zero as possible. As the name implies, JADE involves the joint 

diagonalization of a number of matrices. i.e., it attempts to make all off-

diagonals zero or close to zero as possible [157]. JADE is useful in low 

dimensional problems, but it has the limitation that it cannot be used with 

high dimensional data due to numerical reasons.  

3.3 FASTICA 

In this thesis work, FASTICA algorithm is used to implement ICA. The 

learning rule in Fast ICA finds a direction, i.e. a unit vector W such that the 

projection WTx maximizes the nongaussianity measured by the 

approximation of negentropy J(WT x)  as discussed in section 3.2.3.1. It is 

based on a fixed-point iteration scheme for finding a maximum of the 

nongaussianity of WTx. An approximative Newton iteration [158] also can be 

used to find the maximum. It requires preprocessing techniques like centering 

and whitening to make the problem of ICA estimation simpler and better 

conditioned. The major steps in this computation are shown in Fig 3.2. 

 
Fig. 3.2 FASTICA 

3.3.1 Centering 
Centre the observation vector x by subtracting its mean vector µ=E(x). It 

simplifies ICA algorithms. Thus the independent components are made zero 

mean, since 
        E(s) = A-1E(x)       (3.22) 
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3.3.2 Whitening 

Whitening or sphering is the process of linearly transforming the observation 

vector x by linearly multiplying it with some matrix V such that its 

components are uncorrelated and have unit variance.  i.e., 

        z=Vx,          (3.23) 

where z is a new vector that is white. In terms of the covariance matrix, 

E(zzT) = I, where I is the unit matrix. A popular method for whitening is 

Eigen Value Decomposition (EVD) or PCA. 

In PCA, an observed vector x is first centered by removing its sample mean. 

Then the vector is transformed by a linear transformation into a new vector, 

possibly of lower dimension, whose elements are uncorrelated with each 

other. The linear transformation is found by computing the eigenvalue 

decomposition of the covariance matrix. For a zero-mean vector x, with n 

elements, the covariance matrix Cx is given by: 

       Cx =E(xxT) =EDET,        (3.24) 

where E = (e1, e2… en), orthogonal matrix of eigenvectors of Cx, and  

     D = diag(λ1, λ2, …,λn ), diagonal matrix of eigenvalue of Cx.  

Whitening or sphering can be described as  

      z = Px         (3.25) 

where the whitening matrix P is defined as  

      P = D-1/2ET         (3.26) 

In the subsequent process of ICA estimation, iteration is performed on z 

instead of x. Methods like local PCA and random projection [144] can also 

be used to achieve the linear transformation and dimensionality reduction. 
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3.3.3 FastICA iteration for one Independent Component  

A collection of whitened data, z is achieved through data pre-processing 

methods as described in the previous section. Let function, g() be the 

derivative of a non-quadratic function,  

      f(u) = u3,  or  

      f(u) = -exp(-u2/2) ,  or        

      f(u) =   log(cosh (u)) 

Then the basic procedure of FASTICA to obtain one independent component 

can be summarized as follows. 

  Step1: Randomly choose an initial weight vector W 

  Step2: Let W +=E [z g(W Tx)] - E[g’(W Tz)] W   

  Step3: Let W = W +/|| W +|| 

  Step4: if not converged, go back to Step2  

The final vector W equals one of the columns of the (orthogonal) unmixing 

matrix. To estimate n independent components, this algorithm is to be 

repeated n times as discussed in the next section. 

3.3.4 FastICA iteration for multiple units  

Estimation of several independent components, can be achieved through 

repetition of one-unit FastICA algorithm using several units with weight 

vectors W1,...,Wn. After each iteration, outputs, W1
T, ...,Wn

T, are decorrelated  

to prevent the convergence of different vectors to the same maxima. 

Deflation scheme based decorrelation, symmetric decorrelation and iterative 

methods are the three commonly used approaches in the decorrelation 

process. FASTICA for multiple units incorporated these ideas also using 

additional steps as follows. Let C be the number of required independent 

components, 
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Algorithm: 

for p = 1 to C, 

  step1: Wp = Initial random vector of length N 

  while Wp changes, 

    step2: Let Wp
+=E [z g(Wp

Tz)]-E [g’(Wp
Tz)] Wp   

      step3: Wp
+ = Wp

+  -Wj Wj 

     step4: Wp = Wp+/|| Wp+|| 

   end 

end 

Output : W  = [W1, W2, … WC]T 

    s=Wx 

In the above algorithm, orthonormalization (decorrelation) is performed in 

Step3 by deflation scheme approach. If we use symmetric 

orthonormalization, vectors are estimated in parallel, not one by one. In 

deflationary method, one by one estimation of vectors accumulates the 

estimation errors from the first vectors in the subsequent ones by 

orthonormalization [158]. Symmetric decorrelation can be accomplished by 

the update of W as, 

       W= (WWT ) −1/2 W       (3.27) 

where W is the matrix (W1, ...,Wn)T of the vectors, and the inverse square 

root (WWT ) −1/2 is obtained through EVD, 

    WWT = EDET    (WWT ) −1/2 = ED −1/2 ET  

3.3.5 Properties of FASTICA  

Contrary to ordinary ICA algorithms based on (stochastic) gradient descent 

methods FASTICA has some desirable properties which makes it best 
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suitable to multispectral and hyperspectral approaches in remote sensing and 

medical image processing. Some of them are,  

1.  Fast convergence – As its name implied, the convergence is cubic (or 

at least quadratic) for FASTICA, where the convergence is only linear 

for stochastic gradient descent based approaches.  

2.  In contrast to the ordinary ICA algorithms, FASTICA is very easy to 

use since it has no step size parameters to choose.  

3.  FASTICA algorithm estimates independent components directly 

using a nonlinearity, g ( ), whereas many other algorithms choose the 

nonlinearity based on estimates of the probability distribution 

function.  

4.  One by one estimation of independent components in FASTICA is 

useful in exploratory data analysis, and decreases the computational 

load of the method in cases where a few independent components 

need to be extracted.  

5.  Like neural network based algorithms, FastICA is parallel, 

distributed, computationally simple, and utilizing less memory space.   

All of these properties support FASTICA as a good choice in the 

implementation of ICA for higher dimensional applications. Performance of 

this method in the application of brain MRI for simultaneous analysis of 

multiple pulse sequences are discussed in the following sections. 

3.4 ICA in brain MRI analysis 

The greatest challenge in magnetic MR image analysis is the feature 

extraction from different pulse sequences, to be used in the pathological 

analysis for medical diagnosis. In this section, effect of ICA in feature 

extraction from multispectral brain MR images is analyzed with the help of 

some clinical and synthetic images. Also we discuss some major issues and 
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results of some case studies, using the algorithms addressing the problems in 

the literature. Recent researches on application of ICA in multispectral image 

analysis, as discussed in Chapter 2, demonstrated that multispectral and 

spatial information from brain MR images can be fully explored by statistical 

independency based transform, ICA [5, 33]. Based on these concepts, first, 

we have done a case study on clinical data to analyze the merits and demerits 

of this transform based feature extraction approach. Results observed for a 

multispectral cube formed by T1WI, T2WI and FLAIR images are shown in 

Fig. 3.3.  
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Fig. 3.3 ICA in brain MRI
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First column shows the input images included in multispectral image cube, 

and the second column gives the results from ICA. From input images we 

can see that T1WI shows white matter information, but no abnormality 

details are available from it. T2WI locates tumor, surrounding edema and 

CSF. GM details are also visible in it. FLAIR images give the exact details of 

abnormalities, with traces of GM in the background. The input images can be 

considered as observed 2-d signals mixed by different brain tissues. Applying 

FASTICA on these images generates three different ICs, IC1, IC2, and IC3 

as shown in Fig. 3.3. IC1 is similar to FLAIR image itself, whereas IC2 

extract the details of WM with more information on abnormality locations 

affecting WM. IC3 gives information on CSF, but some traces of 

abnormalities mixed with CSF and GM are still visible in it. GM tissues are 

found to be very difficult to extract from these input images. 

3.5 Issues in brain MRI analysis 

ICA is found to be yielding very good results in brain tissue extraction, but 

constraints and limitations in ICA calculation often affects the accuracy of 

the clinical results, where soft tissues and small abnormalities are to be 

extracted with high accuracy from a limited number of bands. The major 

issues observed from the literature and case studies of multispectral MRI 

analysis can be summarized as follows. 

1. ICA is a global transform based on global mean and covariance.  Local 

details like small abnormalities were often neglected, while working 

with large amount of MR data [53]. 

2. Another issue occurs when number of tissues to be extracted is greater 

than the number of available images in multispectral suite (Over-

complete ICA). ICA results in this case accumulate more than one 

source component in one of the ICs [5, 29]. 
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3. Conventional classification systems and ICA use a simple linear 

approach. However, these linear models sometimes fail to represent 

complex data distributions found in practical applications [33]. 

4. Noise and other artifacts such as nonuniformity intensity, aliasing 

effects, patient movements in real MRI etc. adversely affects the 

efficiency of ICA in feature extraction [29]. 

In addition to these problem specific issues, following common ICA issues 

still exists [150], 

5. Final sets of projection vectors produced by two different sets of 

random initial projection vectors (unit vectors) are generally different.  

6. Due to the use of random initial projection vectors, the order that the 

ICs are generated is completely random, and does not necessarily 

indicate the significance or importance of an IC.  

In recent studies, several attempts were made to address some of these issues 

so that ICA can be effectively used in multispectral MRI analysis. Major 

works in these directions are discussed with the help of some examples in the 

following sections. 

3.6 Kernel ICA 

Bach and Jordan, (2002) [148] presented an ICA extension to address the 

non-linearity issues in input data, known as Kernel ICA (KICA).  The data in 

the input space x = (x1, x2. . . xm) is mapped to a higher dimensional feature 

space F through a non-linear mapping Φ such that ,  

       Φ: x  RN → Φ(x)  F      (3.28) 

and the nonlinear relation in the input data can be searched in the feature 

space F [147]. 

In the implementation, KICA does not calculate Φ, the implicit feature 

vector, explicitly. Instead of that, it computes kernel function K as inner 
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product of two vectors in F [147]. There are several kernel functions such as 

Gaussian kernel, 

       K(xi, xj) = exp(− 2σ2||xi – xj||2)  ,   (3.29) 

which corresponds to an infinite-dimensional Real Kernel Hilbert function 

(RKHS) space of smooth functions. 

Application of KICA in a clinical brain MRI is shown in Fig 3.4.  Tateyama 

et al., 2008 [147] demonstrated that KICA is a promising approach in brain 

tissue classification compared to conventional methods like neural networks, 

k-means clustering etc. However compared to ICA results, not much quality 

improvement observed for MRI analysis. Fig 3.4 (b) and Fig 3.4 (c) describes 

the difference in generated ICs by these two methods. On comparing the first 

column, it is seen that more specific extraction of CSF is possible with 

KICA. But, last column comparison shows that WM in ICA results is of 

better quality compared to that in KICA result. 

MRI analysis using KICA was found to be computationally very fast 

compared to conventional methods like neural networks [147]. However, the 

experiments with large sized MRI images were found to be too slow to 

converge, compared to ICA. On an average, more than half an hour 

difference observed between two methods for a 256x256 T1WI, T2WI and 

FLAIR image combination with windows7/Matlab implementation (running 

on a PC with Pentium Dual CPU/2.1GHz/4GB RAM). 
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(a) Input images 

 

 
(b) ICA results 

 

 
(c) Kernel ICA results 

 

Fig. 3.4 Independent Components from ICA and Kernel ICA 
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3.7 Band expansion and Over-Complete ICA 

Over-Complete ICA (OC-ICA) occurs when the number of observed signals 

is less than the number of sources to be unmixed. Suppose x1, x2, x3 are the 

three observed mixtures, and we try to estimate 4 independent sources s1, s2, 

s3, s4 from the observed signals. Solving this problem becomes a linear 

system of equations as follows, 

     x1 =a11s1+a12s2+a13s3+a14s4 

     x2 =a21s1+a22s2+a23s3+a24s4 

     x3 =a31s1+a32s2+a33s3+a34s4     (3.30) 

There exist many solutions to solve eq. (3.30), because the number of 

variables to be solved is greater than the number of equations. i.e., ICA must 

deal with an over-complete representation of a mixed model. Theoretically, 

the idea of the OC-ICA in MRI an analysis can be interpreted as pigeon-hole 

principle in discrete mathematics [150]. This issue occurs in a multispectral 

MR image analysis with three pulse sequences, when more than three brain 

tissues are to be extracted. In general, let L and p represent the number of 

different MRI sequences (holes) and number of brain substances (pigeons) to 

be classified respectively. L < p implies that there are more pigeons than 

pigeon holes. In this case, at least one IC from ICA must accommodate more 

than one brain tissues as shown in Fig 3.5 (b). Ouyang et al. (2008) [5, 150] 

proposed a Band Generation Process (BGP) to resolve this issue, based on 

autocorrelation and cross-correlation as follows. 

Let  { }L
iBi 1=  be the set of all original bands. Then 

i. { }L
iiB 1

2
= is the set of auto-correlated bands and 

ii. { }L
ji1,j,1 ≠==iji BB is the set of cross-correlated bands.  

Results of band generation from clinical images (Fig 3.5a) are shown in Fig. 

3.5 (c).  
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(a) Input images 

 
(b) ICA results 

 
(c) Band expansion by autocorrelation and cross-correlation 
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(d) Band expanded ICA results 

 

Fig. 3.5 Band expansion and ICA 



ICA and brain MRI 

71 

ICA is then applied on band generated images and original input images as a 

combined multispectral data. Results are shown in 3.5(d). Soft tissues like 

GM, WM, CSF, muscles, fat etc. are extracted in different ICs, which make it 

easy to segment those brain tissues without any indexing.  

These results support the findings by Y.C. Ouyang et al., (2008) [150] that 

ICA alone cannot perform well, but their extensions and combinations with 

other band enhancement or feature analysis methods can significantly 

improve the performance of brain tissue classification [151]. 

3.8 ICA coupled with SVM for MRI analysis 

A detailed quantitative analysis of ICA based SVM in clinical MRI is 

performed by Chai et al. in 2010. They demonstrated with the experimental 

results that SVM can provide better accuracy than other unsupervised 

methods or supervised methods, when more than one tissue features are 

accommodated in single independent component. Moreover, inconsistency 

associated with random initial projection vectors also can be avoided. Figure 

3.6 shows the ICA results and classified brain tissues [29] for synthetic 

images from Brainweb. From Fig 3.6 (b) it is observed that, ICs contains 

extrameningial tissues and other major tissues. In ICA based SVM 

classification, they focused on brain tissues such as CSF, GM, WM and 

lesions. Best features from ICs were chosen with the help of an experienced 

radiologist, and extrameningeal tissues were removed from the classified 

results. The observed results are shown in Fig 3.6(c). SVM training and 

classification with optimal features from ICs helped to discriminate the 

relevant brain tissues from independent components. But in the extraction of 

lesion features it failed to identify the abnormality presence in some 

locations, which is reflected in the identification of diseased tissues in WM  
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Fig, 3.6 Independent components and classified brain tissues. Upper row is the synthetic 

input images with multiple sclerosis lesions (from left to right: PDI, T1WI, and T2WI). 

Middle row is three independent components. Lower row is   GM, WM, CSF and white 

matter lesion images from SVM classification. [29].   
 

(Figure 3.6 last row) also. Ambiguities observed in ICs affect the selection of 

best features; thereby it degrades the overall performance of the analysis. 

Inter operator variability and intra-operator variability in ICA based SVM 

classification for different brain tissues, measured by Chai et al. (2010) [29] 

indicates these issues as shown in Table 3.1. 

Over-complete ICA issues and poor performance of ICA in small feature 

analysis lead to decreased values for performance measures like Tanimoto 

Index [29], sensitivity, specificity [77] and so forth. However, it is evident 

that feature selection from ICs which distinguishes the components with 
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better accuracy can lead to a more consistent and reliable classification with 

SVM in multispectral brain tissue analysis 
 

Table 3.1 Inter and Intra operator variability: Mean Tanimoto Index of GM, and WM 

and Mean Sensitivity, Specificity, and Lesion Burden of WML Classification for 

Synthetic Image Data [29] 
 

Operator 
 GM WM WML 

 TI TI Sens. Spec. Lesion 
Burden(mL) 

Inter 

Radiologist 1 0.823 0.899 0.870 0.999 2.36 
Radiologist 2 0.849 0.927 0.843 0.999 2.38 
Radiologist 2 0.827 0.914 0.859 0.999 2.40 

Mean 0.833 0.913 0.858 0.999 2.38 
Standard 
Deviation 0.014 0.014 0.013 0.00001 0.018 

Intra 

Measurement 1 0.823 0.899 0.870 0.999 2.36 
Measurement 2 0.841 0.921 0.868 0.999 2.39 
Measurement 2 0.828 0.922 0.868 0.999 2.41 

Mean 0.831 0.914 0.869 0.999 2.39 
Standard 
Deviation 0.009 0.013 0.001 0.00001 0.025 

 

3.9 Summary 

In the last few decades, ICA has become a standard tool in machine learning 

and signal processing applications. It is a very general-purpose multivariate 

analysis technique in which observed random data are linearly transformed 

into components that are maximally independent from each other. Due to the 

generality of the model, it finds applications in wide variety of fields. In 

earlier stages, assumptions of non-Gaussianity and independence discouraged 

the researchers to apply it in real-world applications. Computational load was 

another burden in multispectral and hyperspectral data analysis. However, 

later it was identified that applications dealing with scientific measurement 

devices give non-gaussian data. In addition to this, robust and efficient 

methods like FASTCA, InfoMax etc. were introduced to relax the 

assumption of independence and computational complexity.  
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Recent brain MRI studies using ICA and its extensions like kernel ICA, over-

complete ICA and so forth have demonstrated the potential of ICA as a good 

feature extraction method for normal and abnormal tissue analysis. But it is 

observed that performance of ICA in classification of local features like small 

abnormalities is not so good. In the following chapters, we discuss our thesis 

work, the proposed ICA extensions for better feature extraction, and effect of 

the extended and hybrid approaches in brain tissue classification with the 

help of supervised and unsupervised classification techniques. 
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Chapter-4 

 PROPOSED ICA EXTENSIONS  

 

4.1 Introduction 

From the literature, we observed that a few extensions of ICA with efficient 

algorithms using wavelets, kernel functions etc. can significantly improve the 

classification performance. In our thesis work, we focus on the approaches to 

resolve the shortcomings of applications of ICA to brain MRI analysis, 

especially the inefficiency of ICA in identifying small abnormalities, and 

problems due to over-completeness. We propose the following ICA 

extension methods as a part of this thesis work to improve the performance of 

brain tissue classification from multispectral MRI. 

1. A new Spectral Clustering ICA (SC-ICA) algorithm: An object based 

approach using spectral screening to retain local and global 

information with equal priority in brain tissue analysis. 

2. Modified Multi-resolution ICA (MICA) algorithm for brain MRI 

analysis: Multiresolution analysis suppresses the global features and 

improves the priority of the local features, prior to ICA computation.  

3. A new Multi-signal Wavelet ICA (MW-ICA) for brain tissue 

analysis: Band expansion with reconstructed brain images from detail 

coefficients helps to retain small abnormalities, thereby improve the 

classification performance also. 

In this chapter, we elaborate these three approaches with relevant theory, 

algorithm, and performance comparisons with conventional ICA. 
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Experimental results and analysis of these algorithms in classification are 

included in Chapter 5. A brief discussion on the computational complexity of 

each method, and time required for typical cases are also added at the end of 

this chapter. 

4.2 New Spectral Clustering ICA (SC-ICA) 

In this method, a new spectral clustering algorithm based on Spectral Angle 

Mapping (SAM) [159] is used to extend ICA for improved feature extraction 

from multispectral MRI. SC-ICA provides equal priority to global and local 

features; thereby it tries to resolve the inefficiency of conventional 

approaches in abnormal tissue extraction. As a spectral angle based pre-

processing technique, it can exploit intrinsic spectral characteristics of input 

signals and it is robust to input energy differences [159].  As a first step, the 

proposed method divides input multispectral MRI into different clusters by a 

spectral distance based clustering. Then, ICA is applied on the different 

objects grouped by spectral clustering.  

4.2.1 Spectral Angle Mapping (SAM) 

SAM is a technique that measures the similarity between the spectral 

signatures of objects in multispectral/hyper-spectral image cube. A 

multispectral image cube of ‘n’ bands can be considered as ‘n’ two 

dimensional matrices with each one corresponding to one band. A ray casting 

through each pixel in the multispectral image cube with bands B1, B2, …Bn, 

as shown in Fig. 4.1, results in a vector called the pixel vector, which gives 

the spectral signature of the tissue (or material) represented by that pixel.  

 



Proposed ICA Extensions   

77 

 
Fig. 4.1 A multispectral image cube and spectral signature 

If ‘x’ and ‘y’ are two n-dimensional pixel vectors, where ‘n’ is the number of 

bands in the input image, then the spectral angle between two vectors is 

given as [159, 160], 

             α   = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

||y||.||x||
y.xcos 1     (4.1) 

A two band spectral classification of spectral signatures x=[x1, x2] and y= [y1, 

y2] into class1 and class2, based on threshold ‘α’ using eq. (4.1) is shown in 

Fig. 4.2.  

 
Fig. 4.2 Spectral Angle for two bands, X and Y are two 2-band pixel vectors 

The spectral signatures can then be separated from one another as shown in 

the right side of Fig 4.2. It happens when there exists a sufficient difference 

in their angles; i.e. if the angle between two pixel vectors, α, exceeds a 
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particular threshold, αthr. Larger α means ‘x’ and ‘y’ are very dissimilar, and 

easy to be differentiated. For example, spectral distances among different 

signatures of brain tissues such as GM, WM, and Lesion are tabulated in 

Table 4.1.   

 

Table 4.1 SAM-based spectral distances between Tissue signatures 

 WM WM GM Lesion 

Synthetic 

 

WM 0 0.24 0.03 

GM 0.24 0 0.12 

Lesion 0.03 0.12 0 

Real 

WM 0 0.2 0.05 

GM 0.2 0 0.16 

Lesion 0.05 0.16 0 

Depending on the type of pulse sequences in the multispectral cube, spectral 

signatures also vary. In the example shown in Table 4.1, synthetic 

multispectral cube was formed from T1WI, T2WI, and PDI, whereas real 

multispectral data considered MRI pulse sequences T1WI, T2WI, and FLAIR 

images. Threshold value selection should be done according to the minimum 

angle shown by different subjects to yield an efficient clustering, which will 

be discussed in the next sections. According to Table 4.1, a minimum 

threshold, 0.03, can be selected for synthetic case, while selecting 0.05 or 

more for real cases.  

4.2.2 Proposed SC-ICA 

The main objective of this method is to retain less frequently occurred 

objects like small lesions, while dealing with massive amount of information 

in multispectral analysis.  
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Fig. 4.3 Methodology of the proposed algorithm 
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The proposed method is divided into two parts; First part explains the method 

for clustering of multispectral MRI data to get object based signature groups, 

and the second part deals with centering and whitening part of the ICA 

algorithm based on statistical measures from clustered multispectral data. 

The proposed algorithm is outlined in Fig. 4.3. The grouped portion explains 

the details of proposed extensions to simple ICA process. Initially, input 

multispectral MRI cube is formed by placing registered T1WI, T2WI and 

PD/FLAIR image in 1st, 2nd and 3rd dimensions respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4.1 Part A:  Spectral clustering 

 

Input: Multispectral MRI cube, X, with pixel vectors Pij and spectral angle 

threshold, φthr. 

Step1: Initialize unique cluster set S with a set containing first pixel vector in the 

image cube. 

Step2: loop1 - for each Pij do, 

 begin 
 loop2 -for each unique cluster ck from S 

  begin 

   Calculate reference spectral signature, 

   cµk = average pixel vector for ck 

   Find φij = Angle between Pij and cµk. 

   if  φij < φthr, add Pij to ck . Continue with loop1 

   else continue. 

  end 

  If Pij is not added to any ck in S,  

  Create a new cluster ck+1 in set S. 
  Add Pij to ck+1. 

 end 

Step3: Output unique cluster set Sf with elements c1, c2, c3... 
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Algorithm 4.1 Part B: Spectral Clustering ICA (SC-ICA) 

Let ‘x’ be the L (here, L=3) dimensional pixel vector, which is linearly mixed 

by a set of m statistically independent tissues or tumor information, s1,s2,. . 

.,sm,  by means of a Lxm mixing matrix ‘A’. Unknown signal sources, s1,s2,. . 

.,sm, in the image cube are to be separated using eq.(3.1) and eq.(3.2) as 

described in Chapter 3 Section 3.2. Pij  in Fig. 4.3 represents (i, j)th pixel 

vector. In this work, Pij = [x1 x2 x3]T,  where x1, x2, x3 are (i, j)th  intensity 

values from T1WI, T2WI and  PD/FLAIR images respectively. First, cluster 

set, S, is initialized with first pixel vector. Calculation of spectral angle, φ, 

between each cluster mean (reference signature) and Pij using eq. (4.1) 

classifies Pij into appropriate group based on threshold value, φthr. Data 

centering of each cluster is separately done, and covariance matrix Cx is 

Input:  Input dataset X and Cluster set Sf with elements c1, c2, c3...

Step1: For each cluster cj in Sf do, 

 i. Find mean cµj 

 ii. Cluster based centering:  

     for each cluster elements (pixel vectors) Pk in cj,  

   Calculate, Pk- cµj   

Step2:  Calculate covariance matrix Cx with the statistics computed from  

  previous step. 

Step3: Compute D, diagonal matrix of CX’s Eigen values, and 

 E, the orthogonal matrix of CX’s eigenvectors.  

 Calculate whitening matrix [23] P as follows, 
   P=D-1/2ET 

Step4: Whitening process: Use P from Step 3 to calculate whitened data,  

   Z=PX.   

Step5: Apply FastICA algorithm on Z to obtain object specific unmixed 

independent components. 
Output : Object based independent components in 2-D form 
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calculated for whitening process. After that, optimizations and iterations of 

FASTICA are followed to generate ICs representing different brain tissues.  

The entire procedure is summarized into two algorithms: Spectral clustering 

Algorithm in Algorithm 4.1 Part A and Spectral Clustering Independent 

Component Analysis (SC-ICA), in Algorithm 4.1 Part B. 

4.2.3 Feature extraction using SC-ICA 

Both synthetic and clinical datasets were given as input to SC-ICA as well as 

to ICA for feature extraction. Then, we analyzed the improvement in 

extracted features through a performance comparison of generated ICs from 

two methods. The same steps were repeated for SC-ICA on varying spectral 

angle threshold values also. ICs extracted by SC-ICA and ICA for 0% noise 

level synthetic sample data are available in Fig. 4.4. Left set (Fig. 4.4A) 

represent normal data and right set (Fig. 4.4B) gives results on abnormal 

images. Top row of both the sets represent input images, second row 

corresponds to ICs from conventional ICA and last row gives ICs from 

proposed method for threshold value 0.06. Independent components from 

SC-ICA for threshold value 0.06 (hereafter, referred to as SC-ICA_.06) were 

found to be yielding best results. It is evident from Fig. 4.4A and 4.4B that 

SC-ICA results are more specific compared to background dominating results 

from ICA. A clear picture of major tissues CSF, WM and GM is available 

from normal case ICs (Fig. 4.4A last row). In abnormal case analysis using 

SC-ICA, we could extract a unique feature set for each class, CSF, WM, GM 

and lesions (total 4 classes) from three components as shown in Fig. 4.4B last 

row.  
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A. Normal MRI slices   B. Abnormal MRI slices 

 
Fig. 4.4 Independent Components from synthetic images: Top row- Input images, 

Middle Row- ICs from ICA, Last Row- ICs from SC-ICA 

Contribution of SC-ICA in identifying presence of abnormalities in other 

tissues, especially in the case of WM, was very evident without any indexing 

(Fig. 4.4B last row).  

To study the variation in clinical cases on applying the new method, feature 

extraction from a real data as shown in Figure 4.5 is also added in this 

section. Sample slices of normal T1WI, T2WI and FLAIR images with the 

specifications as described in Chapter 1, are shown in Fig 4.5 upper row. IC’s 

generated from ICA is given in the second row. To show the effect of more 

clusters in feature extraction, SC-ICA results are shown for threshold values 

0.06 in 3rd row and for 0.03 in last row.   
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Fig. 4.5 Independent Components from normal real case: First row-Input images, 2nd row – 

ICs from ICA, 3rd row- ICs from SC-ICA_0.06, 4th row- ICs from SC-ICA_ 0.03 
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Fig. 4.5 shows that features available in SC-ICA results are more 

distinguishable compared to uncertain results from ICA (second row). On 

comparing second and third row, ICA and SC-ICA results, it is seen that a 

clear picture of major tissues CSF, WM and GM is available from 1st,, 2nd 

and 3rd components of 3rd row. From the input images, it is seen that FLAIR 

image cannot contribute much to the multispectral analysis for tissue 

classification in normal case. Still maximum available information is 

unmixed using SC-ICA for GM, which is evident from Fig 4.5, 3rd and last 

row. Background domination is reduced in a considerable manner for SC-

ICA_.03 also (last row in Fig. 4.5), compared to ICA results in clinical cases. 

But, it is observed that last row results failed to give the expected quality. 

From Table 4.1, it was noted that, spectral angle between lesion and WM 

gives the minimum value 0.05. In a normal case data, no lesion details are to 

be considered. Therefore, smaller threshold values will generate clusters for 

the same tissue group which will result in some distortions as shown in Fig 

4.5 last row, and it will adversely affect the classification also. A detailed 

evaluation and analysis of more clinical cases with different threshold values 

in supervised and unsupervised MRI classification can reveal much detail on 

the potential of SC-ICA in brain tissue classification, which will be discussed 

in the next chapter. 

4.3 Multiresolution ICA modified for MRI analysis 

In SC-ICA, we observed that spectral clustering has improved the feature 

extraction from brain MRI, especially for the cases with the presence of small 

abnormalities. However, it is highly dependent on the spectral angle 

threshold selection. In this section, a wavelet based approach is discussed as 

an alternate to retain the priority of the small objects. Wavelet transform, 

feature selection and inverse wavelet transform from the recently introduced 

Multiresolution Independent Component Analysis (MICA) algorithm in 
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microarray classification [53] is proposed with relevant modifications for 

MRI analysis to improve the brain tissue classification. In this work, each 2-

D MRI slice is reshaped into a 1-D signal, and used as a component signal in 

the multisignal form of multispectral data. Multisignal wavelet analysis is 

applied on these signals, and detail coefficients are modified to suppress the 

global features. Then, FASTICA is applied on the newly reconstructed 

signals to get relevant features. 

4.3.1 Multisignal wavelet analysis 

Wavelet transform of a signal is computed from projection of the signal onto 

the scaled and shifted version of the basic function, mother wavelet ψ(t) 

satisfying the condition, 

  Cψ = ∞<∫
∞

∞−
ds

s
s 2

||
|)(|ψ

   (4.2) 

which implies that wavelet has  a zero average. i.e., 

   
∫
∞

∞−

= 0)( dxxψ
     (4.3) 

The mother wavelet, ψ(t), decomposes the signal into basis functions of the 

form, 

  Ψa,b (t) = ⎟
⎠
⎞

⎜
⎝
⎛ −

a
bt

a
ψ1

    (4.4) 

where  a is the scaling factor and b is the translation factor. 

Considering the binary partitions of the space, dyadic wavelets can be 

defined as [55]  

  Ψk ,i(t) = ( )itk
k

−−
−

22 2 ψ ,     (4.5) 

where 2k  represents the scaling factor and i is the translation factor. 

Multiresolution wavelet transform with dyadic wavelets provides a time-
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scale domain representation of the signal under consideration, where time 

and scaling information can be studied simultaneously.  

In the case of higher dimensional signals, wavelet analysis can be done in 

spatial or spectral direction. In the proposed method, discrete orthonormal 

bases of wavelets are computed using Mallat’s algorithm for signal 

decomposition [50] extended to multidimensional signals, as shown in Fig. 

4.6. Application of discrete wavelet transform in spectral direction will 

decompose each spectral signature into a set of composite bands that are 

linear, weighted combinations of the original spectral bands [55].  

Fig. 4.6 Multisignal wavelet analysis of multispectral data 

A low pass filter and its corresponding high pass filter are simultaneously 

applied on input signal at each level “ ” in its column direction (spectral 

domain). Spectra are decomposed into approximation coefficient  and 

detail coefficient  as shown in Fig.4.6. Irrelevant elements involved in the 

signals are eliminated by a dyadic decimation, which reduces the original 

resolution into half of its length (downsampling). This procedure is 

recursively applied on approximation coefficients to give increasingly 

smoother versions of the original signals. 

Mallat’s algorithm works perfectly, when the number of input spectral bands 

is an integer power of two. Otherwise, spectral extensions techniques such as 
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mirroring the values of the signal with respect to the boundary, repeating of 

the boundary value, and zero padding [55] should be applied to the original 

spectral bands. Wavelet transforms can preserve both low frequency and high 

frequency features in a separate basis vectors, which is exploited in the 

feature selection of MICA. Reverse process of analysis is adopted in wavelet 

synthesis or reconstruction. The decomposed spectral data is lengthened by 

inserting zeros between every two samples of the signal (upsampling), and 

inverse filtering is applied. In short, wavelet decomposition involves filtering 

and downsampling, whereas wavelet reconstruction involves upsampling and 

filtering. 

4.3.2 Existing multiresolution ICA for gene array 

classification 

Recently proposed MICA method [53, 161] extracts contributions from 

almost all local features by taking low frequency subbands as such, and only 

the most important global features through elimination of high frequency 

details. Moreover, the redundant global feature suppressing mechanism in 

MICA acts as an automatic de-noising mechanism, since it modifies the 

coarse level coefficients so that unnecessary signals are filtered. The major 

steps included in the MICA based gene array analysis are shown in Fig. 4.7. 

A gene expression profile with p samples across n genes is given as input. 

MICA conducts an L-level discrete wavelet transform for each sample to 

obtain a sequence of detail coefficient matrices, and approximation 

coefficient matrix. The feature selection part in MICA keeps the most 

important detail coefficients with the help of PCA, and irrelevant details are 

suppressed. Inverse wavelet transform is applied on the updated coefficient 

matrices to construct the meta profile corresponding to input gene expression 

profile. ICA is then applied on this meta profile to obtain mixing matrix and 
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ICs. As a last step, each sample is decomposed in the subspace spanned by 

all independent components to preserve  

 
Fig. 4.7 MICA for microarray classification ([53]) 

the significant prototype of input data. SVM is applied on these meta samples 

to perform an efficient classification. 

4.3.3 Proposed MICA for MRI analysis 

In chapter 3, we discussed that conventional ICA, as a global transform, fails 

to extract the significant and precise local information from multispectral 

MRI data. Wavelet analysis, synthesis and global feature suppression part of 

MICA algorithm is considered in our proposed method, which attempts to 

preserve the local features with more priority than global features.  

 
Fig. 4.8 Proposed MICA for MRI analysis 
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FASTICA method is applied on modified samples to generate ICs. Subspace 

decomposition of MICA algorithm has no use in MRI analysis. The proposed 

steps in MICA modification for MRI analysis are shown in Fig. 4.8, and 

main steps are explained in Algorithm 4.2. 

4.3.3.1 Pre-processing and multisignals formation 

MRI sequences for clinical trials are usually acquired with different size and 

orientation. Registration of the images [162] to form a co-registered 

multispectral suite is the preliminary step in the analysis process. Each pixel 

vector in a multispectral image acts as the spectral signature corresponding to 

that pixel, and a collection of those spectral signatures generate multisignals 

as shown in Fig. 4.8. 

4.3.3.2 Wavelet analysis and modification of detail coefficients 

1-D wavelet analysis of multisignals generates approximation coefficients 

and detail coefficients for different resolutions.  Let X= [x1, x2,…, xp ]T be the 

spectral signature of a pixel as shown in Fig. 4.8, where ‘p’ is the number of 

bands in multispectral image. L-level discrete wavelet decomposition of X 

forms a set {D1, D2...DL, AL}, where Di’s are the detail coefficient at level ‘i’ 

and AL is the approximation coefficient. 

Detail coefficients contain global features. So global feature selection is done 

by thresholding and recalculation of Di’s using a level threshold µ, where 

1≤µ≤ L-1. Wavelet coefficient analysis and principal component calculations 

for different threshold values are performed as described in Algorithm 4.2. 
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Algorithm 4.2 Proposed MICA algorithm for MRI analysis 

4.3.4 Proposed MICA and synthetic MRI  

In order to explain the proposed method, synthetic images from Brainweb 

[20] database, containing information of MS lesions, are considered in this 

section. Fig. 4.9 top row shows T1WI, T2WI and PDI from left to right. 

Input: MRI images I1, I2, I3, I4 etc. 

Step1:  Pre-processing and Multisignals formation. 
Step2:  Wavelet Analysis and modification of detail coefficients, D1, D2...DL 

 For a level threshold µ, 

    if 1≤j≤ µ,  

  Conduct principal component analysis of Di’s to get PC matrix  

  U = [U1, U2 …Up] and corresponding score matrix  

  S= [S1, S2…Sp].  

      Reconstruct the original Dj by Dj = (1/nj)DjInj+S1xU1
T  

   if j>µ,  

     Update each detail coefficients matrix Dj by using loading  

  vectors U1, U2...Uk  consisting  of 100% explained variance 

  percentage and their corresponding  vectors in the score matrix 

  such that  

    Dj=(1/nj)DjInjInj
T+[S1,S2,…,Sk]x[U1,U2,…Uk]T ,  

    where nj is the number of rows in Dj , and Inj  is a unit vector 

   of size njx1.  

 The new wavelet decomposed data at level ‘L’ is given by 

   T* = {D1, D2...DL, AL} 

Step3:  Wavelet synthesis or reconstruction 

 Apply inverse discrete wavelet transform on T* to get the reconstructed 

  signal X*, i.e., X* = IDWT (T*). 

Step 4: Apply FASTICA algorithm on X* to generate ICs 

Output: Independent components with enhanced local features in 2-D form 
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Implementation of step 2 in the proposed algorithm is performed with a 3-

level wavelet decomposition of input multisignals, using Daubechies-4 (db4) 

[163] wavelet. Unlike gene array classification, MRI application has a 

limited number of bands (here, 3), which restricts the level of decomposition 

and threshold value to a few options.  Explained variance [53] observed for 

threshold value 2, is given in Table 4.2.   

Table 4.2 Explained variance for detail coefficients 

level PC1 PC2 PC3

1 99.9944 0.0056 0

2 99.9997 0.0003 0

3 100 0 0

 

Going to the deeper levels, it is observed that majority of the information is 

accumulated in first 1 or 2 components, which will reduce the dimensionality 

of the coefficients to be considered and computational overhead of the 

algorithm. In Fig 4.9, middle row shows the conventional ICA results, and 

last row represents the ICs from modified MICA. It is observed that 

abnormalities (circled portion) are so clear in MICA results that radiologists 

can visually analyze the points directly from the independent component 

itself, without performing a classification. Comparing first ICs from proposed 

method and ICA, it is evident that, in contrary to ICA result which 

accumulated CSF and lesion details in first component, proposed method 

separates them into different components. However, global feature 

suppression is found to be influencing the analysis of global brain tissues like 

WM and GM to a great extent as shown in last row, and it will be discussed 

in the next chapter as a part of the result analysis of proposed method for 

supervised and unsupervised classification. 
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Fig. 4.9 Feature extraction from synthetic data using ICA and MICA, 1st row – Input images, 

2nd row– ICs from ICA,  3rd row- ICs from modified MICA. 

 

4.4 New Multisignal Wavelet ICA (MW-ICA) 

We introduced SC-ICA as a method to resolve the inefficiency of ICA in 

small abnormalities detection, but threshold selection was observed as an 

issue in it. We modified MICA algorithm to apply in MRI analysis, 

exploiting the benefit of wavelet analysis in preserving local information. 

However, the global suppression is found to be adversely affecting the 

normal brain tissue classification. In this section, we discuss our third 

attempt, an improved source separation method, Multisignal Wavelet 
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Independent Component Analysis (MW-ICA) to provide an efficient, 

automated classification for multispectral MRI. First, local and global 

characteristics from brain MRI images were extracted by multisignal wavelet 

analysis. Then, detail coefficients were considered for wavelet reconstruction 

to enhance the original data with mutually independent details. Reconstructed 

signals were appended to original input signals to form an enhanced input 

signal set for ICA. As a band expansion method using wavelet, it can address 

two limitations of ICA in brain MRI analysis; inefficiency in identifying 

local features, and over-completeness problem. Wavelet decomposition of 

the spectra and ICA are the core concepts used in this algorithm. Major steps 

involved in this method are depicted in Fig. 4.10.  

 
Fig. 4.10 Proposed MW-ICA based classification 
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Multisignals are formed from multispectral MRI image cube, repeating the 

same procedure as discussed in Section 4.3. Wavelet analysis, synthesis and 

band expansion involved in the implementation is described in the following 

sections with the help of synthetic brain MR data. 

4.4.1 Wavelet analysis and band expansion 

Co-registered MRI sequences, as shown in Fig. 4.10, are included in the 

input multispectral data. Each pixel vector represents the spectral signature of 

the area specified by that pixel. Consider input multispectral image as a 

collection of spectral signatures, represented by ray passing through the pixel 

vector (the shaded portion of multispectral image). Apply 1-D multisignal 

wavelet decomposition to these signals to divide the spectral domain into low 

frequency and high frequency components, as described in Section 4.3. 

Wavelet transforms can preserve low frequency and high frequency features 

through multiresolution analysis, as explained in Section 4.3.1. Studies 

showed that high frequency subband signals are independent, and low 

frequency subbands are weakly dependent [55]. The proposed method targets 

an efficient classification, preserving both local and global features with 

same priority. So, independent high frequency subbands coefficients were 

considered in the multisignal wavelet reconstruction [50].  

Level of decomposition plays an important role in multiresolution analysis. 

Decomposing the spectra into too many, smaller levels will result in subband 

signals with more local details in high pass components [55], making 

approximation coefficients deviating a lot from original signals. So the 

decomposition level in this work was restricted to the greatest integer 

contained in log2( ), where “ ” is the dimension of the multispectral cube. 

The reconstructed signals from detail coefficients were considered for band 

expansion, and appended to input multisignal dataset. 
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a. Input images 

 
b. Reconstructed images from detail coefficients 

 
c. Reconstructed image from approximation coefficients 

Fig. 4.11 Multisignal wavelet analysis and synthesis of MR images 

For example, Fig 4.11(a) shows sample slices, T1WI, T2WI, and PDI, 

representing MS lesions as input images. Multisignal wavelet analysis using 

db4 wavelet is applied on the dataset.  Reconstructed images from detail 

coefficients are shown in Fig. 4.11(b), in which source signals are 

decomposed into independent bases representing WM, CSF and GM from 
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left to right. Local features (here, MS lesions) are available from 

reconstructed image from approximation coefficient as given in Fig. 4.11(c).  

As a next step, FASTICA is applied on the expanded data set with number of 

bands extended to six, as explained in the next section.  

4.4.2 Feature extraction from expanded dataset 

As we discussed in Chapter 3, band expansion with wavelet coefficients 

could unmix more brain tissues into six ICs as shown in Fig 4.12(a).  Signals 

representing CSF in reconstructed images and input images generated two 

separate components yielding CSF for feature extraction. Some 

extrameningial tissues also got unmixed as a result of the new method. 

Relevant samples of CSF, GM, WM and lesions for feature selection are 

available from selected independent components given in Fig 4.12(b). ICs 

from conventional ICA (see Fig. 4.12 (c)) are included in this section for a 

comparative study with the generated ICs from MW-ICA.   

First of all, MW-ICA could unmix four brain tissues in separate ICs as shown 

in Fig. 4.12(b), which may provide better performance in classification. It is 

observed from conventional ICA results that features of CSF and WML are 

accumulated in 1st IC, whereas proposed method clustered CSF only. 

Comparing ICs representing WM (2nd IC in Fig. 4.12 (b) and 3rd IC in Fig. 

4.12 (c)), presence of WML locations in WM is obvious in MW-ICA results. 

Compared to WML features from ICA results (1st IC in Fig.4.12 (c)), 

abnormality locations provided by 3rd IC in Fig. 4.12(b) is found to be more 

accurate. GM, represented by the last IC in Fig. 4.12(b) is good, but patches 

of abnormal tissues in it seem to be awkward compared to the results from 

ICA.  A detailed analysis of real cases is required to ensure the effect of the 

algorithm in classification, which will be discussed in Chapter 5. The entire 

procedure of MW-ICA algorithm can be summarized in a few steps, as 

shown in Algorithm 4.3. 
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a. Independent Components from MW-ICA 

b. Selected components from MW-ICA 

 
c. Independent Components from ICA 

Fig. 4.12 Independent Components from MW-ICA and ICA 
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Algorithm 4.3 Proposed MW-ICA algorithm 

4.5 Computational complexity and time analysis 

Computational overhead is an important factor in dealing with the algorithms 

for clinical MRI analysis. From the literature, we studied that the 

conventional supervised classification approaches like neural networks, 

Bayesian classifiers, and maximum likelihood estimators are computationally 

intensive processes [24]. An optimal feature extraction procedure can help 

the classifiers to execute fast, but additional burden is to be counted on 

account of the feature extraction algorithms. Spectral clustering and wavelet 

analysis are the main concepts we introduced in the new methods. Following 

sections explains the main parameters affecting the computational 

complexity of the proposed methods.  

 

Input: MRI Images I1, I2, I3, I4 etc. representing co-registered T1WI, T2WI, PDI, 

 FLAIR etc.  

Step1: Create p-dimensional multispectral image cube M = [I1, I2, I3, I4…Ip] from ‘

 p’ input images.  

Step2: Reshape each image into its 1-D form and generate a p-dimensional 

 multisignal X.  

Step3: Apply multisignal wavelet analysis with level of decomposition to the 

 greatest integer contained in (log2(p)+1) on X to decompose the signals 

 into approximation coefficients and detail coefficients.  

Step4:  Apply multisignal wavelet reconstruction algorithm on detail coefficients 

 to obtain reconstructed signal X*.  

Step5: Expand X by appending X* and form new input multisignal Xnew of spectral 

 dimension ‘n’ ≤ 2p.  

Step6: Apply ICA on Xnew to generate ‘n’ unmixed components.  Reshape each c

 omponent to corresponding 2-D form. 

Output: Enhanced independent components in 2-D form. 
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4.5.1 Complexity of spectral clustering 

In a study on number of operations required for computation of dissimilarity 

between two spectra with d bands using SAM, Paclík et al. (2003) [164] 

suggested that computational complexity is O(d). They noted that number of 

additions/subtractions is 2d FLOPS (FLoating point Operations per Seconds), 

and multiplications also can be performed in 2d Flops, with 1 division and 1 

‘arccos’ computation as given by eq. (4.1). 

In the proposed SC-ICA algorithm, number of clusters, C, has great impact 

on computational complexity. Decreasing the threshold will generate more 

clusters, which will increase the number of clusters also. Another parameter 

is the number of spectral signatures, N, included in the analysis. Considering 

all these, complexity of spectral clustering algorithm can be measured as 

(k1xNxCxd), where k1 is a constant.  

4.5.2 Complexity of multisignal wavelet analysis 

Computational cost for performing a wavelet transform for a filter of length L 

and a signal of length N=2k is approximately measured as O(Nxd) [55], 

where  d is the number of bands. In MRI analysis, size of the image and 

number of bands often found as fixed parameters. Wavelets in analysis often 

differ in length of the filter or number of vanishing moments, which linearly 

affects the execution time as shown in Table 4.3. 

FASTICA computation time was measured in terms of number of samples 

and spectral bands, in the order of O(dxN). But, actual implementation using 

efficient techniques like code optimization and fixed point algorithms makes 

it very fast, apart from theoretical computations [144]. 

Table 4.3 shows time analysis results in seconds for the proposed feature 

extraction techniques. In this measurement we set d and N as fixed, and 

algorithm specific parameters like spectral threshold and wavelet type were 
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changed. Typical execution time required for a clinical abnormal case in PC 

with Pentium Dual CPU\2.0GHz\2GB RAM\Microsoft Windows 7\Matlab 7 

configuration is available from Table 4.3.   

Table 4.3 Time analysis 

Methods Threshold 
α  (clusters) 

Time 
(sec.) 

SC_ICA 

0.03 (833) 780 

0.06 (234) 222 

0.10 (81) 82 

0.15 (41) 40 

 
Wavelets Time 

(sec.) 

MICA 

db2 1.4 

db4 2.2 

db8 4.9 

db16 11 

MW-ICA 

db2 2.7 

db4 3.9 

db8 7.7 

db16 20 

ICA 0.7 

 

For SC-ICA, complexity was measured on varying the threshold values (or 

the count of clusters). Observed results indicate the influence of number of 

clusters in execution time with a linear decrease on increasing the threshold 

(decreasing the number of clusters). For 833 clusters, time measured was 

780, and 40 seconds were observed for 41 clusters, in effect showing a linear 

relationship between clusters and time for all threshold values. 
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For MICA, we estimated the time by varying the order of different 

daubechies wavelets. For db2, 1.4 seconds was measured, whereas db16 took 

11 seconds for feature extraction. For db4 and db6 also, time variation was 

found to be linearly dependent on the number of vanishing moments. 

Compared to MICA, more time required for feature extraction using MW-

ICA because of the additional overhead of ICA due to expanded data set. 

However, variation with different orders found to be linear, showing 2.7 

seconds for db2, and 20 seconds for db16. In comparison with conventional 

ICA, it is observed that additional time required for feature extraction by 

wavelet based techniques varies from minimum 0.7 seconds to maximum 

19.3 seconds approximately. SC-ICA is found to be very slow compared to 

all other methods. 

4.6 Classification and segmentation 

In this thesis work, effectiveness of the proposed algorithms in classification 

and segmentation is analyzed with widely used methods, FCM in the 

unsupervised category and SVM in the supervised category. 

4.6.1 Support Vector Machines (SVM) 

Support Vector Machines (SVM) is an efficient (non-linear) tool for 

supervised classification and regression. It is a linear discriminant function 

which was originally developed in statistical machine learning theory by 

Vapnik (1998) [28] as a linear binary classifier based on the class of hyper-

planes, 

  (W.x) + b=0, W∈  RN, b∈  R   (4.6) 

and decision functions  

  f(x) = sign((W.x) + b)    (4.7) 
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where ‘W’ is a weight vector and ‘b’ is the threshold or bias. SVM searches 

for an optimal hyper-plane having maximal margin of separation between 

two classes for a particular training dataset. Therefore, the classification task 

is only a function of the support vectors, the training data that lie on the 

margin. 

In dual form [28] the problem reduces to  

Maximize∑
−

n

i 1
αi  -  

2
1 ∑

=

n

i 1
 αi αj yi y j  K(xi ,x j )  (4.8) 

Subject to αi≥  0 and ∑
=

n

i 1
 αi yi = 0 

and solve for αi.  K(xi, xj) can be a linear or non-linear kernel. 

For a particular training data set, there may be several hyper-planes 

corresponding to maximum margin separation between two classes as 

shown in Fig. 4.13. SVM searches for an optimal hyper-plane, satisfying 

eq. (4.6) with the maximal margin of separation between the two classes. 

Optimal hyper-plane is orthogonal to the shortest line connecting the 

convex hulls of the two classes and intersecting it half way. Support 

vectors are elements of the training set that lie on the boundary hyper-

planes of the two classes as shown in Fig.4.13 (annotated with circles). 

The main attractive feature of SVM is that classes which are nonlinearly 

separable in the original space can be linearly separated in the higher 

dimensional feature space F via a nonlinear map φ as shown in Fig 4.14 

and denoted by  

  FRN →→φ      (4.9) 

This only requires the evaluation of dot products 

  ( ) ( ) ( )( )yφ.xφyx, =k     (4.10) 
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Fig. 4.13 Support vectors (circled points) and SVM classification 

 

Fig. 4.14 The idea of nonlinear SVM: map the training data nonlinearly into a higher-

dimensional feature space F via φ. 
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A great number of kernels exist in literature like RBF, polynomial, 

quadratic etc. [26]. The concept of kernels in SVM makes it capable of 

solving complex nonlinear classification problems.  

Important characteristics of SVM are its ability to solve classification 

problems by means of convex Quadratic Programming (QP) and also the 

sparseness resulting from this QP problem. The learning is based on the 

principle of structural risk minimization. Instead of minimizing an 

objective function based on the training samples (such as mean square 

error), the SVM attempts to minimize the bound on the generalization 

error (i.e., the error made by the learning machine on the test data not 

used during training). As a result, an SVM tends to perform well when 

applied to data outside the training set. SVM achieves this advantage by 

focusing on the borderline training examples, support vectors [68]. 

It has been proved in latest studies that SVM is a better option for MRI 

analysis [29, 30] compared to other methods in supervised classification. 

SVM with Radial Basis Function (RBF) non-linear kernel is used in this 

thesis for supervised brain tissues analysis. 

4.6.2 Fuzzy C-Means Clustering (FCM) 
It is a data clustering technique introduced by Bezdec in 1981[120], where 

each data point belongs to a cluster to some degree that is specified by a 

fuzzy membership grade [117].  Let X=(x1, x2,.,xN) denotes an image with N 

pixels to be partitioned into ‘c’ clusters, where xi represents multispectral 

(features) data, and ‘c’ is the number of clusters with 2 ≤ c < n. The standard 

FCM objective function for partitioning a dataset { }N
kkx 1= into ‘c’ clusters is 

given by, 



Chapter 4 

106 

 

2

1 1
mJ ik

c

i

N

k

m
ik vxU −=∑∑

= =           (4.11) 

where { }c
iiv 1=  are the centres of the clusters and 
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The parameter ’m’ is a weighting exponent on each fuzzy membership, and it 

determines fuzziness amount of the resulting classification. Gray level values 

are the most commonly used feature in image processing. So FCM objective 

function mJ  is minimized when high membership values are assigned to 

pixels whose intensities are close to the centroid of its particular class, and 

low membership values are assigned when the point is far from the centroid 

[109]. In the FCM algorithm, the probability that a pixel belongs to a specific 

cluster depends only on the distance between the pixel and each individual 

cluster center in the feature domain. Algorithm starts with an initial guess for 

each cluster centre, and it converges to a solution for vi representing the local 

minimum or a saddle point of the objective function, mJ . A detailed 

explanation of FCM theorem and algorithm is available in [104].  

4.7 Summary 

As an attempt to resolve the limitations of ICA in multispectral brain MRI 

analysis, we proposed a few extensions to ICA, based on wavelet analysis 

and spectral clustering. In this chapter we discussed three new methods to 

improve the performance of brain tissue classification from brain MRI; a new 

Spectral Clustering ICA (SC-ICA), a new Multisignal Wavelet ICA (MW-
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ICA) and modified Multiresolution ICA (MICA). A detailed explanation of 

each method, including the relevant theory, algorithm and examples are 

provided in this chapter. Computational complexity on varying different 

parameters is also discussed for the proposed methods. To justify the 

application of the new methods in real environment, a comparative study of 

execution time in seconds for a clinical dataset is added to the end of the 

chapter. A detailed performance analysis with a large size database is 

required to evaluate and confirm the efficiency and potential of these 

methods in supervised and unsupervised brain tissue classification. In the 

next chapter, we revisit all of these algorithms as new methods for efficient 

classification using FCM and SVM. 
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Chapter -5 

 BRAIN MRI ANALYSIS WITH PROPOSED ICA 
EXTENSIONS   

 

5.1 Introduction 
Chapter 4 proposed three ICA extensions based on spectral distance and 

wavelet transforms for improved feature extraction. This chapter analyzes the 

effectiveness of these methods in brain tissue classification using supervised 

and unsupervised approaches. Support Vector Machines (SVM) was selected 

for supervised segmentation, because of its generalization capability and 

efficiency with a few features and small training set. Fuzzy C-Means 

clustering (FCM) was considered for unsupervised segmentation, since it is 

robust to ambiguity and efficient in retaining much more information than 

hard segmentation methods. A detailed explanation on the database used in 

the evaluation of the algorithms, experiments conducted and performance 

evaluation is included in Section 5.2. Section 5.3 explains the preparation of 

input data for image analysis. Section 5.4 discusses the measurements for 

performance evaluation. Quantitative and qualitative analysis of results and 

discussions are included in Section 5.5. 

5.2 Database and experimental setup 

5.2.1 Input data 

Total 120x3 axial slices from T1-Weighted Images (T1WI), T2-Weighted 

Images (T2WI), and Proton Density Images (PDI) with parameter settings 1-

mm slice thickness, intensity non-uniformity 0% and noise level 0% from 
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Brainweb[20] database were included in the synthetic image analysis. Out of 

181x3 normal slices, 60 slices were considered from each sequence to form 

the healthy brain data, and 60 out of 181 abnormal slices giving information 

on multiple sclerosis (MS) lesions were selected to give abnormal 

multispectral images. The groundtruth images available from Brainweb 

database were utilized for performance comparison. 

The normal and abnormal brain MR images from T1W sequence, T2W 

sequence and FLAIR sequence from total 382 patients with specifications as 

described in Chapter 1 were utilized for clinical evaluation. 168 cases were 

identified as normal, 110 cases were diagnosed with White Matter Lesions 

(WML), and 104 were identified with other abnormalities like tumor, lesions, 

edema etc. No gold standard exists as groundtruth for comparison of the 

results. The groundtruth tissues in clinical cases were collected from 

manually segmented and labeled images, after removal of extrameningial 

tissues, under the supervision of an experienced radiologist. 

5.2.2 Experiments 

For the supervised classification, the entire database was divided into two 

sets: training data and test data, as given in Table 5.1. Synthetic database 

were obtained as 181 slices of a normal or abnormal cases with same 

parameter settings. 60 slices selected were distributed as 40 for training and 

20 for testing. In the case of healthy clinical cases, 120 cases were considered 

for training and 48 were selected for testing. In the clinical abnormal 

category, 150 cases were included in the training set and 64 were counted for 

testing. After image registration and data preparation, four sets of 

experiments were performed on each database. First, feature extraction using 

ICA and proposed techniques (as described in Chapter 4) was performed. 

The second experiment was the segmentation of test data using FCM. 

Training, model selection and classification were included in the third set; 
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fourth set was the qualitative analysis of the classified tissues by FCM and 

SVM. In the third set of experiments, feature vectors were collected with the 

help of a 3x3 window under the guidance of an experienced radiologist. Total 

number of feature vectors collected for testing and training are given in  

Table 5.1.  

Table 5.1 Validation and Test plan 

Category 
Training data 

count 
Cross 

validation 

Testing data 

count 

Total 
feature 
vectors 

 
patients Slices 

 
patients Slices 

 
Synthetic normal 1 40 

External 

10-fold 

1 20 1800 

Synthetic abnormal 1 40 1 20 1800 

Clinical normal 120 360 48 144 7560 

Clinical abnormal 150 450 64 192 12840 

5.3 Data preparation for multispectral analysis 

As we discussed earlier in Chapter 1, MR sequences must be registered to the 

accuracy of the pixels before selecting them for a multispectral analysis. It is 

also noted that analysis is usually performed on the spectral signatures 

corresponding to every pixels. Input MRI images collected from 3T machines 

were of very good quality. Pre-processing steps such as contrast 

enhancement, noise removal or any other signal modification on these images 

were observed as sometimes eliminating small, but significant pathological 

information.  So they are avoided from the image analysis in this thesis work. 

5.3.1 Image registration 

Images in synthetic database were obtained in the form of co-registered. i.e 

the corresponding slices in T1-weighted, T2-weighted and PD sequences 

were obtained with the same direction and same size, and pixel vectors were 

found to be collinear.  
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(a) Original Clinical Sequences, in the order of T1WI, T2WI and FLAIR image from  
left to right 

 

(b) Co-registered clinical sequences 

Fig. 5.1 Image registration of clinical images 

But clinical sequences collected were of different size and direction. Image 

resizing and rotation was enough for the majority of the clinical sequences in 

this work. In certain cases, we used control points based image registration 

using MATLAB functions also. Fig. 5.1 illustrates the registration in clinical 

sequences. The original clinical sequences, shown in Fig. 5.1(a), are of 

different resolution and direction. Images in Fig 5.1 (b) were generated as a 

result of rotation, resizing and control points based manual registration using 

Matlab functions. After registration, size of the registered images was fixed 

to 209x276 pixels and 227x260 pixels for normal and abnormal cases 

respectively. 
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5.3.2 Spectral signature collection and feature extraction 

This thesis work is based on multivariate analysis using ICA. So we prepared 

the data for an analysis with reduced complexity, by reshaping each 2-D 

image into 1-D array. We got three 1-D arrays from three bands, which were 

combined to form a matrix with columns representing each pixel vector, as 

given in Fig. 5.2. Intensity values of selected window are also plotted in Fig. 

5.2 

 
Fig. 5.2 Spectral signature sets 

Spectral signature of nth pixel can be given by pixel vector [Xn1 Xn2 Xn3]T, for 

n=1,2,3…. Each multispectral cube discussed in this work is described as a 

collection of these spectral signatures. Multivariate analysis based on ICA 

and proposed ICA extensions were performed on this collection, as we 

discussed in Chapter 4. Fig. 5.3 shows ICs from ICA representing WM and 

WML; annotated portions shows 3x3 Feature Vectors (FV) selected for 

supervised analysis. For unsupervised classifications, no feature selection 

was required; it was performed directly on the generated ICs.  
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5.3.3 Bias estimation for SVM classification 

A bias estimation on varying number of feature vectors was performed with 

SC-ICA based SVM to select the best validation technique. Cross Validation 

(CV) [77] techniques, Internal CV Leave One Out (ICV LOO), external 50% 

Holdout (EHoldout) and External 10-fold CV (ECV 10) were considered for 

the bias estimation. We followed the selection bias assessment in Ambroise 

and McLachlan, (2002) [165] to conduct this study. They suggested that 

external 10-fold CV, in which the information from test data is not used for 

the development of the models, can be used for reasonable assessment of 

accuracy of predictions. In gene array classification, there may be more than 

10000 features to define a gene. Therefore, they have done the experiments 

with changing number of features. 

                           
              IC1 (WM)        IC2(WML) 

 

 

 

 

Fig 5.3   Feature vector selection of WM and WML from ICA results 

382.7942  359.4975  348.7905 

368.4648  347.1088  349.7269 

358.9205  349.6740  364.9208 

204.9104  207.2141  205.3513 

208.3256  212.2402  208.8808 

207.5795  211.5110  209.2107 
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Fig. 5.4   Bias estimation for internal and external cross validations 

However, in the case of MRI analysis, we conducted the experiment by 

varying the number of feature vectors. Error estimates were first observed for 

3000 feature vectors in 100 random splits. Same procedures were repeated 

for different number of feature vectors 2500, 2000, etc., and average error 

rates were estimated as plotted in Fig. 5.4. Results obtained for unbiased 

prediction error (TE) were also added to study the error variation.  A detailed 

explanation of selection bias and error rate estimation is available in [77, 

165]. The models obtained on each fold of the ICV LOO were based on the 

same set of feature descriptors, whereas corresponding models for the 

external CV involved different feature descriptors. In Fig. 5.4, ICV LOO 

results were found to be more biased compared to EHoldout, whereas ECV 

10 and TE keep almost similar behavior. So ECV10 validation was selected 

for supervised analysis throughout this thesis work. 
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5.4 Performance evaluation 
Performance evaluation of the proposed classification was carried out with 

quantitative and qualitative analysis. Both approaches have strengths and 

weaknesses; a particular strength of quantitative research is that statistical 

analysis allows for generalization to entire population. However, qualitative 

results provide depth and richness of information, which is not possible with 

the quantitative data. Qualitative imaging and image analysis are normally 

used in a clinical environment, which is performed often by visual 

assessment of MR sequences. The signal intensity may vary between patients 

and measurement sessions [166]. Sometimes this may arise inter operator 

variations due to lack of expertise in the field. 

Tanimoto Index, sensitivity, specificity, accuracy, False Positive Rate (FPR), 

False Negative Rate (FNR) and Error rate were the measures used in 

quantitative analysis in this work. Tanimoto Index, the most commonly used 

criterion in medical imaging [5, 29] is used to measure the similarity of the 

classified tissues with the groundtruth values, and it is given by, 

 TI = 
||
||

BA
BA

∪
∩

                      (5.1) 

where A is the dataset representing the classified brain tissues like CSF, GM, 

WM, Tumor, etc., and B is the corresponding ground truth dataset.  

Classifier performance evaluation in this work is conducted with widely used 

statistical measures, sensitivity, specificity, accuracy etc. [77] given by,  

Sensitivity   = 
FNTP

TP
+

            (5.2) 

Specificity   = 
FPTN

TN
+

            (5.3) 

Accuracy    = 
FNFPTNTP

TNTP
+++

+              (5.4) 
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Error rate    = 1- Accuracy            (5.5) 

FPR    = 1 – Specificity                 (5.6) 

FNR    = 1 – Sensitivity,            (5.7) 

Where True Positive (TP) is defined as the number of correctly identified 

positive pixels; True Negative (TN) is defined as correctly identified negative 

pixels. For example, in a diagnostic test evaluation focusing on the presence 

of abnormal tissues, tumor samples are considered in the positive category 

and normal tissues will be in the negative category. False Positive (FP) 

represents the count of normal tissues incorrectly identified as tumor, and 

False Negative (FN) gives the count of abnormal samples incorrectly 

identified as normal tissues. Higher values of sensitivity, the proportion of 

correctly classified positives, indicate the good performance of the method in 

predicting positives. Specificity measures how well the system can predict 

the negatives. Accuracy measures the overall correctness of the classifier in 

predicting both positives and negatives.  

We used an additional method, Bland-Altman analysis [138], to evaluate the 

agreement between measures from two methods. In the Bland-Altman plots, 

difference between two measurements (the bias) is plotted against the 

average of those measurements. In this work, estimated lesion volumes from 

classification by ICA and proposed methods were quantitatively compared 

with lesion volumes in the groundtruth.  

The best classification models selected from validation procedure in 

supervised learning were used to classify the brain tissues. These classified 

images were included in the qualitative analysis of supervised classification. 

Segmented images from FCM based on ICA or ICA extensions were first 

labeled by an experienced radiologist, and visually compared with 

groundtruth images. 
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5.5 Result analysis and discussion 

Analysis of experimental results is divided into two sections: Synthetic image 

analysis and Clinical image analysis. Mathworks Matlab 7.0 (R2009a) 

implementation of the algorithms on a PC with Pentium Dual CPU of 

2.1GHz and 4GB RAM running Microsoft Windows 7 was executed for the 

complete system evaluation. Pattern recognition Toolbox in Matlab is used 

for non-linear (RBF kernel) SVM training and classification, with default 

parameter settings, and Sequential Minimal Optimization (SMO) as 

optimization method. One-against-all SVM strategy was adopted to solve the 

classification problem. FCM method provided in Fuzzy Logic Toolbox was 

applied on generated ICs to do automatic unsupervised segmentation. 

5.5.1 Synthetic image analysis 

For the first set of experiments, feature extraction, were performed on 

synthetic normal and abnormal training data, by applying proposed and 

conventional methods in the order of SC-ICA, MICA, MW-ICA and ICA. 

SC-ICA was evaluated with different threshold values, 0.1, 0.06, 0.03 etc. 

Daubechies wavelets of different orders were considered in multisignal 

wavelet analysis. CSF, GM, WM, and WML were the main brain substances 

to be classified from synthetic database. Feature vectors from training and 

test data were generated from normal and abnormal synthetic database as 

described in section 5.3, and utilized in experiments 3, and 4 for a detailed 

performance evaluation.  

5.5.1.1 Unsupervised classification, FCM 

20 test cases as given in Table 5.1 were considered to evaluate the 

performance of new methods with unsupervised segmentation using FCM. 

Not much variations observed in the results from test data. Average of 

Tanimoto Index (TI) values from test datasets are summarized in Table 5.2. 
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Results from FCM segmentation based on SC-ICA (SC-ICA+FCM) for 

different thresholds, FCM based on MICA (MICA+FCM) and MW-ICA 

(MW-ICA+FCM) for wavelet db12, and ICA based FCM are included in 

Table 5.2. SC-ICA based segmentation for thresholds 0.1, 0.06, and 0.03 

recommended 0.06 as the best threshold value yielding highest TI values, 

0.78/0.72/0.93, for normal CSF/GM/WM, and 0.81/0.85/0.94/0.89 for 

abnormal CSF/GM/WM/WML. 

Table 5.2 Tanimoto Index from synthetic image analysis 
  Normal  Abnormal 

Methods α CSF GM WM  CSF GM WM WML 

SC-ICA+ FCM 

.1 0.72 0.69 0.92  0.81 0.81 0.93 0.84 

.06 0.78 0.72 0.93  0.81 0.85 0.94 0.89 

.03 0.76 0.67 0.91  0.76 0.79 0.97 0.34 

MICA + FCM  0.85 0.80 0.65  0.86 0.79 0.68 0.94 

MW-ICA+FCM  0.84 0.79 0.94  0.84 0.85 0.95 0.91 

ICA + FCM  0.71 0.73 0.85  0.76 0.84 0.92 0.87 
 

WML classification for threshold 0.03 yielded a low TI value, 0.34, but at the 

same time providing best value, 0.97, for WM classification. It may occur 

because of false positives present in the classified result due to over 

clustering. We will discuss those details in Chapter 7.  

MICA+FCM could perform better for all tissue classes, except for WM. In 

the feature extraction phase, we noted that IC corresponding to WM was of 

low quality. It is well reflected in the observed low TI value also. However, 

TI for WML classification is found to be the best, 0.94, among all the results 

in Table 5.2. MW-ICA+FCM could give reasonably high TI values for all 

brain tissues. Overall performance of MW-ICA+FCM recommends it as the 

best method for segmentation. Comparison with conventional ICA based 

results, gives the improvement provided by each method. All except 

MICA+FCM showed better results for all brain tissues; MICA based results 
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failed to reach the performance of ICA based classification in the case of 

WM. 

The effectiveness of these methods in WML classification was further 

evaluated with Bland-Altman plots as shown in Fig. 5.5 - Fig 5.8.  The 

differences between lesion volumes (in mL) from category A and category B 

were plotted against the averages of both measures to generate the plots. 

WML volumes calculated from the classified results from the proposed 

methods and conventional ICA (category B), are compared against the lesion 

volumes provided by category A, the groundtruth images in Brainweb 

database. 20 synthetic abnormal multispectral sets were considered in this 

evaluation. SC-ICA was performed with threshold value 0.06, and db12 was 

selected for wavelet analysis. The mean difference (bias or d), Standard 

Deviation (SD) of the differences, and 95% limits of agreement (± 1.96 SD) 

were used to analyze the plots. Considering the classification results from 

each method in category B, the following results were observed. 

 Using ICA based classification, d was 0.24mL with 95% limits of 

agreement, -0.11mL to 0.58mL (Fig. 5.5), whereas the points were 

distributed closer to zero for SC-ICA based segmentation. Bias was 

observed as 0.04 mL with 95% limits of agreement, [-0.02mL, 0.11mL] 

(Fig. 5.6). Number of outliers is reduced to one, and confident interval 

also got shortened.  

 However, MICA+FCM could not provide such a performance in lesion 

analysis. We observed a higher d value 0.06 mL, and a wider confidence 

limit, [-0.06mL, 0.18mL] (Fig. 5.7), compared to SC-ICA+FCM.  
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Fig 5.5 Bland-Altman plots based on lesion volumes between groundtruth and ICA based 

FCM. The observed bias, d = 0.24mL, and 95% confidence limit = [--0.11mL, 0. 0.58mL] 

 
Fig 5.6 Bland-Altman plots based on lesion volumes between groundtruth and SC-ICA based 

FCM. The observed bias, d = 0.04mL, and 95% confidence limit = [-0.02mL, 0.11mL] 



Chapter 5 

122 

 
Fig. 5.7 Bland-Altman plots based on  lesion volumes between groundtruth and MICA based 

FCM. The observed bias, d = 0.06mL, and 95% confidence limit = [-0.06mL, 0.18mL] 

 
Fig. 5.8 Bland-Altman plots based on lesion volumes between groundtruth and MW-ICA 

based FCM. The observed bias, d = 0.02mL, and 95% confidence limit = [-0.03mL, 0.06mL] 
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 The best performance was provided by MW-ICA based FCM (Fig. 5.8), 

with least bias, d = 0.02mL, and narrow agreement limit, [-0.03mL, 

0.06mL]; i.e. bias was contained well within the two standard deviations, 

with no outliers observed outside the limits of agreement. 

To confirm the efficiency and consistency of the new wavelet based ICA 

extensions, MW-ICA algorithm was evaluated for different wavelets, db2, 

db4, db8, db12, db16, db24, and db32 for 15 synthetic cases in the test data. 

TI values and error rate estimated in percentage for GM, WM and Lesion 

(WML) were plotted as shown in Figure 5.9 (a) and 5.9 (b) respectively. X-

axis shows Daubechies wavelets of different orders, ‘N’ [163].  From Figure 

5.9 (a), it is observed that TI value is low for db2 for the three classes 

considered. Classified lesions are found to be better on varying the order 

from 4 to 12, reached the maximum, above 0.92, at db12, and then showed a 

decrease for db16, db24 and db32. Db4 is selected as best, 0.95, for WM 

classification, whereas showing the next best value at db12, around 0. 92. For 

GM extraction, db12 yielded the best results, around 0.87, and db4 was 

observed as the next best choice with TI value around 0.82. All these results 

supported wavelets with low to medium regularities for best TI calculation.  

TI values alone cannot decide the optimal parameters, since these values are 

affected by false positives in calculation. Therefore, we considered another 

measure, error rate (1-Accuracy) also to check the variation for different 

number of vanishing moments, as shown in Fig. 5.9(b). Db4 was observed 

with least error rate for GM and WM classification; GM classification 

showed an error rate of around 2.5%, whereas WM showed less than 1%. For 

lesions, error rate was found to be very less, nearing zero, for almost all dbN 

wavelets, N= 2, 4, 12…., with least value observed for db12. From all these 

observations, we considered db12 and db4 as candidates for synthetic image 

analysis. 
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(a). Tanimoto Index variations for different orders of daubechies wavelets 

 
(b). Error rate variations for different orders of daubechies wavelets 

Fig.5.9. Performance measure variations on varying order of daubechies wavelets 
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FCM results were found to be significantly affected by the uncertainties in 

the input images and membership calculations. Therefore, a more efficient 

classification method, especially a supervised learning and classification can 

be a good choice for better analysis of brain tissue classification. 

5.5.1.2 Supervised classification, SVM 

As given in Table 5.1, we considered total 1800 feature vectors representing 

different brain tissues, CSF, GM, WM and WML for supervised analysis. 

1200 feature vectors were considered in the validation and model selection.  

Classification results using 600 feature vectors from 20 abnormal test sets are 

given in Table 5.3. Sensitivity, specificity and accuracy measured for GM, 

WM and WML are summarized in the results. SVM based on SC-ICA for 

different thresholds 0.1, 0.06 and 0.03, MICA and MW-ICA for db12 

wavelet, and ICA were considered in the evaluation procedure. The proposed 

methods were found to be yielding better results compared to ICA+SVM. It 

is observed that overall performance of MW-ICA+SVM is optimal among all 

these methods described in the analysis. 

Table 5.3 Performance analysis of synthetic brain tissue classification                           

  GM WM WML 

Methods α Spec. Sens. Acc. Spec. Sens. Acc. Spec. Sens. Acc. 

SC-ICA+ 
SVM 

.1 97.06 82.54 92.02 96.18 92.11 94.64 99.98 83.79 99.93 

.06 97.57 84.56 94.91 97.48 93.87 94.84 99.94 91.84 99.71 

.03 94.56 79.04 88.49 92.33 98.07 95.63 89.92 97.35 91.31 

MICA+ 
SVM  89.98 79.87 88.64 98.41 67.75 90.21 99.91 94.92 99.82 

MW-
ICA+SVM  97.03 84.85 93.94 96.92 97.84 97.04 99.94 94.23 99.72 

ICA+ 
SVM  94.87 84.28 91.92 98.0 92.53 97.91 99.91 85.88 99.61 

Spec. = Specificity, Sens. = Sensitivity, Acc. = Accuracy 
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From Table 5.3 following highlight points are observed; 

• In GM classification, SC-ICA_.06+SVM was found to be giving best 

accuracy, 94.91, maintaining good values for specificity and 

sensitivity. MW-ICA+SVM also performed almost same as SC-

ICA_.06+SVM in GM classification. But results of MICA+SVM 

were found to be not satisfactory, because of the global suppression in 

the algorithm.  

• MW-ICA+SVM exceeded all other methods in WM classification 

with highest sensitivity/accuracy values, 97.84/97.04. Sensitivity 

value provided by SC-ICA+SVM for threshold 0.03 was found to be 

the highest, but over-clustering effects reduced the specificity and 

overall accuracy.  

• SC-ICA_.03+SVM showed a similar behavior in classification of 

WML also. True positives were best predicted with sensitivity value, 

97.35, but specificity lowered to 89.92.  MICA+SVM provided the 

best performance in WML analysis with very good 

specificity/sensitivity/accuracy measures, 99.91/94.92/99.82. MW-

ICA+SVM also presented a similar performance in WML 

classification.  

Sensitivity and specificity are good measures in assessing the performance of 

the classification system in identifying true positives and true negatives. But 

segmented tissues may show large deviation from these results due to 

vagueness and ambiguity in input data. Then, potential of the methods in 

segmentation can be better described by Tanimoto Index. The classified brain 

tissues from synthetic test data using SVM models were compared with the 

groundtruth tissues in Brainweb, and average of estimated TI values is 

tabulated in Table 5.4. Both normal and abnormal datasets were considered 
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to study the variation in classifying more tissue classes from less number of 

images. 

Table 5.4 Tanimoto Index values from classified brain tissues 

  
Normal 

 
Abnormal 

Methods α CSF GM WM 
 

CSF GM WM WML 

SC-ICA+ SVM 

.1 0.71 0.69 0.92 0.78 0.83 0.94 0.85 

.06 0.77 0.78 0.94 0.79 0.85 0.94 0.82 

.03 0.74 0.71 0.91 0.77 0.76 0.97 0.42 

MICA + SVM 
 

0.85 0.74 0.67 
 

0.79 0.81 0.71 0.94 

MW-ICA+SVM 0.86 0.72 0.95 0.81 0.79 0.88 0.96 

ICA + SVM 0.73 0.74 0.84 0.72 0.83 0.86 0.84 

 

From Table 5.4, proposed classification methods were found to be yielding 

better performance than ICA based classification. SVM based on SC-

ICA_.06 and MW-ICA were selected as optimal methods to segment the 

brain tissues.  Considering SC-ICA based classification, threshold value 0.06 

was found to be giving best TI values for CSF/GM/WM, 0.77/0.78/0.94 for 

normal case. But abnormal case analysis showed that threshold value 0.1 also 

can be selected as a candidate to provide high performance classification. 

Classified WM tissues were found to be best for threshold 0.03, but over 

clustering adversely affected the classification of other tissues. However, 

introduction of multisignal wavelet analysis to ICA improved the TI values 

of small WML classification from 0.84 by ICA based SVM to 0.94 by MICA 

based SVM, and 0.96 by MW-ICA based SVM.  Efficiency and accuracy of 

MW-ICA based SVM was found to be very high in normal and abnormal 

classification. 

5.5.1.3 Qualitative analysis 

A detailed analysis of each brain tissue using groundtruth, segmented results 

from FCM, and classified results by SVM, based on proposed ICA 
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extensions and conventional ICA are provided in the following discussions. 

Classified results are presented after removal of extrameningial tissues, to do 

a better comparison with the groundtruth. 

First, we consider the analysis of CSF, which is given in Fig. 5.10. 

Groundtruth image is shown in Fig.5.10 (a) as a gold standard for result 

comparison. Classified results in Fig. 5.10(b) and Fig. 5.10(c) are arranged in 

the order of results by SC-ICA_.06, MICA, MW-ICA and ICA from left to 

right. Results from MW-ICA are observed as having best similarity with the 

groundtruth for FCM based segmentation (Fig.5.10 (b)).  

Traces of negative pixels are observed in results from all other methods. 

MICA+SVM also found to be very similar to groundtruth. Supporting the 

results in quantitative analysis, high quality results were observed from 

proposed SVM classifications (Fig 5.10(c)). SC-ICA_.06+SVM showed 

some unwanted pixels (WML) also with the true positives. Classified results 

from ICA, shown in the last column of Fig. 5.10 (b) and (c) proved the 

inefficiency of ICA in identifying local and global features from dominating 

background. However, ICA+SVM was found to be yielding more accurate 

results than ICA+FCM.  

Classified GM results are available for visual analysis in Fig. 5.11 along with 

the groundtruth image. Results are arranged in the order of classification 

based on SC-ICA_06, MICA, MW-ICA and ICA from left to right. All 

except MICA+SVM provided classified results with more false positives. 

From the input image itself, the GM samples are not described as crisp 

values. 
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Fig. 5.10 Qualitative analysis of CSF using ground truth and classified results.  Classified 

results from  SC-ICA_.06, MICA, MW-ICA and ICA are arranged from left to right. 

 

ICA was found to be giving poor quality results. However, traces of WML 

were observed in results from other methods. SC-ICA_.06 based 

classification could result in a better representation of GM with less false 

positive pixels. MICA+FCM gave comparable results, whereas MICA+SVM 

failed to classify some true positives. MW-ICA+SVM generated the result 

somewhat similar to groundtruth, but it classified some unwanted pixels also. 

(b). Unsupervised classification using FCM 

(c). Supervised classification using SVM 

(a). Groundtruth 
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In the Brainweb abnormal data, WM is the brain tissue affected by hyper 

intense lesions. Accurate identification of these small lesions and their effect 

on normal brain tissue analysis has great significance in this thesis work, as a 

part of evaluating ICA and other methods for local feature extraction. The 

classified WM results from ICA based methods are shown in Fig. 5.12. 

  

 
 

Fig. 5.11 Qualitative analysis of GM using ground truth and classified results.  Classified 

results from  SC-ICA_.06, MICA, MW-ICA and ICA are arranged from left to right. 

(a) Groundtruth 

(b) Unsupervised classification using FCM 

(c ) Supervised classification using SVM 
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Groundtruth in Fig. 5.12(a) can be used as a reference to compare the results. 

When we consider the similarity of the results with the groundtruth, it is 

evident that MW-ICA+SVM gave best quality WM. SC-ICA based 

classification was also found to be good. SC-ICA+FCM identified all lesion 

locations, but some WM pixels also were misclassified as WML. SC-

ICA+SVM identified less number of lesions with respect to goundtruth, but 

comparatively better than those provided by ICA based classifications. It is 

 
 

 

Fig. 5.12 Qualitative analysis of WM using ground truth and classified results.  Classified  

results from  SC-ICA_.06, MICA, MW-ICA and ICA are arranged from left to right. 

(a) Groundtruth 

(b) Unsupervised classification using FCM 

(c ) Supervised classification using SVM 
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noted from Fig.5.12 that ICA+FCM failed to identify the presence of 

abnormalities in WM, whereas classifications based on MICA failed to 

correctly identify all the WM pixels in their results. MICA+FCM results 

showed highest misclassifications (Fig. 5.12(c) 2nd column). The effect of 

global feature suppression in MICA algorithm is very clear from these 

results. However, the abnormality positions were correctly identified. MW-

ICA+FCM could not give the performance of MW-ICA+SVM, even though 

it performs better than those from ICA based classifications.  

One of the main objectives of this thesis is to resolve the issue in ICA for 

small abnormality analysis. The effectiveness of the proposed methods in 

achieving this can be best described by small WML analysis. Important 

observations from Fig. 5.13 are, 

• In ICA based FCM results, CSF and WML were found to be difficult to 

separate. However, ICA+SVM provided a better performance, because of 

the supervised learning process with best WML features.  

• SC-ICA based classification results were found to be showing good 

accuracy in WML detection, but available information was comparatively 

less than that from groundtruth.  

• MICA+FCM identified all the WML locations, paying the cost of a large 

number of misclassifications also. But MICA+SVM was found to be 

yielding accurate results, even though it failed to identify all the WML 

locations.  

• MW-ICA+FCM also performed very well in WML classification, but 

additional misclassified pixels affected the quality of the segmented 

images. MW-ICA+SVM solved this issue with more accurate and reliable 

classified lesions. 
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Qualitative and quantitative analysis results in this section recommended 

SVM based on proposed extensions as promising methods in brain tissue 

classification. MW-ICA+FCM was observed to be yielding high performance 

in almost all results. A more detailed study in clinical analysis can reveal the 

true behavior of these approaches with clinical MRI analysis. 

 

 

Fig. 5.13 Qualitative analysis of WML (abnormality) using ground truth and classified 

results.  Classified results from SC-ICA_.06, MICA, MW-ICA and ICA are arranged from 

left to right. 

 

(a) Groundtruth 

(b) Unsupervised classification using FCM 

(c ) Supervised classification using SVM 
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5.5.2 Clinical image analysis 

Unsupervised classification by FCM (experiment 2), supervised analysis by 

SVM (experiment 3) and qualitative analysis (experiment 4) were repeated 

for clinical dataset also in the same environment as discussed in the previous 

section. Both normal and abnormal datasets were considered in the 

performance evaluation. Experiments followed the validation and test plan 

given in Table 5.1. Abnormal datasets were divided into two categories; 

hyper-intensity lesions and other abnormalities. As a first step, experiment 1 

was performed with SC-ICA for various α values, MICA and MW-ICA for 

different daubechies wavelets, and conventional ICA. We considered five 

classes, CSF, GM, WM, hyper intense lesions (WML) and other 

abnormalities (tumors, infarcts, edema etc.), for brain tissue classification. 

Performance improvement by proposed methods over ICA based feature 

extraction in unsupervised and supervised classification was studied with the 

help of FCM and SVM respectively. 

5.5.2.1 Unsupervised classification results 

In the unsupervised analysis of clinical images, we considered only the 

normal and abnormal test data described in Table 5.1, to generate comparable 

results with SVM based classifications. FCM with default parameter setting 

was applied to generated results from SC-ICA for thresholds 0.12, 0.1, 0.6 

and 0.3. The segmented results were labeled and classified with the help of 

an experienced radiologist. The same steps were repeated for results from 

MICA and MW-ICA for db6 wavelet, and conventional ICA also. The 

observed results are presented in Table 5.5, and in Fig. 5.13 (a) and Fig. 5.13 

(b). A visual analysis is also presented with the help of a clinical case with 

WML. Average Tanimoto Index values from 48 normal cases and 64 

abnormal cases are tabulated in Table 5.5.  For SC-ICA, normal case analysis 

was done with α value, 0.1, 0.12 and 0.03. In abnormal case we reduced the 
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threshold a little such as 0.1, 0.06, and 0.03 to work with small abnormalities. 

According to the spectral angle calculation discussed in Chapter 4, we 

selected a value > 0.06. Threshold value 0.03 is also included to explain the 

effect of more clusters in normal and abnormal analysis. 

Table 5.5 Tanimoto Index values from clinical analysis 

  
Normal 

  
Abnormal 

Methods α CSF GM WM 
 

α CSF GM WM Abn. 

SC-

ICA+FCM 

.1 0.74 0.64 0.81 .1 0.68 0.55 0.78 0.78 

.12 0.90 0.69 0.89 .06 0.81 0.78 0.88 0.89 

.03 0.72 0.60 0.63 .03 0.79 0.33 0.89 0.90 

MICA+ FCM 
 

0.68 0.64 0.82 
  

0.70 0.78 0.81 0.92 

MW-

ICA+FCM  
0.84 0.78 0.88 

  
0.79 0.82 0.84 0.91 

ICA + FCM 
 

0.82 0.42 0.78 
  

0.75 0.31 0.80 0.76 

Abn. = Abnormality 

FCM based on proposed methods were found to be giving very good results 

for almost all tissue classes in this study. In normal case analysis, SC-ICA 

based FCM with threshold value 0.12 was observed as yielding best TI 

values for CSF/WM, 0.90/0.89, whereas MW-ICA+FCM also showed 

similar performance with best TI for GM, 0.78.  SC-ICA based classification 

for lower thresholds and MICA+FCM failed to provide a better performance 

than ICA based analysis for some tissues like CSF. In abnormal data 

analysis, more than three tissue classes were to be extracted from three input 

images. Almost similar behavior as observed in normal case is provided in 

the classification results by proposed and conventional methods. 

SC-ICA_.06+FCM and MW-ICA+FCM were observed as yielding very 

good TI values. For WM and abnormal tissue classification, SC-ICA for 
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threshold value 0.03 showed high TI values. More clusters generated as a 

result of reduction in threshold improved the classification of WML and 

other abnormalities. MICA+FCM provided the best average TI, 0.92, for 

abnormality detection. However, as it is mentioned in the MICA algorithm, 

global tissues were found to be suppressed in the results.   

Cost of predicting a negative tissue as a positive, or positive tissue as 

negative is very high in MRI analysis. False Positive Rate (FPR) and False 

Negative Rate (FNR) observed for 35 abnormal cases showing hyper intense 

lesions by four methods under consideration were used in this study to 

analyze these misclassifications. Wide variation in measures observed for 

different cases. So average of estimated results with standard deviations is 

shown as error bars in Fig. 5.14(a) and (b) for GM, WM and Lesions. Fig. 

5.14(a) shows that GM classification from MICA and MW-ICA has almost 

same FPR. SC-ICA+FCM shows the least average FPR, but with wide 

variations. 

In Fig. 5.14(b), ICA+FCM was observed as yielding highest FNR among all 

the classification approaches, whereas MW-ICA+FCM was observed as best 

classifier for CSF and abnormalities with least values for FNR and variations. 

However SC-ICA+FCM turned as the best method yielding least FNR with 

least standard deviations for WM classification. The significant reduction in 

FPR and FNR, observed for MW-ICA based classification, is a promising 

result in clinical analysis. ICA+FCM showed the maximum FPR for GM. 

However, in the case of WM and abnormality analysis, comparatively lower 

values observed for MW-ICA+FCM and ICA+FCM based analysis. MW-

ICA+FCM was found to be giving least averages with least standard 

deviations. 
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(a). FPR comparison of segmented tissues 

 
(b). FNR comparison of segmented tissues 

Fig. 5.14 Misclassification rate analysis of hyper intense lesions   
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A subjective analysis of these observations was performed in the qualitative 

study with an abnormal case. Fig. 5.15 shows input slices selected for the 

analysis, in the order of T1WI, T2WI and FLAIR image from left to right. 

The selected case shows periventricular ischaemic change with few chronic 

lacunar infarcts in both cerebral hemispheres as hyper intense lesions. WM 

details are available from T1WI; T2WI shows CSF and abnormal points. 

FLAIR images give information on lacunar infarcts (hyper intense). Not 

much detail on GM was available from these images.  

 

Fig. 5.15 Clinical input images, T1WI, T2WI and FLAIR from left to right. 
 

ICA based FCM was first applied on this dataset. Classified results are 

shown in Fig. 5.16 (a). Then SC-ICA for threshold 0.06 was executed with 

this input dataset, from which FCM generated the results given in Fig. 5.16 

(b). We repeated FCM on results from MICA and MW-ICA for db6 wavelet 

using the same dataset. Segmented brain tissues, CSF, GM, WM and lesions 

are shown in Fig. 5.16 (c) and Fig. 5.16 (d) respectively. Column wise 

comparison of Fig. 5.16 gives a detailed picture of the improvement in tissue 

classification by the proposed methods, which can be highlighted as follows.  
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  (a)  ICA based FCM; CSF, GM,WM and WML from left to right  

 
(b)  SC-ICA+FCM; CSF, GM, WM and WML from left to right   

 
(c) MICA+FCM; CSF , GM,WM and WML from left to right 

 
(d) MW-ICA+FCM; CSF, GM,WM and WML from left to right 

Fig. 5.16 Unsupervised brain tissue classification from a clinical case 
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• CSF details are found to be better represented by SC-ICA+FCM and 

MICA+FCM in Fig. 5.16 1st column.   

• GM (Fig. 5.16 2nd column) is found to be better in SC-ICA+FCM and 

MW-ICA+FCM; MW-ICA has shown a few unwanted pixels due to 

misclassifications.  

• In input T1WI, lesion details are hypo intense, which cannot be 

distinguished from WM. ICA+FCM also failed to locate these points in 

WM. SC-ICA+FCM has shown the best results in this regard. 

Comparable results are observed from MW-ICA+FCM also. 

MICA+FCM represented them with a penalty of losing true positives in 

the result (Fig. 5.16 3rd column).  

• For WML segmentation (Fig. 5.16 4th column), MW-ICA+FCM 

performed best with accurate representation of abnormalities and 

reduced presence of negative pixels. ICA results in Fig. 5.16 (a) failed 

to give specific details of abnormality. SC-ICA+FCM and 

MICA+FCM improved the results; still the presence of unwanted 

pixels affects the overall quality of the results.  

Quantitative and visual analysis demonstrated the efficiency of the proposed 

methods in improving brain tissue classification. SC-ICA+FCM and MW-

ICA+FCM presented a very good performance in identification of small 

abnormalities. As a last step, we conducted a supervised learning, 

classification and analysis of clinical dataset as discussed in the next section. 

5.5.2.2 Supervised classification results 

From synthetic image analysis, it was observed that supervised classification 

is providing more accurate results than FCM. To ensure the positive effect of 

the supervised approaches with proposed methods in brain tissue 

classification, experiment 3 was conducted with SVM. Supervised learning 

for normal and abnormal data was conducted with features extracted from 
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multispectral slice sets, as described in validation plan in Table 5.1. Feature 

vectors collected from training data were utilized to generate the 

classification model for brain tissue analysis.  The performance measures 

sensitivity, specificity and accuracy were estimated separately for each 

healthy and non healthy case. Three multispectral slice sets were considered 

for each case to collect the feature vectors. Performance measures observed 

from different cases were found to be widely varying. Average and standard 

deviation of the estimated values are tabulated in Table 5.6. GM, WM and 

abnormality are included in the analysis. Both hyper intense lesions and other 

abnormalities were merged into the broad category ‘Abnormality’. 

Table 5.6 Performance analysis of classified tissues from supervised approach 

GM WM Abnormality 

Methods 
α Spec. 

±std. 

Sens. 

±std. 

Acc. 

±std. 

Spec. 

±std. 

Sens. 

±std. 

Acc. 

±std. 

Spec. 

±std. 

Sens. 

±std. 

Acc. 

±std. 

SC-ICA 

+SVM 

.1 68.32 

±5.44 

80.29 

±5.65 

70.86 

±6.95 

91.15 

±5.69 

90.32 

±6.97 

92.20 

±4.39 

93.99 

±5.11 

46.76 

±16.97 

78.30 

±12.02 

.06 94.17 

±5.36 

58.91 

±10.62 

76.40 

±5.43 

91.01 

±8.50 

84.81 

±6.18 

90.78 

±6.07 

91.99 

±7.43 

57.19 

±21.47 

82.31 

±14.9 

.03 84.25 

±5.37 

56.63 

±11.53 

75.43 

±5.19 

90.18 

±4.24 

90.34 

±5.06 

91.68 

±4.08 

92.77 

±7.12 

90.28 

±5.59 

92.57 

±6.25 

MICA 

+SVM 

 93.18 

±3.01 

80.71 

±4.34 

89.81 

±2.17 

88.91 

±2.10 

80.76 

±4.08 

85.09 

±3.74 

95.26 

±2.11 

63.35 

±3.32 

89.78 

±2.27 

MW-

ICA+SVM 

 93.68 

±4.20 

83.32 

±6.12 

90.61 

±3.04 

94.83 

±1.28 

88.95 

±7.14 

93.60 

±2.18 

96.88 

±1.40 

91.99 

±3.88 

95.69 

±1.38 

ICA + SVM 
 63.92 

±5.73 

57.62 

±4.67 

62.52 

±4.55 

94.08 

±4.36 

85.50 

±8.20 

92.37 

±2.26 

97.57 

±2.22 

84.90 

±5.02 

89.31 

±2.18 

Spec. = Specificity, Sens. = Sensitivity, Acc. = Accuracy, std. = standard deviation 
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Main observations from Table 5.6 can be summarized as follows, 

• Considering GM classification results, best average results with least 

standard deviations were provided by MW-ICA+SVM and MICA+SVM. 

MW-ICA+SVM gave an accuracy of 90.61% with standard deviation 

3.04% and MICA+SVM showed 89.81% accuracy with 2.17% variation.  

• In WM classification also, MW-ICA+SVM presented the best 

performance with specificity/sensitivity/accuracy, 94.83/88.95/93.6, and 

consistency with decreased standard deviations. SC-ICA+SVM results 

were also found to be very good, but poor performance was observed for 

MICA+SVM.  

• In the case of abnormality analysis, we considered small as well as large 

type of lesions and tumors. MW-ICA+SVM was observed as the best 

classifier with consistent results 96.88/91.99/95.69 as 

specificity/sensitivity/accuracy values. SC-ICA+SVM for threshold 0.03 

also provided a high performance, but estimated standard deviation 

values indicated the inconsistency in results due to large inter-case result 

variations. 

The classification models obtained from the validation process were utilized 

to segment the brain tissues using the test cases given in Table 5.1. The 

classified tissues were compared with manually segmented images to 

measure the Tanimoto Index (TI), and average of the observed values for 

normal and abnormal cases excluding WML cases are summarized in Table 

5.7. SC-ICA was performed with threshold values 0.12, 0.1, and 0.03 for 

normal case, and abnormal case analysis was conducted with threshold 

values, 0.1, 0.06 and 0.03. SC-ICA_0.12+SVM was observed as the best 

performer for normal case analysis with highest TI value for CSF/WM, 

0.88/0.87, and high TI value, 0.66, for GM. ICA_0.06+SVM founds to be 

yielding best values for abnormal case analysis for CSF/GM/WM,  
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0.77/0.78/0.90. However, abnormality classification by MW-ICA+SVM 

provided highest TI value, 0.91. ICA+SVM failed to provide competitive 

results for all cases except WM. To demonstrate the effect of the proposed 

methods in supervised classification qualitatively, a clinical case from 

abnormal data is analyzed in depth. Abnormality in clinical case shown in 

Fig. 5.17 was observed as a lesion surrounded by edema. T2WI shows the 

location of abnormal tissues as CSF-like hyper intense, but not distinguishing 

the tumor and edema. 

Table 5.7 Tanimoto Index from classified tissues in clinical analysis 

Normal Abnormal 

Methods α CSF GM WM α CSF GM WM Abn. 

SC-ICA +  

SVM 

.1 0.79 0.63 0.83 .1 0.43 0.53 0.88 0.78 

.12 0.88 0.66 0.87 .06 0.77 0.78 0.90 0.79 

.03 0.60 0.57 0.51 .03 0.63 0.29 0.89 0.75 

MW-ICA + 

SVM  
0.63 0.68 0.84 

  
0.62 0.68 0.82 0.91 

MICA+SVM 0.64 0.66 0.80 0.60 0.69 0.74 0.75 

ICA + SVM 0.61 0.45 0.77 0.41 0.47 0.84 0.62 

Abn. = Abnormality 
 

 

Fig. 5.17 Clinical input images for SVM analysis, T2WI, T1WI and FLAIR  

from left to right. 
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(a) Manual segmentation 

 
(b) ICA+SVM; CSF, GM, WM and tumor + edema from left to right 

 
(c) SC-ICA_06+SVM; CSF,GM,WM and tumor + edema from left to right 

 
(d) MICA+SVM; CSF, GM, WM and tumor + edema from left to right 

 
(e) MW-ICA+SVM; CSF, GM, WM tumor, surrounding edema from left to right 

Fig. 5.18 Results from manual segmentation and supervised classification 
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T1WI also showed the similar behavior, locating abnormality with vague 

hypo intense part. FLAIR image well described the tumor and edema, but 

failed to incorporate the information of other tissues in it. Fig. 5.18 describes 

the results from proposed SVM classifications and conventional ICA based 

classification. Manually segmented tissues shown in Fig. 5.18(a) were used 

as the reference for comparison. From the qualitative analysis of results in 

Fig 5.18, following points can be highlighted. 

• ICA+SVM results in Fig. 5.18(b) best described the lesion part, but failed 

to identify the surrounding edema. However, high quality results were 

observed for WM, exactly removing the affected portions. It could not 

show a high quality performance in classification of CSF and GM.  

• Classification results from SC-ICA_.06+SVM (Fig. 5.18 (c)) were found 

to be more promising with high quality results for all tissues except GM. 

SC-ICA+SVM results specifically located the abnormality, and its effect 

on other tissues in a better way, which seems to be very useful in clinical 

analysis.  

• MICA+SVM results showed the lesion and the surrounding edema (Fig. 

5.18 (d) last column) with a clear description of the separation between 

lesion and edema. However, MICA cannot reach the performance of SC-

ICA or ICA in classification of GM, WM and CSF.  

• As a method providing solution to over-complete issue in ICA, MW-ICA 

could separate the edema and tumor into two results as given in Fig. 5.18 

(e) (last two columns). High quality CSF and WM were observed, with a 

comparable accuracy to the manually segmented results. A higher rate of 

misclassifications observed for GM, leading to a poor quality result as in 

Fig. 5.18(e) 2nd column. 

As a concluding remark it can be stated that supervised classification results 

were found to be superior to unsupervised analysis results. Classifications 
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based on MW-ICA and SC-ICA provided high performance classification for 

almost all brain tissues. However, SC-ICA was found to be yielding varying 

results and performance for different threshold values. Threshold selection 

associated with SC-ICA, which is highly dependent on the data 

characteristics, was observed as a great challenge in MRI analysis. MICA 

based classification results were found to be very good for abnormality 

analysis. However, global feature suppression in MICA algorithm decreased 

the classification performance of other tissues, CSF, GM, and WM. MW-

ICA and MICA based classification results were found to be slightly varying 

on different wavelets. In general, low order daubechies wavelets gave good 

results. 

5.6 Summary 

Quantitative and qualitative analysis of the proposed ICA extensions and 

conventional ICA, with supervised and unsupervised classification 

approaches is discussed in this chapter. A detailed description on the datasets 

used, preliminary steps to prepare the data for feature extraction are 

described in the initial sections. Image registration and feature collection are 

described with the help of examples. Bias estimation for different validation 

techniques also included as a part of the feasibility study. Result analysis of 

synthetic and clinical datasets is divided into two, quantitative and qualitative 

analysis. Supervised classification using SVM, and unsupervised 

classification using FCM were performed on normal and abnormal 

multispectral sets in synthetic and clinical database. Compared to 

conventional ICA based classifications, proposed methods have shown 

significant improvement in brain tissue classification. Potential of these 

methods in improving the results, especially in the analysis of small 

abnormalities are found to be very promising in pathological study and 

disease progress evaluation.  
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Chapter - 6 

A HYBRID APPROACH TO BRAIN TISSUE 
CLASSIFICATION  

 

6.1 Introduction 
Chapter 4 discussed the proposed ICA extensions, and Chapter 5 evaluated 

the supervised and unsupervised classifications based on these methods using 

synthetic and clinical data. In this chapter, we propose a new hybrid feature 

selection method for supervised brain tissue classification using SVM. ICA 

and multisignal wavelet analysis in the spectral domain are the techniques 

used in the feature extraction phase. For each tissue sample, corresponding 

values in independent components and wavelet coefficients were 

simultaneously selected for training and classification. Section 6.2 explains 

the proposed method. Both synthetic and clinical datasets were included in 

the performance analysis of the proposed algorithm. Details of the 

experiment are given in Section 6.3. The observed results are summarized in 

Section 6.4. Selected classification models with optimal performance were 

used in the qualitative analysis of each tissue in section 6.5.  

6.2 Proposed method for SVM classification 

6.2.1 Method 
Wavelet decomposition of the input spectra and ICA are the core concepts 

used in this algorithm. Major steps involved in this method are depicted in 

Fig. 6.1. Co-registered images from different MRI sequences were collected 

to form a multispectral suite. Each pixel vector represents the spectral 

signature of the area specified by that pixel, and collection of these spectral 

signatures generated multisignals, as discussed in Chapter 4. Two 
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independent operations (can be implemented as parallel) are applied on these 

multisignals to generate the feature sets; Conventional ICA using FASTICA 

as discussed in Chapter 3, and 1-D multisignal wavelet analysis, as shown in 

Fig 6.1. Optimal features for supervised learning are collected from the 

generated source components (basis vectors) from these methods, with the 

help of an experienced radiologist. Non-linear SVM using RBF kernel with 

default settings, as described in Chapter 5, is applied on the training data and 

test data for brain tissue classification. Details of the feature selection are 

discussed with the help of an example in the following sections. 

 

Fig. 6.1 Proposed Hybrid SVM classification 

6.2.2 Signal selection from wavelet analysis 
Discrete wavelet transform is applied on input image cube in the spectral 

domain as discussed in Chapter 4, exploiting the same concept used in the 

spatial domain [53, 55]. In multisignal wavelet analysis, approximation and 

detail coefficients at different levels of decomposition yields different 
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decorrelated basis components. Therefore, the problem with wavelet 

decomposition is to decide the level of decomposition [55] for selection of 

best features. A simple method using the correlation coefficient, ρ, between 

detail coefficients at each level helps to do this. The magnitude of the 

computed positive correlation coefficient shows the degree of similarity 

between the subcomponent images. Correlation coefficient ‘ρ’ is given by, 

 ( )
21 DD

21
21

)D,Dcov(D,D
σσ

ρ
⋅

=     (6.1) 

where ‘cov(D1, D2)’ is the covariance between datasets ‘D1’ and ‘D2’, 1Dσ

and 2Dσ are the standard deviations of  ‘D1’ and ‘D2’ respectively. 

For example, consider the correlation analysis to select the best level of 

wavelet decomposition for feature selection using a clinical case consisting 

of T1WI, T2WI and FLAIR images, as given in Fig. 6.2(a). Three levels of 

decomposition are considered. Correlation matrix, CM, is observed as, 

CM =    

Level 1    ρ(1,2) ρ(2,3) ρ(1,3) 

Level2     ρ(1,2) ρ(2,3) ρ(1,3) 

Level3     ρ(1,2) ρ(2,3) ρ(1,3) 
 

Minimum correlation between subband components are provided by the 

column wise minimum of CM.  CMmin= [ -0.9881   -0.9246   -0.8269 ] with  

Index Vector = [3 3 2]. So components 1&2, and 2&3 have minimum 

correlation at level 3. Images with negative correlation are also considered as 

dissimilar. So index value 3 is considered as the best level of decomposition 

in this example to select the candidates for feature selection from detail 

coefficients and approximation coefficient. Independent components are 

given in Fig 6.2 (b) and selected wavelet coefficients are shown in Fig. 6.2 

(c).  

CM = 

0.8283    0.4919    0.0730 

-0.9047   -0.7865   -0.8269 

-0.9881   -0.9246   -0.6213 
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(a) Input images 

 
(b) Independent Components 

 
(c) Wavelet coefficients for level 3 

Fig. 6.2 Feature extraction using ICA and multisignal wavelet analysis 

 

Approximation Coefficient 

Detail Coefficients 
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6.2.3 Feature selection 
 

 

 
Fig 6.3 Feature selection from Independent Component and wavelet coefficient 

 

Both ICs and wavelet coefficients give features of source components or 

basis vectors. Feature selection for white matter lesion is shown in Fig 6.3. A 

5x5 window is chosen to locate the optimal feature set. For each sample, two 

features are considered; feature from independent component, and 

corresponding value from wavelet coefficient. Since it is a pixel based 

classification, it can be used in segmentation also. The proposed hybrid 

approach to SVM classification is summarized in Algorithm 6.1. Step2a and 

Step2b are independent, and can be implemented and performed in parallel to 

reduce the computational complexity. 

Independent 
Component 

Wavelet 
Coefficient 
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Algorithm 6.1 The proposed hybrid feature selection method for SVM 

classification 

6.3 MR images and experimental setup 

Both synthetic and clinical images were considered to evaluate the 

performance improvement of the proposed method. The synthetic MR image 

Input: Co-registered slices from MR sequences, T1WI, T2WI, PDI, FLAIR etc. 

Step1: Consider input multispectral image as a collection of spectral signatures. 

Apply 1-D multisignal wavelet decomposition on these signals to divide the 

spectral domain into low frequency and high frequency components.  

Step 2: Apply two parallel operations for feature extraction as follows, 

Step 2a: Calculate the correlation coefficient between the high frequency 

subcomponents for each level using the eq., 

     ( )
21 DD

21
21

)D,Dcov(D,D
σσ

ρ
⋅

=  

where cov(D1, D2)  is the covariance between datasets ‘D1’ and ‘D2’, and σ D1 

and σ D2 are the standard deviations of  ‘D1’ and ‘D2’ respectively. Select the 

wavelet coefficients providing minimum degree of correlation for feature 

selection.  

Step 2b: Apply FASTICA algorithm on input dataset to generate independent 

components.  

Step 3: Select Independent component features and corresponding wavelet 

features using a 3x3 or 5x5 window. 

Step 4: Apply SVM training and classification on selected features to classify the 

brain tissues. 

Output: Classified/segmented brain tissues and abnormalities. 
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analysis includes a dataset containing Multiple Sclerosis (MS) data obtained 

from the BrainWeb.  

Table 6.1 Evaluation plan for classification 

Category Training data 
Cross 

validation 
Test data 

Feature 
vectors 

 Cases Slices  Cases Slices  

Synthetic normal 1 40 

ECV 10 

1 20 1800 

Synthetic 

abnormal 
1 40 1 20 1800 

Clinical normal 120 360 48 144 7560 

Clinical abnormal 

(WML) 
75 225 35 105 6600 

Clinical abnormal 

(other) 
75 225 29 87 6240 

 

60 multispectral datasets containing axial T1WI, T2WI, and Proton Density 

Images (PDI) from each database (normal and abnormal) were considered for 

analysis. Slices from each sequence were selected with parameter settings 1-

mm slice thickness and noise level of 0%. T1WI, showing WM and GM 

components, T2WI showing CSF details and White Matter Lesions (WML), 

and PD images showing more abnormal tissue details were considered in the 

analysis. Clinical image analysis was conducted using normal and abnormal 

datasets consisting of T1WI, T2WI and FLAIR sequences. MATLAB based 

registration, as explained in Chapter 5, was performed on these dataset to 

generate co-registered images.  

Two sets of experiments were done using these databases. First experiment 

performs training and classification using SVM, and its analysis. Second 

experiment uses the models generated from the first set to evaluate the 

segmented images. Details of the experiment 1 are shown in Table 6.1. Total 

382 patients were selected for clinical analysis, out of which 168 cases were 
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normal and 214 were abnormal. Abnormal cases were again categorized into 

White Matter Lesions (WML) and other abnormalities. For classification, we 

considered 110 WML cases and 104 other abnormal cases. Three slices, best 

representing the abnormal locations were collected from each sequence. CSF, 

GM, WM and Abnormalities were the tissues considered, and total features 

included in the experiment were given in Table 6.1. Validation and model 

selection were conducted by external 10 fold cross validation. In the second 

set of experiments, the classification models were considered in the 

segmentation of synthetic and real brain tissues. Performance evaluation was 

done with statistical measures sensitivity, specificity, accuracy, error bar 

diagrams and ROC curves [77]. 

6.4 Classification results 

Feature extraction process using multisignal wavelet analysis and ICA were 

first performed to collect the best features of each tissue. Non-linear SVM 

(RBF kernel, σ = 1) functions in Matlab 7\Pattern Recognition Toolbox, with 

default parameter settings were applied on these selected features for training 

and validation. One-against-all SVM strategy was adopted to solve the 

classification problem. Sequential Minimal Optimization method was chosen 

to find the optimal separating hyper-plane. The same procedures were 

repeated for SVM coupled with ICA alone also, to give a detailed 

comparative analysis as discussed in the following sections. 

6.4.1 Synthetic image analysis 

Total 120 synthetic multispectral slice sets were considered for SVM 

classification for normal and abnormal databases. Distribution of the data 

into training and test data categories are shown in Table 6.1. ECV10 is 

applied on the 40 normal multispectral sets to select the best classification 

model. Then, a separate set of 20 slices in test data were utilized to measure 
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the performance measures like sensitivity, specificity and accuracy. Average 

of these measures is tabulated in Table 6.2. The same steps were repeated for 

60 (both training and test data) abnormal multispectral sets also, and results 

are included in Table 6.2. To evaluate the improvement in classification 

performance, SVM learning and classification were performed on normal and 

abnormal features from ICA also, in the same environment. The observed 

results for CSF, WM, GM and WML supported the proposed method as an 

efficient method for brain tissue classification. Variations in results among 

different multispectral sets were negligible, since the synthetic data were of 

similar characteristics. 

Table 6.2 Analysis of synthetic brain tissues  

Normal 

 

Abnormal 

Tissues Method Sens. Spec Acc. Sens. Spec. Acc. 

CSF 
Hybrid SVM 99.74 76.07 95.65 99.85 66.47 89.79 

ICA+SVM 99.77 53.42 87.53 99.82 48.11 82.43 

GM 
Hybrid SVM 87.50 98.41 89.97 94.35 72.21 88.65 

ICA+SVM 89.95 78.29 82.91 96.44 48.68 78.23 

WM 
Hybrid SVM 99.74 99.35 99.69 90.64 84.88 89.95 

ICA+SVM 97.87 99.31 98.82 95.70 66.07 75.74 

WML 
Hybrid SVM 

 

99.93 99.98 99.95 

ICA+SVM 99.94 52.1 86.47 

Sens. = Sensitivity, Spec. =Specificity, Acc. =Accuracy 

From classification results, an overall performance improvement observed 

for hybrid approach compared to ICA based classification. In general, both 

the classifiers show high sensitivity, but specificity is found to be less. ICA 

based SVM showed performance measures different from results in Chapter 

3 and [29], since it is based on IC values corresponding to each brain tissue 

sample. For CSF, accuracy improvement by the new method was +8.12 in 
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normal case, whereas abnormal case data showed an increase of 7.36 in 

accuracy. Presence of MS lesions decreases the performance of all tissues 

from abnormal data. In the case of GM, sensitivity is slightly higher for 

ICA+SVM, but specificity is too low compared to hybrid SVM. Normal WM 

tissue classification methods by both methods presented almost the same 

performance. However, in the case of abnormal data, hybrid SVM exceeded 

ICA+SVM in accuracy by a value of 14.21, but showing a dip of 5.06 % in 

sensitivity. An excellent performance was observed for hybrid SVM in the 

case of WML classification, with very good values for all measures. 

ICA+SVM could give comparable sensitivity values, but showed a great 

difference in specificity, only 52.1%.  

Synthetic images are from simulated database, and are generated with almost 

uniform data characteristics for different slices. So the evaluation using these 

dataset can be considered as only a preliminary study. A detailed evaluation 

of the clinical data can give a good picture of the performance improvement 

in brain tissue classification by hybrid SVM.  

6.4.2 Clinical image analysis 

In the case of normal data, 360 multispectral sets were formed from 120 

training cases. The 48 cases from test dataset were considered for 

performance evaluation. Three multispectral sets were considered for each 

case and the results were averaged. Considerable variations observed in 

results from patient to patient. To analyze the complete behavior of the 

classification, standard deviation (std.) of values corresponding to each 

performance was also considered. Small values for standard deviations 

indicate less variability. That means the consistency or stability of the 

algorithm in the classification increases with decrease in standard deviation. 

Average and standard deviation of these 48 cases are summarized in Table 

6.3. Same classification process was repeated for samples selected from 
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conventional ICs in the same environment, and results are tabulated in Table 

6.3. 

Out of 110 WML cases, 75 were considered for training phase with 225 

multispectral sets formed from it. Rests of the 35 cases were considered in 

the test phase, and classification was conducted as described for normal case. 

We divided other abnormal cases into a group of 75 cases for training, and a 

group of 29 cases for testing. Average and standard deviation of the 

performance measures for these 35+29 cases are added in Table 6.3. 

Table 6.3 Clinical image analysis 

  Normal  Abnormal 

Tissu
es Method Sens. 

±std. 
Spec. 
±std. 

Acc. 
±std.  Sens. 

±std. 
Spec. 
±std. 

Acc. 
±std. 

CSF 

Hybrid 

SVM 

98.42± 

0.65 

84.08 

±11.45 

95.75 

±2.10 
 

97.23 

±2.17 

51.15 

±13.05 

85.11 

±3.54 

ICA+SVM 
91.78 

±3.97 

43.41 

±12.70 

81.58 

±3.06 
 

90.19 

±6.47 

43.31 

±2.06 

66.55 

±7.13 

GM 

Hybrid 

SVM 

87.30 

±12.36 

92.10 

±4.52 

90.75 

±4.95 
 

98.38 

±0.59 

52.90 

±4.79 

91.13 

±2.04 

ICA+SVM 
85.94 

±12.93 

74.65 

±5.11 

83.93 

±10.04 
 

96.24 

±2.57 

39.54 

±7.43 

83.54 

±2.89 

WM 

Hybrid 

SVM 

91.56 

±7.48 

89.29 

±02.47 

92.21 

±2.24 
 

94.92 

±0.18 

73.60 

±11.78 

90.94 

±1.60 

ICA+SVM 
89.67 

±9.95 

68.94 

±23.76 

81.36 

±7.69 
 

98.35 

±0.6 

50.32 

±6.25 

74.82 

±7.22 

Abnor

mal 

tissue

s 

Hybrid 

SVM 
    

96.12 

±1.80 

95.45 

±1.07 

95.58 

±1.5 

ICA+SVM     
98.15 

±0.49 

47.17 

±5.27 

71.24± 

9.07 

Sens. = Sensitivity, Spec. =Specificity, Acc. =Accuracy, std. = standard deviation 

ICA+SVM classification was also performed in the same environment for 

result comparison, and measured values are included in Table 6.3. Proposed 

method could present comparatively good results for all cases. An overall 
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performance decrement is observed in the case of brain tissue classification 

from abnormal data, in comparison with those from normal database.  

• Considering CSF, sensitivity and accuracy values from proposed method 

were found to be more consistent for normal and abnormal case with 

good improvement, but specificity found to be varying on different real 

data. In the case of normal CSF, hybrid SVM showed an improved 

performance compared to ICA+SVM, showing average 

sensitivity/accuracy of 98.42/95.75 against 91.78/81.58, with less 

standard deviations. Almost similar behavior observed in the case of 

abnormal CSF also, but specificity was found to decrease to around 51%, 

with increased inconsistency. 

• In the case of GM classification using hybrid SVM, approximately +8% 

accuracy improvement over ICA+SVM was observed for normal and 

abnormal data. Standard deviation values for hybrid SVM  indicated the 

improvement in consistency also.  

• ICA+SVM could yield comparatively good average sensitivity for 

abnormal WM classification, showing an average 98.35% against 

94.92% from hybrid SVM. However, the specificity in presence of 

abnormalities could not give such a high value. Hybrid SVM was 

observed with a consistent high accuracy, showing an average of 90.94 

against 74.82.  

• Abnormal case sensitivity values are more promising, but specificity got 

reduced due to presence of abnormal tissues, especially in the case of 

hyper intense lesions. The average sensitivity was observed to be slightly 

higher in the case of ICA+SVM. But the poor value observed for 

specificity, 57.17, discourages ICA+SVM as an accurate classifier in 

brain tissue analysis. Hybrid SVM yielded very good values for 

sensitivity/specificity/accuracy, 96.12/95.45/95.58, with standard 
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deviation always less than 2. Improvement in abnormal tissue analysis 

was found to be most attractive with a drastic increase of accuracy value 

from 71.24% to 95.58%, with improved consistency confirmed by 

reduced standard deviation from 9.07 to 1.5.  

A separate performance evaluation using ROC curves [77] for WML and 

other abnormalities are shown in Fig. 6.4 and Fig. 6.5. Fig. 6.4 is the 

performance curve (TPR vs. FPR) using 1740 samples selected from 29 

abnormal test cases excluding WML. Area Under the Curve (AUC) for 

hybrid SVM was measured as 0.9580, whereas ICA+SVM provided a poor 

performance with low AUC value 0.7228. 

 

Fig. 6.4 ROC curve for abnormal cases by hybrid SVM and ICA+SVM 
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Fig. 6.5 ROC curve for WML by hybrid SVM and ICA+SVM 

Fig 6.5 plots the performance curve (TPR vs. FPR) using 2100 samples 

selected from 35 WML test cases. AUC for hybrid SVM was measured as 

0.9982, whereas ICA+SVM provided a poor performance with low AUC 

value 0.7403. In both cases, AUC values close to 1 from ROC curves give 

evidence for the high performance of hybrid SVM classifier for abnormality 

analysis. 

6.4.3 Performance analysis with daubechies wavelets  

Chapter 4 discussed that different wavelets provide varying performance 

results in brain tissue classification. Wavelets from daubechies family were 

considered in this section, to study the effect of the smoothness variation by 

vanishing moments [163] in quantitative analysis of brain tissue 

classification.  
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Fig 6.6 Error bar diagram showing classifier performance variations for different orders of 

daubechies wavelets 

In this experiment, same data and procedure as described in section 6.4.2 

were followed in feature extraction. Samples were categorized into a binary 

group, abnormal tissues and normal tissues. Total 64 cases were considered 

in the testing phase. Average and standard deviation of the measured 

sensitivity and accuracy are shown as an error bar diagram in Fig. 6.6 for 

different orders 2, 4, 6, 8, and 10.  Low order wavelets are found to be 

yielding best performance with more consistent values for sensitivity and 

accuracy. Db6 could improve both sensitivity and accuracy to greater than 

95% with less standard deviation. Db8 and Db10 results were found to be 

varying in the range [80% - 90%]. 

6.5 Qualitative analysis of brain tissue segmentation 

In clinical trials, quality and accuracy of results from original sequences for 

visual classification is very important. Location and shape of the 

abnormalities as well as the effect of these abnormalities in other normal 

brain portion has great significance in clinical diagnosis. In this section we 
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visually analyze the classified tissues from hybrid SVM and ICA+SVM with 

the help of synthetic and clinical data. Classification models selected in 

section 6.4 were utilized to classify each sample in the multispectral set.  GM 

is avoided because of the vagueness in samples from input images. Input 

image itself provides uncertainties for some tissue samples, which cannot be 

determined by an experienced radiologist or by a computer aided method. 

Classification process often neglects this fuzziness in data, which will reduce 

the efficiency of the method. Visual assessment of the improvement in 

quality is explained in this section with abnormal case data.  

6.5.1 Segmentation of synthetic brain MRI 

Axial slices containing presence of MS Lesions (WML) are shown in Fig 6.7. 

T1WI shows WM details, with patches of MS lesions. T2WI shows CSF, MS 

lesions, GM and other extrameningial tissues. PDI is used to locate the 

lesions with more information. ICA and multisignal wavelet analysis was 

performed on these input datasets for feature extraction. ICs from 

conventional ICA are shown in Fig. 6.8. IC1 gives details of CSF and WML; 

GM details can be extracted from IC2, and IC3 shows WM details. Minimum 

and maximum value represented by each IC is also given in Fig. 6.8.  

     
 

Fig .6.7 Synthetic input slices; T1WI, T2WI, and PDI from left to right 
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IC1 IC2 IC3 
Min = 0 Min = 0 Min = 0 
Max = 763.5293 Max = 656.6606 Max = 659.2381 

Fig.6.8 Independent Components (IC1, IC2, IC3), with range of values 

 
 Approx. coefficient Detail coefficient 1  Detail coefficient 2 
 Min= 0  Min= -1.2693e+004  Min= -185.4580 
 Max= 1.9250e+005 Max= 4.0962e+003  Max= 2.3325e+004 

 

 
Detail coefficient 3 
Min= -1.3115e+004 

Max= 182.5386 

Fig .6.9 Approximation (AC) and detail coefficients (DC1, DC2, DC3)  
from multisignal wavelet analysis 
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Selected multisignal wavelet coefficients according to the algorithm 6.1 from 

multisignal wavelet analysis using db2 wavelet are shown in Fig 6.9. From 

the observed range of values for each coefficient it is obvious that each 

coefficient can provide a wide range of values for different samples. 

Approximation Coefficient (AC) gives details of WML, where Detail 

Coefficient 1 (DC1) shows WM details with minimum -1.2693e+004 and 

maximum 4.0962e+003. DC2 is found to be good for features of CSF and 

GM. For DC3 some unique values were provided, but it is not visible through 

the pixel range for display.  

Classified tissues from proposed classification and ICA+SVM are shown in 

Fig. 6.10. First row represents CSF, second row shows GM, third row gives 

WM, and last row shows the lesion details. Groundtruth (GT) images are 

provided in the first column as a reference to analyze the observed results. 

All these results were presented after removing extrameningial tissues to 

perform a better comparative study. IC1 and DC2 were selected to generate 

CSF. IC2 and DC2 gave GM; IC3 and DC1 could classify WM, and IC1 and 

AC generated the white matter lesions (WML). 

On analyzing the first row, it is very clear that classified CSF from proposed 

method is more similar to GT than CSF from ICA+SVM. However, both 

methods show less details compared to GT. Traces of WML are also shown 

in results from ICA+SVM. Considering GM, more negative pixels are 

considered as positive by both the methods, but comparatively better tissues 

were obtained by the proposed method. It is very clear from 3rd and 4th row 

that WML and its effect on WM are better described by proposed method in 

comparison with ICA+SVM. WM tissues from proposed method identify 

more number of lesion locations (3rd row, black pixels in WM) compared to 

those from ICA+SVM. But, information loss is observed for WM from 

proposed method (circled portion in Fig. 6.10, 3rd row, 2nd column).  
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       GT   Proposed Hybrid SVM  ICA+SVM 

 

Fig 6.10 Classified tissues, CSF (1st row), GM (2nd row), WM(3rd row), and WML(last row) 

in the order of GT, results from proposed classification and ICA from left to right. 
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Available number of lesions and amount of information by proposed method 

is found to be significantly greater than that from ICA+SVM (last row). 

ICA+SVM could identify the major lesions, but it neglects all the small 

lesions. 

6.5.2 Qualitative analysis of clinical dataset 

In the qualitative analysis of clinical data, images showing evidence of 

chronic infarct with gliosis noted involving right parieto-occipital region of 

brain were selected. Parenchymal signal in the area of chronic infarction 

continues to show CSF-like hypo intensity on T1WI and hyper intensity on 

T2WI as shown in Fig. 6.11. Multiple small chronic lacunar infarcts are also 

noted in deep white matter of both cerebral hemispheres (better noted in 

FLAIR image).  The core of the chronic infarction is also CSF-like on 

FLAIR images, but surrounding gliosis appears hyper intense. Lacunar 

infarcts, also known as lacunar strokes, are small areas of dead tissue found 

deep within the brain.  

 
  T1WI    T2WI     FLAIR 

Fig 6.11 Clinical inputs 
 

When we analyze the tissues, T1WI shows WM. But presence of 

abnormalities is not reflected in the image. In T2WI, we cannot distinguish 

between CSF and abnormalities.  
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IC1    IC2    IC3 
Min = 0.7562   Min = 0.0032   Min = 1.6267e-004 
Max =   822.34   Max =   558.8671  Max =   956.74 

Fig. 6.12 Clinical Independent Components 

   
AC    DC 1   DC 2 
Min= -73.6715  Min= -88.9931  Min= -396.6071 
Max= 1.1729e+003  Max= 201.9797  Max= 75.0493 
 

 
DC 3 
Min= -65.7962 
Max= 331.1719 

Fig. 6.13 Coefficients by multisignal wavelet analysis 



Chapter 6 

168 

Lacunar infarcts found in FLAIR sequences are too small and mixed with its 

background, which makes feature extraction very difficult. Not much detail 

on GM was available from these sequences. A simultaneous analysis of these 

images is a challenge in conventional applications.  

Multisignal wavelet analysis using db6 and ICA were applied on the co-

registered images in Fig. 6.11. ICA results are shown in Fig. 6.12 and 

Wavelet coefficients are presented in Fig 6.13. Small chronic lacunar infarcts 

and surrounding tissues of chronic infarction, which are found to be hyper 

intense in FLAIR images are available from IC1. IC2 extracts CSF and CSF-

like abnormalities. IC3 shows WM details, but abnormal tissues are not 

found to be showing their presence in WM portion. 

AC coefficient is found to be good in providing information on small and 

large lesions affecting WM. DC1 gives a complete picture of WM, with all of 

the affected area got removed. Information inherent in DC2 is not visible 

because of the negative values. DC3 provide CSF details and CSF like 

abnormalities (chronic Infarctions). Range of coefficient values gives the 

evidence of uniqueness in representing different basic tissues. 

Classification results by hybrid SVM and ICA+SVM are summarized in Fig. 

6.14. Extrameningial tissues are not removed from the classified results. No 

gold standard was available as groundtruth in the case of clinical case, since a 

certain extent of fuzziness exists for each tissue. Manual segmentation results 

from experienced radiologists were often considered as the reference for 

comparison. Top row shows the classified abnormalities, small chronic 

infarcts in the deep white matter and surrounding hyper intense lesions. AC 

coefficient and IC1 were included in the classification of these tissues. It is 

observed that hybrid SVM results provide a better representation of 

abnormalities compared to ICA based SVM results.  
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  Hybrid SVM     ICA+SVM 

 
Fig. 6.14 Clinical brain tissue analysis 

First row- White matter lesions, Chronic lacunar infarcts, 

Second row- CSF and chronic infarction 

Third row- White Matter 
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ICA based SVM shows uncertainties in prediction, which caused the 

misclassification as observed in the result. Considering the second row, we 

see that the CSF and CSF-like abnormalities are clearly segmented by hybrid 

SVM. ICA based SVM failed to generate the positive tissues (here, CSF or 

CSF like abnormal tissues), but more negative tissues are found to be 

misclassified as positives in the result. IC2 and DC3 participated in the 

prediction of these tissues. From FLAIR and T2WI in Fig 6.11 it is very clear 

that a large portion of the WM is affected by the described abnormalities. 

When we consider the abnormalities in WM and remaining normal WM (last 

row), hybrid SVM yielded a good result with all the abnormal locations 

properly identified. 

6.6 Summary 

The newly proposed hybrid feature selection method for improved brain 

tissue classification using SVM is discussed in this chapter. Multisignal 

wavelet analysis in the spectral domain is proposed to preserve the global and 

local information, with equal priority in feature extraction for multispectral 

MRI analysis. Tissue samples, represented by ICA and wavelet features, 

were selected for training and classification using SVM. Performance of the 

new algorithm was analyzed and confirmed by a detailed quantitative and 

qualitative analysis with ICA based classification. 

The SVM models obtained from training and validation were used to 

segment the synthetic and clinical data. To ensure the effect of the method in 

identifying abnormalities and their effect on other tissues, a detailed visual 

analysis was also included in this chapter. Comparison with classification 

results from ICA demonstrated the performance improvement by the new 

method in multispectral brain tissue analysis. 
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Chapter - 7 

 COMPARATIVE ANALYSIS AND DISCUSSION  

 

7.1 Introduction 
In this chapter, we compare the classification results from proposed methods 

with conventional classification approaches, and summarize the results. From 

the previous chapters and literature, it was observed that supervised 

classification provides better performance in brain MRI analysis compared to 

FCM based segmentation. Therefore, we considered SVM based on proposed 

methods and conventional ICA in the detailed comparative study described in 

this chapter. In addition to these, state of the art algorithms, SVM, ANN, 

PNN, and Bagging were also included in the comparative study. Section 7.3 

gives a brief discussion on the proposed methods and classifications, 

summarizing the merits and limitations in brain tissue analysis.  

7.2 Comparison with existing approaches 

In this section we focus on a more elaborative study using conventional 

classification methods. Detailed comparative analysis of nine supervised 

classification algorithms including proposed methods is presented in this 

section.  

7.2.1 Experimental setup 
Total 214 abnormal clinical cases were considered to conduct this 

experiment. 214x3 multispectral slice sets as described in Table 5.1 were 

considered to collect the features of CSF, WM, and abnormality classes. In 

the case of classifications based on feature extraction methods, 12840 feature 
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vectors were collected from unmixed ICs. For other conventional algorithms, 

these feature vectors were directly selected from the multispectral slice sets. 

9000 out of 12840 were considered for training purpose, and rest of the 

feature vectors were utilized to generate the results for comparison. A 3x3 

pixel window was used to locate the best features of a particular tissue as 

described in Chapter 5. For the implementation of proposed methods, we 

selected the optimal parameters observed from result analysis in Chapter 5. 

i.e., for SC-ICA we selected the threshold value 0.06, and daubechies type 

‘db6’ was selected for wavelet based analysis. For other conventional 

algorithms, optimal parameters yielding best results were selected by trial 

and error. Matlab implementations for 4-layer feed-forward back propagation 

network with three hidden layer sizes [10 8 5], probabilistic neural network 

with spread value 0.9, non-linear SVM with RBF kernel and default 

parameter settings, and ensemble method with 100 bagged decision trees 

were applied on training and testing feature vectors to complete the 

comparative analysis.  

7.2.2 Comparative analysis 

Average sensitivity, specificity, accuracy and standard deviation (std.) of 

these measures were observed with tumor and WM classes, and summarized 

in Table 7.1. Hybrid SVM, MW-ICA+SVM, SC-ICA+SVM, MICA+SVM 

and Bagging provided relatively high performance in classification. The main 

focus of this dissertation is to improve the pixel based brain tissue 

classification through efficient feature extraction methods, which highlights 

the presence of small abnormalities along with the global features. Results in 

Table 7.1 demonstrated this goal through results from proposed classification 

techniques.  
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Table 7.1 Performance comparison of supervised classification methods for clinical 

abnormal data 

 
Tumour/Lesion 

 
White Matter 

Methods 

Sens. 

 ± std. 

(%) 

Spec. 

± std. 

(%) 

Acc. 

 ± std. 

(%) 
 

Sens. 

 ± std. 

(%) 

Spec. 

± std. 

(%) 

Acc. 

 ± std. 

(%) 

SC-ICA +SVM 
94.70  
± 3.71 

96.62  
± 2.51 

95.05 
 ± 3.42  

93.63  
± 3.71 

92.54 
± 3.92 

92.62 
± 3.35 

MICA+SVM 
94.45 

± 4.42 

96.71 

± 2.14 

95.21 

± 3.52  

83.74  

± 6.11 

90.73 

± 3.44 

89.42 

± 4.13 

MW-
ICA+SVM 

94.29  
± 2.91 

97.47  
± 1.87 

96.34 
± 1.82  

86.38  
±  6.93 

95.43 
± 1.35 

94.91 
± 1.98 

Hybrid SVM 
96.24 
± 1.64 

96.55  
 ± 1.37 

96.49  
± 1.6  

95.63  
± 1.23 

93.60  
± 4.99 

94.34 
± 2.42 

ICA+SVM 
92.23  

± 3.98 

84.42  

± 1.67 

89.64 

 ± 2.87  

81.84 

± 3.66 

90.43 

± 4.96 

88.53 

± 3.98 

SVM 
92.44  

± 4.53 

61.11 

±13.43 

75.12  

± 9.61  

80.12  

± 5.32 

70.46 

± 2.57 

79.71 

± 1.94 

ANN 
88.68  

± 2.94 

70.24 

± 1.39 

83.61 

± 3.13  

84.63 

± 4.37 

81.21  

± 3.25 

82.72 

± 3.55 

PNN 
94.63  

± 2.49 

63.16  

± 3.44 

83.11 

± 2.72  

65.34  

± 3.23 

92.07 

± 1.8 

74.54 

± 3.01 

Bagging 
93.08  

± 3.95 

84.64 

± 3.78 

91.03 

± 4.12  

91.72  

± 3.66 

88.33 

± 3.71 

90.21 

± 2.4 

   Sens. = Sensitivity, Spec. = Specificity, Acc. = Accuracy, std. = standard deviation 

In the case of abnormality analysis, SVM based on proposed methods 

showed significant positive difference. Hybrid SVM provided high 

performance classification with best sensitivity/specificity/accuracy, 

96.24/96.55/96.49, with corresponding standard deviations, 1.64/1.37/1.6, the 

least among all the methods under consideration. The second best 

classification was provided by MW-ICA+SVM, with almost similar 
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performance as hybrid SVM.  MICA+SVM and SC-ICA+SVM also showed 

better performance compared to conventional approaches, with high 

accuracies, 95.21 and 95.05, respectively. Conventional Bagging approach 

was also found to be providing high accuracy, 91.03, but with more variation 

indicated by the value of standard deviation, ±4.12.  

Regarding WM classification, overall performance of hybrid SVM and MW-

ICA+SVM was observed as more promising. Hybrid SVM provided the best 

sensitivity with least standard deviation, 95.63 (± 1.23), whereas MW-

ICA+SVM gave best specificity, 95.43 (± 1.35). Accuracy values (with 

standard deviations) demonstrated the efficiency of both algorithms yielding, 

94.34 (± 2.42), for former method, and 94.91 (± 1.98) for later approach. 

MICA+SVM performed better than conventional methods except bagging, 

but failed to provide a high performance classification as it showed in the 

case of abnormal tissues. SC-ICA_0.06 also showed good accuracy, 92.62, 

with a standard deviation of ±3.35. In the case of WM also, bagging provided 

an accuracy >90% with less variations. 

An error bar diagram can better depict these variations to evaluate the 

improvement in efficiency and consistency. Fig. 7.1 illustrates the general 

behavior of the accuracy results given in Table 7.1 with the help of an error 

bar chart.  

From Fig. 7.1, performance improvement by proposed classifications is very 

evident without any indexing. SVM showed least accuracy with large 

inconsistency for abnormality analysis, whereas PNN showed least 

performance for WM classification. Even though experimental results 

recommended the potential of the new algorithms in brain tissue 

classification, some exceptional results also observed due to some specific 

and general limitations, which will be discussed in the next section. 
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Fig. 7.1 Error bar diagram for performance comparison of supervised classification methods 

7.3 Discussion 

Both supervised and unsupervised classification approaches are found to be 

widely used in multispectral brain MRI analysis [7]. No operator intervention 

is required in the case of unsupervised analysis, and input multispectral cube 

is automatically segmented into different clusters. Sometimes this blind 

clustering without prior knowledge failed to produce meaningful 

segmentations, especially in the case of MRI analysis where many unknown 

brain tissue clusters with different tissue characteristics may be present. 

However, they are very successful in clinical applications of normal brain 

analysis, since it includes only the known structural characteristics [167]. 

Abnormalities with complex knowledge need some additional information 

from experts to provide a more accurate segmentation [168]. There we can 
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exploit the advantage of supervised methods to achieve the superior 

performance. The main issue with the supervised classification is the 

inconsistency due to large variations in intra-operator and inter-operator 

feature measurements [29]. However, high performance feature analysis 

techniques can significantly reduce the inconsistent results. Experimental 

results in Chapter 5 demonstrated the efficiency and accuracy of SVM over 

FCM in MRI analysis.  

Compared to other conventional classification methods such as Gaussian 

maximum likelihood classifier and neural networks, SVM shows high 

generalization capability with relatively small number of training samples 

[29]. However, selection of non-linear kernels and optimal parameters highly 

influences the classification performance [5].  Error bar diagram in Fig. 7.1 

implies the necessity of some pre-processing methods like ICA to achieve a 

high performance classification. Improvement in accuracy by feature 

selection through ICs, for abnormalities and WM is very evident in Table 7.1 

and Fig 7.1. As a global transform, ICA finds its difficulty in extraction of 

less frequently occurred information from massive amount of data [53, 152]. 

This dissertation proposed a few methods based on spectral clustering and 

multisignal wavelet analysis, as discussed from Chapter 4 to Chapter 6. 

Detailed quantitative and qualitative analysis was also conducted to confirm 

the potential of the new methods in supervised and unsupervised brain tissue 

analysis. The following section summarizes the merits and demerits observed 

on the basis of experimental analysis. 

7.3.1 Benefits of SC-ICA based classification in MRI analysis 

In proposed SC-ICA, a clustering algorithm based on spectral angle distance 

is used to perform object based ICA on multispectral data. The proposed 

algorithm was validated with synthetic and real MRI data. Compared to ICA 

based SVM for MRI analysis [29], SC-ICA+SVM provides better 
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performance in small object detection. In abnormal clinical analysis, SC-ICA 

based classification outperforms ICA+SVM with best results (Fig. 5.16 and 

Fig. 5.18) and improved TI values (Table 5.5 and Table 5.7). It is 

demonstrated by observed sensitivity/TI values, 90.3%/0.75 for SC-

ICA_.03+SVM, against 84.9%/0.52 for ICA+SVM (Table 5.6) in lesion 

analysis. The positive impact of SC-ICA+SVM in locating presence of 

abnormalities on other tissues is also demonstrated through highest TI value 

for WM, 0.89 and 0.90 (Table 5.5 and Table 5.7), in supervised and 

unsupervised clinical image analysis. High accuracy values observed for SC-

ICA_.03+SVM and SC-ICA_.06+SVM (Table 5.6), (92.57±6.25) % and 

(82.31±14.9) %, are found to be very promising in clinical abnormal tissue 

analysis. From Table 7.1, it is observed that comparatively less standard 

deviations and better average sensitivity/specificity/accuracy values (%), 

94.7/96.62/95.05, were shown by SC-ICA+SVM. These results indicate the 

stability and superiority of the method over conventional approaches in brain 

tissue classification.  

7.3.2 Limitations  of  SC-ICA based classifications 

Threshold value selection plays a significant role in accuracy of classified 

results from SC-ICA. Experimental results in Chapter 5 demonstrated that 

classification performance highly varies on selected threshold values. Low 

threshold values can improve classification of local features. But it may lead 

to over-clustering, which adversely affects normal tissue analysis. Generated 

IC and distorted WM tissue (Fig. 7.2(a)) from SC-ICA_.03+SVM explains 

this with the lowest TI value, 0.51. However, improved sensitivity value, 

97.35%, in Table 5.3 suggested that lesion details were not lost from the 

result; low TI value was generated as a result of misclassification due to over 

clustering by SC-ICA_.03. 
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(a) SC-ICA_.03_SVM on Synthetic images 

 
(b) SC-ICA_.03_SVM on clinical normal case 

Fig. 7.2 Low threshold (0.03) effects from SC-ICA 
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Input data characteristics have a big role in optimal threshold selection. In 

general, SC-ICA_.06 based classifications performed well for brain tissue 

analysis. However, specific analysis on normal and abnormal clinical 

database revealed a different picture. SC-ICA_.1 based classification 

provided good results for normal tissue analysis, but optimal values were 

observed from SC-ICA_.12 for abnormal tissues. Normal case results for SC-

ICA_.03 was not satisfactory in visual and quantitative analysis (Fig 7.2(b)). 

However, it was highly attractive for abnormality analysis, which was 

emphasized through sensitivity, specificity and accuracy values of abnormal 

tissues, as given in Table 5.5 and 5.6.  

Feature extraction cost due to clustering in SC-ICA is another issue. Table 

4.3 stated that time complexity is directly proportional to number of clusters. 

Decrease in threshold will increase the number of clusters. For example, a 

threshold value 0.03 will generate more than 833 clusters from a clinical 

abnormal multispectral set. The required time in that case was observed as 

780 seconds, whereas ICA took only 0.7 seconds for feature extraction. On 

increasing the threshold to 0.15, the execution time was found to be 

decreasing to 40 seconds (Table 4.3). 

7.3.3 Benefits of wavelet based approaches in MRI analysis 

Wavelet based ICA extensions are proposed as an alternate to spectral 

clustering to retain the local information in brain tissue analysis. 

Experimental results demonstrated that multiresolution analysis avoids the 

loss of significant MRI details in feature extraction, and it provides a 

relatively good pre-processing step for high performance tissue classification 

and abnormality analysis. Low order daubechies wavelets were observed as 

yielding best performance in MRI analysis. No serious issues like threshold 

selection in SC-ICA observed for multisignal wavelet analysis. 
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MICA based classifications were observed as very good for abnormality 

analysis with less computational overhead. Visual results from Fig. 5.16 and 

Fig. 5.18 demonstrated the superior quality of the classified abnormalities. It 

can be seen from Table 4.3 that feature extraction for these good quality 

results can be done within 5 seconds. However, its poor performance in 

normal tissue classification needs refinement with more sophisticated 

algorithms. 

The new method, MW-ICA, is a successful approach in unmixing each brain 

tissue into separate ICs, from which a reliable supervised or unsupervised 

classification can be easily performed. It combines two concepts to improve 

the brain tissue analysis; multisignal wavelet analysis helped to retain the 

local and global features with the same priority, and over complete-ICA issue 

is solved through band expansion using the reconstructed images from detail 

coefficients.  In comparison with ICs from widely used ICA method (Fig. 

4.12(c)), MW-ICA provides more tissue specific components (Fig. 4.12(b)). 

Lesion detection from ICA results was found to be difficult, since CSF and 

lesion details were accumulated in first component (Fig. 4.12(c) 1st column). 

In addition to that, ICA results failed to locate the presence of lesions in WM 

(Fig. 4.12 (c) last column) because of background dominating effects from 

global features. The closest agreement between segmented brain volumes 

from the groundtruth and MW-ICA results, observed from Bland-Altman 

plots (Fig. 5.5 - Fig. 5.8), recommends MW-ICA based segmentation as the 

best among the proposed methods. Improvement in MW-ICA+FCM over 

other competent methods was confirmed by the reduced mean bias (which is 

closer to zero) and shortened limits of agreement.  

Improved sensitivity and accuracy values observed for all tissues 

demonstrated the efficiency and robustness of the new algorithm in clinical 

trials (Table 5.6 and Table 7.1). Increased average TI value (Table 5.5 and 
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Table 5.7) and reduced misclassification rates (Fig. 5.14) supports the 

effectiveness of the method in small abnormality analysis. Considerable 

reduction in standard deviation of these measures (Table 5.6, Table 7.1 and 

Fig. 5.14) implies the consistency of MW-ICA based classification in clinical 

analysis.  

Hybrid SVM defines a unique feature set for each sample, with ICA and 

wavelet features for validation and classification using SVM. Classification 

results in Fig 7.1 showed the superior performance of hybrid SVM with 

improved efficiency and consistency. Significant improvement in statistical 

analysis (Table 6.3), increased AUC from ROC curves (Fig 6.4 and Fig.6.5) 

and refined quality of the segmented tissues from classification models (Fig. 

6.14) recommends Hybrid SVM as a promising and potential supervised 

approach in normal and abnormal tissue analysis. 

7.3.4 Limitations of  wavelet based ICA extensions 

Modified MICA based classification is robust and reliable in abnormality 

analysis. Experimental results in Chapter 5 demonstrated that multiresolution 

analysis avoids the loss of significant MRI details in feature extraction, and it 

provides a relatively good pre-processing step for high performance tissue 

classification. However, it suppresses majority information before wavelet 

reconstruction as discussed in step2 of MICA algorithm [53]. This will 

adversely affect the classification performance of normal brain tissues in 

abnormal multispectral data. For example, poor classification performance 

was observed for WM and GM tissues in Fig 5.16 (c) and 5.18 (d). Results in 

Table 5.4 and Table 5.5 support this observation with low TI values, 

0.81/0.71 and 0.78/0.81, for synthetic and clinical GM/WM classification 

respectively.  
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Performance of wavelet based approaches, MW-ICA  and hybrid SVM, are 

found to be  varying on different values of parameters like wavelet type, 

degree of decomposition, number of bands in input signals etc. Variation in 

quantitative measures, TI and error rate for different wavelets, indicated that 

wavelet selection has an important role in quality of the results. Fig. 5.9 

recommends db12 for high performance classification with MW-ICA, 

whereas Fig.6.6 indicates db6 as the optimal wavelet type for hybrid SVM.  

Considering the cost of feature extraction, MW-ICA was observed as more 

time consuming. We measured 0.7 seconds for ICA, 4.9 seconds for MICA 

and 7.7 seconds for MW-ICA with db8 wavelet in a typical clinical imaging 

analysis, on a Windows7 PC with Pentium Dual CPU of 2.0GHz/2GB RAM 

(Table 4.3). It can be varied on different values of parameters like wavelet 

type, degree of decomposition, etc., which is to be explored in future works. 

Multisignal wavelet can be effectively performed with more number of bands 

in input multisignal. Real environment imaging issues such as gaussian noise, 

intensity inhomogenity issues, motion artifacts were not considered in this 

analysis.  

7.4 Summary 

An overall summary and analysis of the proposed methods and conventional 

classification methods are included in this chapter. A detailed comparative 

analysis   of supervised classification based on proposed ICA extensions and 

hybrid feature selection is discussed at the onset of the chapter. Following 

that, a detailed discussion on merits and demerits of spectral based approach 

and wavelet based approaches are included.  

Classifications based on hybrid SVM and MW-ICA presented superior 

performance among the proposed methods. SC-ICA with optimal threshold is 

also found to be yielding competitive classification results. MICA based 
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analysis showed its potential in small abnormality classification, but for some 

global tissues it failed to provide better performance over conventional 

approaches. Experimental results recommended the efficiency of 

multispectral MRI analysis based on proposed methods in retaining local and 

global characteristics to improve the brain tissue classification. Potential of 

these methods in simultaneous analysis of small abnormalities like WML, 

and their effect on other tissues can be best exploited in disease progress 

evaluation and treatment.  

Future work focuses on an adaptive threshold selection scheme that can solve 

the threshold and time complexity issues for spectral clustering system. 

Effectiveness of wavelets to work with different types of noise and artifacts 

are also under consideration as future study. Clinical accuracy of results can 

be improved significantly by addition of high informative MRI sequences to 

input multispectral data.  
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Chapter - 8 

CONCLUSIONS AND FUTURE WORKS 
 
 

8.1 Conclusions 
In this thesis work, we explored the issues in ICA for brain tissue 

classification. Chapter 1 provided the problem definition, motivation and 

background introduction. Chapter 2 explained the literature and state of the 

art algorithms in MRI analysis, and Chapter 3 examined the ICA issues in 

MRI analysis with a detailed explanation on its background. First, it was 

noted that ICA neglects local information while dealing with a massive 

amount of data. Another major issue was over-completeness problem, in 

which more than one component accumulated in the same independent 

component, making it difficult to extract the relevant features accurately. In 

Chapters 4–7, various aspects of different solutions were explained, with the 

help of a thorough analysis using synthetic and clinical MRI data. In addition 

to that, open questions and potential future perspectives were also identified. 

Chapter 4 discussed the three new ICA extensions to improve the 

classification performance in brain tissue analysis; A new Spectral Clustering 

ICA (SC-ICA), a new Multisignal Wavelet ICA (MW-ICA) and modified 

Multiresolution ICA (MICA). Each method was explained with relevant 

theory, algorithm and examples. Computational overhead on varying 

parameters is also compared. To justify the improvement by new methods, a 

comparative study with ICA is also added for each experiment. Quantitative 

and qualitative analysis of these proposed ICA extensions with supervised 

and unsupervised classifications, SVM and FCM respectively, is illustrated 

in Chapter 5. A detailed description on the synthetic and clinical, normal and 
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abnormal datasets used, and preparation of raw data for feature extraction 

was also added.  

Although the ICA extensions were found to be superior to ICA in MRI 

analysis, some limitations were also observed to enable further improvement. 

Main issue was the influence of optimal parameter selection in classification 

performance. A supervised method with optimal parameters and best training 

set was found to be more desirable in MRI analysis than an unsupervised 

approach. It was another open question, whether best features from ICA and 

multisignal wavelet transforms can be successfully combined to improve the 

supervised brain tissue analysis. Hybrid SVM discussed in Chapter 6 gave a 

solution to this question, which was demonstrated through experimental 

results from normal and abnormal MRI data.  

Chapter 7 gives an overall summary and analysis of the proposed methods 

and conventional classification methods. It was started with a detailed 

comparative analysis of proposed supervised classifications with existing 

approaches. After that, merits and demerits of spectral based approach and 

wavelet based approaches were discussed in detail. The complete dissertation 

work can be concluded as follows. 

• A new Spectral Clustering ICA (SC-ICA), a new Multisignal Wavelet 

ICA (MW-ICA) and modified Multiresolution ICA (MICA) were 

proposed as ICA extensions to improve the normal and abnormal 

brain tissue classification from multispectral brain MRI.  

• A new hybrid feature selection method based on ICA and multisignal 

wavelet analysis was designed and analyzed with SVM for brain 

tissue classification. 

• The proposed methods were evaluated quantitatively and 

qualitatively, using clinical and synthetic MRI data, for normal and 
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abnormal cases. A comparative analysis with ICA based SVM, SVM, 

ANN, PNN and bagging was also carried out. 

• Hybrid SVM, and classifications based on MW-ICA and SC-ICA 

showed high performance classification for both normal and 

abnormal datasets. MICA was found to be yielding best results in the 

classification of small abnormalities. 

• Two major issues in ICA based MRI analysis have been addressed; 

poor performance in analysis of small abnormalities, and unmixing 

issues in separating more classes from less number of input images 

(OC-ICA).  

• Experimental results demonstrated the potential of the proposed 

methods in pathological analysis of brain MRI.  

8.2 Future directions 

 Experimental results indicated that SC-ICA based analysis provide a 

high performance brain tissue classification, especially in the case of 

small lesions and tumors in clinical analysis. However, both 

classification performance and computational cost highly varies on 

selected threshold values. As a future work, a refined system using 

adaptive threshold selection scheme can solve the threshold and time 

complexity issues.  

 Classification based on modified MICA shows high quality results in 

lesion/tumor detection. However, it suppresses the majority 

information before wavelet reconstruction. In some occasions, this 

will adversely affect the normal brain tissue analysis. MICA can be 

refined to give equal priority for normal and abnormal tissues  in 

multispectral analysis. 
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 Expansion of multispectral data with other specific MRI sequences 

such as diffusion weighted images/perfusion images or sequences 

with different parameter settings in diagnostic studies can extend the 

applications to analysis of several brain diseases. 

 The newly proposed methods in this thesis can be extended to other 

application domains of multispectral imaging such as remote sensing, 

fluorescence microscopy, biometric pattern recognition and so on.  

 Real environment artifacts like gaussian noise, illumination effects 

etc., were not considered in the analysis in this thesis, which can be 

explored in future as a separate research area. 
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